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Introduction

Thesis overview

In the last twenty years DNA has become a topic of research in material science and
technology. It was in fact realized, first by Nadrian Seeman [1] [2] and later by many
other groups, that the code depending pairing of DNA polymers could be exploited to
program their self assembly into complex multi-strand structures. This field of research,
which is generally named DNA structure of nanotechnology, has been constantly grow-
ing. While at its origin the products of DNA assembly where simple geometrical shapes
(nano cubes, nano tetrahedra, DNA origami [3] and so on), the latest achievements in-
volve quite sophisticated programmable structures, including mobile nano-spiders, fu-
eled by DNA hairpins and DNA Lego, in which the coded assembly of DNA is used
to realize a toolbox of DNA Lego bricks of various size and shapes. The general phi-
losophy underlying this effort is to try to master DNA properties to obtain complex
nano-structures by spontaneous self-assembly. The aim of this field is, in principle, tech-
nological. Only in few cases applications were proposed: artificial ion channels crossing
cell membranes and drug carriers that would open when an aptamer-protein interaction
occurs. Despite the still unclear application of this technology, it is certainly true that the
assembly of DNA enables producing nano-structures having a precision and complexity
which is not achieved with any other molecular platform. Indeed, when any of these
nanoscale structures is designed, it is clear which single base of which specific strand
will end up in each position of the nano object.

In parallel to this enormous development of DNA nanotechnology, a distinct branch
of material science research has emerged in which the properties of DNA are exploited,
namely the use of DNA structures as a molecular model capable of setting the stage to
explore relevant processes of condensed matter physics. Among these the use of DNA to
explore the physics behind the formation of LC phases, and the use of DNA aggregates
as a model of low valence molecules. In this branch of research, two specific properties
of DNA are exploited. First, the mature capacity of synthesizing DNA oligomers at will
enables to produce molecular solutions with a thermodynamically relevant quantities of
identical structures. This is crucial when studying the phase behavior whose interpre-
tation is made simpler when the particles are identical. Secondly, DNA offers the pos-
sibility of modulating inter-chain interactions. One peculiar and extremely important
property of DNA is the strong temperature-dependence of hybridization interactions.
Therefore by changing both length of the DNA chains involved in the structures and the
temperature one can explore a huge range of intermolecular interactions with no ana-
logues in other molecular solutions. Besides the interaction strengths, DNA also enables
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viii Thesis overview

to build mutually interacting nano structures also controlling their lifetime [4].It is in
fact well known that the lifetime of two DNA oligomers paired in a duplex enormously
depend on the length of the complementary sequence and temperature. At room tem-
perature the lifetime of an eight-base pair duplex is of the order of milliseconds, while
the lifetime of a 12 base pair duplexes is of the order of hours. This is very well known
in biology where the selectivity and stability of the pairing with PCR primers is daily
exploited.

This thesis is part of this field of research in which open problems of condensed
matter, and specifically of soft matter physics, are reproduced in a solution of DNA
molecules. The class of problems here considered involves both polymer physics and
liquid crystal formation. The latter is also intimately related to polymerization in that
the formation of LC phases in short DNA oligomers is mediated by their aggregation
into living polymers. Indeed, polymerization and LC formation, besides sharing a basic
uniaxial symmetry, might be even more intimately connected as the formation of LC or-
dering might even be the cradle for the development of long polymeric chains obtained
by the chemical stabilization of living polymers [5]. Specifically, during my PhD re-
search activity I considered four distinct topics: aggregation and LC ordering of racemic
mixtures of B-DNA duplexes, aggregation and LC formation of achiral DNA duplexes,
living polymerization of strongly associating DNA duplexes with long complementary
overhangs, globulization transition of a long single strand of DNA. Only the first and
the last topics reached a level of maturity so to be enclosed in this final dissertation.

This thesis work is organized in five chapters.

Chapter 1: DNA, structure and interactions. The principal characteristics of DNA
are resumed as a tool to understand the following studied performed using DNA
molecules. The chapter consists of a brief overview of the the structure of a strand
and a double helix of DNA, and an explanation of the interactions that are respon-
sible of the formation of the double helix.

Chapter 2: Liquid crystal ordering of B-DNA duplexes: extracting the interac-
tions from the phase boundaries. The second chapter is about the study of the
coil to globule transition of polymers made through measuring the dimension of
a long single strand of DNA in a dilute regime as a function the temperature. The
coil to globule transition was studied since the early stages of polymer science and
is still now a topic of research because the properties of the polymer are found to
influence the transition process in a complex and still largely undetermined way.
In particular, we chose a single strand of DNA as good model of heteropolymers
because segments of the strands that are composed by consecutive complementary
bases interact to form a segment of double helix. The number of bases involved
and the distance along the chain of such segments give rise to different interaction
strengths. We used two techniques, Dynamic Light Scattering and Fluorescence
Correlation Spectroscopy, and with both we observed a transition of the single
chain from a smallest to a largest dimension in a sharp temperature range. We also
propose an interpretation of the thermodynamics of the possible interactions that
could happen inside a chain.

Chapter 3: Liquid crystals An brief introduction to the properties and kind of liq-
uid crystalline (LC) phases is explained. Those phases are usually observed in a
assemblies of elongated molecules and yield a partial ordering of the molecules.
The conditions necessary to the formation of LC phases for elongated molecules
were exhaustively studied by Onsager, that showed that the molecules should ex-
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hibit enough shape anisotropy to form LC phases. Recently a LC ordering was
found in solutions of molecules that does not possess enough shape anisotropy
as Onsager theory predicted. Examples of such molecules are the chromonics or
small duplexes of DNA, made of less than 20 base pairs. It was found that in this
case the phenomenon that drives the formation of LC phases is the living polymer-
ization: for example the ends of DNA duplexes are hydrophobic and as a conse-
quence when the duplexes are diluted in aqueous solutions the ends of different
molecules interact via stacking forces to form long linear aggregates that minimize
the exposition of hydrophobic parts towards water.

Chapter 4: Liquid crystal ordering of B-DNA duplexes: extracting the interac-
tions from the phase boundaries. This chapter is about the study of the stacking
interaction between blunt ended DNA duplexes. As previously anticipated, the
stacking interaction is responsible for the formation of the LC phases of short DNA
duplexes, but up to now there is no experimental measurement of its strength be-
tween two base pairs at the terminals of two distinct duplexes. Some models were
proposed to account for the onset of ordering in such systems; we referred to one
simple model developed by De Michele et al. that allows an analytical calculation
of the principal properties of the nematic phase. In this model the duplexes were
represented by simple geometrical forms that interact through a sticky potential
at the ends. Another approach was followed by Maffeo et al. to investigate the
basis of the LC ordering. They performed atomistic simulations to extract the po-
tential mean force between the ends of two duplexes as a function of their distance
and relative orientation. We propose a method to give an estimate of the strength
and the profile of the stacking interaction between phase pairs at the terminals of
two different duplexes. Such method is based on two steps. The first consists on
the characterization of a nematic phase observed in solutions of short duplexes.
As a second step we compared the measured quantities to the prediction obtained
by the combination of the coarse grained model with the atomistic simulations, to
extract new information on the stacking interaction between independent helices.

Chapter 5: Experimental methods. In this chapter we explained the experimen-
tal techniques used to perform the measurements for the characterization of the
nematic phase of short DNA duplexes. We mainly used microscopy based tech-
niques.





CHAPTER 1

DNA, structure and interactions

The deoxyribonucleic acid (DNA) is a polymer composed by monomers that are called
nucleotides. Nucleotides consist of about 20 atoms, that form the deoxyribose (a sugar),

Figure 1.1: Sketch of a DNA nucleotide with the adenine as the nucleobase.[6]

the phosphate group and the nucleobase, like shown in Fig.1.1. Usually the carbon atoms
of the sugar and phosphate moieties are indicated by numbers from 1 to 5. DNA is
formed by four kind of nucleobases, called adenine, thymine, guanosine and cytosine.
Adenine and guanosine are called purines and are bigger than the others, that are called
pirimidines. Fig.1.2 shows the differences in composition and dimension between the
four nucleobases.

The phosphodiesteric bond between the phosphate group and the sugar of the con-
secutive nucleotide (see Fig.1.3) creates a chain where the sugar is bonded to two phos-
phate groups at both 5′ and 3′ ends forming a long single-stranded DNA chain. Phos-
phate group and deoxyribose are found in all the DNA chains, that differentiates one
from the other for the sequence of the nucleobases. As a consequence to characterize a
DNA molecule is sufficient to list the sequence of nucleobases from the carbon atom in
position 5′ of the first sugar up to the nucleobases bond to the 3′ atom of the last sugar.
If two single stranded DNA chains are close they bind together forming a double helix
of double-stranded DNA (dsDNA). They dispose in an antiparallel way: the 5′ carbon
atom of the first chain is near to the 3′ of the second because this is the only way to bind
two nucleobases. The double helix structure typical of dsDNA is shown in Fig.1.4

1



2 1.1 DNA double helix

Figure 1.2: Different kind of nucleobases found in DNA and RNA molecules. Uracyle substitutes
thymine in RNA molecules.

Figure 1.3: Phosphodiesteric bond between two nucleotides. Nucleobases, that should be found
on the right side of sugar, are not shown.

1.1 DNA double helix

In physiological conditions two complementary sequences of DNA form a double helix,
that has about 10−12 couples of bases per turn and is characterized by a pitch of 3−4nm
and a diameter of about 2nm. The peculiarity of the structure can change due to the
sequence of bases and the environmental conditions. In Fig.1.5 the three main structures
of dsDNA and dsRNA are shown. Typically DNA is found in a B-form and seldom in an
A-form, while RNA assumes a structure called Z-form. The helicity of the DNA structure
gives a chirality to the molecule. Moreover, all the DNA helices observed in nature
always have the same right-handed chirality.

DNA has another important property: it is a polyelectrolyte because every phosphate
group has a negative charge of −e. When dsDNA assumes the helicoidal structure also
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Figure 1.4: Sketch of a double stranded-DNA molecule

Figure 1.5: Different 3-D structures of double-stranded DNA and RNA. From left to right they are
called A-form, B-form and Z-form.

the charges arrange in a helicoidal way, that is a chiral distribution. The linear density of
charge of a double stranded DNA molecule is of about −6 e/nm. If we dissolve a DNA
double helix in a water solution with some salt concentration we observe that the pos-
itive ions from the salt dissociation (called counterions) come close to the double helix
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and provide a (partial) screening of the electric charge of the helix. The screening inten-
sity depends on the ionic strength of the solution. The distance from the helix at which
the electrostatic potential is decreased by a factor 1/e is the Debye screening length, that
is proportional to the square root of the ion concentration in the solution.

1.2 Interactions between nucleotides

The nucleobases interact through two main forces: pairing and stacking forces. The
pairing force is highly selective and allows thymine to bind with adenine and guanosine
with cytosine. Pairing interaction is highly selective because the bond that form are
hydrogen bond, like shown in Fig.1.6. Between adenine and cytosine we observe the
formation of two hydrogen bonds, while between guanosine and cytosine the interaction
is more intense because there are three bonds forming. The couples of bases that can bind
through pairing interactions are called Watson-Crick couples from the names of the first
that discovered the pairing interaction between the nucleobases.

Figure 1.6: Possible pairing interactions between the nucleobases.

DNA nucleobases are highly hydrophobic, while the molecules of the side chain,
sugars and phosphate groups, are hydrophilic. This is a factor that contributes to the
formation of the double helix, that is a structure that allows the hydrophobic parts to
be hidden from water but at the same time it leaves the hydrophilic parts close to water
molecules. Nucleobases because of their hydrophobicity try to minimize the surface in
contact with water and also to maximize the overlapping surface between them. This
kind of interaction between the bases is called stacking interaction and it has been ob-
served that its intensity depends on the overlap surface between the bases. It is generally
known that tacking interactions are less selective than the pairing ones because no pref-
erential stacking between couples of bases has been noticed up to now.

As we can see in Fig.1.7 stacking and pairing forces between the nucleobases have
a different dependence on temperature: the stacking force strongly increases when the
temperature is decreases, while the pairing force exhibits no variation with temperature
[7]. From Fig.1.7 we can deduce that at all temperatures stacking forces are more intense
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Figure 1.7: Stacking and pairing forces between various kind of nucleobases at different tempera-
tures [7].

than pairing interactions. Their intensity of the stacking force depends on the nucle-
obases involved and also on the specific structure of the DNA molecules used to investi-
gate the interactions. In chapter 4 stacking forces between DNA molecules are largely in-
vestigated. In the case of Fig.1.7 stacking interaction was investigated through the study
of a nicked double helix of DNA, i.e. a helix without one phosphodiesteric bond and so
without a stacking contribution. The pairing force was found to have a small intensity,
and even not to be a favorable interaction, because the nucleobases could in principle
form hydrogen bonds also with water. The double helix structure is then stabilized by
stacking interactions.

The phosphate group and the deoxyribose are linked with a covalent bond. The dou-
ble helix has strong bonds between molecules of the side chain and weak bonds between
the bases and this fact allows the transcription and replication processes to happen. A
DNA helix has to wind and unwind fastly to be functional. For example if we imagine
to take a the human genome from chromosomes and to unwind it we would find a 2m
long molecule. This molecule in the cell nucleus is winded around proteics groups called
nucleosomes for an average of about 150 bases around each nucleosome. Nucleosomes
than are crowded to obtain the chromosomes that are about 10µm diameter. During
transcription and replication processes the DNA molecule unwinds fastly from a very
compact structure, and it also opens regions of the helix to copy them to another strand.

If we observe the two-dimensional structure of two ideally close single strands of
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Figure 1.8: Consecutive nucleotides ideally put in the same bidimensional plane [8].

DNA, like in Fig.1.8, we notice that the spacing between the two bases is extremely larger
than their thickness, so a space of about 2, 7 Å would be available for water molecules to
enter. One way to prevent such molecules to come close to the hydrophobic bases is to
rotate the chain, like what happens for the double helix structure.

To characterized in a more precise way the double helix structure, we can notice that
to minimize the surface exposed to water the bases rotate around the helical axes. Their
position is defined through a set of three parameters, that are the twist angle, i.e. the
angle of the couple of bases around the main axis of the helix and has a value of about
35◦ for the B-form, the roll angle that is the rotational angle around the axes of the couple
of bases and the slide that describes the translation of one base from the previous one
of the same strand. For B-form the average roll angle is in between the range +20◦ and
−10◦, while the slide assumes values from the range between 3 and −2 Å. In Fig.1.9 roll,
twist and slide are shown.

Figure 1.9: Twist, slide e roll of a double helix of DNA [8]

1.3 Melting temperature

The strength of the interactions of a DNA double helix can be measured through the
melting temperature. For a double helix of DNA dissolved in a solution if the temper-
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ature is increased then the stacking forces become less and less intense until the heli-
cal structure becomes unstable and unfolds. The melting temperature Tm of a solution
of identical double strands of DNA at some ionic strength is defined as the tempera-
ture at which half of the helices are formed and half are unfolded. There are several
methods that allows to measure the melting temperature, one of these is based on the
hyperchromicity of DNA. DNA in fact exhibits a peak in the absorption spectrum for
the electromagnetic radiation at 260nm. The absorbance varies as the structure of the
molecule is changed: the double helix absorbs about a 10% radiation more than the two
single strands, so a measure of the radiation absorbed as a function of the temperature
of the solution provides an accurate estimate of the melting temperature. The melting
temperature depends on the length of the DNA strands, the specific sequence of bases,
the concentration of the DNA molecules in the solution and also on the ionic strength.
In particular the ionic strength affects much the melting temperature and so it is a key
ingredient for the stability of the double helix in solution.





CHAPTER 2

Coil to globule transition of a single stranded sequence of
DNA

The conformational space of single polymers in solution depends both on the interac-
tions between the polymer and the solvent and on the nature of the interactions between
monomers such as their specificity and cooperativity. Upon modifying the interactions
between the polymer and the solvent, the chain may undergo a transition between dif-
ferent conformational states. The coil to globule transition, which describes the trans-
formation of the chain from a swollen to a compact state, was studied since the early
stages of polymer science. Despite the numerous studies, it has remained a topic of cur-
rent research. This is because the properties of the polymer are found to influence the
transition process in a complex and still largely undetermined way.

When the solvent is good, i.e. it strongly binds with the polymer, or when the
temperature is high the polymer adopts a swollen or coiled conformation, because the
monomers interact preferentially with the solvent then with the other monomers and/or
because the entropic advantage of the swollen state is dominant. If the quality of the sol-
vent is lowered or the temperature is decreased the interactions between the monomers
become dominant over that between monomers and solvent and the polymer assumes
a more compact (globular) conformation. This notion is captured by the classical Flory
theory that describes the coil to globule transition in a highly idealized polymer that
changes its conformation while the properties of the solvent are changed. The main
success of the Flory theory is of providing the scaling behaviour of the mass vs the di-
mension of the polymer in the coil and globular conformations with a few but effective
assumptions. The Flory approach is based on an analytic expression of the free energy
FN (R) of a polymer made by N monomers in a good solvent or high temperature limit
as a function of the average end to end distance R. The end to end distance Re of a sin-
gle conformation of a chain is the distance between the positions of the first and the last
monomer Re = rN − r0 =

∑N
i=1 ri − ri−1. When averaged over all the possible confor-

mations it becomes R =
√
<
∑N
i,j=1(ri − ri−1) · (rj − rj−1) >. The Flory free energy is:

FN (R) = e0
R2

Nb2
+ e1vexc

N2

R3
+ F0 (2.1)

e0, e1 are two T-dependent constants and vexc is the excluded volume of each pair of
monomers. The free energy consists of three terms: the first term is the entropy that
accounts for the number of conformations available for a polymer with end to end dis-
tance R, the second term is the repulsive energy due to the excluded volume, while the
third term takes into account the contributions of the attractive interaction. In the Flory
approach F0 is approximated through the concentration expansion where only the the
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second virial coefficient is retained. As such this approach is intrinsically of mean field
kind.

In d dimensions the minimization of the free energy FN (R) respect to the end to end
distance gives a dimension of the chain R ∼ bNν where ν = 3

d+2 . This is the scaling
behaviour of the coil conformation. At low temperature or in bad solvents the polymer
adopts a more compact and homogeneous conformation and thus R ∼ N1/d. The tem-
perature at which the transition between the two regimes occurs is the theta temperature.
In this condition the repulsive and attractive contributions of the free energy balance. As
a consequence the polymer resembles an ideal chain. In these three regions it is possi-
ble to calculate the dimension of the chain expressed by the end to end distance, for a
dimension of the space 2 ≤ d ≤ 3:

R = bNνθφ(z) (2.2)

where b is the monomer length, N is the number of monomers in a chain, νθ = 2
d+1 ,

z = |α|Nφ and φ = d−1
d+1 . α is a parameter that express the 2-body interactions between

the monomers. It is positive when T > Tθ, null if T = Tθ and negative otherwise. Al-
though most of the original description of the θ-point was given as a function of the num-
ber of monomers and solvent quality, the experimental observations necessarily involve
constant number of monomers and variable temperature, the temperature dependence
of R is also implicit in Flory theory, as it has been well described by Giacometti.

Accordingly for polymers made by a finite number of monomers the temperature
behaviour of the size of the chain can be calculated as:

R/b = (T − Tθ)
1
d+2NνF (2.3)

when N � |T − Tθ|−1/φ and T > Tθ.

R/b = (Tθ − T )−
1
dNνc (2.4)

when N � |T − Tθ|−1/φ and T < Tθ.

R/b = Nνθ (2.5)

when N � |T − Tθ|−1/φ or T = Tθ
If N →∞ the conditions for equations 2.3 and 2.4 are always satisfied. Thus the two

regimes are contiguous and the dimension of the chain changes continuously from the
dimension typical of T < Tθ and the one of T > Tθ. At T = Tθ the theta point is found
as the singular inflection point of the function that describes the behaviour of the end to
end distance vs temperature. When N is finite the singularity characterizing the θ-point
is lost: the two regions 2.3 and 2.4 are no longer contiguous. In between there is a cross-
over transition. Around Tθ the chain satisfies 2.5 which is temperature-independent,
thus indicating that the dimension of the chain is constant and no inflection point is
found [9].

Flory theory is a very idealized model so it is not straightforward to understand to
which kind of polymers it can be applied to. It is expected and experimentally observed
that long flexible homopolymers are good Flory polymers. However as the properties
of the polymer departs from this condition Flory’s behaviour is lost. For example if the
range of the interactions between the monomers is short [10], so that one monomer does
not interact with all the other monomers at the same way, then the coil to globule tran-
sition becomes discontinuous. An analogous failure of the Flory theory is observed if
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the compact conformation that the polymer adopts at low temperatures is a crystalline
conformation with a high degree of order [11]. Indeed, as the structure of the globular
state becomes more specific, ordered and structured, the globulization process becomes
discontinuous. This appears to have an implication for heteropolymers in which the
heterogeneities imply stronger or selective interactions between specific monomers and
thus a structural globular state. A paradigmatic example is that of protein folding, typ-
ically discontinuous despite the limited chain size. In general, an understanding of the
θ-point in heterogeneous chain is currently missing.

We investigated how the properties of a heteropolymer influence the behaviour of the
coil to globule transition through the characterization of the conformational change of a
single stranded DNA (ssDNA) in solution at different temperatures and ionic strengths.

ssDNA has been recently considered as a powerful tool to investigate the polymer
dynamics and thermodynamics [12] [13] instead of the most commonly used double
stranded (dsDNA) because of its greater flexibility. ssDNA has a smaller persistence
length that dsDNA, about 0.6 nm compared to 50 nm, so even a short strand can be con-
sidered as a flexible chain. Moreover its structure is widely studied and well known, the
interactions between monomers of the chain can be predicted with the simple Watson-
Crick rules and we can easily obtain many copies of identical sequences. ssDNA can
be considered as a heteropolymer because the interactions between the monomers are
extremely specific, in fact two nucleobases can bind only if they satisfy the Watson-Crick
pairing rules. In addition, ssDNA is characterized both long and short ranged interac-
tions: the interaction between the nucleobases has a short range because it implies only
the formation of hydrogen bonds, while the electrostatic repulsion that arises from the
presence of a negative charge located on the phosphate group is a long range interaction.

2.1 Single-stranded DNA as a model for heteropolymers

As a model polymer we used a specific single stranded sequence of DNA composed
by 7429 nucleotides. The sequence is the plasmidic genome of the M13mp18 virus that
belongs to the family of the M13 bacteriophages. The genome of M13mp18 is modified
from M13 with the insertion of lacZα gene and some cloning sites and is currently used
in biochemical research. The complete nucleotide sequence of the genome of M13mp18
has been recently determined and is shown in Fig.2.1. (From now on M13mp18 will
refer both to the virus and its genome.) The sequence was bought from Affymetrix and
was shipped in a solution of 10mM Tris-HCl (pH 7.5), 1mM EDTA. Inside the virus the
sequence is a circular plasmid, so we cut it to obtain a linear polymer with a procedure
called linearization described in section 2.6.1. M13mp18 has already been used for DNA
origami [3] because it is quite long and it does not have any strong secondary structure.
If analyzed with the program DNA Mfold [3] it was found that the strongest secondary
structure was a hairpin of just 20 bp (called Hairpin A) at positions 5515-5557 in the
reference frame of Fig.2.1.

