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Abstrat

We give a review of some works where it is shown that ertain

quantum{like features are exhibited by lassial systems. Two kinds

of problems are onsidered. The �rst one onerns the spei� heat of

rystals (the so alled Fermi{Pasta{Ulam problem), where a glassy be-

havior is observed, and the energy distribution is found to be of Plank{

like type. The seond kind of problems onerns the self{interation

of a harged partile with the eletromagneti �eld, where an analog

of the tunnel e�et is proven to exist, and moreover some nonloal ef-

fets are exhibited, leading to a natural hidden variable theory whih

violates Bell's inequalities.

1 Introdution

The relations between lassial and quantum mehanis are usually studied

in the ontext of the so alled semilassial limit. Indeed it is well known

that lassial mehanis is reovered in the limit in whih Plank's onstant

h (or its rationalized version �h = h=2�) beomes somehow negligible, in

a sense analogous to that in whih newtonian mehanis is reovered from

relativisti mehanis in the limit in whih the speed of light  beomes in-

�nite. In the present paper a review is given of some researhes in whih

the relations between lassial mehanis and quantum mehanis are in-

vestigated in a somehow reverse way, namely with the aim of showing that

lassial mehanis (or rather lassial physis, inasmuh as we onsider also

the role of the eletromagneti �eld) already ontains in itself some relevant

quantum{like features. Suh a line of researh was initiated about thirty

years ago (see [1℄ and [2℄) in onnetion with the equipartition problem of

lassial statistial mehanis, stimulated by the last work of Fermi (1954)
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on the so alled Fermi{Pasta{Ulam (FPU) problem (see [3℄), and found a

huge support from the fat that at the same time the theory of dynamial

systems (with the famous KAM theorem) was beoming one of the most

popular �elds of researh in the sienti� ommunity. Later, the problem

of the self{interation of a harged partile with the eletromagneti �eld

also started to be investigated (see [4℄ and [5℄) in the spirit of the theory of

dynamial systems. There too some quantum{like features ame to light,

related to the existene of the so{alled runaway solutions of the Abraham{

Lorentz{Dira (ALD) equation, whih is the relevant equation in the point

partile limit (see [6℄ and [7℄); we are referring to a possibility of desribing

pair reation and annihilation (see [8℄), the existene of a lassial analog of

the tunnel e�et (see [9℄ and [10℄), and a violation of Bell's inequalities (see

[11℄).

These are the two main themes (the FPU problem and the ALD equa-

tion) that will be disussed below. Preliminarily, it might however be useful

to reall how it an be understood that any quantum{like feature at all

an show up in lassial mehanis, where apparently there is no plae for

the new quantity, the quantum of ation �h, whih haraterizes quantum

mehanis. The fat is that something quantitatively omparable to �h a-

tually ours in lassial mehanis, and indeed at two di�erent levels. The

�rst one is purely mehanial. Consider a system of partiles desribing an

atual moleular system, and thus involving some realisti potential, typi-

ally the Lennard{Jones potential V (r) = 4V

0

[(�=r)

12

� (�=r)

6

℄, r being the

distane between two moleules. Then one has three harateristi parame-

ters, namely the energy V

0

, the length � and the mass m of the moleules,

from whih the harateristi ation A =

p

mV

0

� is obtained. Now, if one

hooses arbitrary values for suh parameters, the harateristi ation A too

takes any value; but if one inserts realisti values, as given in the standard

textbooks (see [12℄), one immediately realizes that A is of the order of mag-

nitude of �h; atually, with an inredible preision one has A = 2Z�h, where

Z is the atomi number. Thus if it turns out that in some lassial model

of moleules an ation omes into the arena, then most surely suh an a-

tion will be of the order of magnitude of Plank's onstant. This is indeed

what was atually realized in [1℄, where a quantum{like phenomenon in a

lassial system was �rst observed. Atually it was found that in the FPU

problem at very low energies the energy spetrum exhibited a Plank{like

distribution rather than equipartition, and by �t it was found, with a great

surprise, that the orresponding ation was very nearly equal to Plank's

onstant. It took some time to �nd the explanation, namely that de�nite

moleular parameters had been hosen (atually those of Argon), for whih

the relation

p

mV

0

� = 2Z�h holds.

