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Abstract 

Recent data and publications suggest a promiscuous behaviour for GPR17, a class-A GPCR 

operated by different classes of ligands, such as uracil nucleotides, cysteinyl-leukotrienes and 

oxysterols. This observation, together with the ability of several class-A GPCRs to form homo- 

and hetero-dimers, is likely to unveil new pathophysiological roles and novel emerging 

pharmacological properties for some of these GPCRs, including GPR17. This receptor shares 

structural, phylogenetic and functional properties with some chemokine receptors, CXCRs. Both 

GPR17 and CXCR2 are operated by oxysterols, and both GPR17 and CXCR ligands have been 

demonstrated to have a role in orchestrating inflammatory responses and oligodendrocyte 

precursor cell differentiation to myelinating cells in acute and chronic diseases of the central 

nervous system. Here, by combining in silico modelling data with in vitro validation in (i) a 

classical reference pharmacological assay for GPCR activity and (ii) a model of maturation of 

primary oligodendrocyte precursor cells, we demonstrate that GPR17 can be activated by SDF-1, 

a ligand of chemokine receptors CXCR4 and CXCR7, and investigate the underlying molecular 

recognition mechanism. We also demonstrate that cangrelor, a GPR17 orthosteric antagonist, can 

block the SDF-1-mediated activation of GPR17 in a concentration-dependent manner. The 

ability of GPR17 to respond to different classes of GPCR ligands suggests that this receptor 

modifies its function depending on the extracellular mileu changes occurring under specific 

pathophysiological conditions and advocates it as a strategic target for neurodegenerative 

diseases with an inflammatory/immune component. 

 

Highlights 

- GPR17 is a promiscuous class-A GPCR operated by different ligand families 

- The chemokine receptor ligand SDF-1 interacts with GPR17 via an extended network 

- SDF-1 binding to GPR17 activates intracellular heterotrimeric Gi protein pathway 

- GPR17 activation by SDF-1 promotes maturation of oligodendrocyte precursor cells 

- Cangrelor competitively antagonizes SDF-1 activation of GPR17 
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Abbreviation 

Stromal cell-derived Factor 1 (SDF-1) 

G-protein coupled receptor (GPCR) 

central nervous system (CNS) 

nervous system (NS) 

dorsal root ganglion (DRG) 

oligodendrocyte precursor cells (OPCs) 

multiple sclerosis (MS) 

Protein Data Bank (PDB) 

transmembrane (TM) 

extracellular loops (EL) 

intracellular loop (IL) 

N-terminus (NT) 

Steepest Descend (SD) 

Conjugate Gradient (CG) 

Truncated Newton (TN) 

energy minimization (EM) 

Generalized Born with a simple switching (GBSW) 

Adopted Basis Newton-Raphson (ABNR) 

root mean square deviation (RMSD) 

root mean square (RMS) 

room temperature (RT) 
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1. Introduction 

Stromal cell-derived Factor 1 (SDF-1) also known as CXCL12, was isolated for the first time in 

1995 from bone marrow stromal cells and identified as a chemo-attractant and proliferative 

factor for pre-B-cells [1]. Later studies have demonstrated additional actions for SDF-1, 

including important roles in immune system homeostasis, blood cells proliferation [2-4], 

hematopoietic stem cells homing [5, 6], foetal development, angiogenesis associated with 

tumour progression, carcinogenesis, HIV-1 infection and central nervous system inflammation. 

Nowadays, SDF-1 is recognized as one of the most influential coordinators of stem cells homing 

and migration [7]. 

SDF-1 binds two receptors, belonging to the G-protein coupled receptor (GPCR) superfamily: 

CXCR4 [8], the unique “non-promiscuous” chemokine receptor in the family responding to only 

one ligand [6], and CXCR7, whose role is still incompletely understood [9-11]. It is believed 

that, instead of signalling along conventional G-protein-mediated pathways, CXCR7 may act as 

a scavenger receptor that segregates SDF-1, reducing its extracellular availability, and thus 

down-regulates CXCR4 activation [11-13]. Nevertheless, recent evidence raises the hypothesis 

of a more specific role for CXCR7 in the modulation of SDF-1-dependent biological processes 

[14, 15]. In addition, several roles in the central nervous system (CNS) have been proposed for 

the CXCL12-CXCR4/CXCR7 axis [16, 17]. In detail, it has been demonstrated that CXCR4 

contributes to the development of the nervous system (NS) [18], including the dorsal root 

ganglion (DRG), a source of neural stem cells that participates in endogenous stem cell-based 

tissue repair [7]. Moreover, survival-supporting effects mediated via the second CXCL12 

receptor, CXCR7, have been reported for neural progenitor cells [19]. Recently, a specific 

contribution of SDF-1 to the differentiation of oligodendrocyte precursor cells (OPCs), the 

myelin producing cells in the CNS, and remyelination after traumatic and inflammatory insults, 

via the chemokine receptors CXCR4 and CXCR7, have been demonstrated in vivo and in vitro 

[7, 12, 15, 20, 21]. This evidence supports the hypothesis that chemokine receptors participate in 

the inflammatory reactions during CNS diseases via specific mechanisms in addition to evoking 

leukocyte responses. The same role in orchestrating OPC differentiation and inflammatory 

response in acute and chronic CNS diseases has been demonstrated for other CXCLs [7, 12, 20-