Because of the four different nitrogen bases involved in DNA sequence, a single
strand of DNA is intrinsically a heteropolymer. As such it might have intra-chain inter-
actions between portions of the chain that involve different strengths. The basic rule for
such intra-chain interactions is given by the Watson-Crick pairing relations. According
to these rules, adenine binds only with thymine and guanine with cytosine. However it
is quite impossible that a bond involving just a couple of bases forms, because the energy
gained through the pairing and stacking interactions is overwhelmed by the entropy loss
due to the restriction of the conformational space of the two strands. To close the bond
the two segment of sequences close to the complementary couples of bases must stay
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Figure 2.1: Sequence of basis of M13mp18 ssDNA from 5’ to 3’. The starting point is arbitrary.
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close and then feel mutual steric and electrostatic forces due to the presence of the other
sequence. In addition the closure of a bond between two regions of the same sequence
introduces a loop inside the chain that decreases the entropy of the chain upon closing
the bond. If there are two consecutive bases that are complementary to another con-
secutive couple of bases at some distance on the chain then the energetic gain increases
because the number of bases involved in the bond increases, while the entropy loss re-
mains almost constant because the either the restriction of the conformational space of
the two sequences change slightly from the previous scenario and also the entropy loss
caused by the formation of the loop stays unchanged. If there is a region of the chain
where there are enough consecutive bases that are complementary to an equal number
of consecutive bases located in a different region, then a segment of double helix may
form. By borrowing a definition developed within the context of protein folding, two
regions of the chain that bind are called contact regions. Every possible contact (bond)
has an associated free energy that depends on the number of nucleobases involved and
the distance between the two complementary contact regions along the sequence (i.e.
the number of monomers between the two regions).

To characterize the ssDNA sequence used, we thus studied the statistics of the num-
ber of possible contacts as a function of the number of bases involved. To find every
possible contact inside the ssDNA sequence we built a simple tool using the software
Mathematica. In order to do that we considered the interactions of a sequence with its
anti-parallel replica, at all possible relative positions by sliding one along the other. We
looked for the possible complementary regions between the two. As the starting config-
uration the 5’ end of the sequence (A) was coupled with the 3’ end of the replica (B) to see
if they were complementary. Then the replica was slid of one base in order to couple the
3’ end of B with the second base of A and the second base of B with the 5’ end of A, The
procedure was repeated until only the 5’ end of sequence B was overlapping with 3’ end
of sequence A. At each relative position we checked for complementary sequences. As
some complementarity was found, we recorded its positions and the number of bases
involved. On the basis of what discussed above we considered only complementary
sequences of more than five base pairs. Then we listed all the contacts found and we
checked if one or more bases were involved in more than one. In that case we consid-
ered just the paring that involves the larger number of bases. In Fig.2.2 we plotted the
number of contacts found as a function of the number of bases involved in each contact.
The maximum number of bases per contact that we found is 12, while the number of
contact points increases when the number of bases involved decreases.

To understand whether the M13mp18 sequence has some transcription selected pat-
terns that enhance or decrease the level of self-interactions, we compared this sequence
with an analogous study was done on 4 random sequences, designed with the same per-
centage quantity of each kind of bases and of the same length of M13mp18. M13mp18
has more possible contacts that involve a number of bases greater than 9 than the ran-
dom sequence, but over all, the behaviour of the number of bonds vs the number of
bases involved in M13mp18 is similar to the one obtained with random sequences.

We studied also the contact map of M13mp18 compared to one of the random se-
quences. In Fig.2.3 we indicated the position of the monomers of the strand along both
axes and we plotted each possible intra-chain contact at the coordinates individuated by
the positions of the two contact regions. Different colors code for different number of
bases involved in the contact. As in Fig.2.2 M13mp18 has some more possible contacts
that involve a large number of bases (more than nine) then any of the random sequence
studied. The contacts appear to be uniformly distributed along the chain for both se-
quences. Indeed, we could not identify patterns in the contact map that indicate that
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Figure 2.2: Number of possible contacts as a function of the number of bases involved in each
contact for M13mp18 and for an average between 4 different random sequences with the same
statistical distribution of bases as M13mp18. The error bars are the standard deviation of the num-
ber of contacts over the 4 random sequences considered. We neglected the contacts that involve
less that 5 base pairs.



Coil to globule transition of a single stranded sequence of DNA 15

M13mp18 is significantly different from a random sequence of DNA.

Figure 2.3: Contact map of M13mp18 (picture above) and for a random ssDNA sequence (picture
below) with the same statistical distribution of bases as M13mp18.
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2.2 Sample preparation

The conformation of M13mp18 extracted from the virus is circular. To model it into a lin-
earized polymer it can be cut with an enzyme to become a linear polymer. The sequence
has a recognition site for the enzyme BsRb1 [3] between the bases 5571 and 5576. The
enzyme works at 37◦C leaving a blunt end between 5573 and 5574 if it finds a double
stranded region around those bases. To have a double stranded region we annealed the
circular ssDNA with a short specific ssDNA sequence (primer). The primer has to be
complementary to a segment of sequence of M13mp18 so that they could hybridize and
form a segment of double helix. The binding energy depends on the length of the primer
and also on temperature, so we chose a long enough primer to be sure to find a double
stranded DNA at the recognition site at the working temperature of the enzyme. We also
chose to include in the primer a sequence of bases complementary to a piece of Hairpin
A, in order to prevent this structure to form.

We bought two different primers from Biomers because we used two techniques to
measure the coil to globule transition, Dynamic Light Scattering (DLS) and Fluorescence
Correlation Spectroscopy (FCS). The first was used to cut the samples for DLS, and it was
complementary to the sequence 5560-5590 of M13mp18. After the cut it left two double
stranded regions of 14 and 16 base pairs that had melting temperatures of respectively
40 and 60◦C in our experimental condition. We got rid of the pieces of double helix by
heating the sample at 90◦C before the measurement so that the two halves of the primer
would part from M13mp18. This procedure does not affect the scattering measurement
because the scattered intensity of a sample is proportional to the square of the mass. If
the sample consists of a mixture of short and long DNA sequences that have a mass
about 500 times bigger then the scattered intensity of the shorter is negligible.

A different primer was needed for FCS measurements because we had to attach a
fluorophore (Atto532, from Biomers) to the ssDNA complementary to the region 5549-
5582 of M13mp18. The length of the primer was chosen as a compromise between the
highest possible melting temperature from M13mp18 and the smaller possible length.
In fact when the primer binds to the ssDNA, a piece of double helix is formed. This
fragment of helix should be kept small because its dimension might affect the hydro-
dynamic radius of the linear DNA. We must also consider that if there is a fluorophore
attached to the primer, the melting temperature of the primer from the ssDNA should
be high to allow measurements of the hydrodynamic radius in the widest possible range
of temperatures. Using the chosen primer the piece of double strand containing the flu-
orophore that forms after the annealing was of 20 base pairs. Its melting temperature is
about 60◦C.

For both DLS and FCS sample preparations, we annealed the primer to the circular
DNA at 95◦C for 2 min, then we decreased the temperature to 37◦C at 0,2◦C/min. The
ratio between the number of primers and the ssDNA sequences in the cutting solution
was 3:1. At 37◦C we added the enzyme and its buffer (bought from EuroClone) and
we waited for 2, 5 hours, as specified from the standard cutting procedure with BsRb1.
Then we brought the solution at room temperature and we made a purification of the
sample in two ways. For the sample for FCS we used the Agencourt AMPure Xp kit of
magnetic beads (usually employed in PCR purification) while for the sample for DLS
we filtrated the solution with Eurogold plasmid miniprep kit (bought from EuroClone).
The first procedure assures a good removal of the primers but leaves some beads inside
the sample, so it can be used for samples that have to be observed with fluorescence
because the beads do not have fluorescent properties. The second procedure yields a
worse removal of the primers but does not contaminate the sample, so it was used for
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scattering measurements because the signal of the primers is negligible compared to the
signal of the ssDNA.

2.3 Polymer models

In this section some notions about the most simple models used to predict the polymer
dimension are shown, because they constitutes the basis of our interpretation of the ex-
perimental data. A polymer is a chain made by a large number of the same repeating
units, called monomers, or of different but resembling units. Several coarse-grained ge-
ometrical models are being used to predict how various physical quantities depend on
the properties of the polymer as the chain length and the polymer concentration.

2.3.1 Ideal chain: the Random Walk

The simplest model of a polymer chain is the random walk. We place every monomer
one after the other on a square lattice with a spacing between the sites that is equal to
the distance between the monomers. If visiting the same site is allowed, the trajectory of
the random walker is a model for an ideal chain. If not allowed, the trajectory resembles
a real chain. For ideal chains we can assess the dimension and the size of the polymer
through a couple of quantities. The end to end distance RF is the root mean square of
the distance between the positions of the first and the last monomers of the chain.

RF =
√
< (rN − r0)2) > (2.6)

where N is the total number of monomers. If we define the distance between two
monomers as b we obtain

RF =
√
b2N (2.7)

The gyration radius is defined as the mean square of the distance between the monomers
and the center of mass of the polymer.

RG =

√√√√ 1

N + 1

N∑
i=0

< (ri − rG)2 > =

√
1

6
b2N (2.8)

Both quantities give a rough estimate of the dimension of the chain, though the RF can
be defined only for linear chains, while RG can be calculated also for branched architec-
tures.

We can introduce another parameter, that is the bond angle between adiacent monomers
and we obtain the freely rotating chain. If we fix the angle at a value π − θ (see Fig.2.4)
the end to end distance becomes

RF =

√
b2N

1 + Cos(θ)

1− Cos(θ)
(2.9)

For smaller angles between the monomers the chain becomes stiffer and the end to end
length increases. The gyration radius of the freely rotating chain is RG = 1√

6
RF
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Figure 2.4: Two adiacent monomers of a chain with a fixed angle between them. [14]

2.3.2 Ideal chain: the Gaussian chain

The Gaussian chain is an idealized statistical description of a polymer chain where given
a monomer in a position r1, the probability of finding another monomer at a position r2

and with a distance of n monomers along the chain is

G(r1, r2;n) = (2πnb2/3)−3/2exp

(
−3(r1 − r2)2

2nb2

)
(2.10)

The end to end distance RF and the gyration radius RG are the same as for the ideal
random walk. A Gaussian chain should be viewed as a hypothetical chain with the end-
to-end distance where, when coarse-grained into N segments, each segment follows a
Gaussian distribution with the mean square end-to-end length of RF 2/N . The Gaussian
chain has an unrealistic property: in 2.10, r1 and r2 can be separated by more than nb,
although its probability is low when n is large. Despite this shortcoming, the Gaussian
chain is the most preferred model in calculating various physical quantities in theories.
It often happens that we can obtain an explicit analytic expression for the quantity in
question only in the Gaussian chain model. It is the only model that gives an exact yet
simple expression for the density of the chain ends, for instance.

2.3.3 Real chain: the excluded volume

A missing ingredient in the models seen so far is the excluded volume between monomers.
This volume does not coincide with the volume occupied by the monomers, but is bigger.
For simplicity, if we think at two identical rigid spheres in a solution we can calculate the
excluded volume for a sphere due to the presence of the other one. It is eight times the
volume of the sphere. The excluded volume introduces a variation in the entropy of the
system because it reduces the number of configurations of the chain. Flory calculated the
free energy of a chain where the entropy took into account the possible conformations
of the chain and the energy depended on the interactions between different monomers.
The dimension of the chain that minimizes the free energy is the gyration radius

RG = bNν (2.11)

where ν = 3/5. The RG does not depend on temperature so the chain is called athermal.
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2.3.4 Semirigid chain: the wormlike model

There are many examples of semirigid chains amongst polymers, mainly due to the ge-
ometry of the bonds between monomers,the presence of side groups and electrostatic
repulsion. A way to model semi-rigid chains is the Wormlike chain. It resembles the
freely rotating chain but with an angle between monomers close to π and with a short
distance between monomers. If θ << 1 and b → 0 we can define a persistence length
Lp as the length along the chain after which the correlation between the orientation of
the monomers is lost. If u(s) and u(s′) are the vectors that indicate the direction of two
monomers at a distance of respectively s and s’ monomers from the beginning of the
chain, Lp is defined as

< u(s) · u(s′) >= exp(−|s− s′|/Lp) (2.12)

Lp =
2b

θ
(2.13)

The end to end distance and the gyration radius depend on the contour length of the
chain Lc = bN where N is the number of monomers and on the persistence length:

RF =
√

2Lp[Lc + Lp(exp(−Lc/Lp)− 1)] (2.14)

RG =

√
1

3
LpLc − L2

p + 2
L3
p

Lc

(
1− LP

Lc
[1− exp(−Lc/Lp)]

)
(2.15)

2.4 Dynamic Light Scattering of dilute polymer solutions

Motions of polymer molecules in solution can be conveniently studied by using Dy-
namic Light Scattering (DLS). Measurements at a single scattering angle give informa-
tion on the dimension of the polymer molecule in the solution with reasonable accuracy.

A typical scattering apparatus sends a laser source onto a sample, which for example
consists of particles macromolecules or molecular aggregates dissolved in a solution,
collects the light scattered in a given direction and detects the light diffused from the
particles, when the light is collected for a single or a few coherence areas (corresponding
to speckles). The diffused light I(t) is not constant over time because of the Brownian
motions of the particles (while the solvent molecules if homogeneous can usually be
neglected). I(t) can be written as a sum of an average and a fluctuating components:

I(t) =< I > +∆I(t) (2.16)

The average component obviously does not change in time. To gain information from
the kinetics of I(t) the autocorrelation of the intensity over time is defined as in 2.17.

〈I(t′)I(t′ + t)〉 / 〈I〉2 = lim
TA→∞

1

TA 〈I〉2
∫ TA

0

I(t′)I(t′ + t)dt = 1 + fcg2(t) (2.17)

where < I > is the average value of the intensity and fc =
〈
∆I2

〉
/ 〈I〉2 is the coherence

factor, whose value is about 0, 5 in our experimental conditions. We assume that the
long-time average is equal to the ensemble average, i.e. the average with respect to
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the configuration of the system or, simply put, the average over all possible positions
and shapes of the molecules in the solution. This assumption corresponds to assume
ergodicity.

From 2.17 the normalized intensity autocorrelation function g2(t) is defined as g2(t) =
〈∆I(t′)∆I(t′+t)〉/〈∆I2〉. It is possible to demonstrate that g2(t) is related to g1(t), a more
basic property of the scattering process, through g2(t) = |g1(t)|2, where

g1(t) =
< E∗s(t′) · Es(t′ + t) >

< E∗s(t′) · Es(t′) >
(2.18)

To understand the behaviour of g2(t) and g1(t) over time it is useful to define the
dynamic structure factor of a suspension of particles:

S(k, t) =

〈
1

nP

nP∑
m,n=1

exp[ik · (rm(0)− rn(t))]

〉
(2.19)

where np is the total number of molecules in the solution and k is the scattering vector
k = ks − ki, with |k| = 4πnsol

λ sin
(
θ
2

)
where nsol is the refractive index of the solvent

and θ the scattering angle. The dynamic structure factor depends on both the shape of
the particles that compose the sample and also on the interactions between them. S(k, t)
can be considered as composed by two terms, one that is the single particle dynamic
structure factor (S1(k, t)) and the other that comes from the interactions between the
particles.

S(k, t) = S1(k, t)× < (nP − 1)exp[ik · (r1(0)− r2(t))] > (2.20)

where
S1(k, t) =< exp[ik · (r1(0)− r1(t))] > (2.21)

It can be easily demonstrated that the field correlation function is connected to S(k, t)
by the 2.22

|g1(t)| = S(k, t)
S(k, 0)

(2.22)

S1(k, t) can be rewritten as a function of the transition probability P (r, r′; t) that is the
probability for a particle to move from r to r’ in the time interval t.

S1(k, t) =

∫
V

drexp[ik · (r− r′)]P (r, r′; t) (2.23)

The sum is made over all the scattering volume and thus over all the particles.

2.4.1 Diffusion of particles in solution

Particles suspended in a liquid change their positions by diffusion. If a particle is much
larger compared with the solvent molecules, we can regard that particle to be suspended
in a continuous medium of solvent. The particles composing the solvent move because
of thermal excitation and collide with the other particles. As a consequence the particles
describe a random walk that is called diffusive Brownian motion. The random walk
is described by the diffusion coefficient, defined as D = 〈[r(t)−r(0)]2〉

6t . The transition
probability P becomes Gaussian in the limit of small unit step or large number of steps,
and can be written as:

P (r, r′; t) = (4πDt)−3/2exp

(
− (r− r′)2

4Dt

)
(2.24)



Coil to globule transition of a single stranded sequence of DNA 21

This probability satisfies the equation of diffusion,

∂Px
∂t

= D
∂2Px
∂x2

(2.25)

The physical meaning of the probability P can be better understood if we imagine to
concentrate all the particles of the sample solution in a position r at time 0. The concen-
tration profile is then c(r,0). If the particles are free to diffuse for a time interval t they
will move to other positions so the concentration profile at a position r’ after time t will
be the product of the initial concentration and the probability that the particles would
change their positions from the starting point to another. c(r, t) =

∫
V
P (r, r′; t)c(r′, 0)dr′

If the particles move according to the diffusion equation, their dynamic structure
factor is

S1(k, t) =

∫
exp[ik · (r− r′)](4πDt)−3/2exp

(
− (r− r′)2

4Dt

)
dr = exp(−Dk2t) (2.26)

In a system of scatterers of equal cross-section and at moderate concentrations (such that
multiple scattering can be neglected), it can bee seen that S1(k, t) = |g1(t)| = exp(−Ωt)

where the decay rate Ω is related to the scattering angle as Ω = Dk2.

2.5 Diffusion of polymers in solution

If we consider a solution of polymers instead of particles, the dynamic structure factor
becomes

S(k, t) =
1

NpN

Np∑
m,n=1

N∑
i,j=1

< exp[ik · (rmi(0)− rnj(t))] > (2.27)

where the coordinates ri refer to the positions of the center of mass of the monomers,
Np is the number of chains in the scattering volume and N is the number of monomers
for each chain. Also in this case S(k, t) can be decomposed in two parts, the first that
is the single chain dynamic structure factor S1(k, t) and the other that depends on the
interactions between different chains.

S(k, t) = S1(k, t) +
Np
N

N∑
i,j=1

< exp[ik · (r1i(0)− r2j(t))] (2.28)

S1(k, t) =
1

N

N∑
i,j=1

< exp[ik · (r1i(0)− r1j(t))] (2.29)

In short time scales S1(k, τ) exhibits a complicated pattern reflecting complex mo-
tions of different parts of the polymer chain. Over a long time, however, the motion is
dominated by the translation of the chain as a whole in the solution averaged over all
conformations. In 2.30, the displacement between monomer i at time 0 and monomer j
at time τ on chain 1 consists of three parts:

r1i(0)− r1j(t) = [r1i(0)− r1G(0)] + [r1G(0)− r1G(t)] + [r1G(t)− r1j(t)] (2.30)

where r1G(0) and r1G(t) are the center of mass positions of the chain at time 0 and t, re-
spectively. Initially, the three parts are correlated. As t increases, the chain conformation
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becomes randomized, and the three vectors become more independent from the others.
Thus the statistical average of the square is

< [r1i(0)−r1j(t)]
2 >=< [r1i(0)−r1G(0)]2 > + < [r1G(0)−r1G(t)]2 > + < [r1G(t)−r1j(t)]

2 >
(2.31)

The first and third terms are equal to the square of the gyration radius by definition.
Only the second term grows with time because of diffusion of the chain as a whole.
After a long time, the second term becomes dominant. Thus, in the limit of long time

6Dt = −6
ln|g1(τ)|

k2 =< [r1i(0)− r1j(τ)]2 >→< [r1G(0)− r1G(τ)]2 > (2.32)

and therefore the diffusion coefficient is related only to the motion of the center of mass
of the polymers and g1(τ) gives information about the center-of-mass diffusion.

2.5.1 Hydrodynamic radius of a polymer chain

To drag a particle suspended in a viscous medium at a constant velocity v, a constant
force of F = ζv must be applied to the particle. The coefficient ζ is called the friction
coefficient. Einstein showed that the diffusion coefficient D of the particle in a quiescent
solution at temperature T is related to ζ by

D =
kBT

ζ
(2.33)

Stokes showed that the friction coefficient for a sphere of radius RS is given by

ζ = 6πηSRS (2.34)

Combining the two equations above gives the Stokes-Einstein equation, where RS is the
Stokes radius:

RS =
kBT

6πηsD
(2.35)

We can extend the concept of the Stokes radius to nonspherical suspensions and molecules.
Once the center-of-mass diffusion coefficient D is measured for the suspension or the
molecule, we can introduce the hydrodynamic radius RH by

RH =
kBT

6πηsD
(2.36)

The friction of the chain molecule is smaller than the friction that nonbonded, in-
dependently moving N monomers receive. In fact the motion of one of the monomers
accompanies motions of adjacent solvent molecules in the same direction, and their ef-
fect propagates to another monomer to facilitate its motion in the same direction in an
otherwise stagnant solvent. This interaction is called hydrodynamic interaction. Oseen
found that the magnitude of the hydrodynamic interaction between two particles at r
and r’ is proportional to |r − r’|. The interaction decays only algebraically with a small
exponent of -1 and therefore is long ranged. In a chain molecule, all monomers affect
all other monomers because they are close to each other. The hydrodynamic radius of a
chain molecule is defined as [14]:

1

RH
=

〈
1

|rm − rn|

〉
(2.37)
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The average is taken with respect to possible positions of the two monomers m and n
(m 6= n) and then with respect to m and n that run over all monomers of the chain. For a
Gaussian chain 1

RH
= 8( 2

3π )1/2 1
b
√
N

. For this model the hydrodynamic radius is smaller
than the gyration radius and the end to end distance (see Fig.2.5). The gyration radius
RG and the end to end distance RF are defined as in the equations 2.6 and 2.8.

Figure 2.5: Comparison between hydrodynamic and gyration radii and the end to end distance of
a polymer chain for different models.

The comparison between hydrodynamic and gyration radii of a polymer has also
been exploited from the experimental point of view, for example through the study of
the coil to globule transition of a linear chain of PNIPAM with DLS measurements [15].

Figure 2.6: Ratio between the hydrodynamic to the gyration radius of a linear chain of PNIPAM
polymer from [15] at different temperatures

In Fig.2.6 the ratio between the hydrodynamic and gyration radii is plotted as a func-
tion of the temperature. To a change of the temperature corresponds a change in the
conformation of the polymer. Depending on the conformation the ratio assumes dif-
ferent values: at lower temperatures the polymer is similar to a swollen coil and the
hydrodynamic ratio is smaller than the gyration radius. At higher temperatures the con-
formation changes into a globule and the hydrodynamic radius becomes bigger than the
gyration radius. The value of the ratio at the coil conformation (about 0,66) is similar to
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the ratio calculated for an ideal chain in good solvent.

2.5.2 Internal motions of a polymer chain in solution

In a DLS experiment on a solution of polymers in a dilute regime, if we collect the scat-
tered light at angles that satisfy kRG < 1 or if we look at the short timescales of g1(k, t)
we can study the internal motions of a polymer chain. On the other hand, if the angle is
big enough that kRG > 1 or if we look at longer timescales of g1(k, t), we see the diffu-
sion of the center of mass of the polymer. The internal motions of a polymer chain were
formalized through two main models, the Rouse and the Zimm chains [16].

