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Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact
interface that may appear well before the onset of global sliding. This intriguing precursory activity is not
accounted for by traditional friction theories but is extremely important for friction dominated geophysical
phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three
dimensional elastic body resting on a surface and show that experimentally observed frictional precursors
depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies
Archard’s law and Amontons’ first and second laws, reproducing with remarkable precision the real contact
area dynamics, the precursors’ envelope dynamics prior to sliding, and the normal and shear internal stress
distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to
the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that
precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the
Coulomb stress before and during precursors nucleation shows large variations across the sample,
explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress
monitoring are often ineffective.

T
he classical laws of friction, due to Amontons and Coulomb, postulate that a body resting on a surface can be
displaced only by applying a shear force larger than a static friction force, which is proportional to the
normal load and independent of the apparent area of contact. Recent research has challenged this under-

standing of friction, showing that macroscopic slip is due to the formation and propagation of detachment fronts
through the contact interface1. The nature of these fronts and their speed depend on the way shear is applied to the
sample and on its geometry2,3, a particularly compelling issue in view of the long held assumption of independ-
ence of friction on the sample shape and size. It is particularly intriguing that, in some cases, localized sliding
precursors nucleate long before the applied force reaches the static friction force at which the front propagates
through the entire contact interface1,4,5. Numerical simulations of friction models in one6–10 and two dimen-
sions11–13 allow to study the main features of the spatio-temporal dynamics of precursors. These numerical works
have mainly focused on the qualitative dynamical aspects of propagation, reproducing the different dynamical
regimes observed in experiments6–9 and the nucleation of the fronts under various loading conditions11.

Based on the results of experiments4 and numerical simulations11 it was suggested that frictional precursors
evolve according to universal laws: the sample size and normal load dependences of precursors lengths can be
rescaled away and different experiments can be collapsed a single master curve. Establishing universal forms for
slip precursors would be particularly important for earthquake forecasting14. Slip or stress accumulation on faults
has been often observed to accelerate close to large earthquakes15–17, but detailed predictions based on this are
considered to be unreliable18,19. It is therefore extremely important to better clarify the conditions leading to
precursors and confirm their universality. Another puzzling aspect revealed by experiments is an apparent
violation of the Amontons-Coulomb laws: direct measurement of shear t and normal stresses s close to the
frictional interface indicated regions where the Coulomb stress tC 5 jtj 2 mjsj is positive without inducing
detachment2,3. This result suggests that the friction coefficient m might not be a well defined material constant as
conventionally assumed.

Scalar models are commonly used to study the planar crack front propagation in disodered elastic media20,21, in
quasi-two dimensional geometries22 and under antiplane shearing conditions23. On the other hand, recent
experiments have provided the evidence that classical shear cracks singular solutions, originally devised to
account for brittle fractures, offer a quantitative excellent description of the static-to-dynamic friction trans-
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ition24. Here, combining the solution of three dimensional scalar
elastic equations in finite geometries with simple contact mechanical
rules for local slip at the frictional interface, we reproduce accurately
the experimentally observed evolution of the contact area as the
sample is loaded. In this way, we obtain a complete picture of the
role played by sample geometry and loading conditions on the pre-
cursors nucleation. Moreover we show that precursors originate
from stress gradients on the contact interface and are therefore
absent when loading is applied uniformly through the top of the
slider. Disorder induced precursors nucleation of the kind predicted
for sliding thin films and monolayers25 should be strongly suppressed
in three dimensions due to long-range elastic interactions which
make the coherence length extremely large26. When shear is applied
on the slider side, however, we observe precursors whose evolution
depends in a non-universal way on the sample geometry. The occur-
rence of universal profiles is explained by the symmetries of the
interfacial shear stress obtained analytically.

Despite its quasi-static nature, our model incorporates the Achard’s
law and the Amontons’ first and second laws, reproducing several key
features observed in experiments including the discrete stress drops
observed in correspondence of the slip precursors. Most importantly,
our model can help to assess which experimental feature can be attrib-
uted to the static elastic equilibrium, and which instead is a pure
dynamical out-of-equilibrium aspect. Our calculations reproduce the
experimental interfacial stress profiles detected at the frictional inter-
face, before slip. We discuss the large fluctuations of the internal stres-
ses during precursors activity in the bulk of the material, and we
provide the numerical and analytical evidence of this large heterogei-
nity. This observation, substantiated also by finite element model simu-
lations, suggests that drawing firm conclusions based on the value of
the Coulomb stress measured away from the contact interface, both in
laboratory experiments and in earthquake faults, could be problematic.

Results
Simulations for different sample sizes and loading conditions.
Following Ref. 4, we first study how precursors depend on Lx and
on the normal load FN when Flat

S is applied through a rod placed on
the trailing edge, at height h 5 6 mm. Experimental evidence suggests
that the precursor size , obtained for different values of Lx and FN can
be collapsed into a single master curve when normalized by Lx and
plotted versus Flat

S

�
mFN . Our numerical results reproduce

quantitatively the experimental findings as shown in Fig. 1(a). In
our model, however, we are able to change Lx over a wider range
than in the experiments, revealing that data collapse is in fact only
approximate (see inset of Fig. 1(a)). Similar behavior is obtained when
we vary Ly (Fig. S4) or Lz (Fig. S5) keeping constant the other
parameters: in all cases front precursors exhibit a dependence on
the sample dimensions. We have also changed Lx and Ly holding
their ratio Lx/Ly unchanged (Fig. S6), Lx and Lz with Lx/Lz constant
(Fig. S7), or Ly and Lz with Ly/Lz constant (Fig. S8). Again, data
collapse is not obtained, indicating that for this loading condition
the precursor lengt , depends in a non-trivial way on the sample
dimensions (Lx, Ly, Lz). The general trend however is that
precursory activity tends to decrease as the varying dimension is
increased: for a larger sample we typically need a larger shear force
to observe a precursor of a given length.

Experimental results in Ref. 4 also suggest that the height h at
which the lateral force is applied to the sample trailing edge has no
influence on the evolution of the front precursors. While this is true
for the range of h used in experiments (see Fig. 1(b)), when we
increase h further the curves no longer collapse. In particular, we find
that the lateral force needed to nucleate the first precursor increases
considerably with h (see the inset of Fig. 1(b)). Remarkably, this effect
persists when we increase both h and Lz leaving their ratio constant
(Fig. S9). Yet, experiments have provided the evidence that the pre-
cursors length , advances by periodical discrete leaps of roughly equal

size, which take place at nearly constant increments of FS. Moreover,
this periodicity exhibits an apparent scaling with h, becoming larger
with increasing h27. While the envelope of the curves reproduced by
our model do show periodicity in the increments of the precursors
sizes, the size of these discrete jumps and the corresponding incre-
ments of FS seem to remain unaffected by varying h, at least within
the range of heights used in the experiments.

