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Abstract

A mixed semiclassical initial value representation expression for spectroscopic calculations is derived.

The formulation takes advantage of the time-averaging filtering and the hierarchical properties of different

trajectory based propagation methods. A separable approximation is then introduced that greatly reduces

(about an order of magnitude) the computational cost compared with a full Herman-Kluk time-averaging

semiclassical calculation for the same systems. The expression is exact for the harmonic case and it is tested

numerically for a Morse potential coupled to one or two additional harmonic degrees of freedom. Results

are compared to full Herman-Kluk time-averaging calculations and exact quantum wavepacket propaga-

tions. We found the peak positions of the mixed semiclassical approximations to be always in very good

agreement with full quantum calculations, while overtone peak intensities are lower with respect to the ex-

act ones. Given the reduced computational effort required by this new mixed semiclassical approximation,

we believe the present method to make spectroscopic calculations available for higher dimensional systems

than accessible before.
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I. INTRODUCTION

Molecular spectra, and spectroscopic signals in general, contain all quantum mechanical infor-

mation connected to molecular motion, even for increasingly complex systems. Most frequently,

however, the full amount of information is not useful and not necessary. Actually, it would be

convenient to be able to select with precision a certain amount of spectroscopic information that

is related to a subset of degrees of freedom, which one is most interested in. In other words, since

not all degrees of freedom are equally important, many relevant molecular properties of chemical

systems can be rationalized in terms of few main degrees of freedom, usually called the “system”.

These are coupled to an environment of many other degrees of freedom, the “bath”, which is not

directly responsible for the physical properties in question.

In a time-dependent approach to spectroscopy, exact quantum mechanical methods to deter-

mine the dynamics of the complete dynamical system are inaccessible for most real-life applica-

tions. A common strategy therefore is to employ an accurate quantum propagator for the time-

evolution of the system degrees of freedom and a lower accuracy propagation scheme for the bath

ones. This should be done without enforcing any artificial and arbitrary decoupling between the

system and the bath. Semiclassical Initial Values Representation (SC-IVR) molecular dynamics

[1–4] is a valuable tool for exploiting this strategy, since it offers a hierarchy of semiclassical

propagators at different levels of quantum accuracy. In the past, several groups have beaten this

path in the search for a hybrid semiclassical propagator. For example, Zhang and Pollak, in their

SC-IVR perturbative series method [5], treated only the system variables with the Herman-Kluk

(HK) prefactor [6] and the bath variables using a prefactor free propagation because computa-

tion of the HK prefactor becomes very expensive as the dimensionality of the problem increases

[7]. Earlier, Ovchinnikov and Apkarian focused on condensed phase spectroscopy using station-

ary phase approximations of the exact quantum propagator to second and zeroth order, namely

the van Vleck and a prefactor-free van Vleck propagator in Initial Value Representation (vV-IVR)

[8]. At about the same time, Sun and Miller introduced a mixed semiclassical-classical model,

where the vV-IVR is either used in first or zeroth order approximation, according to the amount of

quantum delocalization retained around each classical trajectory [9]. Also the Filinov smoothing

can be used to tune the semiclassical propagator [10], as recently shown [11]. In 2006, one of

us (FG) implemented a similar idea for the Gaussian dressed semiclassical dynamics of the HK

propagator [12]. More specifically, Gaussian wave packet propagation with the HK propagator
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is equivalent to a Thawed Gaussian wave packet dynamics (TGWD) [13] if the phase space inte-

gral is approximated to second order in the exponent around the phase space center of the wave

packet (linearization of the classical trajectories) [14, 15]. If the transition from HK to TGWD is

performed analytically only for a selected set of degrees of freedom, one obtains a semiclassical

hybrid dynamics (SCHD) in the same spirit as described above. In terms of accuracy, the HK

propagator is far superior to single trajectory TGWD, but computationally much more expensive

for many degrees of freedom. However, the full HK propagator is not necessary to describe the

dynamics of harmonic like modes, where the TGWD is already quite accurate [16–19]. The semi-

classical hybrid propagation takes advantage of both methods when the system is treated at the

level of HK and the bath with the TGWD.

For the pure HK propagator the method of time-averaging [20] has been shown to improve

the numerical efficiency for the calculation of spectra, after the so-called separable approxima-

tion [21]. The goal in the following is to apply the time-averaging idea together with the SCHD

propagation scheme to produce a mixed semiclassical time-averaging propagator for spectroscopic

calculations.

The paper is organized in the following way. Section II recalls the time-averaging semiclassical

method. Section III introduces a new mixed semiclassical propagator and Section IV presents a

computationally cheap version of this propagator based on an adjusted separable approximation. In

Section V results for the Caldeira-Leggett model Hamiltonian with an anharmonic Morse oscillator

as the system are presented and compared with exact quantum wave packet propagations. After a

discussion of the results in Section V, Conclusions are drawn in Section VI.

