

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI CHIMICA

An Efficient Computational Approach for the Calculation of the Vibrational Density of States

Fabio GABAS

Chiara AIETA

Michele CEOTTO

Introduction

Paradensum Algorithm

The vibrational density of states

The vibrational density of states of a chemical system is the number of vibrational states per unit of energy.

$$\rho_{vib}(E) = \frac{dN}{dE}$$

$$Q_{vib}(\beta) = \int \rho_{vib} (E) e^{-\beta E} dE$$

Introduction	Paradensum Algorithm	Results	Conclusion
	0000	0000000	00

Methods

Limitations

ntroduction ● ● ○	Paradensum Algorithm	Results	Conclusio ° °

Methods

Limitations

Inverse Laplace Transform

$$N(E) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{e^{\beta E}}{\beta 2^s \prod_{j=1}^s \sinh\left(\frac{1}{2}\beta \hbar \omega_j\right)} d\beta$$

Limited in dimensionality and in energy range ¹

1) Hüpper, B.; Pollak, E. Numerical Inversion of the Laplace Transform. J. Chem. Phys. 1999, 110, 11176–11186 2) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. ; Prentice-Hall: Upper Saddle River, NJ, 1999; pp 94–97. 3) Truhlar, D. G.; Isaacson, A. D., J. Chem. Phys. 1991, 94, 357–359 4) Beyer, T.; Swinehart, D. :. Commun. ACM 1973, 16, 379. Stein, S.; Rabinovitch, B. J. Chem. Phys. 1973, 58, 2438–2445

Methods

Limitations

Inverse Laplace Transform

$$N(E) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{e^{\beta E}}{\beta 2^s \prod_{j=1}^s \sinh\left(\frac{1}{2}\beta\hbar\omega_j\right)} d\beta$$

Limited in dimensionality and in energy range ¹

Classical (RRKM)²

$$\rho(E) = \frac{E^{N-1}}{(N-1)!\prod_{j=1}^{N} \hbar \omega_j}$$

Many quantum effects neglected

Methods

Limitations

Inverse Laplace Transform

$$N(E) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{e^{\beta E}}{\beta 2^s \prod_{j=1}^s \sinh\left(\frac{1}{2}\beta\hbar\omega_j\right)} d\beta$$

Limited in dimensionality and in energy range ¹

Classical (RRKM)²

$$\rho(E) = \frac{E^{N-1}}{(N-1)!\prod_{j=1}^{N} \hbar \omega_j}$$

Many quantum effects neglected

Simple Perturbation Theory³

$$\overline{\nu}_i = \nu_i + 2X_{ii} + \frac{1}{2}\sum_{j\neq i}X_{ij}$$

Approximation: set of uncoupled harmonic oscillators of «effective» frequency

Methods

Limitations

Inverse Laplace Transform

$$N(E) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{e^{\beta E}}{\beta 2^s \prod_{j=1}^s \sinh\left(\frac{1}{2}\beta\hbar\omega_j\right)} d\beta$$

Classical (RRKM)²

$$\rho(E) = \frac{E^{N-1}}{(N-1)!\prod_{j=1}^{N} \hbar \omega_j}$$

Simple Perturbation Theory³

$$\overline{\nu}_i = \nu_i + 2X_{ii} + \frac{1}{2}\sum_{j\neq i} X_{ij}$$

$$N(E) = \sum_{n_1=0, n_2=0, n_{F-1}=0}^{\infty} P_n(E_v)$$

Limited in dimensionality and in energy range ¹

Many quantum effects neglected

Approximation: set of uncoupled harmonic oscillators of «effective» frequency

> Affordable up to 4 atoms systems

 $_{\rho}\beta E$

Methods

 $r\sigma + i\infty$

Limitations

Inverse Laplace Transform

$$N(E) = \frac{1}{2\pi i} \int_{\sigma - i\infty} \frac{c}{\beta 2^s \prod_{j=1}^s \sinh\left(\frac{1}{2}\beta\hbar\omega_j\right)} d\beta$$