22] and for ligands acting at GPR17 [23, 24], an ambiguous class-A GPCR with a spurious 

pharmacology. Our data showed that, in 1321N1 cells, recombinant GPR17 is activated by 

emergency inflammatory mediators like uracil nucleotides and cysteinyl-leukotrienes [23-25]; 

some research groups obtained results in agreement with ours [26, 27], whereas some others 

described a different GPR17 behaviour in heterologously expressing systems [28, 29]. Recent 

data suggest common pathophysiological roles for both CXCRs and GPR17 transduction 

pathways as leaders of the remyelination processes [24]. Furthermore, SDF-1 is up-regulated in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 5 

multiple sclerosis (MS) [30-32], a disease for which GPR17 has been proposed as a novel target 

[24, 33, 34]. Interestingly, GPR17 is only transiently expressed during the physiological 

differentiation of OPCs; after the immature pre-oligodendrocyte stage, it has to be down-

regulated to allow cells completing maturation. Failure to do so results in inappropriate GPR17 

up-regulation and OPC blockade at a pre-myelinating stage, as demonstrated in several models 

of CNS disease [33, 34]. Factors leading to GPR17 dysfunction in disease are currently totally 

unknown; their identification could help defining new strategies aimed at normalizing GPR17 

function and restoring remyelination and functional recovery. 

The pro-myelinating activity shared by GPR17 and CXCRs is not the only feature common to 

these receptors, since common promiscuous ligands have also been identified. Specifically, both 

CXCR2 [35] and GPR17 [36] have been recently shown to bind oxysterols, another family of 

ligands that are produced locally during inflammation. The latter thus represent a class of 

molecules acting on different class-A GPCRs with a transversal regulatory role that adds 

diversity to the conventional signalling pathway of each GPCR. In addition to this, CXCR2 and 

GPR17 do not only share the same class of ‘non-conventional’ endogenous modulators, but they 

also exhibit phylogenetically conserved structural features [37, 38]. In this respect, the 

hypothesis that common molecular recognition features can connect GPR17 to chemokine 

receptors is strengthened by the fact that GPR17 was indeed originally identified during a human 

genome screening for chemokine receptors [38]. The demonstration of the ability of oxysterols 

to cross-activate different class-A GPCRs opens the possibility that other ligands may as well 

operate in the same way. 

The hypothesis of a triangulation among GPR17, CXCRs and some promiscuous ligands, such as 

SDF-1 and oxysterols, prompted us to investigate the molecular recognition mechanism between 

GPR17 and SDF-1. In detail, we used comparative modelling and molecular dynamics (MD) 

simulations to propose an updated and refined in silico model of GPR17 incorporating the 

features of all newly available suitable templates. We then predicted the interaction between 

GPR17 and SDF-1 by modelling the complex, and validated such predictions through reference 

in vitro experiments on both heterologously GPR17 expressing systems and on primary OPCs 

that natively express GPR17. 

2. Material and methods 

2.1 Comparative modelling of GPR17 

The structure of the human P2Y12 receptor available at the Protein Data Bank (PDB entry 4PXZ) 

was used as main template for modelling the transmembrane (TM) bundle of GPR17; structural 

information from additional templates was also taken into account, where the P2Y12 structure 

was incomplete and when crystallographic artefacts had to be removed. 
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Most of the GPR17 structure - including TM regions, the intracellular loops (IL) 1 and 2, and all 

the three extracellular loops (EL) (globally residues Pro28-Leu214 and Arg235-Phe304) - was 

modelled on P2Y12. Then, since in P2Y12 the IL2 is missing, the lacking residues (Pro129-

Pro135) were built using the Loop Modeler tool implemented in the MOE software (MOE 

2013.10, Chemical Computing Group, Montreal, Canada). Neither P2Y12 nor CXCR4 crystals 

(PDB entry 3ODU) were considered suitable for modelling IL3 because of the presence of a 

super-structured α-helix in TM5 connected with protein engineering to promote their 

crystallization. Thus, residues between TM5 and TM6 (Ile215-Val234) were based on bovine 

rhodopsin (Rho) structure (PDB entry 1U19), according to our alignment (see below). 

In addiction, since both P2Y12 and CXCR4 structures lack the N-terminus (NT), the first 27 

residues of GPR17 (Met1-Thr27) were built using as reference template the model of 

CXCR4::SDF-1 published by Tamamis et al. [39].  

In detail, the most suitable CXCR4::SDF-1 complex was selected as follows: for all the 10 MD 

timeframes accessible as pdb from their MD simulation, a three-step EM protocol implemented 

in MOE was applied. Briefly, 100 steps of Steepest Descend (SD), 100 steps of Conjugate 

Gradient (CG) and 10000 steps of Truncated Newton (TN) were used in sequence with a 

satisfactory convergence to a RMS gradient of 10-5 kcal/mol/Å. After EM, the complex with the 

lowest potential energy value was chosen as template for modelling the GPR17 N-terminus, as 

well as for transferring SDF-1 coordinates to the GPR17 model (complex #6, see Supplementary 

Materials). 

Once all suitable templates had been set, comparative modelling of the GPR17::SDF-1 complex 

was performed using a multi template approach available in MOE (Homology Model tool). The 

option ‘Use Selected Residues to Override Template(s)’ was applied in order to override the 

primary template with the more appropriate ones only for the selected residues. Briefly, ten 

intermediate models were built as described in [36] and submitted to energy minimization (EM) 

to release internal constraints. The top-scoring model, according to the GB/IV scoring function, 

was submitted to further EM with the ‘FINE’ option until the RMS gradient reached a value 

below 0.5 kcal/mol/Å. The ‘Automatic Disulfide Bond Detection’ option in MOE was used to 

insert the conserved disulfide bridge between Cys104 and Cys181, while the disulfide bridge 

between Cys23 and Cys269, typical of a subgroup of related GPCRs (see below), was manually 

added, using the MOE Builder module. 

