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1. INTRODUCTION

Integrated Circuits are used in most people’s lives in the modern societies.

An important branch of research and technology is focused on Integrated

Circuit (IC) design, fabrication, and their efficient applications; moreover

most of these activities are about commercial productions with applications

in ambient environment. However the ICs play very important role in very

advance research fields, as Astronomy or High Energy Physics experiments,

with absolutely extreme environments which require very interdisciplinary

research orientations and innovative solutions.

For example, the Fast TracKer (FTK) electronic system, which is an

important part of triggering system in ATLAS experiment at European

Organization for Nuclear Research (CERN), in every second of experiment

selects 200 interesting events among 40 millions of total events due to collision

of accelerated protons. The FTK function is based on ICs which work as

Content Addressable Memory (CAM). A CAM compares the income data

with stored data and gives the addresses of matching data as an output. The

amount of calculation in FTK system is out of capacity of commercial ICs even

in very advanced technologies, therefore the development of innovative ICs is

required. The high power consumption due to huge amount of calculation

was an important limitation which is overcome by an innovative architecture

of CAM in this dissertation.

The environment of ICs application in astrophysics and High Energy

Physics experiments is different from commercial ICs environment because of

high amount of radiation. This fact started to get seriously attention after

the first “Telstar I” satellite failure because of electronic damages due to

radiation effects in space, and opened a new field of research mostly about

radiation hard electronics.

The multidisciplinary research in radiation hard electronic field is about

radiation effects on semiconductors and ICs, deep understanding about the

radiation in the extreme environments, finding alternative solutions to increase

the radiation tolerance of electronic components, and development of new
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simulation method and test techniques.

Chapter 2 of this dissertation is about the radiation effects on Silicon and

ICs. Moreover, In this chapter, the terminologies of radiation effects on ICs

are explained. In chapter 3, the space and high energy physics experiments

environments, which are two main branches of radiation hard electronics

research, are studied.

The radiation tolerance in on-chip circuits is achieving by two kinds

of methodology: Radiation Hardening By Process (RHBP) and Radiation

Hardening By Design (RHBD).

RHBP is achieved by changing the conventional fabrication process of

commercial ICs [1], [2], [3]. RHBP is very expensive so it is out of budget for

academic research, and in most cases it is exclusive for military application,

with very restricted rules which make the access of non-military organizations

impossible.

RHBD with conventional process is the approach of radiation hard IC

design in this dissertation. RHBD at hardware level can be achieved in

different ways:

• System level RHBD: radiation hardening at system level is achieved

by algorithms which are able to extract correct data using redundant

information.

• Architecture level RHBD: some hardware architectures are able to

prevent of lost data or mitigate the radiation effects on stored data

without interfacing of software. Error Correction Code (ECC) circuits

and Dual Interlocked storage CEll (DICE) architecture are two examples

of RHBD at architecture level.

• Circuit level RHBD: at circuit level, some structures are avoided or

significantly reduced. For example, feedback loops with high gain are

very sensitive to radiation effects.

• Layout level RHBD: there are also different solutions in layout design

level to increase the radiation tolerance of circuits. Specific shapes of

transistor design, optimization of the physical distance between redun-

dant data and efficient polarization of substrate are some techniques

commonly used to increase significantly the radiation tolerance of ICs.

An innovative radiation hard Static Random Access Memory (SRAM),

designed in three versions, is presented in chapter 4. The radiation hardening
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is achieved by RHBD approach simultaneously at architecture, circuit and

layout levels. Complementary Metal-Oxide-Semiconductor (CMOS) 65 nm

is the technology of design and the prototype chip is fabricated at Taiwan

Semiconductor Manufacturing Company (TSMC).

Chapter 5 is about the development of simulation models that can help

to predict the radiation effect in the behavior of SRAM block.

The setup system developed to characterize the radiation hard SRAM

prototype chip is presented in Chapter 5. The setup system gives the possi-

bility of testing the prototype exposed under radiation in a vacuum chamber

and regular laboratory environment.

Chapter 6 is about the contribution of this dissertation on FTK project

and the conclusion of all research activities is shown in the final part of this

dissertation.

The research activities of this dissertation in supported by Italian National

Institute for Nuclear Physics (INFN) as part of CHIPIX65 project and RD53

collaboration at CERN.
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2. RADIATION EFFECTS

In this chapter after a brief introduction about the phenomena of radiation

effects on the silicon material, the effects of radiation on integrated circuits

which has the silicon as primitive material are discussed. Furthermore the

standard categories of radiation effects on electronics components are explored

and explained. These informations are needed for better understanding of

next chapters of the dissertation.

2.1 Interaction between Radiation and Silicon

The interaction between particles with semiconductors is divided into two

main categories of phenomena: ionization and displacement.

When particles pass through semiconductors the Coulomb interaction,

they can ionize the semiconductor material. The ionization phenomena

generates free carriers which can drift and diffuse. Somehow it may happen

that carriers remain trapped in lattice defects of semiconductor and create a

permanent charge which affects the density of carriers.

Mechanical interaction may also happen when particles pass through

semiconductor material, causing the displacement of atoms from their

original position.

2.1.1 Ionization

Ionization of a target of material is caused by the interaction of high-energy

photons or charged particles with atoms of the material in different way:

• Photons interact with semiconductor material through three differ-

ent processes: photoelectric effect, Compton effect, pair production

(Figure 2.1) [4].

• Neutrons are neutral particles which interact with semiconductor

materials in two ways:
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Fig. 2.1: (a) Photoelectric effect; (b) Compton effect; (c) Pair Produc-

tion.

– nuclear reaction by absorbing with nucleus and emitting secondary

particles;

– anelastic collisions cause the emitting of γ rays by excitation of

nucleus.

• Protons and Electrons are charged particles and ionization can be

induced by means of Coulomb interaction.

• Heavy Ions are charged particles with a high atomic number and

ionization can be induced by means of Coulomb Interaction.

However, protons and heavy ions produce higher quantity of ionization due to

nuclear interaction. Results of all these processes is the creation of energetic

secondary electrons that pass through the material and generate electron-hole
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pairs. The density of these electron-hole pairs is proportional to the energy

transferred from incident particle to the target material. The transferred

energy is measured with Linear Energy Transfer (LET), which is defined as

the particle energy loss per unit length. LET is function of particle mass and

energy as well as the target material density:

LET =
dE

ρ · dx

[
MeV · cm2

mg

]
(2.1)

where ρ is the density of the target material, and dE
dx

indicates the average

energy transferred into the target material per length unit along the particle

trajectory. To estimate the number Cnum of electron and hole pares generated,

it is necessary to integrate the LET coefficient on the path of semiconductor:

Etotlost =

∫
dE

ρ · dx
dx

[
MeV · cm3

mg

]
(2.2)

and to divide Etotlost by Em, which is the experimental average energy neces-

sary to create one HEP, and is equal to:

• in silicon: Em = 3.6 eV

• in oxide (SiO2): Em = 17 eV

Cnum =
Etotlost
Em

(2.3)

From the number of Hole-Electron Pairs (HEP) generated, it is possible

to calculate the total charge deposited. For instance, in silicon, a LET of

97 MeV cm2/mg corresponds to a charge deposited of 1 pC/µm. All these

assumptions are valid for short paths and space applications [5], [6].

Figure 2.2 shows a plot of LET for electrons and protons. The LET for

protons is higher than electrons at lower energy and decreases rapidly by

increasing of proton energy. Electrons have a non-monotonic response, LET

decreases with increasing of electrons energy before 1 MeV but after start to

increase [4].

The total energy deposited by a particle is called Total Ionizing Dose

(TID). The TID unit in SI is the gray (Gy): 1 Gy = 1 J/kg. However the

rad (Radiation Aabsorbed Dose) is the conventional unit in space industry

and it is equivalent to 100 erg/g (1 rad = 0.01 Gy).

The initial deposition of energy with ionizing radiation leads to ionizing

defects on metal-oxide-semiconductor structure with two physical processes:
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Fig. 2.2: Stopping power versus particle energy for electrons and pro-

tons incident of silicon (from [4]).

1. formation of trapped charge via hole trapping in defect precursor sites;

2. formation of interface traps via reactions mostly involving hydrogen.

These processes are summarized in Figure 2.3 [7].

2.1.2 Displacement

Highly energized particles can damage semiconductor materials by displacing

atoms. If the energy transferred from the particle to the silicon is greater than

20 eV, the particle can displace an atom. Displaced atom can also displace

other atoms of semiconductor crystal. For example a neutron at 1 MeV

transfers 70 keV to a silicon lattice atom, which displaces approximately 100

other atoms over a length of 100 nm (Figure 2.4).
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Fig. 2.3: Trapped particles in silicon oxide and at Si-SiO2 interface.

radiation

vacancy

atoms in interstitial position

1

2

3
3

Fig. 2.4: Displacement damaging effect.

