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Abstra
t

We give a review of some works where it is shown that 
ertain

quantum{like features are exhibited by 
lassi
al systems. Two kinds

of problems are 
onsidered. The �rst one 
on
erns the spe
i�
 heat of


rystals (the so 
alled Fermi{Pasta{Ulam problem), where a glassy be-

havior is observed, and the energy distribution is found to be of Plan
k{

like type. The se
ond kind of problems 
on
erns the self{intera
tion

of a 
harged parti
le with the ele
tromagneti
 �eld, where an analog

of the tunnel e�e
t is proven to exist, and moreover some nonlo
al ef-

fe
ts are exhibited, leading to a natural hidden variable theory whi
h

violates Bell's inequalities.

1 Introdu
tion

The relations between 
lassi
al and quantum me
hani
s are usually studied

in the 
ontext of the so 
alled semi
lassi
al limit. Indeed it is well known

that 
lassi
al me
hani
s is re
overed in the limit in whi
h Plan
k's 
onstant

h (or its rationalized version �h = h=2�) be
omes somehow negligible, in

a sense analogous to that in whi
h newtonian me
hani
s is re
overed from

relativisti
 me
hani
s in the limit in whi
h the speed of light 
 be
omes in-

�nite. In the present paper a review is given of some resear
hes in whi
h

the relations between 
lassi
al me
hani
s and quantum me
hani
s are in-

vestigated in a somehow reverse way, namely with the aim of showing that


lassi
al me
hani
s (or rather 
lassi
al physi
s, inasmu
h as we 
onsider also

the role of the ele
tromagneti
 �eld) already 
ontains in itself some relevant

quantum{like features. Su
h a line of resear
h was initiated about thirty

years ago (see [1℄ and [2℄) in 
onne
tion with the equipartition problem of


lassi
al statisti
al me
hani
s, stimulated by the last work of Fermi (1954)
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on the so 
alled Fermi{Pasta{Ulam (FPU) problem (see [3℄), and found a

huge support from the fa
t that at the same time the theory of dynami
al

systems (with the famous KAM theorem) was be
oming one of the most

popular �elds of resear
h in the s
ienti�
 
ommunity. Later, the problem

of the self{intera
tion of a 
harged parti
le with the ele
tromagneti
 �eld

also started to be investigated (see [4℄ and [5℄) in the spirit of the theory of

dynami
al systems. There too some quantum{like features 
ame to light,

related to the existen
e of the so{
alled runaway solutions of the Abraham{

Lorentz{Dira
 (ALD) equation, whi
h is the relevant equation in the point

parti
le limit (see [6℄ and [7℄); we are referring to a possibility of des
ribing

pair 
reation and annihilation (see [8℄), the existen
e of a 
lassi
al analog of

the tunnel e�e
t (see [9℄ and [10℄), and a violation of Bell's inequalities (see

[11℄).

These are the two main themes (the FPU problem and the ALD equa-

tion) that will be dis
ussed below. Preliminarily, it might however be useful

to re
all how it 
an be understood that any quantum{like feature at all


an show up in 
lassi
al me
hani
s, where apparently there is no pla
e for

the new quantity, the quantum of a
tion �h, whi
h 
hara
terizes quantum

me
hani
s. The fa
t is that something quantitatively 
omparable to �h a
-

tually o

urs in 
lassi
al me
hani
s, and indeed at two di�erent levels. The

�rst one is purely me
hani
al. Consider a system of parti
les des
ribing an

a
tual mole
ular system, and thus involving some realisti
 potential, typi-


ally the Lennard{Jones potential V (r) = 4V

0

[(�=r)

12

� (�=r)

6

℄, r being the

distan
e between two mole
ules. Then one has three 
hara
teristi
 parame-

ters, namely the energy V

0

, the length � and the mass m of the mole
ules,

from whi
h the 
hara
teristi
 a
tion A =

p

mV

0

� is obtained. Now, if one


hooses arbitrary values for su
h parameters, the 
hara
teristi
 a
tion A too

takes any value; but if one inserts realisti
 values, as given in the standard

textbooks (see [12℄), one immediately realizes that A is of the order of mag-

nitude of �h; a
tually, with an in
redible pre
ision one has A = 2Z�h, where

Z is the atomi
 number. Thus if it turns out that in some 
lassi
al model

of mole
ules an a
tion 
omes into the arena, then most surely su
h an a
-

tion will be of the order of magnitude of Plan
k's 
onstant. This is indeed

what was a
tually realized in [1℄, where a quantum{like phenomenon in a


lassi
al system was �rst observed. A
tually it was found that in the FPU

problem at very low energies the energy spe
trum exhibited a Plan
k{like

distribution rather than equipartition, and by �t it was found, with a great

surprise, that the 
orresponding a
tion was very nearly equal to Plan
k's


onstant. It took some time to �nd the explanation, namely that de�nite

mole
ular parameters had been 
hosen (a
tually those of Argon), for whi
h

the relation

p

mV

0

� = 2Z�h holds.

