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Entanglement distillation transforms weakly entangled noisy states into highly entangled states, a primitive to be
used in quantum repeater schemes and other protocols designed for quantum communication and key distribution.
In this work, we present a comprehensive framework for continuous-variable entanglement distillation schemes
that convert noisy non-Gaussian states into Gaussian ones in many iterations of the protocol. Instances of
these protocols include (a) the recursive-Gaussifier protocol, (b) the temporally reordered recursive-Gaussifier
protocol, and (c) the pumping-Gaussifier protocol. The flexibility of these protocols gives rise to several beneficial
trade-offs related to success probabilities or memory requirements, which can be adjusted to reflect experimental
demands. Despite these protocols involving measurements, we relate the convergence in this protocol to new
instances of noncommutative central limit theorems, in a formalism that we lay out in great detail. Implications
of the findings for quantum repeater schemes are discussed.
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I. INTRODUCTION

Photons, with information encoded in continuous-variable
degrees of freedom, can travel great distance without sig-
nificant decoherence. We can, using beam splitters, phase
shifters, and detectors, coherently manipulate photons and
make measurements. Specifically in the continuous-variable
regime, brighter sources of light are available than for
single photon, discrete, light sources. These features have
motivated research into the usefulness of photonic systems
for quantum cryptography, communication, and distributed
quantum information processing [1,2]. Discrete protocols, for
finite-dimensional systems with arbitrary quantum control, do
not typically have exact analogs but rather cousins in the linear
optical setting. Any two qubit entangled state can be distilled
by local operations [3], whereas distillation of entangled Gaus-
sian states using linear optics is impossible [4–6]. Soon after
these impossibility proofs were obtained, it was discovered that
an initially non-Gaussian state could, using only linear optics,
enable entanglement distillation [7–9]. The original distillation
protocol, which is conditioned on detectors finding no photons,
outputs a state that evolves toward a Gaussian. Over the years,
this protocol has inspired several variants that have been found
to exhibit the same Gaussification phenomena [10,11]. Similar
“no-go” results [12] prohibit the distillation of highly squeezed
states using only passive linear optics, although with relaxed
constraints some proposals are possible [13].

Leaving the realm of purely Gaussian operations is essential
for entanglement distillation, but unfortunately non-Gaussian
operations are much more experimentally challenging. There-
fore, it is desirable to keep non-Gaussian operations to
a minimum. In the aforementioned protocols, and those
considered herein, only the initial noisy resource needs to
be non-Gaussian. A source of Gaussian entangled states, such
as those emitted by a pumped parametric downconverter, can
be probabilistically de-Gaussified by adding or subtracting
single photons through the use of single photon detectors
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and/or sources [8,11,14–17]. An additional benefit of de-
Gaussification is that it too can increase the entanglement
and other figures of merit, such as the teleportation fi-
delity [18–21]. Some matter systems (e.g., Ref. [22]) also
provide a more direct source of non-Gaussian entangled
photons. These are the most experimentally feasible means
of non-Gaussian state preparation, but the potential advantage
of exploiting more exotic forms of non-Gaussianity has also
been considered [11,21,23,24]. The need for non-Gaussian
operations extends beyond distillation problems, and they are
required to violate locality [25–27] and to outperform classical
computers [28–32]. These applications have kindled an interest
in the idea of Wigner function negativity as a resource [33].

Until now, known protocols that Gaussify and distill
entanglement have the feature of being recursive. To execute
these protocols to greater depth requires greater memory
storage requirements. The quantum states are combined via
a treelike process of pairwise distillation, with each branch
demanding additional memory. In the finite-dimensional set-
ting, entanglement pumping protocols [34–42] offer the option
of compressing the spatial memory requirement, even down
to three to four qubits per location, at the cost of reduced
efficiency and increased temporal overheads. Recently, a
continuous variable analog of entanglement pumping, the
compact distillery scheme, has been proposed [43]. This
scheme requires storage of only two modes per location at
any moment in time. However, this pumping protocol is not a
direct analog of the Gaussification protocols. In particular, the
compact distillery does not Gaussify and allows only a modest
increase in entanglement.

Here, we extend and further develop the techniques of
Ref. [44] where the class of Gaussification protocols was vastly
broadened and shown to work in virtue of quantum central
limit theorems. This work broadens the class of Gaussifier
protocols, and in doing so introduces the concept of a pumping
Gaussifier that only requires two modes of memory per
location. Unlike the compact distillery scheme, our pumping
protocol still Gaussifies and is capable of the same large
increases of entanglement possible with the recursive Gaus-
sifier. Surprisingly, the pumping Gaussifer outputs the same
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final state as the more well-known recursive Gaussifiers. This
makes pumping Gaussifers extremely promising protocols
that are especially attractive for experiments with only a
small number of modes. We also comment on implications
of our findings to devising novel schemes for long distance
quantum communication via quantum repeater networks.
Despite considerable research on continuous-variable (CV)
entanglement distillation, surprisingly these techniques have
not previously been explicitly applied to design of quantum
repeaters. Indeed, here, we provide the first concrete evidence
in the CV context that using quantum repeaters can achieve
greater distances of communication than direct transmission.

On a technical level, the approach taken here is comple-
mentary to, but subtly distinct from, our earlier results [44]. In
particular, compared to these earlier results, the relationship
between quantum central limit theorems and Gaussification
protocols requires a smaller and simpler set of assumptions
required of the physical system. Center stage is taken by a
class of noncommutative central limit theorems, which are
general enough to capture all of the aforementioned situations
of state manipulation, including postselecting measurements.
The requirements for a quantum central limit theorem to be
valid will be highlighted and discussed in great detail. We
remark that these techniques are closely related to those used
to prove the extremality principle [45], which asserts that
for entanglement measures satisfying very specific properties,
Gaussian states have the least entanglement of all states with
the same second moments.

II. CONTINUOUS-VARIABLE SYSTEMS AND
PHASE SPACE

Here, we introduce our notation and briefly introduce some
phase space concepts used throughout. For more details see
Refs. [1,5,46]. For a single mode of a CV system, two
important observables are

X̂ = (â + â†)/
√

2, (1)

P̂ = i(â† − â)/
√

2, (2)

which are analogs of position and momentum in simple
harmonic oscillators, with â and â† being the photonic an-
nihilation and creation operators. For m optical modes, the set
of 2m quadrature operators is denoted as a vector of operators

Q̂ = (Q̂1,Q̂2, . . . ,Q̂2m−1,Q̂2m) = (X̂1,P̂1, . . . ,X̂m,P̂m).

(3)

For a quantum state ρ, the expectation values of these
quadratures are denoted by a set of 2m real numbers

[dρ]k = tr(Q̂kρ), (4)

which are called the first moments of ρ. Typically, we are
interested in states with zero first moments, so dρ = 0. The
second moments, akin to variances, are captured by the
covariance matrix

[�ρ]j,k = 2 Re{tr[(Q̂j − [dρ]j )(Q̂k − [dρ]k)ρ]}, (5)

which for states with zero first moments simplifies to

[�ρ]j,k = tr[(Q̂j Q̂k + Q̂kQ̂j )ρ]. (6)

It is easy to verify that, for physical states, the covariance
matrix is real and symmetric.

The first and second moments only partially describe the
quantum state, but a complete description can be achieved
by using one of a plethora of phase space representations.
In particular, we make use of characteristic functions χρ :
R2m → C such that

χρ(r) = tr[D(r)ρ], (7)

where Dr is the unitary displacement or Weyl operator

Dr = exp(i · Q̂) = exp

⎛
⎝i

∑
j

rj Q̂j

⎞
⎠ . (8)

We say a state is Gaussian if and only if its characteristic
function has a Gaussian shape, which entails

χρ(r) = exp(ir · dρ − rT �ρr/4). (9)

Any state outside this set is said to be non-Gaussian. Notable
Gaussian states include the vacuum and the coherent states.
The Wigner function, which is perhaps more widely known,
is simply the Fourier transform of the characteristic function.
Since the Fourier transform maps the set of Gaussian functions
to itself, the definition of Gaussian states is equivalent if
stated in terms of Wigner functions. For our purposes the
characteristic function is the most useful choice of phase space
representation.

Regarding dynamics, we say a unitary is Gaussian if it has
the form U = exp(iH ), where H is Hermitian and quadratic in
annihilation and creation operators. The canonical example of
a Gaussian measurement is a homodyne, or quadrature, mea-
surement of an observable Q̂j . More general Gaussian mea-
surements can be related to quadrature measurements by use of
Gaussian unitaries and ancillary Gaussian states. For example,
so called eight-port homodyne measurements project onto the
coherent states and can be implemented by using two quadra-
ture measurements and an ancillary mode in the vacuum state.