Displaced atoms cause lattice defect which acts as additional energy levels

in band-gap and change the probability of carrier transition which is dependent

exponentially on band-gap level.

Moreover, in the presence of electric field, displacement phenomenon

introduces two different damaging effects:

1. generation of HEPs in depleted regions of p-n junctions and then inverse

current as a consequence;
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Fig. 2.5: Displacement damaging effects: (a) generation effect; (b)

recombination effect.

2. recombination of HEPs in p-n junction forward-biased and reduction of

charge flux (Figure 2.5).

2.2 Radiation Effects on ICs

The previous Section described the main radiation effects in a generic semi-

conductor. This section presents damaging effects of radiation in ICs.

Radiation effects in ICs are divided into two major categories:

1. Cumulative Effects, due to a long-time exposure to radiation;

2. Single Event Effects (SEE), due to interaction with a single particle.

Cumulative effects are divided into Total Ionizing Dose (TID) effects,

and Displacement Damage Dose (DDD) effects.

TID effects are due to electron-hole pairs generated in the oxide layer by

the radiation crossing the integrated circuit. Electrons quickly flow towards

electrodes while holes remain trapped within the oxide for a long time [6], [8].

Furthermore, channel carriers can be trapped at the Si-SiO2 interface [9].

These effects cause variations in transistor parameters, such as increase or

decrease of threshold voltage, increase of parasitic currents, decrease of carrier

mobility and transconductance.

DDD effects are due to collisions between particles and nuclei of silicon

belonging to the lattice structure [10]. These collisions may create defects into
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the silicon lattice and introduce energy states in the band-gap. These trap

states facilitate electron transitions between valence band and conduction

band and causes mobility degradation [11].

2.2.1 TID Effects and Hardening

In CMOS integrated circuits, the most sensitive region to cumulative effects is

the gate oxide. The collision of single particles with the oxide generate HEPs

and if the ionized region is crossed by an electric field the electrons and holes

separate. Electrons are quickly collected by neighboring electrodes because

their mobility is approximately 220 cm2/(V·s), while holes move slowly toward

the SiO2-Si interface, because their mobility ranges from 10−4 cm2/(V·s) to

10−11 cm2/(V·s). These holes remain trapped into the oxide for a long time

(approximately from 103 s to 106 s) [9].

The trapped holes can be seen as fixed positive charges, which introduce

a negative shift in threshold voltage, given by:

∆Vot = − q

Cox
∆Not = − q

εox
tox∆Not (2.4)

where q is the elementary charge, Cox = εox
tox

is the oxide capacitance per unit

area, Not is the density of trapped holes into the oxide, εox is the dielectric

constant of the oxide, tox is the oxide thickness.

Experimental results in the Figure 2.6 show at first degree of approxi-

mation, ∆V is proportional to t2ox [12]. For very thin gate oxide (e.g, for

thickness lower than approximately 3 nm), threshold shift becomes negligible.

However, field oxides are thick (approximately in the range from 100 nm to

1000 nm) and trap positive charged particles.

The trapped positive charges generate three kinds of leakage current:

• leakage between drain and source of an n-channel MOS transistor;

• leakage between the drain-source of different n-channel devices;

• leakage between an n-well of a p-channel device and drain/source region

of a nearby n-channel device.

Charge trap effects occur especially in the Shallow Trench Isolation (STI)

regions at the transition between field thick oxide and gate thin oxide. The

region on the side of an STI can be modeled as a parasitic transistor in
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Fig. 2.6: Threshold voltage shift as function of the oxide thickness:

experimental data are obtained at 80 K with an electric field

of 2 MV/cm [12].

parallel to the MOS transistor channel. Parasitic transistors have the same

length as designed transistors, however their voltage threshold is larger due

to thick oxide, therefore the parasitic transistors are normally turned off.

The trapped positive charged particles in the thick oxide region attract

negative carriers which can be considered as fixed charge on the gate of

parasitic transistors and able to turn them on (Figure 2.7). The turn on

parasitic transistor acts as parasitic path between drain and source, in parallel

with the MOS transistor channel. Therefore, in NMOS transistors, TID may

induce a parasitic channel between the source and the drain, leading to a

leakage current when the NMOS device is in the “off” state.
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Fig. 2.7: Holes trapped in the shallow trench isolation (STI).

Furthermore, channel carriers can be trapped at the Si-SiO2 interface [13]

and decrease carrier mobility and transconductance. In a PMOS transistor,

TID causes an increase of the threshold voltage and a reduction of the effective

channel width. The latter effect is negligible for usual transistor sizes; however,

for very narrow PMOS devices, this effect must be taken into account [14].

DDD effects are due to collisions between neutral particles and nuclei

of silicon belonging to the lattice structure [15]. Lattice defects at Si-SiO2

interface introduce energy states in the bandgap, which may trap channel

carriers. The voltage threshold shift is:

∆Vit = −Qit

Cox
(2.5)

where Qit is the trapped charge at the interface, which depends on device

biasing and Cox = εox
tox

is oxide capacitance per unit area. Moreover, trap

states due to lattice defects facilitate electron transitions between valence

band and conduction band, and the carrier mobility decreases [16]:

µ =
µ0

1 + α ·∆Nit

(2.6)

where µ0 is the pre-irradiated mobility, α is a parameter dependent on the

chosen technology, Nit is the number of charges trapped at interface.
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It is important to point out that nowadays, TID affects mainly at the

circuit in the IC periphery (pad ring) require a special care compare to IC core,

due to the higher voltage and the thicker oxide of the periphery transistors [1].

2.2.2 Single Event Effects

Single Event Effects (SEE) indicates any measurable change in state or

performance of a microelectronic device due to strike of a single energetic

particle. SEEs can be either soft errors and hard errors.

• Soft Error is an error caused with radiation or electromagnetic pulses

on device. Soft Error is not destructive and device remains functional;

• Hard Error is losing data with a permanent physical defect on device

and it is not reversible, even after power reset and re-initialization.

Single Event Effects are divided in the following categories:

• Single Event Upset (SEU): a soft Error caused by transient signal,

generated by energetic particle strike. SEU can be expressed with:

– SEU cross-section per device;

– SEU cross-section per bit;

– SEU rate (the rate of SEU occurrence).

• Single Event Transient(SET): a transient voltage change at a node

of integrated circuit because of a single energetic particle strike.

• Single Event Latchup (SEL): losing the device functionality because

of a parasitic current when a single energetic particle passage through

sensitive region. SEL could cause also a hard error by permanent

damage on device.

• Single Event Gate Rupture (SEGR): total or partial damage of

the dielectric gate material due to an avalanche breakdown.

• Multiple Cell Upset(MCU): a single event that induces several cell

upsets in an integrated circuit.

• Multiple Bit Upset(MBU): loosing of two or more bits due to SEU

in a same word data.
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Fig. 2.8: a) Hole-electron pair generation due to a high-energy particle

strikes in a p-n junction; b) Depletion region deformation

and hole-electron separation (spike current due to drift); c)

Diffusion current.

Reduction of transistors scales in advanced fabrication technologies increases

a lot the sensitivity to the single events of radiation. In particular, ultra-scaled

memory integrated circuits are more sensitive to Single Event Upset (SEU)

and digital devices are more affected by Single Event Transient(SET). This

sensitivity is consequence of reduction of device dimension and low voltage

supplying. These reasons cause the reduction of both critic charge (the

minimum of charge required to induce the flipping of logic state) and the

sensitive area.

2.2.3 Single Event Effect and Hardening:

Single Event Effects (SEE) are due to charge generation in a reverse-biased

p-n junction in the CMOS IC. The junction may be part of a MOS transistor

(drain-body or source-body), or may be a well substrate junction.

The electric field in the reverse-biased p-n junction separates electrons

and holes. The generated carriers are collected by neighbouring electrodes,

thus giving a parasitic current with a peak due to carrier drift, followed by a

tail due to carrier diffusion (Figure 2.8).

Sensitivity versus SEE in any particular device is evaluated by measuring

the corresponding cross section vs LET:
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Fig. 2.9: Cross section qualitative example. LETth indicates the mini-

mum level of LET which triggers a SEE.

σ =
NSEE

Φ
(2.7)

where σ is the cross section, NSEE is the number of single events and Φ is

the uniform flux over some fiduciary area. Usually, for a memory device, the

cross section is normalized with the number of bits: σ is expressed in square

centimeters per bit (cm2/bit).

The error prediction rate can be derived by the cross section and some

others parameters like the event duration and the nature of particle. Figure 2.9

shows a qualitative example of cross section vs. LET. The threshold LET

(LETth) is defined as the maximum LET value at which no effect is observed

at a flux of 1× 107 particles/cm2 [17].

The asymptotic saturation cross section σsaturation is the value of σ ap-

proached at high LET values. The curve of σ as function of the LET is

obtained by measuring the cross section at a few LET values and fitting the
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data with a Weibull curve :

σ(LET ) = σsaturation · (1− e−(LET−LETth)/W
S

) (2.8)

where W and S are fitting parameters.

