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Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum
violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so
far, which make use of single-particle observables, our analysis involves collective observables constructed
using multiboson operators. An exemplifying scheme to test this violation with a quantum optical setup is also
discussed.
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A physical theory is called noncontextual if the measure-
ment results about a given observable A do not depend on
whether other commuting observables B are simultaneously
measured. Quantum mechanics turns out to be a contextual
theory, with Bell’s nonlocality being a particular form of
contextuality [1–3].

Many experimental tests of contextuality have been pro-
posed where the commuting observables A and B refer to
the spatial and polarization degrees of freedom of single
spin- 1

2 particles or photons [4–14]. Most of the tests check
whether inequalities of Clauser-Horne-Shimony-Holt (CHSH)
type [15], applied now to local, single-system settings

E = |〈A(B + B ′)〉 + 〈A′(B − B ′)〉| � 2 , (1)

are violated or not, with 〈· · · 〉 being the expectation values
of the involved quantities in a suitable system state. These
inequalities are a straightforward consequence of assuming
that the values assigned to products AB, AB ′, A′B, and A′B ′ of
observables A and A′, pertaining to a given degree of freedom,
commuting with observables B and B ′ pertaining to a different
degree of freedom, are products of the values independently
assigned to the separate observables A, A′, B, and B ′.

Note that different approaches to investigate quantum
contextuality, not based on the inequality (1), have also been
considered (for instance, see [16–23]). Furthermore, violation
of noncontextuality has been exploited as a resource for
quantum key distribution and quantum information processing
purposes [24–26]. The contextuality of mesoscopic systems
has been recently addressed in systems consisting of distin-
guishable particles [27] and superconductive devices [28], but
all involving single-qubit measurements.

The question that naturally arises is whether it is possible
to test noncontextuality in systems of N identical particles,
such as trapped ultracold bosons, phonons in systems of mi-
cromechanical oscillators, and multiphoton states in quantum
optics, i.e., in truly mesoscopic systems. In such cases, the use
of collective observables is mandatory; from the theoretical
point of view, these observables can be naturally described
in terms of multiboson algebras, which represent a novel tool
in this specific context. This analysis of mesoscopic systems
represents also an important contribution to the study of the
transition between quantum and classical systems.

Motivated by the previous considerations, in this Brief
Report, we address quantum contextuality in systems made
of N identical particles (bosons). Our main result is the
identification of a set of collective observables for multi-
particle tests of noncontextuality. More specifically, using
maximally entangled NOON-like states, we first show that
inequalities of CHSH type as in Eq. (1) can not be violated
if constructed with standard single-boson observables; this
is ultimately due to the indistinguishability of the involved
particles. In order to make quantum contextuality apparent in
such systems, one has to use instead collective observables
built with suitable multiboson operators; indeed, with such
observables, one can construct CHSH-type inequalities that are
maximally violated by the same NOON-like states. A physical
implementation based on a quantum optical interferometric
scheme able to test these results is also presented and
discussed.

Let us consider a system of N bosons with two degrees of
freedom, e.g., a “spatial” and an “internal” one. For the sake
of definiteness, we assume these degrees of freedom to take
two possible values, labeled by the variables k = 1,2 and α =
−,+, respectively. As appropriate for boson systems, we adopt
a second quantized description and introduce suitable creation
a

(α)
k

† (and annihilation a
(α)
k ) operators for the mode (k,α),

satisfying the usual bosonic algebra [a(α)
k , a

(β)
l

†] = δk,lδα,β .
Out of the vacuum |0〉, they create the (Fock) states of the
system

|n(−)
1 ,n

(−)
2 ,n

(+)
1 ,n

(+)
2 〉 =

∏
k={1,2}

∏
α={−,+}

(
a

(α)
k

†)n
(α)
k√

n
(α)
k !

|0〉 , (2)

containing n
(α)
k bosons in the mode (k,α), such that

∑
k,α n

(α)
k =

N . For the sake of compactness, hereafter, we shall indicate
only the nonvanishing occupation numbers, i.e., those for
which n

(α)
k �= 0.

