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Abstract

We give a review of some works where it is shown that certain
quantum-like features are exhibited by classical systems. Two kinds
of problems are considered. The first one concerns the specific heat of
crystals (the so called Fermi—Pasta—Ulam problem), where a glassy be-
havior is observed, and the energy distribution is found to be of Planck—
like type. The second kind of problems concerns the self-interaction
of a charged particle with the electromagnetic field, where an analog
of the tunnel effect is proven to exist, and moreover some nonlocal ef-
fects are exhibited, leading to a natural hidden variable theory which
violates Bell’s inequalities.

1 Introduction

The relations between classical and quantum mechanics are usually studied
in the context of the so called semiclassical limit. Indeed it is well known
that classical mechanics is recovered in the limit in which Planck’s constant
h (or its rationalized version i = h/2m) becomes somehow negligible, in
a sense analogous to that in which newtonian mechanics is recovered from
relativistic mechanics in the limit in which the speed of light ¢ becomes in-
finite. In the present paper a review is given of some researches in which
the relations between classical mechanics and quantum mechanics are in-
vestigated in a somehow reverse way, namely with the aim of showing that
classical mechanics (or rather classical physics, inasmuch as we consider also
the role of the electromagnetic field) already contains in itself some relevant
quantum-like features. Such a line of research was initiated about thirty
years ago (see [1] and [2]) in connection with the equipartition problem of
classical statistical mechanics, stimulated by the last work of Fermi (1954)
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on the so called Fermi-Pasta—Ulam (FPU) problem (see [3]), and found a
huge support from the fact that at the same time the theory of dynamical
systems (with the famous KAM theorem) was becoming one of the most
popular fields of research in the scientific community. Later, the problem
of the self-interaction of a charged particle with the electromagnetic field
also started to be investigated (see [4] and [5]) in the spirit of the theory of
dynamical systems. There too some quantum-like features came to light,
related to the existence of the so—called runaway solutions of the Abraham—
Lorentz—Dirac (ALD) equation, which is the relevant equation in the point
particle limit (see [6] and [7]); we are referring to a possibility of describing
pair creation and annihilation (see [8]), the existence of a classical analog of
the tunnel effect (see [9] and [10]), and a violation of Bell’s inequalities (see
11]).

These are the two main themes (the FPU problem and the ALD equa-
tion) that will be discussed below. Preliminarily, it might however be useful
to recall how it can be understood that any quantum-like feature at all
can show up in classical mechanics, where apparently there is no place for
the new quantity, the quantum of action A, which characterizes quantum
mechanics. The fact is that something quantitatively comparable to A ac-
tually occurs in classical mechanics, and indeed at two different levels. The
first one is purely mechanical. Consider a system of particles describing an
actual molecular system, and thus involving some realistic potential, typi-
cally the Lennard-Jones potential V (r) = 4V,[(0/r)'? — (o /7)%], r being the
distance between two molecules. Then one has three characteristic parame-
ters, namely the energy Vj, the length o and the mass m of the molecules,
from which the characteristic action A = /mVj o is obtained. Now, if one
chooses arbitrary values for such parameters, the characteristic action A too
takes any value; but if one inserts realistic values, as given in the standard
textbooks (see [12]), one immediately realizes that A is of the order of mag-
nitude of h; actually, with an incredible precision one has A = 27%, where
Z is the atomic number. Thus if it turns out that in some classical model
of molecules an action comes into the arena, then most surely such an ac-
tion will be of the order of magnitude of Planck’s constant. This is indeed
what was actually realized in [1], where a quantum-like phenomenon in a
classical system was first observed. Actually it was found that in the FPU
problem at very low energies the energy spectrum exhibited a Planck—like
distribution rather than equipartition, and by fit it was found, with a great
surprise, that the corresponding action was very nearly equal to Planck’s
constant. It took some time to find the explanation, namely that definite
molecular parameters had been chosen (actually those of Argon), for which
the relation /mVy o = 2Zh holds.