The most general kind of Gaussian operations are Gaussian
channels (completely positive maps). This class of physical
operations is most naturally defined by using the Choi-
Jamiolkowski (CJ) isomorphism [47,48] between quantum
states and channels. For a channel E mapping m-mode
quantum states to m-mode quantum states, the CJ state is

�E = (1l ⊗ E)�, (10)

where � = |φ〉〈φ|⊗m is a pure unnormalized operator with

|φ〉 =
∞∑

n=0

|n,n〉. (11)

Conversely, for all �E there exists a unique quantum channel
E specified by the isomorphism, such that

E�(ρ) = trB[�TB (1l ⊗ ρ)], (12)

where TB is a partial transpose with respect to B. When the
Gaussian completely positive (CP) map acts on a Gaussian
state ρ with covariance matrix �ρ , it has been shown [4–6]
that the output state ρ ′ is also Gaussian with covariance matrix

�ρ ′ = γAA − γAB(γBB + �ρ)−1γ T
AB, (13)
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where

γ =
(

γAA γAB

γ T
AB γBB

)
(14)

is the covariance matrix of �TB shown as a block matrix
with respect to the partition between systems A and B. The
expression for �ρ ′ takes the form of a Schur complement,
which often arises in matrix problems and Gaussian inte-
gration [49]. The partial transpose has a simple effect on
covariance matrices, and so explicitly calculating the partial
transposed state can be circumvented. Partial transposition, in
the Heisenberg picture, takes P̂ 	→ −P̂ for every momentum
operator acting on system B. Assume we know �E/tr(�E ) and
its covariance matrix γ̃ . It follows that the partial transposed
state �

TB

E /tr(�E ) has covariance matrix γ = �γ̃�, where
� = 1lA ⊕ TB and TB = diag(1,−1, . . . ,1,−1).

III. BUILDING BLOCKS

This section introduces the basic building blocks of the
protocols considered herein. Each building block is specified
by the following: an operator 	 called the filter; a value R for
the beam-splitter reflectivity; and a choice of two m-mode
states that may be outputs from previous building blocks.
Throughout this article, any building blocks combined into
a larger protocol will use the same filter 	, which must be
an invertible operator proportional to a separable Gaussian
state with zero first moments. Such filters always, as shown in
Ref. [50], have a decomposition of the form

	 =
∫

P (r)	r, (15)

where P (r) is a classical, and Gaussian, probability distribu-
tion and

	r = Dr|ψ〉〈ψ |D†
r (16)

for some pure separable Gaussian |ψ〉. The set of operators
{	r} specifies the positive operator-valued measure (POVM)
measurement to be used in the building block. Recall that eight-
port homodyne measurements implement a similar POVM
where |ψ〉 is the vacuum state, and so the desired POVM is
always equivalent, up to a local Gaussian unitary, to eight-port
homodyne measurement. The weighting P (r) is a function of
the measurement outcome 	r and dictates the postselection
strategy used in the building block. Another important special
case is the one where 	 approximates the vacuum arbitrarily
well, which is the situation considered in Refs. [7,8].

Implementation of a building block is outlined in Fig. 1 and
is as follows:

(1) Take two m-mode quantum states ρA (modes Aj ) and
ρB (modes Bj ).

(2) Each of the m parties mixes their two modes on a beam
splitter of reflectivity R.

(3) On each of the beam splitters, take the output from the
B modes and locally implement the Gaussian measurement
with local POVM elements {	r}.

(4) Given measurement outcome data r, postselect declar-
ing a success with probability P (r).

(5) Take the unmeasured A modes and output from the
building block.

ρB

ρ'

ρA

R RR(a) (b)

ρ'
ρB

ρA

FIG. 1. (Color online) An implementation of an individual
building block with beam-splitter reflectivity R for (a) single-mode
states and (b) two-mode states. Generalization to m-mode states is
straightforward as each additional party performs the same local
unitaries.

Here, we have labeled the 2m modes as
{A1, . . . ,Am,B1, . . . ,Bm} and modes sharing the same
numerical index share the same physical location. When
successful, the building block outputs a state

ρ ′ ∝
∫

P (r)trB[U (ρA ⊗ ρB)U †(1l ⊗ 	r)]dr. (17)

The unitary U represents the effect of the beam splitters such
that for all j ,

U †âAjU =
√

T âAj +
√

RâBj , (18)

where T = 1 − R. Taking the integral over measurement
outcomes inside the partial trace and using Eq. (15) we have

ρ ′ ∝ trB[U (ρA ⊗ ρB)U †(1l ⊗ 	)]. (19)

Unfortunately, the effect of this map can be difficult to
analytically evaluate. The root of the technicalities is related
to the fact that U and 1l ⊗ 	 do not commute. However,
following the insights of Ref. [44], we know that by moving
to phase space and working with a different object from ρ ′
the effect of the map can be simplified. This is the key insight
that renders the analysis feasible. In Ref. [44] the characteristic
function of the non-Hermitian object ρ ′	 was considered. This
work follows parallel reasoning but instead we consider the
Hermitian object 	1/2ρ ′	1/2 and its characteristic function.
We make use of

τ ′ = Pρ ′P
tr(Pρ ′P )

(20)

for the normalized and Hermitian filtered object, with

P = 	1/2. (21)

This object is then

τ ′ ∝ trB[(P ⊗ 1l)U (ρA ⊗ ρB)U †(P ⊗ 	)]. (22)

Splitting 	 = PP and using the cyclicity of the trace we have
the more symmetric formula

τ ′ ∝ trB[(P ⊗ P )U (ρA ⊗ ρB)U †(P ⊗ P )]. (23)

The next fact we employ is that for any Gaussian operator with
zero first moments, such as P , we have that

U †(P ⊗ P )U = P ⊗ P. (24)

This equality is well known (see, e.g., Ref. [51]), but for
completeness we give a proof in Appendix A. Hence we have

τ ′ ∝ trB[U (PρAP ⊗ PρBP )U †]. (25)
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Again using the shortened notation τA ∝ PρAP and τB ∝
PρBP gives

τ ′ ∝ trB[U (τA ⊗ τB)U †]. (26)

By choosing 	, and equivalently P , as proportional to a
Gaussian state, we have been able to exploit the symmetry
of the problem to reach a greatly simplified expression. The
characteristic function of this object is then

χτ ′(r) ∝ tr[(1l ⊗ Dr)U (τA ⊗ τB)U †]. (27)

Conjugating U † with the displacement operator gives

U †(1l ⊗ Dr)U = U † exp[i(1l ⊗ r.Q̂)]U

= exp[i
√

T (r · Q̂ ⊗ 1l) + i
√

R(1l ⊗ r · Q̂)]

= D√
T r ⊗ D√

Rr. (28)

Using this relation we deduce that

χτ ′(r) ∝ tr[D√
T rτA ⊗ D√

RrτB]

∝ tr[D√
T rτA]tr[D√

RrτB]. (29)

However, these factors are simply the characteristic functions
for τA and τB but with a modified value of r, so

χτ ′(r) = χτA
(
√

T r)χτB
(
√

Rr). (30)

We have shifted to equality, rather than proportionality,
because the characteristic function of a unit trace object
takes χτ (0) = 1. As promised, the effect of the protocol
on the filtered τ objects is much more straightforward than
for the actual density matrices. Note that if we considered
non-Hermitian objects σA,B ∝ ρA,B	 and output σ ′ = ρ ′	,
we would have similarly arrived at

χσ ′(r) = χσA
(
√

T r)χσB
(
√

Rr). (31)

These results generalize those of Ref. [44], where the input
states were taken to be identical and reflectivity set to be 50/50
and only the non-Hermitian objects were considered. Later in
this article, we find that working with Hermitian objects proves
to be the more elegant approach.

Before proceeding we remark on the assumption that 	,
and hence all P , are invertible. The assumption is required
to ensure that τ ′ uniquely defines ρ ′. All Gaussian operators,
except projectors, are full rank and invertible so the assumption
simply rules out projectors. However, we wish for our
general analysis to encompass previous protocols [7,8,43]
that prescribe projecting two modes onto the vacuum, where
	 = P = |0,0〉〈0,0|, which is clearly not invertible. However,
any realistic experiment will use detectors with some nonunit
efficiency of photon detection. Indeed, often efficiency is sig-
nificantly less than unity. Such inefficiencies can be modeled
by placing a beam splitter ahead of the detector, and can be
easily incorporated into our analysis. This modification results
in a realistic filter that is still Gaussian but no longer a projector.
As such, the assumption of invertible filters is always justified.

IV. PROTOCOLS

A. The recursive Gaussifer

The first class of protocols we review was originally
introduced in Ref. [44], generalizing the proposals of

ρ4

ρ1

ρ1
ρ2 ρ3 ρ4

1/2 1/3 1/4ρ1 ρ1

ρ1

ρ1
Φ2 Φ3 Φ4

1/2ρ1 ρ1
1/2 1/2

ρ1
ρ2 ρ4

1/2ρ1

ρ1
1/2ρ1

ρ2

1/2

ρ1
ρ2

1/2ρ1 ρ1
1/2ρ1

ρ2 1/2

(a)

(b)

(c)

(d)

ρA
ρ'

ρB
RKEY:

FIG. 2. Different protocols combining building blocks in ways.
All building blocks use the same filter, 	, and are labeled with their
beam-splitter reflectivity R. (a) The recursive-Gaussifier protocol;
(b) the temporally reordered recursive-Gaussifier protocol; (c) the
pumping-Gaussifier protocol; and (d) the compact distillery protocol.
The key shows how the building block labels compare with the
variables used in Sec. II.