A basic example of a quantum system exhibiting contex-
tuality, that is, violating the expectation that the result of a
measurement be independent of a previous or simultaneous
measurement of any set of mutually commuting observables,
is a single-particle system (N = 1), prepared in the following
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superposition of Fock states:

|ψ〉 = 1√
2

(a(−)
1

† + a
(+)
2

†)|0〉

= 1√
2

(|n(−)
1 = 1〉 + |n(+)

2 = 1〉) . (3)

By taking the variables k and α to label suitable spinlike
components, one finds that CHSH-type inequalities as in
Eq. (1) are indeed maximally violated, as confirmed in
experiments based on single-neutron [6] and single-photon
interferometers [7,8].

Similarly, in the case of N bosons, one can consider the
following spinlike observables:

Jx = 1

2

∑
α={−,+}

[
a

(α)
1

† a
(α)
2 + a

(α)
2

† a
(α)
1

]
, (4a)

Jy = i

2

∑
α={−,+}

[
a

(α)
2

† a
(α)
1 − a

(α)
2

† a
(α)
1

]
, (4b)

Jz = 1

2

∑
α={−,+}

[
a

(α)
1

† a
(α)
1 − a

(α)
2

† a
(α)
2

]
, (4c)

Sx = 1

2

∑
k={1,2}

[a(−)
k

† a
(+)
k + a

(+)
k

† a
(−)
k ], (4d)

Sy = i

2

∑
k={1,2}

[a(+)
k

† a
(−)
k − a

(−)
k

† a
(+)
k ], (4e)

Sz = 1

2

∑
k={1,2}

[a(−)
k

† a
(−)
k − a

(+)
k

† a
(+)
k ]. (4f)

The observables Ji and Si both satisfy the SU(2) algebraic
relations ([Ji,Jj ] = iεijkJk , and similarly for Si), while com-
muting among themselves [Ji,Sj ] = 0. Furthermore, their
eigenvalues are the integers between −N/2 and N/2. Then,
once rescaled by 2/N , their eigenvalues lie in the interval
[−1,1] and the rescaled observables should violate a suitable
constructed inequality of CHSH type of the form (1).

In the case of the single-boson system (N = 1), this can
be easily shown by taking the following choices for the four
observables appearing in the inequality (1):

A = 2 Jz, B = 2 Sz(π/4),

A′ = 2 Jx, B ′ = 2 Sz(−π/4),

where Sz(θ ) = cos θ Sz + sin θ Sx . For the state (3), straight-
forward calculations lead to

〈Jz ⊗ Sz〉 = 〈Jx ⊗ Sx〉 = 1/4, (5)

〈Jz ⊗ Sx〉 = 〈Jx ⊗ Sz〉 = 0, (6)

whence E = 2
√

2 > 2 indeed exhibits the maximum violation
of the CHSH inequality allowed by quantum mechanics [29].

For systems of bosons with N > 1, the obvious general-
ization of these single-particle choices does not lead to any
noncontextuality violation; this is not surprising since, in order
to exhibit quantum contextuality, the CHSH test E > 2 needs
to be adapted to the system under study through a careful
choice of both the state and of the four observables A, A′, B,

and B ′. In the case of N bosons, the state (3) can be easily
generalized:

|	〉 = 1√
2N !

[(a(−)
1

†)N + (a(+)
2

†)N ]|0〉

= 1√
2

[|n(−)
1 = N〉 + |n(+)

2 = N〉]; (7)

this is a NOON-like state, superposition of two Fock states, the
first representing N bosons all in the same mode with k = 1,
α = − and similarly the other N bosons in the state with
k = 2, α = +; it clearly reduces to the state (3) when N = 1.
However, the averages of the same observables as before in
this new state |	〉 become

〈Jz ⊗ Sz〉 = N2/4 , (8)

〈Jx ⊗ Sx〉 = 〈Jz ⊗ Sx〉 = 〈Jx ⊗ Sz〉 = 0; (9)

as a consequence, after the necessary rescaling of the spinlike
observables by 2/N , one finds E = √

2 < 2 and therefore no
violation of the noncontextuality test.

Consider instead the multiboson operators [30–32]

A
(α)
k = FN

(
n̂

(α)
k

) (
a

(α)
k

)N
, (10)

where

FN

(
n̂

(α)
k

) =
[�

n̂
(α)
k + N

N

�
n̂

(α)
k !(

n̂
(α)
k + N

)
!