The Rouse chain was the first successful molecular model; the chain is represented as
N beads connected by springs of root mean square size b. The beads in the model only
interact with each other through the connecting spring. Each bead is characterized by its
own independent friction and the solvent is assumed to be freely draining through the
chain. The longer characteristic time of the chain is the Rouse time τR, that is the time
during which the whole polymer diffuses a distance of the order of its size.

τR ≈
R2

DR
≈ NR2ζ

kT
(2.38)

where DR is the diffusion coefficient of the whole chain and ζ is the total friction coeffi-
cient. On timescales shorter that τR the chain exhibits viscoelastic modes because of the
complexity of the interactions between the beads, while on timescales longer the motion
is simply diffusive.

2.5.3 Rouse relaxation modes

The Rouse time is not the only relaxation time of a Rouse chain. If we consider a natural
number p, it can be demonstrated that every section of N/p monomers relaxes with a
different timescale.

τp ≈ τ0
(
N

p

)2

(2.39)

for p= 1,2,.., N. where τ0 is the characteristic timescale called the Kuhn monomer relax-
ation time during which monomer would diffuse a distance of its own size b as it was
not attached to the chain. For p = 1 we find the Rouse time, while for p = 2 we consider
the motion of half of the chain, and so on. For big p the motion is faster because a small
number of monomers is involved, while for small p the number of monomers grows up
and the relaxation becomes slower. At time τp all modes with index higher than p have
already relaxed, but modes with index lower than p have not yet relaxed.

The motion for timescales shorter than τp is subdiffusive. In τp the chain section
containing N/p monomers diffuse a distance of the order of their size, b(N/p)1/2. The
mean square displacement is then

< [ri(τp)− rj(0)]2 >≈ b2N
p
≈ b2

(
τp
τ0

)1/2

(2.40)

For timescales τ0 < t < τp the root mean square is

< [ri(t)− rj(0)]2 >≈ b2N
p
≈ b2

(
t

τ0

)1/2

(2.41)
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For the motion to be diffusive, the mean square displacement must be linear in time, so
the diffusion coefficient must depend on time.

< [ri(t)− rj(0)]2 >≈ D(t)t ≈ t1/2 (2.42)

2.5.4 Zimm relaxation modes

The Rouse model ignores hydrodynamic interaction forces, and assumes that the beads
only interact through the springs that connect them. In dilute solutions, hydrodynamic
interactions between the monomers in the polymer chain are strong. These hydrody-
namic interactions are strong also between the monomers and the solvent within the
pervaded volume of the chain. When the polymer moves, it effectively drags the solvent
within its pervaded volume with it. The Zimm model treats the pervaded volume of the
chain as a solid object moving through the surrounding solvent. This model predicts that
a chain diffuses as a particle with volume proportional to the chain’s pervaded volume
in solution. In this case the diffusion coefficient of a chain becomes

DZ =
8

3
√

6π3

kT

ηsR
(2.43)

and the time during which the chain diffuses a distance of its own size is τZ

τZ ≈
R2

DZ
≈ τ0N3ν (2.44)

In dilute solution the Zimm time in shorter than the Rouse time. Zimm motion has
less frictional resistance than Rouse motion, and therefore, the faster process is Zimm
motion.

Zimm model also predicts a chain to have internal relaxation modes. There are a
number of modes equal to the number of monomers also for this model. The relaxation
time of the pth mode is

τp ≈ τ0
(
N

p

)3ν

(2.45)

As in the Rouse model, the mean-square displacement of monomer j during time τp is of
the order of the mean-square size of the section containing N/p monomers involved in
a coherent motion at this time:

< [ri(τp)− rj(0)]2 >≈ b2
(
N

p

)2ν

≈ b2
(
τp
τ0

)2/3

(2.46)

The motion of the chain for time τ0 < t < τp is subdiffusive because the root mean square
deviation is proportional to t2/3

< [ri(τp)− rj(0)]2 >≈ b2
(
t

τ0

)2/3

(2.47)

Zimm and Rouse models are two extremely different ways of representing a polymer
chain in a diluted regime. The real motion of the chain stands in between the two models.
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2.5.5 Particle sizing method

From the correlation function of the electric field it is possible to obtain the hydrody-
namic radius of a particle in solution in a dilute regime by its relation with the diffusion
coefficient. If we measure a solution of polymers the situation is more complicated be-
cause at a fixed temperature a polymer chain does not have a unique conformation, it
can assume many conformations, each characterized by probability. Different confor-
mations mean different hydrodynamic radii, and different diffusion coefficients. The
correlation function becomes a superposition of exponential decays, one for every pos-
sible conformation of the chain. In a dilute solution where the scattered intensity comes
from the superposition of the scattered radiation from each polymer in the scattering
volume, there is the superposition of the scattered intensity coming from each popula-
tion of polymers with the same dimension. DLS is not a single molecule technique, so
it is not possible to separate the scattering contribution coming from molecules with a
very similar dimension and molecular weight.

g1(t) =

∫
G(Ω)e−ΩtdΩ (2.48)

where G(Ω) represents the contribution of each population. The integral in 2.48 can be
written as a stretching exponential, where α is the stretching exponent:

g1(t) = Ae−( tτ )α (2.49)

The average relaxation time becomes

< τ >=

∫ ∞
0

e−( tτ )αdt = τ
1

α
Γ

(
1

α

)
(2.50)

From the average relaxation time the average hydrodynamic radius is determined:

RH =
< τ > kBTk

2

6πη
(2.51)

2.6 DLS instrumentation

A scheme of the geometry of the DLS apparatus (ST100, Scitech Instruments) used dur-
ing this work is shown in Fig.2.7.

A cylindrical glass tube containing a sample solution is immersed in a chamber full
of silicone oil with the refractive index (n=1,39) similar to the one of the glass. The oil
is thermostatted and flown inside the chamber by a thermal cycler (Julabo F25-HE). The
incoming beam comes from a laser (solid-state, Nd-YAG) at a wavelength of 532 nm
and is brought inside the optical chamber through an single-mode optical fiber. The
scattered light is collected at 90◦ from the direction of the incident light by another fiber
that is connected to two photomultipliers. There are two PMTs in order to capture the
signals with a timescale smaller than the dead time of the PMT that is approximately
about 10−7s. The signal then is sent to a correlator (Digital Correlator Flex03LQ-1) that
calculates the correlation function of the scattered light.



Coil to globule transition of a single stranded sequence of DNA 27

Figure 2.7: Scheme of a DLS apparatus.

2.6.1 Sample preparation for DLS

The scattering cell is a cylindrical capillary made by borosilicate optical glass (from
Hilgenberg GmbH) with an internal diameter of 2,4 mm and an external diameter of
3 mm. The internal part of the cell was typically cleaned with about 20 ml of filtrated
acetone, ethanol, 2-propanole and milliq water before the measurements. 2-propanole
was also used to clean the external surface.

The concentration of the ssDNA in the sample (0,3 g/l, i.e. 13 nM) was chosen to
have enough scattering signal but also to be smaller (about 1/30) of the entanglement
concentration so that the experiments were made in a dilute condition. We dissolved the
linear M13mp18 in a solution of deionized (milliq) water at two ionic strengths, 10 and
50 mM NaCl.

The scattered light was collected at 90◦ from the position of the incident light. The
temperature varied from 30◦C to 5◦C with a step of about 2◦C. The thermalization time
was 40 minutes for each temperature. For each measurement the scattered light was
collected for 900 s, then correlated.

2.7 Fluorescence Correlation Spectroscopy

Fluorescence Correlation Spectroscopy (FCS) is a technique that measures the diffusion
of fluorescent molecules dissolved in a solution in a dilute condition. The basic appa-
ratus is coupled with a confocal microscope, where the sample cuvette is positioned on
the stage. A laser beam is focused inside the sample in such a way that the beam waist
is smaller than the dimension of the cuvette. The intersection between the excitation
volume and the detection volume is called the confocal volume. When a molecule goes
through the confocal volume it is excited by the laser and as a consequence it emits flu-
orescence light, that is collected by a single photon sensitive detector. As long as the
molecule remains into the confocal volume the detector records the fluorescence signal.
If the solution is sufficiently diluted and there are no free fluorophores it is possible to
detect the average number of fluorescent particles inside the confocal volume and the
average diffusion time through the confocal volume. FCS is a technique that allows to
detect the fluctuations of the number of molecules in the confocal volume and can be
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used with very diluted systems (a few molecules in a volume of about 1µm3, that corre-
sponds to concentrations of the order fo 1 to 10nM ).

To measure these quantities, the fluorescence correlation intensity is calculated. It
shows a characteristic shape like an exponential decay. The characteristic time of the
decay is the average permanence time of a molecule inside the confocal volume. If a
molecule is close to the center of the detection volume, there will be a high probability
to detect a large number of consecutive fluorescence photons from this molecule, i.e.
the fluorescence signal will be highly correlated in time. When the molecule (due to
diffusion) starts to exit the detection volume, this correlation will continually decrease
in time, until the molecule has completely diffused out of the detection volume and the
correlation is completely lost (correlation curve drops to zero). The faster a molecule
diffuses, the faster the correlation will be lost. If the dimension of the confocal volume
is known, it is possible to calculate the diffusion coefficient of the molecule and then
the hydrodynamic radius. However it is rather difficult to know that volume because
of the complexity of the apparatus, so a technique (Dual Focus Fluorescence Correlation
Spectroscopy, 2fFCS) was developed to overcome this problem.

2fFCS employs two laser sources in order to generate two laterally shifted but over-
lapping laser foci at a fixed and known distance inside the sample. Thus, for each laser
focus the corresponding intensity autocorrelation function can be calculated. However,
in addition to the autocorrelation curves, one can also correlate the fluorescence signal
from one laser focus with that of the second focus. By doing so, a cross-correlation curve
is generated which is shifted to longer lag times and has a lower amplitude with respect
to the auto-correlation curves. The shape of an autocorrelation curve is completely de-
termined by the detection volume, whereas the shape of the cross-correlation curve is
also dependent on the dimension of the overlap region of the two foci. If the distance
between both lasers is known, a global fitting of both auto- and cross-correlation curves
can yield the absolute diffusion coefficient. This is because the relative time shift be-
tween the cross correlation and auto correlation curves scales with the square of the foci
distance divided by the diffusion coefficient.

2fFCS has proved to be a very accurate and robust method of measuring diffusion of
molecules in dilute regime (from 0,1 up to about 5 nM) [17][18].

Each 2fFCS measurement output consists of three correlation functions. The analysis
is made as follows. Both the cross- and auto-correlation functions depend on the shape
and the size of the confocal volume, that is described by the molecule detection func-
tion U(r). This function calculates the position-dependent efficiency to excite and detect
a fluorescence photon from a single molecule. U(r) is successfully represented as the
product of three functions, as shown in 2.52

U(r) =
k(z)

ω2(z)
exp

[
−2(x2 + y2)

ω2(z)

]
(2.52)

where x, y, and z are cartesian coordinates with the z-axis along the optical axis, and the
functions ω(z) and k(z) are given by

ω(z) = ω0

√
1 +

(
λexz

πω2
0n

)2

(2.53)

and

k(z) = 1− exp
(
− 2a2

R2
0 + (λemz/πR0n)2

)
(2.54)
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where λex and λem are the excitation and center emission wavelengths, respectively, n is
the sample refractive index, a is the confocal pinhole radius andR0 is a free fit parameter.
ω(z) represents the scalar approximation for the radius of a diverging laser beam with
beam waist ω0, and k(z) depends on the point spread function of confocal imaging. [17].

The cross correlation intensity is

g2(t) =g∞(δ) + 2ε1ε2c

√
π

Dt
×
∫ ∞
−∞

dz1

∫ ∞
−∞

dz2
k(z1)k(z2)

8Dt+ ω2(z1) + ω2(z2)

× exp
[
− (z1 − z2)2

4Dt
− 2δ2

8Dt+ ω2(z1) + ω2(z2)

] (2.55)

where δ is the lateral distance between the foci, ε1 and ε2 are two factors proportional to
the overall excitation intensity and detection efficiency in each laser, c is the concentra-
tion of the fluorescent molecules, and D is the diffusion coefficient. For calculating the
fitting function of the intensity auto-correlation of each focus the formula is the same as
for the cross-correlation. We have just to put δ = 0 and replace ε1ε2 by either ε21 or ε22
respectively. When fitting the experimentally measured data, one fits the two intensity
auto-correlations (which are identical in shape) and the cross-correlation simultaneously,
having as fit parameters ε1

√
c, ε2
√
c, ω0,R0 and D. e. The important parameter determin-

ing the absolute accuracy of the resulting values of the diffusion coefficient is the lateral
distance δ between the foci. Once fitted the intensity correlations gives the diffusion
coefficient and thus the hydrodynamic radius of the molecules observed.

2.8 FCS apparatus

We used a 2fFCS apparatus to measure the hydrodynamic radius of M13mp18 as a func-
tion of temperature. A scheme of such apparatus is shown in Fig.2.8.

Figure 2.8: Sketch of a single laser set-up for dual-focus experiments, equipped with: 1) laser head,
2) mirror, 3) adjustable zeroth-order halfwave plate, 4) polarizing cube, 5) beam displacer, 6) fiber
coupler, 7a) long single-mode fiber, 7b) short single-mode fiber. [17]

The specifics The set-up used is based on a PicoQuant MicroTime 200 confocal mi-
croscope. To generate the two shifted foci, two orthogonally polarized, pulsed diode
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lasers (PicoQuant LDH-P-C-640B) are combined with a polarization sensitive beamsplit-
ter and afterwards coupled into a polarization maintaining single-mode fiber. At the
fiber output the light is again collimated by an appropriate lens. Both lasers are pulsed
alternately. The combined light consists of a train of laser pulses with alternating or-
thogonal polarization. Before the objective (immersion in water) the laser beam passes
through a Nomarski prism (Olympus U-DICTHC) that is normally exploited for differ-
ential interference contrast (DIC) microscopy. The principal axes of the Nomarski Prism
are aligned with the orthogonal polarizations of the laser pulses, so that the prism de-
flects the laser pulses in two different directions according to their corresponding po-
larization. After focusing the light through the objective (Olympus UPLANAPO, 60x,
water immersion, NA 1.2), two overlapping excitation foci are generated with a small
lateral shift between them. The distance between the beams for a given wavelength is
defined by the DIC prism and the objective. As long as these two elements are used,
the distance will remain accurately constant over time. Fluorescence is collected by the
same objective (epi-fluorescence set-up), passed through the DIC prism and the dichroic
beamsplitter and is focused into a single circular aperture (confocal pinhole). Behind the
pinhole the light is collimated and divided by a non-polarizing beamsplitter cube and
focused onto two single-photon avalanche diodes (SPAD, PDM series, Micro Photon
Devices). When calculating correlation functions, only photons from the two different
detectors are correlated to prevent distortions of the resulting auto-correlation functions
by SPAD after-pulsing. A Time-Correlated Single Photon Counting unit (PicoHarp 300)
is used for data acquisition, operating in the time-tagged time-resolved mode, which al-
lows to record for every detected photon its arrival time with a temporal resolution in the
nanosecond range and its arrival time with respect to the last laser pulse with picosec-
ond timing resolution (TCSPC time). The TCSPC time of each recorded photon is used
to determine in which laser focus/detection region the fluorescence light was generated.
The photons detected from the single photon counting unit during a detection time were
summed. The square of the ratio between the mean of the number of photons detected
during the detection time and their variance is the average number of molecules in the
confocal volume. At the concentration explored for ssDNA measurements the average
number of molecules was about 60.

2.8.1 Sample preparation for FCS

The sample for FCS consisted of a solution of 2nM linear M13mp18, deionized (milliq)
water at 50mM NaCl. The cell was cylindrical with a volume of about 50 µl. The solution
was vortexed before the measurement to assure the maximum concentration uniformity.

The temperature was varied between 5◦C and 30◦C with a step of 2◦C. Each temper-
ature was sampled twice with correlations of 10 min.

2.9 Results

We measured the hydrodynamic radius (RH ) of a diluted sample of linear ssDNA dis-
persed in a solution at different ionic strengths. The measurements were collected at
various temperatures within a range from 5◦C to 40◦C through Dynamic Light Scatter-
ing and Fluorescence Correlation Spectroscopy. The results obtained with both tech-
niques show a good compatibility. To understand the thermodynamics responsible for
the behaviour of RH vs temperature we studied the number, the distribution and the
free energy loss of the possible intra-polymer interactions.
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2.9.1 DLS results

Using Dynamic Light Scattering we measured the scattered intensity at 90◦ from the
incident light for samples of linear M13mp18 dissolved in a solution at 10 and 50 mM
NaCl. For the solution at 10 mM NaCl we collected the scattered light while decreas-
ing the temperature. For the 50 mM NaCl solution we also collected the scattered light
while increasing the temperature, showing a small hysteresis of the behaviour of the
chain between the two temperature ramps. At every temperature we collected 4 times
the scattered intensity for 900 s, we calculated the 4 correlation functions of the inten-
sity and we averaged them. In Fig.2.9 there are two intensity correlation functions of a
sample at 50 mM NaCl at a temperature of 10◦C (red line) and 25◦C (blue line). They
are normalized to understand the two different decay times. We fitted such correlations
with a stretched exponential, as explained in section 2.5.5.

Figure 2.9: Intensity correlation function for a sample of M13mp18 at 0,3 g/l dissolved in a solution
of 50 mM NaCl at 10◦C (red line) and 25◦C (blue line). The curves are normalized.

In Fig.2.10 there are some examples of fitted correlation functions at different tem-
peratures for a sample at 50 mM NaCl. The fitting parameters are listed in table 2.1.

We noticed that the decay time of the intensity correlation function increases as tem-
perature is decreased, that may suggest that the dimension of the molecules we are look-
ing at should increase. Nevertheless the hydrodynamic radius decreases as temperature
is decreased because the viscosity of the solution (here approximated to the viscosity of
water, due to the very dilute concentration of salts and DNA) changes of a factor of 2
in the temperature range of the measurements. To understand if the change in dimen-
sion was only a result of the viscosity change and not of the closure of contacts within
the chain, we measured the hydrodynamic radius at different temperatures of a non-
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Figure 2.10: Examples of fitted intensity correlation functions for a sample of M13mp18 at 0,3 g/l
dissolved in a solution of 50 mM NaCl. The correlations were measured this chronological order
at a) 5◦C, b) 15◦C, c) 25◦C and d) 30◦C.
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Salt concentration [mM] T [◦C] < τ > [s] α RH [nm]
50 5 0.000354 0.83 23.66
50 15 0.000255 0.86 23.31
50 25 0.000246 0.79 29.49
50 30 0.000223 0.83 29.69

Table 2.1: Fitting parameters of the intensity correlations plotted in Fig.2.10 measured with DLS as
a function of temperature and salt concentration. RH is the hydrodynamic radius, τ is the average
decay time, calculated as in 2.5.5, and α is the stretching exponent. The measurements were done
at a fixed scattering angle of 90◦ while increasing the temperature.

interacting chain of DNA of a length comparable to M13mp18. The chain considered was
poly-A (Sigma-Aldrich, P9403), that has no interactions between the monomers because
it is composed only of nucleotides with adenine nucleobases. We prepared a sample at a
concentration of 0,3 g/l in a buffer at 50 mM NaCl, we vortexed and heated the solution
in order to dissolve the DNA. We filtrated the sample to eliminate any possible resid-
ual aggregates, originated from the fact that polyA is sold as a lyophilized powder. In
Fig.2.11 the intensity correlation functions collected at different temperatures are plotted.
We observed a uniform shift of the correlations, that is due only to the change of viscos-
ity of the solution. We normalized the correlations and we divided the timescale for the
water viscosity at the different temperatures sampled: all the curves superimposed (see
Fig.2.12) to confirm that the shift seen before was just caused by the change of viscosity.
The correlations show the presence of multiple exponential decays because of the high
polydispersity of the sample, that has a length between 600 and 4000 nucleotides. The
decay times are too long to be related to the motion of a single chain of polyA. There
must be some aggregates in the solution that we could not eliminate that affect much
the measurements. Nevertheless the role of viscosity in confirmed, even though much
study on this side is required.

In Fig.2.13 we plotted the hydrodynamic radius (RH ) of the linear M13mp18 as a
function of the temperature. The sample was stored at 5◦C and then measured at various
temperatures, from the lowest (5◦C) to the highest (30◦C). Even though the temperature
range is not well sampled it is possible to tell two regions apart, one at low tempera-
tures (lower than 5◦C) where the chain has a dimension of about 20 nm, and one at high
temperatures (from 20 to 30◦C) where the dimension is close to 35 nm. This behaviour
suggests that the chin undergoes a transition from a globular to a coil conformation be-
tween 5 and 20◦C. In section 2.10 we discuss the behaviour of the transition as a function
of the temperature.

In Fig.2.14 we showed the behaviour of the hydrodynamic radius measured while
decreasing the temperatures of the sample for a solution of linear M13mp18 at 50 mM
NaCl. As for the sample at 10 mM of NaCl, this solution was stored at 5◦C before being
measured. For temperatures smaller than 15◦C the measured RH is about 24 nm, that
increases to about 30 nm in the range of temperatures between 15 and 25◦C. At temper-
atures higher than 25◦C the dimension is almost constant and of a value of about 30nm.

We repeated a measurement with the same sample while increasing the temperature
and we obtained the hydrodynamic radii shown in Fig.2.15. The coil and globule di-
mensions are compatible with the ones plotted in Fig.2.14, while the transition occurs in
a more narrow temperature range than the measurements with decreasing temperature,
approximately from 18 to 22◦C.
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Figure 2.11: Intensity correlation functions of poly-A at a DNA concentration of 0,3 g/l and 50
mM NaCl. Temperatures are indicated in the legend.

Figure 2.12: Normalized intensity correlation functions of poly-A at a DNA concentration of 0,3
g/l and 50 mM NaCl. Time is divided for the water viscosity at the corresponding temperature.
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Figure 2.13: Hydrodynamic radius of M13mp18 at different temperatures for 10 mM NaCl buffer.
The scattering angle was kept fixed at 90◦ for all measurements.

Figure 2.14: Hydrodynamic radius of M13mp18 at different temperatures for 50 mM NaCl. The
measurements were done while decreasing the temperature. The scattering angle was kept fixed
at 90◦ for all measurements. The magenta line is drawn to guide the interpretation of the data.
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Figure 2.15: Hydrodynamic radius of M13mp18 at different temperatures for 50 mM NaCl. The
measurements were done while increasing the temperature. The scattering angle was kept fixed
at 90◦ for all measurements.

In Fig.2.16 all the M13mp18 hydrodynamic radii measured with DLS at different tem-
peratures are compared.

The temperature at which the transition occurs is smaller for the 10 mM sample than
for the 50 mM. The shift can be explained considering that the melting temperature of
a duplex of DNA increases when the salt concentration in the buffer is increased. This
happens for all the segments of chains that bind together, so the globular state is stabi-
lized at higher temperatures.

