A Query Unit for the IPSec Databases

Alberto Ferrante, Satish Chandra
ALaRI, University of Lugano
E-mail: {ferrante, kaverips}@alari.ch

Vincenzo Piuri
DTI, University of Milano
E-mail: piuri@dti.unimi.it
Outline

IPSec

The Database Query Unit

Multithreaded Unit

Simulations

Conclusions and Future Work
IPSec

✔ Is a suite of protocols
✘ adding security at IP (network) level;
✔ makes extensive use of cryptographic functions.
AH, ESP

✔ IPSec is mainly composed of two protocols:
 ✘ Authentication Header (AH);
 ✘ Encapsulating Security Payload (ESP);
✔ both protocols can be used in:
 ✘ transport mode;
 ✘ tunnel mode.
IPSec uses two databases:

- the Security Policy Database (SPD);
- the Security Association Database (SAD):
 - the records are the Security Associations (SAs).
Security Associations

✔ Each SA contains:

✘ protocol/algorithms settings;
✘ keys for cryptographic algorithms;

✔ SAs are mono-directional:

✘ two SAs need to be created for normal bidirectional communications.
Main IPSec Processing Steps

- Query SPD
- IPSec?
 - Yes: Query SAD
 - No: Drop packet and create SA
- SA exists?
 - Yes: IPSec processing
 - No: Send to upper proc. layers
More than 3 million queries/s in a 1Gbit/s system (worst case);
may be a bottleneck;
may become a weak point (DoS).
High-level Architecture

Caches are Content Addressable Memories.
How it Works

✔ SPD query:
 ✘ cache query;
 ✘ main DB query if not in cache;

✔ SAD query:
 ✘ cache query;
 ✘ main DB query if not in cache:
 ✔ SPD-provided pointer.
Record Size

SPD:
- ✔ two parts:
 - ✗ repeatedly used information (IP, SA pointers, ...);
 - ✗ rarely used information (proposals);
- ✔ repeatedly used information (232 bits) are cached.

SAD:
- ✔ all fields are repeatedly used (792 bits).
Memory Query Techniques

✔ Linear LookUp Technique (LLUT);
 ✘ memory queried in a linear fashion;
✔ Partitioned LookUp Technique (PLUT);
 ✘ memory divided into pages;
 ✘ IP address is used to associate a record to a page;
 ✘ linear search inside the pages;
 ✘ “fragmentation” problem.
Cache Replacement Policies

- First In First Out;
- Least Recently Used.
Parallelizing Queries

✔ Queries in memory take a long time;
✔ other queries in cache can be done during this time;
✔ parallel queries related to the same SA are not allowed.
Simulation Description

✔ SystemC functional model;
✔ simulates behavior and delays of the blocks;
✔ input: ITA tracefiles.
168 different configurations;
LLUT for the first 84 configurations, PLUT for the others;
FIFO for odd configurations, LRU for even ones.
Queries/second

Number of queries per second vs. Configuration number for simple and multithreaded configurations. The graphs illustrate the performance of the system under different cache sizes (SPD and SAD).
Sequential System: SAD and SPD Query Times

![Graph showing query times for SAD and SPD configurations](image)

- **Query time [ns]**
 - SPD query time
 - SAD query time

- **Config. number**
- **Query time [ns]**
- **Cache sizes [number of elements]**
 - SPD cache size
 - SAD cache size

A. Ferrante, A Query unit for the IPSec Databases – 18 / 20
Multithreaded System: SAD and SPD Query Times

![Graph showing comparison between SAD and SPD query times]
Conclusions and Future Work

We designed a DB query unit:

✔ able to exceed
 11 million queries per second;
✔ efficient.

Future Work:

✔ more accurate simulations;
✔ out of order queries.