The second level at which an action related to Planck’s constant h enters
in classical physics concerns the interaction of a charged particle with the
electromagnetic field. In fact everyone knows that there exists the fine struc-



ture constant, namely the dimensionless number o defined by a = e?/hc,
where e is the electron charge and ¢ the speed of light, and that one has
a ~ 1/137. But such a relation can also be read in the form

2
he~ 1375
C

namely: the “classical” quantity e?/c is an action, and is thus proportional
to h, the proportionality factor being as above. So if in the classical theory of
the interaction of charged particles with the electromagnetic field an action
comes into the arena, then most surely it will be of the order of magnitude
of €2/c, and possibly not very different from /. An example is the following,
which is deduced from some simple exercises proposed in the classical text-
book of Landau and Lifshitz (see [13]). Consider the scattering of a charge
(with initial velocity v) by a repulsive center of forces, and estimate the or-
bit in the zero—th order, i.e. purely mechanical, approximation. A formula
for the emitted energy AF is easily found, which turns out to depend on
the parameters entering the force. Moreover the emitted spectrum is found
to exhibit an exponential decay, with a characteristic cutoff frequency w,
which also depends in a complicated way on the parameters defining the
model. However one immediately checks that such parameters disappear in
the expression for the action AFE /@, because one finds
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where a is a dimensionless number of the order of unity.

So perhaps it makes sense to try to understand how much does classical
physics extend into the domain of quantum physics. Our personal approach
is described in the present review, which we would like to dedicate to Martin
Gutzwiller and Paolo Raineri.

2 Planck-like distributions in the FPU problem

So we start with the quantum-like features occurring in problems of FPU
type (for previous reviews see [14] and [15]; see also [16], section 3.4).

a) The FPU paradox. Fermi Pasta and Ulam were performing numerical
computations on a one—dimensional model of a crystal, namely a system of
a certain number of particles on a line, with nearest neighbor nonlinear
interaction and certain boundary conditions. The corresponding linearized
system is equivalent to a system of uncoupled harmonic oscillators (the
system’s normal modes) and the authors had in mind to check that the actual
nonlinear coupling would lead, after a transient, to energy equipartition,
namely the same mean energy (in time average) for all modes; this is indeed



predicted by the equilibrium distribution of classical statistical mechanics
in phase space, namely the Maxwell-Boltzmann or Gibbs distribution. The
FPU paradox was that, energy having been given initially only to the low
frequency modes, equipartition was not found within the actual observation
time: there was a kind of freezing, and energy did not appear to flow to the
high frequency modes. FPU also reported a figure (Fig. 9) from which one
could guess that the spectrum (energy versus frequency) had an exponential—
like decay towards the high frequencies. Notice that this is exactly the
qualitative characteristic feature of Planck’s law which, on October 19, 1900,
gave rise to quantum mechanics.

The late E. Segré, in a conversation with one of us, once mentioned
that Fermi did not like very much the standard interpretation of quantum
mechanics, but neither did he like ideological discussions. As Ulam reports
in his preface to the work of FPU, reprinted in Volume 2 of Fermi’s collected
papers (n. 266): “The results of the calculations ... were interesting and
quite surprising to Fermi. He expressed to us the opinion that they really
constitute a little discovery in providing intimations that the prevalent beliefs
in the universality of mizing and thermalization in nonlinear systems may
not be always justified’. If one thinks of the attention Fermi had given to
such a problem in one of his early works (see [17] and also [18]), such a
return to it just before his death appears as not surprising.

b) Different attitudes. The first scientists that took up Fermi’s challenge
were Izrailev and Chirikov who, in a deep and remarkable paper (see [19]),
prompted the solution to the FPU paradox: there should exist some kind
of energy threshold, such that for low energies one has “ordered motions”,
somehow as with KAM tori, while chaotic motions, leading to equipartition,
should prevail above threshold. Moreover such a threshold should be a
function of the initially excited frequency w, so that in the frequency energy
plane (w, E) one has a kind of “border of stochasticity” described by some
function E¢ = E°(w). The paradoxical result of FPU was explained by the
fact that initial data below threshold had been taken. Moreover, Izrailev and
Chirikov also provided some kind of mathematical theory allowing them to
estimate the critical curve E°(w); the main feature being that it tends to
the curve E°(w) = 0 when the number of particles in the system tends to
infinity. This would be the complete solution of FPU’s paradox according to
Izrailev and Chirikov: for macroscopic systems there is no threshold at all,
and one always meets with equipartition, as predicted by classical statistical
mechanics. This is the reason why classical mechanics fails, as it should.

This, at least, is the way we understand Izrailev and Chirikov’s atti-
tude. In the present paper we will try to explain our point of view, which
is a completely different one: we interpret the FPU paradox as pointing
out a feature actually existing in classical mechanics, which survives also for
macroscopic systems, and intimates that quantum-like features are present



at a classical level. Briefly, our point of view consists in stressing (quoting
again from Ulam) the role of the “rate of thermalization”, following an at-
titude that actually goes back to a famous paper of Boltzmann of the year
1895 (see [20] and [21]): the lack of equipartition is due to the fact that
the rate of thermalization is highly nonuniform with respect to frequency,
increasing very fast with it, so that the high frequencies, particularly at low
temperatures, do not have time to thermalize within the available observa-
tion time. This is actually the point of view which is ordinarily taken when
studying glasses or supercooled liquids (see [22]), as was first pointed out,
in connection with the FPU problem, in the paper [23]. In other words, in
the FPU problem there should occur a freezing in the same sense of glasses
or supercooled liquids, but this should have a foundational relevance in the
sense of Boltzmann, and not just a technological one.