II. THE TIME-AVERAGING SC-IVR METHOD FOR POWER SPECTRA CALCULATIONS

This paper focuses on spectroscopic calculations. More specifically, we want to calculate the

power spectrum I (E) of a given reference state |χ〉 subject to the Hamiltonian Ĥ ,

I (E) =
∑
i

|〈χ | ψi〉|2 δ(E− Ei), (1)

where Ei are the eigenenergies that we are interested in and |ψi〉 are the associated eigenfunctions

of the Hamiltonian. By representing the Dirac-delta in terms of a Fourier integral, Eq. (1) can be

written as [22]
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I(E) =
1

2π~

∞̂

−∞

dt eiEt/~
〈
χ
∣∣∣e−iĤt/~

∣∣∣χ〉 (2)

In semiclassical dynamics, the time evolution of Eq. (2) can be calculated using the HK propagator

e−iĤt/~ =
1

(2π~)F

ˆ
dp (0)

ˆ
dq (0) Ct (p(0),q (0)) (3)

×eiSt(p(0),q(0))/~ |p (t) ,q (t) 〉〈p (0) ,q (0)| ,

where (p (t) ,q (t)) is the set of 2F−dimensional classically-evolved phase space coordinates and

St is the corresponding classical action. The integral representation of the propagator goes back

to the Frozen Gaussian Approximation of Heller [23]. The pre-exponential factor

Ct (p (0) ,q (0)) =

√
det

[
1

2

(
∂q (t)

∂q (0)
+
∂p (t)

∂p (0)
− i~γ

∂q (t)

∂p (0)
+

i
~
∂p (t)

∂q (0)
γ−1

)]
(4)

takes into account second-order quantum delocalizations about the classical paths [1, 24, 26–37].

The prefactor in Eq. (4) is obtained if the initial state is represented in the coherent-state basis set

[6, 25], which, for many degrees of freedom, is given by the direct product of one dimensional

coherent states

〈x|p,q〉 =

(
det (γ)

πF

)1/4

exp

[
−1

2
(x− q)T γ (x− q) +

i
~
pT (x− q)

]
, (5)

where γ is a diagonal matrix containing time independent width parameters. For spectroscopic

calculations, γi is conveniently set equal to the width parameter of the vibrational wave function

for the i-th normal mode.

To accelerate the Monte Carlo phase space integration of Eq. (3), a time-averaging (TA) integral

has been introduced [20, 21, 38]. Then, Eq. (2) becomes

I (E) =
1

(2π~)F

ˆ
dp (0)

ˆ
dq (0)

Re
π~T

ˆ T

0

dt1

ˆ T

t1

dt2 Ct2 (p (t1) ,q (t1)) (6)

×〈χ | p (t2) ,q (t2)〉 ei(St2 (p(0),q(0))+Et2)/~
[
〈χ | p (t1) ,q (t1)〉 ei(St1 (p(0),q(0))+Et1)/~

]∗
,

where the integrand with initial phase space point (p (0) ,q (0)) has been averaged over t1 and

then Fourier integrated over t2, and T is the total simulation time. The computational effort of the

double time variable integration can be alleviated by approximating the pre-exponential factor as
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Ct2 (p (t1) ,q (t1)) ≈ exp [i (φ (t2)− φ (t1)) /~], where φ (t) /~ = phase [Ct (p (0) ,q (0))]. This

is called the “separable approximation” and Eq. (6) becomes

I (E) =
1

(2π~)F
1

2π~T

ˆ
dp (0)

ˆ
dq (0) (7)

×
∣∣∣∣ˆ T

0

dt 〈χ | p (t) ,q (t)〉 ei[St(p(0),q(0))+Et+φt(p(0),q(0))]/~
∣∣∣∣2

with this assumption. The integral in Eq. (7) contains a single and positive-definite time integrand,

which is more stable numerically than the one of Eq. (6). Furthermore, the spectra resulting from

(7) are very accurate for molecular dynamics applications [21, 38] and much less computationally

demanding than those of (6).

A recent implementation of Eqs. (6) and (7) is that of Ceotto et al., called “Multiple Coherent

SC-IVR” (MC-SC-IVR) [38–45], where the reference state |χ〉 =
∑Nstates

i=1

∣∣pieq,q
i
eq

〉
is written as

a combination of coherent states placed nearby the classical phase space points
(
pieq,q

i
eq

)
, where

qieq is an equilibrium position and pieq corresponds, in a harmonic fashion, to excited vibrational

states, i.e. (pi,eq)
2 /2m = ~ωi (n+ 1/2). In this way, one can reduce the number of trajectories

to a few “eigen-trajectories”, one for each coherent state location, corresponding to the harmonic

sequence of eigenvalues. The Gaussian delocalization showed to alleviate the shortcomings of a

global harmonic approximation, that one would perform if just a single trajectory was used, and to

fully provide anharmonic effects. MC-SC-IVR has been successfully applied to gas phase spectra

calculations of the H2O molecule [38], and CO molecules chemisorbed on a Cu(100) surface

using a pre-computed potential [42]. Using a direct ab initio approach, vibrational energies for

CO2 [38, 39], H2CO [41] and the ammonia umbrella inversion [44], as well as CO2 vibrational

eigenfunctions [40], have been calculated. The MC-SC-IVR computational time is dramatically

reduced when the method is implemented for GPU architectures [46].