The se
ond level at whi
h an a
tion related to Plan
k's 
onstant �h enters

in 
lassi
al physi
s 
on
erns the intera
tion of a 
harged parti
le with the

ele
tromagneti
 �eld. In fa
t everyone knows that there exists the �ne stru
-
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ture 
onstant, namely the dimensionless number � de�ned by � = e

2

=�h
,

where e is the ele
tron 
harge and 
 the speed of light, and that one has

� ' 1=137. But su
h a relation 
an also be read in the form

�h ' 137

e

2




;

namely: the \
lassi
al" quantity e

2

=
 is an a
tion, and is thus proportional

to �h, the proportionality fa
tor being as above. So if in the 
lassi
al theory of

the intera
tion of 
harged parti
les with the ele
tromagneti
 �eld an a
tion


omes into the arena, then most surely it will be of the order of magnitude

of e

2

=
, and possibly not very di�erent from �h. An example is the following,

whi
h is dedu
ed from some simple exer
ises proposed in the 
lassi
al text-

book of Landau and Lifshitz (see [13℄). Consider the s
attering of a 
harge

(with initial velo
ity v) by a repulsive 
enter of for
es, and estimate the or-

bit in the zero{th order, i.e. purely me
hani
al, approximation. A formula

for the emitted energy �E is easily found, whi
h turns out to depend on

the parameters entering the for
e. Moreover the emitted spe
trum is found

to exhibit an exponential de
ay, with a 
hara
teristi
 
uto� frequen
y �!,

whi
h also depends in a 
ompli
ated way on the parameters de�ning the

model. However one immediately 
he
ks that su
h parameters disappear in

the expression for the a
tion �E=�!, be
ause one �nds

�E

�!

= a

e

2
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where a is a dimensionless number of the order of unity.

So perhaps it makes sense to try to understand how mu
h does 
lassi
al

physi
s extend into the domain of quantum physi
s. Our personal approa
h

is des
ribed in the present review, whi
h we would like to dedi
ate to Martin

Gutzwiller and Paolo Raineri.

2 Plan
k{like distributions in the FPU problem

So we start with the quantum{like features o

urring in problems of FPU

type (for previous reviews see [14℄ and [15℄; see also [16℄, se
tion 3.4).

a) The FPU paradox. Fermi Pasta and Ulam were performing numeri
al


omputations on a one{dimensional model of a 
rystal, namely a system of

a 
ertain number of parti
les on a line, with nearest neighbor nonlinear

intera
tion and 
ertain boundary 
onditions. The 
orresponding linearized

system is equivalent to a system of un
oupled harmoni
 os
illators (the

system's normal modes) and the authors had in mind to 
he
k that the a
tual

nonlinear 
oupling would lead, after a transient, to energy equipartition,

namely the same mean energy (in time average) for all modes; this is indeed

3



predi
ted by the equilibrium distribution of 
lassi
al statisti
al me
hani
s

in phase spa
e, namely the Maxwell{Boltzmann or Gibbs distribution. The

FPU paradox was that, energy having been given initially only to the low

frequen
y modes, equipartition was not found within the a
tual observation

time: there was a kind of freezing, and energy did not appear to 
ow to the

high frequen
y modes. FPU also reported a �gure (Fig. 9) from whi
h one


ould guess that the spe
trum (energy versus frequen
y) had an exponential{

like de
ay towards the high frequen
ies. Noti
e that this is exa
tly the

qualitative 
hara
teristi
 feature of Plan
k's law whi
h, on O
tober 19, 1900,

gave rise to quantum me
hani
s.

The late E. Segr�e, in a 
onversation with one of us, on
e mentioned

that Fermi did not like very mu
h the standard interpretation of quantum

me
hani
s, but neither did he like ideologi
al dis
ussions. As Ulam reports

in his prefa
e to the work of FPU, reprinted in Volume 2 of Fermi's 
olle
ted

papers (n. 266): \The results of the 
al
ulations ... were interesting and

quite surprising to Fermi. He expressed to us the opinion that they really


onstitute a little dis
overy in providing intimations that the prevalent beliefs

in the universality of mixing and thermalization in nonlinear systems may

not be always justi�ed". If one thinks of the attention Fermi had given to

su
h a problem in one of his early works (see [17℄ and also [18℄), su
h a

return to it just before his death appears as not surprising.

b) Di�erent attitudes. The �rst s
ientists that took up Fermi's 
hallenge

were Izrailev and Chirikov who, in a deep and remarkable paper (see [19℄),

prompted the solution to the FPU paradox: there should exist some kind

of energy threshold, su
h that for low energies one has \ordered motions",

somehow as with KAM tori, while 
haoti
 motions, leading to equipartition,

should prevail above threshold. Moreover su
h a threshold should be a

fun
tion of the initially ex
ited frequen
y !, so that in the frequen
y energy

plane (!;E) one has a kind of \border of sto
hasti
ity" des
ribed by some

fun
tion E




= E




(!). The paradoxi
al result of FPU was explained by the

fa
t that initial data below threshold had been taken. Moreover, Izrailev and

Chirikov also provided some kind of mathemati
al theory allowing them to

estimate the 
riti
al 
urve E




(!); the main feature being that it tends to

the 
urve E




(!) = 0 when the number of parti
les in the system tends to

in�nity. This would be the 
omplete solution of FPU's paradox a

ording to

Izrailev and Chirikov: for ma
ros
opi
 systems there is no threshold at all,

and one always meets with equipartition, as predi
ted by 
lassi
al statisti
al

me
hani
s. This is the reason why 
lassi
al me
hani
s fails, as it should.

