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Abstract		28	

Despite	the	appreciation	of	the	role	played	by	outdoor	stone	heritage	in	societal	well-being	and	29	

sustainable	urban	development,	research	efforts	have	not	been	completely	successful	in	tackling	30	

the	complex	issues	related	to	its	conservation.	One	of	the	main	problems	is	that	we	are	31	

continuously	underestimating	the	role	and	behavior	of	microorganisms	in	form	of	biofilm	32	

(subaerial	biofilms,	SABs)	to	the	management	of	stone	artifacts.	To	this	end,	we	discuss	the	33	

necessity	to	approach	the	topic	from	an	ecological	perspective,	through	an	overview	of	the	34	

characteristics	of	SABs	that	mediate	different	ecological	interactions.	Furthermore,	we	explore	the	35	

application	of	functional	traits	ecology	to	unravel	the	mechanisms	by	which	SABs	might	respond	to	36	

a	changing	environment.	Finally	we	guide	and	prioritize	further	research,	in	order	to	inform	policy-37	

makers,	and	to	develop	management	strategies	for	protection	prior	to,	or	following	after,	active	38	

conservation	treatment.		 	39	
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Introduction	40	

Preserving	the	environment	for	future	generations	is	one	of	the	key	concepts	of	sustainability,	41	

which	is	grounded	in	the	need	for	intergenerational	equity.	The	ongoing	political	and	scientific	42	

debate	on	sustainability	tends	to	focus	on	issues	related	to	carbon	emission,	energy	consumption,	43	

natural	resource	use	and	waste	management,	or	the	economic	aspects	of	urban	regeneration	and	44	

growth	(Tweed	and	Sutherland	2007).	Increasingly,	however,	national	governments	and	45	

international	institutions	recognize	cultural	heritage	as	a	non-renewable	resource	that	is	unique,	46	

non-replaceable	or	non-interchangeable,	highlighting	the	intrinsic	value	of	cultural	heritage	in	47	

contributing	to	the	societal	and	economic	well-being	of	communities	(inter	alia	MEA	2005,	EU	48	

Communication	2010,	UNESCO	2013).		49	

Thus,	conservation	and	management	of	cultural	heritage	constitutes	a	strategic	choice	for	the	21st	50	

century.	51	

This	fundamental	principle	has	been	recently	recognized	in	the	outcome	document	of	the	United	52	

Nations	Conference	on	Sustainable	Development	-	or	Rio+20	-	The	Future	We	Want-	(Brazil	on	20-53	

22	June	2012),	by	highlighting	how	‘many	people,	especially	the	poor,	depend	directly	on	54	

ecosystems	for	their	livelihoods,	their	economic,	social	and	physical	well-being,	and	their	cultural	55	

heritage’	(emphasis	added),	or	by	calling	for	the	‘conservation	as	appropriate	of	the	natural	and	56	

cultural	heritage	of	human	settlements,	the	revitalization	of	historic	districts,	and	the	rehabilitation	57	

of	city	centres.’		58	

The	fundamental	roles	played	by	cultural	heritage	are	threatened	today	by	a	number	of	factors,	59	

including	climate	change	and	microbial	attack,	leading	to	new	challenges	for	heritage	objects,	60	

especially	those	exposed	to	the	outdoor	environment.	Preserving	the	fragile	character	of	our	61	

cultural	heritage,	and	managing	it	for	the	benefit	of	current	and	future	generations	is	a	major	task	62	

for	researchers	and	decision-makers	worldwide.		63	
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Many	of	the	world’s	most	precious	artworks	are	made	of	stone	(e.g.	marble,	limestone	and	64	

sandstone)	with	a	finite	life,	and	they	are	slowly	but	irreversibly	disappearing	(Schreerer	et	al.	65	

2009).		66	

Despite	the	appreciation	of	the	role	played	by	stone	heritage	in	many	societies,	research	efforts	67	

have	not	been	completely	successful	in	tackling	the	complex	issues	related	to	its	conservation,	and	68	

the	need	to	develop	comprehensive	approaches	and	methodologies	for	its	management.	One	of	69	

the	main	gaps	is	that	we	are	still	understanding	the	contribution	of	microorganisms	to	the	70	

deterioration	of	stone,	as	for	many	decades	chemical	and	physical	deterioration	was	believed	the	71	

main	cause	of	material	decay	(Sterflinger	and	Piñar	2013).	Stone	monuments,	apart	from	being	72	

ancient	records	that	illuminate	the	cultural	history	of	our	planet,	are	dynamic	repositories	that	73	

support	microbial	life.	The	presence	of	green,	yellow-brown	or	black	patinas	is	all	too	familiar	to	74	

anyone	who	has	looked	closely	at	a	historic	stone	building	or	sculpture.	These	patinas	are	75	

composed	by	densely	packed	microorganisms	that	operate	within	self-organized	structures	of	76	

micron	to-	millimeter	scales	(Figure	1).	These	microbial	communities	at	the	stone/air	interface	are	77	

called	subaerial	biofilms	(SABs).	SABs	are	made	up	of	many	microbial	cells,	generally	of	different	78	

types,	which	employ	coordinated	survival	strategies	to	increase	biocide	resistance	and	microbial	79	

fitness,	and	to	avoid	loss	of	energy	and	nutrients	(Stewart	and	Franklin	2008,	Stone	2015).	SABs	80	

can	be	viewed	as	multi-component	open	ecosystems	sensitively	tuned	to	the	atmosphere	and	the	81	

stone	substratum	(Gorbushina	2007).	As	with	any	other	ecosystem,	understanding	of	the	82	