The seond level at whih an ation related to Plank's onstant �h enters

in lassial physis onerns the interation of a harged partile with the

eletromagneti �eld. In fat everyone knows that there exists the �ne stru-
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ture onstant, namely the dimensionless number � de�ned by � = e

2

=�h,

where e is the eletron harge and  the speed of light, and that one has

� ' 1=137. But suh a relation an also be read in the form

�h ' 137

e

2



;

namely: the \lassial" quantity e

2

= is an ation, and is thus proportional

to �h, the proportionality fator being as above. So if in the lassial theory of

the interation of harged partiles with the eletromagneti �eld an ation

omes into the arena, then most surely it will be of the order of magnitude

of e

2

=, and possibly not very di�erent from �h. An example is the following,

whih is dedued from some simple exerises proposed in the lassial text-

book of Landau and Lifshitz (see [13℄). Consider the sattering of a harge

(with initial veloity v) by a repulsive enter of fores, and estimate the or-

bit in the zero{th order, i.e. purely mehanial, approximation. A formula

for the emitted energy �E is easily found, whih turns out to depend on

the parameters entering the fore. Moreover the emitted spetrum is found

to exhibit an exponential deay, with a harateristi uto� frequeny �!,

whih also depends in a ompliated way on the parameters de�ning the

model. However one immediately heks that suh parameters disappear in

the expression for the ation �E=�!, beause one �nds

�E

�!

= a

e
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where a is a dimensionless number of the order of unity.

So perhaps it makes sense to try to understand how muh does lassial

physis extend into the domain of quantum physis. Our personal approah

is desribed in the present review, whih we would like to dediate to Martin

Gutzwiller and Paolo Raineri.

2 Plank{like distributions in the FPU problem

So we start with the quantum{like features ourring in problems of FPU

type (for previous reviews see [14℄ and [15℄; see also [16℄, setion 3.4).

a) The FPU paradox. Fermi Pasta and Ulam were performing numerial

omputations on a one{dimensional model of a rystal, namely a system of

a ertain number of partiles on a line, with nearest neighbor nonlinear

interation and ertain boundary onditions. The orresponding linearized

system is equivalent to a system of unoupled harmoni osillators (the

system's normal modes) and the authors had in mind to hek that the atual

nonlinear oupling would lead, after a transient, to energy equipartition,

namely the same mean energy (in time average) for all modes; this is indeed
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predited by the equilibrium distribution of lassial statistial mehanis

in phase spae, namely the Maxwell{Boltzmann or Gibbs distribution. The

FPU paradox was that, energy having been given initially only to the low

frequeny modes, equipartition was not found within the atual observation

time: there was a kind of freezing, and energy did not appear to ow to the

high frequeny modes. FPU also reported a �gure (Fig. 9) from whih one

ould guess that the spetrum (energy versus frequeny) had an exponential{

like deay towards the high frequenies. Notie that this is exatly the

qualitative harateristi feature of Plank's law whih, on Otober 19, 1900,

gave rise to quantum mehanis.

The late E. Segr�e, in a onversation with one of us, one mentioned

that Fermi did not like very muh the standard interpretation of quantum

mehanis, but neither did he like ideologial disussions. As Ulam reports

in his prefae to the work of FPU, reprinted in Volume 2 of Fermi's olleted

papers (n. 266): \The results of the alulations ... were interesting and

quite surprising to Fermi. He expressed to us the opinion that they really

onstitute a little disovery in providing intimations that the prevalent beliefs

in the universality of mixing and thermalization in nonlinear systems may

not be always justi�ed". If one thinks of the attention Fermi had given to

suh a problem in one of his early works (see [17℄ and also [18℄), suh a

return to it just before his death appears as not surprising.

b) Di�erent attitudes. The �rst sientists that took up Fermi's hallenge

were Izrailev and Chirikov who, in a deep and remarkable paper (see [19℄),

prompted the solution to the FPU paradox: there should exist some kind

of energy threshold, suh that for low energies one has \ordered motions",

somehow as with KAM tori, while haoti motions, leading to equipartition,

should prevail above threshold. Moreover suh a threshold should be a

funtion of the initially exited frequeny !, so that in the frequeny energy

plane (!;E) one has a kind of \border of stohastiity" desribed by some

funtion E



= E



(!). The paradoxial result of FPU was explained by the

fat that initial data below threshold had been taken. Moreover, Izrailev and

Chirikov also provided some kind of mathematial theory allowing them to

estimate the ritial urve E



(!); the main feature being that it tends to

the urve E



(!) = 0 when the number of partiles in the system tends to

in�nity. This would be the omplete solution of FPU's paradox aording to

Izrailev and Chirikov: for marosopi systems there is no threshold at all,

and one always meets with equipartition, as predited by lassial statistial

mehanis. This is the reason why lassial mehanis fails, as it should.

This, at least, is the way we understand Izrailev and Chirikov's atti-

tude. In the present paper we will try to explain our point of view, whih

is a ompletely di�erent one: we interpret the FPU paradox as pointing

out a feature atually existing in lassial mehanis, whih survives also for

marosopi systems, and intimates that quantum{like features are present
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at a lassial level. Briey, our point of view onsists in stressing (quoting

again from Ulam) the role of the \rate of thermalization", following an at-

titude that atually goes bak to a famous paper of Boltzmann of the year

1895 (see [20℄ and [21℄): the lak of equipartition is due to the fat that

the rate of thermalization is highly nonuniform with respet to frequeny,

inreasing very fast with it, so that the high frequenies, partiularly at low

temperatures, do not have time to thermalize within the available observa-

tion time. This is atually the point of view whih is ordinarily taken when

studying glasses or superooled liquids (see [22℄), as was �rst pointed out,

in onnetion with the FPU problem, in the paper [23℄. In other words, in

the FPU problem there should our a freezing in the same sense of glasses

or superooled liquids, but this should have a foundational relevane in the

sense of Boltzmann, and not just a tehnologial one.