This, at least, is the way we understand Izrailev and Chirikov's atti-

tude. In the present paper we will try to explain our point of view, whi
h

is a 
ompletely di�erent one: we interpret the FPU paradox as pointing

out a feature a
tually existing in 
lassi
al me
hani
s, whi
h survives also for

ma
ros
opi
 systems, and intimates that quantum{like features are present
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at a 
lassi
al level. Brie
y, our point of view 
onsists in stressing (quoting

again from Ulam) the role of the \rate of thermalization", following an at-

titude that a
tually goes ba
k to a famous paper of Boltzmann of the year

1895 (see [20℄ and [21℄): the la
k of equipartition is due to the fa
t that

the rate of thermalization is highly nonuniform with respe
t to frequen
y,

in
reasing very fast with it, so that the high frequen
ies, parti
ularly at low

temperatures, do not have time to thermalize within the available observa-

tion time. This is a
tually the point of view whi
h is ordinarily taken when

studying glasses or super
ooled liquids (see [22℄), as was �rst pointed out,

in 
onne
tion with the FPU problem, in the paper [23℄. In other words, in

the FPU problem there should o

ur a freezing in the same sense of glasses

or super
ooled liquids, but this should have a foundational relevan
e in the

sense of Boltzmann, and not just a te
hnologi
al one.

A very general theorem was proven (see [24℄ and [25℄) for the ex
hange

of energy between two subsystems of os
illators of low and high frequen
ies

respe
tively. It was found that the relaxation time to equipartition in
reases

as a stret
hed exponential with frequen
y, the result being independent of

the number N of degrees of freedom. Examples of physi
al systems 
an be

given (see [26℄) where there exists a frequen
y �! (of the order of 10

14

se


�1

)

whi
h relaxes in one se
ond, while the frequen
y �!=2 relaxes in 10

�8

se
onds

and the frequen
y 2�! in 10

5

years. This is indeed the familiar barrier{like

e�e
t of the exponential.

So this is in short the reason why among people working on the FPU

problem, parti
ularly in Italy, it was understood that quantum{like features


ould be present in 
lassi
al systems. There remained however the big prob-

lem that the exponential{like estimates for the thermalization rates were

not universal, be
ause they involved, through some 
onstants entering the

stret
hed exponentials, the parti
ular mole
ular parameters o

urring in any

given model, su
h as the parameters V

0

, � and m mentioned above. So one

should explain why, in the 
urves giving the spe
i�
 heat versus tempera-

ture, in general a thermodynami
 behavior is observed, des
ribed by pure

exponentials involving no mole
ular potentials at all, as in Plan
k's law.


) Plan
k's law: a dynami
al implementation of Einstein's 
u
tuation

formula. A 
lue was found quite re
ently (see [27℄) by understanding how

Einstein interpreted Plan
k's law in terms of energy 
u
tuations, and by

implementing Einstein's 
u
tuation law in terms of a dynami
al 
u
tuation

formula established in the framework of dynami
al systems theory. Let

us re
all that Plan
k's law, giving the mean energy U for a system of N

os
illators of frequen
y ! at inverse temperature �, has the form

U(!; �) = N (

�

e

��

� 1

) (1)

where � = �h!. Now, Plan
k's law turns out to be a solution of the di�erential

5



equation

dU

d�

= �(�U +

U

2

N

) ; (2)

with a suitable 
hoi
e of the integration 
onstant. This is indeed the way

(apart from some notational di�eren
es) Plan
k himself introdu
ed su
h a

law in his �rst work (see [28℄). In fa
t he made an interpolation between

the right hand sides of the equations

dU

d�

= �

U

2

N

and

dU

d�

= ��U , be
ause by

integration they lead to the equipartition law U = N=� and to Wien's law

U = C exp(���) (with a suitable 
onstant C), whi
h were known to �t well

the data at low and high frequen
ies respe
tively. What Einstein did (see

[29℄, [30℄) was to split the equation (2) into two equations, namely

dU

d�

= ��

2

E

(3)

and

�

2

E

= �U +

U

2

N

: (4)

where �

2

E

is the energy varian
e. Indeed he 
on
eived of (3) as being just a

general thermodynami
 relation, while (4), whi
h expresses a spe
ial fun
-

tional relation between energy varian
e and mean energy, might have some

dynami
al foundation. In his very words ([30℄): these two relations \exhaust

the thermodynami
 
ontent of Plan
k's" formula; and: \a me
hani
s 
om-

patible with the energy 
u
tuation �

2

E

= �U + U

2

=N must then ne
essarily

lead to Plan
k's" formula. For further details see [15℄.

Now, during some resear
hes on the 
ollisions between a parti
le (mim-

i
king a heat reservoir) and a spring (mimi
king a 
rystal), it was found

that, for high frequen
ies and small energies of the spring, the energy ex-


hange of the spring in a single 
ollision is given by what we like to 
all the

Benettin{Jeans formula, namely (see [31℄ and [32℄)

Æe = �

2

+ 2�

p

e

0


os'

0

; (5)

where e

0

and '

0

are the initial energy and phase of the os
illator, while

� is an extremely small fa
tor de
reasing with frequen
y as a stret
hed

exponential, and 
ontaining the mole
ular parameters. Then, in the paper

[27℄ the 
onne
tion with Plan
k's law was found. Indeed if one 
onsiders a

sequen
e of k su
h 
ollisions and averages over the phases, by elementary

manipulations one �nds between mean energy and energy varian
e exa
tly

Einstein's fun
tional relation (4), with � = 2a

0

! where a

0

is the initial a
tion

per os
illator. Our 
onje
ture is that su
h a dependen
e on the initial data

should disappear, if one takes into a

ount that the Benettin{Jeans formula

holds only for small enough initial a
tions, so that an average should be

taken over the initial a
tions smaller than a 
ertain 
riti
al a
tion A. This

is an important open problem.
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d) An experimentum 
ru
is. Many more things might be added here,

for example 
on
erning analyti
al and numeri
al estimates for the border of

sto
hasti
ity in the sense of Izrailev and Chirikov (see [33℄). But we think

we may now summarize the situation. In 
lassi
al me
hani
s equipartition

o

urs (or rather should o

ur, be
ause rigorous results are la
king) when the

nonuniformity of the relaxation times to equilibrium is altogether negle
ted.

