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The vibrational density of states of a chemical system is the 

number of vibrational states per unit of energy. 
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1) Hüpper, B.; Pollak, E. Numerical Inversion of the Laplace Transform. J. Chem. Phys. 1999, 110, 11176−11186 
2) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. ; Prentice-Hall: Upper Saddle River, NJ, 1999; pp 94−97. 
3) Truhlar, D. G.; Isaacson, A. D., J. Chem. Phys. 1991, 94, 357−359 

4) Beyer, T.; Swinehart, D. :. Commun. ACM 1973, 16, 379. Stein, S.; Rabinovitch, B. J. Chem. Phys. 1973, 58, 2438−2445 



How to calculate the vibrational density of states 

Paradensum Algorithm Results Conclusion 

Methods 

 

 

Limitations 

 

 

Inverse  
Laplace  

Transform 

Limited in dimensionality and 
in energy range 1 

Classical (RRKM)2 

Many quantum 
effects neglected  

 Introduction 
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Results Conclusion  Introduction 

The algorithm is based upon 
the observation that the 

histogram of visits H(E) will 
be flat when the probability 
of visiting each energy level 

for a random walk in the 
space of the quantum 

numbers is proportional to  
1/rvib(E)  6 

 

 

Reset 

• Gnew(E) = Gold(E) 
• H(E)=0 
• fnew = fold 

Random 
Walk 

• New state random selection 
• Acceptance/Rejection 
Pacc=MIN{1,Exp[Gold(E)]/Exp[Gnew(E)]} 
• H(E)++, Gnew(E) = Gnew(E) + fnew 

• fold=Sqrt(fnew) 

21x 

• Gold(E) = 1 
• fold=e 
• initial state Initialize 

   Paradensum Algorithm 

6) Wang, F.; Landau, D. P. Efficient, Multiple-range Random Walk Algorithm to Calculate the 

Density of States. Phys. Rev. Lett. 2001, 86, 2050−2053.. 
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From adensum to paradensum: parallelization strategy 
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(2013) 

Limits of Adensum 
• Serial code 
• Not computationally fully optimized 
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Paradensum new features 

Results Conclusion  Introduction 

Parallelization 

To overcome the limitations of the MultiWell adensum code, we 
modify the present algorithm structure and then implement it for 

parallel architectures by using the MPI 

 
Flatness criterion 

In the adensum code, f is updated after a fixed number of Monte 
Carlo sweeps. Instead, in paradensum the WL flatness criterion is 

applied and monitored separately for each window 

 

 Multiple averaging walkers  

The code supports the 

possibility to run multiple walkers for each energy window 
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• The ILT can manage the 

exact counting up to an 
energy threshold. For higher 
energy, ILT results are on the 
top of the CL results 

Results 
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• CL calculations overestimate ρvib(E) at 

low energies while reproducing the 
exact results at higher energy ranges 
 

• CL approximation at low energies 
becomes less accurate as the 
dimensionality is increased 
 

• Paradensum and ILT faithfully 
reproduce the staircase exact results 
 

• Paradensum and ILT are in excellent 
agreement up to 20 dimensions 

Results 

4 UHO 

10 UHO 

20 UHO 
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An increase in WL flatness criterion significantly reduces percentage deviations of the 
windowing and guarantees that the results are independent from the windowing choice 

80 UHO 
80% Flatness 

80 UHO 
95% Flatness 

150 UHO 
80% Flatness 

150 UHO 
95% Flatness 

Results 

%𝛅 = 100 ·
 (𝑁𝑣𝑖𝑏,𝑖 𝐸 − 𝑁𝑣𝑖𝑏,𝑖 𝐸 )2
𝑊
𝑖=1

𝑁𝑣𝑖𝑏,𝑖 𝐸
 

𝑁𝑣𝑖𝑏 𝐸 =
1

𝑊
 𝑁𝑣𝑖𝑏,𝑖 𝐸
𝑊

𝑖=1
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Results for different numbers of windows are within 10% using a flatness criterion of 80%, and 
within 5%, for a 95% flatness choice.  

Such a statistical interval of confidence proves the reliability of the parallelization strategy. 

Results 
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• Almost ideal 
speed up for UHO 
systems 

 
• For small 

molecules it is not 
very efficient 

 
• It becomes 

convenient as the 
number of 
degrees of 
freedom 
increases 
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System 
Original code 

execution time (s) 
New code 

execution time (s) 

HOCO 32 27 

CH2NCH3 1352 140 

C10H8 4611 611 

P(Et)3 8482 2973 

C14H10 10303 2278 

10 UHO 421 20 

20 UHO 1235 19 

40 UHO 3694 49 

80 UHO 12885 226 

90 UHO 16309 303 

106 UHO - 404 

150 UHO - 1387 

Results 



Conclusion 

 Introduction Paradensum Algorithm Results 

Summary 

Paradensum gives the possibility to calculate the fully coupled 

anharmonic density of states of high-dimensional systems 
 

 Paradensum gives the possibility to exploit parallel architectures 
 

Future Developement 

 Testing the performance of multiwalkers  
 

 Parallelization of the Multiwell SCTST software that calculates the vibrational density of 
states for molecules in their transition state 

Conclusion 
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