Finally, a deeper EM protocol using the Energy Minimize tool was applied on the last 

GPR17::SDF-1 complex in order to reach a value of RMS gradient of 0.01 kcal/mol/Å. The 

CHARMM27 force field with the Reaction-field model for electrostatics was applied for the 

whole modelling procedure. 
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As already described for our previous models of GPR17 [36, 40, 41], the comparative modelling 

of the GPR17::SDF-1 complex was based on a global alignment performed on the primary 

structures of a set of GPCRs, among which GPR17, the P2Y receptor family and the known 

chemokine receptors. Fortynine sequences were selected containing a pair of cysteines involved 

in a putative disulfide bridge linking the N-terminus to EL 3. For GPR17, the short isoform 

(UniProt entry Q13304-2) was used. 

First, the sequences were aligned using the MOE Alignment tool (which implements a version of 

the Needleman-Wunsch algorithm and the Blosum30 matrix) and applying GPCR constraints. In 

addition, the sequences of bovine Rho (UniProt entry P02699), also selected as suitable template 

for modelling GPR17, was realigned to the 49 sequences after fixing them with the ‘freeze’ 

option in the MOE Protein Align tool. Finally, after the CXCR4::SDF-1 complex #6 had been 

elected as template for modelling the first 27 residues of GPR17, the alignment of the two 

receptors was manually fixed using as reference a global T-Coffee alignment performed on the 

whole 49 sequences above. The alignment of the two query sequences was then manually 

modified up to Pro28 and Asn35 (in GPR17 and CXCR4, respectively), thus including the 

cysteines involved in the disulfide bridges as reference constraints (Cys23 and Cys28 in GPR17 

and CXCR4, respectively). 

2.2 Molecular dynamics simulation 

The predicted GPR17::SDF-1 complex was subjected to EM followed by MD simulations by 

using the Generalized Born with a simple switching (GBSW) model [42] of implicit 

membrane/solvent implemented in the CHARMM package [43] and described in [44] 

The implicit solvation model was set up employing a smoothing length of 0.6 Å; the surface 

tension coefficient (representing the nonpolar solvation energy) was set at 0.03 kcal/mol Å2; the 

membrane thickness centred at Z = 0 was set at 30.0 Å with a membrane smoothing length of 5.0 

Å, and the grid spacing for lookup table was set at 1.5 Å. Furthermore, before starting the MD 

simulations, the complex was oriented along the Z axis in membrane using the PPM server [45]. 

After a brief step of EM performed with the Adopted Basis Newton-Raphson (ABNR) method, 

the system was heated to 300 K in 500 ps with a 1.5 K increment every 2.5 ps. Velocities were 

randomly assigned from a Gaussian distribution. After heating, the system was allowed to 

equilibrate for 500 ps and then the temperature was kept constant during the 43 ns production 

phase applying the Berendsen weak coupling thermostat [46]. 

During heating, equilibration, and production phases the lengths of the bonds involving the 

hydrogen atoms were fixed by the SHAKE algorithm, allowing an integration time step of 2 fs; 

the leapfrog verlet integrator was employed to numerically integrate Newton’s second law of 

motion and the trajectory was saved every 500 steps, allowing to write a frame per ps. All the 

MD simulations were performed using the all-atom CHARMM36 force field. 
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The trajectory was then analysed using GROMACS [47] analysis tools supported by the VMD 

plugins [48]. 

2.3 Docking simulations 

The in silico accurate docking of cangrelor was carried out with the Dock program of the MOE 

Simulation module, as previously described in [36]. Briefly, the binding site of GPR17 was 

identified through the MOE Site Finder program. After generating a conformational database by 

sampling rotable bonds, cangrelor was docked onto GPR17 model using the ‘Rigid Receptor’ 

protocol, by the Triangle Matcher placement methodology. The accepted poses were scored 

according to the London dG scoring. The best 100 top scoring solutions were submitted to a 

further refinement step, based on molecular mechanics (MM). During the course of the 

refinement, long-range dipole-dipole interactions were calculated using the reaction field 

functional form for the electrostatic energy term. The final energy was evaluated using the 

GBVI/WSA dG scoring function with the MMFF94x forcefield. 

2.4 Interaction energy decomposition 

The interaction energies of the complexes GPR17::SDF-1 and GPR17::cangrelor, computed 

through the MMFF94x forcefield, were decomposed according to the contribution of each 

individual residue through an SVL script by Homan Shadnia [49], modified in our laboratory in 

order to remove the energetic interaction cutoffs. 

2.5 [35S]GTPγS binding assay 

Control and 1321N1 cells stably transfected with pcDNA3.1 and HA-tag GPR17 [50] were 

homogenized in 5 mM Tris/HCl and 2 mM EDTA (pH 7.4) and centrifuged at 48,000 g for 15 

min at 4 °C. The resulting pellets (plasma membranes) were washed in 50 mM Tris/HCl and 10 

mM MgCl2 (pH 7.4) and stored at -80 °C until used. Cell membranes (20 µg of proteins) were 

incubated with increasing SDF-1 concentrations (0.01-10 µM) and GTPγS binding to activated G 

proteins was quantified as previously described [51]. 

The specificity of SDF-1 binding to GPR17 was then evaluated. Aliquots of membranes were 

pre-incubated for 10 min with different concentration of a GPR17 antagonist, cangrelor (0.1-100 

nM) [24, 40, 52] before addition of a fixed SDF-1 concentration (1.5 nM), corresponding to a 

concentration of approx. 10 fold over the EC50 value. 

For the analysis and graphic presentation of [35S]GTPγS binding data, a nonlinear multipurpose 

curve fitting computer program (Graph-Pad Prism) was used. All data are presented as the mean 

± SEM of three different experiments. 