Looking at the measurements performed at the temperature in between 10 and 20◦C
we can infer that the M13mp18 exhibits a continuous transition between coil and glob-
ule. It is difficult to say if the RH measured between 10 and 20◦C represent an effective
intermediate conformation between coil and globule or if they are just the average be-
tween the two. The correlation functions in this intermediate temperature range do not
exhibit two clearly different decays, one for the globule and one for the coil conforma-
tion, so we can infer that the decay rate correspond to an intermediate configuration,
where some contacts are closed. Moreover the stretching exponent does not increase the
temperature transition range, so the distribution of conformations must be equal at all
the temperatures.

From Figs.2.14 and 2.15 we noticed some difference between the hydrodynamic radii
measured while increasing the temperature and the ones measured decreasing the tem-
perature. It is possible that the kinetics of the collapse and of the swell of the chain
are different because the thermal stories of the sample affect the temporal sequence of
closure of the contacts. In fact the samples observed while increasing the temperature
have different were diluted at room temperature, and suddenly stored at 5◦C, so it is
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Figure 2.16: All the hydrodynamic radii measured with DLS of samples of M13 at different ionic
strengths. Black squares refer to the sample at 10 mM of NaCl, red circles and green diamonds
are measured from samples at 50 mM NaCl while decreasing the temperatures. The blue triangles
come from the samples at 50mM NaCl measured with increasing temperature.



38 2.9 Results

possible that the chain assumed a conformation that is not the minimum of free energy
at that temperature. On the opposite, the sample measured from 30 to 5◦C had the op-
portunity to find its minimum of free energy at every temperature because the cooling
rate was very small (30 minutes of thermalization at every temperature, 30 minutes of
measurements and steps of about 2◦C). This aspect should be further investigated.

In a typical scattering experiment of interacting molecules it is possible to observe an
aggregation process during the temperature change. At high concentrations aggregation
is expected to occur frequently, while at low concentrations it should be a negligible
phenomenon. However scattering experiments require a big enough concentration to
see some scattering signal from the molecules in a reasonable leg of time, so we had
to chose a concentration for the experiments that had to be a compromise between a
value big enough to have scattering signal and at the same time small enough to have
a diluted solution. To verify whether aggregation happened during our measurements
we computed the average scattered intensity for all the temperatures sampled. We found
that the average scattered intensity < Is > didn’t change with the temperature for both
ionic strengths, to confirm that there is no aggregation process during the measurements.
In Fig.2.17 < Is > is plotted as a function of temperature for the sample at 50 mM NaCl.

Figure 2.17: Average scattered intensity measured with DLS for a sample of 0.3 g/l at 50 mM NaCl
at different temperatures. The error bars are the standard deviation of the intensity.

2.9.2 FCS results

FCS measurements at a DNA concentration of 2 nM also show a transition between
globular and coil conformation.

Each point in Fig.2.18 and 2.19 is averaged over 3 data acquisitions. All the mea-
surements of the intensity over time were analyzed in order to eliminate the occasional
signals due to impurities o the sample, that affect all the analysis. To reduce the errors
coming from the fitting procedure of the correlation functions, we fitted the value of ω0
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Figure 2.18: Hydrodynamic radius of M13mp18 at different temperatures measured with FCS at
50 mM NaCl while increasing the temperature.

Figure 2.19: Average hydrodynamic radius of M13mp18 at different temperatures measured with
FCS at 50 mM NaCl while slowly decreasing the temperature.



40 2.9 Results

for both samples because it is reasonable that during the measurements the beam waist
would not change if the power of the laser remains the same. The measurements of the
first sample were done at a distance of 10µm from the focal plane of one focus, while for
the second the distance was increased up to 30µm to better avoid temperature gradients.

The samples used for the two curves have a different thermal histories. The first sam-
ple (see Fig.2.18) has been stored at -20◦C for some hours, thawed to 5◦C and then its
dimension was measured from 5◦C to 30◦C with steps of 2◦C. The second sample (see
Fig.2.19) was never frozen and has been stored at 5◦C for some hours before the mea-
surements. Then it was gently brought to 20◦C and then down to 10◦C. The RH was
measured from 10◦C to 25◦C at different intermediate steps. There are some differences
between the two measurements that can be accounted for the thermal history of the sam-
ples. The first sample has a bigger globule dimension than the second, probably because
the freezing procedure had caused the chain to suddenly fold into a globular configu-
ration that was not the minimum of energy, while for the second sample the cooling
process happened to be gentle and the chain could rearrange in a more favourable con-
figuration. As a consequence the temperature at which the transition occurs is different
for the two samples: the second sample has a higher transition temperature than the first
sample because the cooling procedure had allowed it to close more contacts and/or the
most energetic ones.

The second (Fig.2.19) FCS measurements confirm the DLS results: the hydrodynamic
radius of both coil and globule are similar to the one measured with DLS at the same
ionic strength. Also the transition between the two conformations occurs in the same
range of temperatures.

The intensity correlations measured in the range from 10 to 15◦C seem to have just
one decay that can be attributed to the ssDNA, to prove that the change from coil to
globular conformation happens gradually. In Fig.2.20 there are the intensity correlations
calculated from an acquisition at NN◦C. The light orange and the blue curves are the
auto-correlations measured at the two foci, while the dark orange curve is the cross-
correlation between the two foci.

Figure 2.20: Intensity correlation functions measured for the first sample at 15◦C and 50 mM NaCl.
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The measurements with the first sample were repeated while increasing and decreas-
ing the temperature, but the results were not the same. While decreasing the tempera-
ture the RH did non decrease and kept approximately the same dimension as for the
coil conformation. This behaviour could be due to a difference in the kinetics of the
sample during the cooling and heating processes. We couldn’t investigate further the
phenomenon, but specific measurements should be done.

The FCS measurements were strongly affected by the impurities inside the sample.
The purification of the linear ssDNA had an efficiency of about the 50%: almost half
of the primers used for the cut could not be eliminated. The primers used are bound
with the fluorophore so the FCS apparatus detects them and all the correlation functions
showed two decays, one with the shortest characteristic time that well describes the
theoretical motion of the primer and one of M13mp18. The presence of a population of
fluorescent primers adds an extra decaying function in the correlation fitting function
thus introducing one extra parameter. We measured the diffusion coefficient of a sample
of primers in solution (without M13mp18) and we constrained the fastest exponential of
the correlation function of the sample of M13mp18 to have this diffusion coefficient, in
such a way to eliminate the extra parameter from the fitting procedure.

2.10 Discussion

From DLS and FCS measurements we obtained some information about the dimension
in the coil state of the ssDNA chain studied, that is reasonable if compared to the stan-
dard polymer models. We also noticed that the dimension of the chain has a dependence
on the temperature. At low temperatures (the range depends on the ionic strength of the
solution) the chain is more compact while at high temperatures (approximately above
25◦C) the dimension of the chain grows. The values of the dimension in the two con-
formations are still uncertain because the results obtained with the different techniques
used are similar but not compatible. Also the kinetics of the measurements seem to affect
the dimensions. However we found a variation of the dimension of the chain (from 25
to 34 nm or from 22 to 30 using FCS at 50 mM NaCl, or from 22 to 30 through DLS at 50
mM and from 22 to 36 with 10 mM NaCl) while changing the temperature. The range of
temperatures at which the transition occurs (from 15 to 25◦C at 50 mM NaCl or form 5
to 20◦C at 10 mM NaCl) was measured with both techniques.

DLS and FCS measurements show that decreasing the temperature from 30 to 5◦C
the ssDNA changes its conformation from a swollen state to a more compact one. The
process must be a consequence of the intra-chain interactions that become stronger at
low temperatures and at higher ionic strength. Every time a contact closes a loop forms
in the chain because the contact involve only regions of the same chain. As shown before
it is possible to find all the interactions that may happen inside the chain, so we tried to
study the thermodynamics of these interactions to figure out the sequence of contacts
closure of the ssDNA while decreasing the temperature.

Each contact is described by the melting temperature (Tm), which is an indicator of
the strength of the contact. At temperatures lower than Tm the contact is closed, while at
higher it opens. There is an analytic model that allows to calculate the melting tempera-
ture of hairpins with a loop of n nucleotides if the entropy and enthalpy variation for a
loop of x bases are known [19], as shown in 2.56.

Tm =
∆H0

∆S
=

∆Hx

∆Sx + C1ln(nx )
(2.56)
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To use 2.56 we have to know the values of enthalpy (∆Hx) and entropy (∆Sx) for a hair-
pin of a loop length of x bases at the experimental ionic strength [19], that account for the
number and kind of bases involved in the hairpin, the DNA and the salt concentrations.
C1ln(nx ) is the entropy loss due to the formation of the loop of length n > x. This cal-
culation was validated by experimental measurements for a loop length up to 35 bases
[19]. For M13mp18 the possible loops are much bigger, up to thousands of bases, but
we used this formula because as explained below the scaling of the entropy loss due to
the formation of a loop has the same dependence on the length of the loop as in classical
polymer theory. The logaritmic factor on the 2.56 accounts for two phenomena. The first
is that a hairpin can bee seen as made by two complementary ssDNA sequences at an
effective concentration. This concentration is ceff = 1

V = 1
d3F

where dF is the end to end
distance of a chain of the same length of the loop. If the loop (made by L bases) is bigger
than the the number n of complementary bases (i.e. L >> bn) dF depends only on L.
The melting temperature of a duplex at the concentration ceff is then:

Tm =
∆H0

∆S0 +Rln(ceff )
(2.57)

when ∆H0 and ∆S0 are the enthalpic and entropic costs that depend on the kind of bases
involved. If we substitute ceff , the logaritmic term of 2.57 becomes

Rln(ceff ) = Rln(
1

d3
F

) = −3Rln(dF ) (2.58)

For an ideal chain described by a random walk it becomes

Rln(ceff ) = −3Rln(b)− 3

2
Rln(L) (2.59)

where b is the fixed dimension of the monomers. For a real chain there is a small differ-
ence, but the scaling with L is the same:

Rln(ceff ) = −3νRln(L) (2.60)

where ν is approximately 0,6 for a swollen chain.
The logaritmic term of 2.56 also depends on the entropy loss of the chain due to

the formation of a loop. After the hairpin closure the loop monomers have a smaller
conformational space than before, so their entropy decreases. In the classical polymer
theory the loss of entropy due to the loop formation is described by 2.61

∆S =
3

2
ln(L) (2.61)

where L is the length of the loop in monomer units [20][21].
The universality of 2.56 allows us to use it for loops of the order of up to thousands

of bases, even though it has been experimentally validated only for short loops.
We calculated the Tm of all the possible contacts considered so far for M13mp18 and

in Fig.2.21 we plotted the melting temperature as a function of the length of the loop. We
considered a salt concentration of 50 mM of NaCl and a starting loop of 3 thymines for
the first term of the denominator in 2.56. For the 12 and 11 basepairs contacts we used
the exact enthalpic and entropic values of the sequences from [22], as listed in table 2.2.
For the other possible contacts we could not use the exact values for the enthalpy and
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sequence contact length [monomers] ∆H [kcal/mol] ∆S [kcal/mol]
GTTTCCATTAAA 12 -84,6 -0,253
TCAGACGATTG 11 -81,1 -0.236
AGACGCTCGTT 11 -83,1 -0.235
GGTGCCGGAAA 11 -82,9 -0,232
GGTTCCGAAAT 11 -79,9 -0,231
TGAAATTGTTA 11 -75 -0,226
ATGAATTTTCT 11 -74,1 -0,223
CCTGTTTAGCT 11 -78,7 -0,228
GTTTATTTTGT 11 -76,8 -0,233
TAATTAATTTT 11 -71,6 -0.223

Table 2.2: Enthalpy and entropy variation [22] for the closure of the intra-chain contacts of 12 and
11 couples of bases and loop of three non interacting bases of M13mp18. Only one half of the
two complementary single stranded sequences is shown as contact sequence. The ionic strength
at which the parameters have been calculated is 50 mM NaCl.

Figure 2.21: Melting temperature of the possible contacts of M13mp18 as a function of the length
of they loop they would form. Contacts that involve a different number of bases are plotted in
different colors. The color code is the same of 2.3

entropy change because there were too many of them, so for every contact length we
considered the ∆Hx and ∆Sx corresponding to an average duplex made by 50% of GC
couples equally distributed along the sequence.

If we look at Fig.2.21 we notice that at 70◦C no contact is closed and the ssDNA is a
swollen coil because this temperature is higher than the melting temperature of any con-
tact. If we decrease the temperature down to 60◦C we reach the melting temperature of
a 11 base pair sequence between two regions distant 100 bases along the chain. This con-
tacts closes but does not affect much the conformation of the chain because the regions
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involved are very close. If the temperature is decreased till 20◦C there are other contacts
that close but all of them involve close regions of the chain. At about 16◦C there are two
contacts that involve 11 basepairs at a distance of about 3000 and 3500 bases along the
chain (see table 2.3).

contact name base sequence distance [monomers] Tm [◦C]
α TCAGACGATTG 3438 16.03
β AGACGCTCGTT 2898 16.01

Table 2.3: The two contacts with the highest melting temperature that involve regions of the chains
that are more than 2000 bases far away along the chain. The reported base sequence is the sequence
of one of the two complementary regions forming the contact. The other is complementary. The
distance is the number of monomers (nucleotides) that form the loop between the two contact
regions. Tm is calculated as in 2.56.

The closure of these contact strongly modifies the conformation of the chain and
brings closer points of the chain that were far apart before. The structure of the chain at
15◦C should resemble Fig.2.22. We called A the first nucleotide of the ssDNA, B the 285th
nucleotide (one region of contact α), C the 2004th nucleotide, that correspond to half of
the loop formed by contact α, D the 3723th nucleotide (the second region of contact α),
E the 3920th nucleotide (first region of contact β), F the 5369th nucleotide that indicates
half of the loop formed by contact B and G the 6818th nucleotide of the chain that is the
second region involved in contact β (see Fig.2.22).

Figure 2.22: Sketch of the conformation of M13mp18 at 15◦C after the closure of the two contacts
(α and β, table 2.3) involving 11 base pairs. The most distant regions of the chain that close while
decreasing the temperature from 15◦C to 10◦C are shown by crosses. Firstly the magenta contact
closes, then the dark green, the light blue and then the light green.

It is not easy to calculate the theoretical dimension of a chain in such conformation,
but we can approximate the chain as a Gaussian star polymer with three arms made by
2400 monomers that is the average length between the half lengths of the two loops and
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the linear piece sequence from base 1 to point B of Fig.2.22. From the classical theory
of Gaussian chains [14] the hydrodynamic radii RH of linear and star polymers can be
calculated as in 2.62.

RH,lin =

[
128

3π

1

b
√
N

]−1

RH,star =

[
128

3π

1

b
√
N

(
√

2− 1)(
√

2 + nA)

nA

]−1

(2.62)

where in the linear polymer N is the number of monomers while in the star N stands
for the number of monomers of each arm of the star polymer, nA is the number of arms
of the star polymer and b is the Kuhn length, that is 1.5 A for ssDNA. we calculated
the RH of a linear polymer made by 7429 bases that corresponds to a polymer chain of
2899 monomers with a Kuhn length of 1,5 A and we obtained 22 nm. The RH of a star
polymer of 3 branches of 2400 monomers each (i.e. 960 monomers with a Kuhn length
of 1,5 nm) is 20 nm. The ratio between the two is 94%, that has to be compared with
the measured ratio between the RH at 15◦C and 30◦C that is 77%, while between 10◦C
and 30◦C is 70%. The two ratios are not compatible, but this difference could be due to
the rough approximation of the two loop as two single stranded sequences of half of the
length.

The closure of contacts α and β causes the compaction of the chain, and as a con-
sequence changes the melting temperature of many contacts. In this configuration we
recalculated the melting temperature of still open contacts and we noticed (Fig.2.23) that
some of them increase their Tm because the loop length decreases . In fact it becomes the
smallest distance along the chain between the two regions of a contact. For example a
contact between 10 base pairs between the sequences 3329-3339 and 273-283 has a Tm of
6◦C before the closure of contacts α and β because the loop that should form consisted
of 3056 bases. After the closure of α and β the loop that the 10 bp contact should form is
decreased to l = (D− 3329) + (273−B) = (3723− 3329) + (283− 285) = 396 bases if we
neglect the length of the pairing region. The melting temperature increases and becomes
23◦C.

The loop calculation was implemented as follows. For every possible contact we
listed the two regions involved by indicating only the nucleotide at the 5’ end of each
region. We called r1 the region whose nucleotide number was bigger and r2 the other.
Then we considered different cases as r1 and r2 were located in different positions of the
chain.

1. If r1 < B the loop length expressed in units of number of bases is l = r2 − r1 − n
where n is the number of bases involved in the contact. Typically n is negligible
respect to l, so for sake of simplicity we will write just l = r2 − r1 from now on.

2. If B < r1 < D and

• B < r2 < D the contact introduces two loops in the chain, whose lengths are
l1 = r1 − r2 and l2 = (D − r1) + (r2 −B)

• r2 < B

– if r1 − r2 > (D −B)/2 + (B − r2) then l = (D − r1) + (B − r2)

– if r1 − r2 > (D −B)/2 + (B − r2) then l = r2 − r1

3. D < r1 < E and

• C < r2 < E then l = r2 − r1

• B < r2 < C then l = (r1 −D) + (r2 −B)
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• r2 < B then l = (r1 −D) + (B − r2)

4. E < r1 < F and

• C < r2 < F then l = (r1 −D) + (r2 −B)

• B < r2 < C then l = (r1 −D) + (r2 −B)

• r2 < B then l = (r1 −D) + (B − r2)

5. F < r1 < G and

• F < r2 < G then l = r2 − r1

• E < r2 < F then two new loops form, whose lengths are l1 = r1 − r2 and
l2 = (G− r1) + (r2 − E)

• C < r2 < E then l = (G− r1) + (E − r2)

• B < r2 < C then l = (G− r1) + (E −D) + (r2 −B)

• r2 < B then l = (G− r1) + (E −D) + (B − r2)

6. G < r1 < H and

• F < r2 < G then l = r2 − r1

• E < r2 < F then l = (r1 −G) + (r2 − E)

• C < r2 < E then l = (r1 − g) + (E − r2)

• B < r2 < C then l = (r1 −G) + (E −D)(r2 −B)

• r2 < B then l = (r1 −G) + (E −D) + (B − r2)

All the contacts whose melting temperature becomes higher than contacts α and β
after the closure of α and β, immediately close after them. These contacts should close
just after the closure of contacts α and β at 16◦C and should increase the compaction of
the chain. It is not easy to predict which of these contact effectively closes because every
closure implies the formation of a segment of double helix and some very close regions
of the chain are involved in more than one contact.

2.11 Conclusions

We have investigated the coil to globule transition of a single-stranded chain of DNA
taken from a viral plasmid (M13mp18) as a model of heteropolymer. Firstly we charac-
terized the distribution of the interactions (contacts) within regions of the same polymer
comparing it to a random sequence. Specifically, in section 2.1 we studied the number of
possible contacts as a function of the number of nucleobases involved, and the distribu-
tion of the interacting sequences along the chain. We found no peculiar structures that
could distinguish M13mp18 from a random sequence with the same percentage of A, T,
G and C bases.

Secondly we measured with Dynamic Light Scattering and Fluorescence Correlation
Spectroscopy the hydrodynamic radius of M13mp18 at different temperatures and with
different procedures. In sections 2.9.1 and 2.9.2 the results are shown. We found two
characteristic dimensions, around 20 nm at low temperatures and approximately 30 nm
at high temperatures, that are connected by a transition that occurs at about 15◦C. The
amplitude of the temperature transition region is found to depend of the rate of temper-
ature decrease/increase. This difference brings to the conclusion that the folding and
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Figure 2.23: Melting temperature of the possible contacts as a function of the length of the loop
after the closure of contacts α and β. The color code is the same of 2.3

unfolding kinetics depend on the rate of temperature decrease/ increase, but we could
not explore this issue so far.

Thirdly, we tried to interpret the thermodynamics of the observed coil to globule
transition of M13mp18 in order to understand which contacts close at a given tempera-
ture within the experimental range (see section 2.10). We listed all the possible pairs of
segments of the chain that could interact together to form segments of double helix, and
we calculated for each of them the melting temperature. This quantity is the temperature
below which the corresponding contact closes. It depends on the length on the segments
involved and on the distance l along the chain of the two complementary segments. We
built a map of the melting temperature as a function of l for all the possible contacts and
we found that at about 15◦C there are two contacts that involve a large number of bases
and have the highest melting temperature though having a large l, of about 3000 bases.
The closure of these two contacts causes a big compaction of the polymer because they
involve segments of the chain that are far apart along the chain. This discovery is com-
patible with the experimental observations having a transition at the same temperature.





CHAPTER 3

Liquid crystals

The liquid crystalline LC phase is an intermediate phase between the crystalline and
isotropic phase. The molecules of a crystal are characterized by a long range 3-D or-
der, while the molecules of an isotropic liquid are not arranged in any ordered way, nor
even locally. Instead the molecules composing a liquid crystal are disposed in a partial
ordered way. Typically a molecule that forms LC phases can be thought to have some
shape anisotropy, such as an elongated or discoidal shape. These kind of molecules are
often composed by a rigid part that is responsible for the steric interactions that brings to
the partial ordering, and also by a flexible part that confers fluidity to the phase. More-
over also solutions of amphiphilic molecules form LC crystalline phases. The reason of
the formation of such ordered phases has to be found in the structure of the molecules,
that have a polar head and an hydrophobic tail. These molecules interact one with the
other forming linear aggregates that have the hydrophobic components on the internal
part and the polar ones at the outer part. Such discoidal aggregates then interact together
to minimize the exposition of the hydrophobic parts to water and form long aggregates
that exhibit LC ordering at some conditions.

3.1 Some liquid crystalline phases

The liquid crystalline phases can be organized in four big categories, often visible in
the same substance with different environmental conditions. There is a commonly used
classification of the LC phases based on the number of translational correlations between
the molecules. The phase without translational correlations is called nematic phase. If
the correlations are one-dimensional than we have the smectic phase; when the correla-
tions become two-dimensional we find the columnar phase and then there are other LC
phases with 3-D correlations.

3.1.1 Nematic phase

The most simple kind of nematic phase is the uniaxial nematic, shown in Fig.3.1.
In a uniaxial nematic phase the molecules have an average orientation around the

nematic director n. It is not a crystalline phase, so the orientation is not the same for all
the molecules but there is an average direction around which they fluctuate. The degree
of order of a nematic phase is quantified by the order parameter S, that is defined as
follows:

S =
1

2
〈3 cos2 ϑ− 1〉 (3.1)

where ϑ is the angle between the nematic director and the longitudinal axis of each
molecule. The average in 3.1 is a statistical average, calculated over all molecules and
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Figure 3.1: Uniaxial nematic phase where a is the axis of one molecule and n is the nematic director.

time. S of a isotropic fluid would be none, while it would become 1 in a perfectly ordered
phase. For a nematic phase S assumes values in between 0 and 1.