A very general theorem was proven (see [24] and [25]) for the exchange
of energy between two subsystems of oscillators of low and high frequencies
respectively. It was found that the relaxation time to equipartition increases
as a stretched exponential with frequency, the result being independent of
the number N of degrees of freedom. Examples of physical systems can be
given (see [26]) where there exists a frequency @ (of the order of 10'* sec™!)
which relaxes in one second, while the frequency @ /2 relaxes in 10~® seconds
and the frequency 2@ in 10° years. This is indeed the familiar barrier-like
effect of the exponential.

So this is in short the reason why among people working on the FPU
problem, particularly in Italy, it was understood that quantum-like features
could be present in classical systems. There remained however the big prob-
lem that the exponential-like estimates for the thermalization rates were
not universal, because they involved, through some constants entering the
stretched exponentials, the particular molecular parameters occurring in any
given model, such as the parameters V, ¢ and m mentioned above. So one
should explain why, in the curves giving the specific heat versus tempera-
ture, in general a thermodynamic behavior is observed, described by pure
exponentials involving no molecular potentials at all, as in Planck’s law.

c) Planck’s law: a dynamical implementation of Einstein’s fluctuation
formula. A clue was found quite recently (see [27]) by understanding how
Einstein interpreted Planck’s law in terms of energy fluctuations, and by
implementing Einstein’s fluctuation law in terms of a dynamical fluctuation
formula established in the framework of dynamical systems theory. Let
us recall that Planck’s law, giving the mean energy U for a system of N
oscillators of frequency w at inverse temperature 3, has the form

) (1)

€

Ulw, B) ZN(egei_l

where € = hw. Now, Planck’s law turns out to be a solution of the differential
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with a suitable choice of the integration constant. This is indeed the way
(apart from some notational differences) Planck himself introduced such a
law in his first work (see [28]). In fact he made an interpolation between
the right hand sides of the equations % = —%2 and % = —eU, because by
integration they lead to the equipartition law U = N/G and to Wien’s law
U = Cexp(—pe) (with a suitable constant C'), which were known to fit well
the data at low and high frequencies respectively. What Einstein did (see

[29], [30]) was to split the equation (2) into two equations, namely
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where 0% is the energy variance. Indeed he conceived of (3) as being just a
general thermodynamic relation, while (4), which expresses a special func-
tional relation between energy variance and mean energy, might have some
dynamical foundation. In his very words ([30]): these two relations “ezhaust
the thermodynamic content of Planck’s’
patible with the energy fluctuation 0% = €U + U%/N must then necessarily
lead to Planck’s” formula. For further details see [15].

Now, during some researches on the collisions between a particle (mim-
icking a heat reservoir) and a spring (mimicking a crystal), it was found
that, for high frequencies and small energies of the spring, the energy ex-
change of the spring in a single collision is given by what we like to call the
Benettin-Jeans formula, namely (see [31] and [32])

de =0’ +2ny/eq cos @y (5)

where eg and g are the initial energy and phase of the oscillator, while
n is an extremely small factor decreasing with frequency as a stretched
exponential, and containing the molecular parameters. Then, in the paper
[27] the connection with Planck’s law was found. Indeed if one considers a
sequence of k such collisions and averages over the phases, by elementary
manipulations one finds between mean energy and energy variance exactly
Einstein’s functional relation (4), with € = 2apw where ag is the initial action
per oscillator. Our conjecture is that such a dependence on the initial data
should disappear, if one takes into account that the Benettin—Jeans formula
holds only for small enough initial actions, so that an average should be
taken over the initial actions smaller than a certain critical action A. This
is an important open problem.