2.2.4 Latch-up

Latch-up phenomena occurs in semiconductor structures with four distinct

regions: p-n-p-n. These regions are physically interconnected, the middle

junction is reverse biased and the other two junctions are forward biased.

Latch-up is regenerative mechanism which can increase the internal current

to high values after a certain threshold condition.

The latch-up mechanism is shown in Figure 2.10. The dashed line in the

figure shows the negative resistance region and it occurs when applied voltage

is higher than breakover voltage.

Key parameters in the latch-up characteristics are the holding voltage and

holding current (IH), which are the minimum conditions required to sustain

latch-up.

These currents generated in latch-up are in order of 0.3 A to 3 A for typical

devices. The high current causes localized heating in the latch-up path and

because of excessive heat some failures in devices can happen as failure of

metallization or bond wire, which are the most important destructive effects

of latch-up in device application.

• Two-Transistor Model: The most usual model of latch-up phenom-

ena is two transistors model shown in Figure 2.11, with n-well and

p-substrate CMOS circuit [18]. In this model, two transistors share the

same collector region and they are interconnected. The vertical p-n-p

transistor is formed by the p-source (or drain) of PMOS devices within

the well, the n-well, and the p-substrate. The gain of the vertical tran-

sistor is very high (30 to 100) and has a base width which is comparable

to the well diffusion depth. The lateral n-p-n transistor is formed by

the n-well, p-substrate, and n-source (or drain). The lateral structure

typically has a much lower gain (2 to 20) and has base width which is

determined by lateral dimensions imposed.

Typical equilibrium currents in latch-up cycle is in the order of 100 mA

to several ampere. This value is quite high due to the following reasons:
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Fig. 2.10: V-I characteristics of Latch-up.

1. There are many different substrate contacts in a large area circuit,

which reduces the substrate resistance. 2. The equilibrium current is lim-

ited only by external circuit resistance (typically bond and metallization

resistance).

Latch-up occurs by these conditions:

– The gain of the compound structure must provide positive feedback.

It means βV .βL > 1 where βV and βL are the gain of vertical and

lateral transistors;

– The applied voltage to the structure, holds initial voltage value

which is vital for existence of latch-up condition.
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Fig. 2.11: Latch-up schematic in CMOS transistors.
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3. RADIATION ENVIRONMENT

3.1 Space

The radiation environment around the Earth is historically divided into: inner

belt dominated by energetic protons, a slot region of relatively lower dose be-

hind shielding and an outer belt dominated by energetic electrons (Figure 3.1).

Throughout these regions, there are cold plasma and during geometric storm

and sub-storms hot plasma. At high latitudes and altitudes, these population

intermix with interplanetary environment dominated with cold plasma and

energetic particles of solar and galactic origin. In semiconductor instruments

the low energetic particles affect surface, causing total dose degradation

through both ionizing and not-ionizing charge. Table 3.1 summarizes the

Satellite hazards of particles and their dynamic timescales [19].

Satellite operations are affected by the variations of the particle population

identified in Table 3.1. Hereafter the different kind of particle identifications

are discussed in more details.

Fig. 3.1: The cross sections of Van Allen radiation belts.
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Tab. 3.1: Satellite hazards due to space radiation and plasma, the responsible

particles and their dynamic timescale.

Satellite Hazard Particle Population Natural Variation

Surface Charging 0.01 - 100 keV e− Minutes

Surface Dose 0.5 - 100 keV

e−, H+, O+

Minutes

Internal Charging 100 keV - 10 MeV e− Hours

Ionizing Dose >100 keV H+, e− Hours

Single Event Effects >10 MeV/amu H+,

heavy ions

Days

Displacement Damage

Dose

>10 MeV H+ ,

Secondary n, MeV e−
Days and hours for e−

Nuclear Activity >50 MeV H+ ,

Secondary neutrons

Weeks

3.1.1 Energetic Plasma

Hot plasma is composed of ionized particles with energy in the range of

kiloelectronvolt (keV). Hot plasmas are trapped by the Earth’s magnetic field

and some of energetic plasmas carry significant current which modifies in

large scale the Earth’s electromagnetic field specially during strong magnetic

activity in the space. Figure 3.2 shows a large scale view of the magnetosphere

and it’s domains, where the energetic plasma is found in the plasma sheet and

the ring current. Magnetic storm flows a ring of current in the equatorial plain

and burst current flows from the magnetotail into the inner magnetosphere.

The figure 3.3 shows the schematic plasma injection from the magnetotail

into the inner magnetosphere.

3.1.2 Trapped Electrons

Electrons with energy above of 100 keV should be treated separately from

plasma electrons for two main reasons: at first they are dominated by magnetic

force and other dynamic forces can be neglected, second they can penetrate

just the thinnest shielding. Thus 100 keV becomes the dividing point between

plasma electrons and radiation belt electrons. Trapped electrons are found

often in inner magnetosphere in two or more belts and the inner belt has lower

energy electrons compare to outer one. The region between belts is called
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Fig. 3.2: Diagram of Earth’s magnetosphere (from www.nasa.gov).

.

Slot and it’s location and size depend on energies and magnetic activity. The

figure 3.4 shows a cutaway view of the two-belt structure electron radiation

belts. The outer radiation belt intensity can vary by orders of magnitudes

on timescales, from minutes to days, and typically it begins with a sudden

loss of trapped electrons with the depth of penetration of loss which depends

on the intensity of the storm. After the storm, the slot starts to re-establish

itself in few days.

3.1.3 Trapped Protons

Trapped protons have energies up to a few gigaelectronvolt and are found in

the Earth’s inner radiation belt. Their intensity is peaking near magnetic

equator at altitudes about 3000 km. For altitudes up to 2000 km the radiation

is systematically more intense over the South Atlantic and South-Eastern

Pacific ocean, and less intense or absent over the Indian Ocean. Above

8000 km the intensity episodically changes in response to the solar particle

and geomagnetic activity. The intensity of trapped protons has evolving time

in order of decadal (period of 10 years) with the change in the Earth’s internal

magnetic field.

The radiation protons are generated from two sources: Cosmic Ray Albedo

Neutron Decay (CRAND) and Solar Energetic Protons. CRAND is a slow

www.nasa.gov
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Fig. 3.3: Schematic hot electron plasma injection from the

magnetotail into the inner magnetospher.

process and varies in time of solar cycle. Solar Energetic Protons are trapped

in the inner belt when a geomagnetic storm coincides with a solar particle

event [20] and their transient increase during intense geomagnetic activity [21].

However during quiet and moderate geomagnetic activity the trapped proton

population is typically very stable.

3.1.4 Solar Energetic Particles

Solar Energetic Particles flood interplanetary space with protons and heavy

ions with energy upto 100 MeV [22]. These event begin with a Solar Flare

or/and Coronal Mass Ejection (CME) at the Sun (Figure 3.5). When a Solar

Flare happens, a first wave of energetic particles arrives at Earth, essentially

at the speed of light, and then a second more intense wave of energy particles

arrives along with the CME. Sometimes, events can also be detected by

observing an increase in neutron radiation at ground level.

Particles in interplanetary space can absorbed and trapped in some regions

of earth magnetosphere, and the dividing lines between these regions is known

as the geomagnetic cutoff. At polar latitudes, essentially all solar energetic

particles have access all the way down to the atmosphere. In fact, intrinsically,

the magnetic field is actually stronger by a factor of two at the pole than the

equator. However, it is the topology of the magnetic field that ultimately
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Fig. 3.4: Cutaway view of the two-belt structure electron radiation

belts (from www.nasa.gov).

filters out the interplanetary particles (Figure 3.6). The Solar Energetic

Particles contribute to Ionizing, Displacement and Single Event Effects. The

proton and ion flux together can be used to estimate the permanent SEE

failures like latch-up during a satellite space mission.

The scientific and technical challenges introduced in this chapter need

a continuous improvements in physical modeling of environment effects on

electronic components and, moreover, better radiation hard design and test

method are needed to reach a higher performance of electronic components

in harsh environments.

3.2 High Energy Physics Experiments

The environment of collision area in high energy physics experiments has very

particular conditions because of high flux of particles and high temperature.

In specific, at the European Organization for Nuclear Research (CERN) the

radiation environment of ATLAS and CMS experiments is determined by the

proton-proton collision at their center.