2.6 OPC differentiation assay 

Primary OPC cell cultures were isolated by orbital shaking from mixed glial cultures of postnatal 

day 2 Sprague-Dawley rat cortex, as previously described in [24, 33]. After purification, OPCs 

were seeded onto 13 mm-glass coverlisps (15,000 cells/coverslip) coated with poly-D,L-
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ornithine (50 µg/mL, Sigma-Aldrich, Milan, Italy), and cultured for two days in a proliferating 

medium composed by Neurobasal (Life Technologies, Monza, Italy), B27 (2%, Life 

Technologies), L-glutamine (2 mM, EuroClone), and the human growth factors platelet-derived 

growth factor BB (10 ng/mL, Sigma-Aldrich) and basic fibroblast growth factor (10 ng/mL, 

Space Import Export, Milan, Italy). To promote differentiation, cells were switched to a 

Neurobasal medium growth factors-free containing triiodothyronine T3 (10 ng/mL, Sigma 

Aldrich). 

After one day, OPCs were treated with human beta SDF-1 (1.2 nmol/l, Sigma-Aldrich) or 

vehicle for 48 hours and then fixed at room temperature (RT) with paraformaldehyde (4 %, 

Sigma-Aldrich) in PBS (0.1 M, Euroclone) containing sucrose (0.12 M, Sigma-Aldrich). Cells 

were pre-incubated for 30 min with the antagonists cangrelor (10 nM/l, The Medicines 

Company, Parsippany, NJ) or AMD3100 (1 µmol/l, Sigma-Aldrich), then treated with SDF-1. 

2.6 Immunocytochemistry 

To prevent unspecific staining, cells were first incubated for 20 min in Goat Serum Dilution 

Buffer (GSDB; 450 mM NaCl, 20 mM sodium phosphate buffer, pH 7.4, 15% goat serum, 0.3% 

Triton X-100). Labelling was then performed incubating cells in GSDB overnight at 4 °C with 

the primary rat anti-MBP (Millipore, Milan, Italy) or rabbit anti-GPR17 antibodies, and then for 

1 hour at RT with the secondary goat anti-rat or anti-rabbit antibodies conjugated to Alexa Fluor 

555 or 488 (Molecular Probes, Life Technologies). Nuclei were labelled with Hoechst 33258 

(1:10,000, Molecular Probes, Life Technologies). Coverslips were mounted with a fluorescent 

mounting medium (Dako, Milan, Italy) and analysed with a fluorescence microscope. 

 

3. Results & Discussion 

3.1 In silico modelling of GPR17:: SDF-1 complex 

Our pervious computational studies were mainly aimed at characterizing the binding features of 

small molecules to GPR17, including both putative endogenous ligands and new chemical 

entities [36, 40, 41, 53]. However, the recognition mode of GPR17 for large peptides, such as 

SDF-1, had not been investigated yet. 

In the present study, we characterize the interactions between SDF-1 and GPR17 through an in 

silico approach, including the generation of a new comparative model of GPR17 and its further 

refinement through MD simulations. 

Briefly, the model of the human GPR17::SDF-1 complex was built through a step-by-step 

procedure including: 1) the optimization of the structure of P2Y12 receptor, chosen as main 

template for modelling the TM bundle of GPR17 [54]; 2) homology modelling of GPR17 based 

on selected multiple templates; 3) selection, among the available structures of the CXCR4::SDF-

1 complex, recently published by Tamamis and Floudas [39], of the most suitable one as a 
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template for modelling SDF-1; 4) translation of the interaction network between CXCR4 and 

SDF-1 to the GPR17::SDF-1 model; 5) refinement of the obtained complex through MD 

simulation in an implicit membrane/water model. 

A detailed description of the production phases of the GPR17::SDF-1 complex is reported in the 

following paragraphs. 

3.2 Building a GPR17 comparative model 

Several in silico models of the GPR17 receptor have been proposed by our group in the last 

years, following the expanding resolution of class-A GPCR structures [41, 53]. Despite the lack 

of templates with sequences highly identical to GPR17, the accuracy of our models was high 

enough to lead us to the identification of a first set of potent and diverse GPR17 ligands, 

chemically unrelated to the previously known nucleotide- or cysteinyl-leukotriene derivatives 

[40]. 

Since 2007, when rhodopsin was set as the class-A GPCR prototype, the increasing number of 

solved structures highlighted some common features that are crucial for their operability, but 

also revealed an unexpected structural diversity in their extracellular loops that account for their 

heterogeneity in molecular recognition mechanisms. 

In 2010, the crystallization of human CXCR4 provided a significant improvement in the 

accuracy of our GPR17 modelling [36], because this structure enabled us to reliably describe the 

extracellular regions of the receptor (especially EL2 and the disulphide bridge linking the N-

terminus to EL3): these features are crucial in the molecular recognition process [55, 56], but 

none of the previously available templates was suitable for their modelling. 

More recently, the structure of the human P2Y12 receptor has been solved [54], allowing a leap 

forward in our procedures. In fact, the P2Y receptor family is related to GPR17 not only from a 

pharmacological [52], but also from a phylogenetic and structural point of view, as both P2Y 

receptors and GPR17 belong to the purine receptor cluster of the δ-group in the rhodopsin family 

of GPCRs [37]. The presence, in the human P2Y12 receptor, of a conserved disulphide bridge 

between the N-terminus and EL3 further validates our original hypothesis on GPR17, indicating 

that the constraint of the disulphide bridge Cys23-Cys269, imposed on the extracellular 

architecture of our model, is reliable. 