We explore further the dependence of precursors on the sample
geometry by considering a different loading condition in which the
lateral force is applied uniformly on the sample side surface (2Dh 5

Lz). In this case, we find that the precursors are size independent
when we vary Lx and Ly keeping their ratio Lx/Ly constant (Fig. 2(a))
or Lx and Lz with constant Lx/Lz (Fig. 2(b)). When we vary instead Ly

and Lz, keeping constant Ly/Lz, no universality is found and precur-
sors again tend to disappear for large sample sizes (Fig. 2(c)). A
similar effect is obtained using mixed mode loading as in Refs. 2, 3,
applying simultaneously a shear force on the top surface and on the
trailing edge. As the ratio between both forces n:Ftop

S

�
Flat

S increases,
the length of the precursor shrinks (Fig. 2(d)) and disappear when
loading is only applied on the sample top plate.

Precursors are defined by detecting the decay of the real area of
contact. This feature is perfectly reproduced by our model, and,

Figure 1 | The dependence of slip precursors on the sample size and the
point of application of the lateral force. (a) Experimental data (symbols)

from Ref. 4 obtained for different Lx and FN show an approximate data

collapse when the rescaled front position ,/Lx is plotted against the rescaled

lateral shearing force Flat
S

�
mFN (Ly 5 7 mm, Lz 5 75 mm, h 5 6 mm). This

result is accurately reproduced by our model (solid lines). Inset shows that

when the range of Lx is increased further, collapse is lost (100 mm , Lx ,

350 mm). (b) Similarly, experimental data (symbols) from Ref. 4 indicate

that the rescaled precursors profiles are approximately independent of the

height h (the point of application of the lateral force Flat
S ), in perfect

agreement with the numerical outcomes (solid lines). Lx 5 140 mm, Ly 5

7 mm, Lz 5 75 mm, FN 5 3 kN. In the inset, we show that no collapse

arises if h is increased beyond the experimental values (2 mm , h ,

73 mm).
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roughly speaking, it is ultimately due to the detachment of regions of
the frictional interface satisfying the local static friction condition
(19). Thus, the dependence of the precursor envelope profile on the
sample geometry should reflect the properties of the Coulomb stress
across the entire contact interface. In the Supplementary Information
(sec. IX), we discuss how some general aspects of the precursor shape
can be deduced from the symmetry of the Green function.

Normal and shear stresses at the interface and the Amontons law.
Direct experimental measurements of shear and normal stress profiles
close to the contact interface show that the Coulomb stress can exceed
zero locally, without inducing any detachment front, precursor or local
slip2,3. This is puzzling since it would represent a local violation of the
Amontons-Coulomb law, suggesting that the friction coefficient might
not be a material constant. In our model, however, the local and global
friction coefficient m is fixed across the whole interface, and local
detachment occurs if tC(x, y, 0) . 0 by construction (Eqs.(19) and
(S96)). Yet, this apparent contradiction can be resolved by noting that
local stresses in Refs. 2, 3 are measured on a reference plane located at a
height of zP 5 2 mm above the frictional interface.

Thanks to the analytical solvability of our model we can compute
the shear and normal stresses at any points (x, y, z) of the slider bulk:
this is perfomed in the Suppl. Mat. sec. VIII (see Eqs.(S71), (S81) or
Eqs.(S86),(S89)). Calculating the stresses on the plane zP 5 2 mm
yields a good quantitative agreement with experiments (Fig. 3(a),
S10). In particular, the curves shown in Fig. 3 represent the shear
and normal stresses averaged over the y direction (t x,zPð Þ~

Ð Ly

0 dy t x,y,zp
� ��

Ly and s x,zPð Þ~
ðLy

0
dy s x,y,zPð Þ

�
Ly), along the

entire sample 0 , x , Lx, just before the onset of the first precursor,
i.e. when no detachment is yet present at the contact interface. This
can be seen also from Fig. S10 where the full quasi-static dynamics of
t(x, zP) and s(x, zP) are plotted. The corresponding Coulomb stress
on the same plane (tC(x, zP) 5 jt(x, zP)j 2 mjs(x, zP)j or
tC

zP
i½ �~ tzP i½ �j j{m szP i½ �j j from Eq.(S91)) prior to the nucleation of

the first precursor event is reported in Fig. 3(b) (solid green line)
showing again a good agreement with the experimental data.

Our result may suggest the observed apparent violation of the
Amontons first law2,3 could be due to the fluctuation undergone by
the internal stresses in the material bulk, even in the vicinity (but not
on) the slider frictional interface. Defining a local friction coefficient
as the ratio m x,y,zð Þ~ t x,y,zð Þj j= s x,y,zð Þj j, is not an eligible proced-
ure if the point (x, y, z) does not lie on the frictional plane (x, y, 0). To
substantiate this statement, in Fig. 3(b) we compare the y-averaged
Coulomb stress on the plane zP 5 2 mm above the slider-bottom
surface (tC(x, zP), solid green curve) with the corresponding quantity

at frictional the interface tC xð Þ~
ðLy

0
dy tC x,yð Þ

�
Ly ( solid magenta

curve). As it can be clearly seen, the Coulomb stress value may suffer
large fluctuations according to the sample position where it is mea-
sured. Although the authors of the experiments in2 were careful to
perform the measurements at locations x to ‘‘avoid the effects of large
stress gradients’’, the agreement shown in Fig. 3 and the analytical

Figure 2 | The dependence of slip precursors on the sample aspect ratios and on the loading conditions . Rescaled precursors quasi-static evolution

obtained when an uniform side shear Flat
S is applied. (a) Curves exhibit the same universal behavior for different Lx and Ly but same aspect ratio

Lx
�

Ly^6:1, with FN 5 4 kN and Lz 5 10 mm. (b) Perfect collapse of the curves is obtained when the aspect ratio Lx/Lz and Ly are kept constant. Lx=Lz^2,

Ly 5 7 mm, FN 5 4 kN. (c) Precursors progressively disappear when Ly and Lz are increased by leaving unchanged the ratio Ly/Lz, and Lx is constant.

Ly
�

Lz^0:36, Lx 5 40 mm, FN 5 4 kN. This findings are consistent with the assumption that precursors evolution profiles reflect the same simmetries

appearing in the shear stress at the frictional interface S97, which is function of the quantity R~Lx
�

LyLz . (d) While simultaneously loading the sample

from top and from the edge with a rod (h 5 6 mm andDh 5 2 mm), Ftop
S ~nFlat

S , precursors dynamics is suppressed for large n. Sample parameters are FN

5 2.7 kN, Lx 5 201 mm, Ly 5 7 mm Lz 5 132 mm.
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calculations in Suppl. Mat. sec. VIII demonstrate that large fluctua-
tions in the (positive) Coulomb stress appear in the bulk of the
material, and are mainly due to the internal shear stress gradient
resulting from the lateral shear applied. A pictorial intuitive illustra-
tion of this argument is reported in Fig. 4, where the y-averaged
Coulomb stress tC(x, z) is shown for several values of the adiabatic
force FS, see also Movie S2. Regions where tC(x, z) exceeds zero occur
even before precursors nucleation (Fig. 4(a)) and even far from the
trailing edge. This may lead one to believe incorrectly that the friction
coefficient is not a material constant. In the same Fig. 4 (bottom
panels) we report the full Coulomb stress tC(x, y) at the plane (z 5
zP), showing that the average over y is indeed a correct protocol to
average out the noise-induced fluctuations.