A very general theorem was proven (see [24℄ and [25℄) for the exhange

of energy between two subsystems of osillators of low and high frequenies

respetively. It was found that the relaxation time to equipartition inreases

as a strethed exponential with frequeny, the result being independent of

the number N of degrees of freedom. Examples of physial systems an be

given (see [26℄) where there exists a frequeny �! (of the order of 10

14

se

�1

)

whih relaxes in one seond, while the frequeny �!=2 relaxes in 10

�8

seonds

and the frequeny 2�! in 10

5

years. This is indeed the familiar barrier{like

e�et of the exponential.

So this is in short the reason why among people working on the FPU

problem, partiularly in Italy, it was understood that quantum{like features

ould be present in lassial systems. There remained however the big prob-

lem that the exponential{like estimates for the thermalization rates were

not universal, beause they involved, through some onstants entering the

strethed exponentials, the partiular moleular parameters ourring in any

given model, suh as the parameters V

0

, � and m mentioned above. So one

should explain why, in the urves giving the spei� heat versus tempera-

ture, in general a thermodynami behavior is observed, desribed by pure

exponentials involving no moleular potentials at all, as in Plank's law.

) Plank's law: a dynamial implementation of Einstein's utuation

formula. A lue was found quite reently (see [27℄) by understanding how

Einstein interpreted Plank's law in terms of energy utuations, and by

implementing Einstein's utuation law in terms of a dynamial utuation

formula established in the framework of dynamial systems theory. Let

us reall that Plank's law, giving the mean energy U for a system of N

osillators of frequeny ! at inverse temperature �, has the form

U(!; �) = N (

�

e

��

� 1

) (1)

where � = �h!. Now, Plank's law turns out to be a solution of the di�erential
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equation

dU

d�

= �(�U +

U

2

N

) ; (2)

with a suitable hoie of the integration onstant. This is indeed the way

(apart from some notational di�erenes) Plank himself introdued suh a

law in his �rst work (see [28℄). In fat he made an interpolation between

the right hand sides of the equations

dU

d�

= �

U

2

N

and

dU

d�

= ��U , beause by

integration they lead to the equipartition law U = N=� and to Wien's law

U = C exp(���) (with a suitable onstant C), whih were known to �t well

the data at low and high frequenies respetively. What Einstein did (see

[29℄, [30℄) was to split the equation (2) into two equations, namely

dU

d�

= ��

2

E

(3)

and

�

2

E

= �U +

U

2

N

: (4)

where �

2

E

is the energy variane. Indeed he oneived of (3) as being just a

general thermodynami relation, while (4), whih expresses a speial fun-

tional relation between energy variane and mean energy, might have some

dynamial foundation. In his very words ([30℄): these two relations \exhaust

the thermodynami ontent of Plank's" formula; and: \a mehanis om-

patible with the energy utuation �

2

E

= �U + U

2

=N must then neessarily

lead to Plank's" formula. For further details see [15℄.

Now, during some researhes on the ollisions between a partile (mim-

iking a heat reservoir) and a spring (mimiking a rystal), it was found

that, for high frequenies and small energies of the spring, the energy ex-

hange of the spring in a single ollision is given by what we like to all the

Benettin{Jeans formula, namely (see [31℄ and [32℄)

Æe = �

2

+ 2�

p

e

0

os'

0

; (5)

where e

0

and '

0

are the initial energy and phase of the osillator, while

� is an extremely small fator dereasing with frequeny as a strethed

exponential, and ontaining the moleular parameters. Then, in the paper

[27℄ the onnetion with Plank's law was found. Indeed if one onsiders a

sequene of k suh ollisions and averages over the phases, by elementary

manipulations one �nds between mean energy and energy variane exatly

Einstein's funtional relation (4), with � = 2a

0

! where a

0

is the initial ation

per osillator. Our onjeture is that suh a dependene on the initial data

should disappear, if one takes into aount that the Benettin{Jeans formula

holds only for small enough initial ations, so that an average should be

taken over the initial ations smaller than a ertain ritial ation A. This

is an important open problem.
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d) An experimentum ruis. Many more things might be added here,

for example onerning analytial and numerial estimates for the border of

stohastiity in the sense of Izrailev and Chirikov (see [33℄). But we think

we may now summarize the situation. In lassial mehanis equipartition

ours (or rather should our, beause rigorous results are laking) when the

nonuniformity of the relaxation times to equilibrium is altogether negleted.

