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Abstract 

Improvements to the confinement method for the calculation of conformational free energy 

differences are presented. By taking advantage of phase space overlap between simulations at 

different frequencies, significant gains in accuracy and speed are reached. The optimal frequency 

spacing for the simulations is obtained from extrapolations of the confinement energy, and 

relaxation time analysis is used to determine time steps, simulation lengths, and friction 

coefficients. At post-processing, interpolation of confinement energies is used to significantly 

reduce discretization errors in the calculation of conformational free energies. The efficiency of 

this protocol is illustrated by applications to alanine n-peptides and lactoferricin. For the alanine-
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n peptide errors were reduced between 2 and 10 fold and sampling times between 8 and 67 fold, 

while for lactoferricin the long sampling times at low frequencies were reduced 10-100 fold. 

 

* Corresponding author. Email: avandervaart@usf.edu. Phone: +1-813-974-8762. 
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 3 

Introduction 

 

Conformational free energy differences are of considerable importance to protein science, since 

they can be used to rationalize and predict the relative stabilities of different protein folds, to 

elucidate the mechanism of allostery and conformational transitions, and to explain the effect of 

mutations on these processes. Obtaining conformational free energies by computational methods 

is no easy task, however.1-8 Most methods require a pathway in configuration space that connects 

the one state of interest to the other. Pathways with physiological relevance, that is, with high 

statistical weights and low free energy barriers, are hard to determine due to the enormous 

dimensionality of configurational space. Moreover, while many methods use a lower-

dimensional order parameters to describe pathways, it is generally difficult to predict and verify 

if these order parameters are sufficient and correct.9-10 Other pathways, like interpolated 

pathways, suffer from the occurrence of large free energy barriers, which impede sampling.11-12  

 

The difficulties of calculating pathways and associated free energy profiles in configurational 

space can be circumvented by the use of nonphysical pathways to connect the states of interest. 

This principle is exemplified by the confinement method,13-19 which connects the states of 

interest by artificial, uncoupled harmonic oscillator states. In the confinement method, the states 

of interest are slowly transformed into independent harmonic oscillators using harmonic 

restraints of increasing strength. Since the free energy cost of applying these restraints can be 

readily calculated, and the free energy of the harmonic oscillator is known, conformational free 

energy differences can be obtained in a relatively straight-forward manner, especially when 

using a modified harmonic oscillator state that is invariant to rigid body motions.13-14 This 

calculation is normally carried out in an implicit solvent, but the method has recently been 

extended to include explicit solvation.15 

 

By foregoing a path in configurational space, the confinement method provides an efficient and 

robust way to calculate conformational free energy differences, even for states that are highly 

dissimilar in structure. But the method has other computational benefits that can be exploited. 

The free energy of transforming the system to a set of independent harmonic oscillators is 

obtained through a series of restrained simulations, each with a different strength of the harmonic 
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 4 

restraint. While the strengths differ, the center of the restraint is the same in all of these 

simulations, and corresponds to the equilibrium structure of interest. This means that spatial 

overlap between the configurational space of the simulations is guaranteed, and that overlap can 

be particularly large for "neighboring" simulations for which the restraint force constants are 

closest in value. This overlap is illustrated in Fig. 1. The overlap in configurational space is 

closely associated with the overlap of energy distributions, which is crucial for the accurate 

estimate of thermodynamic properties.20   

 

-- Figure 1 Here -- 

 

Here we exploit this overlap in order to maximize the efficiency and minimize the statistical 

error of confinement simulations. We will show that one can use the overlap in configurational 

space to accurately predict confinement energies at unsampled strengths, and that this 

interpolation significantly decreases the error in calculated free energies. We will also show that 

instead of sampling at given intervals, one can use the overlap to predict at which restraining 

strength to sample next for simultaneously optimal errors and costs. Finally, by coupling these 

interpolations and extrapolations to relaxation time analyses, we will introduce a robust protocol 

for optimal confinement simulations, which is illustrated by applications to the alanine n-peptide 

and lactoferricin.  

 

Methods 

 

Confinement method. The confinement method13-19 aims to compute the free energy of 

macrostate � by transforming the system of interest with 3N degrees of freedom into a set of 3N 

non-interacting harmonic oscillators (HOs). This transformation is performed in a series of 

simulations by adding harmonic restraints of increasing strength to the physical potential. The 

restraints are centered at the positions of a reference structure X0 belonging to Ω, and the 

simulations are performed until the system can be considered purely harmonic. A recent 

improvement,13-14 also used here, removes the rigid-body motions by performing a mass-

weighted best-fit alignment of the system onto X0 at each simulation step. Removing the 

sampling of the translational and rotational degrees of freedom significantly speeds up 
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 5 

convergence, especially at low restraint strengths. The total number of degrees of freedom 

(NDOF) then becomes  for systems with linear geometries and  otherwise. The 

vibrational free energy of the Ω macrostate can subsequently be computed by thermodynamic 

integration:14 

 

 
  

 (1) 

 

Here, � is the inverse temperature ( ), h is Planck's constant, M is the total mass of 

the system,  is the mass-weighted root-mean-square distance (rmsd) of sampled 

configuration X with reference structure X0, E(X0 )  is the potential energy of the reference 

structure, and  denotes an ensemble average. The Hamiltonian  depends on the 

parameter �, which is used to switch from an unrestrained system ( ) to a system with 

harmonic restraints of frequency  ( ). This frequency must be chosen high enough, so that 

at  virtually all of the system's energy is due to the restraints. At that point, the system can 

be considered to be a set of non-interacting harmonic oscillators. For convenience, the 

integration in Eq. 1 can be transformed by the change of variable  and 

Hζ (X;ζ ) = Hλ (X;λν
2 ) , so that the integration is done in frequency space. In addition, the mass-

weighted rmsd can be expressed as a function of the confinement energy  

: 

       (2) 

For a harmonic oscillator, ρ2 X,X0( ) ∝ν−2 . A trapezoidal rule for numerical integration of Eq. 