Classical (RRKM)²

$$\rho(E) = \frac{E^{N-1}}{(N-1)!\prod_{j=1}^{N} \hbar \omega_j}$$

Simple Perturbation Theory³

$$\overline{\nu}_i = \nu_i + 2X_{ii} + \frac{1}{2} \sum_{j \neq i} X_{ij}$$

Exact Count

 ∞ a = (= =)

$$N(E) = \sum_{n_1=0, n_2=0, n_{F-1}=0} P_n(E_v)$$

$$N(E) = \sum_{n_1=0, n_2=0, n_{F-1}=0}^{\infty} P_n(E_{sep})$$

Limited in dimensionality and in energy range ¹

> Many quantum effects neglected

Approximation: set of uncoupled harmonic oscillators of «effective» frequency

> Affordable up to 4 atoms systems

Approximation: uncoupled oscillators

1) Hüpper, B.; Pollak, E. Numerical Inversion of the Laplace Transform. J. Chem. Phys. 1999, 110, 11176–11186 2) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L.; Prentice-Hall: Upper Saddle River, NJ, 1999; pp 94–97. 3) Truhlar, D. G.; Isaacson, A. D., J. Chem. Phys. 1991, 94, 357–359 4) Beyer, T.; Swinehart, D. :. Commun. ACM 1973, 16, 379. Stein, S.; Rabinovitch, B. J. Chem. Phys. 1973, 58, 2438–2445

MultiWell

MultiWell is a program suite that calculates time dependent concentrations, reaction yields, vibrational distributions, and rate constants as functions of temperature and pressure for multi-well, multi-channel unimolecular reactions systems⁵

Ann Arbor, Department of Atmospheric, Oceanic and Space Sciences

Results

Conclusion

MultiWell

MultiWell is a program suite that calculates time dependent concentrations, reaction yields, vibrational distributions, and rate constants as functions of temperature and pressure for multi-well, multi-channel unimolecular reactions systems⁵

DoLoop: Exact Count

UNIVERSITY OF MICHIGAN

Ann Arbor, Department of Atmospheric, Oceanic and Space Sciences

For vibrational density of states calculation

MultiWell

MultiWell is a program suite that calculates time dependent concentrations, reaction yields, vibrational distributions, and rate constants as functions of temperature and pressure for multi-well, multi-channel unimolecular reactions systems⁵

Ann Arbor, Department of Atmospheric, Oceanic and Space Sciences

For vibrational density of states calculation

DoLoop: Exact Count

Densum: BSSR Algorithm

MultiWell

MultiWell is a program suite that calculates time dependent concentrations, reaction yields, vibrational distributions, and rate constants as functions of temperature and pressure for multi-well, multi-channel unimolecular reactions systems⁵

NIVERSITY OF MICHIGAN

Ann Arbor, Department of Atmospheric, **Oceanic and Space Sciences**

For vibrational density of states calculation

DoLoop: Exact Count

Densum: BSSR Algorithm

Adensum: Monte Carlo Strategy

5) John R. Barker, N. F. Ortiz, J. M. Preses, L. L. Lohr, A. Maranzana, P. J. Stimac, T. L. Nguyen, and T. J. Dhilip Kumar

MultiWell

MultiWell is a program suite that calculates time dependent concentrations, reaction yields, vibrational distributions, and rate constants as functions of temperature and pressure for multi-well, multi-channel unimolecular reactions systems⁵

NIVERSITY OF MICHIGAN

Ann Arbor, Department of Atmospheric, Oceanic and Space Sciences

For vibrational density of states calculation

DoLoop: Exact Count

Densum: BSSR Algorithm

Adensum: Monte Carlo Strategy

nvib v_i initial random guess

> 5) John R. Barker, N. F. Ortiz, J. M. Preses, L. L. Lohr, A. Maranzana, P. J. Stimac, T. L. Nguyen, and T. J. Dhilip Kumar

Results

Conclusion

MultiWell

MultiWell is a program suite that calculates time dependent concentrations, reaction yields, vibrational distributions, and rate constants as functions of temperature and pressure for multi-well, multi-channel unimolecular reactions systems⁵