So equipartition onstitutes a sort of zero{th order approximation. On the

other hand, the relaxation rates are found to depend on frequeny in a

quite nonuniform way, and for high frequenies and low temperatures one

is in presene of freezing phenomena as in the familiar ases of glasses and

superooled liquids. When this is taken into aount, an approximation for

the atual energy distribution muh better than equipartition is found to be

apparently given by a Plank{like distribution. In this sense, Plank's law

appears just as a �rst order approximation, in whih the freezing is dealt with

as if it were a real equilibrium; this seems to orrespond to the approximation

of quantum mehanis. Thus lassial mehanis and quantum mehanis

should substantially agree within a ertain time, whih might be the analog

of what is sometimes alled Egorov's time or Ehrenfest's time (see [34℄ and

[35℄). For larger times the two mehanis disagree: quantum mehanis deals

with the system as if it had reahed equilibrium, while lassial mehanis

should lead to a \�nal relaxation" to equipartition (but on non human time

sales), with a orresponding arising of haoti motions.

If this phenomenon is real, it should be observed experimentally at the

low frequenies, where the relaxation times should still be on a human sale.

In fat, sine the relaxation time to equipartition is expeted to inrease

with frequeny as a strethed exponential, for any given observation time

t there should exist a frequeny �!(t) playing the role of an equipartition

front, followed by an exponential tail towards the high frequenies; suh

an equipartition front should then be observed to move towards the high

frequenies as the observation time inreases. This phenomenon was indeed

predited by Jeans (see [36℄), and so we all it the Jeans e�et. We do not

have time to disuss here a very interesting ritial and historial problem,

namely that of understanding how did it happen that Jeans, apparently

under the inuene of the famous paper of Poinar�e on the neessity of

quantization (see [37℄), ame to repudiate (see [38℄ and [39℄) the ideas he had

kept (following Rayleigh and Boltzmann) up to the �rst Solvay onferene.

Looking for the Jeans' e�et here plays the role of a kind of \experi-

mentum ruis": if quantum mehanis is just a �rst order approximation

to lassial mehanis, one should observe that the temperature at whih

freezing ours (namely essentially the Debye temperature, where the spe-

i� heat exhibits a rather abrupt deay) depends on the observation time,

moving towards the low temperatures as the observation time is inreased.

An indiret proof of this is obviously given by the very existene of sound

dispersion (the sound speed, and so the spei� heat, depends on frequeny,
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i.e. on the observation time), while a diret experimental proof of a time

dependene of the spei� heat has been found for superooled liquids and

for glasses, exhibiting in an impressive way exatly the feature desribed

above (see Fig. 1 of [40℄). Our onjeture is that suh a phenomenon should

be observed also in standard rystals, suh as those onsidered by Einstein

in his famous paper on spei� heats (see Fig 1 of ref. [41℄). In extremely

onrete terms: the phenomenon observed in Fig. 1 of ref. [40℄ onerning

superooled liquids (i.e. the existene of a di�erent urve 

V

versus T for

eah observation time) should our also for pure rystals, ontrary to the

ommon belief that one has there to do with a real equilibrium.

We do not have time here to disuss the relations between the stohas-

tiity threshold and the zero{point energy, in the way suggested originally

by Cerignani (see [42℄), or to illustrate how suh an idea leads to a modern

reinterpretation of a very impressive dedution of Plank's law in terms of

energy thresholds given by Nernst in the year 1916 (see [43℄).

3 Quantum{like features of lassial eletrodynam-

is

The problem we will onsider now is the fundamental one of lassial eletro-

dynamis, namely the interation of a harged partile with the eletromag-

neti �eld, as desribed by the Maxwell{Lorentz system, the sel�nteration

of the partile with the �eld being taken into due aount. Dealing with

suh a problem in a rigorous way, in the spirit of the theory of dynamial

systems, is quite a hard job. In our opinion there are good indiations that

suh a job will be greatly rewarding.

Two limit ases exist whih are essentially trivial. The �rst one is when

the partile's motion (and thus the urrent too) is assigned, so that one

remains with the linear problem of Maxwell's equations with a given urrent,

namely

�

�

F

��

= j

�

; (6)

in the standard notations, F

��

and j

�

denoting eletromagneti �eld and

urrent respetively (the homogeneous Maxwell equations being understood).

Suh an equation is easily resolved even for the ase of a point partile, by

onsidering the �elds as distributions. The other trivial ase is when the

�eld is assigned, and one is redued to the purely mehanial problem of a

partile subjeted to a speial (i.e. the Lorentz) fore, with equation

ma

�

= F

��

j

�

; (7)

where m and a

�

denote the mass and the four{aeleration of the partile.

Things are however ompletely di�erent for the full oupled system. The

most severe problem here arises in the ase of a point partile, beause the
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mathematial expression for the Lorentz fore then makes no sense, due to

the in�nity (at the partile position) of the �eld reated by the partile itself,

whih annot be ared in any trivial way.