A picture of the general extracellular topology of the new GPR17 model, in comparison with that 

of templates selected so far for modelling [36, 40, 41, 53] is shown in Supplementary Figure 1. 

The architecture of the putative GPR17 ELs (panel A) significantly differs from that of 

rhodopsin (panel B), in which the access of ligands to the TM cavity is hampered by EL2. 

Instead, in our GPR17 model, in a similar way to CXCR4 (C) and P2Y12 (D), EL2 stands in an 

open conformation, allowing the exposure of a wider surface for ligand recognition. This 
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increased binding surface due to the open EL2 conformation may be especially crucial for the 

recognition of large peptidic ligands like SDF-1. 

To date, still in the absence of a high-resolution structure of GPR17, P2Y12 and CXCR4 

represent the best templates for modelling our target. Although the difference in identity between 

GPR17 and the two sequences of either P2Y12 or CXCR4 is not significant (see Table 1), we 

modelled GPR17 entirely on the P2Y12 structure, with the exception of the regions where P2Y12 

was incomplete, i.e. in the N-terminus, or where its structure was affected by the crystallization 

process, i.e. in EL3 (see below). This approach also allowed us to build a model of 

GPR17::SDF-1 complex exempt of any bias derived from the use of the claimed SDF-1 receptor 

CXCR4. 

 

Table 1 - Pairwise Identity Matrix 
 
 
 
 
 
 

Uniprot codes: human GPR17 - Q13304-2; human P2Y12 - Q9H244; human CXCR4 - P61073. 

The table value at row i, column j equals the number of residue matches between sequences i and j, divided 

by the length of sequence j. 

 

As mentioned before, the lack of a whole P2Y12 structure induced us to include additional 

templates in our modelling procedure. In detail, since P2Y12, in a similar way to CXCR4, due to 

the fusion construct used for stabilizing the protein during crystallization, shows an over-

extended α-helix at the intracellular side of TM5 and a discontinuous IL3 [54], IL3 was modelled 

using bovine rhodopsin as template. Indeed, despite advancements in the structural studies on 

GPCRs in the last twenty years, bovine rhodopsin still represents one of the few structures that 

did not require any protein engineering for a successful resolution [57]; for this reason, its crystal 

contains its whole structure, including an intact IL3. 

3.3 Building the GPR17::SDF-1 complex 

Several experimental findings [58], as well as the in silico predictions [59, 60] suggest that SDF-

1 is firmly bound to CXCR4 at both the extracellular N-terminus and the TM bundle. However, 

none of the experimental structures is complete and provides a global picture of the molecular 

recognition between CXCR4 and SDF-1 [39]. This problem stems from the difficulty of 

'capturing' the final conformation of the flexible CXCR4 N-terminus, which results in the lack of 

the first 24 residues in all the available X-ray structures of CXCR4. Recently, through a very 

comprehensive computational study, including an in-depth protein::protein docking with 

Sequences GPR17  P2Y12  CXCR4  

GPR17   21.6 20.5 
P2Y12  21.8  19.6 
CXCR4  21.2 20.2  
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conformational search combined with MD simulations, Tamamis and Floudas proposed a model 

for the CXCR4::SDF-1 interaction, in strong agreement with the most up-to-date experimental 

evidence. Considering the strong relationship between GPR17 and CXCR4, together with the 

lack of any structural information for the N-termini in both CXCR4 and P2Y12 crystallographic 

structures, we were confident enough in using this model to integrate in our GPR17 model the 

residues missing at its N-terminus. For the same reason, when building the hypothetical 

GPR17::SDF-1 complex, we reproduced, by homology modelling, the conformation and 

orientation of SDF-1 bound to CXCR4, to then transfer its coordinates onto our model. 

Ten time-frames, representing the CXCR4::SDF-1 complex, are available from the 20 ns MD 

simulations performed by Tamamis and Floudas. The choice of using their complex #6 for 

implementing our GPR17 model was based on energetic criteria. Briefly, after an in-depth multi-

step EM protocol, complex #6 was associated with the lowest potential energy value with respect 

to all the frames evaluated (not shown). 

The global topology of the resulting CXCR4::SDF-1 complex is reported in Figure 1. 

3.4 Molecular dynamics simulations of the GPR17:: SDF-1 complex 

In order to investigate the molecular behaviour of the GPR17::SDF-1 complex, we carried out a 

43 ns MD simulation. The evaluation of the stability of the GPR17::SDF-1 complex during the 

production phase was based both on energetic and geometric parameters, as described in the 

following. 

The general stability of the GPR17::SDF-1 complex is confirmed by the tendency of the MD 

simulations to reach convergence. In detail, the tendency to reach an equilibrium state is 

suggested by the trend of the total energy of the complex, which significantly decreases in the 

first phase and reaches a stable level in the second half of the MD simulation (Figure 2A), as 

well as by the root mean square deviation (RMSD) values, which after 20 ns reach a plateau 

around 2.5 Å for both GPR17 and SDF-1 (Figure 2C). 

As expected, for SDF-1, the largest root mean square (RMS) fluctuations, computed for the α-

carbons, concern the unfolded regions of the protein (in light grey, Figure 2D). In contrast to the 

above, the region between residues 28 and 38, even if belonging to a loop, shows lower mobility, 

which is probably due to its involvement in the formation of the complex with GPR17. In 

GPR17 (in black, Figure 2D), among the internal loops IL3 shows the highest mobility (RMSF 

up to 0.5 nm), followed by IL2 (RMSF up to 0.3 nm), while all the extracellular loops are 

associated with lower RMS fluctuations thanks to the stabilization induced by the interaction 

with SDF-1. Conversely, the RMS fluctuation values for GPR17 α-helices stay under 0.1 nm 

(Figure 2D) suggesting a very high stability for the TM barrel structure. 