Refs. [7,8]. We refer to the protocols considered here as
recursive Gaussifers and the general structure is outlined in
Fig. 2(a). All building blocks of the recursive protocol use
the same filter 	, and set R = T = 1/2. In the first round
of the protocol many copies of a raw state ρ1 are taken and
are simultaneously used as inputs to building blocks, with
ρA = ρB = ρ1. The successful outputs from these rounds are
labeled ρ2, and are used as the inputs into the building blocks
for the next round. On the nth round, each building block takes
two input states labeled ρ2n and outputs ρ2n+1 . The subscript
counts the number of raw copies so far consumed. Denoting
τ2n ∝ Pρ2nP and applying Eq. (31) we find that

χτ2n+1 (r) = χτ2n

(
r√
2

)2

, (32)

which is easier to represent in terms of N = 2n so

χτ2N
(r) = χτN

(
r√
2

)2

. (33)

In terms of τ1 we have

χτN
(r) = χτ1

(
r√
N

)N

. (34)

To reach n rounds, assuming every building block succeeds,
we must have a memory capable of storing N = 2n copies
of ρ1 simultaneously. The exponential increase in memory is
required because we have assumed simultaneous execution
of all building blocks within a round. However, relaxing the
simultaneity requirement and using a smart ordering—for
instance as in Fig. 2(b)—the recursive protocol can implement
n rounds with a storage capacity of n + 1 modes per location,
albeit at the cost of increasing the number of time steps.
A growing quantum memory seems unavoidable, but we
will soon see how it can be circumvented. The sequence of
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characteristic functions{
χτ1 ,χτ2 ,χτ4 ,χτ8 , . . .

}
(35)

is known to evolve toward a Gaussian with unchanged second
moments by virtue of a central limit theorem. We will later
review central limit theorems, providing extensions to make
more direct statements about the physical state.

B. The pumping Gaussifier

We propose protocols that use a fixed initial state to
repeatedly pump a target state, surprisingly resulting in the
same output as an analogous recursive protocol. The building
blocks that compose the pumping Gaussifier use two distinct
input states in later rounds and also weaken the beam-splitter
reflectivity with the number of steps. On the N th step, we take
a copy of ρN and a raw initial state ρ1 and mix on a beam
splitter of reflectivity RN = 1/(N + 1) as shown in Fig. 2(c).
The output is labeled ρN+1 and in the phase space picture we
have the iterative formula

χτN+1 (r) = χτN

( √
N√

N + 1
r
)

χτ1

(
1√

N + 1
r
)

. (36)

We can verify that

χτN
(r) = χτ1

(
r√
N

)N

(37)

satisfies the iterative formula because

χτN+1 (r) = χτ1

( √
N√

N + 1

r√
N

)N

χτ1

(
r√

N + 1

)

= χτ1

(
r√

N + 1

)N

χτ1

(
r√

N + 1

)

= χτ1

(
r√

N + 1

)N+1

. (38)

The neat cancellation of
√

N/
√

N only occurs because of
our exact choice of beam-splitter reflectivity. After the N th
step, the characteristic function matches that of the recursive
Gaussifier implemented to depth n = log2(N ). Furthermore,
for successful implementations both protocols consume the
same number of raw copies to achieve the same output.
However, in the pumping protocol we also have the option
of terminating after a number of steps not of the form N = 2n.

C. The compact distillery

The compact distillery (CD) protocol [43] also repeatedly
pumps with the same initial state, but it keeps a constant beam-
splitter reflectivity of R = 1/2 as outlined in Fig. 2(d). The CD
protocol is known to provide a very different evolution from
both our Gaussifier protocols. To highlight that it produces
different states from the Gaussifiers, we label the output of the
N th step as �N+1 and equate �1 = ρ1 for the raw resource.
Denoting φN ∝ P�NP we have the iterative relation

χφN+1 (r) = χφN

(
r√
2

)
χφ1

(
r√
2

)
. (39)

We can immediately deduce properties of φN+1 from those
of the initial operator φ1. For instance, if the characteristic
function χφ1 is zero at point r0, then the characteristic function
χφN+1 is zero at

√
2r0 for all N . Hence, the characteristic

function χφN+1 will not have a Gaussian shape and conse-
quently the corresponding physical state �N+1 will also be
non-Gaussian. If there exists a limiting characteristic function
χφ∞ the same argument applies and so non-Gaussianity would
persist even in the asymptotic limit of many iterations. Indeed,
all the examples considered in Ref. [43] found that the
protocol converges toward non-Gaussian states. Our phase
space techniques provide a clear explanation of why non-
Gaussianity persists in the compact distillery. This illustrates
the merit of the phase space perspective, even for examining
protocols that do not Gaussify.

The CD protocol was proposed as an alternative to recursive
Gaussifiers to reduce the required quantum memory and bring
protocols closer to experimental feasibility. However, we have
seen that our pumping Gaussifier can also operate under these
stringent memory constraints. We must then consider other
figures of merit to compare these protocols. The authors
of Ref. [43] showed that, when fed with weakly entangled
photon subtracted states, a few rounds of the CD achieves
a similar entanglement increase as a few rounds of the
Gaussifier. However, the maximum achievable entanglement
of the Gaussifer proved to be much higher, and so after
only three to four rounds the advantage of the pumping
Gaussifier can be significant. Of course, whether we desire the
output state to be non-Gaussian or Gaussian depends on the
context and what quantum information protocol the resource
is subsequently used for.

V. CENTRAL LIMIT THEOREMS

A. Characteristic function convergence

Central limit theorems are results that tell us when a
sequence of characteristic functions approaches a Gaussian
function and in what way they converge. Throughout we are
interested in sequences of characteristic functions output by
the recursive and pumping Gaussifers.

Definition 1 (Central limit sequence). We say a sequence of
Hermitian positive operators {τN } and associated characteristic
functions {χτN

} is a central limit sequence if

χτN
(r) = χτ1

(
r√
N

)N

, (40)

where χτ1 has zero first moments and �τ second moments.
For such a sequence, if τ1 is Hermitian and positive, then

the results of Refs. [44,45,52] govern its limiting behavior.
More generally, if τ1 is non-Hermitian, then recent results [44]
give conditions under which it approaches a Gaussian. These
latter techniques were used to demonstrate Gaussification
of physical systems by considering τ1 ∝ ρ1	. Here we
consider the Hermitian τ1 ∝ Pρ1P for which the convergence
properties are simpler to state.

Theorem 1 (General quantum central limit theorem).
Consider a central limit sequence {χτN

}. For any finite radius
r0 and any accuracy ε > 0, there exists an Nε such that for all
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N � Nε and all |r| � r0 we have∣∣χτN
(r) − χτ∞(r)

∣∣ < ε, (41)

where χτ∞(r) is a Gaussian with covariance matrix �τ1 .
The theorem can be proven by taking a cross section of the

characteristic function for a unit direction r, such that

fN (t) = χτN
(tr), (42)

and proving convergence to a Gaussian function in phase space
for all such cross sections. Each cross section is equivalent to a
characteristic function for a classical probability distribution.
We may proceed by following one of the numerous classical
proofs, such as Ref. [53]. Central limit theorems are funda-
mental to our method and so for completeness we will provide
a proof here.

From the definition of a characteristic function, it follows
that it can be expanded as

f1(t) = 1 − t2

2
ν + C(t2), (43)

where ν is the second moment in direction r, such that

ν = 2 tr[(r · Q̂)2ρ], (44)

and the higher order terms C(x2) can be shown [44,53] to
satisfy C(x2)/x2 → 0 as x → 0. Hence, the N th function in
the sequence is

fN (t) =
(

1 − t2

2N
ν + C(t2/N)

)N

. (45)

We wish to compare this with exp(−t2ν), and so the difference
of these quantities is

δN (t) = |fN (t) − exp(−t2ν)|. (46)

We can approximate exp(−t2ν) with some (1 − t2ν/N)N to
any accuracy ε/2 > 0, such that there exists an N ′

ε and for
N > N ′

ε we have

δN (t) �
∣∣∣∣
[

1 − t2ν

N
+ C

(
t2

N

)]N

−
(

1 − ν

N

)N
∣∣∣∣ + ε

2
.