We will return to this point below. In the meantime we would like to

stress that interesting features are dislosed even if one onsiders an ex-

tremely simpli�ed model, namely the nonrelativisti model of a rigid fat

partile in the dipole (i.e. linearized) approximation, the rotational degrees

of freedom being altogether negleted.

a) The nonrelativisti model of a fat rigid partile; wholeness of partile

and �eld, and partile di�ration. In dealing with suh a simpli�ed model,

a �rst remarkable qualitative feature already shows up, namely the insep-

arability of partile and �eld; this endows the partile with intrinsi �eld

properties leading it to undergo, for example, di�ration. In order to fully

appreiate this, one should perhaps start up by beoming familiar with a

simple exerise (see [4℄), namely to realize that in free spae a harged parti-

le an perform uniform retilinear motion only if some de�nite initial data

are assigned to the �eld, expliitly adapted to the mehanial initial data x

0

and v

0

(position and veloity) of the partile. For example, with a vanishing

initial �eld the partile is found to deelerate, by radiating a �eld as if it

were trying to build up a �eld that would let it perform a uniform motion.

Instead, if a ertain suitable initial �eld is assigned, then the various Fourier

modes do ooperate in produing mutual ompensations suh that the net

fore on the partile vanishes (while otherwise suh a fore does not vanish

at all). In fat, the suitable initial �eld is, as one would imagine, nothing

but the appropriate Lorentz transform of the Coulomb �eld reated by the

partile at rest. However, the existene of a speial �eld produing uniform

motion is not at all trivial from a dynamial point of view, and the �rst

sientist that understood it, namely Abraham in the year 1903 (see [44℄),

even quali�ed suh a property as proving the \ompatibility of eletrodynam-

is with the inertia priniple". In any ase, a harged partile needs a �eld

to go straight. On the other hand, it is well known that in presene of an

obstale the �eld alone undergoes di�ration, due to the appropriate bound-

ary onditions; thus in the same way it is obvious that a harged partile,

due to the intimate relation with the �eld just desribed, also undergoes

di�ration. This an be proved in a very easy way in some approximation,

although up to now we were unable to obtain lear quantitative estimates.

This seems to be an interesting open problem.

b) A seond level of wholeness: the point partile problem, mass renor-

malization, runaway solutions and the Dira priniple. The most relevant

quantum{like feature of lassial eletrodynamis is however manifested

when the point partile problem is onsidered. We will try to show in a mo-

ment that this manifestation ours through the appearing of the runaway
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solutions whih, in turn, are a onsequene of the need for mass renormal-

ization, i.e. of the divergene of the eletromagneti mass, or ultimately of

the divergene of the Coulomb fore on the partile itself. As far as our

personal experiene is onerned, this is a quite deliate point, on whih

an agreement with a large part of the ommunity of theoretial physiists

is not easily found. Indeed the ommon opinion is that problems of this

type ould be dealt with only within the quantum formalism. Following

Dira (see [45℄ and [46℄) and Feynman (see [47℄), we believe instead that a

quantum desription would meet essentially with the same diÆulties of a

lassial desription, and that it makes sense to start up from the latter.

In order to go to the heart of the problem, let us �rst desribe heuristi-

ally, following Feynman, how the problem of mass renormalization arises.

The main point is the fat that everything goes as if there were attahed to

the partile a mass, known as the eletromagneti mass m

em

, although suh

a mass does not appear expliitly in the equations de�ning the model, i.e.

in the Maxwell{Lorentz system. This too is a onsequene of the intimate

relation between partile and �eld mentioned above: a partile in uniform

motion drags along with it a �eld, and so also the orrespondig energy and

momentum of the �eld. For example, for a sphere of radius R and velo-

ity v one has in the nonrelativisti approximation a momentum, due to the

�eld, of modulus p

em

= m

em

v, with m

em

= (2=3)e

2

=R. It is thus lear that

in a �rst approximation the partile behaves as if it had an e�etive mass

m

0

+m

em

(R), where we have now denoted by m

0

instead of m the \bare

or mehanial" mass entering Newton's equation (7). On the other hand,

in the point limit R ! 0 the eletromagneti mass diverges, m

em

! +1,

so that apparently there are just two possibilities in taking the point limit:

either one keeps the bare mass m

0

�xed, in whih ase the e�etive mass

tends to +1 (trivial dynamis; no �nite fore is able to aelerate the par-

tile), or one introdues the presription m

0

= m

0

(R) ! �1 in suh a

way that the e�etive mass m

0

(R) +m

em

(R) remains �nite, say equal to a

value m playing the role of a phenomenologial mass. A detailed analysis,

restrited to the nonrelativisti ase in the dipole approximation (see [6℄ and

[7℄), shows that suh a heuristi onlusion is orret, in the most rigorous

way. Indeed it an be proven that a nontrivial dynamis is obtained if and

only if mass renormalization is introdued as above; moreover the Cauhy

data for partile and �eld should not be independent, but related in some

de�nite way. Furthermore the initial partile aeleration turns out to be a

well de�ned funtion of the initial data of the �eld (the relevane of this will

be shown in a moment). Finally, one obtains for the motion of a partile

under the ation of an external fore F

ext

the third order equation

� _a = a� F

ext

(x)=m (8)

involving the harateristi time � = (2=3) e

2

=(m

3

). This is apparently a

very strange equation, requiring as initial data the partile aeleration a

0
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in addition to the standard data of position and veloity x