The collision environment of CMS and ATLAS at CERN contains the

charged Hadrons with energy distribution which covers the range between

www.nasa.gov
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Fig. 3.5: An eruption on April 16, 2012 was captured here by NASA’s

Solar Dynamics Observatory in the 304 Å wavelength, which

is typically colored in red. (from www.nasa.gov)

about 1 MeV and 10 GeV. The spectrum is peaked at around 200-300 MeV

and remains almost invariant in shape from the tracker to the outer periphery

of the experimental cavern with absolute fluxes which change by order of

magnitude. The neutron distribution has instead a substantial flat low-energy

component, typically only one order of magnitude lower than the peak at

1 MeV and this range of neutrons contributes significantly to Displacement

Damage Effects. The neutron spectrum has also another peak at 60 MeV to

100 MeV and extends at high energy up to about 1 GeV to 10 GeV, which

depends mainly on the location point.

Table 3.2 summarizes the radiation levels in different regions of ATLAS

as cumulative doses over the 10 years expected lifetime of the Large Hadron

Collider (LHC) at CERN. In each region of Table 3.2 the field is characterized

by three parameters: TID level, fluence of neutrons above 100 keV and

fluence of all Hadrons above 20 MeV which are reference levels for Ionization,

Displacement Damage and Single Event Effects.

www.nasa.gov
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Fig. 3.6: The sun erupted peaked in X-ray at 7:56 UTC on Feb. 20,

2014 (3:56 EST) (from http://www.thesuntoday.org/).

3.2.1 Hadron Collider Radiation Environment Radiation Issues

The radiation environment issues at CERN are somehow different from space

applications, mainly because of absence of heavy ions. For instance, the

proton radiation test demonstrates a very low frequency of Single Event

Latch-up (SEL) or Single Event Gate Rupture (SEGR) in similar radiation

environments. Moreover the abundance of neutrons with energy higher than

100 keV increases significantly displacement damage (DD) compared to the

space application environment.

The radiation environment at CERN experiments can be divided into two

main regions: inner region (Figure 3.7 ) and outer region (Figure 3.8).

In the inner region, the TID levels are very high and it is unthinkable

to use commercial electronics, therefore all electronics are implemented by

custom ASICs. These developed custom electronics need to be manufactured

in technologies able to withstand to the expected total dose and have a high

tolerance of IC design to SEEs in order of minimize the rate of soft errors such

as Single Event Upset (SEU), Transient and Functional Interrupt (SEU, SET

or SEFI). In the outer region of CERN experiments, the TID level varies

between less than 1 krad to more than 25 krad, therefore most of electronic

functions are implemented with commercial devices.

http://www.thesuntoday.org/
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Tab. 3.2: Cumulative dose of radiation over 10 years in different region of Large

Hadron Collider (LHC).

Detector

region

TID[rad] Neutrons

1 MeV [cm−2]

Hadrons > 21

MeV [cm−2]
Innermost

tracker (barrel)

2.7 · 107 4.7 · 1014 5.4 · 1014

Outer tracker

(barrel)

5.1 · 106 1.91014· 9.3 · 1013

ECAL (barrel) 1.1 · 104 3.11012· 6.0 · 1011

HCAL (barrel) 1.0 · 103 4.3 · 1011 1.0 · 1011

Muon detector

(forward)

3.4 · 104 1.2 · 1013 1.9 · 1012

Experimental

cavern

1.7 · 103 6.5 · 1010 1.5 · 1010

3.2.2 HL-LHC Upgrade and RD53

The High Luminosity LHC (HL-LHC) at CERN is the proposed upgrade to

the LHC to be made in a long machine shutdown which should take place in

the years 2023 to 2025.

The upgrade aims at increasing the luminosity of the machine, i.e, the

ratio of the number of events detected in a unit of time to the interaction

cross-section, up to 5× 1034 cm−2·s−1, which means an increase by a factor

of 10 with respect to the current luminosity. The upgrade will improve

statistically marginal measurements and will allow a better chance to see rare

processes.

The ATLAS and CMS experiments at CERN are planning major detector

upgrades to cope with the increase in beam luminosity. Pixel detectors are

placed in the innermost part of the experiments and are therefore exposed

to the highest flux and highest ionizing radiation dose. Simulations show

that the innermost parts of the new pixel detector will integrate a flux

of about 1016 n/cm2 (MeV neutron equivalent) and a Total Ionizing Dose

(TID) of 1 Grad [23]. HL-LHC requires a new generation of hybrid pixel

detectors which present major challenges on several fronts. The IC design

issues include: smaller pixels to resolve tracks in boosted jets, much higher

hit rates (1 GHz/cm2 to 2 GHz/cm2), unprecedented radiation tolerance

(10 MGy), much higher output bandwidth, and large IC format with low
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Fig. 3.7: Inner region of ATLAS experiment at CERN (from http:

//home.web.cern.ch/).

power consumption in order to instrument large areas while keeping low the

material budget.

RD53 is a new collaboration at CERN with 18 participating institutes in

the aim of design the next generation of hybrid pixel readout chips for both

ATLAS and CMS Phase 2 pixel upgrades.

The RD53 collaboration is focused on: qualification of a technology

able to survive in the harsh radiation environment, definition of a top level

architecture, development of a simulation framework, development of radiation

hard cells, evaluation and design of the analog front-end, design of specific IP

blocks.

CHIPIX65 is the Italian part of RD53 collaboration with 35 members

funded by National Institute for Nuclear Physics (INFN). CHIPIX65 supports

the development and test the radiation hard SRAM prototype which is the

main subject of this dissertation.

The technology chosen by the RD53 collaboration is 65 nm CMOS technol-

ogy. This particular choice is done for different factors: first of all, it allows for

considerably higher density and lower power consumption designs compared

to technologies used in current projects (mainly 250 nm and 130 nm). Then, it

is a mature technology, being first introduced in the market in 2007 and it will

be available for the foreseeable future, as it’s widely used in the semiconductor

industry [24].

The 65 nm CMOS process can be an optimal option for the future pixel

http://home.web.cern.ch/
http://home.web.cern.ch/


38 3. Radiation Environment

Fig. 3.8: Outer region, view of the tunnel LHC machine (from http:

//home.web.cern.ch/).

readout chips in term of high integration density, but it still have to be

extensively tested and qualified for the irradiation, which in HL-LHC will reach

unprecedented levels. The radiation damage on the proposed 65 nm technology,

due to both total dose and single event effects, has been studied by the RD53

Radiation Working Group [23] and demonstrates a good compatibility with

experiment requirements.

http://home.web.cern.ch/
http://home.web.cern.ch/


4. RADIATION HARDENED SRAM

Detector readout circuits in high energy physics experiments are very sensitive

circuits and they are exposed to very high amount of radiation. In this dis-

sertation an innovative radiation hardened Static RAM (SRAM) is proposed,

designed and characterized for application in pixels readout operation in

high energy physics experiments, specially at CERN. Moreover, the proposed

radiation hardened SRAM is also suitable for space environment application.

Radiation Hardening of circuit is achieved by Radiation Hardened by Design

methodology. The proposed radiation hardened SRAM is designed in 65 nm

CMOS technology. The particular choice of 65 nm was done due to a number

of factors. First of all it allows for considerably higher density and lower

power consumption designs compared to technologies used in current projects

of high energy physics experiments (mainly 250 nm and 130 nm). It is a

mature technology, being first introduced in the market in 2007 and it will

be available for the foreseeable future, as it is widely used in the semicon-

ductor industry [24]. Even though TSMC 65 nm CMOS technology has a

high intrinsic radiation tolerance even though innovative architecture and

implementations are still needed to reach higher level of radiation tolerance

in extreme environments [23].

4.1 Radiation Hardened SRAM Architecture

The most important environment limitation in using memory cells in radiation

is Single Event Upset (SEU). SEU occurs when a single particle (e.g., a cosmic

ray, a recoiling nuclear reaction product or an alpha particle from radioactive

decay) strikes a sensitive volume of a memory cell, generating sufficient charge

to cause a change in the logic state of the cell (Figure 4.1) [25], [26]. The

affected node will remain in the upset state until new data is written into

the memory element. Furthermore if a single particle strikes several cells a

Multiple Bit Upset (MBU) might occur.

RHBD solutions to mitigate SEU in SRAM can achieved by:
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BL BLn

q qn
'0' '1'
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BL BLn

q qn
'1' '0'

a) Initial condition with correct value stored b) Final condition with wrong value stored

Fig. 4.1: The charge delivered to the node q is larger than the critical

charge: (a) before the interaction, the cell stores a ’1’, (b)

after the collision the latch changes its state to ’0’.

• designing larger transistors to increase the critical charge;

• designing a conventional 6-T SRAM cell and adding extra capacitors or

resistors to increase the node critical charge [27];

• designing a cell composed of several feedback loops (Dual Interlocked

storage CEll: DICE) [28–30];

• using Triple Modular Redundancy (TMR) or encoding and decoding

data.

In high density CMOS ICs, Single Event Upset is the most difficult radiation

effect to avoid and experimental results shows that the critical charge able

to produce an upset decreases as the inverse square of the feature size [31].

Therefore, technology scaling makes front-end electronics for high energy

experiments much more sensitive to SEU effects, and old SEU hardening

design techniques (e.g., resistive or capacitive hardening) are not efficient

anymore.