Next, we use that for any complex numbers a and b with
|a| � 1 and |b| � 1 we know (see Appendix B) that |aN −
bN | � N |a − b| and applying this yields

δN (t) � N

∣∣∣∣
[

1 − t2ν

N
+ C

(
t2

N

)]
+

(
1 − ν

N

)∣∣∣∣ + ε

2

= N |C(t2/N)| + ε

2
= t2|C(x2)/x2| + ε

2
, (47)

where x2 = t2/N . For constant t , we can decrease x to any
desired value by increasing N . Since C(x2)/x2 vanishes in this
limit, for any desired η = ε/2t2 > 0 we can find a N ′′

ε such
that for all N > N ′′

ε we have |C(x2)/x2| � η. Hence, we have

δN (t) � t2η + ε/2 = ε. (48)

This final result holds for N > max(N ′
ε,N

′′
ε ) = Nε . The above

argument tells us how individual points evolve in N , but the
result can be strengthened further for all points within a ball of
finite radius r0. This extension to finite regions of phase space is
outlined in Appendix C. This result is stronger as the same error
bound uniformly holds across a whole region simultaneously.

The region has a finite area and extensions of this result
to the whole of phase space do not hold. Indeed, central
limit theorems are aptly named as they dictate the limiting
behavior around the origin of phase space but not into the
tails (see also the similar discussion related to noncommutative
central limit theorems applied to grasping quantum many-body
dynamics [54,55]).

B. Convergence of moments

Next, we present a second aspect of central limit theorems,
which we use later, that quantifies the evolution of higher
moments. We begin by generalizing the idea of a quadrature.
Typically, quadratures are thought of as single-mode position
or momentum operators, but we take quadratures to include
all linear combinations of such operators, such that

H =
∑

j

rj Q̂j (49)

is always a quadrature. The kth moment of such an operator,
assuming first moments are zero, is the expectation value of
Hk . More generally, we say an operator is a kth moment if it
is a product of k, potentially distinct quadratures such that

H (k) =
k∏

j=1

Hj, (50)

where each Hj is linear in quadrature operators as in Eq. (49).
Another result known as a central limit theorem is the
following.

Theorem 2 (Convergence of moments). For any central limit
sequence {τN } and any kth moment H (k) in the large N limit,

|tr(H (k)τN ) − tr(H (k)τ∞)| → 0. (51)

A simplified proof of this result is presented in Appendix D,
but more involved proofs of more general results can be found
in Refs. [56,57]. The theorem can be easily extended to finite
linear sums of moments as follows.

Corollary 1 (Finite sums of moments). Consider an operator
H , which is a sum of finitely many terms, each a kth moment.
The sequence of operators τN for increasing N obeys

|tr(HτN ) − tr(Hτ∞)| → 0. (52)

C. Matrix element convergence

The above theorems tell us about the evolution of the
characteristic functions and moments but what can be said on
the level of the density matrices τN? We have the following.

Theorem 3 (Pointwise convergence). Consider a central
limit sequence {τN } and a pair of pure states {|ψk〉,|ψj 〉}, in
the limit of large N ,

|〈ψk|τN |ψj 〉 − 〈ψk|τ∞|ψj 〉| → 0. (53)

This tells us that individual matrix elements converge toward
a fixed value and we give a proof in Appendix E. This
result informs us of the evolution of the filtered object
τN = PρNP/tr(PρNP ). However, we really want to know
about the physical state ρN , and this is the problem we turn to
in the next section.
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VI. CONVERGENCE OF PHYSICAL STATE

Knowing the filtered object obeys a central limit theorem,
we can draw conclusions on the evolution of the actual
physical state. Recall that earlier we demanded, without loss
of generality, that P was an invertible matrix. This assumption
allows us to conclude that there exists a unique operator,

ρN ∝ P −1τNP −1. (54)

Concerning these states we shall show the following.
Theorem 4 (State convergence). Consider a central limit

sequence {τN } with limiting Gaussian operator τ∞ and
covariance matrix �τ . Denote γ as the covariance matrix of the
CJ state [see Eq. (14)] isomorphic to the channel P , such that
P(ρ) = PρP for some Gaussian P . If the covariance matrix

�ρ∞ = γ T
AB(γAA − �τ∞)−1γAB − γBB (55)

exists and is physical, then ρ∞ ∝ P −1τ∞P −1 exists and is a
Gaussian state with covariance matrix �ρ∞ . Furthermore, if
{|ψk〉,|ψj 〉} are eigenvectors of P , then the sequence {ρN } in
the large N limit satisfies∣∣∣∣ 〈ψk|ρN |ψj 〉

tr(PρNP )
− 〈ψk|ρ∞|ψj 〉

tr(Pρ∞P )

∣∣∣∣ → 0. (56)

Above we define a limiting physical state and show a weak
form of convergence of the density matrix elements up to
a normalization factor. It is worth noting that most existing
results in the literature only go this far, though we will be
interested in going further.

Corollary 2 (Fidelity convergence). In addition to Theorem
4, if also in the large N limit we have tr(PρNP ) → tr(Pρ∞P ),
then also

F (ρN,ρ∞) → 1, (57)

where F is the fidelity between its arguments.
Let us prove this straightforward corollary. If tr(PρNP )

converges to tr(Pρ∞P ), then we have that for increasing N ,

|〈ψk|ρN |ψj 〉 − 〈ψk|ρ∞|ψj 〉| → 0. (58)

Furthermore, it is well known that for physical states elemen-
twise convergence of the density matrix entails convergence
in terms of fidelity and other measures of similarity such as
trace norm distance [52]. However, the corollary rests upon an
additional key assumption that is the focus of the next section.

To prove our state convergence theorem we first find �τ∞
in terms of �ρ∞ , under the assumption that ρ∞ is Gaussian.
Since P is invertible, there exists a unique physical state,
defined by Pρ∞P ∝ τ∞. In light of this uniqueness, the
Gaussianity of ρ∞ is assured provided that a Gaussian solution
to Pρ∞P ∝ τ∞ exists. The operators are related by a CP map,
A 	→ P(A) = PAP with Gaussian P , and so we can apply
the results of Refs. [4–6] on Gaussian channels and the CJ
isomorphism (reviewed earlier). This tells us that for channel
P with the Gaussian CJ state acting on a Gaussian input state,
the covariance matrices are related such that

�τ∞ = γAA − γAB(γBB + �ρ∞ )−1γ T
AB, (59)

where γ is as defined in Eq. (14). To reach Eq. (55) we simply
rearrange the above expression for �ρ∞ .

Furthermore, denoting {|ψj 〉} as the eigenvectors of P

with eigenvalue λj , we can apply Theorem 3 with respect
to {|ψj 〉,|ψk〉}. Consequently, for large enough N ,∣∣∣∣λjλk〈ψk|ρN |ψj 〉

tr(PρNP )
− λjλk〈ψk|ρ∞|ψj 〉

tr(Pρ∞P )

∣∣∣∣ → 0. (60)

After canceling the λjλk factors we have proven Theorem 4.

A. Convergence in fidelity

In the previous section we made very general, but weak,
predictions on the evolution of the physical state. In order
to deduce stronger conclusions, as captured by Corollary 2,
we need that tr(PρNP ) converges to the value tr(Pρ∞P ).
Whether our protocols work correctly rests on the validity of
this assumption. The assumption appears fairly innocuous but
is actually quite subtle, and surprisingly, instances exist where
it fails. We remedy the neglect of this important assumption.

Some sufficient conditions have been found for this assump-
tion [44]. We strengthen these results, providing the basis for
studies in subsequent sections. Our result makes use of the
idea of a reference state that we first define.

Definition 2 (Reference state). Consider an operator τ and
a Gaussian filter 	 ∝ exp(−∑

j βj b̂
†
j b̂j ), where b̂j = V âjV

†

for some Gaussian unitary V . If τref is a Gaussian state,
we write τ �	 τref if both of the following are satisfied:
(i) |tr(H (k)τ )| � |tr(H (k)τref)| and (ii) |tr(H (k)τref)| =
tr(H (k)τref) for all moments H (k) composed of finite products
of {b̂†j ,b̂j }. When τ �	 τref we say τref is a reference state for
τ with respect to 	.

The concept is especially useful when considering central
limit sequences because of the following.

Lemma 1 (Persistence of reference state). Consider a central
limit sequence {τN } and a Gaussian filter 	. If there exists a
τj ∈ {τN } and Gaussian τref such that τj �	 τref , then for all
N � j we have τN �	 τref .