So equipartition 
onstitutes a sort of zero{th order approximation. On the

other hand, the relaxation rates are found to depend on frequen
y in a

quite nonuniform way, and for high frequen
ies and low temperatures one

is in presen
e of freezing phenomena as in the familiar 
ases of glasses and

super
ooled liquids. When this is taken into a

ount, an approximation for

the a
tual energy distribution mu
h better than equipartition is found to be

apparently given by a Plan
k{like distribution. In this sense, Plan
k's law

appears just as a �rst order approximation, in whi
h the freezing is dealt with

as if it were a real equilibrium; this seems to 
orrespond to the approximation

of quantum me
hani
s. Thus 
lassi
al me
hani
s and quantum me
hani
s

should substantially agree within a 
ertain time, whi
h might be the analog

of what is sometimes 
alled Egorov's time or Ehrenfest's time (see [34℄ and

[35℄). For larger times the two me
hani
s disagree: quantum me
hani
s deals

with the system as if it had rea
hed equilibrium, while 
lassi
al me
hani
s

should lead to a \�nal relaxation" to equipartition (but on non human time

s
ales), with a 
orresponding arising of 
haoti
 motions.

If this phenomenon is real, it should be observed experimentally at the

low frequen
ies, where the relaxation times should still be on a human s
ale.

In fa
t, sin
e the relaxation time to equipartition is expe
ted to in
rease

with frequen
y as a stret
hed exponential, for any given observation time

t there should exist a frequen
y �!(t) playing the role of an equipartition

front, followed by an exponential tail towards the high frequen
ies; su
h

an equipartition front should then be observed to move towards the high

frequen
ies as the observation time in
reases. This phenomenon was indeed

predi
ted by Jeans (see [36℄), and so we 
all it the Jeans e�e
t. We do not

have time to dis
uss here a very interesting 
riti
al and histori
al problem,

namely that of understanding how did it happen that Jeans, apparently

under the in
uen
e of the famous paper of Poin
ar�e on the ne
essity of

quantization (see [37℄), 
ame to repudiate (see [38℄ and [39℄) the ideas he had

kept (following Rayleigh and Boltzmann) up to the �rst Solvay 
onferen
e.

Looking for the Jeans' e�e
t here plays the role of a kind of \experi-

mentum 
ru
is": if quantum me
hani
s is just a �rst order approximation

to 
lassi
al me
hani
s, one should observe that the temperature at whi
h

freezing o

urs (namely essentially the Debye temperature, where the spe-


i�
 heat exhibits a rather abrupt de
ay) depends on the observation time,

moving towards the low temperatures as the observation time is in
reased.

An indire
t proof of this is obviously given by the very existen
e of sound

dispersion (the sound speed, and so the spe
i�
 heat, depends on frequen
y,

7



i.e. on the observation time), while a dire
t experimental proof of a time

dependen
e of the spe
i�
 heat has been found for super
ooled liquids and

for glasses, exhibiting in an impressive way exa
tly the feature des
ribed

above (see Fig. 1 of [40℄). Our 
onje
ture is that su
h a phenomenon should

be observed also in standard 
rystals, su
h as those 
onsidered by Einstein

in his famous paper on spe
i�
 heats (see Fig 1 of ref. [41℄). In extremely


on
rete terms: the phenomenon observed in Fig. 1 of ref. [40℄ 
on
erning

super
ooled liquids (i.e. the existen
e of a di�erent 
urve 


V

versus T for

ea
h observation time) should o

ur also for pure 
rystals, 
ontrary to the


ommon belief that one has there to do with a real equilibrium.

We do not have time here to dis
uss the relations between the sto
has-

ti
ity threshold and the zero{point energy, in the way suggested originally

by Cer
ignani (see [42℄), or to illustrate how su
h an idea leads to a modern

reinterpretation of a very impressive dedu
tion of Plan
k's law in terms of

energy thresholds given by Nernst in the year 1916 (see [43℄).

3 Quantum{like features of 
lassi
al ele
trodynam-

i
s

The problem we will 
onsider now is the fundamental one of 
lassi
al ele
tro-

dynami
s, namely the intera
tion of a 
harged parti
le with the ele
tromag-

neti
 �eld, as des
ribed by the Maxwell{Lorentz system, the sel�ntera
tion

of the parti
le with the �eld being taken into due a

ount. Dealing with

su
h a problem in a rigorous way, in the spirit of the theory of dynami
al

systems, is quite a hard job. In our opinion there are good indi
ations that

su
h a job will be greatly rewarding.

Two limit 
ases exist whi
h are essentially trivial. The �rst one is when

the parti
le's motion (and thus the 
urrent too) is assigned, so that one

remains with the linear problem of Maxwell's equations with a given 
urrent,

namely

�

�

F

��

= j

�

; (6)

in the standard notations, F

��

and j

�

denoting ele
tromagneti
 �eld and


urrent respe
tively (the homogeneous Maxwell equations being understood).

Su
h an equation is easily resolved even for the 
ase of a point parti
le, by


onsidering the �elds as distributions. The other trivial 
ase is when the

�eld is assigned, and one is redu
ed to the purely me
hani
al problem of a

parti
le subje
ted to a spe
ial (i.e. the Lorentz) for
e, with equation

ma

�

= F

��

j

�

; (7)

where m and a

�

denote the mass and the four{a

eleration of the parti
le.