Densum: BSSR Algorithm

Ann Arbor, Department of Atmospheric, Oceanic and Space Sciences

NIVERSITY OF MICHIGAN

For vibrational density of states calculation

Adensum: Monte Carlo Strategy

nvib v_i initial random guess

$$E = \sum_{i=1}^{\text{nvib}} \omega_i \left(v_i + \frac{1}{2} \right) + \sum_{i,j=1}^{\text{nvib}} X_{ij} \left(v_i + \frac{1}{2} \right) \left(v_j + \frac{1}{2} \right)$$

5) John R. Barker, N. F. Ortiz, J. M. Preses, L. L. Lohr, A. Maranzana, P. J. Stimac, T. L. Nguyen, and T. J. Dhilip Kumar

Results

Conclusion

MultiWell

MultiWell is a program suite that calculates time dependent concentrations, reaction yields, vibrational distributions, and rate constants as functions of temperature and pressure for multi-well, multi-channel unimolecular reactions systems⁵

DoLoop: Exact Count

Ann Arbor, Department of Atmospheric, Oceanic and Space Sciences

For vibrational density of states calculation

Densum: BSSR Algorithm

nvib v_i initial random guess

Adensum: Monte Carlo Strategy

$$E = \sum_{i=1}^{\text{nvib}} \omega_i v + \frac{1}{2} + \sum_{i,j=1}^{\text{nvib}} X_{ij} v_i + \frac{1}{2} (v_j + \frac{1}{2})$$

5) John R. Barker, N. F. Ortiz, J. M. Preses, L. L. Lohr, A. Maranzana, P. J. Stimac, T. L. Nguyen, and T. J. Dhilip Kumar

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI CHIMICA

MultiWell

MultiWell is a program suite that calculates time dependent concentrations, reaction yields, vibrational distributions, and rate constants as functions of temperature and pressure for multi-well, multi-channel unimolecular reactions systems⁵

Ann Arbor, Department of Atmospheric, Oceanic and Space Sciences

NIVERSITY OF MICHIGAN

For vibrational density of states calculation

Densum: BSSR Algorithm

nvib v_i initial random guess

Adensum: Monte Carlo Strategy

$$E = \sum_{i=1}^{\text{nvib}} \omega_i (\nu) + \frac{1}{2} + \sum_{i,j=1}^{\text{nvib}} X_{ij} (\nu) + \frac{1}{2} (\nu_j + \frac{1}{2}) \Delta N_{\text{vib}}(E)$$

5) John R. Barker, N. F. Ortiz, J. M. Preses, L. L. Lohr, A. Maranzana, P. J. Stimac, T. L. Nguyen, and T. J. Dhilip Kumar

Paradensum Algorithm

Wang Landau Monte Carlo in adensum

$$G(E) = \ln[\rho(E)] = \ln[\frac{dN(E)}{dE}]$$

The algorithm is based upon the observation that the histogram of visits H(E) will be flat when the probability of visiting each energy level for a random walk in the space of the quantum numbers is proportional to $1/\rho_{vib}(E)_{6}$

6) Wang, F.; Landau, D. P. Efficient, Multiple-range Random Walk Algorithm to Calculate the

Density of States. Phys. Rev. Lett. 2001, 86, 2050-2053.

From adensum to paradensum: parallelization strategy

• Serial code

Limits of Adensum

- Not computationally fully optimized
- Limited in dimensionality

From adensum to paradensum: parallelization strategy

- Serial code
- **Limits of Adensum**
- Not computationally fully optimized
- Limited in dimensionality

Parallelization Idea For the new Paradensum code

Having to search in a smaller phase space the alghorithm converges faster⁷

Parallel data subdivison and organization

Parallel data subdivison and organization

Parallel data subdivison and organization

Paradensum new features

Parallelization

To overcome the limitations of the MultiWell adensum code, we modify the present algorithm structure and then implement it for parallel architectures by using the MPI