III. A MIXED SEMICLASSICAL POWER SPECTRUM METHOD

The idea of the SCHD is based on a mixed semiclassical propagator approach. We partition

the 2F phase space variables into 2Fhk for the system phase space and 2Ftg for the bath phase

space. The HK level of accuracy is reserved for the system only, indicated by the subscript hk,

whereas the bath phase space variables are treated on the thawed Gaussian level (subscript tg).

The reference state is chosen as |χ〉 = |peq (0) ,qeq (0)〉 as explained above, and the initial phase
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space coordinate vectors are subdivided as

peq (0) ≡

 peq, hk (0)

peq, tg (0)

 ; qeq (0) ≡

 qeq, hk (0)

qeq, tg (0)

 (8)

where the bath starting coordinates are always assumed to be at the equilibrium positions. This

phase space variable partitioning is motivated by the consideration that the TGWD exactly repro-

duces the full harmonic spectrum, as shown in Appendix A. It should be well suited forharmonic-

like motion of the bath degrees of freedom.

Following [12], we approximate the evolution of the phase space coordinates in (8) at each time

step as

q(t) ≡

qhk (t)

qtg (t)

 = qeq (t) + m22 (t) δqtg + m21 (t) δptg (9)

p(t) ≡

phk (t)

ptg (t)

 = peq (t) + m12 (t) δqtg + m11 (t) δptg (10)

where the trajectory coordinates are linearly expanded for the bath DOFs only. The newly defined

stability submatrices

m11 (t) =
∂peq,(t)

∂peq, tg(0)
; m12 (t) =

∂peq,(t)

∂qeq, tg(0)
;

m21 (t) =
∂qeq,(t)

∂peq, tg(0)
; m22 (t) =

∂qeq(t)

∂qeq, tg(0)
;

(11)

are non-square F × Ftg dimensional matrices and will be used only for the derivation of the TG

part of the integrand. The phase φt of the HK prefactor remains unchanged and still comprises the

full F × F matrices used in Eq. (4). The bath sub-space displacements

δptg = ptg (0)− peq, tg (0)

δqtg = qtg (0)− qeq, tg (0)
(12)

are Ftg dimensional vectors. To apply this approximation to Eq. (7), we express it as

I (E) =
1

(2π~)F
1

2π~T

ˆ
dp (0)

ˆ
dq (0)

×
∣∣∣∣ˆ T

0

dt ei(St(p(0),q(0))+Et+φt(p(0),q(0))/~) (13)

× exp

{
−1

4
(q (t)− qeq (0))T γ (q (t)− qeq (0))

}
× exp

{
− 1

4~2
(p (t)− peq (t))T γ−1 (p (t)− peq (0))

}
× exp

{
+

i
2~

(qeq (0)− q (t))T (p (t) + peq (0))

}∣∣∣∣2
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where the coherent reference state is explicitly written out.

We now express all quantities appearing in (13) in terms of the trajectory in Eqs. (9) and (10).

The classical action becomes

St (p (0) ,q (0)) = St (phk (0) ,qhk (0) ,peq, tg (0) ,qeq, tg (0)) (14)

+pT
eq(t)m21 (t) δptg +

(
pT

eq(t)m22 (t)− pT
eq, 0, tg

)
δqtg

+
1

2
δpT

tgm
T
11 (t)m21 (t) δptg +

1

2
δqT

tgm
T
12 (t)m22 (t) δqtg

+δqT
tgm

T
12 (t)m21 (t) δptg

up to second order in the fluctuations for the bath subspace [12]. In the same fashion, we insert

(9) and (10) into the coherent states overlap, retain terms up to second order and get three ap-

proximated exponential terms. By inserting these terms and Eq. (14) into the power spectrum

expression (13), we obtain the mixed semiclassical power spectrum approximation

I (E) =
1

(2π~)F
1

2π~T

ˆ
dp (0)

ˆ
dq (0)

∣∣∣∣ˆ T

0

dt ei[Et+φt(p(0),q(0))]/~ (15)

× exp

{
−1

4
(qhk (t)− qhk (0))T γhk (qhk (t)− qhk (0))

}
× exp

{
− 1

4~2
(phk (t)− phk (0))T γ−1hk (phk (t)− phk (0))

}
× exp

{
+

i
2~

(qhk (0)− qhk (t))T (phk (t) + phk (0))

}

× exp

−
 δptg

δqtg

T

A (t)

 δptg

δqtg

+ bT

 δptg

δqtg

+ ct


∣∣∣∣∣∣
2

,

where we have introduced the Ftg × Ftg diagonal matrices γtg and the Fhk × Fhk diagonal matrices

γhk comprising the respective width parameters. In the last exponential of (15), the terms have

been collected according to the respective power of δptg and δqtg. The zeroth order terms are

ct =
i
~
St (phk (0) ,qhk (0) ,peq, tg (0) ,qeq, tg (0)) (16)

−1

4
(qeq, tg (t)− qeq, tg (0))T γtg (qeq, tg (t)− qeq, tg (0))

− 1

4~2
(peq, tg (t)− peq, tg (0))T γ−1tg (peq, tg (t)− peq, tg (0))