ecological	and	evolutionary	mechanisms	by	which	SABs	organize	themselves	and	respond	to	83	

environmental	changes	will	help	to	predict,	and	possibly	ameliorate,	system	performance	and	84	

their	response	to	perturbations,	improving	the	development	of	comprehensive	approaches	for	the	85	

sustainable	management	of	outdoor	stone	heritage	in	a	changing	environment.	86	
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Thus,	in	order	to	obtain	a	holistic	view	of	the	phenomena	occurring	at	the	stone	surface,	we	87	

should	consider	relationships	between	the	biotope	(stone),	the	biocenosis	(SABs)	and	the	88	

surrounding	environment	(macro-	and	micro-climate).		89	

The	main	goal	of	this	paper	is	to	argue	for	new	lines	of	research	in	which	SABs	inhabiting	stone	90	

monuments	are	viewed	from	an	ecological	perspective,	and	moving	toward	a	system-level	91	

understanding	of	biofilm	community	organization	and	function.	Conversely,	SABs	on	stone	92	

monuments	could	act	as	interesting	models	for	ecological	study,	offering	exciting	new	93	

opportunities	for	the	development	and	testing	of	ecological	principles,	broadening	understanding	94	

of	microbial	ecosystems	and	generating	new	insights	in	basic	ecology.	95	

This	review	is	organized	to	provide	the	reader	with:	(1)	an	overview	of	what	is	known	of	ecology	of	96	

SABs	inhabiting	stone	monuments	and	the	gaps	in	the	literature,	suggesting	an	objective	97	

framework	for	the	factors	that	influence	the	structure	and	function	of	the	microbial	communities	98	

inhabiting	stone	surfaces;	(2)	the	application	of	functional	traits	ecology	to	unravel	the	99	

mechanisms	by	which	SABs	might	respond	to	a	changing	environment;	and	(3)	a	summary	of	the	100	

salient	points	of	the	presented	review	and	identification	of	the	highest	priority	research	areas	for	101	

targeted	research.	102	

	103	

Ecology	of	SABs	inhabiting	outdoor	stone	materials	104	

SABs	and	their	inhabitants	are	shaped	by	the	complex	dipartite	interactions	between	the	105	

atmosphere	and	the	stone.	The	stone	substratum	acts	as	a	putative	source	of	minerals,	while	the	106	

air	chemistry	might	offer	inorganic	and	organic	compounds	(Villa	et	al.	2015).	Furthermore,	107	

surface	irregularities	such	as	fissures,	cracks	and	pores,	provide	microorganisms	safe	places	108	

against	harsh	environmental	conditions.	There,	microorganisms	take	advantage	of	the	109	

accumulated	moisture,	as	well	as	of	the	shelter	from	intense	solar	radiation,	temperature	110	
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fluctuations,	wind	and	desiccation,	and	therefore	they	successfully	colonize	the	lithic	material	111	

(Gorbushina	et	al.	2002).	Not	surprising	is	the	occurrence	of	endolithic	communities,	including	112	

photosynthetic	communities,	inside	micro-cracks	and	pores	of	stone	monuments	(Crispim	and	113	

Gaylarde	2005).	114	

Microbial	growth	on	stone	surfaces	follows	the	complex	topography	of	the	substrate	and	115	

generates	a	patchy	biofilm	that	spreads	between	the	mineral	grains	filling	depressions,	fissures	116	

and	intergranular	spaces	(Gorbushina	2007).	However,	SABs	do	not	simply	cover	the	lithic	surface,	117	

but	rather	they	interact	with	the	stone	in	myriad	ways,	revealing	a	tight	and	clearly	defined	118	

coupling	between	geochemical	and	biological	processes	that	affect	the	lithic	substrate	in	different	119	

ways	(Table	1).	These	properties	translate	into	a	characteristic	set	of	ecological	impacts,	making	120	

SABs	effective	ecosystem	engineers	by	their	substantial	effects	on	the	physical	and	chemical	121	

properties	of	the	habitat	in	which	they	live.		122	

Taxonomic	and	phylogenetic	studies	of	SABs	have	revealed	lower	diversity	in	SABs	on	stone	123	

surfaces	compared	to	most	natural	systems	(Gorbushina	and	Broughton	2009).	The	relatively	low	124	

diversity	is	attributed	to	the	extreme	and	fluctuating	environmental	conditions	that	125	

microorganisms	must	endure.	In	fact,	outdoor	stone	monuments	are	often	stressful	environments	126	

characterized	by	desiccation,	low	nutrient	concentrations,	large	temperature	variations	and	high	127	

exposure	to	wind,	UV	radiation	and	physical	damage	(Viles	and	Cutler	2012).	Only	microorganisms	128	

with	a	very	broad	range	of	tolerance	to	multiple	and	fluctuating	stresses	can	establish	themselves	129	

under	these	conditions	(Zakharova	et	al.	2013).	130	

However,	despite	the	relatively	low	genetic	diversity,	SABs	contain	metabolically	interactive,	self-131	

sustaining	microbial	communities,	which	promote	cooperative	interactions	within	the	biofilm	132	

(Villa	et	al.	2015).	An	over-riding	characteristic	of	SAB	communities	is	that	together,	constituent	133	

microorganisms	overcome	environmental	stresses	better	than	any	could	individually.		134	
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This	joint	protection	is	rooted	in	the	presence	of	the	biofilm	matrix,	in	the	close	contacts	between	135	

different	biofilm	partners	(e.g.	mutually	beneficial	associations	with	cooperating	microorganisms	136	

with	different	nutritional	requirement)	and	in	interactions	with	the	mineral	substrate	and	the	137	

atmosphere	(Gorbushina	2007,	Figure	1).	Furthermore,	the	biofilm	microenvironment	provides	138	

the	community	as	a	whole	with	an	enormous	capability	to	become	resistant	to	biocide	exposure.	139	