The bulk fluctuations of Coulomb stress are also present while
considering a fully tensorial elasticity model. As a matter of fact, in
the Suppl. Mat. sec. X we report shear and normal stress calculated by
means of a finite element model (FEM). In Fig. S12 we plot tC(x, y 5
Ly/2, z) arising from FEM simulations: large gradients of Coulomb
stress make any claim about the local value of m highly questionable.
This is seen before any detachment occurred at the interface (panel
(a)), and also when a portion of the contact area is disconnected from
the rough surface (panels (b)–(d)). We notice that in this case no
analytical calculations can be carried out in the fashion of Suppl. Mat.
sec. VIII, but the shear and normal stresses are numerically obtained
by means of the FEM software. In particular we stress once again that
the the normal component of the positive Coulomb stress s(x, y, z) is
largely influenced by the shear force FS as opposite to Eq. S81.

Role of disorder in front nucleation. The role of the substrate
roughness heterogeneity on the nucleation of front appears, from
Eqs.(S92),(S94), rather complex. In general one can say that
heterogeneity amplifies and modulate the different contributions to
normal and shear interface stresses ssurf and tsurf. For narrow
roughness distributions (in most of the experiments the roughness
appears to be a very well-controlled parameter), we do not expect
that the substrate disorder may play a major role promoting or
suppressing the precursors dynamics, at least not comparable to the

role expressed by the force-induced stress gradients. This is what clearly
appears from our analysis, in step with the simplified 1D model10 and
with the experimental outcomes. It is possible, however, that large
roughness fluctuations may induce internal stress gradients leading to
precursors nucleation, even in regions far from the trailing edge. This is
a particularly interesting issue, since the precursor could originate as a
stable detachment droplet, irrespective of the type of loading exerted
(whether lateral or top shearing). The key question is therefore to
determine the conditions for which a detachment droplet constitutes
a meta-stable state. The question could be addressed by defining the
contact interface energy density as e x,yð Þ~tsurf x,yð Þux x,yð Þzssurf

x,yð Þ uz x,yð Þ{u0
z x,yð Þ

� �
28, and the energy change associated to the

transition from an initial stable configuration to a second on which

the droplet has formed: DE rð Þ~
ð
S rð Þ

dxdy tsurf x,yð Þux x,yð Þzssurf

x,yð Þ u Rð Þ
z x,yð Þ{u0 Rð Þ

z x,yð Þ
h i

{
Ð Lx

0 dx
Ð Ly

0 dy tsurf x,yð Þux x,yð Þzssurf

x,yð Þ uz x,yð Þ{u0
z x,yð Þ

� �
, where S(r) represents the contact surface

configuration including the nucleated droplet of average size r. A
detachment droplet configuration will be stable if the energy penalty
DE(r) has a positive maximum for some r. Now, asking which physical
conditions allow the formation of a stable droplet, means which sample
dimensions Lx, Ly, Lz, roughness w2 and force FS(, mFN) give a DE(r)
with a positive maximum (with r , Lx, Ly, Lz). Unfortunately, due to the
intricacy of expressions (S92) and (S94), we could obtain the answer
only by numerical simulations. However, albeit one cannot completely
exclude that detachment regions appear on length-scales which are well
below our and experimental resolution (,1 mm), the set of parameters
used in our simulations and in the experiments does not allow for a
stable disorder-induced droplet, therefore sliding occurs either by
precursors nucleation from the trailing edge or as first-order phase
transition for top shearing. On the other hand, it is expected that in
thin films (Ly/Lz R ‘, Lx/Lz R ‘), interfacial disorder may induce a
droplet nucleation of the kind predicted in Ref. 25. However, since the
calculation of DE(r) involves two equilibrium configurations, a quasi-
static model is the right candidate to tackle it.
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Figure 3 | Coulomb stress as slip precursor. (a) Normal (red) and shear stress (blu) averaged over the y direction. Profiles of s x,zPð Þj j~
Ð Ly

0 dy s x,y,zPð Þ
Ly

�����
�����

and t x,zPð Þj j~
Ð Ly

0 dy t x,y,zPð Þ
Ly

�����
����� across the sample length are calculated on a reference plane zP 5 2 mm above the frictional interface (solid lines) and

compared with the experimental data from Ref. 2 (Fig. 2A, slow front) (symbols-dashed lines). Shear force was applied on top as well as on the sample

trailing edge according to the experimental setup (Ref. 2). Stress calculation was performed at a value of the shear force FS right before the nucleation of the

precursor (see Fig. S10 and Fig. 8(a)). Lx 5 200 mm, Ly 5 7 mm, Lz 5 100 mm, FN 5 6.25 kN. (b) Coulomb stress calculated on the reference plane above

the contact interface and averaged over the y direction (solid green line): tC(x, zP) 5 | s(x, zP) | 2 m | t(x, zP) | . Comparison with data inferred from Ref. 2 is

excellent (green symbols-dashed line). The magenta line represents the y-averaged Coulomb stress at the frictional interface (tC x,0ð Þ~
ðLy

0
dy t x,y,0ð Þ):

although no detachment front is yet present at the contact plane (tC(x, 0) , 0 throughout the surface), the value of the Coulomb stress at the reference

plane zP 5 2 mm can exceed locally the threshold, leading to the erroneous conclusion that Amonton-Coulomb law might be violated.
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Discussion
In this paper we have introduced a scalar model for the onset of
frictional sliding of a three dimensional elastic object resting on a
rough surface. We have devised a scalar elasticity model which allows
an analytical treatment of the relevant quantities, and the straight-
forward implementation of the quasi-static dynamics. This model
incorporates, for the first time, mesoscopic laws of contact mechanics
at the frictional interface, reproducing with remarkable precision

Archard’s law and Amonton’s first and second laws. Most impor-
tantly the scalar model is capable of reproducing with good accuracy
the real contact area dynamics, the precursors’ envelope dynamics
prior to the transition to sliding, and the normal and shear internal
stress distributions close to the slider-substrate interface. The model
stems from a strong Ansatz, namely that the components of displa-
cements ux and uz are decoupled and uy^0. However, the solution of
the model is exact: if one accepts the initial Ansatz, one has at hand

Figure 4 | Full Coulomb stress at the frictional interface. (a)–(d) Quasi-static evolution of the Coulomb stress (averaged over y) along the slab x – z plane

(on top), and on the plane z 5 zP (bottom panels). Color code indicates regions where tC . 0 (yellow–red) from those for which tC , 0 (blu), grey

solid lines correspond to the set of points fulfilling tC 5 0. Panel (a) refers to the slider sitution before the first precursor event nucleates, the plane z 5 zP 5

2 mm (bottom panels) is where quantities in Fig. 7 are calculated (see also Fig. S10 dashed black lines). Grey dashed lines represent the precursor

envelope , at the frictional interface, obtained from the real contact area decay (see Fig. 2(b)(inset) and Fig. 3).

www.nature.com/scientificreports
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the analytical expression for any physical observable in static equi-
librium. The numerical implementation of the model is required to
take into account the statistical heterogeneity inherent to the asperity
disorder of the underlying rough substrate.