Things are however 
ompletely di�erent for the full 
oupled system. The

most severe problem here arises in the 
ase of a point parti
le, be
ause the
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mathemati
al expression for the Lorentz for
e then makes no sense, due to

the in�nity (at the parti
le position) of the �eld 
reated by the parti
le itself,

whi
h 
annot be 
ared in any trivial way.

We will return to this point below. In the meantime we would like to

stress that interesting features are dis
losed even if one 
onsiders an ex-

tremely simpli�ed model, namely the nonrelativisti
 model of a rigid fat

parti
le in the dipole (i.e. linearized) approximation, the rotational degrees

of freedom being altogether negle
ted.

a) The nonrelativisti
 model of a fat rigid parti
le; wholeness of parti
le

and �eld, and parti
le di�ra
tion. In dealing with su
h a simpli�ed model,

a �rst remarkable qualitative feature already shows up, namely the insep-

arability of parti
le and �eld; this endows the parti
le with intrinsi
 �eld

properties leading it to undergo, for example, di�ra
tion. In order to fully

appre
iate this, one should perhaps start up by be
oming familiar with a

simple exer
ise (see [4℄), namely to realize that in free spa
e a 
harged parti-


le 
an perform uniform re
tilinear motion only if some de�nite initial data

are assigned to the �eld, expli
itly adapted to the me
hani
al initial data x

0

and v

0

(position and velo
ity) of the parti
le. For example, with a vanishing

initial �eld the parti
le is found to de
elerate, by radiating a �eld as if it

were trying to build up a �eld that would let it perform a uniform motion.

Instead, if a 
ertain suitable initial �eld is assigned, then the various Fourier

modes do 
ooperate in produ
ing mutual 
ompensations su
h that the net

for
e on the parti
le vanishes (while otherwise su
h a for
e does not vanish

at all). In fa
t, the suitable initial �eld is, as one would imagine, nothing

but the appropriate Lorentz transform of the Coulomb �eld 
reated by the

parti
le at rest. However, the existen
e of a spe
ial �eld produ
ing uniform

motion is not at all trivial from a dynami
al point of view, and the �rst

s
ientist that understood it, namely Abraham in the year 1903 (see [44℄),

even quali�ed su
h a property as proving the \
ompatibility of ele
trodynam-

i
s with the inertia prin
iple". In any 
ase, a 
harged parti
le needs a �eld

to go straight. On the other hand, it is well known that in presen
e of an

obsta
le the �eld alone undergoes di�ra
tion, due to the appropriate bound-

ary 
onditions; thus in the same way it is obvious that a 
harged parti
le,

due to the intimate relation with the �eld just des
ribed, also undergoes

di�ra
tion. This 
an be proved in a very easy way in some approximation,

although up to now we were unable to obtain 
lear quantitative estimates.

This seems to be an interesting open problem.

b) A se
ond level of wholeness: the point parti
le problem, mass renor-

malization, runaway solutions and the Dira
 prin
iple. The most relevant

quantum{like feature of 
lassi
al ele
trodynami
s is however manifested

when the point parti
le problem is 
onsidered. We will try to show in a mo-

ment that this manifestation o

urs through the appearing of the runaway

9



solutions whi
h, in turn, are a 
onsequen
e of the need for mass renormal-

ization, i.e. of the divergen
e of the ele
tromagneti
 mass, or ultimately of

the divergen
e of the Coulomb for
e on the parti
le itself. As far as our

personal experien
e is 
on
erned, this is a quite deli
ate point, on whi
h

an agreement with a large part of the 
ommunity of theoreti
al physi
ists

is not easily found. Indeed the 
ommon opinion is that problems of this

type 
ould be dealt with only within the quantum formalism. Following

Dira
 (see [45℄ and [46℄) and Feynman (see [47℄), we believe instead that a

quantum des
ription would meet essentially with the same diÆ
ulties of a


lassi
al des
ription, and that it makes sense to start up from the latter.

In order to go to the heart of the problem, let us �rst des
ribe heuristi-


ally, following Feynman, how the problem of mass renormalization arises.

The main point is the fa
t that everything goes as if there were atta
hed to

the parti
le a mass, known as the ele
tromagneti
 mass m

em

, although su
h

a mass does not appear expli
itly in the equations de�ning the model, i.e.

in the Maxwell{Lorentz system. This too is a 
onsequen
e of the intimate

relation between parti
le and �eld mentioned above: a parti
le in uniform

motion drags along with it a �eld, and so also the 
orrespondig energy and

momentum of the �eld. For example, for a sphere of radius R and velo
-

ity v one has in the nonrelativisti
 approximation a momentum, due to the

�eld, of modulus p

em

= m

em

v, with m

em

= (2=3)e

2

=R. It is thus 
lear that

in a �rst approximation the parti
le behaves as if it had an e�e
tive mass

m

0

+m

em

(R), where we have now denoted by m

0

instead of m the \bare

or me
hani
al" mass entering Newton's equation (7). On the other hand,

in the point limit R ! 0 the ele
tromagneti
 mass diverges, m

em

! +1,

so that apparently there are just two possibilities in taking the point limit:

either one keeps the bare mass m

0

�xed, in whi
h 
ase the e�e
tive mass

tends to +1 (trivial dynami
s; no �nite for
e is able to a

elerate the par-

ti
le), or one introdu
es the pres
ription m

0

= m

0

(R) ! �1 in su
h a

way that the e�e
tive mass m

0

(R) +m

em

(R) remains �nite, say equal to a

value m playing the role of a phenomenologi
al mass. A detailed analysis,

restri
ted to the nonrelativisti
 
ase in the dipole approximation (see [6℄ and

[7℄), shows that su
h a heuristi
 
on
lusion is 
orre
t, in the most rigorous

way. Indeed it 
an be proven that a nontrivial dynami
s is obtained if and

only if mass renormalization is introdu
ed as above; moreover the Cau
hy

data for parti
le and �eld should not be independent, but related in some

de�nite way. Furthermore the initial parti
le a

eleration turns out to be a

well de�ned fun
tion of the initial data of the �eld (the relevan
e of this will

be shown in a moment). Finally, one obtains for the motion of a parti
le

under the a
tion of an external for
e F

ext

the third order equation

� _a = a� F

ext

(x)=m (8)

involving the 
hara
teristi
 time � = (2=3) e

2

=(m


3

). This is apparently a

very strange equation, requiring as initial data the parti
le a

eleration a

0

10



in addition to the standard data of position and velo
ity x

0

; v

0

required for

Newton's equation. But, as mentioned above, a

0

turns out to be a fun
tion

of the global set of initial data for the Maxwell{Lorentz system des
ribing

parti
le and �eld, so that there is no mystery here, if one takes the attitude

that one is always dealing with the 
omplete system parti
le plus �eld. This

is a very important point, so often misunderstood.

An analogous theorem for the full relativisti
 problem is still la
king.

What we have available is a pres
ription, given by Dira
 in the year 1938

(see [45℄, [46℄), whi
h leads to a relativisti
 analog of (8), namely

�( _a

�

� a

�

a

�

_x

�

) = a

�

� F

��

ext

_x

�

=m ; (9)

where now the dot denotes derivative with respe
t to proper time, but a

proof of its ne
essity in the sense des
ribed above has not yet been found.

We will refer jointly to equations (8) and (9) as the Abraham{Lorentz{Dira


(ALD) equations.

Con
erning su
h equations, we have �rst of all to make 
lear that they


onstitute an extension of the ordinary model of 
lassi
al physi
s: they are

not theorems within the 
lassi
al framework, being rather new pres
riptions,

almost freely 
hosen in going to the point limit. The theorem available

(at least in the nonrelativisti
 linearized model) only says that the 
hosen

pres
ription is the only possible one (apart from that leading to a trivial

dynami
s) that 
an be indu
ed from the ma
ros
opi
 equations. It is just

in this new theory, whi
h is obtained by extension of the 
lassi
al one, that

new unexpe
ted and very interesting features show up. Before des
ribing

them, we would like however to point out an analogy. We refer to the 
ase

in whi
h the �rst 
ontinuum limit, leading to a partial di�erential equation,

was obtained in history of s
ien
e, namely the 
ase of d'Alembert equation.

While d'Alembert got his equation in the year 1750 in the familiar way by

analogy with the momentum equation for a �nite system of parti
les, in the

year 1759 Lagrange obtained it through a limit from a dis
retized system (a

latti
e �eld theory, in modern parlan
e), namely a linearized FPU system.

The equations 
ontain three parameters, namely the massm of the parti
les,

the dis
retization step a and the 
onstant k entering the expression for the

potential of the linear springs. Going to the 
ontinuum limit a ! 0, one

obviously has to require m ! 0 in su
h a way that the density � = m=a

be �xed, but one also has to require that k ! +1 in su
h a way that the

quantity ka, namely the tension, remains �nite; otherwise one would obtain

a trivial limit, with a vanishing tension, i.e. with vanishing sound speed.

This example makes 
lear that in getting the limit some pres
riptions have

to be assigned, whi
h are additional with respe
t to the framework de�ning

the original dis
rete system; and the same seems to o

ur with the ALD

equation.

Now the runaway solutions 
ome into the arena. Apparently, although a

third order equation of the form (8) had been 
onsidered even before Abra-

11



ham and Lorentz, pre
isely by Plan
k, the �rst to expli
itly point out the

existen
e of runaway solutions was apparently Dira
 in his 1938 paper for

the 
ase of the relativisti
 free parti
le. Su
h a phenomenon is however

more easily observed in the 
ase of the nonrelativisti
 free parti
le. In su
h

a 
ase, equation (8) redu
es to a 
losed equation for the a

eleration, namely

� _a = a, with general solution a(t) = a

0

exp(t=�). So the free parti
le ex-

perien
es an absurd exponential a

eleration, unless one 
hooses the initial


ondition a(0) = 0, namely a

0

= 0, whi
h gives the expe
ted uniform re
ti-

linear motion a(t) = 0. It is easy to see that runaway solutions are generi
.

What to do with them? Most physi
ists 
ertainly interpret the very fa
t

of their existen
e as intimating that the theory is nonsense, although they

might later realize with some surprise that an analogous situation is met in

quantum physi
s (see [48℄ and [49℄).