Bacteria	embedded	in	the	biofilm	matrix	are	remarkably	more	tolerant	to	biocides,	up	to	1,000-140	

fold	relative	to	planktonic	cultures	of	the	same	bacterial	strains,	depending	on	the	species-drug	141	

combination	(Davies	2003).	Conservation	treatments	with	traditional	doses	of	biocides	are	142	

sometimes	insufficient	to	destroy	all	members	of	the	biofilm	community,	and	this	is	a	cause	of	143	

concern	for	conservators	(Cappitelli	et	al.	2011).	Consequently,	in	the	last	few	years,	the	efforts	144	

have	been	directed	towards	implementing	and	developing	preventive	strategies	(Cappitelli	et	al.	145	

2011).	146	

The	documented	presence	of	specialized	microorganisms	(Inter	alia	Golubic	et	al.	1981,	Friedmann	147	

and	Ocampo-Friedmann	1984,	Eppard	et	al.	1996,	Laiz	et	al.	2009,	Bastian	et	al.	2010,	Cappitelli	et	148	

al.	2012,	Polo	et	al.	2012,	Ettenauer	et	al.	2014),	highlights	the	existence	of	multiple	trophic	levels	149	

(McNamara	and	Mitchell	2005)	with	a	simultaneous	bottom	up	(resource	supply-driven)	and	top-150	

down	(food	web	structure-driven)	control	of	ecosystem	structure	and	function,	emergent	patterns	151	

of	organization	(Gorbushina	2007),	ecological	succession	(Hoppert	and	Konig	2006)	and	ecosystem	152	

stability	founded	on	diversity	(Miller	et	al.	2009,	Figure	2).		153	

The	above-mentioned	characteristics	are	the	hallmarks	of	a	‘complete’	and	‘complex’	154	

environmental	biological	system.	155	

Moreover,	despite	conditions	perceived	by	us	as	‘extreme’,	the	primary	production	rate	of	156	

epilithic	communities	can	be	high,	comparable	on	a	gC	m-2	y-1	basis	to	rates	for	many	terrestrial	157	

and	ocean	ecosystems	(Büdel	1999).	Interestingly,	this	suggests	that	carbon	fixation	rates	in	less	158	
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then	100	µm	thick	biofilms	are	broadly	equivalent	to	those	achieved	across	the	ocean	photic	zone	159	

(Denef	et	al.	2010).	160	

The	relatively	low	species	complexity,	the	defined	ecological	succession	patterns	and	trophic	level,	161	

the	tight	biological-geochemical	coupling,	and	the	high	biological	productivity	are	important	162	

features	that	make	SABs	inhabiting	stone	surfaces	a	good	model	system	to	generate	simple	and	163	

clearly	defined	hypotheses	to	be	tested	across	a	range	of	environments.		164	

As	these	biological	systems	are	involved	in	the	processing	of	weathered	rock	material,	they	might	165	

be	considered	perfect	model	systems	for	studying	biogeochemical	processes	and	pedogenesis	and	166	

promising	indicators	of	climate	changes,	being	coupling	agents	between	the	atmosphere	and	the	167	

lithosphere	(Warscheid	and	Braams	2000,	Gorbushina	2007,	Villa	et	al.	2015).	In	addition,	SABs	168	

demonstrate	mutually	neutral	or	even	beneficial	associations	as,	in	such	hostile	environments,	the	169	

metabolic	costs	of	survival	are	so	high	that	antibiosis	is	often	an	unaffordable	luxury,	making	them	170	

potential	system	to	study	symbiosis	(Gorbushina	et	al.	2005,	Gorbushina	and	Broughton	2009).		171	

The	ability	of	SABs	to	impact	the	lithic	substrate	and	to	buffer	and	adapt	to	both	natural	and	172	

anthropogenic	changes	provides	a	number	of	significant	ecosystem	services	essential	to	human	173	

communities	and	societies	(Table	2).	174	

	175	

Towards	a	traits-based	approach	to	SAB	ecology	176	

We	advocate	that	an	improved	appreciation	of	the	ecology	of	SABs	inhabiting	outdoor	stone	177	

materials	will	strengthen	our	ability	to	predict	the	impact	of	environmental	change	and	to	develop	178	

management	strategies	for	protection	prior	to,	or	following	after,	an	active	conservation	179	

treatment.		180	

Until	now,	the	scientific	community	traditionally	viewed	SABs	through	a	taxonomic	lens,	often	181	

resulting	in	the	loss	of	ecological	generality.	Although	genomes	and	metagenomes	give	a	detailed	182	
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cross	section	of	the	functional	potential	of	a	community,	the	functional	traits	(morphological,	183	

biochemical,	physiological,	structural,	phenological,	or	behavioral	characteristics)	are	those	184	

properties	that	interact	directly	with	the	environment,	providing	more	relevant	information	in	a	185	

community	analysis	with	special	emphasis	on	feedback	responses	to	environmental	change	and	186	

biodecay	phenomena	of	cultural	heritage.		187	

In	a	recent	work,	Villa	and	colleagues	(2015)	used	a	traits-based	approach	to	reveal	the	metabolic	188	

capabilities	of	SABs	inhabiting	historic	limestone	tombstones	in	response	to	atmospheric	sulfur	189	

pollution.	They	elucidated	functional	interaction	networks	and	syntrophic	interplays	that	enable	190	

cooperative	growth	in	SAB	communities	(Figure	3).	This	study	showed	also	the	ability	of	SABs	to	191	

perceive	the	external	environment	and	to	buffer	environmental	perturbations.			192	