The first limitation of our model has been discussed previously,
and consists in neglecting the Poisson expansion and the sample
torque, which can have strong implications only in the case of top
uniform shearing conditions, although for very large samples the
scalar models conclusions should be respected. Hence no firm gen-
eral conclusions nor predictions on the occurrence of frictional slid-
ing and precursor dynamics can be drawn based on these
observations. Earthquakes faults are mostly driven uniformly from
a distance implying that, in average, precursory activity should not be
present. Stress gradients and hence precursor activity could, how-
ever, arise either due to local heterogeneities or because the fault
plane is tilted with respect to the earth crust29. The lack of universal
scaling forms dictating the precursors evolution, however, makes any
forecasting of catastrophic events extremely difficult, especially when
we do not know precisely the loading conditions.

The second limitation certainly lies in the quasi-static nature of the
model. But what at first glance may seem like a strong simplification
is in fact a point of strength. The reasons are the following:

First, the equilibrium problem requires a very limited number of
adjustable parameters to set up the model. Our derivation indeed
requires the fine tuning of only two parameters, connected to the
normal and transverse spring stiffness inspired by the theory of
contact mechanics, and whose physical meaning and interpretation
are straightforward (see Suppl. Mat. sec. VI). To estimate these para-
meters, we only need a direct comparison with simple experiments,
such as the validation of the Archard’s law30,31 to tune the normal
stiffness (see Fig. 6(a)), and an experiment like the one reported in

Ref. 32 for the transverse stiffness. This eliminates from the picture a
host of dynamical quantities that are often difficult to quantify, or
even to justify from the physical point of view. This is the case, for
instance, of phenomenolgical friction coefficients interpolating
between statics and dynamics employed in 1D8 and 2D models11–13,
or the bulk damping coefficient c, whose numerical value is usually
put in by hand6–13, or of the actual value of the reattachment delay
time t responsible for the frictional interface contacts rejuvena-
tion6,7,10. While it is out of doubt that, upon cessation of motion,
the contacts at the interface reform and strengthen5,31, it is very hard
to infer the rejuvenation characteristic time t from experimental
data. In our model, we did not include the contacts reformation
process within our quasi-static protocol, showing that it is not a
necessary ingredient to recover the precursors overall profile.

Second, our model may assess which of the observed experimental
features are due to the out-of-equilibrium dynamics and which are
mostly due to equilibrium properties. For instance, our model is able
to recover the precursors steps and the shape of their envelope, but
fails to reproduce the increase in the precursors waiting times when
the shear is applied at higher and higher h. Thus, we can conclude
that this intriguing aspect is probably due to inertial effects present
when shear is applied through an external spring (see Eq.(22)). To
check this experimentally, it would be sufficient to change the spring
displacement US rate and detect any possible change in the leaps
phenomenology. To the contrary, our model allows to establish that
the occurrence of precursors is in fact a quasi-static physical process.
Any of the equilibrium states reached by the slider during the adia-
batic evolution, is just one of the meta-stable configurations in which
the system can dwell. This large number of meta-stable states is
mainly due to the disorder heterogeneity of the roughness at the
interface, and to a much minor degree to the rules adopted to detach
the contacts when they satisfy the condition tC(x, y, 0) . 0.

Because of its quasi-static nature, our model cannot reproduce the
detachment front dynamics. According to the definition provided in
Refs. 1, 2, 4, 27, 33 a detachment front indicates a drastic reduction of
the real area of contact which takes place on time scales which are
roughly in the millisecond range. The entire precursor experiment
occurs instead over a few minutes4,27. Experiments have revealed three
different types of crack-like rupture fronts, slow, sub-Rayleigh, and
intersonic (or supershear), according to their propagation velocity
through the frictional interface. Precursors advance by arrested front
propagation: discrete increments, indeed, occur by rupturing the con-
tact interface at a velocity which corresponds to sub-Rayleigh fronts at
the begining, and to slow fronts close to the sliding transition27. In
particular a final slow front is responsible of the static-to-dynamics
frictional sliding. Our model does not capture the crack-like propaga-
tion of fronts, since the fronts are a dynamical out-of-equilibrium
processes in between two equilibrium states, namely between precur-
sors. Nevertheless, our model might substantiate the experimental
observation on the relation between precursors appearance and slow
fronts triggering the frictional sliding. As a matter of fact, in Fig. 3 we
were able to reproduce quantitatively the shear and normal stress
profiles before any precursor nucleation occurred. In Ref. 2 these stress
distributions were related to the ensuing slow rupture front (see
Fig. 6A in2). Thus it is possible to argue that whenever we observe
a precursor activity, the transition to sliding is triggered by slow
fronts.

To summarize the central finding of our work, three dimensional
finite body scalar Green’s function makes it possible to investigate the
dependence of many physical observables on any sample parameter.
Our results show that the evolution of the fronts depends in a non-
universal way on the loading conditions and the sample dimensions
and shape. Only for some loading condition, the precursors follow a
curve that allows for a simple universal rescaling in terms of the
sample dimension: this prediction can be experimentally checked.
Moreover we have shown that large stress gradients take place not

Figure 5 | Graphical illustration of the model. We consider a block of

dimensions Lx, Ly and Lz in contact with a rough surface (sketched in the

middle panel). A normal force FN and a shear force Ftop
S are applied

uniformly on the top surface along z and x respectively, a lateral force Flat
S is

applied on the sample trailing edge over a rectangular region of width 2Dh

at height h. The bottom surface of the block is discretized on a grid of size

Dx 3Dy (we invariably choseDy 5Dx 5 1 mm, see also Fig. S1). Each grid

element central point may form an elastic contact with the rough surface,

that is modelled by a set of elastic asperities of height u0
z , and effective

transverse and normal stiffness kx and kz, respectively.
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only at the frictional interface but also within the material bulk. These
gradients are mainly due to the way the external shear is applied and
to the sample geometry, on top of frustrated Poisson expansion and
elastic torque. Hence no firm general conclusions nor predictions on
the occurrence of frictional sliding and precursor dynamics can be
drawn based on these observations.