Based on RHBD approach, system level design solution can also be used

to increase the tolerance of ICs to SEU. For instance, coding techniques for

error detection and correction can be used for memory array [32] or Triple

Modular Redundancy (TMR) techniques, consisting in storage cell replication

and majority decision, can be applied to flip-flop and registers in sequential

logic. However, these SEU hardening methods need additional circuits at

system level which cause higher power dissipation. Moreover in some cases

upset tolerance can be lost as the result error latency. Indeed, a first upset is

tolerated, but the state of the affected element may not be restored before the
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subsequent occurrence of a second upset, and thus the system is vulnerable

to correlated double errors.

In this dissertation an innovative architecture based on Dual Interlocked

storage Cell (DICE) is employed to design a radiation hardened SRAM. The

literature shows that the DICE architecture has already used and investigated

as a single cell, however design and test of an array of DICE SRAM in

65 nm CMOS technology is innovative. To identify the radiation tolerance of

radiation hardened SRAM, a big array of memory is required to reach a high

statistic of bit upsets in radiation test. The design based on DICE architecture

has a lower area overhead compared to other logic design hardening techniques

for both CMOS static RAM cells and sequential logic elements (latches, flip-

flops, registers etc.) [30].

4.1.1 DICE SRAM

Dual Interlocked Cell (DICE) is an alternative architecture which can be

used to mitigate the Single Event Upset in several digital circuits. DICE

SRAM cell architecture employs 4 PMOS and 8 NMOS transistors and has

two interlocked SRAM cells with 4 pass transistors. In this architecture both

the bit and the inverted bit are stored into two separate nodes (Figure 4.2),

therefore data is redundant.

In Figure 4.2, the nodes with the same letter and different numbers are

equivalent, and the whole circuit is in a stable state just when these equivalent

nodes have the same logic value.

Writing operation occurs when all 4 NMOS pass transistors are active

and all identical nodes change the logic value simultaneously.

When a particle passes through a DICE SRAM single memory cell, chang-

ing the logic state requires the simultaneous changes of at least one pair of

equivalent nodes. Physical separation of equivalent nodes at layout design

decrease significantly the probability of single upset events. Further differ-

ent studies at layout level are performed in this dissertation to increase the

tolerance of circuit to SEU.

Pass transistors of the DICE cell can be either PMOS or NMOS transistors;

in this implementation NMOS transistors are chosen because they have higher

tolerance in total dose effects.
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Fig. 4.2: Schematic view of DICE Single Memory Cell architecture.

4.1.2 Memory Array

The memory array is arranged in 256× 256 single memory cells. The block of

memory has 256 word-lines and 256 bit-lines. The crossing point of selected

word-line and bit-line is the selected single memory cell for read or write

operation (Figure 4.3).

4.1.3 Decoders

The architecture of memory block decoder has three main parts:

• 256-output word-line decoder: selects a word-line among 256;

• 256-output bit-line decoder: selects a bit-line among 256;

• demultiplexer: converts the 16 addresses bit: A<0:15>, into 64 output

signals:
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Fig. 4.3: Schematic of memory array architecture: the crossing point of

horizontal red-line (word-line 24) and vertical red-line (bit-line

232) is pointed on selected single memory cell.

– p<0:15> and d<0:15> are the address signals used inside the

word-line decoder. In particular, p<0:15> signals are used in the

first level, whereas d<0:15> are used in the second level of the

word-line decoders.

– Yn<0:15> and Ym<0:15> are the address signals used inside the

bit-line decoders. In particular, Ym<0:15> signals are used in the

first level, whereas Yn<0:15> are used in the second level of the

bit-line decoders.

As shown in the figure 4.4 in a schematic way, the decoder operation has

two levels:

1. A line in the group of sixteen lines is selected;

2. A line in a group of sixteen lines, previously selected, is selected.
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Fig. 4.4: Decoder architecture.

Yn<0> Yn<15> Yn<0> Yn<15>

BL<0> BL<15> BLn<0> BLn<15>

out outn

Ym Ym

Fig. 4.5: Bit-line decoder: schematic view of final stage.

The bit-line decoder consists of two pass transistors connected in series

(Figure 4.5). The first series of transistors belongs to the first level of the

decoder and the second series of transistors belongs to the second level of

decoder. Each decoder has 16 transistors in first level controlled by Ym<0:15>

signals and 256 transistors which are 16 blocks with 16 transistors for each

block at second level controlled by Yn<0:15> signals.

The word-line decoder consists of a pass transistor biased by the first level

of decoder signals p<0:15> and controlled by the second level of decoder

signals d<0:15>. The pass transistor is followed by an inverter in final stage

(Figure 4.6).

4.1.4 Equalizer

The bit-line wires in the array of memory are as long as the vertical length of

memory array. The high capacitance value (some picofarad) of bit-line wires
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Fig. 4.6: Word-line decoder schematic in final stage.

leads to delay in achieving high or low logic value voltages during write and

read operation. To solve this problem, a dedicated circuit is used to equalize

the voltage of bit-lines after every read and write operation. The architecture

contains two pass-transistors as which equalize the voltage of bit-line and

negative bit-line when Eq signal has high voltage value (Figure 4.7). The

voltage of bit-line wires reaches to half of high voltage value, therefore the

bit-line wires require the same time to reach both the low logic voltage and

high voltage value.

4.1.5 Sense amplifier

Transistor conductance might be different for transistors designed with the

same characterization. To pass over this problem in read operation, the

sense amplifier circuit is employed to have readout operation with differential

approach. Sense amplifier circuit reads analog voltages difference between

bit-line and negative bit-line. The read operation is activated by the EN

signal (Figure 4.8).
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Fig. 4.7: Schematic view of the equalization circuit.

4.1.6 How SRAM Block Works

The SRAM block has three modes of operation (Figure 4.9):

• Stand-by: the memory stays in the static mode with stored data.

The memory block has the lowest power consumption in this state and

transistors do not commute.

• Write: the single memory cell, which is selected by decoder, stores the

input-data (Figure 4.10). Write operation occurs when:

– WE pin has high voltage value and the pass transistors are turned-

on, therefore Bit and Negative Bit signals pilot the Bit-line and

Negative Bit-line;

– sense circuit is disactived by low voltage on SenseEn pin;

– specific single memory cell is selected by 16 addressing bits on

decoders.

• Read: data storage in selected single memory cell reads from the output

pin of memory block (Figure 4.11). Read operation occurs when:

– sense circuit is active with low voltage on SenseEN pin, there-

fore the sense amplifier circuit performs the differential read-out

operation;
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Fig. 4.8: Schematic view of Sense amplifier.

readwrite stand-by

Fig. 4.9: Diagram of SRAM operation.

– pass transistors of equalizer circuit are disactived with low voltage

signal on WE pin;

– addressing the decoders with 16 address bits for specified single

memory cell.

4.2 Radiation Hardened SRAM Layout

The layout design of different parts of the SRAM block is explained in this

section. Studying the radiation effects on SRAM memory and finding a

specific layout design technique to increase the tolerance to different effects

of radiation is one the most important part of this dissertation.

The layout of whole memory block, including single memory cells, De-

coders, Write and Read circuits are designed with full-custom methodology in
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Fig. 4.10: Schematic of Write operation.

65 nm CMOS Technology and manufactured in Taiwan Semiconductor

Manufacturing Company (TSMC).

The important points to consider for full-custom layout designing in this

dissertation are:

1. keeping in mind the design rules of CMOS TSMC 65 nm technology;

2. less occupied area means lower cost;

3. short interconnections wires in memory array by optimizing the in-

terconnection wires at single memory cell design level to decrease the

parasitic resistance and capacities in array of SRAM block;

4. try to reach a symmetric design, in order to have a higher final robust-

ness.
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Fig. 4.11: Schematic of Read operation.

For achieving the items 2 and 3, the Euler Graph method is used to

design stacked transistors. Stacked transistors occupy less area and help

to simplify the placement and routing of the final design to have shorter

interconnections wires.

4.2.1 Euler Graph

The Euler graph contains vertex and arcs, and each vertex connects a couple

of arcs. The Euler graph of DICE SRAM single cell is made with a pull-up

part for n-type transistors and a pull-down part for p-type transistors. Each

node of circuit corresponds to a vertex and every transistor corresponds to an

arc. The arcs connect the vertexes corresponded on drain and source terminal

of represented transistor. Each arc has the same name as the transistor gate.
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Fig. 4.12: Euler Graph of DICE single memory cell layout design:

the letters correspond the nodes with the same name in

schematic view of Figure 4.2.

After finding the Euler graph of specified circuit, the next step is finding

one or more routes which cross all arcs just once and vertexes at least

once. The cross direction is not important because the MOS transistors are

symmetric.