formula; and: “a mechanics com-



d) An experimentum crucis. Many more things might be added here,
for example concerning analytical and numerical estimates for the border of
stochasticity in the sense of Izrailev and Chirikov (see [33]). But we think
we may now summarize the situation. In classical mechanics equipartition
occurs (or rather should occur, because rigorous results are lacking) when the
nonuniformity of the relaxation times to equilibrium is altogether neglected.
So equipartition constitutes a sort of zero—th order approximation. On the
other hand, the relaxation rates are found to depend on frequency in a
quite nonuniform way, and for high frequencies and low temperatures one
is in presence of freezing phenomena as in the familiar cases of glasses and
supercooled liquids. When this is taken into account, an approximation for
the actual energy distribution much better than equipartition is found to be
apparently given by a Planck-like distribution. In this sense, Planck’s law
appears just as a first order approximation, in which the freezing is dealt with
as if it were a real equilibrium; this seems to correspond to the approximation
of quantum mechanics. Thus classical mechanics and quantum mechanics
should substantially agree within a certain time, which might be the analog
of what is sometimes called Egorov’s time or Ehrenfest’s time (see [34] and
[35]). For larger times the two mechanics disagree: quantum mechanics deals
with the system as if it had reached equilibrium, while classical mechanics
should lead to a “final relaxation” to equipartition (but on non human time
scales), with a corresponding arising of chaotic motions.

If this phenomenon is real, it should be observed experimentally at the
low frequencies, where the relaxation times should still be on a human scale.
In fact, since the relaxation time to equipartition is expected to increase
with frequency as a stretched exponential, for any given observation time
t there should exist a frequency @(t) playing the role of an equipartition
front, followed by an exponential tail towards the high frequencies; such
an equipartition front should then be observed to move towards the high
frequencies as the observation time increases. This phenomenon was indeed
predicted by Jeans (see [36]), and so we call it the Jeans effect. We do not
have time to discuss here a very interesting critical and historical problem,
namely that of understanding how did it happen that Jeans, apparently
under the influence of the famous paper of Poincaré on the necessity of
quantization (see [37]), came to repudiate (see [38] and [39]) the ideas he had
kept (following Rayleigh and Boltzmann) up to the first Solvay conference.

Looking for the Jeans’ effect here plays the role of a kind of “experi-
mentum crucis’: if quantum mechanics is just a first order approximation
to classical mechanics, one should observe that the temperature at which
freezing occurs (namely essentially the Debye temperature, where the spe-
cific heat exhibits a rather abrupt decay) depends on the observation time,
moving towards the low temperatures as the observation time is increased.
An indirect proof of this is obviously given by the very existence of sound
dispersion (the sound speed, and so the specific heat, depends on frequency,



i.e. on the observation time), while a direct experimental proof of a time
dependence of the specific heat has been found for supercooled liquids and
for glasses, exhibiting in an impressive way exactly the feature described
above (see Fig. 1 of [40]). Our conjecture is that such a phenomenon should
be observed also in standard crystals, such as those considered by Einstein
in his famous paper on specific heats (see Fig 1 of ref. [41]). In extremely
concrete terms: the phenomenon observed in Fig. 1 of ref. [40] concerning
supercooled liquids (i.e. the existence of a different curve ¢y versus T for
each observation time) should occur also for pure crystals, contrary to the
common belief that one has there to do with a real equilibrium.

We do not have time here to discuss the relations between the stochas-
ticity threshold and the zero—point energy, in the way suggested originally
by Cercignani (see [42]), or to illustrate how such an idea leads to a modern
reinterpretation of a very impressive deduction of Planck’s law in terms of
energy thresholds given by Nernst in the year 1916 (see [43]).

3 Quantum-like features of classical electrodynam-
ics

The problem we will consider now is the fundamental one of classical electro-
dynamics, namely the interaction of a charged particle with the electromag-
netic field, as described by the Maxwell-Lorentz system, the selfinteraction
of the particle with the field being taken into due account. Dealing with
such a problem in a rigorous way, in the spirit of the theory of dynamical
systems, is quite a hard job. In our opinion there are good indications that
such a job will be greatly rewarding.

Two limit cases exist which are essentially trivial. The first one is when
the particle’s motion (and thus the current too) is assigned, so that one
remains with the linear problem of Maxwell’s equations with a given current,
namely

OuF™ = b, (6)

in the standard notations, F*¥ and j* denoting electromagnetic field and
current respectively (the homogeneous Maxwell equations being understood).
Such an equation is easily resolved even for the case of a point particle, by
considering the fields as distributions. The other trivial case is when the
field is assigned, and one is reduced to the purely mechanical problem of a
particle subjected to a special (i.e. the Lorentz) force, with equation

mat* = F*j, | (7)

where m and a* denote the mass and the four—acceleration of the particle.
Things are however completely different for the full coupled system. The
most severe problem here arises in the case of a point particle, because the



mathematical expression for the Lorentz force then makes no sense, due to
the infinity (at the particle position) of the field created by the particle itself,
which cannot be cared in any trivial way.