Earthquakes faults are mostly driven uniformly from a distance
implying that, in average, precursory activity should not be present.
Stress gradients and hence precursor activity could, however, arise
either due to local heterogeneities or because the fault plane is tilted
with respect to the earth crust29. Measurements of local variations of
the Coulomb stress around earthquake faults have been used to assess
the correlation between stress accumulation and earthquake trigger-
ing15–17. Predicting earthquakes based on slip or stress accumulation
has been so far an elusive task18,19, and the reason behind this failure
can be addressed in the scenario pictured in our analysis. Indeed, as
illustrated, we find that for loading condition leading to large stress
gradients, the evolution of the Coulomb stress measured above the
contact interface provides only a rough indicator of the ensuing
detachment front dynamics, which instead appears to be very well
characterized by the real contact area variation. Furthermore, the lack
of universal scaling forms dictating the precursors evolution, makes
any forecasting of catastrophic events extremely difficult, especially
when we do not know precisely the loading conditions.

Methods
The scalar model. We consider an elastic PMMA macroscopic body resting in
equilibrium on a rough surface. We derive the equations for the displacements of the
elastic body subject to external forces, within the scalar elasticity approximation. In
particular, we are interested in the solutions for the displacement fields at the
frictional interface. There is no direct connection of the model theory to actual
elasticity. The latter involves three displacement components and a system of coupled
equilibrium equations enforced with boundary conditions.

Let us first illustrate the physical system that our model aims at reproducing,
which coincides with the experimental setup described in Refs. 1–4, 14, 24, see
Fig. 5. The experiments were conducted using two PMMA blocks in contact, one
on top of the other. The top block, of dimensions 140,150,200 mm 3 6 mm 3

75,100 mm (according to the different experiments performed), was pushed
against a bottom block of dimensions 250 mm 3 30 mm 3 28 mm in the x̂, ŷ
and ẑ directions respectively. In general, the condition Ly=Lx , Lz was always
satisfied. The two blocks were pushed together by a normal load FN and, while the
bottom block was fixed, the top block was subject to a shearing process by means
of the lateral force FS applied solely on the x̂ direction. This experimental system
was usually adopted, with the only exception of Ref. 2, where the experiments
were also conducted clamping the top block at the top edge and applying the shear
FS to the bottom block. However, the relative blocks movement is constrained by
the frictional resistance at the interface offered by roughness-induced surface

forces. In our model, we consider for simplicity the bottom block to be infinite
(the substrate) and only the top block shearing. The surface stresses at the
interfaces, Qsurf(x, y, 0), are formally distributions accounting for the spatial
hetereogeneity of the PMMA roughness.

Since no external force is acting on the ŷ direction, and because the sample geo-
metry fulfills the condition Ly=Lx , Lz, we have assumed

uy^0: ð1Þ

Moreover, the scalar elasticity yields that the stress tensor satisfies syk 5 0 (where k 5

x, y, or z). Thus the scalar equations for the decoupled displacement fields take the
following form

E
1znð Þ

L2ux

Lx2
z

L2ux

Ly2
z

L2ux

Lz2

� 	
^0

E
1znð Þ

L2uz

Lx2
z

L2uz

Ly2
z

L2uz

Lz2

� 	
^0

ð2Þ

where E represents the Young’s modulus and n the Poisson’s ratio. The scalar
elasticity Eqs.(2) can be analyically treatable, once one specifies the proper boundary
conditions. At the equilibrium, internal stresses at the surface must counterbalance
the external forces acting on the sample. Since we consider a slider of dimensions [Lx,
Ly, Lz] the boundary conditions for Eqs.(2) are

sxx 0,y,zð Þ ~ E
1znð Þ

Lux
Lx 0,y,z

�� ~ {
Flat

S
Ly 2Dh h f{hzDhð Þ 1{h f{h{Dhð Þ½ �

sxz x,y,Lzð Þ ^ E
1znð Þ

Lux
Lz x,y,Lz

�� ~ {
Ftop

S
Lx Ly

sxz x,y,0ð Þ ^ E
1znð Þ

Lux
Lz x,y,0

�� ~ {Qx
surf x,y,0ð Þ

szz x,y,Lzð Þ ~ E
1znð Þ

Luz
Lz x,y,Lz

�� ~ { FN
Lx Ly

szz x,y,0ð Þ ~ E
1znð Þ

Luz
Lz x,y,0

�� ~ {Qz
surf x,y,0ð Þ:

ð3Þ

As shown in Fig. 5(a), Flat
S corresponds to a shear force in the x direction, applied

to the elastic slider on a portion of the plane (0, y, z) of size Ly 3 2Dh centered
around z 5 h and h(x) stands for the Heavyside step function; Ftop

s is a shear force
(also pointing to the x direction) uniformly applied on top of the slider; FN is the
normal force, i.e. a force applied on the entire top plane and pointing toward {ẑ;
the surface stresses Qx,z

surf x,y,0ð Þ represent the interaction between the elastic body

and the rough underlying surface at the plane (x, y, 0), in the x and z direction
respectively (see Fig. S1). With the boundary conditions (3), we can solve the
equilibrium Eqs. (2) for the displacement fields on the slider bottom plane. In
technical term, we have to solve two independent Laplace equations with von
Neuman boundary conditions. The solutions of Eqs.(2) are obtained by general-
izing to three dimensions the corresponding solution for the von Neuman prob-
lem in two dimensions34. The result reads

ux x,y,0ð Þ~ uxh iz
1znð Þ

E

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,0ð Þwx

surf j,g,0ð Þ



{

{
Ftop

s

LxLy

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,Lzð Þz Flat

s

Ly2Dh

ðLy

0
dg

ðhzDh

h{Dh
dfG x,0; y,g; 0,fð Þ

) ð4Þ

Figure 6 | Scalar model numerical calibration. (a) The value of the normal stiffness kz is set by measuring the change of the real area of contact (in % of

the nominal contact area A0) as a function of the normal load FN, and comparing the numerical results (squares) with the experimental data from

Ref. 31 (solid line). Lx 5 30 mm, Ly 5 6 mm, Lz 5 150 mm. (b) The transverse stiffness kx is obtained by matching the quasi-static evolution of the

precursor position , (solid black line) with the corresponding experimental data reported in Ref. 4 (red circles). Lx 5 140 mm, Ly 5 7 mm, Lz 5 75 mm,

FN 5 3.5 kN. The inset shows the front propagation by imaging the real contact area AR(FS) averaged over the y direction and normalized to its

initial value AR(0) (the image is the top view of the histogram shown in Fig. 3(b)). Color code: blue reflects a decrease of the real area of contact

with respect to the initial value, while red highlights a prominent increase. Precursor fronts correspond to the edge of the blu part of the plot.
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uz x,y,0ð Þ~ uzh iz
1znð Þ

E

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,0ð ÞQz

surf j,g,0ð Þ{



{
FN

LxLy

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,Lzð Þ

� ð5Þ

where G(x, j; y, g; z, f) is the Green function:

G x,j; y,g; z,fð Þ~ 8
LxLyLz

X
n~0

X
m~0

X
p~0

cnmp

cos npz
Lz

� 
cos npf

Lz

� 
cos mpy

Ly

� 
cos mpg

Ly

� 
cos ppx

Lx

� 
cos ppj

Lx

� � 
np
Lz

� 2
z mp

Ly

� 2
z

pp
Lx

� 2

ð6Þ

with c000 5 0, c0mp 5 cn0p 5 cnm0 5 1/2, c00p 5 c0m0 5 cn00 5 1/4, and cnmp 5 1
otherwise. In the Suppl. Mat. sec. I we furnish the analytical procedure for the fast
convergence of the sum in Eq.(6).