2, which interpolates linearly between successive points, would therefore be a bad choice. Since 

this relation becomes linear in logarithmic space, the integration is carried out using linear 

interpolation in logarithmic space instead;21 in the following we will refer to the integrand as: 

 

    .        (3) 

3N − 5 3N − 6

GΩ = E(X0 )+
NDOF

β
log(βhν )− 2(πν )2M ρm

2 (X,X0 ) Hλ (λ )
dλ

0

1

∫ .

β = 1/ kbT

ρm (X,X0 )

. Hλ λ( )
λ = 0

ν λ = 1

λ = 1

ζ = λν 2

Uconf = 2Mπ 2ν 2 ρm
2 X,X0( )

Hζ ν 2( )

GΩ = E X0( ) + NDOF

β
log βhν( )− Uconf

ν 2 dζ
0

ν 2

∫ .

Iν ≡
Uconf

ν 2
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 6 

In practice, simulations are carried out with increasing values of until the kinetic energy of the 

system (NDOFkbT / 2 ) equals the confinement energy , as expected for a purely harmonic 

system, or equivalently: 

 

        (4)
 

 

The averages are obtained from independent simulations that generate 

representative configurations at the given restraint frequencies.  

 

Conformational free energies. By removing rigid body motions in the confinement procedure,14 

GΩ of Eq. 1 and 2 represents a vibrational configurational free energy that lacks free energy 

contributions from the overall translational and rotational motions. The translational free energy 

can be obtained from the partition function of the ideal gas, while the rotational component can 

be obtained from the partition function of the rigid rotor.22-23 In calculating conformational free 

energy differences (∆G) between two states, the translational components will cancel, but 

rotational components generally won't, because of differences in the moments of inertia. Here, 

all reported ∆G values include the rotational component, while ∆GΩ is used to denote a 

difference in vibrational free energy. 

 

Reweighting and interpolation. Since the system is confined to the vicinity of the same reference 

structure X0 in each simulation, there is large spatial overlap between these sets of configurations 

(Fig. 1). This means that the configurations obtained at a given frequency can be used to estimate 

ensemble averages at a different frequency. Consider  configurations obtained from a 

simulation with restraint frequency . The ensemble average of observable A at frequency  is 

given by: 

 

         (5)

 

ν

Uconf

ν 2 ρm
2 (X,X0 ) Hζ (ν

2 )
= NDOF

(2π )2βM
.

ρ2m X,X0( )
Hζ (ν

2 )

Ni

ν i ν j

A ν j
= Ae−β U j−Ui( )

νi
e−βΔFij .
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 7 

Here  is the free energy difference between the biased states at and ; we use 

the symbol F to distinguish it from the configurational free energy of the unbiased state (G) of 

Eq. 1 and 2.  and  are the potential energy values corresponding to frequencies  and , 

respectively. Since only the restraint differs between these potentials: 

  

  .    (6) 

 

The accuracy of the ensemble average obtained by reweighting (Eq. 5 and 6) diminishes with 

increasing . A more accurate estimation can be obtained by using additional statistics. 

This can be done by combining configurations obtained from all simulations at all frequencies. 

To combine samples from these multiple simulations, an estimation of the free energy difference 

between the states is needed, which can be obtained from the multistate Bennett acceptance ratio 

estimator (MBAR).24  

 

With this reweighting we can interpolate averages between simulated frequencies, thereby 

increasing the accuracy of the thermodynamic integration of Eq. 2 in a cost-effective way. We 

also use it to extrapolate the value of the confinement energy for frequencies higher than the 

highest simulated thus far. As described below, this extrapolation is used to assess the frequency 

of the next simulation such that the overall cost and accuracy of the procedure is optimized. 

Finally, the reweighting also increases the accuracy at the simulated frequencies, by mixing in 

configurations from the other simulations in the computation of the confinement energy. 

 

Extrapolation. In order to properly estimate the error on the extrapolated value, the following 

setup was used: we start from a set of simulations performed with different restraints, up to a 

frequency . We subsequently employ the extrapolation of Eq. 4 and 5 to estimate the 

confinement energy for a set of unsampled frequencies . The computational cost of this 

extrapolation is low (much lower than the actual sampling), and nearly independent of the 

number of unsampled frequencies.  We chose this direction, since in extrapolating towards 

higher frequencies, phase space is compressed. This means that all relevant areas of space for the 

ΔFij = Fi − Fj ν i ν j

Uj Ui ν j ν i

Uj Xk( )−Ui Xk( ) = 2Mπ 2ρm
2 Xk ,X0( )ν i

2 ν j

ν i

⎛
⎝⎜

⎞
⎠⎟

2

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ν j −ν i

νmax

ν i >νmax
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 8 

higher frequency restraint were sampled in the lower frequency simulation (but insufficiently). If 

we were to choose the other direction, that is, sampling at the higher frequency followed by 

extrapolation to the lower frequency, certain regions of space important for the low frequency 

restraint would be left unsampled. After the extrapolation, a confinement simulation is performed 

for each of the new frequencies in order to obtain the actual value of the confinement energy, and 

these calculated values are compared with those obtained from the extrapolation. The ratio 

between the extrapolated and actual confinement energy is a measure of the error of the 

extrapolation. We express this ratio as a function of the free energy difference ∆F between the 

simulations at  and . ∆F  can be obtained from Eq. 4 and 5, or, if simulations at multiple 

frequencies are used, from MBAR. The latter approach would yield somewhat more accurate 

extrapolations, since more data is used. However, here we used data from only one simulation 

and the former approach, in order to base all comparisons on the same amount of data. For a 

given , ∆F increases with , and represents a meaningful quantity that can be 

compared across systems of different sizes.  

 

Correlation times. The efficiency and accuracy can be improved further by considering the 

correlation time of the system. This correlation time is affected by the addition of harmonic 

restraints, especially at high frequencies, when the confinement energy accounts for a large 

portion of the total potential energy. In addition, these restraints limit the configurations 

accessible to the system to the ones close to the reference structure X0, and the phase space to 

sample gets smaller as the frequency gets higher. In order to attain comparable sampling for each 

frequency, different sampling times are therefore needed, which can be estimated from the 

correlation time. These were estimated by block-averaging the confinement energies,25 and also 

by calculating the auto-correlation function of the confinement energy. 