Figure 4.12 shows the Euler graph of DICE single memory cell which is

used to have the final layout design. The labels represent the same schematic

nodes of DICE single memory cell in Figure 4.2.

4.2.2 Single Memory Cell Layout: First Version

Figure 4.13 shows the layout of four juxtaposed single memory cells in a

memory array of the first design version. Blue layer is gate, red layer is active

area of P and N doped substrate and green is the contact with interconnection

metals. Single memory cell layout can be vertically divided into two symmetric

blocks, and every block is related to one of identical part of DICE SRAM

architecture. The polarization contact of the substrate and of the n-walls

are very important for radiation hardened design, therefore the design is

optimized to achieve a trade-off between the minimum of whole layout area

with bigger polarized active area and more interconnection between different

layers of metals and active area. The different transistor gates which have the

same signal are connected by poly-silicon layers instead of metal layers. In

Figure 4.13, cell 2 is mirrored of cell 1 horizontally while cell 1 and cell 3 are

vertically mirrored. Every single memory cell layout contains due identical

parts and two identical bits are stored in each parts. Single memory cell

design is made in a way to achieve a compact layout of memory array.

4.2.3 Single Memory Cell Layout: second version

Low supply voltage (1.2 V) in 65 nm CMOS technology avoids latch-up in

memory cells at room temperature, therefore this problem is not considered
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Fig. 4.13: Four single memory cell layout in array of memory.

in the first version of single memory cell layout design. However, some
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studies demonstrate that at higher temperature (more than 80 ◦C) latch-up

Event Upset is still a problem, even for CMOS technologies with low supply

voltage [33].

In order to mitigate the risk of latch-up at high temperature, the second

version of DICE SRAM is designed and studied in this dissertation. To come

over this problem guard-rings are included in design, while single transistors

has the same dimension and shape as the first design version (Figure 4.14).

The guard-rings are the biasing regions for the substrate and for the n-

wells, and they surrounds the stacked transistors. The currents generated

by particles in the reversed biased p-n junctions find a low-impedance path

towards a constant voltage source in guard rings. This mechanism prevents

the latch-up phenomena.

The comparing of radiation effects in two different versions of the same

architecture, with and without guard rings, gives the possibility of a general

understanding of the latch-up effect impact on memory cells in CMOS 65nm

technology with 1.2 V supply voltage.

4.2.4 Single Memory Cell Layout: third version

DICE architecture increases the tolerance of memory cell to SEU, but also

Multiple Event Upset (MBU) is also an important issue to deal in CMOS

memories application. In version 3 of DICE single memory cell design, the

idea of increasing the distance between two identical parts of the same single

memory cell is realized by combining two interleaved half-cells in array of

memory (Figure 4.15).

With this design approach the distance between two identical parts of

each cell is increased to 5 µm which is double compared to the first design

version. The third design version occupies the same area as the second version

and the approach is achieved just with more complex wire routing. Therefore

this design is hardened to MBU in addition to SEL and SEU.

4.2.5 Word-line decoder

Figure 4.16 shows the layout of two steps word-line decoder which is integrated

in the first version of single memory cell, while a second design with guard

ring was also developed (Figure 4.17) to be integrated in the second and third

versions of memory cells. The designs are polarized in efficient way with big

area of polarization compared to the whole design area. The inverter which
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Fig. 4.14: Second version of memory cell layout.

drives the word-line wires in the last step is made with transistors with wider

channel because the world-line wires are as long as horizontal length of final

memory block.

4.2.6 Bit-line Decoder

Figure 4.18 shows the bit-line decoder layout which is integrated in the first

version of the single memory cell. Figure 4.19 shows the second design of

bit-line circuit with guard ring included which is integrated to second and

third versions of memory designs. Transistors with wider channel are used
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Fig. 4.15: Third version of single memory cell layout: two inter-

leaved memory cells.
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Fig. 4.16: Word-line decoder: first design without guard ring.

to drive the bit-line wires which are as long as vertical length of memory

block. Long wire have high parasitic resistance and capacitance, therefore

they cause a voltage drop and slow down the logic transistors.
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Fig. 4.17: Word-line decoder: second design with guard-ring.

4.2.7 Wire and Read Circuits

Figures 4.20 and 4.21 show the layout of the Sense and Equalizer circuits,

discussed in section 3.1.4 and 3.1.5. These circuits are analog parts of memory

block. The transistors of the equalizer circuit have a larger channel compare

to other array transistors. These transistors should be able to pilot the voltage

of all the bit and inverted bit-lines of memory array to half supply voltage

value, after each Read and Write operation. Guard rings are included in both
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Fig. 4.18: Bit-line decoder: first design without guard-ring.

circuit layout designs.

4.3 Chip Prototype

The three versions of SRAM arrays, each of them with separate decoders and

write/read circuitry, have been integrated and independently supplied and

testable:

1. simple DICE (first version of design) to mitigate SEU;

2. DICE including guard ring (second version of design) to mitigate SEU

and SEL;

3. interleaved DICE (third version of design), including guard ring to

mitigate SEU, SEL and MBU.



58 4. Radiation Hardened SRAM

Fig. 4.19: Bit-line decoder: first design with guard-ring.

The three versions are integrated in a single prototype chip and submitted in

TSMC foundry in CMOS 65 nm technology. The submission is supported by

Italian National Institute for Nuclear Physics (INFN) in CHIPIX65 project,

inside the RD53 collaboration.

The chip package is a QFN-80 with dimensions of 12 mm × 12 mm. The

prototype includes also a SERDES block and single transistors for other

activities of the CHIPIX65 projects. The SRAM blocks employed 46 pins of
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Fig. 4.20: Sense circuit layout.

Fig. 4.21: Equalizer circuit layout.

the package:

• 16 address pins;

• 3 control pins of Write and Read circuits;

• 3 pins of Input data for three blocks;

• 3 pins of output data for three blocks;

• control signal of PAD’s buffer;
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Write,  Read and adressing 
Circuits pins

First version block Second version block

Third version block

Fig. 4.22: Chip prototype bonding diagram.

• 7 pins for PADs supplying, connected together;

• 7 pins for core supplying which give the possibility of turning on and

off the three blocks of memory separately;

• 5 ground pins, connected together (Figure 4.22 and 4.23).

The fabricated chip has an open package with a removable plastic cover

on the top, to allow the die to be exposed to radiation in order to characterize

the radiation tolerance of the design.



4.3. Chip Prototype 61

First versionSecond versionThird version

Fig. 4.23: Chip prototype layout: first version is hardened

to SEU; Second version is hardened to SEU and

SEL; Third version is hardened to SEU, SEL

and MBU.
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5. MODELING AND SIMULATIONS

The performance of an IC requires to be proven by simulation in realistic

conditions before submission and fabrication. In fact, every IC layout contains

parasitic components which affect the performance of IC, therefore the simu-

lation of radiation hard SRAM block with parasitic components is presented

in this dissertation.

Parasitic component extraction of radiation hardened SRAM block layout

requires huge computation time and a prohibitive amount of computer memory.

To over-come this problem, a new approach of simulation is developed in this

dissertation.

Also the radiation effects on integrated circuits have been studied and

simulated to confirm the radiation tolerance of layout design in this section.

Fault charge injection method is used to simulate single event effect and

a novel simulation method is developed to simulate total dose effects on

radiation hard SRAM memory block.

5.1 Parasitic Extraction and Simulation

Simulation of integrated circuit layout design in worst-case condition is

important and in the evaluation of performance of IC design in real condition

and parasitic components need to be considered.

Calibre from Mentor Graphics gives the possibility of extracting the

parasitic components from the layout design and, in the next stage, the

extracted parasitic components can be integrated in the main circuit for

worst-case condition simulation.

The extraction of parasitic components is a new challenge, because the

layout of the memory array contains 64 k single memory cells and periphery

circuits. The extraction of parasitic components of the whole memory block

layout requires a heavy calculation process and an amount of RAM far

exceeding the 128 GB installed on the computer used for the design. To
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overcome this obstacle the amount of calculation was reduced by simulating

only the most critical parts of the memory array.

In fact the bit-lines and word-lines are the longest wires of memory block

and each of them is connected to several nods, therefore the signal at the end

of these wires is strongly influenced by parasitic components of interconnection

wires. Therefore single memory cells in the 4 corners of the array are the

most sensitive parts of array to parasitic components disturbances.

A new layout of radiation hard SRAM is designed to apply this methodol-

ogy of simulation (Figure 5.1).

This layout design included:

• 4 corner single memory cells;

• all single memory cells which have interconnection with bit-line and

word-line of selected single memory cells in the angles of array;

• word-line and bit-line decoders;

• write and read circuits.

This design, compared to the original one, has a significant reduction of

the number of circuit and parasitic components.

The simulation of related circuit of the schematic in Figure 5.1 which

included the parasitic component of layout design is performed. The bits ‘1’

and ‘0’ are written alternatively in the corner single memory cells. After a

short period of time the stored bits of the same cells are readout. The correct

readout bits confirms the performance of SRAM block up to 100 MHz.