We will return to this point below. In the meantime we would like to
stress that interesting features are disclosed even if one considers an ex-
tremely simplified model, namely the nonrelativistic model of a rigid fat
particle in the dipole (i.e. linearized) approximation, the rotational degrees
of freedom being altogether neglected.

a) The nonrelativistic model of a fat rigid particle; wholeness of particle
and field, and particle diffraction. In dealing with such a simplified model,
a first remarkable qualitative feature already shows up, namely the insep-
arability of particle and field; this endows the particle with intrinsic field
properties leading it to undergo, for example, diffraction. In order to fully
appreciate this, one should perhaps start up by becoming familiar with a
simple exercise (see [4]), namely to realize that in free space a charged parti-
cle can perform uniform rectilinear motion only if some definite initial data
are assigned to the field, explicitly adapted to the mechanical initial data zq
and vy (position and velocity) of the particle. For example, with a vanishing
initial field the particle is found to decelerate, by radiating a field as if it
were trying to build up a field that would let it perform a uniform motion.
Instead, if a certain suitable initial field is assigned, then the various Fourier
modes do cooperate in producing mutual compensations such that the net
force on the particle vanishes (while otherwise such a force does not vanish
at all). In fact, the suitable initial field is, as one would imagine, nothing
but the appropriate Lorentz transform of the Coulomb field created by the
particle at rest. However, the existence of a special field producing uniform
motion is not at all trivial from a dynamical point of view, and the first
scientist that understood it, namely Abraham in the year 1903 (see [44]),
even qualified such a property as proving the “compatibility of electrodynam-
ics with the inertia principle”. In any case, a charged particle needs a field
to go straight. On the other hand, it is well known that in presence of an
obstacle the field alone undergoes diffraction, due to the appropriate bound-
ary conditions; thus in the same way it is obvious that a charged particle,
due to the intimate relation with the field just described, also undergoes
diffraction. This can be proved in a very easy way in some approximation,
although up to now we were unable to obtain clear quantitative estimates.
This seems to be an interesting open problem.

b) A second level of wholeness: the point particle problem, mass renor-
malization, runaway solutions and the Dirac principle. The most relevant
quantum-like feature of classical electrodynamics is however manifested
when the point particle problem is considered. We will try to show in a mo-
ment that this manifestation occurs through the appearing of the runaway



solutions which, in turn, are a consequence of the need for mass renormal-
ization, i.e. of the divergence of the electromagnetic mass, or ultimately of
the divergence of the Coulomb force on the particle itself. As far as our
personal experience is concerned, this is a quite delicate point, on which
an agreement with a large part of the community of theoretical physicists
is not easily found. Indeed the common opinion is that problems of this
type could be dealt with only within the quantum formalism. Following
Dirac (see [45] and [46]) and Feynman (see [47]), we believe instead that a
quantum description would meet essentially with the same difficulties of a
classical description, and that it makes sense to start up from the latter.

In order to go to the heart of the problem, let us first describe heuristi-
cally, following Feynman, how the problem of mass renormalization arises.
The main point is the fact that everything goes as if there were attached to
the particle a mass, known as the electromagnetic mass mey,, although such
a mass does not appear explicitly in the equations defining the model, i.e.
in the Maxwell-Lorentz system. This too is a consequence of the intimate
relation between particle and field mentioned above: a particle in uniform
motion drags along with it a field, and so also the correspondig energy and
momentum of the field. For example, for a sphere of radius R and veloc-
ity v one has in the nonrelativistic approximation a momentum, due to the
field, of modulus pem = Memv, With mey, = (2/3)e?/R. Tt is thus clear that
in a first approximation the particle behaves as if it had an effective mass
mo + Mem(R), where we have now denoted by my instead of m the “bare
or mechanical” mass entering Newton’s equation (7). On the other hand,
in the point limit R — 0 the electromagnetic mass diverges, me, — +00,
so that apparently there are just two possibilities in taking the point limit:
either one keeps the bare mass mg fixed, in which case the effective mass
tends to oo (trivial dynamics; no finite force is able to accelerate the par-
ticle), or one introduces the prescription my = mg(R) — —oo in such a
way that the effective mass mg(R) + me, (R) remains finite, say equal to a
value m playing the role of a phenomenological mass. A detailed analysis,
restricted to the nonrelativistic case in the dipole approximation (see [6] and
[7]), shows that such a heuristic conclusion is correct, in the most rigorous
way. Indeed it can be proven that a nontrivial dynamics is obtained if and
only if mass renormalization is introduced as above; moreover the Cauchy
data for particle and field should not be independent, but related in some
definite way. Furthermore the initial particle acceleration turns out to be a
well defined function of the initial data of the field (the relevance of this will
be shown in a moment). Finally, one obtains for the motion of a particle
under the action of an external force F,;; the third order equation