 

Alanine n-peptide setup.  We performed confinement simulations of capped alanine n-peptides 

(n=2, 4, 6, 8, and 10), with the general formula CH3CO-Alan-1-NHCH3. These simulations were 

carried out with the CHARMM program,26 using the CHARMM polar hydrogen parameter set 

param19,27 and the ACE implicit solvent model.28 The two lowest-energy conformations of the 

alanine dipeptide are  and , which for the force-field and implicit solvent method used, 

correspond to backbone dihedral angles of (ϕ, ψ) = (61.4, -71.4) and (-78.0, 138.7) degrees, 

ν i νmax

νmax νmax −ν i

C7ax C7eq
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 9 

respectively. The  and  conformations were used as the reference structures for the 

alanine dipeptide. Larger alanine n-peptide systems behave nearly like independently linked 

alanine dipeptides when the peptides are in the  or  states.12, 29 For instance, the energy 

minima and  of the alanine tripeptide correspond to (ϕ1, ψ1, ϕ2, ψ2) = 

(61.1, -72.1, 59.6, -71.6) and (-77.4, 137.7, -76.7, 137.8) degrees, respectively. For all  

alanine systems, the confinement reference structures were obtained by setting all the  

dihedral angles to the values of  and  of the alanine dipeptide, and performing an 

energy minimization. In the following, these configurations are simply named  and , 

independently of the number of dihedral angles. The moments of inertia were obtained for the 

reference structures. The corresponding contribution to the free energy difference between  

and  equals ΔGrotation =
kbT
2
ln

IC7ax
IC7 eq

⎛

⎝
⎜

⎞

⎠
⎟ ,where IC7ax  and IC7 eq represent the products of the 

three principal moments of inertia of  and , respectively.22-23 

 

All confinement simulations were performed using Langevin dynamics at 300 K, with friction 

coefficients of 1, 5, 10, or 20 ps-1 (see Results section). The time step had a maximum value of 1 

fs, and was adjusted depending upon the restraint frequency. It was chosen so there are at least 

80 time steps per harmonic oscillator period, resulting in smaller time steps for higher 

frequencies. Different time steps were tested, which showed that at least 40 steps per period are 

required to obtain accurate estimation of the confinement energy. A conservative value of 80 

steps/period was then chosen. SHAKE30 was not used in the simulations. To further restrict 

sampling to the state of interest, especially at the lowest frequencies, we also added flat-bottom 

dihedral restraints. These were centered on the energy-minimized values, with a force constant of 

10 kcal/mol/rad2, and a width of 2.5°. This value was chosen so that the states of interest are the 

same as the ones defined in the umbrella sampling. Interpolation of the confinement energy was 

done for 10 frequencies, equally spaced in log-space, between consecutive simulations. Adding 

more points didn’t change the final free energy difference or the error bars. 

 

C7ax C7eq

C7ax C7eq

C7ax ,C7ax( ) C7eq ,C7eq( )
n ≥ 3

φ,ψ( )
C7ax C7eq

C7ax C7eq

C7ax

C7eq

C7ax C7eq
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 10 

For comparison, free energy differences between the  and  conformations were also 

obtained from one-dimensional umbrella sampling simulations.31 For the alanine n-peptide, the 

transformation from  to  involves (n-1)  and (n-1)  dihedral transformations. These 

angles were treated as reaction coordinates, and changed one at a time (in the order 

), while keeping the others constant. For each dihedral angle, 50 equally 

spaced umbrella windows were used, with a force constant of 150 kcal/mol/rad2, and a 

simulation time of 100 ns per window. To maintain the trans peptide configuration, flat-bottom 

dihedral restraining potentials were used for the  backbone dihedral angles with a force 

constant of 10 kcal/mol/rad2 and a width of 90°. Simulations were performed with Langevin 

dynamics at 300 K, using a 1 fs time step, no SHAKE,30 param1927 and ACE.28 Potentials of 

mean force (PMF) were obtained from MBAR;24 all free energies are reported in kcal/mol.  

 

Lactoferricin setup. Bovine lactoferricin is 25-residue peptide cleaved from lactoferrin with anti-

microbial properties.32 In lactoferrin, the sequence is folded into an α-helix followed by a β-

strand, while the cleaved peptide adopts a β-hairpin fold; the peptide contains one disulfide bond 

(Fig. 2).33-34 No spontaneous conformational transitions were observed in long unbiased MD 

simulations.35 Because of its size and the complexity of the transition, lactoferricin is a good test 

system for the confinement method, and representative of the more challenging biological 

systems that are the ultimate target for the method.   

 

The α+β  conformation was obtained from residues 17-41 of lactoferrin (PDB: 1BLF34), while 

the β-hairpin conformation was taken from lactoferricin in solution (PDB: 1LFC33). We used the 

CHARMM36 force field36 with the GBMV implicit solvent model,37 Langevin dynamics and no 

SHAKE.30 A friction coefficient of 1 ps-1 was used for simulations with a frequency lower than 2 

ps-1, and a friction coefficient of 20 ps-1 for frequencies above. Interpolation of the confinement 

energy was done for 10 equally log-spaced frequencies between consecutive simulations.  After 

an energy minimization, each conformation of the peptide was heated and equilibrated at 300 K. 

The reference structures used in the confinement simulations were obtained from rmsd-based 

clustering with a cut off of 3.5 Å of a 25 ns unrestrained trajectory. These trajectories were also 

used to obtain the principal moments of inertia. All simulations were conducted with the 

CHARMM program.26 

C7ax C7eq

C7eq C7ax φ ψ

 φ1,ψ 1,…,φn−1,ψ n−1

ω
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 11 

 

-- Figure 2 Here -- 

 

 

Results 

 

Alanine n-peptide. Fig. 3 shows the ratio between the extrapolated and actual confinement 

energies as a function of , for multiple values of . Curves for all alanine systems are 

provided; a value of one indicates that the extrapolation perfectly predicted the confinement 

energy. As expected, deviations from one strongly increased with the free energy difference, and 

the ratio was very close to one for small . A notable feature is that the extrapolation stayed 

accurate for larger free energy differences as increases. In other words, as the system 

becomes more harmonic, it becomes easier to predict the result of a new simulation. This is due 

to the fact that at larger frequencies, the harmonic restraints represent a larger portion of the total 

energy, and the configurational space is compactly distributed around X0 in a predictable manner. 