.

5.2 Total Dose Effect Simulation

Various research groups already made accurate investigation about Total Dose

Effects on single transistor in different technologies of fabrication [34]. The

majority of published studies are focused on:

1. changes in threshold voltage because of trapped charge in Si-SiO2 surface

and displacement damage on isolate oxide of transistors gate;
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Fig. 5.1: Schematic of layout design for simulation with parasitic com-

ponents. The simulation of 4 angles single memory cells is

performed included all parasitic components of layout block.

2. leakage current: in ultra small CMOS technologies high flux of radiation

cause radiation-induced degradation in Shallow Trench Isolation (STI)

(Figure 5.2). This phenomenon significantly increases the leakage current

of standby NMOS transistors. The impact of STI radiation damage on

drain current can be seen in the plot of Figure 5.3 which shows the TID

effect. measurements of 180 nm N-channel MOSFETs fabricated by the

Taiwan Semiconductor Manufacturing Company (TSMC) [34].

Based on experimental results the leakage current in radiation test of single

transistors in 65 nm CMOS TSMC technology is not remarkable compared to

older technologies. The threshold voltage shift is still evident as predicted by

the formula:

∆Vot = − q

Cox
∆Not = − q

εox
tox∆Not (5.1)

where q is the elementary charge, Cox = εox
tox

is the oxide capacitance per unit

area, Not is the density of trapped holes into the oxide, εox is the dielectric

constant of the oxide, tox is the oxide thickness. The threshold voltage
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Fig. 5.2: (a) Illustration of drain-source leakage path in n-channel

FETs and (b) its cause: oxide trapped charge buildup in the

isolation oxide (from [35]).

shift has a linear correlation with thinness of oxide gate therefore in 65 nm

technology, it is not negligible because of the very thin gate oxide.

Moreover, the relevant change in drain current in active-region is a new

phenomena which is evident in experimental results.

After understanding how the characterization of single transistors changes

in time when they are exposed to radiation, it is very important to use these

results at the level of circuit layout design to increase the radiation tolerance

of integrated circuits. In this chapter, a simple physical model developed to

explain how the performance of single transistors changes under radiation.

This model was developed is described to predict the whole integrated circuit

performance after different amount, of total dose of radiation.

The change of drain channel current and threshold voltage of single tran-

sistors in radiation tests depends on: transistor fabrication technologies,

transistor channel dimension, temperature, and total dose of radiation. How-

ever these variables are different for PMOS and NMOS transistors. Figure 5.4

shows some of radiation test results on single MOS transistors in 65 nm

TSMC technologies [23].

The main transistor parameter which has an evident change in the graph

of drain current vs gate source voltage is the transconductance. After 1 Grad

of total dose radiation, NMOS transistors lost 70% and PMOS transistors

lost almost 95% of drain current.

The drain current vs gate-source voltage in saturation region (Vds > Vgs − Vth)
with ideal functionality can described with 5.2:

ID = K · (Vgs − Vt)2
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Fig. 5.3: Impact of STI radiation damage on the current-voltage char-

acteristics of NMOS transistors fabricated in TSMC 0.18 nm

CMOS (from [35]).

Based on hypothesis of change the transconductance factor in linear way

vs Total dose of radiation, Formula 5.2 can be re-formalized to include the

total dose effect 5.2:

ID = K · (1− gn,p) · (Vgs − Vt)2

In the red part of formula 5.2, gn for NMOS transistor and gp for PMOS

transistor describes the loss in transconductance factor after the exposure to

the radiation. The gn and gp can get extracted from numerical analysis of

experimental measurement of drain current vs gate-source voltage.

The additional part of Formula 5.2 can be simulated by adding a current-

controlled current source in parallel to the single transistor in the schematic

of Cadence simulator (Figure 5.5). The gn and gp factors of current generator

are set as variables in simulator and they varies between 0 to 1 based on total

dose radiation.

This method can be extended to circuit level of Total Dose Effect simula-

tion. The steps are:

• generating a symbol of circuit in the figure 5.5 for PMOS and NMOS

transistors. The channel length of transistor and the gain factor of

current generator are given as variables in the netlist of simulator;
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Fig. 5.4: Current variation versus the TID level for minimum size

transistor with 1.2 V supply voltage (a) 120 nm/60 nm NMOS

device (b) 120 nm/60 nm PMOS device (from [23]).

• changing the schematic of the original circuit in simulator by replacing

the single transistor symbol of Cadence standard library with the symbol

generated above;

• setting-up the channel length factor of single transistors based on circuit

architecture and gn, gp factors based on total dose radiation;

• processing the simulation in the same conditions of original circuit.

The radiation hard SRAM block was simulated using this methodology.

With different values for gn and gp independently. The bit ‘1’ is written in

a selected single memory cell of array and read-out after 70 ns of time. The

graph of Figure 5.6 shows the readout signal of memory block for different

simulation processes, each with different values of gn and gp.

It is evident that for some values of gn and gp the readout voltage has a

low voltage value which does not correspond to the stored bit ‘1’. It means

for those values of gn and gp and the related total dose of radiation, the single

memory cell loses the stored data and therefore the memory block is not

functional any more.

The plot of Figure 5.7 shows a summary of the simulation results of SRAM

block performance in a schematic way for different total dose of radiations.

The vertical and horizontal axes represent the gn and gp factor values and

the red area represent where the simulations show the efficient functionality

of radiation hard SRAM block.
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Fig. 5.5: Schematic of total dose effect simulator circuit.

The single transistors are submitted to the fabrication in the same pro-

totype of SRAM blocks in 65 nm TSMC technology in order to measure the

experimental values of gn and gp for different total dose of radiations. Once

these transistors will be characterized under different total dose of radiations,

the gn and gp factors can be determined from the test results of source-drain

current vs gate-source voltage for different total dose of radiations.

5.3 Single Event Effect simulation

SEE’s are directly related to the amount of charge collected in the sensitive

nodes of ICs. The interaction between particles and CMOS devices has been

investigated in the past years [2, 36,37].

The two-dimensional (2-D) and three-dimensional (3-D) numerical sim-

ulations are already developed to describe the physics of charge collection

phenomena in CMOS devices [38]. For this purpose, commercial software

based on 3-D models are available, however it requires detailed information

about fabrication parameters which are not commonly accessible.

5.3.1 FISAR approach

The technique used in this dissertation to simulate the interaction between

particles and p-n junction is based on drift-diffusion model. This model
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Fig. 5.6: Simulation of readout signal of storage bit ‘1’ in memory

array. Each plot shows the simulation result for a different

value of gn and gp.

is based on Boltzmann transport equation which describes the statistical

distribution of particles in a fluid.

The commercial software used to design ICs are based on 2-D (planar)

environments (e.g., Cadence Virtuoso). Designers draw 2-D polygons in

different layers which are used to fabricate lithograph to build real 3-D layers.

The interaction between a particle and ICs strongly depend on the vertical

structure of ICs and therefore a high level accurate three dimensions model is

needed to describe non-orthogonal (with different incidence angles) particle

strikes. Figure 5.8 shows a non-orthogonal particle collision with an IC. This

particle ionizes several p-n junctions [39].

A particle may ionize different regions with different charge density values.

The silicon foundries do not always release information about fabrication

process (e.g., layer thickness, doping profiles, etc.) and performing a 3-D

simulation by only a set of 2-D parameters provided by the silicon foundry is

not easy.

For a simulation at the electrical level, formula 5.2 is the most used

description of the current generated by the strike of particles in CMOS

circuits.
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Fig. 5.7: The radiation hard SRAM block simulation results with differ-

ent value of gn and gp: the red area shows functional results.

The blue line indicates the variation of the conductance pa-

rameters from 0 to 1 Grad of total dose.

Fig. 5.8: Non-orthogonal particle collision with an IC

i(t) =
Q

t1 − t2
· (e−t/t1 − e−t/t2) (5.2)

where Q is the total injected charge, t1 is the collection time constant of the

junction, t2 is the time constant for initially establishing the ion track.

Moreover the striking of a particle in CMOS technologies with high scaled

dimension of transistors can influence more that one node, simultaneously.

For this reason an alternative model with charge injection at circuit level is

used in this dissertation [40].

The model is based on the multiple injections of parasitic currents by means

of voltage-controlled current sources. The figure 5.9 shows the schematic of

the proposed model assuming that there are four nodes ionized by radiation.

In the Figure 5.9 the holes are injected in four different p-n junctions and

the number of junctions can change depending on the particle hit position.
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Fig. 5.9: Injection model for 4 differnet p-diff/n-well junctions.

Total charge is injected by means of the independent current generator Is in

the node chargep. The Is generator a current similar to a Dirac’s delta with

an area equal to the value of total injected charge. Therefore Dirac’s delta

time correspond to the single event time. The Voltage-Controlled Current

Sources: VCCS (G1, G2, G3 and G4) in the schematic of Figure 5.9 have

the same rise time of generator Is.