Dira
 had instead a quite opposite rea
tion. Inspired by the example

of the free parti
le, he remarked that the theory should be 
omplemented

by a further pres
ription, namely that of restri
ting one's attention to the

\physi
al motions", i.e. by de�nition those that do not present a runaway


hara
ter. For example, for a parti
le subje
ted to an external for
e vanish-

ing at in�nity, in the 
ase of s
attering one should require that the parti
le

\�nally" behaves as a free parti
le, i.e. that a(t)! 0 for t! +1. In Dira
's

words: \we must restri
t ourselves to those solutions for whi
h the velo
ity

is 
onstant during the �nal period when the ele
tron is left alone"; and fur-

thermore: \We must merely impose the 
ondition that these solutions are

the ones that o

ur in Nature". So we make the further assumption that the

phase spa
e is a 
ertain submanifold of the original phase spa
e, a kind of


enter manifold whi
h we like to 
all the \physi
al or Dira
 manifold". This

is the deep new feature, be
ause\We now have a striking departure from the

usual idea of me
hani
s. We must obtain solutions of our equations of mo-

tion for whi
h the initial position and velo
ity of the ele
tron are pres
ribed,

together with its �nal a

eleration, instead of solutions with all initial data

pres
ribed." And this leads to unexpe
ted 
onsequen
es. Essentially, this

is due to the fa
t that, in order that something happens in the future (the

a

eleration has to vanish after the a
tion of the for
e), a suitable a

elera-

tion (with a 
orresponding energy radiation) has to exist before the parti
le

meets with the external for
e. Thus \It would appear here that we have a


ontradi
tion with elementary ideas of 
ausality" ... be
ause ... \a signal 
an

be sent from A to B faster than light. This is a fundamental departure from

the ordinary ideas of relativity... (although) ... our whole theory is Lorentz

invariant." It is just for this reason that Dira
 had previously stated, quite

emphati
ally, that \This will lead to the most beautiful feature of the

theory".

The opinion that by going to the point limit in 
lassi
al ele
trodynami
s

(or equivalently by removing some previously introdu
ed regularizing 
ut-

o�s) unexpe
ted new features might show up, in
luding some nonlo
ality

12



properties appropriate to violate Bell's inequalities, was repeatedly put for-

ward by Nelson (see [50℄ and [51℄) with great emphasis. Our attitude is

exa
tly the same. The only di�eren
e is that in our opinion no more job is

needed to understand what is the strange relevant me
hanism that should

show up in the limit, be
ause the job has already been done by Dira
. So

we keep exa
tly Dira
's point of view re
alled above: the new feature, the

most beautiful feature appearing in the point limit is simply what 
omes out

of Dira
's pres
ription that the phase spa
e be restri
ted to the \physi
al"

submanifold of nonrunaway solutions (the Dira
 prin
iple, as we 
all it),

whi
h leads to a fundamental departure form the ordinary ideas of relativ-

ity, apparently in 
ontradi
tion with elementary ideas of 
ausality, though in

the framework of a Lorentz invariant theory. In Dira
's words (we are freely

translating here from his original Fren
h paper [46℄) \The fundamental hy-

pothesis of the theory of relativity is a
tually the invarian
e of all physi
al

laws with respe
t to Lorentz transformations. ..... The hypothesis a

ord-

ing to whi
h a signal never 
an propagate faster than light is a se
ondary

hypothesis, independent of the previous one."


) Some quantum{like e�e
ts. The analyti
al property of the ALD equa-

tion whi
h allows for its solutions to exhibit interesting new features is the

fa
t of being a singular perturbation of Newton's equation, inasmu
h as

it redu
es to the latter when the \small" parameter � vanishes, but with

a redu
tion of its order. Correspondingly, its solutions are represented by

asymptoti
 series (see [10℄). It turns out that the solutions 
an be divided

into two 
lasses, whi
h we 
all the me
hani
al and the nonme
hani
al ones

respe
tively. The former are small perturbations of solutions of the Newton

equation, while the latter are not, being qualitatively 
ompletely di�erent.

In the 
ase of s
attering from a nu
leus it is found (see [10℄) that the me-


hani
al solutions are 
hara
terized by having an initial angular momentum

larger than a a 
ertain a
tion of the order �h, pre
isely 6Z

2=3

e

2

=
, where Z

is the atomi
 number. This seems already to be rather interesting.

The relevant problem is that of understanding what happens with the

nonme
hani
al solutions. This problem was solved for the 
ollision of a

parti
le with a barrier (see [9℄ and [52℄), in whi
h 
ase too nonme
hani
al

solutions are found to exist only beyond a 
ertain threshold. The distin-

guishing feature is the following one: while for the me
hani
al solutions

the parti
le is either transmitted or re
e
ted a

ording to the initial me-


hani
al state x

0

, v

0

(a
tually, a

ording to the 
orresponding value of the

me
hani
al energy), for the nonme
hani
al solutions it turns out that the

initial me
hani
al state does not uniquely de�ne the initial a

eleration a

0

leading to a nonrunaway solution. There are instead several possible initial

a

elerations (even an unlimited number of them), some of them leading to

transmission and the other ones to re
e
tion. By the way, the possibility of

su
h a \nonuniqueness" property was �rst 
on
eived in a 
lear mathemati
al

13



way by Hale and Stokes (see [53℄), while Dira
 himself expli
itly made the

in
orre
t statement that uniqueness should always hold (see [46℄, page 21).

In the 
ase of the 
ollision with a barrier, this nonuniqueness phenomenon

happens to o

ur for initial energies in a small strip about the top of the

barrier. Moreover it turns out that, as the initial position x

0

re
edes from

the barrier, the di�erent allowed a

elerations, 
orresponding to the same

me
hani
al datum, have a mutual distan
e tending exponentially to zero. So

the initial a

eleration (or the initial �eld, for the reason explained above)

really plays the role of a hidden parameter, in the sense indi
ated by Bell,

inasmu
h as it is ma
ros
opi
ally un
ontrollable (see [54℄). In su
h a way it

is 
lear that one has here an analog of the tunnel e�e
t, sin
e the property

that the parti
le be transmitted or re
e
ted depends on the value of a hid-

den parameter whi
h 
annot be 
ontrolled, so that it has ne
essarily to be

des
ribed by some probability distribution.