0

; v

0

required for

Newton's equation. But, as mentioned above, a

0

turns out to be a funtion

of the global set of initial data for the Maxwell{Lorentz system desribing

partile and �eld, so that there is no mystery here, if one takes the attitude

that one is always dealing with the omplete system partile plus �eld. This

is a very important point, so often misunderstood.

An analogous theorem for the full relativisti problem is still laking.

What we have available is a presription, given by Dira in the year 1938

(see [45℄, [46℄), whih leads to a relativisti analog of (8), namely

�( _a

�

� a

�

a

�

_x

�

) = a

�

� F

��

ext

_x

�

=m ; (9)

where now the dot denotes derivative with respet to proper time, but a

proof of its neessity in the sense desribed above has not yet been found.

We will refer jointly to equations (8) and (9) as the Abraham{Lorentz{Dira

(ALD) equations.

Conerning suh equations, we have �rst of all to make lear that they

onstitute an extension of the ordinary model of lassial physis: they are

not theorems within the lassial framework, being rather new presriptions,

almost freely hosen in going to the point limit. The theorem available

(at least in the nonrelativisti linearized model) only says that the hosen

presription is the only possible one (apart from that leading to a trivial

dynamis) that an be indued from the marosopi equations. It is just

in this new theory, whih is obtained by extension of the lassial one, that

new unexpeted and very interesting features show up. Before desribing

them, we would like however to point out an analogy. We refer to the ase

in whih the �rst ontinuum limit, leading to a partial di�erential equation,

was obtained in history of siene, namely the ase of d'Alembert equation.

While d'Alembert got his equation in the year 1750 in the familiar way by

analogy with the momentum equation for a �nite system of partiles, in the

year 1759 Lagrange obtained it through a limit from a disretized system (a

lattie �eld theory, in modern parlane), namely a linearized FPU system.

The equations ontain three parameters, namely the massm of the partiles,

the disretization step a and the onstant k entering the expression for the

potential of the linear springs. Going to the ontinuum limit a ! 0, one

obviously has to require m ! 0 in suh a way that the density � = m=a

be �xed, but one also has to require that k ! +1 in suh a way that the

quantity ka, namely the tension, remains �nite; otherwise one would obtain

a trivial limit, with a vanishing tension, i.e. with vanishing sound speed.

This example makes lear that in getting the limit some presriptions have

to be assigned, whih are additional with respet to the framework de�ning

the original disrete system; and the same seems to our with the ALD

equation.

Now the runaway solutions ome into the arena. Apparently, although a

third order equation of the form (8) had been onsidered even before Abra-
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ham and Lorentz, preisely by Plank, the �rst to expliitly point out the

existene of runaway solutions was apparently Dira in his 1938 paper for

the ase of the relativisti free partile. Suh a phenomenon is however

more easily observed in the ase of the nonrelativisti free partile. In suh

a ase, equation (8) redues to a losed equation for the aeleration, namely

� _a = a, with general solution a(t) = a

0

exp(t=�). So the free partile ex-

perienes an absurd exponential aeleration, unless one hooses the initial

ondition a(0) = 0, namely a

0

= 0, whih gives the expeted uniform reti-

linear motion a(t) = 0. It is easy to see that runaway solutions are generi.

What to do with them? Most physiists ertainly interpret the very fat

of their existene as intimating that the theory is nonsense, although they

might later realize with some surprise that an analogous situation is met in

quantum physis (see [48℄ and [49℄).