+
i

2~
(qeq, tg (0)− qeq, tg (t))T (peq, tg (t) + peq, tg (0))

and the coefficients of the second order terms are collected in the matrix A (t) composed of the
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following Ftg × Ftg blocks

A11 (t) =
1

4
mT

21 (t)γm21 (t) +
1

4~2
mT

11 (t)γ−1m11 (t) (17)

A12 (t) =
1

4
mT

21 (t)γm22 (t) +
1

4~2
mT

11 (t)γ−1m12 (t)

A21 (t) =
1

4
mT

22 (t)γm21 (t) +
1

4~2
mT

12 (t)γ−1m11 (t) +
i

2~
A22 (t) =

1

4
mT

22 (t)γm22 (t) +
1

4~2
mT

12 (t)γ−1m12 (t) .

The coefficients of the first order terms in δptg and δqtg are collected in a 2Ftg dimensional vector

of the type

bt ≡

 b1,t

b2,t

 (18)

where

bT
1,t = −1

2
(q (t)− q (0))T

[
γm21 (t) +

i
~
m11 (t)

]
(19)

− 1

2~2
(p (t)− p (0))T [γ−1m11 (t)− i~m21 (t)

]
bT
2,t = −1

2
(q (t)− q (0))T

[
γm22 (t) +

i
~
m12 (t)

]
(20)

− 1

2~2
(p (t)− p (0))T [γ−1m12 (t)− i~m22 (t)

]
− i

~
pT

eq, tg.

To carry out the Gaussian integration in δptg and δqtg in (15), we first unravel the modulus squared,

then change the coordinates in the bath subspace from the phase space ones to the displacement

ones of (12) and obtain

I (E) =
1

(2π~)F
Re
π~T

ˆ T

0

dt1

ˆ T

t1

dt2

ˆ
dphk (0)

ˆ
dqhk (0) (21)

×ei[E(t1−t2)+φt1 (p(0),q(0))−φt2 (p(0),q(0))]/~

×〈peq, hk (0) ,qeq, hk (0) | p (t1) ,q (t1)〉 〈p (t2) ,q (t2) | peq, hk (0) ,qeq, hk (0)〉

×
ˆ

dδptg (0)

ˆ
dδqtg (0) exp

−
 δptg

δqtg

T

(A (t1) + A∗ (t2))

 δptg

δqtg


×exp

(bt1 + b∗t2
)T

 δptg

δqtg

+ ct1 + c∗t2

 .

Finally, we integrate over the bath displacements coordinates and end up with the mixed semiclas-
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sical approximation of (6)

I (E) =
1

(2~)F
1

πFhk

Re
π~T

ˆ
dphk (0)

ˆ
dqhk (0)

ˆ T

0

dt1

ˆ T

t1

dt2 (22)

×ei[E(t1−t2)+φt1 (p(0),q(0))−φt2 (p(0),q(0))]/~

×〈peq, hk (0) ,qeq, hk (0) | p (t1) ,q (t1)〉 〈p (t2) ,q (t2) | peq, hk (0) ,qeq, hk (0)〉

×

√
1

det (A (t1) + A∗ (t2))

×exp
{

1

4

(
bt1 + b∗t2

)T
(A (t1) + A∗ (t2))

−1 (bt1 + b∗t2
)

+ ct1 + c∗t2

}
.

Eq. (22) keeps the system quantum evolution at the level of accuracy of a semiclassical Herman-

Kluk simulation requiring a Monte Carlo sampling over all the system coordinates and momenta.

In contrast, the bath coordinates and momenta are not sampled, and all initial conditions for the

bath subspace trajectories are fixed at equilibrium. However, quantum effects are included for the

bath dynamics by the thawed Gaussian quantum delocalization. We stress that only the semiclassi-

cal propagator is approximated by using the hybrid idea. The evolution of the underlying classical

trajectories is still full dimensional and system and bath are naturally coupled. Furthermore, it

has to be emphasized that, while it is very simple for a model system to choose the HK DOFs,

partitioning the phase space becomes more complicated for realistic problems. The mixed scheme

can be used in a meaningful way only if it is possible to identify a few strongly coupled system

DOFs on the one hand and weakly coupled bath DOFs on the other. A practical approach would

be a normal mode treatment as it is often performed in the study of molecular systems. One can

then use a few strongly coupled modes as the system and treat the remaining modes as the bath.

Regarding computational difficulty, it should be mentioned that due to the imaginary part of

A(t) being time independent, the radicand of the square root in (22) is real, so no extra care has to

be taken in computing this quantity.