That the reference state remains good for all N can be
proven iteratively. For any kth moment,

tr(H (k)τN+1) = tr[U †(1l ⊗ H (k))U (τN ⊗ τ1)]. (61)

The conjugation of H (k) by U gives a sum of 2k terms, each
a product of {b̂†j ,b̂j } operators. We label each term by x, with

it having the form H
(k−jx )
x ⊗ H

(jx )
x for some integer jx that

depends on x. In particular, for every j the binomial “k choose
j” counts the multiplicity of x values for which jx = j . In
this notation

tr(H (k)τN+1) =
∑

x

Cx tr
[(

H (k−jx )
x ⊗ Hjx

x

)
(τN ⊗ τ1)

]
=

∑
x

Cx tr
(
H (k−jx )

x τN

)
tr
(
H (jx )

x τ1
)
,

where Cx = T
(k−jx )/2
N R

jx/2
N . Assuming that the properties of

reference states hold for τN , we have for τN that

|tr(H (k)τN+1)| �
∑

x

Cx

∣∣tr(H (k−jx )
x τN )

∣∣∣∣tr(H (jx )
x τ1

)∣∣
�

∑
x

Cx tr
(
H (k−jx )

x τref
)
tr
(
H (jx )

x τref
)
.
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Next we recall that Gaussian states are invariant under the
beam-splitter unitary U (τref ⊗ τref)U † = τref ⊗ τref , as was
shown in Appendix A. Being invariant under beam splitters,
Gaussian states must also be fixed points of the protocol and
since τref is Gaussian we infer

tr(H (k)τref) =
∑

x

Cx tr
(
H (k−jx )

x τref
)
tr
(
H (jx )

x τref
)
. (62)

Using this invariance and applying it to the problem at hand
we conclude

|tr(H (k)τN+1)| � tr(H (k)τref). (63)

This proves, as claimed earlier, that when a reference state has
the desired properties with respect to some τj , it automatically
follows for all τN�j . The concept of a reference state is
fundamental to the following result.

Theorem 5 (Convergence in fidelity). Consider a central
limit sequence {τN } and filter 	. If there exists a τj ∈ {τN }
and Gaussian τref such that τj �	 τref and tr(	−1τref) < ∞,
then

tr(	ρN ) → tr(	ρ∞), (64)

where ρN = P −1τNP −1/tr(P −1τNP −1). Furthermore, as N

increases

F (ρN,ρ∞) → 1. (65)

This tells us that, assuming a suitable reference exists, the
convergence behavior of the operators τN is inherited by the
physical states ρN . In Ref. [44] a similar result for the case
τref = τ∞ was shown. Although this is useful in some cases,
often τ∞ will not always satisfy the conditions for a reference
state and so this result allows us to use another operator as a
proxy.

Our approach to the proof is to find tr(	ρN ) by calculating
the expectation value of τN with respect to 	−1. These
quantities are related by

tr(	−1τN ) = tr(		−1ρN )

tr(	ρN )
= 1

tr(	ρN )
. (66)

The Gaussian filter can always be written as the exponential
of some Hamiltonian

H	 =
∑

j

βjV â
†
j âjV

†, (67)

such that 	 = exp(−H	), where H	 is Hermitian and
quadratic in annihilation/creation operators. The inverse filter
is then 	−1 = exp(+H	) and

tr(	−1τN ) = tr

( ∞∑
k=0

Hk
	

k!
τN

)
. (68)

Each term is a sum of moments of degree 2k so it is tempting
to think that Theorem 2 can be directly applied. However, the
whole sum has infinitely many terms so Theorem 2 is not
applicable. Each tr(Hk

	τref) is positive and, by assumption, the
infinite sum gives a finite value. It follows that for any ε > 0
we can pick an integer kc such that the truncation satisfies∣∣∣∣∣∣tr

⎛
⎝ ∞∑

k=kc+1

Hk
	

k!
τref

⎞
⎠
∣∣∣∣∣∣ < ε, (69)

for the reference state τref . Furthermore, using this kc, we can
partition the summation for τN such that

tr(	−1τN ) = tr

(
kc∑

k=0

Hk
	

k!
τN

)
+ tr

⎛
⎝ ∞∑

k=kc+1

Hk
	

k!
τN

⎞
⎠ . (70)

Now, the first term is a finite sum and so the results of
Theorem 2 do apply to this portion of the sum. Hence, for
sufficiently large N

|tr[	−1(τN − ρ∞)]| � ε +
∣∣∣∣∣∣tr

⎛
⎝ ∞∑

k=kc+1

Hk
	

k!
(τN − τ∞)

⎞
⎠
∣∣∣∣∣∣ ,

� ε + 2

∣∣∣∣∣∣tr
⎛
⎝ ∞∑

k=kc+1

Hk
	

k!
τref

⎞
⎠
∣∣∣∣∣∣ , (71)

where in the last line we have used the properties of a reference
state. Combining this with (69) we deduce that for large enough
N ,

|tr[	−1(τN − ρ∞)]| � 3ε. (72)

By taking longer truncations kc and larger N , the value of
ε can be made arbitrarily small. Therefore, we have that for
increasing N ,

tr(	−1τN ) → tr(	−1ρ∞). (73)

Consequently, tr(	ρN ) approaches tr(	ρ∞) and the fidelity
between these states approaches unity.

These techniques, in particular the use of reference states,
give us a handle on this difficult part of the analysis. The central
limit theorems ensure that the filtered operators converge
to a Gaussian. However, alone, the central limit theorems
provide no guarantees on the behavior of expectation values for
unnormalizable operations like 	−1. Indeed, it is easy to find
central limit sequences for which tr(	−1τN ) diverges with N .
In such pathological examples, the physical states ρN would
also diverge with ever increasing energy. However, in light of
the arguments presented, when a suitable reference state exists
these pathologies cannot occur.

The limiting operator τ∞ may sometimes be chosen as a
reference state, but in some cases it is unsuitable. Now we will
discuss a few facts that simplify the task of finding a suitable
reference state. First, we note that if

|tr(H (k)τref)| = tr(H (k)τref) (74)

holds for all second moments, then it must hold for all higher
moments also. By Wick’s theorem (see Appendix D) the
higher moments for Gaussian states are simply a positive
polynomial in second moments. Consequently, positivity
of higher moments is inherited from positivity of second
moments, which simplifies the search for appropriate reference
states.

For single-mode states there is one very simple class of
potential reference states. Consider the pure squeezed states

|ψR〉 =
∞∑

n=0

λn|2n〉, (75)

where 0 < λ < 1 and |λ| = λ. Calculating 〈ψR|â†â|ψR〉 and
〈ψR|ââ|ψR〉 we find they are real, positive, and increasing
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with λ. These form a promising class of single-mode reference
states, as for any τ1 and any even moment H (k) we can find a
large enough λ such that |tr(H (k)τ1)| < tr(H (k)τref). However,
Theorem 5 also requires that tr(	−1τref) < ∞, but there will
be a critical value of λ at which this expectation value diverges.
For many single-mode central limit sequences there will exist
a choice of λ that satisfies both these requirements, though
some counterexamples do exist. For multimode problems,
pure squeezed or entangled states can make suitable reference
states.

Above, we focused on the even moments of the Gaussian
state. It is easy to check that all Gaussian states, with zero first
moments, have vanishing odd moments. This seems to entail
severe constraints on the odd moments of τ1. However, this
problem can be remedied by a physical procedure that is a CV
version of twirling. The concept of twirling, arising also in
entanglement distillation of finite-dimensional systems [58]
and magic state distillation [59], generates a symmetry in
the initial resource. This symmetry significantly simplifies the
analysis of a protocol’s convergence. The twirling map we
prescribe here applies, with 50/50 probability, to either the
identity or the local Gaussian unitary UT that maps âj 	→ −âj

for all j , such that

T (ρ1) = 1
2 (ρ1 + UT ρ1U

†
T ). (76)

For such a twirled state, the odd moments have zero ex-
pectation value, whereas the even moments are unchanged.
Furthermore, twirling the physical state also results in twirling
on the level of the filtered object, since

PT (ρ1)P

tr[PT (ρ1)P ]
= T (Pρ1P )

tr[T (Pρ1P )]
= T (Pρ1P )

tr[Pρ1P ]
= T (τ1). (77)

The above follows immediately from the observation that UT

commutes with P as it does not change second moments.
Another consequence of twirling preserving second moments
is that the central limit sequence evolves to the same τ∞
independently of whether we twirled or not. However, having
twirled and eliminated all odd moments makes it possible for
good reference states to exist and for Theorem 5 to hold.

Finally, we give another remark on condition (i) of the
definition of reference states. For brevity we stated that this
must hold for all products of operators {b̂†j ,b̂j }. However, we
only need to verify that the condition is valid for all normally
ordered operators. Recall that normally ordered operators
have all b̂

†
j operators to the left side of any b̂j operators, so

b̂
†
j b̂ is normally ordered but b̂j b̂

†
j is not. By using b̂j b̂

†
j =

b̂
†
j b̂j + 1 it is easy to rewrite the relevant operators—those

composed of products from the set {b̂†j ,b̂j }—as a positive
sum of normally ordered operators. Provided |tr(H (k)τ1)| �
tr(H (k)τref) for normally ordered operators, it follows that the
same holds for positive sums of normally ordered operators.
Again, this observation is useful for reducing the workload of
verifying that a purported reference state indeed meets all the
requirements.