In addition, we observed that the extrapolation is more accurate as the size of the system 

increases. Larger systems have narrower energy distributions, so that the weights in Eq. 5 are 

closer to one another. More configurations will therefore contribute significantly to the ensemble 

average at another frequency, thus lowering the error.  This is a particularly encouraging feature, 

which will facilitate the application of the confinement method to larger and more complex 

systems.  

 

-- Figure 3 Here -- 

 

The information of Fig. 3 can be used to extract the maximum value of  for which the 

extrapolation error is below a desired threshold. We chose 5%, a fairly conservative value for 

this error, which corresponds to an extrapolated/actual confinement energy ratio of 0.95 or 1.05. 

In the following we will refer to this spacing as ∆Fext. Fig. 4 shows ∆Fext as a function of 

frequency for the alanine n-peptides. While the curves are bumpy (due to the fact that the ratios 

switched between 0.95 and 1.05, discretization of ν, and finite sampling) the graph shows several 

ΔF νmax

ΔF

νmax

ΔF
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 12 

clear trends: consistent with the results of Fig. 3, ∆Fext increased with both frequency and system 

size. 

  

-- Figure 4 Here -- 

 

The physical relevance of ∆Fext is the following.  When the free energy difference between the 

sampled system at  and the unsampled system at higher frequency is ∆Fext, there is sufficient 

overlap in distribution functions to estimate, within some preselected error bound (here 5%), the 

confinement energy at the unsampled frequency from simulated data at . This means that 

after sampling at both frequencies, there will be sufficient overlap in distribution functions to 

accurately calculate confinement energies at frequencies inbetween. The accuracy of this 

interpolation will be higher than the accuracy of the extrapolation, since more data is available 

for the interpolation (one extra set of simulations). Furthermore, the error of interpolation can be 

reduced further by taking into account all simulated data, at all simulated frequencies. As shown 

below, this interpolation significantly reduced the overall error in calculating the configurational 

free energies. Thus, we propose to exploit ∆Fext as guideline for selecting the frequency spacing 

of the simulations. The goal of this procedure is to pick the maximum spacing at which high 

quality interpolations remain feasible, thereby obtaining high accuracy at minimal computational 

costs. If we have a set of simulations up to frequency , the next frequency of simulation will 

be picked such that its free energy difference with the  simulation is ∆Fext.   

 

Fig. 5 shows that interpolation can be performed to obtain confinement energies at non-simulated 

frequencies. In Fig. 5A, the value of Iν (Eq. 3) is shown in black for the alanine dipeptide at 

simulated frequencies of 0.021 and 6.6 ps-1. The free energy difference between these 

simulations was 4.2 kcal/mol.  The black line represents the value of Iν that would vary linearly 

with the logarithm of the frequency, which is the assumption made when performing the 

integration of Eq. 2 in log space,18 and also the analytical solution for harmonic oscillators. The 

red curve corresponds to interpolated values using MBAR. Additional simulations at 

intermediate frequencies confirm the accuracy of the interpolation. The simulated values (blue 

dots) show that Iν does not follow a straight line in log space, but falls on the interpolated curve 

instead. The observed non-log-linear behavior is expected for this frequency range, since the 

νmax

νmax

νmax

νmax
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 13 

system is far from being purely harmonic. In fact, the harmonic terms contribute only 24% of the 

total energy at a frequency of 6.6 ps-1. The interpolation accurately reproduced the observed 

behavior, which demonstrates that meaningful information about the system can be obtained 

through interpolation. It also shows how the interpolation can greatly increase the efficiency of 

the method: while all simulations (represented by black and blue symbols) would be needed to 

accurately compute the free energy difference over that frequency range, just two initial 

simulations (black point) are sufficient if the interpolation is used. Greater accuracy can also be 

achieved by reducing the discretization error arising from the frequency spacing, but this comes 

at additional computational costs. Fig. 5B and 5C illustrate how the interpolation for the alanine 

dipeptide performs at higher frequencies. The free energy differences between these two 

frequencies are comparable to the one corresponding to Fig. 5A (5.9 and 4.2 kcal/mol versus 4.2 

kcal/mol). Again, the interpolation correctly estimated Iν for frequencies that were not simulated. 

At higher frequencies Iν varied more linearly with the log of the frequency, as expected for more 

harmonic system. The same behavior was observed for the other alanine systems, such as alanine 

10-peptide (Fig. 5D).  

 

-- Figure 5 Here -- 

 

Fig. 6 shows the correlation time of the confinement energy for the alanine dipeptide and 

decapeptide, as a function of the restraint frequency. The correlation times were calculated by 

block-averaging25 (indicated by circles) and from the autocorrelation function of the confinement 

energy (triangles). The two methods gave similar results, which indicates that the correlation 

time could be properly estimated. For the dipeptide, the correlation time was similar for all 

frequencies < 0.2 ps-1, and irrespective of the friction coefficient, while for the decapaptide 

higher friction coefficients led to higher correlation times in this frequency range. This is likely 

due to the more complex landscape of the decapeptide, which has subbasins; visiting the various 

subbasins is hindered by large friction terms.  Near a frequency of 0.2 ps-1 the correlation times 

dropped significantly for all systems. At this frequency,  represents between 2 and 4% of 

the kinetic energy. Apparently, this energy is sufficient to limit the system to one subbasin, 

which explains the precipitous decline in correlation time. At high frequencies, low correlation 

times were observed, inversely proportional to the friction coefficient. We checked that the 

Uconf
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average values of the confinement energies were not affected by the friction coefficient, so that 

lower friction coefficients indeed led to faster sampling. The simulation time needed to obtain a 

given number of independent measurements is proportional to the correlation time. Fig. 6 shows 

that in order to obtain uniform sampling across the frequencies, much smaller simulation times 

are needed at higher frequencies. In addition, by increasing the friction coefficient at high 

frequency, the simulation time can be reduced, thereby further increasing the efficiency of the 

calculation. 