T4 = a — Fege(z)/m (8)
involving the characteristic time 7 = (2/3) e%/(mc?). This is apparently a

very strange equation, requiring as initial data the particle acceleration ag

10



in addition to the standard data of position and velocity xg, vy required for
Newton’s equation. But, as mentioned above, a¢ turns out to be a function
of the global set of initial data for the Maxwell-Lorentz system describing
particle and field, so that there is no mystery here, if one takes the attitude
that one is always dealing with the complete system particle plus field. This
is a very important point, so often misunderstood.

An analogous theorem for the full relativistic problem is still lacking.
What we have available is a prescription, given by Dirac in the year 1938
(see [45], [46]), which leads to a relativistic analog of (8), namely

r(a* — a’a,it) = a* — Flod, /m, (9)

where now the dot denotes derivative with respect to proper time, but a
proof of its necessity in the sense described above has not yet been found.
We will refer jointly to equations (8) and (9) as the Abraham-TLorentzDirac
(ALD) equations.

Concerning such equations, we have first of all to make clear that they
constitute an extension of the ordinary model of classical physics: they are
not theorems within the classical framework, being rather new prescriptions,
almost freely chosen in going to the point limit. The theorem available
(at least in the nonrelativistic linearized model) only says that the chosen
prescription is the only possible one (apart from that leading to a trivial
dynamics) that can be induced from the macroscopic equations. It is just
in this new theory, which is obtained by extension of the classical one, that
new unexpected and very interesting features show up. Before describing
them, we would like however to point out an analogy. We refer to the case
in which the first continuum limit, leading to a partial differential equation,
was obtained in history of science, namely the case of d’Alembert equation.
While d’Alembert got his equation in the year 1750 in the familiar way by
analogy with the momentum equation for a finite system of particles, in the
year 1759 Lagrange obtained it through a limit from a discretized system (a
lattice field theory, in modern parlance), namely a linearized FPU system.
The equations contain three parameters, namely the mass m of the particles,
the discretization step a and the constant k£ entering the expression for the
potential of the linear springs. Going to the continuum limit ¢ — 0, one
obviously has to require m — 0 in such a way that the density p = m/a
be fixed, but one also has to require that & — +oc0 in such a way that the
quantity ka, namely the tension, remains finite; otherwise one would obtain
a trivial limit, with a vanishing tension, i.e. with vanishing sound speed.
This example makes clear that in getting the limit some prescriptions have
to be assigned, which are additional with respect to the framework defining
the original discrete system; and the same seems to occur with the ALD
equation.

Now the runaway solutions come into the arena. Apparently, although a
third order equation of the form (8) had been considered even before Abra-
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ham and Lorentz, precisely by Planck, the first to explicitly point out the
existence of runaway solutions was apparently Dirac in his 1938 paper for
the case of the relativistic free particle. Such a phenomenon is however
more easily observed in the case of the nonrelativistic free particle. In such
a case, equation (8) reduces to a closed equation for the acceleration, namely
TG = a, with general solution a(t) = agexp(t/7). So the free particle ex-
periences an absurd exponential acceleration, unless one chooses the initial
condition a(0) = 0, namely ay = 0, which gives the expected uniform recti-
linear motion a(t) = 0. It is easy to see that runaway solutions are generic.
What to do with them? Most physicists certainly interpret the very fact
of their existence as intimating that the theory is nonsense, although they
might later realize with some surprise that an analogous situation is met in
quantum physics (see [48] and [49]).