Thus,	the	long-standing	question	“what	is	there?”	should	switch	to	the	questions		“why	is	it	193	

there?”,	“how	does	it	interact	with	the	external	environment?”,	and	“how	does	it	respond	to	a	194	

disturbance	event?”.	In	addition,	recent	developments	in	community	ecology	have	begun	to	195	

recognize	that	microbial	assemblages	cannot	be	defined	without	reference	to	their	environments	196	

(Konopka	2009).	An	appreciation	for	the	tight	interrelationship	between	microbes	and	their	197	

physical	and	chemical	environments	is	particularly	important	for	delineation	of	microbial	198	

communities	and	their	ability	to	respond	to	a	changing	environment	(O’Donnell	et	al.	2007).	199	

Because	functional	traits	mediate	the	interactions	among	microorganisms	as	well	as	between	200	

microorganisms	and	the	environment,	it	has	been	argued	that	trait-based	approaches	provide	201	

more	relevant	information	in	a	community	analysis	and	ecosystem	service	than	taxonomic	or	202	

phylogenetic	attributes	(Violle	et	al.	2007,	Boon	et	al.	2014,	Krause	et	al.	2014).	As	Cohan	&	Perry	203	

(2007)	state,	‘…the	recognized	“species”	of	bacterial	systematics	frequently	contain	a	diversity	of	204	

populations	that	are	distinct	in	their	biochemistry,	physiology,	genome	content	and	ecology;	205	

classifying	an	unknown	organism	to	its	species	thus	tells	us	only	vaguely	about	the	organism’s	way	206	
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of	life’.	Functional	differences,	even	in	only	few	critical	pathways,	could	reflect	dramatically	207	

altered	ecosystem	properties	and	could	impact	the	services	or	disservices	that	human	societies	208	

derive	from	them	(Luck	et	al.	2009).	This	functional	approach	is	instrumental	for	unraveling	the	209	

role	of	SABs	in	biodeterioration	or	bioprotection	of	stone	monuments,	as	detecting	210	

microorganisms	does	not	automatically	imply	an	involvement	in	the	biodecay	process	of	the	lithic	211	

substrate.	The	axiomatic	correlation	among	microorganisms	and	stone	decay	is	matter	of	212	

controversy,	as	it	is	far	from	clear	why	some	communities	are	deteriorative	and	others	are	213	

protective	or,	indeed,	why	can	be	deteriorative	under	some	environmental	conditions	and	214	

bioprotective	under	others	(Viles	and	Cutler	2012,	Bartoli	et	al.	2014,	Pinna	2014).	Only	a	traits-215	

based	approach	may	reveal	the	dual	role	of	SABs	and	their	inhabitants,	and	how	this	dual	role	216	

affects	conservation	strategies.	217	

	218	

Trait-based	approach	to	predicting	feedback	responses	of	SABs	to	a	changing	environment	219	

Frameworks	that	group	microorganisms	into	functional	groups	along	a	few	trait	axes	have	helped	220	

to	summarize	biological	variation	and	has	led	to	the	development	of	hypotheses	to	explain	the	221	

origins	of	functional	diversity,	the	distribution	and	abundance	of	species,	and	the	consequences	of	222	

functional	traits	for	ecosystem	functioning	(Chagnon	et	al.	2013).	223	

For	example,	a	simple	model	sees	the	characterization	of	microorganisms	according	to	their	life-224	

history	strategy:	r-strategists	(termed	copiotrophs	in	microbial	ecology)	have	high	growth	rates	225	

and	low	resource	use	efficiency,	and	K-strategists	(termed	oligotrophs	in	microbial	ecology)	have	226	

low	growth	rates	and	high	resource	use	efficiency	(Fierer	et	al.	2007).	This	assumed	fundamental	227	

trade-off	between	growth	rate	and	resource	use	efficiency	might	underlie	the	capacity	of	228	

microbial	communities	to	respond	to	disturbance,	as	community	structure	will	change	if	the	taxa	229	

present	differences	in	this	trade-off	(Wallenstein	and	Hall	2012).	There	is	evidence	from	both	plant	230	
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and	soil	communities	that	K-strategists	are	more	resistant	(the	ability	of	a	community	property	or	231	

process	to	remain	unchanged	in	the	face	of	a	specific	disturbance),	but	less	resilient	(the	ability	of	232	

a	community	property	or	process	to	recover	after	a	specific	disturbance,	often	reported	as	a	rate	233	

of	return),	to	climate	change-related	disturbances	than	r-strategists	(Bapiri	et	al.	2010,	Lennon	et	234	

al.	2012),	and	a	trade-off	between	resistance	and	resilience	is	widely	documented	(De	Vries	et	al.	235	

2012).	De	Vries	and	Shade	(2013)	proposed	that	simple	measures	that	characterize	microbial	236	

communities	along	the	r-K	spectrum	could	inform	their	ability	to	resist	and	recover	from	climate	237	

change	related	disturbances.	238	

Nevertheless,	the	r-K	framework	has	been	criticized	for	its	oversimplification	of	life	history	239	

strategies	along	a	single	axis	that	combines	both	disturbance	and	resource	availability.	Other	240	

models	that	integrate	additional	axes	have	thus	been	proposed	to	more	completely	characterize	241	

diversity	while	at	the	same	time	remain	simple	and	tractable	(Chagnon	et	al.	2013).	The	242	