 

-- Figure 6 Here -- 

 

In order to demonstrate the increased performance of the confinement method through 

extrapolation, interpolation and assessment of correlation times, we computed the free energy 

difference between the  and  conformations of the alanine n-pepetides. For each 

frequency, the correlation time of the confinement energy was estimated at regular time 

intervals, and the simulation was stopped when the number of independent measurements (which 

is the simulation time divided by the correlation time) was at least 1000. The confinement 

simulations were run in an iterative manner. The first simulation was performed at a frequency 

ps-1. The frequency of the next simulation was calculated by extrapolation. Several 

strategies were employed. The first used a constant free energy spacing of 5 kcal/mol. The other 

three strategies used the information of Fig. 4 to vary this spacing as a function of ν. In the 

second strategy the spacing was system-dependent, and obtained from a log-linear bestfit of ∆Fext 

to ν. The third strategy was system-independent, and given by  

(indicated by the lower dashed line in Fig. 4), a conservative estimate of ∆Fext(ν). In the last 

strategy, a more aggressive estimate was chosen (indicated by the upper dashed line in Fig. 4): 

. This iterative process of extrapolation and simulation was repeated 

until the convergence criterion of Eq. 4 was met. 

 

Table 1 summarizes the free energy differences obtained with these strategies. For comparison, 

the table also shows the free energies obtained from 1-dimensional umbrella sampling (∆GUS), 

and from confinement simulations according to the setup of Ovchinnikov et al. (∆GHom), which 

C7ax C7eq

ν1 = 0.02

ΔFext = 3+ 0.388 ln ν /ν1( )

ΔFext = 5 + 0.485 ln ν /ν1( )
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involved 17 simulations at frequencies equally spaced in log space, with a simulation time of 20 

ns per simulation.14 Finally, the total cost of the simulations are shown relative to the total cost of 

the simulations using homogeneous spacing in frequency space. Fig. 7 shows the frequency 

spacing and number of steps for the alanine 10-peptide for each of the simulation setups; the 

number of steps is indicated by the length of the bars (but the unit length represents 108 steps for 

the homogeneous and 106 steps for the other setups).  Because of the small time step, the high 

frequency simulations are particularly costly in the homogeneous frequency setup. For this 

reason, Ovchinnikov et al. recommended simulating up to a frequency of 86 ps-1, since the free 

energy difference for the alanine dipeptide is already converged at that frequency (even though 

the absolute free energies of the C7eq and C7ax configurations are not). A converged free energy 

difference at a lower frequency implies that the anharmonicity of the system at higher 

frequencies is the same for both configurations. However, this is not necessarily the case for 

large conformational changes, especially if new interaction were formed. While we also 

observed a convergence of the free energy difference for the alanine dipeptide at 86 ps-1, 

omitting the high frequency portion led to an error in ∆G of between 0.10 and 0.31 kcal/mol for 

the alanine decapeptide, and 0.98 kcal/mol for lactoferricin. Due to these errors, we included all 

frequencies until the absolute free energies of the C7eq and C7ax states were converged. 

 

-- Table 1 Here -- 

-- Figure 7 Here -- 

 

The free energies obtained by umbrella sampling showed good agreement with the confinement 

free energies for all the alanine systems. The confinement simulations gave free energies of ~3.3-

3.5 kcal/mol per (ϕ, ψ) dihedral angles, which shows the lack of correlations between (ϕ, ψ) 

backbone angles. Backbone rotation in the larger systems act as backbone rotation in 

independent alanine dipeptide systems, as observed before for the alanine tripeptide.12, 29 The 

four extrapolation strategies gave similar ΔG values, with error barrs 2 to 10 times smaller than 

with the homogeneous setup, which shows that all strategies could be used with good accuracy. 

The low error bars came from interpolation, which reduced the discretization error, the use of 

correlation times, which ensured sufficient sampling, and the use of MBAR. While the use of 

interpolation does not significantly affect the free energy differences, it significantly contributes 
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to the low error bars. With these strategies, the free energy spacing between consecutive 

simulations was small enough, so that configurations from multiple simulations could be used to 

increase the statistics at a given frequency. If the free energy spacing would be too high, the 

weights in Eq. 5 would be very small, which would then effectively prevent the mixing of 

configurations, and increase the error on the interpolated values. Use of MBAR and interpolation 

is therefore only useful when the frequencies are chosen judiciously. While all strategies gave 

values that were relatively close with low error bars, not all free energies of the various strategies 

overlap within their error bars, which indicates that the error bars are underestimated. This is 

likely due to insufficient sampling, which is not taken into account by the error bars. The 

problem of insufficient sampling cannot be easily solved, as one cannot quantify missing 

information. 

 

Because each simulation was run until a fixed number of independent frames was obtained, the 

simulation time was different for each frequency. The low frequency simulations required the 

highest number of simulation steps, because of large correlation times (Fig. 6, 7). This 

correlation time was system-dependent, since at low frequencies the harmonic restraints were 

fairly weak and the system dynamics were only slightly affected by the restraints. Upon 

increasing the frequency, the simulation time dropped significantly, because of a drop in 

correlation times. At frequencies above ~12.5 ps-1 smaller time steps were required, so that even 

though correlation times were roughly constant at high frequencies, the required number of steps 

increased (Fig. 7). The various extrapolation strategies had non-constant frequency spacings that 

were larger than the homogeneous setup at low frequencies, but smaller at high frequencies. The 

difference in spacing is due to the free energy difference between neighboring simulations (∆F of 

Eq. 5) which increases with frequency for a given frequency spacing. In addition, the total 

number of simulations increased with the size of the system. This makes sense, since for a purely 

harmonic system, the free energy difference between two frequencies is proportional to the 

number of degrees of freedom. The number of simulations at high frequencies, where the system 

is largely harmonic, will therefore scale ~linearly with the number of atoms. The cost of the first 

strategy, which is based on a constant free energy spacing of 5 kcal/mol between consecutive 

simulations, indeed increased with system size (Table 1). 
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The four extrapolation strategies led to much lower computational costs than the setup with 

homogeneous sampling in log-frequency space (between 1.5 and 12.3% of the cost). This was 

mostly due to much shorter simulation lengths at high frequencies. The computational cost of the 

three system-independent setups (strategy 1, 3 and 4 in Table 1) increased with the size of the 

system (as discussed above). The setup with a constant free energy spacing of 5 kcal/mol was the 

most expensive of the four strategies, as it required the most simulations at high frequency. The 

setup based on best-fits of ∆Fext was the cheapest overall as it used the largest free energy 

spacing. This advantage was especially pronounced for the alanine decapeptide, for which 

extrapolations to high free energy differences were possible (Fig. 4). For future applications, 

obtaining system-dependent expressions for ΔF is not practical due to the simulation costs 

associated with estimating this expression. System-independent strategies are much more 

practical, and even the most aggressive strategy (strategy 4) presented here was accurate, as well 

as cost efficient. 