If the molecule composing the nematic phase are chiral, than also the nematic phase
becomes chiral and is called cholesteric (N∗). The only difference between cholesteric
and nematic phase is the presence of a macroscopic chiral structure that originates spon-
taneously due to the same chirality of the molecules. For example if the molecules are
helical then the nematic phase they form develops a helical structure whose principal
axis is perpendicular to the nematic director. This cholesteric phase can be thought as
formed by nematic layers which are tilted one from the other like shown in Fig.3.2. The
direction of the nematic vector is different for every layer and can be described by some
simple relations, if we consider the axis χ as in Fig.3.2:

n = n(χ) =

 cos (2πχ/P + φ0)
sin (2πχ/P + φ0)

0

 (3.2)

where P is the pitch of the macroscopic helix. it is positive for a right-handed helix and
negative for a left-handed one. φ0 is a constant that depends of the conditions at the
boundaries.

3.1.2 Smectic phase

The smectic phase is characterized by a almost full one-dimensional translational order
and by a sinusoidal distribution of the centers of mass of the molecules. As we can see
in Fig.3.3, the molecules composing the phase form compact layers in which they are on
average parallel to each other, then in the spacing between the layers they behave like a
fluid.
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Figure 3.2: Cholesteric phase formed by helical molecules. The direction of the nematic vector is
shown.

Figure 3.3: Smectic phase of kind A and C, characterized by two different average directions of
the molecules.
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3.1.3 Columnar phase

The columnar phase is observed in solutions of lyotropic or discoidal molecules like
chromonics. Typically the molecules are disposed one over the other in different columns
but with a variable distance between them. The most common columnar structure is the
hexagonal one, shown in Fig.3.4, but there other less probable structures. The columnar

Figure 3.4: Example of a hexagonal columnar phase.

phase is different from a crystal because the columns that are formed can slid one from
the other and every molecule is free to rotate around its main axis.

3.2 Formation of a LC phases

The formation of a liquid crystalline phase in a sample of molecules is caused by the
anisotropy of the molecules and by the steric interactions. Usually a sample exhibits
a simple transition between the isotropic and the LC phase. This transition has been
understood for the first time by Onsager in 1949 studying a suspension of stiff cylindri-
cal rods that interact via steric repulsion only. At fixed temperature the free energy of
the system has just an entropic contribution. In the isotropic phase the rods all direc-
tions with the same probability so the total entropy of the sample seems to be higher
than the entropy of the same sample ordered in a LC phase. However we must con-
sider that, within a certain concentration range, in the LC phase the rods can translate
more freely than in the isotropic phase, and the excluded volume for a rod due to the
presence of a second one is minimum in this situation. Consequently above a critical
concentration the entropic contribution related to the LC phase becomes higher than the
isotropic contribution of the isotropic phase, so the LC phase becomes favourite than the
isotropic. Onsager demonstrated that the phase transition that the system undergoes
when it reaches the critical concentration is of the first order. The critical concentration
for a sample made of elongated molecules can be expressed through the critical volume
fraction φ, that is the ratio between the total volume of the molecules and the volume of
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the solution. D is the diameter of the molecules, L their length and c is the concentration
that is calculated as the ratio between the number of molecules and the total volume of
the solution.

φ = c
1

4
πLD2 (3.3)

Onsager theory applies to a simplified situation in which the molecules interact only
via steric repulsion. In a real sample there are always many complicated interactions,
but some of them in principle can be modelled with the steric interaction. Some nec-
essary conditions for the formation of the LC phases are that the volume fraction φ of
the sample must be small (φ � 1) and that the elongation of the molecules must satisfy
the following relation: L� D. From these two conditions we can calculate the smallest
volume fraction that is necessary to observe a nematic phase in a sample of elongated
molecules of diameter D and length L: φ ∼ 4D/L.

There are several computational models that apply Onsager theory to different kind
of molecules. Starting from the steric interactions, they progressively introduce dif-
ferent and complicated interactions between the molecules or even peculiarities of the
shape of the molecules, such as polydispersity of the sample or flexibility. Studies were
made on solutions of charged elongated molecules, because the electrostatic interaction
can be modeled with the steric interaction just in the isotropic phase, while when the
molecules have some average orientation they interact differently depending on their
relative orientation. Thus the electrostatic interactions increase the critical concentration
cI−N above which the nematic phase if formed and reduces the order parameter of the
nematic phase in isotropic-nematic coexistence. If we introduce some flexibility of the
molecules we notice that cI−N increases, and also the concentrations of the smectic and
columnar phases. The polydispersity suppress the formation of the smectic phase be-
cause it is difficult to obtain a one-dimensional translational order with molecules with
different lengths.

3.2.1 Living polymers

Many kind of molecules like some proteins or chromonics, that don’t have sufficient
shape anisotropy for the formation of LC phases, when put in a solution spontaneously
form elongated aggregates that become long enough to have the anisotropy required by
Onsager rules. It has been observed that for some molecules at low temperatures the free
energy associate to the polymerization process favors the aggregation of the monomers.
This peculiar kind of molecules are called living polymers. They usually form LC phases
because the formation of elongated aggregates yield the ordering of the phase, but also
the nucleation of an even partially ordered phase helps the polymerization process. This
interplay between polymerization and order is fundamental in understanding the for-
mation and the stability of the LC phases of DNA.

It is possible to define a melting temperature of the nematic phase of a solution of liv-
ing polymers, that is the temperature at which the sample undergoes from a nematic to
an isotropic phase. The melting temperature of the phase provides a tool to measure the
binding energy between the molecules and gives an estimate of the length of the aggre-
gates. It is possible to find an analytic expression for the average number of molecules
per aggregate< i > (see equation 3.4) that depend on the density ρ of the sample, i.e. the
ratio between the number of molecules and the total volume of the solution, v0 that is the
accessible volume for every molecule if the consecutive is kept fixed, ∆S is the entropy
variation due to the polymerization of the system, β = 1/kBT and ε is the absolute value
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Figure 3.5: Phase diagram of self aggregating elongated molecules. φ is the volume fraction of the
molecules, vp the volume of the single molecule and T the temperature of the system. Shadowed
areas indicate the coexistence region, while the vertical dotted lines are the steric limit for the
packing. Points from a to f stand for different effective temperatures of the sample.[23]

of the binding energy between a couple of molecules.

< i >=
1

2

(
1 +

√
1 + 4ρv0e−∆S/kBeβε

)
(3.4)

3.3 LC phases of DNA

From the ’40s it has been known that the double helix of DNA in aqueous solutions forms
LC phases. This fact plays also a fundamental role in the discovery of the shape of double
stranded DNA. In fact, the columnar ordering of long helices of DNA where every col-
umn of duplexes is free to translate along its axis, enhances the molecular structure factor
when observed through X-rays scattering. Many studies were done on solutions of long
(from N=107 to N=100 base pairs) double stranded DNA molecules, that revealed the
formation of isotropic (I), chiral nematic (N∗), columnar (C) and crystalline (X) phases
at increasing concentration. The formation of such phases can be explained through On-
sager theory: he described a system of elongated monodispersed molecules of length
L and diameter D that develop LC phases. If they are sufficiently elongated they can
order to form a nematic phase if their volume fraction φ > φIN = 4D/L ∼ 247N , where
D ' 2nm and L ' N/3nm for a B-form of DNA. Bolhuis and Frenkel performed some
simulations on a system of hard rods and confirmed this prediction from a quantitative
point of view for L/D > 4, 7 (i.e. a DNA double helix of 28 base pairs), and they also
show that for L/D < 4, 7 there are no LC phases for any φ value. If we superimpose the
experimentally measured phase diagrams of a solution of long DNA (lDNA, made by
approximately 150 base pairs) to the simulated phase diagram we can observe an almost
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quantitative compatibility with Onsager theory.
When observed by an optical microscope the cholesteric phase of lDNA exhibit a

variety of different textures:

• when we observe a portion of phase whose cholesteric axis is parallel to the plane
of the sample, we see some periodic fringes called fingerprints. The periodicity
is due to the continuous rotation of the axis of each molecule around the sample
plane, like shown in Fig.3.6 and 3.7 on the left. The period of the modulations of
intensity corresponds to half of the cholesteric pitch, as better explained in chapter
2.6.1.

• when the cholesteric axis is perpendicular to the plane of the sample we observe
textures that can be characterized by precise color if the cholesteric pitch is in be-
tween 0, 2 and 0, 4µm (see Fig.3.2 on the left).

Figure 3.6: (a) Scheme of the cholesteric phase of a solution of lDNA. (b) Projection of the nematic
director along the direction perpendicular to the helix axis, (c) section along the cleaving plane
and (d) representation of the duplexes of the superior layer. [24]

3.4 LC phases of short duplexes of DNA

It has been recently discovered that also short DNA duplexes (from 6 to 20 base pairs)
show LC ordering [25] [26]. For these molecules the ratio between the length and the di-
ameter is much smaller than the smallest ratio necessary for the formation of LC phases
predicted from Onsager theory. The formation of LC phases in a solution of not enough
elongated molecules cannot be explained just on the basis of Onsager theory, but it is
necessary to assume that the molecules interact and form long linear aggregates that be-
have like molecules with the same diameter than before but with bigger length. Upon
changing the composition of the solvent or the temperature, the phase is destroyed and
then restored, so the assembly process is reversible. LC phases of many short DNA
sequences were studied (see Fig.3.8) and in particular the nematic phase was well char-
acterized. The sequences studied can be divided into two categories as a function of the
conformation of the terminals. In fact many sequences of Fig.3.8 are self-complementary,
as shown for example in Fig.3.9: such sequences are named blunt ended sequences (BE)
in opposition to the sticky ended sequences (SE). The difference between the two kind of
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Figure 3.7: Example of cholesteric texture of a solution of lDNA when the cholesteric axis is par-
allel to the plane of the sample (on the left) or perpendicular (on the right). [24]
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sequences emerges clearly in the process of polymerization between two duplexes. For
SE duplexes the end of one molecule can bind to the end of another molecule and the
energy variation due to the closure of the bond consists of two terms, one comes from
the pairing interaction and one from the stacking interaction. Instead for BE sequences
the bond between two duplexes is weaker because there is no pairing contribution.

Figure 3.8: Summary of the fundamental properties of the cholesteric phase observed in solutions
of different short duplexes of DNA. For each are listed the name of the sequence, the number of
bases, the structure of the terminals, the concentration of the nematic phase, the cholesteric pitch,
its behaviour with temperature and concentration and the chirality of the phase. INC stands for
increasing, while DEC for decreasing. L determines a left handed phase, and R a right handed
phase.[26]
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Figure 3.9: Example of one BE duplex (on the top) and one SE duplex (on the bottom)

The shape of the end of the duplexes influence also the average length of the linear ag-
gregates that form due to the polymerization process. In Fig.3.10 such length is shown
(M ), while φ is the volume fraction, as a function of SE or BE terminal. X0 is the ratio
between the length and the diameter of the duplex, that for example is approximately 2
for 12mers. If we change the conformation of the end of the duplex we change automat-
ically the interaction energy between two duplexes. For BE sequences its value is lower
than for SE sequences. From Fig.3.10 we can notice that the aggregates are composed
by a small number of duplexes till φ ≤ 0, 3 − 0, 4, then as φ is increased the aggregates
increase suddenly to form the nematic phase.

The nematic phase that is observed in the different DNA sequences listed in Fig.3.8can
be classified on the basis of the chirality and the length of pitch at a fixed temperature.
Usually a cholesteric phase is left handed if going through it towards the observer in the
direction perpendicular to the nematic director, i.e. in the same direction of the helical
axis, the nematic director is seen to rotate clockwise. On the contrary, a circularly po-
larized beam of light is left handed if the electric field that goes through the observer
rotates counter-clockwise.

Fig.3.8 shows that cholesteric phases of short DNA duplexes have a wider variety
of pitches and handedness than the phase formed by long DNA. The reason of such
variety is still unknown because it is not straightforward to predict the characteristics
of the cholesteric phase from the sequence of DNA from a known phase. It is not still
clear how to predict the phase from the sequence of DNA for the already studied se-
quences of Fig.3.8. There are some models that try to connect sequence and phase; the
classical model developed by Straley considers only the steric interactions (see Fig.3.11)
between the molecules and predicts the cholesteric phase to have the opposite handed-
ness than the observed one. Recently some models were developed that consider also
the electrostatic interactions between the molecules [27]. Such models allow to calculate
the energy of the interaction between two helices as a function of the reciprocal orienta-
tion following two strategies: the duplexes are considered as cylinders with a helicoidal
chains of electrostatic charges and counterions along the side, or they are modelled as
charged helices. The handedness of the cholesteric phase of a solution of lDNA is cor-
rectly predicted only by the second model. In these models the electrostatic and steric
contributions are represented by two constants, kt that represents the chirality of the
phase and k22 that is elastic and tries to get the helices parallel. The ratio between the
two constants is connected to the cholesteric pitch:

p = −2π
k22

kt
(3.5)

In the second model in particular the competition between the two forces is en-
hanced. The chiral forces yield to a decrease of the cholesteric pitch, while the elastic
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forces restore the parallelism between the helices. The elastic term does not show a
strong dependance from the peculiar configuration of the microscopic structure of the
duplexes. For the chiral forces the dependances are the opposite. In k22 the elastic forces
are represented, while in kt both elastic and steric contributions are present. In Fig3.12
are represented both contributions that yield to the determination of the value of kt. The
two contribution have an opposite effect on the constant.

Figure 3.10: Average length of the aggregates in monomer units as a function of φ for sequences
of about 12 couples of bases and for different values of the interaction energy between the duplex
ends. Symbols come from MC simulations, while the dotted lines from theoretical models. [28]

Figure 3.11: Steric interactions between two duplexes. [27]
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Figure 3.12: Scheme of a duplex of DNA as a cylinder with helical lines of negative electric charges
and positive counterions on the side.



CHAPTER 4

Liquid crystal ordering of B-DNA duplexes: extracting the
interactions from the phase boundaries.

The discovery of LC ordering of DNA oligomer duplexes introduced and described in
chapter 3 of this thesis brought about the notion that stacking interactions between dis-
tinct blunt ended duplexes is strong enough to guide supra molecular ordering. At the
time of the discovery this finding appeared somewhat surprising since there are no clean
examples of the effects of such stacking in biological observations. At the same time this
discovery brought in awareness that, while the stacking interaction between coupled
bases within each single duplexes is quite well characterized, the stacking interaction
between independent duplexes is currently not well known [29][30]. A few works are
instead available on a somewhat intermediate condition, the stacking interactions within
duplexes with a nick usually referred to as coaxial stacking. Despite the contradictory
results offered by these two works, they nonetheless clarify that the additional degree
of freedom provided by the nick yields a stronger stacking interactions with respect
to chemically continuous double helices (∆G ∼ 1, 4kcal/mol for intra-helix stacking at
37◦C [22], while ∆G ∼ 1, 7kcal/mol with a nick [7]).

Following the discovery of short DNA LC, a few models were proposed to account
for the onset of ordering in such weakly interacting monomers. Two independent ap-
proaches were developed by modelling the DNA oligomer duplexes as simple geomet-
rics solids, i.e. cylinders [31] or superquadrics [28], which are effectively cylinders with
smoothed edges. In both models stacking is introduces as an attractive potential between
the terminal bases, which induces linear aggregation of the monomers. The interaction
is modelled as a square potential [28] or as truncated polynomial that decays as the dis-
tance between the ends of the duplexes is increased [31]. Both models turned to be quite
successful in clarifying that for sufficient volume fractions even a moderate attraction
could indeed give rise to both nematic and columnar phases. Both models indicate that
the ordering transition toward the LC is very discontinuous, more than what predicted
and observed in assemblies of rigid rod-like particles. Across the transition, the system
not only develops orientational ordering but also undergoes a markedly discontinuous
enhancement in the mean length of the aggregates. Therefore the significant effect of
the weak stacking interaction is understood as carried by a positive feedback between
aggregation and entropically driven ordering. Thus the onset of LC ordering can be
effectively considered as a form of amplification of the stacking interactions.

By following a different approach, Maffeo et al [29] investigated the basics of the
observed LC ordering through an extended all atom simulations of a solution of DNA
duplexes. In particular they carefully investigated the stacking interaction between in-
dependent duplexes extracting the potential of mean force as a function of the mutual
duplex positions and azimuthal angle. Quite remarkably the interaction strength they
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obtain (∆G ∼ 6kcal/mol at 37
◦
C) is markedly larger than the one within continuous he-

lices. They also found a strong dependence of the interaction strength on the azimuthal
angle.

The aim of the work described in this chapter was to build on this recently developed
knowledge to reverse the process, using the collective behaviour of DNA oligomer du-
plexes to extract new information on the stacking interaction between independent he-
lices. This is done by combining the coarse grained models with information extracted
from the atomistic simulations as follows.

First, we experimentally determined the isotropic-nematic phase boundaries for a
model sequence of a DNA oligomer. Specifically, we chose a DNA 12mer (’AllAT’) which
is known by previous crystallographic investigations to yield semi-ideal B-DNA helices.
[32] This choice provided the best experimental approximation to the simplified geome-
tries adopted in the coarse grained models. Moreover, we considered both natural DNA
oligomers and racemic mixtures of the enantiomers of AllAT to ensure that the observed
phase behaviour was dependent only on stacking and not on potentially complex details
of side-side DNA repulsion. The experiments enabled determining the DNA concentra-
tion at which LC is formed and the coexistence range as a function of temperature. They
also enabled determining the temperature dependence of the nematic order parameter
up to the phase melting.

Second, we adopted the model by De Michele et al. to extract from the phase bound-
aries a simplified characterization of the interaction. The advantage of this model over
the one of Glaser [31] is that it enables an explicit computation of the phase boundaries
once a set of interaction parameters are adopted. In particular, by this comparison we
determined the temperature dependence of the interaction strength and of the persis-
tence length of the aggregates. However, the strength of this model is also its weakness:
the knowledge of these two parameters is difficult to map into a characterization of the
strength of the stacking interaction, as fully described in this chapter.

Third, we extended the model by De Michele et al. by incorporating into it some
information which were made available by the atomistic simulations. Indeed, through a
collaborative work with Maffeo and Aksimentiev, we determined the detailed shape of
the stacking interactions for AllAT resulting from atomistic simulations. On the basis of
this potential we computed the parameters necessary for the calculation of the phase dia-
gram as implemented by De Michele et al. to extract the depth of the stacking interaction
as a function of temperature.

The outcome of this research program is two sided. On the one hand we demon-
strated that the whole approach is effective, enabling us to extract a specific values for the
parameters at play. On the other hand it became apparent that the stacking interaction
resulting from atomistic simulations is too narrow ranged to justify our experimental ob-
servations. It has been known for quite a while that atomistic simulations overestimate
stacking interactions, so in principle this could be due to this effect of narrow ranged
interaction. However, as discussed later in the chapter, we are at the moment adopting
a distinct interpretation of this observation. To perform the atomistic simulations the
terminal bases of the duplexes were artificially locked effectively reducing the range for
base to base interactions. This procedure was adopted even in the previous publications
[29]. A new set of atomistic simulations performed with free terminal bases is currently
under way. We expect that this new degree of freedom will significantly expand the
interaction range. Whether or not this will be sufficient to account for the experimen-
tal observations and thus to lead to a new experimental determination of the stacking
interaction between independent duplexes, will be thus discovered in the near future.
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4.1 Sequence

The studied sequence is 5’-AATAAATTTATT-3’ (allAT), a self-complementary 12mer. To
perform this study we selected a sequence that has a 3D structure very close to the B-
form of DNA. The crystallographic shape of AllAT was studied and it was found to be
closer to an ideal double helix than other sequences, like for example the Dickerson Do-
decamer [32] [27]. In solution the conformation of AllAT is still not determined but we
rely of the fact that in sufficiently stabilizing buffers the shape of AllAT should be closer
to a classical double helix than other sequences. Another reason why we chose to study
AllAT is that this is a self-complementary sequence. It means that two identical strands
of AllAT form a blunt ended double helix. If the sequence was not self-complementary
we would have had to dissolve two complementary sequences to obtain a solution of du-
plexes and also to balance their stoichiometric ratio to avoid possible excess of one or the
other sequence. Using a self-complementary sequences simplifies the sample prepara-
tion process. Moreover it was recently observed that AllAT duplexes in solution formed
a cholesteric phase and the concentration at which this happens was determined, but no
further characterization was done (see Fig.4.2a)) [26].

We studied the interactions between the ends of duplexes of AllAT through the char-
acterization of the nematic phase they form. To do so we compared the experimental
measurements to a coarse grained model predicts the concentrations of formation of a
nematic phase of rigid cylinders. Such model is developed for molecules that are not
chiral and thus predicts the formation of a uniaxial nematic phase. The AllAT duplexes
instead are intrinsically chiral molecules so the expected LC phase is a chiral nematic
[33] [34] [35]. The model also predicts the value order parameter as a function of the
concentration and the temperature, so we tried to compare the measured parameter to
the calculated one. The order parameter is a difficult quantity to measure in a cholesteric
phase, so we chose to study a non chiral nematic phase formed by mixing common
right-handed (D-DNA) with left-handed DNA (L-DNA) sequences in equal quantities
to form racemic allAT mixtures. The L-DNA are produced by NOXXON PHARMA A.G.
for pharmacological purposes, and they are made with the same nucleobases and phos-
phate groups of the right handed, but with the sugar that is mirror symmetric to the con-
ventional deoxyribose. As a result the double helices formed by left handed sequences
are the mirror symmetric of the right handed ones [36]. Because of the enantioselectivity
of Watson-Crick interactions left- and right-handed sequences do not bind together, so
mixtures of allAT enantiomers in solution form left- and right-handed double helices.
We had already roughly mixed two enantiomers of the same sequence and we observed
that they develop a nematic phase with a small chiral twist [37]. We tried then to care-
fully balance the quantities of the two enantiomers in order to obtain a uniaxial nematic
phase. For this purpose the racemic solutions were assembled with a circular dichroism
(CD) device. A solution of right-handed duplexes when measured with CD at 20C has
an absorbance spectrum like in Fig.4.1(a), while the left-handed spectrum has symmetric
shape (see Fig.4.1). We mixed the two enantiomers in equal quantities and we manually
corrected the ratio between the two till we measured a CD spectrum that show no feature
attributable to an excess of one enantiomer or the other.

4.2 Sample preparation

AllAT sequences were synthesized from Noxxon Pharma AG., HPLC purified, liophilized
and then resuspended in our laboratory to be dialized separately in a bath of 5mM NaCl.
Then they were liophilized again. After this process, to build the LC samples the AllAT
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Figure 4.1: Circular dichroism spectra of a solution of (a) right-handed AllAT (dotted black line),
left-handed AllAT (solid black line), (b) a racemic mixture of the two enantiomers (red line) and
the baseline (black line). All the solutions were concentrated at 0,2 g/l DNA.
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sequences were dissolved in water at a concentration of about 30 mg/ml with no added
salt or with 1,8M of NaCl. They were further concentrated by evaporation, closed in flat
cells with d = 20 µm gap between the glass plates, sealed with fluorinated oil, and aged
and thermally cycled to ensure uniformity of concentration within each cell.

4.3 AllAT nematic phase

We studied the nematic phases of water solutions made by:

• racemic allAT without NaCl added,

• racemic allAT at 1,8M of NaCl,

• only D-allAT at 1,8M of NaCl,

• only L-allAT at 1,8M of NaCl.

We observed the formation of a chiral nematic phase in both samples of D-AllAT and
L-AllAT (see for example Fig.4.2(a)), while the samples of racemic mixtures showed no
sign of chirality (see Fig.
refnemallat1(b)).