Competitor-Stress	tolerant-Ruderal	(CSR)	framework	developed	for	plants,	overcomes	some	243	

limitations	of	other	models	by	classifying	plant	life	history	strategies	according	to	the	functional	244	

traits	associated	with	responses	to	two	major	environmental	filters,	namely	stress	and	disturbance	245	

(Grime	1977).	Stress	refers	to	persistent	adverse	environmental	conditions	(e.g.	increasing	246	

temperature	and	UV	levels,	decreasing	moisture	levels),	whereas	disturbance	refers	to	episodic	247	

events	leading	to	significant	loss	of	functional	biomass	(e.g.	fire,	drought,	storms	or	erosion).	The	248	

C-S-R	framework	identifies	three	main	life	history	strategies:	1)	‘competitors’	are	adapted	for	rapid	249	

resource	utilization	and	long-term	site	occupation,	2)	‘stress	tolerators’	are	adapted	to	persist	in	250	

low-resource	environments	owing	to	resource	conservation	strategies,	and	3)	‘ruderals’	cope	with	251	

frequent	disturbance	by	relying	on	high	colonization	ability,	rapid	production	of	low	cost	biomass	252	

and	short	reproductive	cycles	(Prosser	et	al.	2007).		253	
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Recently,	Viles	and	Cutler	(2012)	employed	the	C-S-R	framework	as	an	example	to	show	how	trait-254	

based	classification	approach	can	predict	the	responses	of	heritage	biota	in	terms	of	255	

biodeterioration,	bioprotection	and	biological	soiling	to	environmental	changes.		According	to	256	

Hoppert	and	König	(2006),	opportunistic	and	ruderal	taxa	within	SABs	colonizing	stone	257	

monuments	are	more	likely	to	be	deteriorative,	as	they	colonize	rapidly	after	disturbance	and	use	258	

a	range	of	strategies	to	derive	nutrients	from	the	substrate	(e.g.	rapid,	destabilizing,	endolithic	259	

growth).	Such	strategies	may	cause	further	disturbance	to	the	surface	through	weathering,	260	

favoring	ongoing	ruderal	colonization.	By	contrast,	stress-tolerant	species	are	likely	to	be	less	261	

deteriorative	as,	according	to	Hoppert	and	König	(2006),	they	do	not	cause	disruption	of	the	262	

surface.	Indeed,	some	of	the	strategies	they	use	to	cope	with	stress	(e.g.	pigmentation)	may	even	263	

have	bioprotective	role	by	protecting	the	artistic	surface	from	weathering	(Viles	and	Cutler	2012).	264	

Following	this	path,	Viles	and	Cutler	(2012)	predicted	that	areas	likely	to	experience	increased	265	

frequency	of	climatic	disturbances	are	likely	to	experience	a	shift	from	bioprotective	to	266	

biodeteriorative	conditions.	Furthermore,	areas	that	are	likely	to	face	increased	stresses	(e.g.	267	

decreased	precipitation)	will	show	a	reduction	in	soiling	rates,	a	switch	to	stress-tolerators	and	268	

knock-on	decline	in	biodeterioration.	They	envisioned	situations	where	conditions	change	from	269	

stressed	to	disturbed	(or	vice	versa),	producing	no	net	change	in	soiling	rate,	but	a	switch	between	270	

biodeterioration	and	bioprotection.	271	

We	summarized	current	knowledge	of	functional	traits	of	the	main	microbial	groups	of	a	mature	272	

SAB	(Table	3),	and	incorporate	them	into	the	C-S-R	framework	to	conceptualize	SAB	life	strategies	273	

in	order	to	better	predict	of	their	responses	to	environmental	changes	(Figure	4).		274	

The	trait-based	approach	proposed	provides	a	simplified	representation	of	SAB	life	strategies.		275	

Associations	in	nature	will	likely	be	much	more	complex	because	SAB	communities	will	rarely	be	at	276	

any	of	the	three	extremes	of	the	C-S-R	triangle,	but	most	of	the	time	will	rather	have	a	mixed	life	277	
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history.	Moreover,	microorganisms	can	display	competitive,	ruderal	or	stress-tolerant	278	

morphotypes	at	different	stages	of	SAB	development	and	under	different	environmental	279	

conditions.	However,	we	argue	that	integrating	such	a	trait-based	approach	into	an	established	life	280	

history	classification	scheme,	such	as	the	C-S-R	framework,	can	provide	more	mechanistic	insights	281	

about	the	relationship	among	SABs,	stone	and	the	environment.	The	idea	would	be	to	assign	282	

taxonomic	and	functional	information	of	a	specific	biofilm	community	retrieved	on	the	artistic	283	

surface	within	the	three	dimensions	of	C-S-R	classification	framework,	providing	the	basis	to	284	

predict	and	assess	SAB	distribution,	prevalence	and	response	to	stresses	and	disturbances.	The	285	

same	approach	was	recently	used	by	Ho	et	al.	(2013)	to	classify	the	observational	ecological	286	

characteristics	of	methane-oxidizing	bacteria	and	exploiting	their	life	strategies	to	optimize	the	287	

performance	of	this	community	in	respect	to	a	desirable	set	of	outputs.	288	

	289	

Moving	ahead:	future	research	directions	290	

Understanding	the	ecology	of	SABs	is	arguably	one	of	the	most	compelling	intellectual	challenges	291	

facing	contemporary	ecology.	Although	worthy	for	its	intellectual	merits	alone,	developing	such	an	292	

understanding	is	essential	to	the	management	of	outdoor	cultural	heritage	for	their	benefits	in	293	

culture-related	economic	activities,	socio-political	development,	urban	sustainability,	education	294	