IV. SEPARABLE APPROXIMATIONS FOR THE MIXED SEMICLASSICAL POWER SPEC-

TRUM METHOD

The double time integration of (22) can be quite computationally demanding and the advantage

of the approximated thawed Gaussian dynamics for the bath coordinates is diminished by this

double integration. To recover a separable approximation of the type of the original time-averaging
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SC-IVR expression of (7) for the mixed semiclassical expression of Eq. (22), we approximate the

exponential part as follows

1

4

(
bt1 + b∗t2

)T
(A (t1) + A∗ (t2))

−1 (bt1 + b∗t2
)

(23)

≈ 1

4
bT

m,t1 (A (t1) + A∗ (t1))
−1 bm,t1 +

1

4

[
bT

m,t2 (A (t2) + A∗ (t2))
−1 bm,t2

]∗
,

while the other exponential terms are naturally separable. The modified vector bm,t is defined as

bm,t =

 b1,t

b2,t + i
~ptg

 (24)

The pre-exponential square root term is also not separable, and we approximate it in a fashion

resembling a geometric average by

1√
det (A (t1) + A∗ (t2))

≈
(

1

det (A (t1) + A∗ (t1))

)1/4(
1

det (A (t2) + A∗ (t2))

)1/4

(25)

Using Eq.s (23) and (25), the expression for the power spectrum is greatly simplified

I (E) =
1

(2~)F
1

πFhk

1

2π~T

ˆ
dphk (0)

ˆ
dqhk (0)

∣∣∣∣ˆ T

0

dt ei[Et+φt(p(0),q(0))]/~ (26)

×〈peq,hk (0) ,qeq, hk (0) | p (t) ,q (t)〉 1

[det (A (t) + A∗ (t))]1/4

× exp

{
1

4
bT

m,t (A (t) + A∗ (t))−1 bm,t + ct

}∣∣∣∣2
and much less computationally demanding since only a single time-integration is now requested.

Eq. (26) still retains the full dimensional classical evolution and the thawed Gaussian approx-

imation for the bath degrees of freedom only. However, the time-averaging part of the thawed

Gaussian dynamics is less accurate than that one in Eq. (22).

Appendix A shows that the TGWD is exact for the power spectrum calculations of the harmonic

oscillator, including all vibrational levels. This level of accuracy is preserved by our separable

approximation. In Appendix B, we demonstrate that indeed Eq. (26) correctly reproduces the

peak positions of the spectrum. This is very important since the harmonic contribution is often the

main contribution for the potential energy surface of bound systems. Also, an accurate description

of a harmonic spectrum is sufficient to justify the applicability of approximations (23) and (25)

within the mixed framework because the DOFs affected by these additional approximations are

already assumed to be harmonic through the TG treatment.
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V. RESULTS AND DISCUSSION

To test the accuracy of the power spectrum expression of Eq. (26), we consider a model system

of a Morse oscillator coupled bilinearly (the Caldeira-Leggett (CL) model [47]) to one, respec-

tively two harmonic oscillators. We intentionally keep the number of the bath modes low, since

we want to have exact quantum wavepacket results available for comparison. The CL Hamiltonian

in atomic units is

H = Hs +

Fbath∑
i=1

{
p2i
2

+
1

2

[
ωiyi +

ci
ωi

(s− seq)

]2}
(27)

where s is the system variable and seq its equilibrium position, yi are the bath coordinates and

the bath masses are unity. We choose bath parameters corresponding to an Ohmic density with

exponential cutoff, where the normalization factor ci/ωi and a system-bath coupling strength η are

defined as in [48].

The system Hamiltonian Hs is that of a Morse potential

Vs (r) = De
(
1− e−α(r−re)

)2
(28)

where De = 0.057 a.u., re = 0 a.u., and α = 0.983 a.u.. The mass of the Morse oscillator has

been set to ms = 1.165× 105 a.u. and the Morse frequency is ωs = 9.724× 10−4 a.u., in order to

reproduce the vibration of the I2 molecule.

We will look at two different effective coupling strengths ηeff = η/ (msωs) and three different

cutoff frequencies ωc. Note that ωc is identical with the bath frequency for the two dimensional

case; in the three dimensional calculations there is one additional bath oscillator of lower fre-

quency. In one case, we choose a bath frequency that is resonant with the Morse potential’s

harmonic approximation, in the second case ωc is much lower than ωs, and in the third case it

lies in between. In the resonant case, one might expect the mixed results to turn out quite poorly,

because the Morse system might drive the harmonic bath into anharmonic dynamics, which is not

accounted for by the TGWD part of the mixed semiclassical propagator.

The initial conditions are chosen as (p (0) , q (0)) =
(√

msωs, 0
)

for the system. Also, the

bath is initially at its equilibrium position with harmonic zero point kinetic energy. We use 104

trajectories for the two-dimensional, and 5×104 trajectories for the three-dimensional calculations.

While this is enough to get the main peak positions correctly, tight convergence of the HK result

needs more trajectories, as shown exemplarily in Table I. The time step is ∆t = Ts/20 (where

Ts = 2π/ωs), and the total number of (semiclassical) time steps is 214, except for Eq. (22) where

11



TA HK sep

(7)

TA mixed

(22)

TA mixed-sep (26)

trajectories 2× 105 1× 104 1× 104

time steps 214 213 214

computational time 10 hours 33 hours 40 min

Table I. Number of trajectories and computational times needed for tight convergence of spectrum of a

Morse oscillator coupled to 1 bath oscillator with ηeff = 0.2 and ωbath = ωs/10. All propagation times from

single CPU calculations on a standard desktop computer.

we use only 213 steps, because we have to do two time integrations in that case. The reference

quantum calculations are performed with the WavePacket software [49].