Figure 4.2: Polarized optical microscopy image of a nematic phase of a) a solution of D-allAT at a
concentration of 595 g/l of DNA with 1,8M of NaCl and b) racemic allAT with 1,8M of NaCl at a
concentration of 580 g/l. The images were taken with crossed analy¡er and polarizer, so the black
regions are the one with isotropic phase. c) Racemic allAT without added salt at a concentration of
590 g/l d) the same racemic sample rotated by 45◦. All images were taken with crossed analyzer
and polarizer.

From Figs.4.2b) and 4.2c) we deduce that the phase is nematic and aligned in the
plane of the cell. Since intensity of the phase greatly changes by rotating the sample (i.e.
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the nematic director) of about 45◦ between crossed polarizers, almost all the helices are
parallel to the analyzer or to the polarizer when the intensity is extinguished, while they
are rotated by 45◦ from the polarizer or the analyzer at the maximum of the intensity.

4.3.1 Phase diagram of nematic allAT

For each of the four solutions we prepared many different samples exploring the range of
concentrations and temperature where the nematic phase was formed. Within the range
of existence of the nematic phase, we measured the melting temperature Tm and the
DNA concentration. We defined as the melting temperature the temperature at which
the all the phase was melted. It gives an indirect measurement of the strength of the
interactions between the duplexes. As the temperature is increased nematic phase of
DNA duplexes melts because the stacking interactions between the helices decrease. To
measure the Tm we heated (1◦C per minute) each sample. For example if a sample was
found to be nematic at RT, while increasing the temperature the nematic phase started
to melt, till at tm is became completely isotropic. Indeed there is a temperature range in
which we observed the coexistence between the isotropic and the nematic phases. We
called T0 the temperature at which the nematic phase started to melt. Then we calculated
the coexistence temperature range as ∆T = Tm − T0.

The DNA concentration was measured for all the samples with an optical microscope
and through an Fabry-Perot technique (see chapter 2.6.1).

The nematic phase of racemic mixture of AllAT sequences was studied as first. We
observed that at 20◦C the phase is isotropic below 500 g/l of DNA while above 550
g/l it is nematic. In between the two concentrations we found a phase coexistence. In
Fig.4.3 we plotted the Tm versus the DNA concentration. The straight lines (Tm(c)) fits
the dataset. Above those lines the phase is isotropic.

The horizontal error bars of Fig.4.3 are the uncertainties on the concentration mea-
surements. They are very large due to the intrinsic difficulty of measuring the concen-
tration. We could not prepare the samples with the exact concentration in order to avoid
this measurement because this would require a large amount of sample. Moreover a so-
lution of DNA and water at the concentration necessary to form the nematic phase has
a high viscosity and is difficult to handle.

As explained in chapter 2.6.1 the DNA concentration in a nematic phase is here mea-
sured from the refractive index of the solution. The origin of this large error on the
DNA concentration is in the weak sensitivity of the refractive index on the concentra-
tion. Indeed an error of 10−3 in the refractive index correspond a large error in the
concentration, but unfortunately we could not find a better method to obtain the DNA
concentration of the nematic phase. We tried to partially compensate this problem by
repeating the measurements a large number of ties in independent prepared cells. The
results are plotted in Fig.4.3.

For the temperature range of ∆T = Tm − T0 (the vertical lines, whose ends are Tm
and T0) we observed a coexistence between isotropic and nematic phases, while below
T0 the phase is nematic.

We tried to further reduce the noise of the phase diagram by considering the temper-
ature range ∆T = Tm − T0 of the phase coexistence. When measured the ∆T is plotted
as a vertical line, whose ends are Tm and T0. Between those temperatures we observed a
coexistence between isotropic and nematic phases, while below T0 the phase is nematic.
In Fig.4.4 we plotted the temperature range of the isotropic-nematic coexistence vs the
melting temperature for many different concentrations. The measurements of ∆T and
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Figure 4.3: Tm vs DNA concentration for the racemic mixture of AllAT without added salt. The red
straight line is the fitting line of the green dots and provide the phase boundary of the isotropic
phase. The blue line is the phase boundary of the nematic phase calculated through the data
plotted in Fig.4.4 as explained in the text. In between the blue and the red lines we observed
isotropic-nematic phase coexistence.

Tm seem to be affected by smaller errors than the measurement of the DNA concentra-
tion. The data were fitted with a straight line, ∆T (tm).

From the phase diagram of Fig.4.3 we would like to extract the concentrations of
the isotropic-nematic phase boundaries to compare them with the one calculated for the
coarse grained model.

The contribution of Figs.4.3 and 4.4 enables us to derive the complete phase diagram.
We plotted in Fig.4.3 the line Tm −∆T (Tm); this line is the best approximation that we
can afford for the boundaries of the nematic region of the coexistence. Between I and N
phase boundaries (coloured regions in Fig.4.3) we observed a phase coexistence between
isotropic and nematic, while below these regions the phase is fully nematic.

The same procedure was implemented for all the other samples. In Fig.4.5 the Tm is
plotted versus the DNA concentration for all samples and at the various concentrations
scanned. ∆T is indicated by vertical lines.

The phase diagram in Fig.4.5 shows that:

• For racemic allAT at 1,8M of NaCl the phase boundaries at 20◦C are a little higher
than for R-DNA without added salt, the isotropic phase is found at 550 g/l while
the nematic at about 650 g/l. For L-allAT the isotropic boundary is about 640 g/l
while the nematic is 670 g/l. For the D-allAT we couldn’t directly measure the
isotropic phase boundary, while the nematic one is about 580 g/l.

• At equal salt concentration D- and L-allAT duplexes are not identical: at equal con-
centration, the phase of D-allAT has a higher Tm than the phase of L-allAT. More-
over, the width of the coexistence range is different between the two sequences:
D-allAT has a wider coexistence region than L-allAT.



68 4.3 AllAT nematic phase

Figure 4.4: ∆T vs Tm for the racemic mixture of AllAT without added salt. The red line is the best
linear fit of the data.

Figure 4.5: Plot of the melting temperature of the nematic phase as a function of DNA concentra-
tion for racemic (R) allAT at 1,8M of NaCl (light blue squares), D-allAT at 1,8M of NaCl (purple
triangles) and L-allAT at 1,8M NaCl (blue triangles). The straight lines are obtained fitting the
filled dots for every sequence.
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Figure 4.6: ∆T vs Tm for D-AllAT (purple triangles), L-AllAT (blue squares) and racemic R-AllAT
(light blue squares). All the solutions are at 1,8 M NaCl.

• Within the experimental errors the racemic phase with 1,8M NaCl behaves like the
average between the corresponding D- and L-allAT phases.

• If we increase the salt concentration the melting temperature at the same concen-
tration increase, like we can see for the two racemic samples. This is a reasonable
result because the presence of salt screens the negative charges on the helices and
then it increases the stability of the phase.

• The D-AllAt and the L-AllAT nematic phases have different melting temperatures
at the same concentration. We couldn’t find an explanation for this difference be-
cause the two sequences were synthesized in the same way and the samples were
assembled with the same procedure. Even the salt concentration of both kind of
samples was measured a posteriori and no difference was found.

Again, since the concentration measurements were strongly affected by errors, here
too we preferred to extract the dependence of ∆T on Tm rather than on the concentration.
We plotted the ∆T vs Tm for all the samples studied (Fig.4.6). This plot seems to be
more noisy then the corresponding one obtained for the R-AllAT without added salt.
We could not find the reason for such behaviour but further analysis and measurements
will be done.

Using an analogous procedure as the one described for the R-AllAT without added
salt, in Fig.4.7 we draw the concentration boundaries of the isotropic-nematic coexistence
for all the samples studied.

Overall, a clear feature emerging for all data, despite their large uncertainties, is that
the amplitude of all the four coexistence regions seems to get smaller while the concen-
tration is increase. The phase boundaries in Figs.4.3 4.7 and especially those from the
racemic mixtures, will be used as a reference to develop the model.
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Figure 4.7: Measured coexistence regions for racemic (R) allAT at X M of NaCl (green region),
racemic (R) allAT at 1,8M of NaCl (light blue region), D-allAT at 1,8M of NaCl (purple region) and
L-allAt at 1,8M NaCl (blue region). The vertical lines stand for the ∆T range of samples whose
concentration has been shifted to the fitted one

4.4 Order parameter

We also chose to characterize the isotropic-nematic transition by measuring the order pa-
rameter S as a function of temperature. A simple and yet effective way to experimentally
determine the order parameter is to directly measure the order parameter of a LC phase
of DNA, so the best way to obtain an experimental value is to measure the birefringence
(∆n) of the phase (see Fig.4.9) by using a compensator in polarized microscopy. ∆n is
directly proportional to the order parameter, as the 4.1 shows.

S =
1

γ

∆n

c
(4.1)

where c is the DNA concentration of the phase in g/l, while γ is a constant that varies
with the shape and composition of the LC crystal. γ is the value of ∆n/c that would be
obtained in a perfectly ordered DNA sample. To obtain γ we adopted the reasonable
assumption that in the LC columnar phase the linear aggregates are all parallel to each
other, so the order parameter can be set to S = 1. This assumption is also strengthened
by the fact that models developed for the columnar phase of aggregating cylinders [31],
S is found to be S ' 1.

We measured the birefringence and the concentration of some columnar phases of
both racemic AllAT samples with different salt concentrations and we determined γ for
each of them. For the racemic sample without salt added we found an average value
of γ = 5, 58 · 10−5 l/g, while for the sample with 1,8M of NaCl γ = 4, 95 · 10−5 l/g.
As a cross-check on the T-dependence of ∆n, we also scanned the intensity of the light
transmitted through these samples in a microscope between crossed polarizers. While
this measurement does not yield the value of ∆n, it is proportional to the birefringence
enabling a continuous measurement as a function of the temperature.
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In Fig.4.9 some measurements of the birefringence as a function of temperature are
shown. Also the intensity measured at different temperatures between crossed polariz-
ers is plotted. Since the intensity is proportional to the birefringence, we adjusted the
scale of the intensity to superimpose the absolute values of the two quantities. When
the temperature is raised so that the isotropic phase appears in coexistence with the ne-
matic, the measurement of the intensity is unavoidably affected by the presence of the
isotropic phase. The growth of the volume fraction of the isotropic phase consequent to
the melt of the progressive melt of the nematic phase yield a continuous decrease of the
measured intensity in the coexistence region.

Figure 4.8: *
Measured birefringence of the nematic phase at different temperatures and

concentrations of racemic allAT with 1,8M of NaCl (a),full symbols)

In Fig.4.10 we plotted the order parameter vs the temperature measured for some
racemic samples.

4.5 A coarse grained model for the DNA nematic phase

De Michele et al. [28] developed a simplified model to predict some characteristics of the
nematic phase of stiff superquadrics from the geometrical properties of the monomers.
Specifically, they calculated the isotropic and nematic phase boundaries as a function
of the binding free energy between two monomers β∆G, the dimensions of the su-
perquadrics (diameterD and aspect ratioX = D/L, whereL is the length of the monomer)
and the persistence length of the linear aggregates LP formed by a large number of
monomers stuck together and a few other parameters that are fixed by the approxima-
tions used to build the model. The monomers have a sticky site at both ends, whose
binding energy is modelled as a square potential with a cut off distance, which was cho-
sen to be the typical distance between two consecutive couples of nucleobases in the
double helix. Two monomers also interact via steric repulsion.

To apply this model to solutions of AllAT duplexes we set the length of the monomers
as similar as possible to the one calculated from the crystallographic reconstruction of the
AllAT double helix [32]. X then came to depend only on the diameter D. The diameter
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Figure 4.9: Measured birefringence of the nematic phase at different temperatures and concentra-
tions of racemic allAT without added salt (b) and c), full symbols). The intensity of the transmitted
light between crossed polarizers is shown for the two samples (empty symbols, a), b) and c) ). The
black dashed vertical line separates the nematic (on the left of the line) and the isotropic-nematic
coexistence region (on the right side of the line). In the isotropic-nematic coexistence region we
could not measure the birefringence because the nematic regions were too small, while the inten-
sity was measured in a region that contained both isotropic and nematic domains. As the red
dotted line in a) shows, the intensity in the coexistence region decreases linearly with the temper-
ature, as it is expected for a quantity that depends on the volume fraction of the nematic phase.
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Figure 4.10: Order parameter calculated from the birefringence of racemic allAT with 1,8M of
NaCl (a),full symbols) and without added salt (b), full symbols).
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was set free but within a reasonable range, i.e. between 1,8 and 2 nm. Even if there is a
measurement available as for the length of the duplex from crystallography, the diameter
was set free because the model does not take into account the electrostatic interactions
between the monomers, that are present in a solution of DNA duplexes. Such interac-
tions can be approximated by steric interactions between two molecules whose diameter
is different than the physical diameter. All the other parameters were set to best fit the
experimental data as explained below. We compared the measured order parameter as
a function of temperature and the phase boundaries at room temperature (20◦C) to the
calculated ones and we found two unique sets of parameters that reproduce both quan-
tities. The first set reproduces the racemic phase without added salt while the second
fits the phases obtained adding 1,8M of NaCl. The we varied the strength of the binding
energy between the ends of two monomers (i.e. the depth of the square well potential
mimicking the stacking interaction) as a function of the temperature and we tried to re-
produce the measured coexistence region of the racemic samples, as explained in the
following.

4.5.1 Phase boundaries at 20◦C

We firstly sought for a set of parameters to be put in the coarse grained model in such a
way that the phase boundaries measured at 20◦C could be reproduced.

Within the coexistence region the system separates in nematic and isotropic domains
with two different concentrations but the same osmotic pressure and chemical potential.
Both quantities by definition depend on the free energy of the system, as shown in 4.2:

µ =
∂F

∂φ
νπ = −1

ν
(Fν − φν) (4.2)

To calculate µ and π from the model in a range of concentrations that comprehend the
experimental phase boundaries we firstly evaluated the free energy FI and FN which
are explicitly given by the model as a function of the parameter listed before. In this
analysis we kept fixed the length of the duplex (L) and thus its axial ratio(X) using the
value obtained from the crystallographic reconstruction of a AllAT duplex [32], and we
explored different predictions of the model by changing β∆G and Lp as described in the
following.

To calculate the isotropic-nematic phase boundaries we implemented the following
procedure:

• we arbitrarily chose a set of parameters (the binding free energy β∆G, the persis-
tence length LP , the diameter of the superquadrics D and its axial ratio X).

• We studied FI that depends on the parameters listed before and on the average
length of the linear aggregates (M ), and FN that also depends on α. α is a param-
eter proportional to the order parameter of the nematic phase.

• At the minimum of the free energy M can be written explicitly both for isotropic
and nematic phases. We inserted these expressions in FI and FN .

• We calculated the value of α that minimizes FN and we inserted this value in FN .

• We calculated µ and π for the nematic and isotropic phases and we searched for
the pair of concentrations (cI and cN ), one for the isotropic and one for the nematic
phase, that yield to equal µ and π between the two phases.
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• We compared the pair of concentrations found to the experimental coexistence re-
gion of both racemic samples measured at 20◦C. If the two pairs of concentrations
were not compatible we changed the parameters and we repeated the process from
the beginning.

Through these procedure we obtained a set of parameters that yielded to a couple
(cI , cN ) compatible to the measured one for the racemic samples. As anticipated, we
chose to perform a double check on these parameters by using them to fit the measured
order parameter.

4.5.2 Comparison between the measured order parameter and the one extracted from
the model.

We calculated the order parameters of the nematic phase of the superquadrics as a func-
tion of the temperature through the coarse grained model to compare it with the experi-
mental measurements. The order parameter is a function of α, as the 4.3 shows.

S =
1

3α
(4.3)

At every fixed temperature we calculated α using the nematic free energy. To com-
pare the calculated S to the measured one, we chose a set of measurements of Fig.4.10,
we determined the concentration of the sample used for these measurements and we
used this concentration as the monomer concentration in the coarse grained model. We
also fixed the value of the binding energy β∆G, the persistence length Lp,the diame-
ter and the axial ratio of the duplex using the values that best fit the coexistence region
at 20◦. We then calculated FN that, as explained before, depends on M and α. As al-
ready done for the determination of the concentrations at the isotropic-nematic phase
boundaries, we substituted into FN the analytic expression for M that minimizes the
free energy, so that the free energy became just a function of α. Then we minimized the
free energy as a function of α in order to find the value of α and as a consequence of S at
the thermodynamic equilibrium.

This procedure was done at fixed temperature. To vary the temperature we changed
the binding energy, because the two quantities are connected by the definition of free
energy itself.

Fig.4.11 shows that the calculated order parameter has a similar behaviour to the
experimental one until the phase starts to melt. S decreases of about 10% while the
sample remains fully nematic. In other self assembly induced LC, as the chromonics,
a similar phenomenon has been observed [38] [39] [40]: the order parameter is seen to
have a small decrease in a long range of temperatures, and it has a sudden decrease near
the melting temperature of the phase. On the other hand in thermotropic LC, in which
the order is not due to self assembly, the order parameter has a different behaviour: it
starts decreasing as soon as the temperature is raised, till it reaches the zero when the
phase is melted [41][42][43][44]. The behaviour obserevd in chromonics and LC of short
DNA duplexes indicates that the LC formation by aggregation is a more discontinuous
process than the isotropic-nematic transition in thermotropics, because it involves two
phenomena at the same time: the increase of orientational order and also the increase of
the aggregation of the monomers.

Overall the model well predicts the behaviour of the measured order parameter, and
the aggregates remain quite long for a large range of temperatures until the thermal
energy becomes of the order of the binding energy of two rods.
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Figure 4.11: Measured (full symbols) and calculated (empty symbols) order parameters as a func-
tion of temperature for the racemic allAT with 1,8M of NaCl a) and without added salt b). The
dotted line indicates the temperature at which the melting of the phase starts.
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4.5.3 The best set of parameters to match the coexistence region at room temperature

We tried so far to find the best set of parameters (the binding free energy β∆G, the
persistence length LP , the diameter of the superquadric D and its aspect ratio X) that
could be set into the coarse grained model developed by De Michele et al. in order to
predict the formation of a nematic phase that:

• shows a isotropic-nematic phase boundaries whose concentrations are compatible
with the ones experimentally measured of a racemic mixtures of AllAT duplexes
at 20◦C.

• These parameters should also predict a behaviour of the order parameter at 20◦C
compatible to the measured behaviour in a nematic phase of racemic AllAT.

We looked for two sets of parameters, one that reproduced the above listed properties
of the racemic mixtures of AllAT without added salt, and the other that reproduces the
properties of the racemic mixture with 1,8M of NaCl. added. At the beginning of the
procedure we fixed the length of the monomers so that the aspect ratio would depend
only on the diameter. Then we changed the other three parameters in order to find
the best set that could reproduce the experimental data at 20◦C. We found just one set
corresponding to the racemic without salt added and another set for the racemic samples
at 1,8M NaCl. These parameters are listed in table4.1.

lp β∆G D [nm] X φI [g/l] φN [g/l]
R-allAT 7,5 -1,24 1,96 2 503 588

R-allAT w/ 1,8M NaCl 4,7 -3,84 1,86 2 585 652

Table 4.1: Best sets of parameters that fit the experimental data (the I-N phase boundaries at 20◦C
and the order parameter) for the two racemic samples. On the right there are the concentration
boundaries obtained with the listed parameters.

The values obtained for the two samples are different: the binding energy is stronger
for the sample that has a higher salt concentration. This result is reasonable because
the strength of the stacking interaction is known to increase with the salt concentration
within the double helix and in coaxial stacking [7]. We can also notice that the helix
diameter is smaller for the second sample. It can be related to the difference between
the rods and the duplexes. The latter are charged, while the former are not charged, so
the only way to compare the nematic phases made by these two molecules is to tune the
diameter of the rods. Stronger the interactions bigger should be the diameter of the rods
to better reproduce the experimental nematic phases.

The free energy βaG that was used as a free parameter in the coarse grained model
consiste of two basic contributions: the free energy of bonding and the entropic term due
to the variation of the conformational space of a duplex when bonded to another duplex.
This latter term is proportional to the ratio between the volume accessible to the center
of mass of a duplex while interacting with another duplex (called bonding volume vb)
and the volume accessible for the center of mass without interactions at play. The free
energy of bonding instead consists of an energetic and an entropic contribution. The
energy gain of the interaction depends the depth of the potential well that describes the
interaction, while the entropic term depends of the decrease of the conformational space
of both strands that form the bond.
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4.5.4 Best set of parameters for the temperature dependent phase boundaries

Once obtained a set of parameters that well fits the phase boundaries at 20◦C and the
order parameter as a function of the temperature of the two racemic samples, we tried
to understand if the same sets of parameters could reproduce the measured I-N phase
boundaries as a function of the temperature. Since temperature and free energy enter
the model via the relative ∆G/T , we explored the phase boundaries by holding fixed all
the parameters except for β∆G, that was varied in a range that yielded concentrations
of the phase boundaries most similar similar to the measured ones. The result is shown
in Fig.4.12, open dots.

As appears from the figure, for both racemic samples the values of the concentration
boundaries are not compatible with the experimental ones because the ratio cN

cI
increases

when the concentration increases, while the experimental ratio decreases. An obvious
problem of this approach is having held LP as a constant at all the temperatures. This
is a direct consequence of the form of the attractive potential well: the model simplifies
the interactions between the ends of two monomers using a square well potential, so
the persistence length of linear aggregates of monomers is found to be constant when
the temperature (i.e. the depth of the well) is varied. This is an oversimplified descrip-
tion of the interaction between two duplexes because of two reasons. The first is that
the attractive potential between two duplexes is a soft potential, continuously decay-
ing with the distance between the ends of the duplexes. Such shape of the potential
will provide a persistence length that varies with the temperature: within an aggregate
of monomers, the persistence length depends on the average bend between two con-
secutive monomers. Different regions of the potential well yield different bend angles
between two monomers. At fixed temperature the mean bend angle is calculated as an
average over all the profile of the potential well, with each region of the potential popu-
lated with a probability that depends on the temperature of the system. If the tempera-
ture is changed, this probability changes, making accessible regions of highest potential,
typically associated to a larger distance, that allows for larger bend angles. As a conse-
quence when the temperature changes, the average bend angle and also the LP change.
The second reason for assuming that the persistence length should vary with the temper-
ature is that the amplitude itself of the potential is expected to change as a function of the
temperature. This is indeed known to happen for the stacking interactions in which the
entropic terms are known to play a large role [7]. Quite clearly, if the interaction energy
weakens upon increasing temperature, the flexibility of the aggregates further increases.

We calculated again the concentrations at the I-N phase boundaries and the order
parameter at different temperatures (i.e. different β∆G) using the same coarse grained
model, but arbitrarily decreasing the persistence length while increasing β∆G. In Fig.4.12
the results are shown. The values of the parameters used in the model are listed in ta-
ble 4.2. The comparison between the experimental and the calculated phase boundaries
clearly indicates that the variability of LP on the temperature yield a better compatibility
between data and results of the model. In fact decreasing the LP while increasing β∆G
provides that the amplitude of the coexistence region gets smaller when the concentra-
tion is increased.