and	environmental	protection.	295	

Predicting	how	under	a	changing	environment	SABs	will	influence	the	ecosystem	processes	they	296	

mediate	requires	an	approach	that	links	change	in	fitness	of	individuals	to	population	dynamics,	297	

community	composition	and	function.	In	particular,	looking	at	the	structure	of	functional	traits	on	298	

a	community-wide	scale	could	provide	us	insight	about	the	processes	carried	out	by	SABs	and,	in	299	

turn,	about	what	traits	are	associated	with	a	particular	environmental	condition.	A	deeper	300	
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understanding	of	ecosystem	function	might	represent	a	way	to	manipulate	the	growth	of	SABs	on	301	

surfaces.	302	

We	think	that	several	topics	of	research	should	be	prioritized	in	order	to	predict	the	feedback	303	

response	of	SABs	to	anthropogenic	changes,	and	to	develop	microorganism-mediated	approaches	304	

to	protect	artistic	surfaces	and	mitigate	the	effect	of	stresses	and	disturbances.		305	

First,	we	need	to	understand	and	quantify	the	functional	traits	of	SABs	that	may	impact	their	306	

fitness	in	a	given	habitat	and	their	responses	to	a	changing	environment.	Second,	we	need	to	map	307	

taxonomic	information	into	a	functional	space,	in	order	to	assign	ecological	niches	to	different	308	

microbial	taxa	and	elucidate	SAB/stone	and	SAB/atmosphere	interactions.	Third,	we	need	to	309	

quantify	the	biodeterioration	of	artistic	surfaces	and	the	effects	of	environmental	changes	on	310	

stone	geochemistry.	Fourth,	we	need	to	improve	our	understanding	of	microbial	responses	to	311	

simultaneous	environmental	stressors	(Staudt	et	al.	2013).		Finally,	we	need	to	create	a	framework	312	

to	incorporate	biological	(omics),	environmental,	chemical	and	geological	data	into	mathematical	313	

models,	in	order	to	offer	a	system-level	understanding	of	the	phenomenon,	reducing	uncertainty	314	

and	improving	quantitative	estimation	and	prediction.	315	

Recent	advances	in	‘omic’	technologies,	computational	science	and	the	ease	with	which	data	can	316	

be	shared	and	forwarded	will	provide	the	opportunity	to	integrate	knowledge	across	disciplines	to	317	

generate	an	increasingly	comprehensive	understanding	of	the	SABs	responses	to	a	changing	318	

environment,	and	how	they	will	influence	the	ecosystem	where	they	are	growing	in.	Progress	will	319	

require	collaborative	research	among	different	disciplines.	We	envision	that	contributions	by	five	320	

different	groups	will	be	particularly	useful:	321	

1) Partnerships	between	conservators,	heritage	managers	and	ecosystem	scientists	to	sample	322	

SABs	on	outdoor	stone	surfaces	across	a	global-scale	gradient	of	biomes.	The	comparison	323	

of	the	taxonomic	and	functional	dimension	of	SABs	over	a	wide	range	of	both	spatial-	and	324	
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timescales,	will	lead	to	hypotheses	about	the	relationships	between	environmental	325	

changes	and	potential	microbiological	damage.	This	effort	should	be	coordinated	with	326	

ongoing	long-term	research	networks	and	utilize	existing	data	sets	to	the	fullest	possible	327	

extent.	328	

2) Collaborations	with	molecular	biologists	and	bioinformaticians	to	apply	next	generation	329	

sequencing	technologies	to	look	for	functional	patterns	in	the	samples	collected	from	330	

around	the	world.	This	information	would	allow	testing	hypotheses	about	the	time	and	331	

mode	of	SABs	response	to	a	changing	environment.	332	

3) Collaborations	with	biochemists	to	identify	biomarkers	in	the	form	of	metabolites,	proteins	333	

or	transcript	pools	that	signify	ecosystem	state	at	the	onset	of	a	transition.	This	knowledge	334	

will	inform	hypotheses	about	the	potential	role	for	SABs	in	C,	N,	P	and	S	dynamics	in	a	335	

changing	environment.	336	

4) Work	together	with	mathematicians	to	incorporate	space-	and	time-resolved	omics	and	337	

environmental	data	into	new	models	to	test	hypotheses	about	the	role	of	SABs	for	338	

biogeochemical	cycles,	biodeterioration	vs.	bioprotection	of	stone,	ecosystem	productivity	339	

and	climate.		340	

5) Most	importantly,	research	findings	should	be	used	to	build	relationship	and	open	lines	of	341	

communication	between	researchers	and	stakeholders,	to	facilitate	the	translation	of	342	

research	findings	into	actions.	Researchers	can	profile	their	achievements	and	stakeholders	343	

can	be	informed	of	research	outcomes	and	influence	research	challenges.	344	

The	complexity	of	the	phenomenon	under	investigation	requires	interdisciplinary	research	if	we	345	

are	to	attain	the	predictive	capability	that	could	inform	policy	makers.	The	potential	for	346	

interdisciplinary	research	ultimately	hinges	on	the	extent	to	which	individuals	want	to	engage	in	it,	347	

and	equally	importantly	if	they	have	the	opportunity	to	do	so.	Granting	agencies	are	encouraging	348	
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multidisciplinary	approaches	by	increasingly	providing	support	for	crosscutting	research	efforts.	349	

There	is	no	better	time	for	seizing	the	opportunity	to	establish	and	fine-tune	the	collaboration	350	

with	co-workers	in	other	fields.	351	
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Tables			358	

Table	1:	Mechanisms	by	which	SABs	can	alter	and	engineer	their	habitat.		359	

Mechanisms	 References	

Respiration	of	bacteria	and	fungi	increases	local	CO2	concentrations:	

• Formation	of	H2CO3,	which	decreases	the	pH	of	the	stone	surface	and	

leaches	out	carbonates,	phosphates	and	silicates.	