For a better comparability between spectra, we always subtract the uncoupled bath ground state

energy in our plots, i. e.,

Eplot = E −
Fbath∑
i=0

ωi/2. (29)

Figure 1 shows the power spectra comparison for the two-dimensional simulations. For each

plot, exact quantum wavepacket propagation is compared with the HK SC-IVR calculations at

different levels of approximation. The “hk” label is for the Herman-Kluk SC-IVR propagator, the

“mixed” is for Eq. (22) and the “ mixed-sep” is for Eq. (26). To better appreciate the differ-

ent levels of approximation, the results should be read in a hierarchical order by comparing the

“mixed-sep” with the “mixed”, the “mixed” with the “hk” and the “hk” with the exact “qm”. It

is quite surprising that independently of the coupling and of the system frequency, the separable

approximation of Eq. (26), labeled “mixed-sep”, faithfully reproduces the spectral profile of the

original approximation of Eq. (22), the “mixed” one. Peaks locations are also well reproduced by

the “mixed” approximation with respect to the original “hk” one. However, the peak intensities are

not well reproduced in the different approximations. For the low-frequency bath oscillator in the

upper panels of Figure 1, one can see very clearly how bath excitation peaks are suppressed, as de-

scribed in Appendix B. While “qm”, “hk” and “mixed” results show two bath excitations on top of

each system peak, there is only one such excitation in the “mixed-sep” spectrum. For ωc = 0.5ωs
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in the middle panels of Figure 1, one can see this behavior again for the second excited bath peak,

which is located to the left of the first system excitation. Notably, the “mixed-sep” approximation

does not introduce any ghost peaks with respect to the “hk” results. The approximations described

in Sections III and IV are thus suitable for locating the vibrational eigenvalues but they introduce

some inaccuracy in the spectral intensities. Finally, the only difference between the “hk” spec-

trum and the exact one is in peak intensities that might arise from different propagation times. In

fact, the “hk” is employing long simulation times to exploit the time-averaging filter, while the

quantum wave packet simulations are stopped at some computationally feasible time. All three

cases show a blueshift of the system frequency (very clear in the middle panel) and a redshift of

the bath frequency. For the stronger coupling, the blueshift tendency of the system is enhanced.

The substantial gain in convergence arising from the mixed approximations is obvious especially

for the strongly coupled resonant case, where the same number of trajectories yields a noisy “hk”

spectrum, but a nicely converged “mixed-sep” result.

We now turn to the three-dimensional calculations shown in Fig. 2. Here, the spectroscopic

features are much more complex and the simulation is more challenging than the previous one.

Nevertheless, the “mixed” approximation is able to reproduce the “hk” results faithfully, since the

peak positions are correct both in the resonant and off-resonance case. In the resonant case, a

closer look reveals a small shift of the “mixed” excited peaks with respect to the “hk” spectrum.

Especially for larger baths, this result could be improved by including the most resonant bath mode

into the HK part of the propagation. These findings also hold for the most severe “mixed-sep”

approximation, which is reproducing both the “hk” and “mixed” results, even though it introduces

some inaccuracy in the peak intensity and a few highly excited overtones are missing, for the same

reason as in the two-dimensional case. Also in three dimensions, for the resonant case ωc = ωs,

the resonant bath frequencies are strongly red shifted, while the blue shift of the system is further

enhanced.

Considering the drastic simplification introduced by the Gaussian integration in Eq. (22), where

a phase space integral is approximated by a single phase space trajectory, we think that the results

in Fig.s (1) and (2) are very satisfying. Even when the coupling between system and bath is

resonant, the peak position is still quite accurate. The main drawback of the approximations

“mixed” and “mixed-sep” is represented by the loss of intensity for some peaks. However, for

complex systems this limitation could even be helpful for a better peak interpretation because the

“mixed-sep” approximation mainly suppresses bath excitations in the spectrum, as we show in
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Appendix B.

In terms of computational effort, the “mixed” approximation is more expensive per trajectory

than the time averaged HK calculation because of the double time-integration. On the other hand,

the number of trajectories needed for converging the phase space integral is reduced with respect

to the full dimensional HK integration, because the integration is limited to the system’s phase

space. Table 1 shows that the “hk” calculation might still be faster than the full “mixed” one

in spite of the reduction in the number of trajectories, because of the unfavorable scaling of the

“mixed” approximation with the number of time steps and because the calculation of the classical

trajectories does not take much time in this example. For a realistic problem, where the potential is

not given analytically and the trajectory is simulated on-the-fly [38, 39, 41, 43, 44], the trajectory

calculation will take much longer and make the “mixed” approach the more efficient one. The

“mixed-sep” approximation, on the other hand, combines the single time integration of “hk” with

the reduced number of trajectories, which results in an impressive speedup of the computations,

as shown in Table 1. The inaccuracy that comes with this additional approximation is only in peak

intensity, but not peak position, as discussed before.