Flatness criterion

In the adensum code, f is updated after a fixed number of Monte Carlo sweeps. Instead, in paradensum the WL flatness criterion is applied and monitored separately for each window

Multiple averaging walkers

The code supports the

possibility to run multiple walkers for each energy window

Introduction	Paradensum Algorithm	Results	Conclusion		
●●●	● ● ● ●	● ○ ○ ○ ○ ○ ○ ○	° °		
Results overview					

Model Systems

Application to molecules

Timing and scalability

Model systems results: one dimensional HO

Paradensum Algorithm

Model systems results: one dimensional HO

 Paradensum correctly reproduces the results provided by the exact counting of states

Model systems results: one dimensional HO

- Paradensum correctly reproduces the results provided by the exact counting of states
- CL results reproduce on average the discrete quantum mechanical counting given by the straight line

Model systems results: one dimensional HO

- Paradensum correctly reproduces the results provided by the exact counting of states
- CL results reproduce on average the discrete quantum mechanical counting given by the straight line
- The ILT can manage the exact counting up to an energy threshold. For higher energy, ILT results are on the top of the CL results

Conclusior

 CL calculations overestimate pvib(E) at low energies while reproducing the exact results at higher energy ranges

- CL calculations overestimate pvib(E) at low energies while reproducing the exact results at higher energy ranges
- CL approximation at low energies becomes less accurate as the dimensionality is increased

- CL calculations overestimate pvib(E) at low energies while reproducing the exact results at higher energy ranges
- CL approximation at low energies becomes less accurate as the dimensionality is increased
- Paradensum and ILT faithfully reproduce the staircase exact results

- CL calculations overestimate pvib(E) at low energies while reproducing the exact results at higher energy ranges
- CL approximation at low energies becomes less accurate as the dimensionality is increased
- Paradensum and ILT faithfully reproduce the staircase exact results
- Paradensum and ILT are in excellent agreement up to 20 dimensions

An increase in WL flatness criterion significantly reduces percentage deviations of the windowing and guarantees that the results are independent from the windowing choice

Application to molecules

Results for different numbers of windows are within 10% using a flatness criterion of 80%, and within 5%, for a 95% flatness choice.

Such a statistical interval of confidence proves the reliability of the parallelization strategy.

Paradensum AlgorithmResultsConclusionTiming and scalabilitySpeedup =
$$\frac{T_{serial}}{T_{N_processors}}$$
Efficiency = $\frac{Speedup}{N_processors}$

In •

troductionParadensum AlgorithmResultsConclusionTiming and scalabilitySpeedup =
$$\frac{T_{serial}}{T_{N_processors}}$$
Efficiency = $\frac{Speedup}{N_processors}$

Windowing Speedup =
$$\frac{T_{1_window}}{T_{Nwindows}}$$

$$Windowing \ Efficiency = \frac{Windowing \ Speedup}{N_processors}$$

Timing and scalability

Number of Cores

Paradensum Algorithm

Results

Conclusion

Timing and scalability

- Almost ideal speed up for UHO systems
- For small
 molecules it is not
 very efficient
- It becomes convenient as the number of degrees of freedom increases

Timing and scalability: a practical look

System	Original code execution time (s)	New code execution time (s)
НОСО	32	27
CH ₂ NCH ₃	1352	140
C ₁₀ H ₈	4611	611
P(Et) ₃	8482	2973
C ₁₄ H ₁₀	10303	2278
10 UHO	421	20
20 UHO	1235	19
40 UHO	3694	49
80 UHO	12885	226
90 UHO	16309	303
106 UHO	-	404
150 UHO	-	1387

Summary

Paradensum gives the possibility to calculate the fully coupled anharmonic density of states of high-dimensional systems

Paradensum gives the possibility to exploit parallel architectures

Future Developement

Testing the performance of multiwalkers

Parallelization of the Multiwell SCTST software that calculates the vibrational density of states for molecules in their transition state

Acknowledgement

Michele Ceotto, Aieta Chiara And our research group

Cineca HPC Center

Thank you for your kind attention