To evaluate the global stability of the complex, the interaction energy between the two proteins 

was computed during the whole production phase. As shown in Figure 2B, the interaction energy 
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between GPR17 and SDF-1 significantly decreases, with a variation of approx. 160 ± 20 

kcal/mol, suggesting that the reciprocal interaction between GPR17 and SDF-1 is favoured. 

Moreover, the number of interactions occurring between SDF-1 and GPR17 confirms a suitable 

arrangement for the complex. In detail, as shown in Figure 2E, after an increase in the first half 

of the simulation, the number of contacts remains constant, suggesting that the complex 

approaches stabilization after approx. 20 ns. Among these contacts, several were identified as 

hydrogen bonds (Figure 2F); up to 50 of them are formed between pairs of atoms within 0.35 nm 

from one another. 

Also the analysis of the secondary structure stability of both SDF-1 and GPR17 during the MD 

simulation suggests that the global topology of the proteins and their secondary structures are 

conserved (see Supplementary Figure 2). As expected, in SDF-1, the most flexible region is the 

unfolded N-terminus of the protein, which is directly involved in the interaction with GPR17 

(see below). 

During the MD, the stability of the GPR17::SDF-1 complex as well the global robustness of the 

helical bundle of the GPR17 model were also followed by analysing the formation of specific 

interactions between specific pairs of residues. Supplementary Figure 3 plots the distances 

between pairs of GPR17 residues likely involved in intramolecular polar interactions that are 

stable for the whole duration of the MD. 

As reported in Supplementary Figure 3, the structure of GPR17 is stabilized by the presence of 

several residue pairs whose acceptor or donor groups remain within a distance consistent with an 

ionic or hydrogen bond interaction; this finding suggests that the global arrangement of the 

model is preserved during the MD simulation. In some cases, e.g. for the pairs Arg114-Asp128, 

Arg114-Asp128, Ser118-Asn189, Thr27-Hse117, Thr231-Ala132, new contacts are stabilized, 

through the formation of new ionic or hydrogen bonds. 

Supplementary Table 1 reports the list all the interactions observed in the GPR17::SDF-1 

complex during the whole MD simulation. Twenty-one pairs of these residues form interactions 

that have been observed as well in the Tamamis and Floudas model of the CXCR4::SDF-1 

complex [39] (see Supplementary Table 1). In addition, among the conserved interactions, those 

involving the following pairs are stable throughout the MD simulation: Lys1-Tyr112; Lys1-

Tyr251; Lys1-Asn279; Ser-Gln25; Asn33-Asn2; Gln48-Ala18; Gln48-Ala18; Gln48-Thr19; 

Gln48-Ala20; Glu21-Lys27 (see Supplementary Table 1). In order to visually render these 

interactions, we depicted them in a spatial map (Supplementary Figure 4) showing the regions 

most extensively involved in the molecular recognition between GPR17 and SDF-1. 

In detail, the evolution of the distances between atoms involved in hydrogen bonds, salt bridges 

and cation-π interactions that are persistent between SDF-1 and GPR17 during the whole MD 

simulation are reported in Figure 3. 
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Lys1 of SDF-1, essential for the chemotactic activity towards CXCR4 [61], exhibits specific H-

bond interactions with the -OH groups of Tyr112 (TM3), Tyr251 (TM6), and Tyr262 (EL3), and 

with polar groups of residues Asn279 (TM7) and Gln183 (EL2). While our previous studies on 

GPR17 reported that all these residues are likely involved in the recognition of uracil nucleotides 

[41, 53], in SDF-1 neither His255 nor Arg255 are directly involved in the recognition 

mechanism. Figure 4 provides a detailed picture of the N-terminus extremity of SDF-1 (in white) 

and GPR17 (in green) in the TM pocket. 

Figure 5 focuses instead on the main interactions encompassing the extracellular region of 

GPR17, involved in H-bond networks (panel A) or salt bridges (panel B), respectively. 

Globally, our in silico data suggest that the binding surface of SDF-1 on GPR17 is diffused and 

that both the N-terminus and the ELs are important for molecular recognition, as already 

described for many peptide ligands of GPCRs. In addition, TM segments are also involved. 

As represented in Figure 6, the hydrophobic component (in green) of the molecular surface, 

rendered as van der Waals interactions between SDF-1 and GPR17, is relevant for the binding 

between the two proteins at both the TM pocket and the extracellular binding site; the same is 

true of the H-bonding pattern (in magenta). Conversely, the mild-polar interactions (in blue) are 

less significant for the establishment of the complex and involve mainly the extracellular 

domains. 

In particular, our data suggest that the flexible N-terminus tail of SDF-1 deeply penetrates the 

TM bundle of GPR17, whose upper region represents the putative “purinergic binding” site of 

GPR17. Indeed, our previous studies suggest that all the small molecules identified so far as 

putative ligands for GPR17, whether they are endogenous or synthetic compounds, target the 

orthosteric TM binding site of the receptor. Among these molecules, also the nucleotide-

derivative antagonist cangrelor binds the same binding pocket, establishing specific interactions 

with some residues involved in the SDF-1 recognition; this features suggest that cangrelor may 

hamper the entrance of SDF-1 N-terminus in the TM binding site. This ‘competition’ is shown in 

Figure 7, in which a representative docking pose of cangrelor is superimposed to the TM pocket 

of the GPR17::SDF-1 complex. Supplementary Table 2 reports the decomposed interaction 

energies for GPR17::SDF1 and GPR17::cangrelor. SDF-1 establishes a wide interaction network 

with GPR17 (31 amino acids), as described for class-A GPCR peptide ligands [62]; differently, 

cangrelor establishes a lower number of interactions with GPR17 (19 amino acids), specifically 

located in the already recognized binding site for uracil nucleotides [40, 41]. Seven amino acids 

of GPR17 are involved both in SDF-1 and cangrelor molecular recognition. Moreover, the most 

significant energy contribution in the GPR17::cangrelor complex is associated with Arg255, 

whose functional role was already described in a mutant receptor model through a computational 

approach [51, 53].  
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As for the CXCR4::SDF-1 complex, the opened conformation of EL2 allows this fitting, 

suggesting that the open state of EL2 is a requirement for the recognition of SDF-1 by GPR17. 