Dirac had instead a quite opposite reaction. Inspired by the example
of the free particle, he remarked that the theory should be complemented
by a further prescription, namely that of restricting one’s attention to the
“physical motions”, i.e. by definition those that do not present a runaway
character. For example, for a particle subjected to an external force vanish-
ing at infinity, in the case of scattering one should require that the particle
“finally” behaves as a free particle, i.e. that a(t) — 0 for ¢ — 4o00. In Dirac’s
words: “we must restrict ourselves to those solutions for which the velocity
is constant during the final period when the electron is left alone”; and fur-
thermore: “We must merely impose the condition that these solutions are
the ones that occur in Nature”. So we make the further assumption that the
phase space is a certain submanifold of the original phase space, a kind of
center manifold which we like to call the “physical or Dirac manifold”. This
is the deep new feature, because“ We now have a striking departure from the
usual idea of mechanics. We must obtain solutions of our equations of mo-
tion for which the initial position and velocity of the electron are prescribed,
together with its final acceleration, instead of solutions with all initial data
prescribed.” And this leads to unexpected consequences. Essentially, this
is due to the fact that, in order that something happens in the future (the
acceleration has to vanish after the action of the force), a suitable accelera-
tion (with a corresponding energy radiation) has to exist before the particle
meets with the external force. Thus “It would appear here that we have a
contradiction with elementary ideas of causality” ... because ... “a signal can
be sent from A to B faster than light. This is a fundamental departure from
the ordinary ideas of relativity... (although) ... our whole theory is Lorentz
invariant.” It is just for this reason that Dirac had previously stated, quite
emphatically, that “This will lead to the most beautiful feature of the
theory” .

The opinion that by going to the point limit in classical electrodynamics
(or equivalently by removing some previously introduced regularizing cut-
offs) unexpected new features might show up, including some nonlocality
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properties appropriate to violate Bell’s inequalities, was repeatedly put for-
ward by Nelson (see [50] and [51]) with great emphasis. Our attitude is
exactly the same. The only difference is that in our opinion no more job is
needed to understand what is the strange relevant mechanism that should
show up in the limit, because the job has already been done by Dirac. So
we keep exactly Dirac’s point of view recalled above: the new feature, the
most beautiful feature appearing in the point limit is simply what comes out
of Dirac’s prescription that the phase space be restricted to the “physical”
submanifold of nonrunaway solutions (the Dirac principle, as we call it),
which leads to a fundamental departure form the ordinary ideas of relativ-
ity, apparently in contradiction with elementary ideas of causality, though in
the framework of a Lorentz invariant theory. In Dirac’s words (we are freely
translating here from his original French paper [46]) “The fundamental hy-
pothesis of the theory of relativity is actually the invariance of all physical
laws with respect to Lorentz transformations. ..... The hypothesis accord-
ing to which a signal never can propagate faster than light is a secondary
hypothesis, independent of the previous one.”

c¢) Some quantum-like effects. The analytical property of the ALD equa-
tion which allows for its solutions to exhibit interesting new features is the
fact of being a singular perturbation of Newton’s equation, inasmuch as
it reduces to the latter when the “small” parameter 7 vanishes, but with
a reduction of its order. Correspondingly, its solutions are represented by
asymptotic series (see [10]). It turns out that the solutions can be divided
into two classes, which we call the mechanical and the nonmechanical ones
respectively. The former are small perturbations of solutions of the Newton
equation, while the latter are not, being qualitatively completely different.
In the case of scattering from a nucleus it is found (see [10]) that the me-
chanical solutions are characterized by having an initial angular momentum
larger than a a certain action of the order A, precisely 622/3 ¢2 /¢, where Z
is the atomic number. This seems already to be rather interesting.

The relevant problem is that of understanding what happens with the
nonmechanical solutions. This problem was solved for the collision of a
particle with a barrier (see [9] and [52]), in which case too nonmechanical
solutions are found to exist only beyond a certain threshold. The distin-
guishing feature is the following one: while for the mechanical solutions
the particle is either transmitted or reflected according to the initial me-
chanical state g, vy (actually, according to the corresponding value of the
mechanical energy), for the nonmechanical solutions it turns out that the
initial mechanical state does not uniquely define the initial acceleration ag
leading to a nonrunaway solution. There are instead several possible initial
accelerations (even an unlimited number of them), some of them leading to
transmission and the other ones to reflection. By the way, the possibility of
such a “nonuniqueness” property was first conceived in a clear mathematical
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way by Hale and Stokes (see [53]), while Dirac himself explicitly made the
incorrect statement that uniqueness should always hold (see [46], page 21).
In the case of the collision with a barrier, this nonuniqueness phenomenon
happens to occur for initial energies in a small strip about the top of the
barrier. Moreover it turns out that, as the initial position zg recedes from
the barrier, the different allowed accelerations, corresponding to the same
mechanical datum, have a mutual distance tending exponentially to zero. So
the initial acceleration (or the initial field, for the reason explained above)
really plays the role of a hidden parameter, in the sense indicated by Bell,
inasmuch as it is macroscopically uncontrollable (see [54]). In such a way it
is clear that one has here an analog of the tunnel effect, since the property
that the particle be transmitted or reflected depends on the value of a hid-
den parameter which cannot be controlled, so that it has necessarily to be
described by some probability distribution.