The quantitites Æuxæ and Æuzæ represent two arbitrary constants corresponding to
the displacement fields averaged over the entire sample volume. They must be chosen
imposing two additive equilibrium constraints, namely that each component of the
the surface forces, over the whole contact surface, must be equal and opposite to the
external forces: ðLx

0
dj

ðLy

0
dgQx

surf j,g,0ð Þ~{Ftop
S {Flat

S

ðLx

0
dj

ðLy

0
dgQz

surf j,g,0ð Þ~{FN :

ð7Þ

The last step is to provide an adequate analytical expression accounting for the effects
of the interface on the slider mechanics, this is done by introducing the surface forces
Qx

surf and Qz
surf . In Suppl. Mat. sec. II we derive the expression of these forces, according

to the contact mechanics theories. In first approximation they are both linear in
the displacements uz and ux, i.e., for the force acting on the ẑ direction, we have

Qz
surf x,yð Þ~

kz x,yð Þ u0
z x,yð Þ{uz x,y,0ð Þ

� �
uzvu0

z

0 uzwu0
z

(
ð8Þ

with kz x,yð Þ~cz
�

u0
z x,yð Þ; u0

z x,yð Þ is a random displacement that models the height
fluctuations of the rough substrate (see Fig. S1). It is formally an uncorrelated noise
extracted from a Gaussian distribution with a variance s2

j~1mm, being s2
j the

roughness of the underlying surface1–4,31,35 (see Suppl. Mat. sec. VI). The interfacial
interactions along x̂ are given by

Qx
surf x,yð Þ~{kx x,yð Þux x,y,0ð Þ ð9Þ

where kx x,yð Þ~cxexp {
uz x,y,0ð Þ
u0

z x,yð Þ

� �
and ux x,y,0ð Þw

v

0. The constant cz and cx

appearing in the expression of kz and kx are the only two adjustable parameters that
our model encompasses (see the next subsection and Suppl. Mat. sec. VI). The
expressions for kx and kz respect the laws of contact mechanics28,36,37 and are entirely
motivated by experiments: the transverse (or tangential) stiffness kx of PMMA is
indeed proportional to the normal load32, which in general decreases exponentially
with the vertical elastic displacement38; the normal stiffness is kz , 2dP/duz, where
P* exp {uz

�
u0

z

� �
is the squeezing pressure38,39. Therefore, internal stresses are not

decoupled at the interface, as they are connected via the local normal pressure entering
the definition of the tangential stiffness kx.

Finally, introducing the linear expressions (8) and (9) into the Eqs.(5) and (4)
respectively, we obtain closed equations for the displacements at the contact plane:

ux x,y,0ð Þ~ uxh i{
1znð Þ

E

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,0ð Þkx j,gð Þux j,g,0ð Þz




z
Ftop

s

LxLy

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,Lzð Þ{

{
Flat

s

Ly2Dh

ðLy

0
dg

ðhzDh

h{Dh
dfG x,0; y,g; 0,fð Þ

�
ð10Þ

uz x,y,0ð Þ~ uzh iz

z
1znð Þ

E

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,0ð Þkz j,gð Þ u0

z j,gð Þ{uz j,g,0ð Þ
� �

{




{
FN

LxLy

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,Lzð Þ

�
:

ð11Þ

In the former expressions for the interfacial displacements, terms involving the
contributions arising from the external shear or normal forces FS and FN can be

calculated analytically. This is, indeed, one of the novelties that our model introduces:
the complete expression of the Green function (see Eq.(6)) allows the determination of
any of the force-induced components in the interfcial displacements equations. It will
be clear in the next sections that this property entails the critical interpretation of the
experimental and numerical results and, in particular, it furnishes precise predictions
on the precursors’ appeareance and dynamics and their dependence on the slider
dimensions. In the Suppl. Mat. sec. III we give the full analytical derivation of the terms
proportional to Ftop

s , Flat
s and FN appearing in Eqs.(10) and (11). Hereby, to simplify the

displacements expressions, we introduce the following shorthand notations:

utop
S x,y,0ð Þ~{

1znð Þ
E

Ftop
s

LxLy

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,Lzð Þ ð12Þ

ulat
S x,y,0ð Þ~ 1znð Þ

E
Flat

s

Ly2Dh

ðLy

0
dg

ðhzDh

h{Dh
dfG x,0; y,g; 0,fð Þ: ð13Þ

uN x,y,0ð Þ~{
1znð Þ

E
FN

LxLy

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,Lzð Þ, ð14Þ

thanks to which the Eqs.(10) and (11) take the form

ux x,y,0ð Þ~ uxh i

{
1znð Þ

E

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,0ð Þkx j,gð Þux j,g,0ð Þ

zutop
S x,y,0ð Þzulat

S x,y,0ð Þ

ð15Þ

and

uz x,y,0ð Þ~ uzh i

z
1znð Þ

E

ðLx

0
dj

ðLy

0
dgG x,j; y,g; 0,0ð Þkz j,gð Þ u0

z j,gð Þ{uz j,g,0ð Þ
� �

zuN x,y,0ð Þ:
ð16Þ

Discretization, numerical solution and quasi-static dynamics. The slider interfacial
displacements, i.e. the solutions of the Eqs. (15) and (16), are achieved by
discretization of the slider bottom plane. As a matter of fact, we place a square grid on
the contact plane, composed by elements having an area Dx 3 Dy, so that Lx 5 NxDx
and Ly 5 NyDy with Dx 5 Dy 5 1 mm (see Fig. S1). Albeit the terms in Eqs. (15) and
(16) are defined on the entire contact plane (x, y, 0), we calculate them only on each
single point (x, y), which is the center of the grid element. This is the case, by instance,
of the surface forces Qx and Qz in Eqs.(9) and (8) respectively, which are formally
distributions: we interpret them as acting effectively only on the grid center point,
representative of the enclosed area Dx 3 Dy, as shown in Fig. S1.

In the Suppl. Mat. sec. IV we report the formal derivation of the discretization
technique, which leads to the following expressions for the linear inversion Eqs.(15)
and (16):

ux i½ �~
XNx Ny

j~1

Ax
ij utop

S j½ �zulat
S j½ �z uxh i

� �
ð17Þ

and

uz i½ �~
XNx Ny

j~1

Az
ij v0

z j½ �zuN j½ �z uzh i
� �

, ð18Þ

where the matrices Ax
ij and Az

ij are defined in Eqs.(S44) and (S45) respectively and the

vector~v0
z in Eq.(S46). With the former expressions at hand, we can calculate the

equilibrium displacements along x̂ and ẑ, compatible with given values of the external
normal and shear forces: we hereby recall that the two constants Æuxæ and Æuzæ are set
to ensure that the surface forces counterbalance the external loads (see Eqs.(S48) and
(S50)).