VI. CONCLUSIONS

We have developed a new semiclassical method for the calculation of vibrational spectra of

molecular systems that is based on the combination of the time-averaging idea with the semiclas-

sical hybrid methodology. After partitioning the phase space variables into system and bath ones,

we could apply a lower accuracy semiclassical propagation scheme based on a thawed Gaussian

approximation to the bath degrees of freedom only, while preserving the full HK semiclassical

propagator accuracy for the system time evolution. The resulting expression of the power spec-

trum intensity of Eq. (22) was then approximated to further reduce the computational effort. In

this way, the separable approximation, that is at the heart of the time-averaging method, was im-

plemented and lead to the final working formula, given in Eq. (26). In the harmonic case, this

additional approximation has been shown to give identical peak positions in the spectrum, as can

be seen by comparing the results in Appendix A and Appendix B. Numerical examples have been

shown for a Morse oscillator coupled to one or two harmonic oscillators with different frequencies

and coupling strengths. Even in the case of only one additional harmonic degree of freedom, the

numerical effort was shown to be reduced by more than an order of magnitude compared to full
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Herman-Kluk time-averaging results. Considering different system-bath couplings and including

the resonant scenario, we found peak positions to be always in very good agreement with full

quantum calculations, that are still feasible in the cases considered. In the future, we are planning

to apply this semiclassical method to more realistic systems, where the harmonic bath is replaced

by a realistic solvent, such as rare gas matrices [50, 51] or even water molecules.
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APPENDIX A: THE HARMONIC SPECTRUM USING A THAWED GAUSSIAN WAVEPACKET

In this appendix, we show that the thawed Gaussian approximation (TGA) as an exact solution

of the time-dependent Schrödinger equation for the harmonic oscillator leads to the exact harmonic

spectrum. In one spatial direction, the wavepacket in the TGA [13] is written as the coherent state

ψ (x, t) =
(γ0
π

)1/4
exp

{
−γt

2
(x− qt)2 +

i
~
pt (x− qt) +

i
~
δt

}
, (30)

where the parameters γt and δt evolve with time according to the differential equations

−i~γ̇t = −~2

m
γ2t +

d2

dq2t
V (qt, t) (31)

δ̇t =
p2t
2m
− V (qt, t)−

~2

2m
γt. (32)

For the harmonic oscillator motion where the potential is V (qt) = mω2q2t/2, (31) and (32) become

−i~γ̇t = −~2

m
γ2t +mω2 (33)

δt = St (p0, q0)−
~ω
2
t, (34)

15



and γ (t) is constant for the arbitrary and convenient choice of γ (0) = mω/~. In this case, (30)

becomes

ψ (x, t) =
(γ0
π

)1/4
exp

{
−γ0

2
(x− qt)2 +

i
~
pt (x− qt) +

i
~
St −

i
~

(
~ω
2

)
t

}
. (35)

The power spectrum is thus given by

I(E) =
1

2π~

ˆ +∞

−∞
dteiEt/~ 〈ψ (0) |ψ (t)〉

=
1

2π~

ˆ +∞

−∞
dteiEt/~

ˆ +∞

−∞
ψ∗ (x, 0)ψ (x, t) dx

=
1

2π~

ˆ +∞

−∞
dt exp

{
i
~

(
E − ~ω

2

)
t

}
(36)

× exp

{
−γ0

4
(qt − q0)2 −

1

4~2γ0
(pt − p0)2 +

i
2~

(q0pt − qtp0)
}
.

After inserting the harmonic oscillator solutions

pt = p0 cosωt−mωq0 sinωt (37)

qt = q0 cosωt+
p0
mω

sinωt, (38)

choosing γ0 = mω/~ and doing a power series expansion of the second part of the exponential,

the time integration in (36) can be done analytically to yield

I(E) =
1

2π~

ˆ ∞
−∞

dt exp

{
i
~

[(
E − ~ω

2

)
t

]
+
mω

2~

(
p20

m2ω2
+ q20

)(
e−iωt − 1

)}
(39)

= exp

{
−mω

2~
q20 −

1

2mω~
p20

}
(40)

×
+∞∑
k=0

1

2kk!

(
mω

~
q20 +

p20
mω~

)k
1

2π~

ˆ ∞
−∞

dt exp

{
i
~

[(
E − ~ω

2
− ~ωk

)
t

]}

= exp

{
−mωq

2
0

2~
− p20

2mω~

} +∞∑
k=0

1

2kk!

(
mωq20
~

+
p20
mω~

)k
δ

(
E − ~ω

(
k +

1

2

))
,(41)

which is the full harmonic spectrum, i.e. all vibrational levels are exactly reproduced.