VII. HYBRID (CONTINUOUS VARIABLE)
QUANTUM REPEATERS

Quantum repeaters are one of the main applications of
the various variants of entanglement distillation discussed
and proposed here. The aim of quantum repeaters is to
distribute entanglement, despite the presence of noise, over
large distances. There are many variants of such schemes,
though they all share the common feature of using entan-
glement swapping rounds that entangle pairs that have not
interacted in the past and distillation to reduce noise. It
is long established [60,61] that discrete variable repeater
networks can achieve distances far beyond those feasible by
direct transmission of quantum states. Despite considerable
work on CV entanglement distillation, surprisingly, it has
not been shown that CV repeater networks can outperform
direct transmission. Here, we give evidence that CV repeater
networks can outperform direct transmission, albeit under
some idealized conditions. In particular, we do not compute
rates of entanglement production as these calculations are very
computationally intensive for CV systems and so beyond our
scope.

A. Primitives

The primitives discussed and introduced here are useful in
constructing CV quantum repeater schemes. It is beyond the
scope of the present work to present a comprehensive study
of the possible repeater schemes that can be devised based on
these basic elements. Given the importance of this application,
we however sketch what parameters may be varied in variants
of such schemes.

(1) Gaussification. There are several conceivable ways of
performing Gaussification, including a recursive Gaussifier, a
temporally reordered recursive Gaussifer, a pumping Gaussi-
fier, and others. Since convergence of these protocols is fast,
and in order not to arrive at low rates, it seems advisable
to perform very few steps in each instance. The resource
requirements, in particular involving memory requirements,
are different in these schemes. The framework developed
here and in Ref. [44] allows for a trade-off between success
probability and quality of the output, when projecting onto
Gaussian states different from the vacuum.

(2) Swapping. The precise procedure of entanglement
swapping may be varied, with the original nested scheme
being only one possibility. For Gaussian states, the optimum
Gaussian entanglement swapping scheme is known [30,62]
and is used subsequently. But other swapping steps are
conceivable as well, such as mixing inputs at a symmetric
beam splitter and projecting the outputs onto certain photon
number states.

(3) Non-Gaussian operations. Given a source of Gaussian
entangled states some non-Gaussian operation will be required
prior to Gaussification, which is said to de-Gaussify the initial
state. There are many possible ways to perform non-Gaussian
operations in the scheme, such as in particular, only at the
beginning, or also in later steps of the protocol. Also, several
kinds of non-Gaussian steps have been considered in the
literature so far. This includes (i) a mixing of the signal
at a beam splitter with a single photon state, followed by
a measurement at one of the output ports [7,8]. We will
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refer to this step as single-photon replacement since a single
photon is both added and removed. (ii) One can think of
photon subtraction schemes, again leading to non-Gaussian
states [8,11,14–17]. (iii) Ref. [11] introduces a modified non-
Gaussian operation that is experimentally more challenging,
but suggests better purification.

(4) Non-Gaussian inputs. In order to arrive at reasonable
success probabilities, it may also be advantageous to make
use of non-Gaussian input states that have higher photon
numbers suppressed by their very preparation mechanism. For
example, using entangled pairs generated from quantum dots
in bi-photon cascades (see, e.g., Ref. [22]).

These parameters can be altered in benchmarking the func-
tioning of such protocols, along the lines as has recently been
done for discrete-variable quantum repeater schemes [63].
Needless to say, in any such effort, not only the losses in
transmission have to be taken into account, but also the impact
of imperfect swappings and Gaussification as well as issues of
mode matching. Symmetric entanglement distillation schemes
may also be favorable compared to asymmetric schemes [64].

B. Our repeater network

Here, we introduce a concrete class of quantum repeaters
that are analyzed in the next section. In these protocols,
any covariance matrix of any two-mode Gaussian state ρ

encountered at any step is of the form

�ρ =

⎛
⎜⎜⎜⎝

C 0 S 0

0 C 0 −S

S 0 C 0

0 −S 0 C

⎞
⎟⎟⎟⎠ , (78)

where C,S � 0 with C2 � 1 + S2. For a pure two-mode
squeezed state C2 = 1 + S2, this equality becomes an in-
equality in the case of mixed Gaussian states. The EPR
uncertainty [65], which for a Gaussian state with a covariance
matrix as in Eq. (78), takes the simple form

�(ρ) = C − S. (79)

Rates in CV key distribution schemes will, in particular, relate
to the above quantity. Indeed, a Gaussian state ρ with a
covariance matrix of the above form is entangled if and only
if �(ρ) < 1 (the implication still being valid in one direction
for non-Gaussian states).

The numerics presented here are based on the following
CV repeater protocol (also illustrated in Fig. 3):

(1) Each of the m = 2k sources repeatedly produce many
copies of a pure two-mode squeezed state (squeezing parame-
ter r).

(2) Each half of every entangled pair is transmitted a
distance l to a repeater node, and so becomes noisy due to
attenuation.

(3) Photon replacement is used to probabilistically de-
Gaussify.

(4) The de-Gaussified states are now iteratively Gaussified.
(5) The Gaussified states are swapped k times until an

entangled state is shared across the full distance L = 2ml =
2k+1l.

L=2mlTotal distance

2l

l
m such sources of two mode 
squeezed states. Here we
illustrate with m=4.

Degaussify

Gaussify

Swap

Swap

FIG. 3. (Color online) A schematic of the CV repeater network
considered here. Sources are assumed to produce a pure two-mode
squeezed state of some chosen squeezing. Channels are predomi-
nately affected by attenuation, but also a small amount of room-
temperature thermal noise. De-Gaussification is performed by photon
replacement. Gaussification is performed as described here and in
previous work using measurements projecting onto the vacuum,
using many copies of the de-Gaussified state and asymptotically
approaching a Gaussian state. Entanglement swapping uses deter-
ministic optimal continuous swapping protocol.

We require that the first step produces pure two-mode
squeezed states of the form of Eq. (78). We set C = cosh(2r)
and S = sinh(2r) and call r > 0 the squeezing parameter, for
which we consider a range of possible values.

After the second step, the entangled pairs suffer noise from
transmission over a lossy channel, becoming mixed states prior
to distillation. For photons traveling in optical fiber the domi-
nant noise source is attenuation through absorption, scattering,
and mode mismatching. Indeed, attenuation is so dominant
that previous analysis of CV distillation protocols has focused
on pure attenuation noise channels. A solely attenuating
channel will never completly eliminate the entanglement of
a transmitted two-mode squeezed state. We consider Gaussian
channels with a small contribution of additional noise, on top
of attenuation, such that covariance matrices evolve as

γ 	→ e−l/ lattγ + (1 + 2nth)(1 − e−l/ latt )1, (80)

where l is is the distance (herein all distances in kilometers)
traveled by each mode and latt is the attenuation length of
the fiber optic. In the infinite distance limit the state becomes
thermal with an average photon number nth. Applying such
a noise model to the pure Gaussian state of Eq. (78) gives a
mixed state of a similar form where

C = e−l/ latt cosh(2r) + (1 + 2nth)(1 − e−l/ latt ),
(81)

S = e−l/ latt sinh(2r).

Herein we take latt = 22 km as this is the state of the art for
current fiber optic cable. For a pure attenuation channel nth =
0, but we take nth = 10−8 as this corresponds to the thermal
photon occupation at room temperature. The interesting fea-
ture of our analysis is that this modest additional noise source
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FIG. 4. (Color online) The maximum attainable distance L for a range of initial squeezing r for which entanglement can be distributed.
In plot (i) noise arises wholly from transmission between repeater stations, whereas in plot (ii) we incur an additional 50% attenuation within
each repeater station (see text for more details). Regions are shown for direct transmission and CV quantum repeater networks dividing the
distance up into m intervals. Some noteworthy terrestrial scales are shown at the top.

is sufficient to put a hard cap on the distance at which various
protocols can propagate entanglement. Assuming an initially
pure two-mode squeezed state with squeezing parameter r , the
maximum distance possible by direct transmission before the
state is separable is easily found to be

lmax(r) = 2latt ln

(
1 + 2nth − cosh(2r) + sinh(2r)

2nth

)
.

This increases with r approaching the limiting value

lim
r→∞ lmax(r) = 2latt ln

(
1 + 1

2nth

)
, (82)

which for our chosen parameters evaluates to 780 km. Re-
cent continuous-variable experiments have achieved quantum
cryptography, directly and without the aid of repeaters, at a
distance of 80 km [66]. Our upper bound is of roughly the
same order of magnitude, but larger as we take an optimistic
noise model. We present results on two variants on the noise
model. Analysis (i), as presented in Fig. 4(i), assumes that
transmission noise dominates all other noise sources. Analysis
(ii), as presented in Fig. 4(ii), is more pessimistic and assumes
that an additional 50% photon loss occurs within the repeater
station. This additional loss equates to over 15 km of optical
fiber, but can also be attributed to other effects such as mode
mismatching and detector inefficiencies.