Dira had instead a quite opposite reation. Inspired by the example

of the free partile, he remarked that the theory should be omplemented

by a further presription, namely that of restriting one's attention to the

\physial motions", i.e. by de�nition those that do not present a runaway

harater. For example, for a partile subjeted to an external fore vanish-

ing at in�nity, in the ase of sattering one should require that the partile

\�nally" behaves as a free partile, i.e. that a(t)! 0 for t! +1. In Dira's

words: \we must restrit ourselves to those solutions for whih the veloity

is onstant during the �nal period when the eletron is left alone"; and fur-

thermore: \We must merely impose the ondition that these solutions are

the ones that our in Nature". So we make the further assumption that the

phase spae is a ertain submanifold of the original phase spae, a kind of

enter manifold whih we like to all the \physial or Dira manifold". This

is the deep new feature, beause\We now have a striking departure from the

usual idea of mehanis. We must obtain solutions of our equations of mo-

tion for whih the initial position and veloity of the eletron are presribed,

together with its �nal aeleration, instead of solutions with all initial data

presribed." And this leads to unexpeted onsequenes. Essentially, this

is due to the fat that, in order that something happens in the future (the

aeleration has to vanish after the ation of the fore), a suitable aelera-

tion (with a orresponding energy radiation) has to exist before the partile

meets with the external fore. Thus \It would appear here that we have a

ontradition with elementary ideas of ausality" ... beause ... \a signal an

be sent from A to B faster than light. This is a fundamental departure from

the ordinary ideas of relativity... (although) ... our whole theory is Lorentz

invariant." It is just for this reason that Dira had previously stated, quite

emphatially, that \This will lead to the most beautiful feature of the

theory".

The opinion that by going to the point limit in lassial eletrodynamis

(or equivalently by removing some previously introdued regularizing ut-

o�s) unexpeted new features might show up, inluding some nonloality

12



properties appropriate to violate Bell's inequalities, was repeatedly put for-

ward by Nelson (see [50℄ and [51℄) with great emphasis. Our attitude is

exatly the same. The only di�erene is that in our opinion no more job is

needed to understand what is the strange relevant mehanism that should

show up in the limit, beause the job has already been done by Dira. So

we keep exatly Dira's point of view realled above: the new feature, the

most beautiful feature appearing in the point limit is simply what omes out

of Dira's presription that the phase spae be restrited to the \physial"

submanifold of nonrunaway solutions (the Dira priniple, as we all it),

whih leads to a fundamental departure form the ordinary ideas of relativ-

ity, apparently in ontradition with elementary ideas of ausality, though in

the framework of a Lorentz invariant theory. In Dira's words (we are freely

translating here from his original Frenh paper [46℄) \The fundamental hy-

pothesis of the theory of relativity is atually the invariane of all physial

laws with respet to Lorentz transformations. ..... The hypothesis aord-

ing to whih a signal never an propagate faster than light is a seondary

hypothesis, independent of the previous one."

) Some quantum{like e�ets. The analytial property of the ALD equa-

tion whih allows for its solutions to exhibit interesting new features is the

fat of being a singular perturbation of Newton's equation, inasmuh as

it redues to the latter when the \small" parameter � vanishes, but with

a redution of its order. Correspondingly, its solutions are represented by

asymptoti series (see [10℄). It turns out that the solutions an be divided

into two lasses, whih we all the mehanial and the nonmehanial ones

respetively. The former are small perturbations of solutions of the Newton

equation, while the latter are not, being qualitatively ompletely di�erent.

In the ase of sattering from a nuleus it is found (see [10℄) that the me-

hanial solutions are haraterized by having an initial angular momentum

larger than a a ertain ation of the order �h, preisely 6Z

2=3

e

2

=, where Z

is the atomi number. This seems already to be rather interesting.

The relevant problem is that of understanding what happens with the

nonmehanial solutions. This problem was solved for the ollision of a

partile with a barrier (see [9℄ and [52℄), in whih ase too nonmehanial

solutions are found to exist only beyond a ertain threshold. The distin-

guishing feature is the following one: while for the mehanial solutions

the partile is either transmitted or reeted aording to the initial me-

hanial state x

0

, v

0

(atually, aording to the orresponding value of the

mehanial energy), for the nonmehanial solutions it turns out that the

initial mehanial state does not uniquely de�ne the initial aeleration a

0

leading to a nonrunaway solution. There are instead several possible initial

aelerations (even an unlimited number of them), some of them leading to

transmission and the other ones to reetion. By the way, the possibility of

suh a \nonuniqueness" property was �rst oneived in a lear mathematial
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way by Hale and Stokes (see [53℄), while Dira himself expliitly made the

inorret statement that uniqueness should always hold (see [46℄, page 21).

In the ase of the ollision with a barrier, this nonuniqueness phenomenon

happens to our for initial energies in a small strip about the top of the

barrier. Moreover it turns out that, as the initial position x

0

reedes from

the barrier, the di�erent allowed aelerations, orresponding to the same

mehanial datum, have a mutual distane tending exponentially to zero. So

the initial aeleration (or the initial �eld, for the reason explained above)

really plays the role of a hidden parameter, in the sense indiated by Bell,

inasmuh as it is marosopially unontrollable (see [54℄). In suh a way it

is lear that one has here an analog of the tunnel e�et, sine the property

that the partile be transmitted or reeted depends on the value of a hid-

den parameter whih annot be ontrolled, so that it has neessarily to be

desribed by some probability distribution.