]1/2
, (11)

with n̂
(α)
k = a

(α)
k

† a
(α)
k the number operator relative to the mode

(k,α), with the symbol � � representing the integer part. The
A

(α)
k are collective annihilation operators as they diminish by

N the number of bosons; indeed, on the orthonormal basis of
Fock number states as in Eq. (2), they act as follows:

A
(α)
k

∣∣n(α)
k

〉 =
√�

n
(α)
k

N

� ∣∣n(α)
k − N

〉
, (12)

while the Hermitian conjugate operators A
(α)
k

† act as collective
creation operators

A
(α)
k

† ∣∣n(α)
k

〉 =
√�

n
(α)
k

N

�
+ 1

∣∣n(α)
k + N

〉
. (13)

Then, one easily finds that [A(α)
k ,A

(β)
l

†] = δk,l δα,β .
In analogy with Eq. (4), with these multiboson annihilation

and creation operators, one can now form collective spinlike
operators relative to the spatial degree of freedom:

Jx = 1

2

∑
α={−,+}

[
A

(α)
1

† A
(α)
2 + A

(α)
2

† A
(α)
1

]
, (14a)

Jy = i

2

∑
α={−,+}

[
A

(α)
2

† A
(α)
1 − A

(α)
2

† A
(α)
1

]
, (14b)

Jz = 1

2

∑
α={−,+}

[
A

(α)
1

† A
(α)
1 − A

(α)
2

† A
(α)
2

]
. (14c)
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One checks that they satisfy the SU(2) commutation relations
[Ji ,Jj ] = iεijk Jk . In the same way, the multiboson, collective
spinlike polarization operators

Sx = 1

2

∑
k={1,2}

[A(−)
k

† A
(+)
k + A

(+)
k

† A
(−)
k ], (15a)

Sy = i

2

∑
k={1,2}

[A(+)
k

† A
(−)
k − A

(−)
k

† A
(+)
k ], (15b)

Sz = 1

2

∑
k={1,2}

[A(−)
k

† A
(−)
k − A

(+)
k

† A
(+)
k ] (15c)

satisfy [Si ,Sj ] = iεijk Sk . Further, as before, the two sets of
operators mutually commute [Ji ,Sj ] = 0.

Further, notice that

A
(α)
k

† A
(α)
k =

�
n̂

(α)
k

N

�
, (16)

so that, unlike the single-boson spinlike operators in (4), the
operators in Eqs. (14) and (15) have eigenvalues ±1/2. Thus,
we can directly consider the inequality (1) relative to the
NOON state (7) and to the collective observables

A = 2Jz, B = 2Sz(π/4), (17a)

A′ = 2Jx, B ′ = 2Sz(−π/4), (17b)

where Sz(θ ) = cos θ Sz + sin θ Sx . One finds

〈Jz ⊗ Sz〉 = 〈Jx ⊗ Sx〉 = 1/4, (18)

〈Jz ⊗ Sx〉 = 〈Jx ⊗ Sz〉 = 0 , (19)

whence E = 2
√

2 > 2, so that the CHSH inequality (1) results
maximally violated and quantum contextuality is manifest.

An example of a physical setup able to test, in principle,
this violation can be built within quantum optics. In this
framework, the two degrees of freedom labeled by k and α

can be taken to refer to the photon path (momentum) and
polarization: the operator a

(α)
k

† creates from the vacuum a
single photon along the path k with polarization α, while A

(α)
k

†

creates N photons in the same state. Similarly, unlike Ji and
Si in Eq. (4), the operators Ji in Eq. (14) and Si in Eq. (15)
are collective observables, referring to path and polarization
degrees of freedom, respectively.

Notice that the experimental implementation of the test does
not require the actual realization of the multiboson operators
A

(α)
k

† and A
(α)
k , but only of suitable procedures for measuring

the collective observables Ji and Si . In order to achieve
this, operations acting on the N -photon states as a whole are
nevertheless needed; as a consequence, linear optical passive
devices can not directly be used.

The proposed implementation, sketched in Fig. 1, is based
on a Mach-Zehnder-type interferometric scheme; however, the
usual beam splitters are replaced with the “quantum beam
splitters” (QBSs) proposed in Ref. [33], where a nonlinear
medium is inserted in one of the two arms. These quantum
devices, realized through the unitary operator UQBS, generate
NOON-like states by acting on a Fock state where the N pho-

PCHWPPBS QBS

|n(−)
1 = N

|n(−)
1 = N

M1

M2

M1

M2

Jz

Jx

Sz

Sx

FIG. 1. (Color online) Physical implementation of a quantum
optics setup able to test quantum contextuality with NOON-like
states. Legend of the components: PBS = polarizing beam splitter;
QBS = quantum beam splitter; HWP = half-wave plate; PC = photon
counter. See the text for details.