APPENDIX B: THE HARMONIC SPECTRUM FROM THE HYBRID EXPRESSIONS

We demonstrate in this appendix how the approximations of the TG part leading from the

original mixed semiclassical expression (22) to the simplified formula (26) affect the harmonic os-

cillator spectrum. In order to do so, we first go through the basic steps of calculating the spectrum
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(41) from Eq. (22). To keep the presentation simple, we show this for one harmonic oscillator

DOF that is treated with the TGA. The expression for the spectrum then emerges as a limiting

case of Eq. (22) and reads

I (E) =
1

2~
Re
π~T

ˆ T

0

dt1

ˆ T

t1

dt2 ei[E(t1−t2)+φt1 (p0,q0)−φt2 (p0,q0)]/~

×
√

1

det
(
At1 + A∗t2

)exp
{

1

4

(
bt1 + b∗t2

)T (
At1 + A∗t2

)−1 (
bt1 + b∗t2

)
+ ct1 + c∗t2

}
.(42)

Using pt and qt from (37) and (38) and calculating the respective derivatives, the matrix At from

equation (17) becomes a constant in time

A =

 1/(4mω~) i/(4~)

i/(4~) mω/(4~)

 (43)

and the determinant from the prefactor is

det
(
At1 + A∗t2

)
=

1

4~2
. (44)

The vector bt, defined in (18), (19), and (20), has components

b1,t =
1

2~
(
e−iωt − 1

) ( p0
mω

+ iq0
)

(45)

b2,t = −i
mω

2~
(
e−iωt − 1

) ( p0
mω

+ iq0
)
− i

~
p0, (46)

making the first term of the exponent in (42)

1

4

(
bt1 + b∗t2

)T (
At1 + A∗t2

)−1 (
bt1 + b∗t2

)
=
mω

2~

(
p20

m2ω2
+ q20

)
(47)

×
(
eiω(t2−t1) − e−iωt1 − eiωt2 + 1

)
.

With the harmonic oscillator action

St =

(
p20

2mω
− 1

2
mωq20

)
cosωt sinωt− p0q0 sin2 ωt, (48)

the scalar ct from equation (16) is

ct =
mω

2~

(
p20

m2ω2
+ q20

)(
e−iωt − 1

)
. (49)

Adding ct1 + c∗t2 to (47), the total exponent in (42) is found to be

1

4

(
bt1 + b∗t2

)T (
At1 + A∗t2

)−1 (
bt1 + b∗t2

)
+ ct1 + c∗t2 =

mω

2~

(
p20

m2ω2
+ q20

)
(50)

×
(
eiω(t2−t1) − 1

)
.
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Taking into account the phase of the prefactor φ(t) = −~ωt/2 for the harmonic oscillator, the total

expression for the spectrum takes the form

I (E) =
Re
π~T

ˆ T

0

dt1

ˆ T

t1

dt2 exp

{
i
~

[
E (t1 − t2)−

~ω
2

(t1 − t2)
]}

(51)

× exp

{
mω

2~

(
p20

m2ω2
+ q20

)(
e−iω(t1−t2) − 1

)}
.

Changing variables to τ ≡ t2 − t1 yields after integration over τ2 = t1

I (E) =
Re
π~T

ˆ T

0

dτ exp

{
− i
~

[(
E − ~ω

2

)
τ

]
+
mω

2~

(
p20

m2ω2
+ q20

)(
eiωτ − 1

)}
; (52)

a series expansion of the second part of the exponent and another integration in the limit T →∞

reproduces (39).

Second, we consider the simplified hybrid approximation (26), which has the 1D TGA form

I (E) =
1

2~
1

2π~T

∣∣∣∣ˆ T

0

dt ei[Et+φt(p0,q0)]/~ (53)

× 1

[det (At + A∗t )]
1/4

exp

{
1

4
bT

m,t (At + A∗t )
−1 bm,t + ct

}∣∣∣∣2 .
The prefactor phase φt and scalar term in the exponent ct obviously stay the same as in the full ex-

pression. Due to its time independence for the harmonic oscillator, the terms containing At do not

change either. This makes the approximation of the determinant (25) an exact identity. Comparing

(49), (52) and (53), we see that ct is the only contribution we need for the exponent. Consequently,

the modified vector bm,t, where the second component no longer contains the constant imaginary

part,

bT
m,2,t = −i

mω

2~
(
e−iωt − 1

) ( p0
mω

+ iq0
)
, (54)

is designed such that the contributions from the two components of bm,t in the exponent cancel

each other,

1

4
bT

m,t (At + A∗t )
−1 bm,t = 0, (55)

and the power spectrum resulting from these approximations

I (E) =
1

2π~T

∣∣∣∣ˆ T

0

dt exp

{
i
~

(
Et− ~ω

2
t

)
+
mω

2~

(
p20

m2ω2
+ q20

)(
e−iωt − 1

)}∣∣∣∣2 (56)

has a time integrand that is identical to the one in the full expression from Eq. (52). After a

series expansion of the exponential as before, unfolding the modulus into the double integral
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2Re
´ T
0
dt1
´ T
t1
dt2 and changing variables as suggested above, the result after time integration

is

I (E) = exp

{
−mωq

2
0

~
− p20
mω~

} +∞∑
k=0

1

(k!)2

(
mωq20

2~
+

p20
2mω~

)2k

δ

(
E − ~ω

(
k +

1

2

))
.(57)

All harmonic oscillator peaks are placed at the right positions. Only the relative peak weight is the

squared value compared to the correct result, thus damping peaks from higher (bath) excitations.
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Figure 1. Two dimensional power spectra calculation at different level of semiclassical accuracy for different

cutting frequency and bath friction values. All spectra have been rescaled such that the maximum peak

amplitude equals one.
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Figure 2. As in Fig.(1), but for three dimensional calculations.
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