A further relevant property is that one meets here with some nonloal

e�et. This is due to the fat that, for a �xed initial mehanial datum

x

0

, v

0

, the set of allowed values for the hidden parameter a

0

(in partiular

the ardinality of suh a set) depends on the height of the barrier, so that

the probability distribution too is de�ned in a probability spae whih de-

pends on the height of the barrier. This seems to be an analog of a key

quantum feature: if one has to perform a measurement of an observable

of a ertain objet, \as a result of the interation between the objet and

the measuring instrument, the objet is entangled with the instrument" (see

[55℄). Indeed, if in our example one performs the measurement onsisting

in observing whether the partile is transmitted or reeted by the barrier

(whih amounts to onsidering a suitable dihotomi variable in the stan-

dard way), then di�erent experiments orrespond to di�erent heights of the

barrier; in suh a ase, having �xed the initial mehanial state, for eah

di�erent experiment one has a di�erent probability spae for the hidden

variable desribing the state of the partile.

Think now of two suh experiments for two partiles oming out of some

point and going in opposite diretions towards two barriers, eah having a

ertain height hosen among three possible ones. Due to the nonloality

property desribed above, orresponding to the fat that the relevant prob-

ability spae depends on the settings of the barriers, it is ompletely obvious

that one an �nd initial probability distributions for whih Bell's inequali-

ties will be violated. For further details see [11℄ (see also the appendix to

the present paper for a orretion).

d) Further relevant features. Another important qualitative feature of

lassial eletrodynamis is the possibility of desribing pair reation or an-

nihilation, ontrary to the ommon opinion that this should only be possible

within quantum �eld theory. In fat the lassial desription was already

oneived by Stuekelberg and Feynman (see [56℄), in terms of urves in
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spae{time presenting angular points. In the paper [8℄ it was shown in addi-

tion that urves of suh a type atually our as solutions of the relativisti

ALD equation for an external fore presenting a singularity.

An extremely relevant problem is the stability of the atom, whih is

onerned with the motion of an eletron about a nuleus. Aording to the

ommon opinion, the eletron should fall on the nuleus by losing energy

by radiation, in agreement with Larmor formula. The situation is however

di�erent, if solutions of the ALD equation are onsidered. Indeed, at least

in the nonrelativisti ase, it turns out that there are no solutions falling

on the nuleus either in a �nite or an in�nite time. This was shown for

the one{dimensional ase in a lassial paper by Eliezer [57℄, and the result

was reently extended (see [58℄) to the three{dimensional ase. Whether

bounded nonrunaway solutions exist is a very interesting open problem. For

some reent results onerning two{eletron systems, as in the Helium atom,

see [59℄.

4 Conlusions

In the present paper we have reviewed some works of interest for the relations

between lassial and quantum physis, where it was shown that the former

presents some relevant quantum{like features. It has also been pointed out,

in onnetion with the FPU problem, that quantum mehanis might, under

ertain aspets, appear as a �rst order approximation to lassial mehanis.

In general, the point of view we are taking seems to be very similar to the

one reently illustrated by 't Hooft(see [60℄), who apparently is looking for a

deterministi hidden variable theory presenting suitable nonloal properties

in order to explain quantum mehanis. This amounts, in his words \.. to

aept both quantum mehanis with its usual interpretation and to assume

that there is a deterministi physial theory lying underneath it." The main

di�erene is that, while suh an author is looking for some new theory, we

are instead pointing out that lassial physis itself, partiularly when it is

extended to desribe harged point partiles, might already do the job, or

at least some part of it. Moreover it turns out that, under the impetus of

the modern theory of dynamial systems, lassial physis is revealing so

many beautiful and unexpeted features, that we believe it to be a duty for

the sienti� ommunity to be able to state in rigorous mathematial terms

whih atually are its preditions, independently of whether it will be able

to explain quantum mehanis or not.
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Appendix: Corretion of an error of ours onern-

ing Bell's inequalities

In the paper [11℄ we report Bell's inequalities in Nelson's version, whih

makes referene (see [43℄, page 445) to a ertain inequality (3), namely

Pr

��

f�

�

�� = �1g < 1=2 ; � 6= �: (10)

Nelson himself states however that the inequality should be expeted to hold

with 1=3 in plae of 1=2. And indeed this turns out to be the ase, as is

immediately seen if one of the last lines of Nelson's proof is orreted, by

remarking that the minimum of the funtion

1

6

X

�6=�

p

�

p

�

+ (1� p

�

)(1� p

�

) (�; � = 1; 2; 3) (11)

(0 � p

�

� 1) is 1=3 and not 1=2 as stated there. In our paper we were

onerned with a disussion of fatorized states and we wanted to prove

that it is impossible to violate Bell's inequality with states of suh a type.

Exatly the same error of Nelson was made, but the main statement, namely

the inequality of page 496, is easily seen to ontinue to hold, again with 1=3

in plae of 1=2.

We thank S. Goldstein for kindly pointing out suh an error to us.
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