tons are all prepared in a given path-polarization configuration
(k,α) [33]:

UQBS

∣∣n(α)
k = N

〉 =
∣∣n(α)

k = N
〉 + (−1)l

∣∣n(α)
l = N

〉
√

2
, (20)

with l �= k and k,l = 1,2. Here, k = 1 (k = 2) refers to
the lower (upper) path, while α = −,+ to the two possible
horizontal and vertical polarization, i.e., H ≡ −, V ≡ +. The
NOON-like state given in Eq. (7) can then be obtained from the
appropriate state (20) with k = 1 and α = − by switching the
polarization in the upper (k = 2) path by means of a half-wave
plate (HWP). [It is worth noticing that, due to the presence
of the two mirrors which exchange the modes 1 and 2 (see
Fig. 1), the lower (upper) path is detected as k = 2 (k = 1); in
order to avoid confusion, in Fig. 1 we call the detectors Mk ,
with k referring to the actual followed path.]

The operator Jz can then be measured by sending the
outgoing beams directly to the two detector devices Mk

(upper-left scheme in Fig. 1); indeed, the detection operation
at M1 and M2, for instance, implemented by photon counters,
precisely corresponds to the projection onto the eigenstates of
Jz. Instead, in the case of the observableJx , one needs to make
the two beams interfere at another QBS (lower-left scheme in
Fig. 1) before detection at Mk . Using (20), the outgoing state
after the second QBS reads now as

|	out〉 = 1√
2

(|	(−)
2 〉 − |	(+)

1 〉), (21)

where |	(+)
1 〉 = (|n(+)

1 = N〉 − |n(+)
2 = N〉)/√2 and |	(−)

2 〉 =
(|n(−)

1 = N〉 + |n(−)
2 = N〉)/√2 are eigenstates ofJx , the label

k in |	(±)
k 〉, k = 1,2, referring now to the upper and lower

exiting paths, beyond the additional QBS. As a result, the
detection operation at M1 and M2 corresponds to projections
onto these two states.

In order to simultaneously determine, together with Jz,
i = x,z, also the operators Sz and Sx , as required by the
inequality (1), the detection procedures at Mk need to be more
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structured than those provided by simple photon counters.
The measurement of Sz can be implemented through a
polarizing beam splitter (PBS) and two photon counters
(PCs), which allow us to discriminate between |n(−)

k = N〉
and |n(+)

k = N〉 eigenstates of Sz (see the right-upper scheme
in Fig. 1). Instead, in order to measure Sx , one needs to
insert before the photon counters a further Mach-Zehnder
interferometric circuit, built with additional HWP and QBS
(see the right-lower scheme of Fig. 1). From the same
considerations described before, in explaining the determi-
nation of Jx now applied to the polarization degrees of
freedom, one can check that photon detection at the exit
arms of this additional interferometer precisely corresponds to
projection onto the eigenstates of Sx , (|n(−)

k = N〉 ± |n(+)
k =

N〉)/√2.
Finally, it is worth noticing that the schemes just illustrated

for measuring the relevant Ji and Si observables are such that
all the N photons arrive at one and only one of the photon
counters. Therefore, by suitably composing one of the two
detecting schemes in the right panel of Fig. 1 with one of
the measurements of the left panel, one can experimentally

determine all collective observables needed to test the CHSH
inequality discussed above.

Summarizing, in this Brief Report, we discussed a test of
quantum contextuality in systems composed by N identical
bosonic particles. We showed that, unlike the analysis so
far considered in the literature, based on systems of distin-
guishable particles using single-particle observables, in order
to make quantum contextuality apparent in such mesoscopic
bosonic systems, measurements of collective observables are
needed. We further remark that the observables we used are
built out of collective operators belonging to a multiboson
algebra, a tool that has never been considered in such a context.
Incidentally, a state-independent test of noncontextuality with
N -boson systems can also be straightforwardly achieved with
our collective observables following, e.g., Refs. [11,13].

We are confident that these theoretical results will open
new perspectives in the study of quantum contextuality in
mesoscopic systems, as trapped ultracold bosons and phonons
in systems of micromechanical oscillators, and provide new
insights in the actual realization of further experimental tests,
possibly paving the way to new applications in quantum
technology.
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