Warscheid	and	Braams	2000,	

Dakal	and	Cameotra	2012,	

Sterflinger	and	Piñar	2014	

Production	of	ligand-based	agents	(e.g.	organic	anions,	siderophores):	

• Chelation	of	Ca,	Mg,	and	Fe,	which	promote	the	dissolution	of	cationic	

constituents.		

Warscheid	and	Braams	2000,	

Hoffland	et	al.	2004,	Dakal	and	

Cameotra	2012	

Production	of	acids:		

• Promotion	of	the	dissolution	and/or	chelation	of	cations.	

• Weakening	of	the	mineral	lattice	by	dissolution	of	metal	cations.	

• Precipitation	of	calcium	oxalate.	

Warscheid	and	Braams	2000,	

McNamara	and	Mitchell	2005,	

Gorbushina	2007,	Sterflinger	

and	Piñar	2014	

Production	of	extracellular	polymeric	substances	(EPS):	

• Dessication/hydration	cycles	of	the	EPS	cause	separation	of	particles.	

• Regulation	of	the	humidity,	thermal	transmission	and	water	vapor	

diffusion,	reducing	thermo-hydric	stresses	to	the	stone.	

• Wrapping	the	grains	with	a	biogenic	matrix	temporarily	stabilizes	the	

surface	and	reduces	weathering.	

Warscheid	and	Braams	2000,	

Crispim	and	Gaylarde	2004,	

Gorbushina	2007,	Pinna	2014,	

Sterflinger	and	Piñar	2014	

Uptake	and	accumulation	of	sulfur	and	calcium	into	the	cells:	

• Weakening	of	the	stone	matrix.	

• Growth	of	cells	forces	separation	of	mineral	grains.	

Crispim	and	Gaylarde	2004,	

Scheerer	et	al.	2009,	Dakal	and	

Cameotra	2012	

Endolithic	growth:	

• Contribution	to	the	breakdown	of	rock	crystalline	structures.	

Golubic	et	al.	1981,	Crispim	

and	Gaylarde	2004,	Scheerer	

et	al.	2009	

Hyphae	and	filamentous	growth:	

• Contribution	to	the	breakdown	of	rock	crystalline	structures.	

Sterflinger	and	Krumbein	

1997,	Warscheid	and	Braams	

2000,	Hoffland	et	al.	2004	

Create	a	multitude	of	varnish-like	coatings:	

• Discoloration.	

• Discolored	areas	may	absorb	more	sunlight,	which	increases	physical	

stress	by	expansion	and	contraction	caused	by	temperature	changes.	

Warscheid	and	Braams	2000,	

Gorbushina	et	al.	2002,	

Crispim	and	Gaylarde	2004,	

Noack-Schönmann	et	al.	2014		

360	
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Table	2:	Ecosystem	services	provided	by	SABs	inhabiting	stone	surfaces	361	
	362	
Service		 Mechanism	

Biogeochemical	cycles	 Nutrient	cycling,	specific	elemental	

transformation	(e.g.	nitrification	and	sulfur	

oxidation).	

Atmospheric	change	indicators	 By	intercepting	compounds	carried	by	the	air,	

SABs	and	their	activity	are	under	the	direct	

influence	of	the	atmospheric	input.	

Climate	regulators	 Carbon	sequestration,	nutrient	cycling,	specific	

elemental	transformation	(e.g.	nitrification,	sulfur	

oxidation).	

Culture	and	conservation	of	stone	monuments	with	

impacts	on	recreation,	tourism	and	economy	

Cultural	heritage	is	often	associated	with	the	

identity	of	an	individual,	a	community	or	a	

society.	Cultural	heritage	provides	experiences	

shared	across	generations,	as	well	as	settings	for	

communal	interactions	important	to	cultural	ties.	

Conservation	of	stone	monuments	has	indirect	

impacts	on	tourism	and	recreation	activities.	

Tourism	and	recreation	activities	are	estimated	to	

contribute	€	415	billion	to	the	EU	GDP	and	3.4	

million	tourism	enterprises	account	for	15.5	

million	jobs	(EU	Communication	2014).	In	

addition,	visitor’s	expenditure	generates	income	

for	the	local	communities	and	infrastructure	

development.	

	363	

	 	364	
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Table	3:	Ecological	characteristics	of	the	main	microbial	groups	of	SABs	(Fungi,	Bacteria	and	Algae)	365	

inhabiting	stone	surfaces.	C:	Competitor;	R:	Ruderal;	S:	Stress	tolerator		366	

FUNGI	

Group	 Ecological	characteristics	 References	 Class	

Hyphomycetes	

(Hyp)	

	

• Fast	growing	in	comparison	to	MCF.	

• Different	abilities	to	access	limiting	resources	(e.g.	

production	of	siderophores).	

• Ability	to	scavenge	nutrients	from	the	air	and	rain.	

• Pigment	production.	

• Hyphal	growth	and	reproductive	structures.	

• Production	of	asexual	spores.	

• High	dispersal	rates	in	comparison	to	MCF.	

• Epilithic	and	endolithic	growth.	

Sterflinger	and	

Krumbein	

1997,	Cutler	

and	Viles	

2010,	Nai	et	

al.	2013,	

Sterflinger	and	

Piñar	2013	

C		

C/R	

	

Micro	colonial	

fungi	(MCF)	

• Slow	growing	in	comparison	to	Hyphomycetes.	