 

While the optimized protocol consists of a combination of interpolation, extrapolation, optimized 

friction coefficients, and correlation analysis to determine simulation lengths, the contribution of 

the interpolation and extrapolation to the decrease in error was estimated for the alanine 

decapeptide by calculating ΔG using the 17 windows of the homogeneous setup and optimizing 

the friction coefficients, simulation length, and time steps only. This resulted in a free energy 

difference of -31.55 ± 0.44 kcal/mol, at 1.0% of the cost of the homogeneous setup. Relative to 

the umbrella sampling results, the partially optimized 17-window strategy led to a larger shift in 

the free energy than the fully optimized strategies, while the statistical error was also 

significantly larger (8.8, 4.9, 2.8, and 4.9 times larger than the fully optimized schemes, 

respectively). When taking the difference in simulation lengths into account, these statistics 

suggest that the interpolation/extrapolation strategy reduces the error two-fold for the alanine 

decapeptide. In fact, when calculating ΔG using the fully optimized schemes but at exactly the 

same cost of the partially optimized 17-window strategy (by using less frames), free energies 

of -31.18 ± 0.17 kcal/mol, -31.61 ± 0.18 kcal/mol, -29.58 ± 0.28 kcal/mol, and -30.24 ± 0.22 

kcal/mol were obtained for the four schemes, respectively. Thus, for the alanine decapeptide, 

errors were about factor of two (2.6, 2.4, 1.6, and 2.0, respectively) lower when 
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interpolation/extrapolation was used. Lactoferricin results suggest that 

interpolation/extrapolation might become more important for larger systems though. 

 

Lactoferricin. As shown by the alanine systems, larger molecules require simulations at more 

frequencies to maintain high accuracy. Performing these simulations sequentially, as was done 

for the alanine n-peptides, can be impractical if a high number of CPUs is available: running 

multiple simulations at the same time is then usually more wall-clock time efficient. In this case, 

two strategies can be employed. One can either use the extrapolation protocol to estimate the 

optimal frequencies from short test simulations, and then extend these simulations in a parallel 

fashion. Or one can start multiple simulations at pre-determined frequencies (estimated from 

experience), calculate the free energy differences between these simulations using MBAR, and 

insert extra simulations to obtain the desired free energy spacing between consecutive 

simulations. This second approach was used here in order to compute the free energy difference 

between the two lactoferricin conformations. The free energy spacing used corresponds to 

strategy 4 of Table 1, which is the most aggressive. Since we observed that extrapolation and 

interpolation are more accurate for larger system, we expect this strategy to be very accurate for 

lactoferricin. Simulations were run until 1000 independent frames were obtained, except when 

using replica exchange, for which we used 100 frames per replica (500 frames total). 

 

Similar to the alanine systems, the correlation time of the confinement energy for lactoferricin 

was much higher at low frequencies than at high frequencies (Fig. 8A), because at low 

frequencies the harmonic restraints had a small impact on the overall dynamics of the molecule. 

For lactoferricin, this correlation time was as high as 10 ns for some frequencies, which would 

require extremely long simulations to obtain sufficient uncorrelated data. The long correlation 

times are likely a general feature for more complex biomolecules. To gain efficiency, it is 

therefore highly desirable to lower the correlation times at low frequencies. Multiple strategies 

can be employed: a careful choice of the reference structure, the use of additional restraints to 

eliminate subbasin hopping, or the use of replica exchange.  

 

While any configuration that belongs to the basin of interest can be used as a reference structure,  

depending on the free energy landscape, different configurations may result in different 
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correlation times. An energy-minimized configuration is a straightforward choice, but there is no 

guarantee that this structure is most representative of the basin. A more representative 

configuration can easily be obtained by performing rmsd-based clustering of an unrestrained MD 

trajectory, which is then expected to yield lower correlation times. This procedure was used here 

to obtain the reference structures for both lactoferricin conformations. 

 

At low frequencies, the dynamics of the system are only slightly affected by the harmonic 

restraints. The correlation time of the confinement energy is therefore very close to the 

correlation time of the rmsd for an unrestrained simulation of the same molecule. Restricting the 

motion of the molecule, by using additional restraints, will therefore lower the correlation time. 

However, the free energy might also be affected, depending on whether the definition of each 

basin is modified. Analysis of the α+β conformation trajectories showed that some backbone 

dihedral angles switched between two different values, with a long correlation time. We 

therefore added flat-bottom dihedral angle restraints to confine these angles near the values of 

the reference state. Fraying was observed in simulations of the β-hairpin conformation, which 

was prevented by the addition of NOE restraints to maintain hydrogen bonding between residues 

2 and 24. While these restraints indeed restricted the peptide to a single basin, the effect on the 

correlation times was marginal (Fig. 8A). 