The square well model used here does not provide any insight into the temperature
dependence of the potential. Indeed, even by adopting the results of Table 4.2, as ac-
curate the square well model doe not enable extracting information about the stacking
interactions between two duplexes. A better physical description of the stacking inter-
action is the goal of the studies explained in the next section.

From table 4.2 the value of the free energy ∆G associated to a stacking event between
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Figure 4.12: Comparison between the concentration phase boundaries measured and calculated
using the coarse grained model. The straight lines are the measured concentrations of the
isotropic-nematic phase boundaries. The empty dots are the phase boundaries calculated from
the model using a fixed persistence length for every value of binding energy, while the full dots
are calculated with the same values of the parameters but with a variable persistence length. On
top the data for R-AllAT are shown, while on bottom there are the data for R-AllAT with 1,8M
NaCl.
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R-allAT R-allAT w/ 1,8M NaCl
T lp β∆G T lp β∆G
17 8,4 -0,34 18 6 0,16
20 7,5 -1,24 25 4,7 -0,84
28 6 -2,44 31 3,3 -1,84
37 4,2 -3,94 37 2,7 -2,84
43 3 -4,94 42 2,5 -3,84

Table 4.2: Best set of parameters used to reproduce the experimental measurements with the
coarse grained model. The persistence length is variable.

Figure 4.13: β∆G as a function of the inverse of the temperature for R-AllAT and R-AllAT with
1,8M NaCl.

two duplexes at 37◦C is about -1,74 kcal/mol, that is compatible with the value obtained
for nicked duplexes [7]. In Fig.4.13 the β∆G is shown as a function of the inverse of the
temperature. Form this plot we calculated the enthalpic term by fitting the behaviour
with a straight line. The value obtained is about 30 kcal/mol, an order of magnitude
larger than the one measured within the nicked DNA. The entropic terms are difficult
to compare because they are determined by different phenomena: the entropic contri-
bution of the free energy measured with the nicked sequences of DNA depends only on
the decrease of the number of conformations of the two strands after the formation of
the duplex. Instead the entropic contribution obtained from the coarse grained model
depends also on the bonding volume, that keeps into account the loss of conformational
space of one duplex due to the interaction with another one.
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4.6 Determination of the shape and strength of the stacking interac-
tions through combining atomistic simulations and the coarse grained
model

Using the coarse grained model developed by De Michele et al. we found two sets
of parameters that yield to the best possible compatibility between the experimentally
measured and calculated concentration of the isotropic-nematic phase boundaries, and
also between the measured and calculated order parameter at different temperatures.
One set of parameters was chosen to best reproduce the properties of the nematic phase
of R-AllAT without added salt, while the other provided the best compatibility with the
properties of the nematic phase of R-AllAT with 1,8M NaCl.

To gain new insight into the meaning of these parameters we compared them to an
atomistic model of two duplexes of AllAT that interact at the terminals at the same ionic
strength used in the experiments (1,8 M of NaCl). By using all-atom simulations we
investigated the phenomena controlling the temperature dependence of the persistence
length of the linear aggregates. The work described in this chapter was organized as
follows:

• to understand if the shape of the potential could yield a LP that varies with the
temperature, we simulated via molecular dynamics the interactions of two du-
plexes of AllAT at various temperatures and extracted the average bend angle be-
tween the principal axes of the duplexes. From this we could calculate the persis-
tence length of the aggregates as a function of the temperature.

• As a second approach we adopted the shape of the potential resulting from the
atomistic simulation but used its overall amplitude as a variable quantity. To this
aim we implemented the following procedure:

– we reconstructed the 3D potential well between the ends of two duplexes
from the projections of the potential along suitable coordinates;

– we calculated on the basis of such potential mean force the average bend angle
between two interacting duplexes at a given temperature, i.e. at a fixed depth
of the potential well;

– we changed the depth of the potential well and we calculated the correspond-
ing persistence length.

• We then tried to reproduce the binding free energy and the persistence length used
in the coarse grained model to fit the data measured with the R-AllAT with 1,8M
NaCl at the different temperatures sampled. Both the energetic and entropic terms
were varied as the temperature was changed.

The general concept behind this approach is the following: the coarse grained model
enables determining parameters that cannot be easily related to the actual stacking inter-
action. The all-atom simulation by itself yields a weak temperature dependence of LP ,
too weak to account for the observations. This might be due to intrinsic overestimation
of the stacking interactions, well documented in the literature. It might also be due to
an approximation that was used to perform the simulations, as described later. We thus
adopted the shape of the stacking interaction as obtained by all-atom simulations and
used its amplitude as a free variable, to be able to match the parameters in table 4.2. This
leads to a determination of the temperature dependence of the stacking interaction.
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Figure 4.14: PMF vs azimuthal angle for D-D and D-L configurations, at 20◦.

For the purposes listed above we started a collaboration with Maffeo and Aksimen-
tiev. They had already made some all atom simulations on a system of two blunt ended
duplexes of one sequence called Dickerson Dodecamer (’DD’ sequence) at 100 mM NaCl.
It was found that the conformation of the terminal of the duplex determined the recipro-
cal position of the two molecules when they are interacting. They defined the azimuthal
angle as the angle between the projections of the vectors connecting the O5’ and O3’
atoms of the terminal base pairs into the plane normal to the common DNA axis. If the
two duplexes are kept with their principal axes aligned along the same direction, the dif-
ferent azimuthal angles are assumed with different probabilities. For example for two
DD duplexes it was found that they preferentially assume a reciprocal orientation such
that the azimuthal angle is about 180◦, while if an extra phosphate group is added at the
terminals of both duplexes, the favorite azimuthal angle is about 20◦ [29]. As a reference,
the azimuthal angle corresponding to a configuration of helical continuity is 36◦.

As a first step, an analogous study was done for the AllAT duplexes. In this case the
restraint on the axes of the duplexes was not applied because of the high ionic strength
of the system. In this condition and for such simulations the probability of opening and
closure of the bases is extremely low, so the restraint is not necessary. Different azimuthal
angles were sampled by harmonically restraining the reciprocal orientation of the two
duplexes around the chosen angle and it was found that the interaction strength (i.e.
the average value of the potential mean force, PMF) depends on the azimuthal angle.
In Fig.4.14 we plot the PMF as a function of the azimuthal angle calculated from the
simulations of two AllAT interacting duplexes.

The simulations discussed here and below were made considering two situations,
one where the two interacting duplexes had the same chirality, and the other configu-
ration where the two duplexes had opposite chirality (L-D duplexes). For the first set
up we considered two right-handed duplexes (D-D duplexes), and we assumed that the
results should be identical to the one we would obtain using two left-handed duplexes
because these molecules are symmetrical. From Fig.4.14 we noticed that the minima
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of the PMF are found at different azimuthal angles for the two systems. For the D-D
duplexes the minimum of the PMF is assumed at an angle of about 180◦ as found be-
fore for Dickerson Dodecamer duplexes, while L-D duplexes have a more funneled PMF
landscape. They show two minima for the PMF at azimuthal angles of about 250◦ and
330◦.

4.6.1 Persistence length of AllAT linear aggregates

After obtaining the PMF as a function of the azimuthal angle (φ), we calculated the av-
erage bend angle (θ) between two interacting duplexes at different temperatures. The
simulations were similar to the previous ones: we considered both D-D and L-D sys-
tems, and for every considered temperature we sampled all the azimuthal angles. We
defined the bend angle between two duplexes as the angle between their principal axes.
Specifically, we considered the angle formed by the two segments AB and BC, where A
is the center of mass of one duplex, B is and the center of mass of the two base pairs at the
junction between the two duplexes, and C is the center of mass of the other duplex. No
restraint on the hydrogen bonds between the bases was applied, with the result that for
each duplex at high temperature the last couples of bases away from the interaction re-
gion break the hydrogen bonds and open. Since this does not affect the couples of bases
that take part into the stacking interaction between the other duplex we did not add any
constraint. As the simulation was running, different bend angles were assumed by the
duplexes. At every configuration of azimuthal and bend angles we computed the PMF.
From the simulations we extracted the average PMF and then the probability of that con-
figuration as P (θ, φ) = exp(−PMF/kBT ) a function of the D-D or L-D configurations,
the azimuthal and bend angles and the temperature T .

In Fig.4.15 there is a 2-D map of the PMF as a function of the bend angle and the
azimuthal angle, for two interacting D-D or two L-D duplexes at 20◦C. For every sam-
pled temperature many simulations were run with identical replica of the same system,
then they were averaged to assure a good sampling of the possible conformations of the
duplexes. For a good sampling, the azimuthal angle was varied from 0◦ to 360◦ with a
step of 4◦. What we obtained is then the probability of the bend angle as a function of
temperature and azimuthal angle.

The average bend angles θDD and θLD for respectively D-D and L-D configuration at
fixed temperature are calculated as an average over all the azimuthal angles. Equation
4.4 express the mean bend angle for D-D configuration, but an analogous formula can
be written for L-D duplexes.

θDD =

∑
φ=0,360◦ θ(φ)P (θ(φ))∑
φ=0,360◦ P (θ(φ))

(4.4)

The average between the two configuration is calculated as the weighted mean for every
temperature sampled. If PMFDD and PMFLD are the average potential mean force of
the D-D and L-D configurations at fixed temperature, the average bend angle becomes:

θM =
eβPMFDDθDD + eβPMFLDθLD

eβPMFDD + eβPMFLD
(4.5)

From the average bend angle we calculated the persistence length of linear aggre-
gates of AllAT duplexes. If we roughly approximate such aggregates to a freely rotating
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Figure 4.15: Bend angle θ calculated from the atomistic simulations at 20◦C for two D-D and L-D
duplexes as a function of the azimuthal angle φ. From red to blue the PMF decreases and the
probability increases. The probabilities of both D-D and L-D configurations are normalized such
that the sum of the probabilities over both the different bend and the azimuthal angles are equal
to 1.
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Figure 4.16: Persistence length Lp averaged over D-D and L-D configurations at different temper-
atures. It is expressed in monomer units.

chain with a fixed bend angle (θM ) between the axes of consecutive monomers, the per-
sistence length depends on the bend angle as in equation 4.6.

Lp =
1

1− cos(θM )
(4.6)

In table 4.3 we report the average bend angle and the persistence length as a function of
the temperature and the configuration. We can notice that the L-D configuration allows
a broader range of bend angles than D-D setup, as it is shown also in Fig.4.15.

D-D duplexes L-D duplexes
T [◦] θDD [◦] Lp [monomers] T [◦] θLD [◦] Lp [monomers]
10 28.5 8.3 10 30.8 7.1
20 26.8 9.3 20 33.7 6.0
30 31.7 6.7 30 32.9 6.2
40 29.1 7.9 40 32.5 6.4

Table 4.3: Average bend angles and persistence lengths calculated from atomistic simulations at
different temperatures and for the two D-D and L-D configurations.

In Fig.4.16 the persistence length averaged over D-D and L-D configuration is shown
as a function of the temperature sampled. The average was calculated as the alge-
braic mean. We noticed that though the value at about 20◦C is similar to the value
required from the coarse grained model to reproduce the experimental phase diagram
(7,5 monomers), the persistence length did not change while increasing the temperature.
This fact is not acceptable on the basis of the experimental measurements so we can infer
that a soft attractive potential with a fixed depth between the ends of two duplexes is
not enough to assure a dependence of LP on temperature.
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Because we could not find an agreement between the experimental data and the re-
sults of the simulations, we tried a different approach. We reconstructed the 3D shape
of the potential well between the two duplexes, then we varied the depth of the well as
a function of the temperature in order to see if there was any change in the persistence
length such as to reproduce the values adopted in the coarse grained model.

4.6.2 Modeling of the potential well between two interacting duplexes

To reconstruct the 3D shape of the potential well, we calculated the PMF between two
interacting AllAT duplexes in two distinct configurations.

For the first configuration we fixed the orientation of the duplexes along the same
axis in such a way that they were coaxially aligned. Then we varied the end to end
distance between the duplexes and we calculated the corresponding PMF. Since there is
no obvious reference system, we adopted the direction of the end to end distance to be
the average of the principal component vectors corresponding to the smallest moment
of inertia of each of the duplexes. We performed such simulations for both D-D and L-D
configurations. The azimuthal angle between the duplexes was restrained to the value
corresponding to the minimum of the PMF calculated before (see Fig.4.14, for DD con-
figuration we fixed φ ' 180◦, while for L-D φ ' 260◦.) and the hydrogen bonds between
the bases were reinforced with harmonic restraints in order to avoid the opening of the
terminal couples. The simulations were made at 10◦C. In Fig.4.17 the strength of the
interaction energy (EDD and ELD respectively for interactions between D-D and L-D
duplexes) between the two duplexes vs the vertical distance (z) is shown. The interac-
tion potential E is obtained from the PMF by a simple translation. We supposed that
at the minimum of the PMF corresponds a minimum in the interaction strength, and at
the plateau of the PMF corresponds to an analogous plateau of the interaction strength
whose value is equal to 0. The z direction is chosen to be the end to end distance between
the two duplexes. From this plot we can deduce the depth of the vertical potential well to
be around 7 kcal/mol and we can notice that the vertical distance at which the E is min-
imum is about 3,7 Å, that is higher than the distance between two consecutive couples
of bases within a B-form of a double helix of DNA (i.e. 3,2 Å). It is interesting to notice
that such large distance is found despite the fact that the terminal bases are constrained
to be closed, a condition that certainly favours a closer distance. It is curious that the z
distance takes also values smaller than 3,2 Å because of the thermal fluctuations of the
positions of the duplexes. The end to end distances for which the potential is minimum
are different for D-D and L-D configurations. The fact that the two configurations have
different equilibrium conditions had already emerged from the study of the PMF vs the
azimuthal angle (see Fig.4.14). The black and blue profiles (E10DD andE10LD) of Fig.4.17
are calculated from the all-atom simulations at the azimuthal angles at which the PMF
showed to have a minimum. This is not the only configuration that the system visits,
every azimuthal angle can be adopted by the system with a probability that depends on
the temperature. We averaged the PMF plotted in Fig. over all the azimuthal angles to
obtain the mean value of the PMF at 10◦C. The procedure was repeated both for D-D and
L-D configuration. We adopted these values as the depths of the potential well at 10◦C
for respectively D-D and L-D configurations. In Fig.4.17 we plotted also the potential
well obtained using the depth averaged over the azimuthal angles.

We made an average of the E (E10(z)) over the possible combinations of duplex chi-
rality and over the azimuthal angle at 10◦C as shown in equation 4.7 and we obtained



Liquid crystal ordering of B-DNA duplexes: extracting the interactions from the phase
boundaries. 87

Figure 4.17: E as a function of the end to end distance between the two duplexes. EDD and ELD

are the potentials of the interaction between respectively D-D and L-D duplexes at φ ' 180◦ for D-
D and φ ' 260◦ for L-D.E10DD andE10LD are the potentials whose minima are normalized to the
values at 10◦ averaged over all the azimuthal angle, obtained from the data plotted din Fig.4.14.

the profile of figure 4.18.

E10(z) =
eβE10DD(z)E10DD(z) + eβE10LD(z)E10LD(z)

eβE10DD(z) + eβE10LD(z)
(4.7)

In order to be able to extract useful information from the potential, it is necessary to
turn the numeric potential profile onto a simple analytical shape. To this aim we fitted
the potential with a parabola for 3, 2 Å ≤ z < 4, 7 Å crossing over a straight line for
4, 7 Å ≤ z < 8, 1 Å. The fitting equations are:

E(z) = A+Bz + Cz2

E(z) = D + Fz
(4.8)

where the values of the parameters are A = 46, 42 ± 0, 98, B = −24, 07 ± 0, 51, C =
2, 79± 0, 06, D = −11, 43, F = 1, 38± 0, 03.

For the second configuration we fixed the vertical distance between the ends at the
value corresponding to the minimum of the energyE (about 4 Å) and we kept the coaxial
orientation of the duplexes frozen, but we increased the distance between the duplexes
shearing one of them in the horizontal (xy) plane. We chose to fix the position of one
duplex and to shear the other one along two orthogonal directions, x and y, that are
related to the fixed duplex. y stands for the direction that links the C1 carbon atoms
of the terminal couple of bases, while x is the perpendicular direction that points to
the minor groove. For every x and y position, we sampled all the possible azimuthal
angles (φ), and for each of them the average interaction energy was extracted from the
simulation. From the energy we calculated the probability of the configuration at fixed
x (or y) and φ, then we averaged the energy over all the azimuthal angles at a fixed
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Figure 4.18: Average smoothed energy E vs end to end distance between two duplexes. The fitting
function is a parabola for 3, 2 Å ≤ z < 4, 7 Å and a straight line for 4, 7 Å ≤ z < 8, 1 Å

shearing distance, as shown in formula 4.9. The average energy along y direction is
calculated with an analogous formula.

E10(x) =
eβE10DD(x)E10DD(x) + eβE10LD(x)E10LD(x)

eβE10DD(x) + eβE10LD(x)
(4.9)

In Fig.4.19 the energy E as function of the shear distance is shown for both D-D
and L-D configurations. It is normalized in the range −1 - 0 because it was used to
modulate the potential extracted as a function of the end to end distance. The procedure
is explained below in the text.

We then averaged the E extracted from shearing one duplex from the other to obtain
a rough but more general behaviour for the potential mean force as a function of the
distance from the center of the terminal base pair of the fixed duplex along the horizontal
(x-y) plane. We weighted both E10(x) and E10(y) with their corresponding Boltzmann
probability:

E10(x|x = y) ==
exp(βE10(x))E10(x) + exp(βE10(y))E10(y)

exp(βE10(x)) + exp(βE10(y))
(4.10)

We plotted the average E (E10(x)) as a function of the shear distance in Fig.4.20. We
fitted this behaviour with a parabolic function with the origin in the point of coordinates
(0,0). The equation of the fitting function is

E(r) = mr2 + 1 (4.11)

where r =
√
x2 + y2 and m = 0, 108± 0, 002.

After obtaining the shape of the interaction energy as a function of the shear dis-
tance between the duplexes and the end to end distance between the terminals, we re-
constructed the shape of the 3D potential well between the duplexes, in such a way to
satisfy these conditions:

• the depth of the potential well must be the one calculated from the energy vs the
end to end distance at the z coordinate corresponding to the minimum of the en-
ergy.
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Figure 4.19: Normalized E vs x and y shear directions at 10◦C for D-D and L-D configurations, at
10◦.

Figure 4.20: Normalized average interaction potential vs the shear direction at 10◦C. The mean is
calculated over the configurations and the sampled shear directions.
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Figure 4.21: Scheme of the frame of reference adopted for the reconstruction of the 3D potential
well.

• At fixed vertical distance z0 the shape of the potential must have a minimum at
zero shear whose depth is the value of the energy vs z at z = z0. To follow this
criterion we must properly normalize the shear energy in such a way that the depth
of the shear potential is unitary.

We described the 3D potential as the product of the vertical and shear interaction
energies:

E(r, z) = E10(z)E(r) (4.12)

For 3, 2 < z < 4, 7 Å it becomes E(r, z) = (A + Bz + Cz2)(G + Hr2) where the
reference frame is centred in the center of the terminal couple of bases (the one closest
to the other duplex) of one duplex, z is vertical projection of the distance between the
centres of the two closest terminal bases belonging to the different duplexes, and x and
y are the coordinates along the plane of the couple of bases at z = 0. With the same
reference frame, for z > 4, 7 Å the 3D E can be calculated as E(r) = (D+Fz)(G+Hr2).

From the shape of the potential well we calculated the average bend angle between
two interacting duplexes as a function of the depth of the well and the temperature.
This was done in two steps: we calculated the average bend angle ψ for every reciprocal
position of the centres of the terminal couples of bases of the two duplexes, then we
calculated the bend angle ψbend averaged over all the possible reciprocal positions that
the two duplexes could assume while interacting. From the bend angle we calculated
the persistence length, that has to be compared to the one used in the coarse grained
model.

From now on we calculated some mean quantities that are averaged over the posi-
tions of the floating duplexes that assure it to interact with the fixed duplex. This volume
is calculated on the basis of the potential well just analysed. The volume V that contains
all such positions, is determined by the set of coordinates (x,y,z) that solve the inequality
(x, y, z)|E(x, y, z) ≤ 0. We then extracted the z coordinate as a function of the horizontal
coordinates (x,y) that satisfy the inequality:

z = −D/F (4.13)
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Figure 4.22: Surface in the (x,y,z) frame of reference that corresponds to E = 0.

In Fig.4.25 the surface with E = 0 is represented.

4.6.3 Calculation of the persistence length of linear aggregates of AllAT from the
shape of the simulated stacking potential well

The average bend angle ψ for every reciprocal position of the two duplexes was calcu-
lated as the mean over the angular range allowed for the thermal motion of one duplex
if the position of the other was fixed. For simplicity we used a geometrical argument
considering the duplexes as two rigid cylinders of diameter D and height L. The refer-
ence system used is the same as before, with the origin in the center of the circular face
of the fixed rod. We wrote the distance of the center of the terminal face of the floating
rod in cylindrical coordinates as a function of the height z and the radial distance r from
the origin. First we projected the possible bend angles in a plane perpendicular to the
terminal face of the fixed cylinder, and we calculated in this two-dimensional geometry
the maximum angle between the principal axes of the cylinders when the floating cylin-
der is bent. Second, we recovered the tree-dimensionality of the system by averaging the
bend angles over all the planes perpendicular to the terminal face of the fixed cylinder.

Because of the geometry of the system, we considered the bend on the left and on the
right directions, as shown in Figs.4.23(a) and 4.23(b). From the bend on the left we know
that the maximum allowed bend angle is

ψ1 = arcsin

(
2z

D

)
(4.14)

If we consider the bend on the right we obtain that the maximum bend angle is

ψ2 = arctan

(
2z

D − 2r

)
(4.15)
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Figure 4.23: Maximum bend angle of a cylinder interacting with another identical cylinder at a
random reciprocal distance individuated by the height z and the radial distance r in the plane of
the terminal face of the fixed rod. Both bend directions (left and right) are considered.

The maximum bend angle depends on the bending direction. The directions for
which the bend angle is ψ2 can be individuated by an azimuthal angle ψ∗ = 2π −
2ArcCos

(
r2−l2+D2/4

Dr

)
where l2 = D2

4 − h
2. In Fig.4.24 the geometrical quantities con-

sidered are plotted.
ψ1 and ψ2 are the bigger bend angles as long as h ≤ h∗ =

√
Dr − r2, because in the

opposite case we just have to consider ψ1 both for left and right bend. If we fix both
the positions of the center of the terminal faces of the two interacting duplexes, we can
calculate the average bend angle of one duplex if the other is kept fixed. This angle can
be calculated as follows, if h ≤ h∗:

ψm1 =

∫ φ∗
0

dφ
∫ ψ1

0
ψsin(ψ)dψ +

∫ 2π

φ∗
dφ
∫ ψ2

0
ψsin(ψ)dψ∫ φ∗

0
dφ
∫ ψ1

0
sin(ψ)dψ +

∫ 2π

φ∗
dφ
∫ ψ2

0
sin(ψ)dψ

=
φ∗(sin(ψ1)− ψ1cos(ψ1)) + (2π − φ∗)(sin(ψ2)− ψ2cos(ψ2))

φ∗(cos(ψ1)) + (2π − φ∗)(1− cos(ψ2))

(4.16)

If h ≥ h∗:

ψm2 =

∫ 2π

0
dφ
∫ ψ1

0
ψsin(ψ)dψ

2π
∫ ψ1

0
sin(ψ)dψ

=
(sin(ψ1)− ψ1cos(ψ1))

1− cos(ψ1)
(4.17)

If we vary the position of the floating duplex inside the volume V (the volume in
which a duplex can move while interacting with the other fixed duplex), we find dif-
ferent average bend angles. The volume V does not depend on temperature, while the
probability of assuming one position inside V changes as temperature is changed. As a
consequence the average bend angle also changes. If we fix the temperature the floating
duplex moves into the volume V assuming the different positions with different proba-
bilities depending on the value of the temperature and the interaction strength between
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Figure 4.24: The azimuthal angle ψ∗ drawn on the circular end of the fixed cylinder is the angle
for which the maximum bend of the floating duplex is ψ2.