• Accumulation	of	storage	compounds.	

• High	resistance	to	desiccation,	UV	radiation	and	osmotic	

stress.	

• Swollen,	isodiameteric	cells	with	thick,	melanin	containing	

cell	walls.		

• Compact	microcolonies	on	and	inside	the	stone.	

• No	aerial	mycelium.	

• Capacity	to	survive	long	period	of	suspended	metabolism.	

• Create	a	multitude	of	varnish-like	coatings.	

• Production	of	survival	propagules.	

Sterflinger	and	

Krumbein	

1997,	Nai	et	

al.	2013,	

Cutler	and	

Viles	2010,	

Sterflinger	and	

Piñar	2013	

C	

C/S	

	 	367	
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BACTERIA	

Group	 Ecological	characteristics	 References	 Class	

Cyanobacteria	

(Cya)	

	

• Simple	nutritional	requirement.		

• Slow	growing.	

• Ability	to	store	essential	nutrients	and	metabolites.	

• Production	of	photosynthetic	and/or	protective	pigments.		

• Production	of	exopolymers.	

• Harbor	a	number	of	repair	and	tolerance	mechanisms	to	

counter	the	effects	of	UV	and	oxidative	stress.	

• Efficient	response	to	moisture	status.	

• Epilithic	and	endolithic	growth.	

• Limited	mobility.	

Crispim	and	

Gaylarde	

2005,	Scheerer	

et	al.	2009,	

Sterflinger	and	

Piñar	2013	

S	

S/C	

Actinobacteria	

(Act)	

• High	growth	rate.	

• High	cellular	turnover	rates	and	short	life	cycle.	

• Small	cell	size.	

• Metabolic	plasticity	and	rapid	response	to	different	

substrates.	

• Production	of	soluble	pigments.		

• Hyphal	growth.		

• Endolithic	growth.	

• Early	production	of	asexual	spores.	

• More	efficient	dispersal	mechanisms.	

Eppard	et	al.	

1996,	

Gorbushina	

2007,	Scheerer	

et	al.	2009,	

Sterflinger	and	

Piñar	2013	

	

R	

R/C	

R/S	

Lithotrophs		

(Lit)	

• Simple	nutritional	requirement.		

• Slow	growing.	

• Release	of	inorganic	and	organic	acids.	

• Accumulation	of	storage	compounds.	

• Small	cell	size.	

Golubic	et	al.	

1981,	

Warscheid	and	

Braams	2000	

S/C	

		368	
	 	369	
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ALGAE	

Group	 Ecological	characteristics	 References	 Class	

Green	algae		

(GA)	

	

• Simple	nutritional	requirement.	

• Slow	growing.	

• Accumulate	organic	osmolytes	to	face	osmotic	stress.	

• Protection	against	oxidative	stress	via	non-photochemical	

quenching.	

• Cope	with	high	light	condition	by	producing	protective	

carotenes	and	xanthophyles.	

• Able	to	use	water	vapor.	

• Mixotrophy.		

• Algal	propagules	can	remain	viable	in	the	atmosphere	for	

extended	period.	

Gorbushina	

2007,	

Scheerer	et	al.	

2009,	

Cutler	and	Viles	

2010	

S	

S/C	

	 	370	
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Figure	captions	371	

	372	

Figure	1:	A	SAB	growing	on	the	white	marble	of	the	Lincoln	Memorial,	Washington,	DC.	(A)	Antefix	373	

on	the	roof	of	the	Lincoln	Memorial.	(B-C)	Close-up	shots	of	a	vertical	SAB	on	the	Jefferson	374	

Memorial.	(D)	Confocal	laser	scanning	imaging	of	a	biofilm	taken	from	this	location.	Blue	are	375	

microcolonies	of	photoautotrophic	microbes,	green	are	chemoheterotrophic	microbes,	and	red	376	

are	extracellular	polymeric	substances.	377	

	378	

Figure	2:	Multiple	trophic	levels	in	SABs	inhabiting	stone	surfaces.	The	microbial	food	web	in	SABs	379	

is	influenced	by	both	bottom-up	(resource-supply	driven)	and	top-down	(predation-driven)	forces.		380	
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	381	

Figure	3:	Interdependent	cycling	of	nutrients	that	occurs	among	the	main	functional	groups	382	

retrieved	on	a	tombstone	located	in	a	polluted	environment.	The	organic	carbon	produced	by	383	

cyanobacteria	during	photosynthesis	supports	the	growth	of	microorganisms	that	require	organic	384	

matter	as	energy	source	such	as	sulfate	reducing	bacteria	(SRB),	and	sulfur	oxidizing	bacteria	385	

(SOB).	SOB	consumes	the	oxygen	produced	by	cyanobacteria,	creating	the	anaerobic	environment	386	

for	SRB	and	anoxygenic	phototrophic	sulfur	bacteria.	The	SOB	quickly	remove	the	metabolic	387	

products	of	SRB,	S2-,	that	could	inhibit	cyanobacteria	and	at	higher	concentrations	also	SRB.		388	

	389	

Figure	4:	Reflection	of	SAB	microbial	traits	on	the	Competitor	(C)-Ruderal	(R)-Stress	tolerator	(S)	390	

life	strategy	framework	as	was	proposed	for	plants	by	Grime	(1977).	Hyp:	Hyphomycetes;	MCF:	391	

Micro	Colonial	Fungi;	Cya:	Cyanobacteria;	Act:	Actinobacteria;	GA:	Green	Algae;	Lit:	Lithotrophs.	392	
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