 

Finally, correlation times can be broken and sampling can be enhanced by using temperature 

replica exchange. In replica exchange, multiple independent simulations are run at different 

temperatures, and at given time intervals coordinates between the different simulations are 

swapped based on a criterion that preserves detailed balance.38 Sampling is enhanced by the use 

of elevated temperatures, while correlations times are broken after swapping. In order not to 

unfold the peptide, we only used a small temperature range. For each simulation with a harmonic 

oscillator frequency lower than 0.72 ps-1, replica exchange with 5 replicas at temperatures of 

300, 312, 324, 337, and 350 K was used. This setup reduced the correlation times by a factor 

~10-100 (Fig. 8A). In addition, extra efficiency was gained since data from all the temperatures 

could be combined using MBAR.  
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Using these approaches, we obtained a free energy difference of 2.13 ± 0.05 kcal/mol in favor of 

the β-hairpin, which is indeed the stable form in solution. While many simulations were needed 

for each conformation (Fig. 8B), most of these were at high frequencies, and only required short 

simulation times (typically 105-107 steps per simulation). Most simulation steps were needed at 

frequencies between 0.7 and 2 ps-1, but simulation times could likely have been reduced by also 

using replica exchange for these frequencies. When excluding interpolation/extrapolation from 

the optimization protocol (i.e. using the 17 frequencies of the homogeneous setup, but optimizing 

friction coefficients, lengths and time steps), a free energy difference of of 4.67 ± 4.19 kcal/mol 

was obtained, indicating the importance of the interpolation and extrapolation strategy for larger 

systems. 

 

Conclusion 

 

We showed that the accuracy and efficiency of the confinement method can be greatly increased 

by the use of interpolation and extrapolation of the confinement energies, and the careful 

consideration of correlation times. Interpolation can be used to obtain confinement energies at 

unsampled frequencies, which significantly reduces the discretization error. The free energy 

difference between two consecutive simulations must stay below a certain value for accurate 

interpolations; however, this difference can be increased for larger systems, and at higher 

frequencies. Extrapolated free energy differences between simulated and unsimulated 

frequencies can also be used as a guide to select the optimal frequencies of the simulations. Cost 

and accuracy can be further optimized by basing the duration of each simulation on correlation 

times, costs can be decreased by increasing the friction coefficient at high frequencies, and 

accuracy can be increased by combining all data from multiple simulations. This setup proved to 

be efficient, as it led to proper estimations of conformation free energy differences for alanine n-

peptides, with significantly increased accuracy (factor of 2-10) and greatly decreased 

computational costs (factor of 8-67) compared to homogeneous sampling. Additional techniques 

were used to speed up sampling for lactoferricin, a much more complex system with very long 

correlation times at low frequencies. Correlation times were significantly reduced by the use of 

temperature replica exchange (factor ~10-100). They were also reduced by using a reference 

structure obtained from rmsd-based clustering of unrestrained simulations, which prevented 
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excessive subbasin hopping, and by the application of additional restraints to restrict the 

configurational space.  

 

Our analysis revealed promising features for application of the confinement method to large 

systems. As illustrated by our alanine n-peptide and lactoferricin simulations, large systems will 

clearly take longer sampling times, since their configurational space is larger. To maintain 

accuracy the total number of simulations grows with system size, but most of these simulations 

are at high frequencies where sampling is relatively short (Fig. 8B). Moreover, the growth in the 

number of simulations is partly counteracted by the fact that at a given accuracy, the spacing in 

free energy can be larger for larger systems. It is likely that large and complex systems will 

suffer from long correlation times at low frequencies, as also observed for lactoferricin. We 

showed however, that sampling at low frequencies can be significantly reduced by temperature 

replica exchange and other strategies to reduce the correlation times. While treatment of large 

systems will be computationally expensive, our study provides effective ways by which costs 

and accuracy can be managed and controlled. 
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Tables 

Table 1. Free energy differences between the C7eq and C7ax conformations of the alanine n-

peptide in kcal/mol. ∆GUS corresponds to the free energy difference calculated from 1-

dimensional umbrella sampling. ∆GHom corresponds the free energy obtained from confinement 

at frequencies that are equally spaced in log space. A total of 17 of these were performed per 

conformation, with a constant simulation time of 20 ns per simulation, according to the setup of 

Ref. 14. In the strategies 1-4, the simulations are spaced in free energy space according to a given 

relation (see text). All free energies are in kcal/mol. 

 

 

System 

 

 

∆GUS 

 

 

∆GHom 

Strategy 

1a 2b 3c 4d 

∆G Coste ∆G Coste ∆G Coste ∆G Coste 

Ala2 -3.42  

± 0.06 

-3.57  

± 0.27 

-3.25  

± 0.06 

2.57% -3.15  

± 0.06 

2.41% -3.77  

± 0.07 

2.19% -3.60  

± 0.11 

1.50% 

Ala3 -7.01  

± 0.09 

-6.84 

± 0.35 

-6.91  

± 0.05 

3.54% -7.03  

± 0.06 

2.20% -6.99  

± 0.07 

2.29% -6.67  

± 0.07 

1.98% 

Ala4 -9.38 ± 

0.21 

-10.03  

± 0.39 

-9.72  

± 0.05 

4.94% -10.15  

± 0.08 

2.33% -10.38  

± 0.07 

3.12% -10.10  

± 0.08 

2.86% 

Ala6 -16.25  

± 0.25 

-17.21  

± 0.48 

-16.96  

± 0.05 

6.72% -16.75  

± 0.09 

2.88% -17.20  

± 0.06 

4.46% -17.47  

± 0.10 

3.67% 

Ala8 -22.6  

± 0.31 

-23.41  

± 0.46 

-23.47  

± 0.05 

9.24% -23.68  

± 0.09 

3.27% -23.85  

± 0.06 

5.50% -23.74  

± 0.09 

4.47% 

Ala10 -28.98  

± 0.35 

-29.87 

± 0.33 

-30.94  

± 0.05 

12.28% -30.69  

± 0.09 

3.67% -29.60  

± 0.16 

6.87% -30.30 

± 0.09 

5.39% 

a. ∆F = 5 kcal/mol. 

b. ∆F from system-dependent best-fits of to ∆Fext (Fig. 4). These fits are: 

, , ,

, , . 

c. , shown by the lower dotted line in Fig. 4. 

d. , shown by the upper dotted line in Fig. 4. 

e. Total computational cost as a percentage of the total computational cost when using 

homogeneous spacing in log frequency. 