In a typical simulation, external shear forces are increased quasi-statically and the
actual values of the local interfacial displacements are calculated numerically at the
discretized bottom interface thanks to Eqs.(18) and (17) respectively (see Fig. S1).
Indeed, we first check for the equilibrium along ẑ, and secondly along x̂. Contact
springs are disconnected, i.e. irreversibly broken, whenever the local Coulomb stress
satisfies

tC x,y,0ð Þ: tsurf x,yð Þ
�� ��{m ssurf x,yð Þ

�� ��
~ Qx x,yð Þj j{m Qz x,yð Þj jw0

ð19Þ

where m represents the static local friction coefficient set to m 5 0.5. When the
condition (19) is fulfilled, the corresponding interface portion is detached from the
underlying surface resulting in a local slip event. Every time a spring is broken, the
equilibrium Eqs.(18) and (17) are recalculated with the new boundary condition, i.e.
setting to 0 the interfacial forces corresponding to the broken spring.

The overall sliding occurs when none of the interfacial contacts has survived, i.e.
when tC(x, y, 0) . 0 across the entire bottom plane (see the flowchart in Fig. S11). This
happens when the static friction force is equal to mFN, satisfying the Amonton’s first
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law. Therefore m represents both the local and global friction coefficient. The detailed
protocol of the quasi-static protocol enforced is reported in Suppl. Mat. sec. V.

Model calibration. One of the key features of our scalar quasi-static model is that
Archard’s principle is imposed at the mesoscopic scale30 since the area of real contact
of a grid element is function of the vertical load acting on it, i.e.

AR x,yð Þ*exp {
uz x,y,0ð Þ
u0

z x,yð Þ

� �
, see Eq.(S61). This is in agreement with the mechanics

of the interfacial asperities, whose transverse stiffnesses are

kx*exp {
uz x,y,0ð Þ
u0

z x,yð Þ

� �
*AR x,yð Þ, and with the elastic-response picture emerging

from the experiment of Berthoud and Baumberger32. The definition of the on-site real
contact area offers the advantage of controlling the fluctuations of the total contact
area during the entire quasi-static evolution. As a matter of fact, it is possible to define
the the total real area of contact as

AR~

ðLx

0
dx
ðLy

0
dyAR x,yð Þ ð20Þ

and monitor its change as a function of the applied loads FN and FS. This is a notable
progress provided by our model when compared with previous 1D6–8,10,14 and 2D
models11,13,40, allowing for a direct quantitative comparison with experiments whose
main analysis tool is, indeed, the observation of the real contact area evolution1,2,4,31.
We demonstrate the validity of the Archard’s principle at macroscopic scale (see
Figs. 6(a)), i.e. AR increases linearly with the applied vertical force FN. Moreover, our
model provides the remarkable result that AR only depends on the load FN and not on
the nominal area Lx 3 Ly, what is commonly known as the Amonton’s second law
(Fig. S2, S3). As the shear force FS is adiabatically increased on the other hand, we
detect the variation of the real contact area as illustrated in Movie S1 and Fig. 7 for
three typical loading conditions used in experiments1,2,4,31.

In Suppl. Mat. sec. VI we discuss the calibration of the parameters appearing in our
model. The only parameters that have to be adjusted are the two constants cx and cz

which define the local stiffnesses. To do so, we have to compare the variation of AR as a
function of FN and FS provided by our numerical simulations, with the corresponding
variations observed in the experiments.

The normal stiffness is obtained by measuring the real contact area as a function of
the normal load when no shear is applied, and tuning cz until the resulting area
matches that reported in Ref. 31 (see Fig. 6(a)). Indeed, as detailed in the Suppl. Mat.
sec. VI, we define the total real area of contact (20) in the discrete form as

AR~
XNx Ny

i~1

DxDy
e{1½ � exp {

uz i½ �{u0
z i½ �

u0
z i½ �

� �
{1

� 	
h u0

z i½ �{uz i½ �
� �

: ð21Þ

Changing the value of the constant cz corresponds to change the equilibrium set of
uz[i] given by Eq.(18): higher is cz, stiffer are the interfacial springs, smaller will get the
coresponding real contact area. The best value for cz~1:65|108N

�
m2 yields the

curve reported in Fig. 6(a), showing a remarkable agreement with the experimental
observation.

To determine the transverse stiffness, we compare the quasi-static evolution of AR

detected in experiments with the corresponding one obtained from simulations
(Fig. 7(a)). In particular, we consider a block of dimensions Lx 5 140 mm Ly 5 6 mm
and Lz 5 75 mm under a normal load FN 5 3.3 kN and increase adiabatically the
lateral force Flat

S applied at height h 5 6 mm as in Ref. 4. As shown in Fig. 6(b), as the
lateral shear force is increased, the portion of contact area close to the trailing edge
decreases drastically. According to the definition furnished in Ref. 4, precursors
correspond to the regions of the frictional interface which undergo a reduction of the
area of real contact, for values of the applied shear well before the static frictional
force. A pictorial view of the adiabatic precursor evolution is reported in the inset of
Fig. 6(b), where the color code represents the variation of the average local contact
area with respect to its value at FS 5 0. The boundary between the portion of contact
surface which has decreased and that which has increased during the shearing pro-
cess, determines the precursor size ,. This yieldis a curve that we compare with
experiments to estimate the best value of cx~1:65|1012N

�
m3 (see the caption of

Fig. 6(b) and Suppl. Mat. sec. VI for more details).

Loading mode and stick-slip events. Throughout the paper, we will consider the
conceptually simple case in which the sample is loaded by imposing a constant shear
force on the appropriate boundaries. This means that we will adopt FS as the adiabatic
variable (quasi-static parameter), and calculate the equilibrium interfacial
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Figure 7 | Real area of contact and determination of precursors size. (a) Successive snapshots of the contact area, normalized to its initial value, show

the advancement of the slip precursors as Flat
S is increased. Dark (pale) blue indicates a decrease (increase) in the contact area. (a)–(c) Quasi-static

evolution of the average real area of contact AR FSð Þ~
ðLy

0
dy AR x,yð Þ

�
Ly (normalized to the zero-shear value AR(0)) for three type of loading conditions:

with a rod (h 5 6 mm, Dh 5 2 mm) (b), uniformly from a side (c), and uniformly from top (d). FN 5 2.7 kN, Lx 5 200 mm, Ly 5 7 mm, Lz 5 75 mm.