Although for GPR17, as for many other GPCRs, it has been already hypothesised that a 

conformational change in EL2 is essential for the recognition of extracellular nucleotides [53], 

this hypothesis remained unproved until the publication of new structures different from 

rhodopsin, in which the EL2 is in closed conformation. 

Recently, a phylogenetic analysis based on the GPCRs crystallized so far examines the evolution 

of structural changes occurred in the GPCRs, focusing on the TM binding site and on EL2 [63]. 

The authors assume rhodopsin as representative of an evolutionary transition of peptide-binding 

receptors to receptors binding to small molecules, and postulate that, during this evolution, ELs 

had the initial role of mimicking peptidic ligands. However, purine, leukotriene and free fatty 

acid receptors seem to have undergone a separate evolution from peptide receptors, and, despite 

developing the capability to bind to small ligands, they have conserved the ability to bind to 

peptides, suggests a possible interchangeability of peptide and purine binding. 

In agreement with this analysis, GPR17, which is able to bind to both small molecules [36, 52, 

64] and peptide-like ligands (the present study), holds a conserved, well-folded, open, EL2. 

3.5 In vitro assessment of SDF-1-mediated GPR17 activation 

To validate our in silico predictions, we tested the ability of SDF-1 to bind to GPR17 in two 

different in vitro models: the [35S]GTPγS binding assay, a well-established pharmacological 

assay suitable for studying GPCR activity [50, 52, 64], and primary cultured OPCs natively 

expressing GPR17 that can be instructed to differentiate to mature oligodendrocytes expressing 

the myelin protein MBP by exposure to GPR17 agonists [24, 33] 

As shown in Figure 8, [35S]GTPγS binding experiments performed on 1321N1 cells stably 

transfected with GPR17 demonstrate that SDF-1 is able to increase, in a concentration dependent 

manner, the GTPγS binding to cell membranes, with affinity constant values of 0.14±0.03 nM 

(panel A). In parallel, no significant binding stimulation was observed in 1321N1 wild-type 

control cells, demonstrating that this agonistic response is specifically mediated by the presence 

of GPR17 (data not shown). 

This effect is completely antagonized by the well-known GPR17 orthosteric antagonist 

cangrelor, further confirming that SDF-1 specifically bound GPR17 and behaved as a receptor 

agonist (panel B). This evidence is also in agreement with our in silico data predicting that 

cangrelor would inhibit the SDF-1-mediated GPR17 activation. 

In primary OPC cultures, treatment with SDF-1 increases by approximately 30% the number of 

MBP-positive cells compared to control conditions, thus accelerating their differentiation toward 

a mature phenotype, in line with literature data [7, 12, 20] (see Figure 9, panel A, B and F). As 

also shown in Figure 9, this increase is not observed when SDF-1 is added to cells either in 
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combination with the GPR17 antagonist cangrelor (panel C, H), or, as expected, with the 

CXCR4 antagonist plerixafor (panel D, H). In both antagonist groups, the number of MBP-

positive cells is comparable to, or slightly lower than, the one measured in the vehicle-treated 

cells. 

Globally, these results demonstrate that SDF-1, at a concentration able to activate its cognate 

receptor CXCR4, can also directly act as a promiscuous activator of GPR17, corroborating our 

hypothesis of a common pathophysiological role for GPR17 and chemokine receptors in leading 

the remyelination processes. We do not know at present to what extent activation of CXCR4 and 

GPR17 by SDF-1 individually contributes to the detected OPC maturation; however, our data 

demonstrating that each of the two tested antagonists can fully abolish the SDF-1 induced effect 

suggests that formation of CXCR4::GPR17 heterodimers may be involved. 

4. Conclusions 

In conclusion, the present data show that, besides activating its cognate receptors, CXCR4 and 

CXCR7, SDF-1 can also activate the P2Y-like GPR17 receptor with comparable potency [65]. In 

our in vitro models, the activation of GPR17 by SDF-1 efficiently promotes the maturation of 

OPCs, a well-known key event of the myelination pathway. This emphasizes the 

pathophysiological relevance of the cross-talk between these receptors in the regulation of OPC 

maturation and myelination, which is particularly relevant to the local neuroinflammatory milieu 

associated with MS. 

The concentration range at which SDF-1 operates CXCR4, CXCR7 and GPR17 is comparable 

with the extracellular concentrations of this chemokine in inflamed tissues [30, 66, 67]. On this 

basis, we propose that, under constantly and chronically elevated SDF-1 concentrations, as it 

may occur under long-term inflammatory degenerative conditions, GPR17 function can be 

aberrantly amplified [34], thus preventing its down-regulation. As mentioned before, prolonged 

and abnormal GPR17 up-regulation under several pathological settings [34] results in impaired 

terminal maturation of OPCs that are thus frozen at an immature stage, thus blocking 

myelination [33]. In this respect, we believe that the pharmacological modulation of GPR17 

through ligands able to counteract its excessive activation in inflammation could represent a 

novel strategy to restore its function in pathological conditions, especially those involving a 

supra-physiological activation of uracil nucleotide-, leukotriene-, oxysterol- and/or chemokine-

activated signal transduction pathways. 