A further relevant property is that one meets here with some nonlocal
effect. This is due to the fact that, for a fixed initial mechanical datum
xo, vo, the set of allowed values for the hidden parameter ag (in particular
the cardinality of such a set) depends on the height of the barrier, so that
the probability distribution too is defined in a probability space which de-
pends on the height of the barrier. This seems to be an analog of a key
quantum feature: if one has to perform a measurement of an observable
of a certain object, “as a result of the interaction between the object and
the measuring instrument, the object is entangled with the instrument” (see
[55]). Indeed, if in our example one performs the measurement consisting
in observing whether the particle is transmitted or reflected by the barrier
(which amounts to considering a suitable dichotomic variable in the stan-
dard way), then different experiments correspond to different heights of the
barrier; in such a case, having fixed the initial mechanical state, for each
different experiment one has a different probability space for the hidden
variable describing the state of the particle.

Think now of two such experiments for two particles coming out of some
point and going in opposite directions towards two barriers, each having a
certain height chosen among three possible ones. Due to the nonlocality
property described above, corresponding to the fact that the relevant prob-
ability space depends on the settings of the barriers, it is completely obvious
that one can find initial probability distributions for which Bell’s inequali-
ties will be violated. For further details see [11] (see also the appendix to
the present paper for a correction).

d) Further relevant features. Another important qualitative feature of
classical electrodynamics is the possibility of describing pair creation or an-
nihilation, contrary to the common opinion that this should only be possible
within quantum field theory. In fact the classical description was already
conceived by Stueckelberg and Feynman (see [56]), in terms of curves in
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space—time presenting angular points. In the paper [8] it was shown in addi-
tion that curves of such a type actually occur as solutions of the relativistic
ALD equation for an external force presenting a singularity.

An extremely relevant problem is the stability of the atom, which is
concerned with the motion of an electron about a nucleus. According to the
common opinion, the electron should fall on the nucleus by losing energy
by radiation, in agreement with Larmor formula. The situation is however
different, if solutions of the ALD equation are considered. Indeed, at least
in the nonrelativistic case, it turns out that there are no solutions falling
on the nucleus either in a finite or an infinite time. This was shown for
the one-dimensional case in a classical paper by Eliezer [57], and the result
was recently extended (see [58]) to the three-dimensional case. Whether
bounded nonrunaway solutions exist is a very interesting open problem. For
some recent results concerning two—electron systems, as in the Helium atom,

see [59].

4 Conclusions

In the present paper we have reviewed some works of interest for the relations
between classical and quantum physics, where it was shown that the former
presents some relevant quantum-like features. It has also been pointed out,
in connection with the FPU problem, that quantum mechanics might, under
certain aspects, appear as a first order approximation to classical mechanics.

In general, the point of view we are taking seems to be very similar to the
one recently illustrated by ’t Hooft(see [60]), who apparently is looking for a
deterministic hidden variable theory presenting suitable nonlocal properties
in order to explain quantum mechanics. This amounts, in his words “.. to
accept both quantum mechanics with its usual interpretation and to assume
that there is a deterministic physical theory lying underneath it.” The main
difference is that, while such an author is looking for some new theory, we
are instead pointing out that classical physics itself, particularly when it is
extended to describe charged point particles, might already do the job, or
at least some part of it. Moreover it turns out that, under the impetus of
the modern theory of dynamical systems, classical physics is revealing so
many beautiful and unexpected features, that we believe it to be a duty for
the scientific community to be able to state in rigorous mathematical terms
which actually are its predictions, independently of whether it will be able
to explain quantum mechanics or not.
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Appendix: Correction of an error of ours concern-
ing Bell’s inequalities

In the paper [11] we report Bell’s inequalities in Nelson’s version, which
makes reference (see [43], page 445) to a certain inequality (3), namely

Pry{a,frv=—1} <1/2 ,p #v. (10)

Nelson himself states however that the inequality should be expected to hold
with 1/3 in place of 1/2. And indeed this turns out to be the case, as is
immediately seen if one of the last lines of Nelson’s proof is corrected, by
remarking that the minimum of the function

e pn (Lm0 =p) (v =1,2,3) (1)
w#V

(0 < p, <1)is1/3 and not 1/2 as stated there. In our paper we were
concerned with a discussion of factorized states and we wanted to prove
that it is impossible to violate Bell’s inequality with states of such a type.
Exactly the same error of Nelson was made, but the main statement, namely
the inequality of page 496, is easily seen to continue to hold, again with 1/3
in place of 1/2.

We thank S. Goldstein for kindly pointing out such an error to us.
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