Color map goes from blue (AR FSð Þ=AR 0ð Þ=1) to red (AR FSð Þ=AR 0ð Þ?1): for any value of FS, blu region corresponds to the precursor size, and the

boundary between blu and red/yellow regions represents the precursor size ,. Regions close to the trailing edge experience a decay of the real contact

area as FS is adiabatically increased, whereas the real area of contact area considerably grows on the opposite side ((a) and (b)). When the sample is loaded

uniformly from top, the sliding takes place without precursors appearence (c).
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displacement from Eqs.(17) and (18) each time that FS is slowly increased. This leads
to discrete ‘‘leapfroggy’’ precursors for which we study the continuum envelope as
reported for instance in Fig. 6(b). However, the discrete nature of the precursors
dynamics is more apparent if we drive the system as in the experiments reported in
Ref. 4, where the lateral force is applied through a spring with elastic constant KS 5 4
3 106 N/m. To model this case, we replace the external force appearing in Eq.(4) with
the expression

Flat
s ~KS Us{ uxh ið Þ ð22Þ

where US is the externally applied displacement, which now corresponds to the
adiabatic adjustable parameter. Æuxæ, on the other hand, has the same meaning as the
force-controlled protocol. In Fig. 8, we report the evolution of the spring force
(Eq.(22)) as a function of the applied displacement for a typical simulation. Small
stick-slip events, corresponding to discrete precursors leaps, are shown in the inset of
Fig. 8, closely resembling the experimental observations. Increasing the displacement
further leads to larger stick-slip events that in the constant-force case correspond to
the last system size spanning event, that leads to the slip of the entire block. More
details on the solution of the elastic equations for this particular case can be found in
Suppl. Mat. sec. VII.

Our model does not encompasses the rejuvenation of the real area of contact once
the precursor has passed, because once a spring is broken no rehealing is allowed.
However, in previous models such those in Ref.s 10, 11, 13, 40, once a precursor has
detached a portion of interface, the corresponding interfacial contacts always reform,
and the whole previous precursor path is broken again by each new precursor. This
clearly contradicts the experimental evidence4, where no rehealing of the real area of
contact can be appreciated between subsequent precursor jumps, and the discrete
jumps in the precursors dynamics can be observed only by displaying the derivative
dAR

�
dt (see by instance Fig. 6(a) of Ref. 4 or Fig.14 of Ref. 27).
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21. Ramanathan, S., Ertaş, D. & Fisher, D. S. Quasistatic crack propagation in
heterogeneous media. Physical review letters 79, 873 (1997).

22. Zapperi, S., Herrmann, H. J. & Roux, S. Planar cracks in the fuse model. The
European Physical Journal B-Condensed Matter and Complex Systems 17,
131–136 (2000).

23. De Arcangelis, L., Redner, S. & Herrmann, H. A random fuse model for breaking
processes. Journal de Physique Lettres 46, 585–590 (1985).

24. Svetlizky, I. & Fineberg, J. Classical shear cracks drive the onset of dry frictional
motion. Nature 509, 205–208 (2014).

25. Reguzzoni, M., Ferrario, M., Zapperi, S. & Righi, M. C. Onset of frictional slip by
domain nucleation in adsorbed monolayers. Proc Natl Acad Sci U S A 107, 1311–6
(2010).

26. Lorenz, B. & Persson, B. N. J. On the origin of why static or breakloose friction is
larger than kinetic friction, and how to reduce it: the role of aging, elasticity and
sequential interfacial slip. Journal of Physics: Condensed Matter 24, 225008 (2012).
URL http://stacks.iop.org/0953-8984/24/i522/a5225008.

27. Rubinstein, S. M., Cohen, G. & Fineberg, J. Visualizing stick-slip: experimental
observations of processes governing the nucleation of frictional sliding. Journal of
Physics D: Applied Physics 42, 214016 (2009).

28. Persson, B. N. J. Theory of rubber friction and contact mechanics. The Journal of
Chemical Physics 115, 3840–3861 (2001). URL http://link.aip.org/link/?JCP/115/
3840/1.

29. Doglioni, C., Barba, S., Carminati, E. & Riguzzi, F. Role of the brittle–ductile
transition on fault activation. Physics of the Earth and Planetary Interiors 184,
160–171 (2011).

30. Archard, J. F. Contact and Rubbing of Flat Surfaces. Journal of Applied Physics 24,
981–988 (1953).

Figure 8 | Stick-slip under displacement controlled driving. We report the force on the driving spring as a function of the imposed displacement for the

following same sample parameters: Lx 5 140 mm, Ly 5 7 mm, Lz 5 75 mm, FN 5 3.5 kN. A magnification of the curve is reported in the inset showing

the precursory stick slip events.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8086 | DOI: 10.1038/srep08086 10

http://dx.doi.org/10.1007/s11249-010-9611-7
http://link.aps.org/doi/10.1103/PhysRevLett.107.235501
http://link.aps.org/doi/10.1103/PhysRevLett.107.235501
http://dx.doi.org/10.1007/s11249-011-9894-3
http://dx.doi.org/10.1007/s11249-011-9894-3
http://link.aps.org/doi/10.1103/PhysRevB.86.085430
http://link.aps.org/doi/10.1103/PhysRevB.86.085430
http://link.aps.org/doi/10.1103/PhysRevLett.107.074301
http://link.aps.org/doi/10.1103/PhysRevLett.107.074301
http://dx.doi.org/10.1111/j.1365-246X.1997.tb05321.x
http://dx.doi.org/10.1111/j.1365-246X.1997.tb05321.x
http://dx.doi.org/10.1029/2009GL039846
http://stacks.iop.org/0953-8984/24/i=22/a=225008
http://link.aip.org/link/?JCP/115/3840/1
http://link.aip.org/link/?JCP/115/3840/1


31. Rubinstein, S. M., Cohen, G. & Fineberg, J. Contact Area Measurements Reveal
Loading-History Dependence of Static Friction. Phys. Rev. Lett. 96, 256103
(2006).

32. Berthoud, P. & Baumberger, T. Shear stiffness of a solid-solid multicontact
interface. Proc. R. Soc. Lond. A 454, 1615 (1998).

33. Rubinstein, S., Shay, M., Cohen, G. & Fineberg, J. Crack-like processes governing
the onset of frictional slip. International Journal of Fracture 140, 201–212 (2006).

34. Roach, G. F. Green’s functions: introductory theory with applications, vol. 1 (Van
Nostrand Reinhold, London, 1970), 1 edn.

35. Ben-David, O., Rubinstein, S. M. & Fineberg, J. Slip-stick and the evolution of
frictional strength. Nature 463, 76–9 (2010).

36. Persson, B. Contact mechanics for randomly rough surfaces. Surface Science
Reports 61, 201–227 (2006). URL http://www.sciencedirect.com/science/article/
pii/S0167572906000410.

37. Persson, B. N. J. Relation between Interfacial Separation and Load: A General
Theory of Contact Mechanics. Phys. Rev. Lett. 99, 125502 (2007). URL http://link.
aps.org/doi/10.1103/PhysRevLett.99.125502.

38. Benz, M., Rosenberg, K. J., Kramer, E. J. & Israelachvili, J. N. The deformation and
adhesion of randomly rough and patterned surfaces. J Phys Chem B 110, 11884–93
(2006).
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