On the third step of our repeater protocol we de-Gaussify
by using symmetric photon replacement. The process begins
with mixing a mode of the entangled pair on beam splitter
of transmittivity η2 ∈ [0,1], where the second input mode
contains a single photon. Next, the reflected signal mode is
measured with a single photon resolving detector and we
postselect on seeing a single photon. Such de-Gaussification
procedures have been extensively studied [7,8,64] so we shall
not repeat a full analysis here. However, it is informative to

introduce the variable

ε(ρ) = 〈1,0|ρ|1,0〉
〈1,1|ρ|0,0〉 , (83)

which is meaningful because it is unchanged by photon
replacement, or indeed any operation with Kraus operators
diagonal in the Fock basis. In particular, for a symmetric
Gaussian state of the form (78) we find

ε(ρ) = C2 − S2 − 1

2S
. (84)

This variable is of interest as it cannot be increased either by
Gaussification [67] or photon replacement. Indeed, ε remains
unchanged by any local de-Gaussifying procedure resulting in
Kraus operators diagonal in the Fock basis.

In a variation of the argument presented in Ref. [64] to
accommodate for thermal noise, one obtains that the net effect
of de-Gaussification and subsequent Gaussification, using P =
|0,0〉〈0,0|, is that the state evolves to a Gaussian with

C = �2(1 − ε2) + 1

(1 − ε�)2 − �2
, S = 2�

(1 − ε�)2 − �2
, (85)

where ε depends on ρ after transmission through the noise
channel and � can be tuned to any value in the interval
0 < � < (1 + ε)−1 by suitable choice of the beam-splitter
transmittivity used in de-Gaussification. Larger values of �

provide more entanglement in the final state, and we have
numerically found that larger values also produce repeater
networks capable of reaching larger distances. However, larger
values of � also significantly reduce the success probability of
de-Gaussification. Herein we assume that � = 0.99/(1 + ε),
as any further increase results in only a negligible increase in
maximum repeater distance.

Having distributed entanglement and distilled at repeater
stations, in the last step we perform swapping operations
to generate entanglement between the most distant re-
peater nodes. In order to describe the optimum Gaussian
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entanglement swapping [30,62] consider the function g :
R2 → R2, defined as

g(x,y) =
(

x − y2

2x
,
y2

2x

)
. (86)

Indeed, the covariance matrix before of the form (78) with
C,S � 0 is mapped onto one of the same form with

(C ′,S ′) = g(C,S). (87)

If 2l is the distance between the repeater stations, such a
scheme would distribute an entangled state over a physical
distance of l2(k+1) for k swaps. As such repeater networks are
typically divided into m = 2k intervals for some integer k. This
results in a mapping gk .

C. Maximum distance of repeater networks

We now discuss the maximum distance that can be reached
in the repeater scheme outlined in the previous section. We say
a scheme achieves a distance L whenever it produces an entan-
gled state, as verified by the Duan criteria �(ρ) < 1 between
the distant repeater nodes. These results are summarized by
Fig. 4, where we show the achievable distances for different
numbers of repeater stations and a range of initial squeezing
parameters. For direct transmission—where no actual repeater
techniques are exploited—we find performance is best in the
large squeezing regime. However, we see that by using more
repeater stations, and hence more intensive distillation, greater
distances may be achieved. This provides the first evidence
that CV techniques may achieve distances of a global scale,
whereas direct transmission is incapable of achieving relatively
short distances, such as Berlin to London. Comparing analyses
(i) and (ii), the additional noise of the latter model does
slightly reduce the maximum distance, but the decrease is
very small. We also see that using more repeater stations
typically requires a smaller initial squeezing, and this effect
is more pronounced in analysis (ii) for short distances. This
is consistent with observations made in Ref. [64] where they
observed that distillation was more effective when combined
with smaller initial squeezing. A possible explanation for this
feature is that the more squeezed the initial state the more
mixed the final state after suffering photon loss. Furthermore,
the Gaussification process, while increasing entanglement,
does not actually increase the purity, so limiting the impact
of photon loss on purity is the key parameter to be optimized.

These results can be contrasted with those of Ref. [62].
Its authors compared the performance of direct transmission
to the use of entanglement swapping, though without the
benefits of any entanglement distillation, and found direct
transmission to be preferable. Our noise model and figure
of merit differ from those of Ref. [62], but our own numerics
also found that entanglement swapping without distillation
always achieves significantly inferior distances. Such behavior
is a unique feature of CV protocols as the discrete variable
protocol of Ref. [61] shows that swapping, albeit with some
postselection, can be beneficial. We also considered some other
variants of our repeater network. For instance, we considered
several nested repeater schemes, where each entanglement
swap is interleaved with distillation. Again, we found that these
alternative protocols achieved shorter maximum distances

compared to the protocol explicitly described in the previous
section.

It seems that the results in Fig. 3, at least using the specific
forms of Gaussification and de-Gaussification considered
here, show the upper bounds of what is feasible with current
technology. However, this does leave open the possibility of
using alternative de-Gaussification procedures, such as that
proposed in Ref. [11], or suitable deterministically prepared
non-Gaussian states to start with. As commented earlier,
the parameter ε is nonincreasing through our distillation
techniques, though those techniques can vary this parameter
potentially leading to an increase of the maximum attainable
distance. However, to date such proposals are even more tech-
nologically challenging than replacement of a single photon.
On the other hand, while CV systems pay a high price for
de-Gaussification they can produce two-mode squeezed states
at intrinsically higher rates than single-photon sources. They
also benefit from the higher efficiency of homodyne detectors.
In future work, a careful analysis of rates will be made,
including also a comparison with common discrete variable
schemes that weighs these relative merits.

VIII. SUMMARY AND CONCLUSION

In this work, we have further introduced and elaborated
upon a formalism general enough to capture all of the known
schemes of entanglement distillation leading to Gaussian
quantum states, as well as to construct a plethora of new
ones. The flexibility of the approach allows trading success
probabilities against the quality of the resulting entangled
states, or to realistically take memory requirements into
account. As such, the formalism presented here provides
a natural starting point for comprehensive comparisons of
different entanglement distillation schemes in the continuous-
variable setting. At the root of the formalism is a novel kind of
noncommutative central limit theorem that is laid out in great
detail. We also discuss the implications of the findings for
devising novel schemes for quantum repeaters and highlight
both potential and limitations. It is the hope that the general
framework developed here gives a basis for assessing to
what extent experimental large distance continuous-variable
quantum communication is truly feasible.
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APPENDIX A: CONJUGATION LEMMA

Here, we show that for any Gaussian operator P with zero
first moments, we have U (P ⊗ P )U † = (P ⊗ P ), where U

is a multilateral beam-splitter transformation. The Gaussian
operator can be expressed as P ⊗ P = k exp [−(HA + HB)]
and

HX=A,B =
∑
i,j

hi,j Q̂XiQ̂Xj , (A1)
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for some hi,j and so

HA + HB =
∑
i,j

hi,j (Q̂AiQ̂Aj + Q̂BiQ̂Bj ). (A2)

The beam splitters cause

U (P ⊗ P )U † = k exp[−U (HA + HB)U †], (A3)

and so we simply need to show that

U (Q̂AiQ̂Aj + Q̂BiQ̂Bj )U † = Q̂AiQ̂Aj + Q̂BiQ̂Bj . (A4)

Using the shorthand Ji,j for the right-hand side and conjugat-
ing the quadrature operators with the unitary we have

UJi,jU
† = (

√
T Q̂Bi +

√
RQ̂Ai)(

√
T Q̂Bj +

√
RQ̂Aj )

+(
√

T Q̂Bi −
√

RQ̂Ai)(
√

T Q̂Bj −
√

RQ̂Aj ).

Expanding out, we find the cross terms (Q̂AiQ̂Bj and Q̂BiQ̂Aj )
cancel leaving only

UJi,jU
† = (R + T )(Q̂AiQ̂Aj + Q̂BiQ̂Bj ). (A5)

Recalling R + T = 1, we have UJi,jU
† = Ji,j , which in turn

entails the result U (P ⊗ P )U † = (P ⊗ P ).

APPENDIX B: AN INEQUALITY

For any complex a and b satisfying |a| � 1 and |b| � 1 and
any integer N , we have |aN − bN | � N |a − b|. For N = 1 it
is trivial and for higher N it is proven iteratively,

|aN − bN | = |(a − b)aN−1 + b(aN−1 − bN−1)|
� |a − b| + |aN−1 − bN−1|, (B1)

where we have used the triangle inequality and |aN−1| � 1
and |b| � 1. Each unit increase in N contributes at most an
additional |a − b|, and so we have the desired result.

APPENDIX C: UNIFORM CONVERGENCE

In the main text we prove Theorem 1 for an individual point
of phase space. Here, we extend it to a uniform result over balls
of finite radius. For any finite set of pointsRfinite = {r1,r2, . . . }
convergence is uniform over that set as it is bounded by the
point that converges slowest. For any small distance δ we can
find a Rfinite such that any point inside the ball is less than
distance δ from some point in the finite set. All χ ∈ {χτN

} are
continuous and within the ball there is a maximum possible
gradient. Hence, for every point in the ball we can approximate
the characteristic function by a nearby point in the finite set
Refinite and uniform convergence follows.