ΔFAla2 = 3.19 + 0.54 log ν /ν1( ) ΔFAla3 = 1.44 +1.02 log ν /ν1( ) ΔFAla4 = 0.95 +1.27 log ν /ν1( )
ΔFAla6 = 3.36 +1.12 log ν /ν1( ) ΔFAla8 = 3.27 +1.38 log ν /ν1( ) ΔFAla10 = 4.87 +1.55 log ν /ν1( )
ΔFext = 3+ 0.388 ln ν /ν1( )
ΔFext = 5 + 0.485 ln ν /ν1( )
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Captions for the figures 

 

Figure 1. Illustration of confinement simulations and their spatial overlap. A) Sampled 

configurations using a very small force constant for the harmonic restraint. Sampling is mostly 

governed by the unbiased, original potential. B) In red: sampled configurations using a medium 

force constant for the harmonic restraint. Sampling is largely due to the confining harmonic 

potentials. C) In yellow: sampling using a high force constant. Sampling is (virtually) purely due 

to the confining harmonic potentials. 

 
Figure 2. Structure of lactoferricin. Solution structure on right, structure of the lactoferricin 

sequence within the lactoferrin protein on left, and disulfide bonds shown as ball and stick. 

 
Figure 3.  Ratio between the confinement energy computed from extrapolation and from an 

actual simulation, for alanine 2-peptide (A), 3-peptide (B), 4-peptide (C), 6-peptide (D), 8-

peptide (E), and 10-peptide (F) . Simulations with different restraints up to a frequency  

were used to extrapolate the confinement energy at higher frequencies. These extrapolated states 

have a higher free energy than the state corresponding to , with a difference of . 

 

Figure 4. Free energy difference corresponding to an error of 5% on the confinement energy 

obtained by extrapolation. This free energy difference is between the simulated system having 

the highest harmonic restraints, and the one corresponding to the extrapolated frequency. 

 

Figure 5.  Interpolation of the confinement energy for alanine 2-peptide for different restraint 

frequency ranges: A) low frequencies (0.02-6.6 ps-1), B) intermediate frequencies (6.6-18.4 ps-1), 

and C) high frequencies (26.6-38.8 ps-1), as well as  D) for alanine 10-peptide at low frequencies 

(0.02-0.37 ps-1). The value of the confinement energy is interpolated (red) for frequencies 

between two initial simulations (black). The thickness of the red line represents the error bar. 

Additional simulations (blue) are added thereafter to estimate the accuracy of the interpolation. 

 

Figure 6. Correlation times for A) alanine 2-peptide and B) alanine 10-peptide for different 

restraint frequencies, calculated from the autocorrelation function of the confinement energy 

νmax

νmax ΔG
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(triangle symbols) and from block analysis (circle symbols). Multiple friction coefficients (from 

1 to 20 ps-1) were used as parameters for the Langevin thermostat. 

 
Figure 7. Number of MD steps used in the confinement simulations of the alanine 10-peptide in 

the C7eq conformation. Each vertical bar represents a simulation, and its length is linearly 

proportional to the number of steps. Different strategies were employed (see text), and led to 

different number of simulations. 

 
Figure 8. A) Correlation times for lactoferricin in the β conformation, using a reference structure 

obtained from clustering (blue), the same reference with the addition of restraints (black), and 

temperature replica exchange in addition to the restraints (red). B) Number of MD steps used in 

the confinement simulations. Each vertical bar represents a simulation, and its length is linearly 

proportional to the number of steps. 
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Figures 

 

 

 

 
 

 

Figure 1. 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 1. Illustration of confinement simulations and their spatial overlap. A) Sampled configurations using a 
very small force constant for the harmonic restraint. Sampling is mostly governed by the unbiased, 

unharmonic potential. B) In red: sampled configurations using a medium force constant for the harmonic 
restraint. Sampling is largely harmonic. C) In yellow: sampling using a high force constant. Sampling is 

(virtually) purely harmonic.  
1030x319mm (72 x 72 DPI)  
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Figure 2. Structure of lactoferricin. Solution structure on right, structure of the lactoferricin sequence within 
the lactoferrin protein on left, and disulfide bonds shown as ball and stick.  

377x539mm (72 x 72 DPI)  
 
 

Page 38 of 44

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 3.  Ratio between the confinement energy computed from extrapolation and from an actual 
simulation, for alanine 2-peptide (A), 3-peptide (B), 4-peptide (C), 6-peptide (D), 8-peptide (E), and 10-

peptide (F) . Simulations with different restraints up to a frequency   were used to extrapolate the 
confinement energy at higher frequencies. These extrapolated states have a higher free energy that the 

state corresponding to nu_max , with a difference of  delta G.  
286x177mm (300 x 300 DPI)  
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Figure 4. Free energy difference corresponding to an error of 5% on the confinement energy obtained by 
extrapolation. This free energy difference is between the simulated system having the highest harmonic 

restraints, and the one corresponding to the extrapolated frequency.  
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Figure 5.  Interpolation of the confinement energy for alanine 2-peptide for different restraint frequency 
ranges: A) low frequencies (0.02-6.6 ps-1), B) intermediate frequencies (6.6-18.4 ps-1), and C) high 

frequencies (26.6-38.8 ps-1), as well as  D) for alanine 10-peptide at low frequencies (0.02-0.37 ps-1). The 
value of the confinement energy is interpolated (red) for frequencies between two initial simulations (black). 
The thickness of the red line represents the error bar. Additional simulations (blue) are added thereafter to 

estimate the accuracy of the interpolation.  
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Figure 6. Correlation times for A) alanine 2-peptide and B) alanine 10-peptide for different restraint 
frequencies, calculated from the autocorrelation function of the confinement energy (triangle symbols) and 

from block analysis (circle symbols). Multiple friction coefficients (from 1 to 20 ps-1) were used as 
parameters for the Langevin thermostat.  
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Figure 7. Number of MD steps used in the confinement simulations of the alanine 10-peptide in the C7eq 
conformation. Each vertical bar represents a simulation, and its length is linearly proportional to the number 

of steps. Different strategies were employed (see text), and led to different number of simulations.  
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Figure 8. A) Correlation times for lactoferricin in the β conformation, using a reference structure obtained 
from clustering (blue), the same reference with the addition of restraints (black), and temperature replica 
exchange in addition to the restraints (red). B) Number of MD steps used in the confinement simulations. 
Each vertical bar represents a simulation, and its length is linearly proportional to the number of steps.  
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