We believe that our previous observations [35, 36], together with the new ones, strengthen the 

emerging idea of a complex cross-talk network among class-A GPCRs. This complexity does not 

only deal with the promiscuity of some of their ligands and with their availability in tissues, but 

also with the possibility for these receptors to homo- and/or hetero-dimerize with other class-A 

GPCRs, acquiring different biochemical and pharmacological properties. Understanding this 
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complexity via new emerging in silico and in vitro techniques and validating in vivo GPCR 

homo- and hetero-dimerization will help shedding light on the biological roles of these receptors 

and foster the development of novel therapeutic strategies aimed at restoring their physiological 

activity. 

 

Figure Captions 

Fig. 1. Comparative model of the CXCR4::SDF-1 complex. Regions built using P2Y12 as 

template are represented as green ribbons; residues transferred from other templates are 

highlighted in yellow (IL3, from rhodopsin) and orange (N-terminus, from the CXCR4::SDF-1 

complex #6 in [39]. SDF-1 (from the CXCR4::SDF-1 complex #6 in [39] is coloured in grey.  

Fig. 2. Stability of GPR17::SDF-1 during MD simulation. 

Total energy and interaction energy (light grey) are plotted vs time in panels (A) and (B), 

respectively. In both graphs two different bearing trends (grey and black) are drawn, each 

calculated using smooth.spline(), a function of R that fits a cubic smoothing spline to the data 

according to a spar parameter, which weighs data fluctuations. 

Panel (C) shows the RMSD profiles vs time for SDF-1 (grey) and GPR17 (black), whereas panel 

(D) shows the RMS fluctuation, expressed in nm, computed for the α-carbons of SDF-1 (light 

grey, residues 1-68) and GPR17 (dark grey, residues 1-304). 

Panel (E) reports as a function of time the total number of contacts between all pairs of residues, 

panel (F) the total number of hydrogen bonds occurring between SDF-1 and GPR17 (in black); 

panel (F) also shows the number of atom pairs less than 0.35 nm apart (in grey). 

Fig. 3. Distances vs MD simulation time for couples of residues involved in stable 

interactions between SDF-1 (first residue) and GPR17 (second residue). For ionic bonds, H-

bonds and cation-π interactions, a cut-off of 4.5 Å, 4.0 Å and 6.0 Å, respectively, between donor 

and acceptor groups was used. 

Fig. 4. TM binding pocket of GPR17. Representative picture of the residue Lys1 (labelled 

sticks), at the extremity of SDF-1 N-terminus (white ribbons) entering the TM binding pocket of 

GPR17 (green ribbons). For representing the GPR17::SDF-1 complex, the most populated 

cluster within the MD simulation was chosen. 

Fig. 5. Extracellular binding site of GPR17. Residues involved in the main polar interaction 

networks between SDF-1 (white ribbons) and GPR17 extracellular loops (green ribbons). For 

representing the GPR17::SDF-1 complex, the most populated cluster within the MD simulation 

was chosen. 

Fig. 6. GPR17::SDF-1 van der Waals interaction surface. The molecular surfaces of SDF-1 

(white ribbons) within the TM binding site of GPR17 (grey ribbons) computed as van der Waals 
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interaction surface is represented with green, magenta and blue lines for hydrophobic, H-bonding 

and mild polar interactions, respectively. 

Fig. 7. Uracil nucleotide binding site of GPR17. Superposition between SDF-1 (light grey 

molecular surface and ribbons) and cangrelor (sticks, atom-type colour code) in the TM, orthosteric, 

binding site of GPR17 (grey ribbons). 

Fig. 8. Pharmacological profile of SDF-1 to GPR17: GTPγS binding. (A) Membrane aliquots 

obtained from 1321N1 cells transfected with hGPR17 were incubated with different SDF-1 

concentrations, and [35S]GTPγS binding assay was performed as described in the Material and 

Method section. (B) Effect of the GPR17 receptor antagonist cangrelor on ligand-stimulated 

[35S]GTPγS binding. Membranes from hGPR17-transfected cells were pre-incubated for 10 min 

with cangrelor (0.1 nM–100 nM), then stimulated with SDF-1 at the constant concentration of 1.5 

nM (10 fold over the EC50 value). [35S]GTPγS binding assay was performed as described in the 

Material and Method section. All data are expressed as percentage of basal [35S]GTPγS binding (set 

to 100%) and are mean ± SEM of 3 different experiments, each one performed in duplicate. 

Fig. 9. SDF-1-mediated activation of GPR17 in OPCs. Representative images of MBP expressing 

cells (in red) treated with vehicle (A) and SDF-1 alone (B), or in combination with the GPR17 

antagonist cangrelor (C) and with the CXCR4 antagonist plerixafor (D). (E) Control cell cultures 

expressing GPR17 (in green) and MBP (in red). Cell nuclei are labelled with Hoechst 33258 (in 

blue). (F) Histograms show quantification of the percentage of MBP positive cells after 48 hours of 

treatment with vehicle (69.53%±7.59) and with SDF-1 alone (SDF-1-treated cells set to 100%, 

100%±7.92), or in combination with cangrelor (C, 62.91%±7.17) and plerixafor (P, 65.88%± 7.57). 

The number of positive cells was counted in 40 optical fields under a 20X magnification. Data are 

the mean ± SEM of at least three independent experiments. *, p < 0.05; **, p < 0.01 compared to 

SDF-1 treated cells; Dunnett’s Multiple Comparison Test. Scale bar: 50 µm. 
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