APPENDIX D: MOMENTS CONVERGENCE

Here, we present a proof of Theorem 2 that follows the
combinatorial argument of Refs. [56,57]. Our proof is not
as general, but benefits from requiring less mathematical

background. We consider a single kth moment H (k) = ∏
j Hj ,

tr(H (k)τN ) = tr

⎡
⎣
⎛
⎝∏

j

Hj

⎞
⎠Uτ⊗N

1 U †

⎤
⎦

= 1

Nk/2
tr

⎡
⎣∏

j

( ∑
x=1,...,N

Hj,x

)
τ⊗N

1

⎤
⎦ , (D1)

where Hj,x indicates the Hj operator but acting on the xth of
the N systems. We need to expand out the brackets and some
way of labeling terms. We have k different operators that can
act on N different copies. Each possibility can be represented
by a partition of k values into N bins. For example, for k = 4
and N = 5 a possible partition is B = {{1,2},{},{3},{4},{}}
with which we associate with a term H1H2 ⊗ 1 ⊗ H3 ⊗ H4 ⊗
1. In general, for a partition B = {B1,B2,B3, . . . ,BN } we
associate an operator

HB = ⊗N
x=1HBx

, (D2)

where

HBx
=

∏
j∈Bx

Hj , (D3)

with the product over j ∈ Bx always taken in order of smallest
to largest value of j . In this notation

tr(HBτN ) = 1

Nk/2
tr
[(⊗N

x=1HBx

)
τ⊗N

1

]

= 1

Nk/2

N∏
x=1

tr
(
HBx

τ1
)
. (D4)

The next key step of the proof is a smart way of collecting
up terms with similar properties. We define L(B) to be the
number of nonempty bins in B and then collect terms with the
same value.

tr(H (k)τN ) = 1

Nk/2

∑
b

∑
L(B)=b

tr
[
HBτ⊗N

1

]

= 1

Nk/2

∑
b

∑
L(B)=b

N∏
x=1

tr
(
HBx

τ1
)
. (D5)

For any B there are N !/ [N − L(B)]! = N (N − 1) · · ·
[N − L(B) + 1] partitions that differ by only a permutation
of whole bins. For instance, B = {{1,2},{},{3},{4},{}} and
B ′ = {{},{3},{1,2},{4},{}} differ only by a permutation of
whole bins, and so give the same expectation value. We can
also choose a canonical setB such that for every B there exists a
unique B ′ ∈ B such that B and B ′ differ only by a permutation
of whole bins. By summing over just the canonical set we have

tr(H (k)τN ) =
∑

b

N !

Nk/2(N − b)!

∑
L(B)=b;

B∈B

N∏
x=1

tr(HBx
τ1). (D6)

We proceed by showing that terms with b < k/2 and b > k/2
are either zero or decreasing with N , and so only the b = k/2
terms persist in the large N limit.
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When L(B) > k/2 there must exist at least one bin Bx that
contains only one element, so HBx

= Hj for some x and j . This
factor contributes tr(Hjτ1) to the product, but by assumption
tr(Hjτ1) = 0 and so all such terms vanish. As for the case with
L(B) < k/2, we observe that as N increases,

N !

Nk/2 [N − L(B)]!
→ 0. (D7)

Furthermore, for all N > k the factor

∑
L(B)=b;

B∈B

N∏
x=1

tr
(
HBx

τ1
)

(D8)

is constant with N as the number of canonical partitions stops
increasing. Therefore, for any b < k/2 the product of these
terms vanishes with N .

This leaves only b = k/2 terms as potentially nonvanishing.
Note that, if k is an odd number there are no suitable integer b

values and so all odd moments will vanish with increasing N .
Assuming k is even, the only nonvanishing partitions consist
of pairings, such that each bin contains either two elements or
none. That is, nonvanishing B have HBx

= HjHk or HBx
= 1

for all x. Putting these results together we have

lim
N→∞

tr(Q̂kτN ) =
(

lim
N→∞

N !

Nk/2(N − k/2)!

)

×
∑

B∈Bpair

tr
(
HBx

τ1
)
, (D9)

where Bpair is the set of canonical pairings. The expectation
value only depends on the second moments of τ1 and so we
can replace τ1 with the Gaussian state with the same second
moments, namely, τ∞. The combinatorial factor approaches 1
and so

lim
N→∞

tr(H (k)τN ) =
∑

B∈Bpair

tr
(
HBx

τ∞
) = tr(H (k)τ∞). (D10)

In the simple case where the moment is a product of identical
factors, so H (k) = Hk , we have

lim
N→∞

tr(HkτN ) = |Bpair|tr(H 2τ∞)k/2. (D11)

The number of canonical (unordered) pairings of k numbers
is simply |Bpair| = (k − 1)(k − 3) · · · 1, which is known as a
double factorial (k − 1)!!. Consider the above results for when
the input state is Gaussian, and so unchanging. This tells us
that the higher moments of a Gaussian state are determined
by its second moments, as captured by Eq. (D11), which is a
well-known result called Wick’s theorem.

APPENDIX E: MATRIX ELEMENT CONVERGENCE

This Appendix provides a proof of Theorem 3. We move
from statements about characteristic functions to operators
by recalling that for an operator B = |ψj 〉〈ψk| acting on an
m-mode Hilbert space we have

tr(Bτ ) = (2π )−m

∫
χB(r)χτ (r)dr. (E1)

Similar reasoning allows us to deduce that since tr(BB†) = 1
and tr(ττ †) � 1, we know

(2π )−m

∫
|χB(r)|2 = 1, (2π )−m

∫
|χϕ(r)|2 � 1. (E2)

The absolute difference in expectation values between τN and
τ∞ is

DN = |tr(BτN ) − tr(Bτ∞)|,
= 1

(2π )m

∫
χB(r)

[
χτN

(r) − χτ∞(r)
]
dr,

= 1

(2π )m

∫
χB(r)�N (r)dr, (E3)

where �N = χτN
(r) − χτ∞ (r). The proof proceeds by splitting

the integral up into two parts so DN = D′
N + D′′

N . We take D′
N

to be an integral over a large but finite ball of radius R and D′′
N

over the complement. Over the complement we have that

D′′
N = 1

(2π )m

∫
|r|>R

χB(r)�N (r)dr,

|D′′
N | � 1

(2π )m

(∫
|r|>R

|χB(r)|2dr
∫

|r|>R

|�N (r)|2dr
)1/2

,

(E4)

where we have used the Cauchy-Schwarz inequality. From
Eq. (E1) we can know

∫ |χB(r)|2 = 1 and so the integral
over |r| > R can be made arbitrarily small by increasing
R. Formally, for any ε′ > 0 we can find an R such that∫
|r|>R

|χB(r)|2 � ε′. Furthermore, Eq. (E1) entails that the in-

tegration over |�N (r)|2 must be less than 2. Hence, we deduce

|D′′
N | � (2ε′)1/2

(2π )m
, (E5)

which holds for all N . As for the integral inside radius R we
have

|D′
N | � (2π )−m

∫
|r|�R

|χB(r)�N (r)|dr. (E6)

For all characteristic functions |χB(r)| � tr(
√

B†B) and so for
B = |ψj 〉〈ψk| we have |χB(r)| � 1. Furthermore we know
that within a finite ball �N (r) vanishes uniformly, so for any
ε′ > 0 there is a Nε such that for all N > Nε′ we have

|D′
N | � (2π )−m

∫
|r|<R

ε′ dr = ε′′V
(2π )m

, (E7)

where V is the volume of the ball. Combining these results
we have, for N > Nε′ , that

|〈ψk|τN |ψj 〉 − 〈ψk|τ∞|ψj 〉| <
(2ε′)1/2 + ε′′V

(2π )m
. (E8)

Since ε′ and ε′′ can be made arbitrarily small, we have proven
Theorem 3.
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[18] T. Opatrný, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61,

032302 (2000).
[19] P. T. Cochrane, T. C. Ralph, and G. J. Milburn, Phys. Rev. A 65,

062306 (2002).
[20] S. Olivares, M. G. A. Paris, and R. Bonifacio, Phys. Rev. A 67,

032314 (2003).
[21] F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 81,

012333 (2010).
[22] R. M. Stevenson, A. J. Hudson, R. J. Young, P. Atkinson,

K. Cooper, D. A. Ritchie, and A. J. Shields, Opt. Express 15,
6507 (2007).

[23] F. Dell’Anno, S. D. Siena, and F. Illuminati, Phys. Rep. 428, 53
(2006).

[24] M. G. Genoni and M. G. A. Paris, Phys. Rev. A 82, 052341
(2010).

[25] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics
(Cambridge University Press, Cambridge, 1987).
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