Figure 4.25: Scheme of the maximum bend angles when h ≥ h∗ =
√
Dr − r2.
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Figure 4.26: Angular volume accessible to a floating duplex interacting with a fixed duplex where
the position of the center of the terminal face of the floating duplex is fixed.

the two duplexes. For every temperature we calculated the mean bend angle between
the two duplexes averaging the bend angles ψm1 and ψm2 calculated for every position.
These two angles are weighted by the angular volume accessible for the corresponding
(z,r), that is the angular volume defined considering the azimuthal rotation of the float-
ing duplex around the vertical direction parallel to the principal axis of the fixed cylinder
but passing through the center of the terminal face of the floating cylinder. We thus pro-
ceed with computing such angular volume Ω. The bigger is the bend angle, the bigger
is the angular volume accessible for the cylinder. The angular volume allowed for the
thermal fluctuation of an interacting duplex for h ≤ h∗ is:

Ω1 =

∫ φ∗

0

dφ

∫ ψ1

0

sin(ψ)dψ +

∫ 2π

φ∗
dφ

∫ ψ2

0

sin(ψ)dψ =

= φ∗(1− cos(ψ1)) + (2π − φ∗)(1− cos(ψ2))

(4.18)

while for h > h∗ the angular volume is

Ω2 =

∫ 2π

0

dφ

∫ ψ1

0

sin(ψ)dψ = 2π(1− cos(ψ1)) (4.19)

Ω is represented in Fig.4.26.
Then we should average the bend angle over all the possible positions of the duplex

still interacting with the other one. The average must be weighted with the Boltzmann
probability of finding the two duplexes in the considered configuration, that is equal to
the probability of having such interaction energy that allows the duplexes to assume this
configuration.

ψbend =

∫
V
e−βE(z,r)ψm1(r, z, φ)Ω(r, z, φ)d3V∫

V
eβE(z,r)Ω(r, z, φ)d3V

(4.20)

The region of the integration is the same for both integrals. There are some con-
straints that have to be considered:
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Figure 4.27: Constraints for the integration of equation 4.20. Epar means that in those regions of
integration the parabolic fit of equation 4.8 for the potential has to be used, while Elin stands for
the linear fit.

• for 3, 2 Å (= zmin) < z < 4, 7 Å(= zmaxp) the E(z) is fitted with a parabola.

• For zmaxp < z < 8, 1Å(= zmax) the E(z) is fitted with a linear function. zmax is the
end-to-end distance at which E = 0.

• The region 3, 2 < z are not considered.

• When z < z∗ the angular volume Ω is calculated as Ω1, while for z > z∗ we have
to use Ω2.

rA and rB are calculated from h∗ = hmin and h∗ = hmaxP :

rA =
D −

√
D2 − 4z2

min

2

rB =
D −

√
D2 − 4z2

maxP

2

(4.21)

rmax =
√

G
H is the radial distance when the shear energy is null. In Fig.4.27 there is a

sketch of the constraints that have to be considered in the integration.
In Fig.4.28 the average bend angle calculated from the model are shown. We noticed

that if the depth of the potential well was kept fixed, the bend angles did not show any
variation upon changing the temperature as happens for the angles extracted from the
simulations (the one shown in table 4.3).

To calculate the persistence length of linear aggregates of duplexes we needed the
mean bend angle between the axes of two consecutive duplexes. From the calculations
shown above we found the bend angle between the axes of the circular faces of the
terminal bases of the two cylinders. Because of the duplexes are not stiff as cylinders we
needed to add the contribution due to the internal bend of the AllAT double helix. We
extracted the internal bend angle of the helix as the angle between the axis of the terminal
couple of bases and the axis of the central couple of bases. In table 4.4 we listed the values
of the bend angle internal to the double helix structure at different temperatures.

A linear aggregate of N duplexes was then considered as a freely jointed chain made
by 2N stiff monomers with fixed angles between them. The values of the angles were
alternatively ψbend and ψint. In Fig.4.29 this approximation is sketched.
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Figure 4.28: Average bend angles calculated from the 3D potential well

Figure 4.29: Sketch of two different ways of representing a chain of cylinders with the same per-
sistence length. The monomers of the chain on the left are alternatively bonded with angles ψint

and ψbend. Instead the chain on the right is made on monomers of doubled length and that are all
connected with the same angle, θ.
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T [◦] ψint [◦]
10 20
20 20,6
30 20,4

Table 4.4: Average bend angles internal to the double helix structure of AllAT extracted from
atomistic simulations at different temperatures and averaged over the two system configurations.

The persistence length of the linear aggregates of cylinders was calculated from the
definition for freely jointed chain. It is defined from the scalar product of the two vectors
individuated by two monomers having a distance of s− s′ monomers:

< u(s) · u(s′) >= e
− |s−s

′|
LP (4.22)

In the average bend angle between two monomers is γ, the scalar product is also equal

to < u(s) · u(s′) >= cos(γ)
|s−s′|
b where b is the monomer length. In our system there are

two characteristic bend angles, ψbend and ψint, and the length of the monomer is then
half of the length of the duplex. Within s − s′ monomers, half of the junctions have an
angle ψbend and half ψint. The scalar product becomes:

< u(s) · u(s′) >= cos(ψbend)
2|s−s′|

2b cos(ψint)
2|s−s′|

2b (4.23)

The persistence length LP is then

LP = −[ln(cos < ψbend > cos < ψint >)]−1 (4.24)

To validate the results of the calculations we compared the results with the persis-
tence length calculated directly from the simulations. In Fig.4.30 both quantities are
shown at different temperatures. We noticed that the behaviour at different temperature
is similar because in both cases the LP do not change upon varying the temperature.
The values however are slightly different, of about the 10%. There are some aspects that
can be verified, like the compatibility between the definition of the axes adopted in the
atomistic simulations and in the coarse grained model. The persistence length calculated
from the reconstruction of the potential is a little larger than the one extracted from the
simulations, to indicate that probably the geometric models we built does not capture
all the bend angles that two duplexes can assume. For example the presence of the mi-
nor and major grooves in the double helix yield bigger bend angles in specific directions
than the angles found in the cylinder approximation.

4.6.4 Calculation of w and < E > from the atomistic potential well

In order to give an estimate of the strength of the stacking energy between blunt ended
duplexes we compared the prediction of a coarse grained model of LC phases of du-
plexes with the atomistic simulations that describe the interactions between two du-
plexes. As a result, we calculated the persistence length and the stacking binding energy
with both models. To fully compare the two models we need to calculate other two
parameters from the atomistic simulations. The parameter are w = 2 vbvd and the value
that should be put into the coarse grained model for the depth of the square potential
well. In fact we should approximate the soft potential well of the atomistic simulations
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Figure 4.30: Comparison between the persistence length calculated from the reconstruction of the
potential well (black squares) and the one extracted from the all atom simulations (red circles)

to an effective square well potential required by the coarse grained model. We chose to
use a square well potential with depth the interaction energy weighted over the thermal
energy and the number of conformations that the duplexes can assume. The number of
conformations at fixed energy are proportional to the angular volume Ω. The effective
energy then becomes:

< E >=

∫
V
e−βE(z,r)E(z, r, φ)Ω(z, r, φ)d3V∫

V
e−βE(z,r)Ω(z, r, φ)d3V

(4.25)

where the volume V is the volume that the center of the terminal couples of bases of one
duplex can explore while interacting with the terminal of one other duplex. Ω assumes
the expression of Ω1 or Ω2 as the coordinates (z,r) vary within V .

The parameter w is calculated as follows. The bonding volume vb is calculated as the
product of the volume V and the angular volume that the duplex can assume weighted
with the corresponding Boltzmann probability. The volume vd is the volume of the single
duplex multiplied for the angular volume that it can access when free from the interac-
tion with other duplexes. w becomes then:

w = 2
V

Vduplex

∫
V
e−βE(z,r)Ω(z, r, φ)d3V

4π
∫
V
e−βE(z,r)d3V

(4.26)

4.6.5 Results

We varied the depth of the 3D potential well reconstructed from the atomistic simula-
tions of AllAT duplexes to calculate the persistence length of the linear aggregates of
duplexes, the effective free energy < E > and the parameter w that best reproduce the
experimental concentration phase coexistence through the coarse grained model devel-
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oped by De Michele et al. In table 4.5 we listed the best set of parameters found as a
function of the temperature.

T [◦] dE Lp [monomers] w < E > β∆G
18 4,26 8,76 0,0068 -2,87 -0,012
25 3,91 8,34 0,0073 -2,37 -0,905
31 3,19 7,69 0,0080 -1,69 -2,022
37 2,84 7,29 0,0089 -1,35 -2,523

Table 4.5: The best set of parameters that can be used into the coarse grained model to fit the
experimental data of the concentration phase coexistence of the isotropic-nematic phases of AllAT
duplexes. From left to right the columns correspond to temperature, depth of the potential well,
persistence length of the linear aggregates of duplexes, parameter w, proportional to the ratio
between the bonding volume and monomer volume, and depth of the square well potential of the
coarse grained model.

The experimental measurements cannot be not well reproduced using the parame-
ters obtained from the all atom simulations, even if the depth of the potential well is
reduced to 10% of its initial value. Even if we strongly decrease the depth of the poten-
tial well, the persistence length and the absolute value of the effective energy < E >
remains too high to yield to phase boundaries compatible to the experimental ones. The
cause of this phenomenon comes from the fact that the potential well is too sharp, so
even when the depth is decreased the probability of visiting a region of the well does not
change much. As a consequence the average energy experience a small change and also
the other parameters. It is possible that the sharpness of the potential well comes from
the restraints used in the simulations from which we extracted the shape of the potential
well: the Watson-Crick interactions between the complementary couples of bases were
reinforced in order to keep all of the couples of bases paired for both duplexes during
the simulations. This is an extremely non-physical behaviour because at the temperature
sampled it has been noticed that the terminal couples of bases of duplexes in solution
has a nonzero probability of opening. If those restraints were released, the terminal bases
would be more free to interact with the terminal bases of the other duplex for a range
of end to end and shear distances longer than the one obtained while the restraint is ap-
plied. Unfortunately it is extremely hard to perform simulations without such restraints
because the timescale of the dynamics of the opening and closure of the bonds of the ter-
minal couples of bases is much longer than the typical duration of the simulation done
so far. We will try to perform such simulation in a dedicated computer.

Another possible reason for the incompatibility of the parameters calculated with the
model and the simulations is that we approximated the monomers of the model as two
cylinders. The monomers considered in the coarse grained model are, in fact, cylinders
with smoothed angles. We tried to represent this shape with a decrease of the diameter o
the cylinder. We tried to reduce the diameter of the duplex while calculating Lp, < E >
and w. Using such procedure we obtained the values of parameters closer to the ones
of table 4.2. In table 4.6 we listed the binding free energy and the persistence length
obtained for a diameter of 16 Å at different temperatures.
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T [◦] dE Lp [monomers] β∆G
18 3,83 6,14 0,11
25 3,34 5,55 -0,82
31 2,70 4,84 -1,73
37 1,42 3,82 -2,75

Table 4.6: Persistence length and binding energy calculated at different temperatures and ampli-
tude of the potential for two interacting cylinders of diameter 16 Å.

4.7 Conclusions

The aim of the work presented in this chapter is to give an estimate of the strength of the
stacking interaction between two blunt ended duplexes of AllAT. For this purpose we
studied the LC phases and in particular the nematic phase of two racemic mixtures of
AllAT at two different ionic strengths. We measured the concentration at the boundaries
of the isotropic-nematic phase coexistence and the order parameter at various tempera-
tures (section 4.3.1).

In sections 4.5.1 and 4.5.2 we tried to fit the data with the expectations of a coarse
grained model that predicts the phase boundaries and the order parameter of smoothed
cylinders with a sticky interaction at the ends as a function of some parameters, that
are the geometrical dimensions, the persistence length of linear aggregates of monomers
and the binding energy between couples of monomers. As a result we found two unique
sets of parameters that best reproduce the data at a given temperature of 20◦C, one set
for every ionic strength of the racemic mixture.

We then tried to fit the data at the different temperatures scanned (section 4.5.4). The
sticky interaction is described by a square well potential, that provides the persistence
length to be constant at all the temperatures. With this assumption we could not repro-
duce the observed behaviour of the phase boundaries as a function of the temperature.
To achieve a good compatibility with the data, we were forced to change the persistence
length as a function of the temperature. This assumption is supported by two reasons:
the stacking interaction is a continuously decaying potential and its strength depends on
the temperature. However we could not understand which one of these two phenom-
ena caused the Lp to change with the temperature, because the persistence length and
the binding free energy were arbitrarily chosen. Thus we tried to reproduce both quanti-
ties through the all-atom simulations, to understand if a continuously decaying potential
could yield the temperature dependence of the persistence length or if it was necessary
to decrease the potential amplitude to achieve such behaviour of the persistence length.

The all-atom simulations first stated that a continuously decaying stacking poten-
tial brings to the formation of linear aggregates of duplexes whose persistence length is
constant (section 4.6.1) in the range of temperatures scanned (10-40circ). As it is known
that the stacking potential used in such simulations is overestimated and because from
the simulation emerged that it did not change between 10 and 40◦, we developed some
calculations on the basis of the stacking potential obtained from the simulations (section
4.6.3). Specifically, we varied the amplitude of the stacking potential as a function of the
temperature and as a result we recovered the temperature-dependence of the persistence
length.

At the same time we tried to reproduce the persistence length and the binding free
energy that were used into the coarse grained model to best fit the data, by varying the
amplitude of the stacking potential well and by fixing the geometrical dimensions of the
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duplex as the ones used in the model. Through this procedure, even if the amplitude
was decreased to the 10% of its initial value, the expected values of the two parameters
could not be obtained. A possible reason is that the bonds between the couples of bases
were restrained in order to contain the simulations costs.

As the monomers of the coarse grained model are smoothed cylinders, whose diame-
ter on the top is smaller than the diameter in the middle, we reduced the diameter of the
duplexes in the calculations based on the all-atom stacking potential and we succeeded
in recovering the Lp and β∆G that were obtained from the coarse grained model (section
4.6.5. Because of the diameter has to be largely reduced from the physical diameter of the
duplex, as a further step we planned to run a long simulation without the constraints on
the terminal couples of bases to see if the stacking potential would change. We will try to
use this potential and the diameter obtained from the coarse grained model to verify if
they could yield values of Lp and β∆G compatible with the one found from the model.





CHAPTER 5

Matherials and methods

This chapter provides a description of the techniques used to characterize the nematic
phase of DNA.

The melting temperature, concentration and birefringence of the nematic phases stud-
ied were measured through observations made by Polarized Transmission Optical Mi-
croscopy (PTOM) and Polarized Reflection Optical Microscopy (PROM). To observe LC
phases of DNA it is necessary to use microscopy techniques, amongst which optical mi-
croscopy. This latter techniques produces a magnified image of the sample observed,
provides a resolution of the details of the image and makes them visible through naked
eye or with a camera. DNA molecules are too small to be directly observed through a
microscope, but it is possible to obtain information about their disposition within the
sample through the use of polarizers, that enhance the anisotropy of the molecules.

5.1 Measurement of the melting temperature

With a transmission optical microscope (Nikon, Optipho T2-pol) and a camera (Nikon
Digital Sight Ds-U1) we collected images of the samples at different temperatures in a
range between 10 to 45◦C between crossed polarizers and in Koeler illumination regime.
A sample with a nematic phase is bright if observed between crossed polarizers, while
an isotropic phase is dark. If we observe a nematic phase through crossed polarizers
while increasing the temperature, we see the bright region getting smaller as the nematic
phase progressively melts. We defined the melting temperature of the sample as the
temperature at which all the phase is melted. The temperature of the sample is controlled
through a heater (Instec STC 200D) connected to the microscope.

5.2 LC optical anisotropy

The DNA double helix has an optical anisotropy because it has different polarizabilities
along the main axes of the helix and in the perpendicular plane. A solution of double
helices of DNA in the isotropic phase has no resulting optical anisotropy because the
molecules have random orientations. In the nematic phase on the other hand the helices
have all the same average orientation so the birefringence is the sum of the birefringen-
cies of the helices. The birefringence of a uniaxial medium is defined as

∆n = n|| − n⊥ (5.1)

where n|| is the refraction index along the optical axis and n⊥ is the one along the di-
rection perpendicular to the optical axis. The sum of the two indexes lead to the index
ellipsoids (see Fig.5.1).
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Figure 5.1: Ellipsoids that represent the value of the refractive index in a a) positive uniaxial
medium, b) negative uniaxial and c) biaxial medium.

Figure 5.2: Linearly polarized light changes the polarization due to the passage through a bire-
fringent sample.
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From now on the monoaxial phases are described. They are media with two principal
refractive indexes and just one optical axis, that is individuated by the direction perpen-
dicular to plane whose intersection with the ellipsoid is a circle. In such medium the
incoming light is split into two directions, the ordinary and the extraordinary directions.
The two components propagate with different velocities because the refraction indexes
(no and ne) are different, so after passing through a sample of thickness d there is a phase
difference δ between the two components:

δ =
2π

λ
(ne − no)d (5.2)

where λ is the electromagnetic wavelength in the vacuum. If the optical axis of the
medium and the direction of the incident light do not coincide, we can define the re-
fractive indexes along the direction of the incident light and the perpendicular direction:

no = n⊥

ne =
n||n⊥√

n2
||cos

2φ+ n2
⊥sin

2φ

(5.3)

where φ is the angle between the optical axis and the direction of the light. Typically, if
the incident light that is linearly polarized is converted into elliptically polarized after
passing through the birefringent sample. If the transmitted light is collected after a linear
polarizer then the intensity is a function of φ and δ.

I = I0sin
2(2φ)sin2(δ/2) (5.4)

The first factor modulates the intensity as the orientation of the sample changes, while
the second is different for different wavelengths and is responsible for the color of the
nematic phase. I0 is the intensity recovered after the polarizer and φ is the azimuthal
angle between the analyzer and the projection of the optical axis on the plane of the
sample.

If a well ordered uniaxial nematic sample is studied with a microscope between two
crossed polarizers, we can have different textures as a function of the orientation of the
sample in the plane of observation. If the nematic director is perpendicular to the sample
plane we have the omeotropic alignment, where the direction of the propagation of the
light coincides with the optical axis. Here φ = 0 and as a consequence ne = no and
δ = 0. The intensity transmitted through the sample in this configuration is I = 0 for all
the azimuthal orientation of the sample. For a uniform planar alignment φ = 90◦ and
no = n⊥ and ne = n||, so ∆n = n|| − n⊥. The transmitted intensity varies as a function
of Sin2(2φ). It has a maximum for φ = 45◦ and a minimum for φ = 0 and φ = 90◦. The
sample is black when the optical axis is parallel to the direction of the polarizer or the
analyzer, and the textures have a periodicity of 90◦ if the ample is rotated between two
crossed polarizers

5.2.1 Concentration measurement

The solution of DNA between the two glass slides, of refractive index n1, of thickness
d has a mean refractive index (at a temperature at which the phase is isotropic) n2. If a
light beam goes onto such system we have a transmitted and reflected beam that depend
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on the angle of incidence.

T =
1

1 + Fsin2(δ/2)
R = 1− T =

Fsin2(δ/2)

1 + Fsin2(δ/2)
(5.5)

Where F = 4R1

(1−R1)2 is the contrast of the interference fringes, R1 is the reflectivity of
the first interface, between glass and DNA solution. The reflectivity depends on the two
refractive indexes while the contrast depends only on the index refractive of the DNA
solution:

δ =
4πn2dcosθ

λ
(5.6)

where θ is the angle of incidence and λ the wavelength of the light in vacuum. If the
thickness d is known the refractive index n2 can be measured from the reflected or trans-
mitted light. In fact when δ = π ± 2πm or 0 ± 2πm with m integer then R and T are
minima. We measured T and R for a wide range of visible wavelengths and we deter-
mined the product n2d. The wavelengths of the maxima (M) and minima (m) are:

λm =
4n2dcosθ

2m
λM =

4n2dcosθ

2m+ 1
(5.7)

Because we do not know the m that correspond to the observed minima, we calculated
the reciprocal of λ both for maxima and minima of the reflected light, in such a way that
the dependence from m disappeared.

1

λ
=

1

λ0
+

1

4n2dcosθ
(5.8)

From λ and λ0 we calculated the product n2d. The thickness d is then determined mea-
suring the minima of T and R for the sealing oil, whose refractive index is known. The
measurements are done with a reflection microscope and a spectrophotometer compati-
ble with it. The magnification used was 50x with a theoretical aperture of 0,45 that cor-
responds to the collection of an angle of 27◦ in air. With this set-up the region of sample
from which we collect the reflected light is big enough to average over many domains
with different orientations. The thickness of the sample is determined by interpolating
the thickness of two consecutive regions of oil. The crucial point of the measurement
is the flatness of the cell: if the thickness is not uniform in the range of observation the
contrast of the fringes is low and the calculation of the thickness of the sample has a
great error. The variation of the oil refractive index as a function of the temperature is
dn/dT = −5 · 10−4K−1.

A crucial point of these kind of measurements is the relationship between the refrac-
tive index and the concentration of the solution of DNA. We assumed a linear relation
between them:

n = nH2O +
dn

dc
c (5.9)

It is possible to extract the refractive index from the concentration and vice versa. In
literature the linear coefficient is in the range 0,168 to 0,185 ml/mg for concentrations
up to 160 mg/ml, that are far below the concentrations of the nematic phase. To obtain
a reliable linear coefficient some measurements of refractive index were done at known
higher DNA concentrations and the average value obtained was 0,136 ml/mg.

It is difficult to estimate the error of a concentration measurements because it is very
complex, and we can give an estimate of the errors that comes from the experimental
techniques and the interpretation of the data. In summary, the error of the concentration
measurements are high, about 5% of its value.
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5.3 Measurements of transmission spectra

A spectrophotometer (Oceanoptics INC, SD 2000) was used to collect the spectra of the
samples with the aim of measuring the concentration of DNA in the nematic phase. The
spectrophotometer works in the visible range of the electromagnetic radiation and is
connected to an inverted microscope.

5.4 Birefringence measurements

The birefringence of the nematic phase was measured with a Berek compensator (Olym-
pus, U-CBT) combined with the microscope. The concentration of the phase was mea-
sured using an inverted microscope (Nikon Te200) through the Fabry-Perot interference.
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