A further relevant property is that one meets here with some nonlo
al

e�e
t. This is due to the fa
t that, for a �xed initial me
hani
al datum

x

0

, v

0

, the set of allowed values for the hidden parameter a

0

(in parti
ular

the 
ardinality of su
h a set) depends on the height of the barrier, so that

the probability distribution too is de�ned in a probability spa
e whi
h de-

pends on the height of the barrier. This seems to be an analog of a key

quantum feature: if one has to perform a measurement of an observable

of a 
ertain obje
t, \as a result of the intera
tion between the obje
t and

the measuring instrument, the obje
t is entangled with the instrument" (see

[55℄). Indeed, if in our example one performs the measurement 
onsisting

in observing whether the parti
le is transmitted or re
e
ted by the barrier

(whi
h amounts to 
onsidering a suitable di
hotomi
 variable in the stan-

dard way), then di�erent experiments 
orrespond to di�erent heights of the

barrier; in su
h a 
ase, having �xed the initial me
hani
al state, for ea
h

di�erent experiment one has a di�erent probability spa
e for the hidden

variable des
ribing the state of the parti
le.

Think now of two su
h experiments for two parti
les 
oming out of some

point and going in opposite dire
tions towards two barriers, ea
h having a


ertain height 
hosen among three possible ones. Due to the nonlo
ality

property des
ribed above, 
orresponding to the fa
t that the relevant prob-

ability spa
e depends on the settings of the barriers, it is 
ompletely obvious

that one 
an �nd initial probability distributions for whi
h Bell's inequali-

ties will be violated. For further details see [11℄ (see also the appendix to

the present paper for a 
orre
tion).

d) Further relevant features. Another important qualitative feature of


lassi
al ele
trodynami
s is the possibility of des
ribing pair 
reation or an-

nihilation, 
ontrary to the 
ommon opinion that this should only be possible

within quantum �eld theory. In fa
t the 
lassi
al des
ription was already


on
eived by Stue
kelberg and Feynman (see [56℄), in terms of 
urves in
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spa
e{time presenting angular points. In the paper [8℄ it was shown in addi-

tion that 
urves of su
h a type a
tually o

ur as solutions of the relativisti


ALD equation for an external for
e presenting a singularity.

An extremely relevant problem is the stability of the atom, whi
h is


on
erned with the motion of an ele
tron about a nu
leus. A

ording to the


ommon opinion, the ele
tron should fall on the nu
leus by losing energy

by radiation, in agreement with Larmor formula. The situation is however

di�erent, if solutions of the ALD equation are 
onsidered. Indeed, at least

in the nonrelativisti
 
ase, it turns out that there are no solutions falling

on the nu
leus either in a �nite or an in�nite time. This was shown for

the one{dimensional 
ase in a 
lassi
al paper by Eliezer [57℄, and the result

was re
ently extended (see [58℄) to the three{dimensional 
ase. Whether

bounded nonrunaway solutions exist is a very interesting open problem. For

some re
ent results 
on
erning two{ele
tron systems, as in the Helium atom,

see [59℄.

4 Con
lusions

In the present paper we have reviewed some works of interest for the relations

between 
lassi
al and quantum physi
s, where it was shown that the former

presents some relevant quantum{like features. It has also been pointed out,

in 
onne
tion with the FPU problem, that quantum me
hani
s might, under


ertain aspe
ts, appear as a �rst order approximation to 
lassi
al me
hani
s.

In general, the point of view we are taking seems to be very similar to the

one re
ently illustrated by 't Hooft(see [60℄), who apparently is looking for a

deterministi
 hidden variable theory presenting suitable nonlo
al properties

in order to explain quantum me
hani
s. This amounts, in his words \.. to

a

ept both quantum me
hani
s with its usual interpretation and to assume

that there is a deterministi
 physi
al theory lying underneath it." The main

di�eren
e is that, while su
h an author is looking for some new theory, we

are instead pointing out that 
lassi
al physi
s itself, parti
ularly when it is

extended to des
ribe 
harged point parti
les, might already do the job, or

at least some part of it. Moreover it turns out that, under the impetus of

the modern theory of dynami
al systems, 
lassi
al physi
s is revealing so

many beautiful and unexpe
ted features, that we believe it to be a duty for

the s
ienti�
 
ommunity to be able to state in rigorous mathemati
al terms

whi
h a
tually are its predi
tions, independently of whether it will be able

to explain quantum me
hani
s or not.
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Appendix: Corre
tion of an error of ours 
on
ern-

ing Bell's inequalities

In the paper [11℄ we report Bell's inequalities in Nelson's version, whi
h

makes referen
e (see [43℄, page 445) to a 
ertain inequality (3), namely

Pr

��

f�

�

�� = �1g < 1=2 ; � 6= �: (10)

Nelson himself states however that the inequality should be expe
ted to hold

with 1=3 in pla
e of 1=2. And indeed this turns out to be the 
ase, as is

immediately seen if one of the last lines of Nelson's proof is 
orre
ted, by

remarking that the minimum of the fun
tion

1

6

X

�6=�

p

�

p

�

+ (1� p

�

)(1� p

�

) (�; � = 1; 2; 3) (11)

(0 � p

�

� 1) is 1=3 and not 1=2 as stated there. In our paper we were


on
erned with a dis
ussion of fa
torized states and we wanted to prove

that it is impossible to violate Bell's inequality with states of su
h a type.

Exa
tly the same error of Nelson was made, but the main statement, namely

the inequality of page 496, is easily seen to 
ontinue to hold, again with 1=3

in pla
e of 1=2.

We thank S. Goldstein for kindly pointing out su
h an error to us.
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