The current generated by the VCCS’s is described with this formula:

in(t) = kn · Vs · Vn (5.3)

where Vn is taken between target node n and the voltage power supply of bulk,

k is used to split the total charge in different junctions, depending on the hit

position and on the geometrical shape of the junction. To inject electrons in

p-n junctions we have to use a negative Dirac’s delta and take Vn between

ground and the target node. The recombination time is given by τ = Cs ·Rs.

FISAR: Fault Injection Simulation and Analysis for Radiation hardening

is an approach which employs the technique of injection of parasitic currents

at the circuit level to simulate the interaction between a single ionizing particle

and the p-n junctions within any region of the IC. The FISAR approach is



5.3. Single Event Effect simulation 73

Fig. 5.10: Injection model for 4 different p-n junctions.

employed to validate SEU tolerance of radiation hardened memory block in

this dissertation.

Moreover the nature and energy of the particle is important because the

extension of the ionization column may range from some nano-meters to some

micro-meters, as shown in figure 5.10 [41].

5.3.2 Calculation of charge collected within each box

The assumptions are that the p-n junction is the only part of layout that

collect the generated parasitic charge by particle strike and the HEP density

distribution is simple 2-D gaussian. Therefore the colliding angle of the

particle is assumed orthogonal to the IC surface and ionization outside the

5 · 5 array is negligible. The total charge spreads among a cluster of 21 layout

boxes.

It is possible to find a relation between charge deposition and Linear

Energy Transfer (LET): in silicon, a LET of 97 MeV·cm·mg−1 corresponds

to a charge deposition of 1 pC·µm−1. Therefore based on particle energy, the

particle species and the target material, it is possible to calculate the total

value of parasitic charge that is generated.

The total value of generated parasitic charge will be divided among boxes

with (5.4):

Qb,k = Qtot · wb,k (5.4)

where Qtot is the total charge and wb,k is the weight of each box.
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Fig. 5.11: 3D discrete gaussian distribution of charges.

For each box, the generated charge Qb,k is divided between nodes, in pro-

portion to their junction capacitance. To obtain the p-n junction capacitance

of each box node, area and perimeter values are multiplied with the unit

junction capacitance specified in the transistor models. The amount of charge

Qn,b,k collected by the node n inside the box b referring to a window k is:

Qn,b,k = Qb,k ·
Cb,n∑
m∈bCm,b

(5.5)

where Qb,k is the charge generated in the box b in the window k, Cb,n is the

capacitance of the node n inside the box b, and the sum is calculated for all

nodes lying within the box b. The calculation to find the portion of total

charge of each node Qn,k, is repeated for each node n and for each box inside

the collision area.

The irradiated part of single cell memory layout include more sensitive

nodes of the SRAM single memory cell circuit and the SEU simulation

performed in worth-case condition. The internal node of due latches in DICE

SRAM architecture are more sensitive nodes because the change of voltage in
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these nodes can cause the flipping of storage bit.

5.3.3 FISAR Simulation Procedure

FISAR simulation method is used to estimate the singe effects tolerance of

radiation hard SRAM blocks. The simulation describes the collision of a

210 MeV Chlorine ion to radiation hard SRAM block. The total charge of

1 pC is generated by Chlorine ion in Silicon target of SRAM block. The most

sensitive area of a single memory cell of SRAM block that contains more

nodes is selected as strike point for the particle. The hypothesis is that the

generated charge is dispersing in an area of 1.94 µm diameter within a 5× 5

box in 3-D gaussian distribution.

The figure 5.11 shows schematically the charge dispersion distribution of

collision area.

The charge that is generated in each box because of n-diffusion and p-

diffusion is divided in transistor nodes and can be calculated using (5.5). The

p-n junction capacitance of each node is given by:

C = (Cj · A) + (Cjswg · Pg) + (Cjsw · Pa) (5.6)

where A is the geometrical area of the diffusion region, Pg is the perimeter

for the diffusion region along the poly-silicon gate and Pa is the perimeter

for diffusion region that is not along the poly-silicon gate. Cj is the unit

capacitance for area diffusion. Cjswg is the unit capacitance for perimeter

diffusion along the poly-silicon gate. Cjsw is the unit capacitance for perimeter

diffusion not along the poly-silicon gate. It is remarkable that in advanced

CMOS technologies as TSMC 65 nm the capacitance of gate perimeter has a

higher value compare to the other kinds of junction capacitance.

The next step is to implement the FISAR simulation in circuit-level

simulator (e.g., SPICE, Spectre). Therefore a Polynomial Voltage Controlled

Current Source (PVCCS) generator is added to each circuit node inside the

ionized region. These current generators are labeled Gn and the tool adds

to the Netlist a node chargen which stores the total charge to inject in

p-sub/n-diff junctions and a node chargep which stores the total charge to

inject in p-diff/n-well junctions. The total charge are stored by means of a

capacitor Csn (for p-sub/n-diff juctions) and a capacitor Csp (for p-diff/n-well

junctions). As it is explained before, the diffusion time is chosen by means

of independent current generator which generates a current impulse that is
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ideally a Dirac’s delta. In the netlist the delta is modeled as a short triangular

pulse with a duration of 20 ps. The beginning of the pulse matches the start

of the Single Event Effect. An example of netlist is:

Csn (chargen 0) capacitor c=100f

Rsn (chargen 0) resistor r=1G

Isn(0 chargen) isource type=pulse val0=0 delay=75n \
rise=10p fall=10p width=0 val1=-1.000000e-001period=1

Csp (chargep 0) capacitor c=100f

Rsp (chargep 0) resistor r=1G

Isp(0 chargep) isource type=pulse val0=0delay=75n \
rise=10p fall=10p width=0 val1=-1.000000e-001period=1

G0 (chargen net20 chargen 0 net20 0) pvccs \
gain=0.093473 coeffs=[ 0 0 0 0 1 0]

G1 (chargen net15 chargen 0 net15 0) pvccs \
gain=0.033179 coeffs=[ 0 0 0 0 1 0]

G2 (chargen Y chargen 0 Y 0) pvccs \
gain=0.063027 coeffs=[ 0 0 0 0 1 0]

G3 (chargen VDD chargen 0 VDD 0) pvccs \
gain=0.092545 coeffs=[ 0 0 0 0 1 0]

G4 (chargen VSS chargen 0 VSS 0) pvccs \
gain=0.248775 coeffs=[ 0 0 0 0 1 0]

G5 (chargep net03 chargep 0 net03 0) pvccs \
gain=0.081435 coeffs=[ 0 0 0 0 1 0]

G6 (chargep VSS chargep 0 VSS 0) pvccs \
gain=0.085565 coeffs=[ 0 0 0 0 1 0]

5.3.4 FISAR simulation results

Simulation of single event effect with FISAR approach is performed for the

radiation hardened SRAM block.

The figure 5.12 shows the layout of a single DICE memory cell. The red

area is the collision area of a 210 MeV Chlorine ion. The extension of the

ionization effect is approximated to 1.94 µm. The array of red boxes (called

window) corresponds to the ionization region and the intensity of red color

represent the portion of injected charge of each box respect to total charge

injected due to ionization effect.

The plot in the figure 5.13 shows the simulation results of SEU tolerance of
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Fig. 5.12: Ionized charge distribution from the interaction of a parti-

cle with single memory cell: the intensity of the red color

indicates the level of charge density.

radiation hard SRAM block. In the plot of simulation results the graphs have

the same color as their related nodes in the schematic in the figure 5.13. The

voltage value at node D and Dn are equivalents to storage bit and negative

bit in one of tow identical parts of DICE SRAM cell and the voltage value at

node D1 and Dn1 to other identical part. As explained in Chapter 2, DICE

SRAM cell in stable condition has two identical parts with same storage bit

and their related nodes have the same logic values. The plot of figure 5.13

shows that at the collision time (2900 ns) the voltages of all nodes start to

change because of single event effect. The voltage in node D1 goes down and

crosses the voltage of node D1n, therefore the storage bit ‘1’ in one identical

part of DICE SRAM cell is changing to bit ‘0’. At the same time the node D

and Dn voltage related to other identical part of DICE SRAM cell is changing

but the voltage of nodes D and Dn are not crossing, it means the storage

bit is still ‘1’, after 3 ns the voltage value of nodes of both identical parts of

DICE SRAM return to the initial value. The reason is that the change of the
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Fig. 5.13: SEE simulation on single memory cell layout

bit stored into a DICE single memory cell requires the change of bit in both

parts simultaneously, which actually is not occurring during the simulation.

The simulation results of single event effect from FISAR technique shows that

the radiation cause a single event transient in a single memory cell of block

and no single event upset occurs and it confirms the high level of radiation

tolerance to single event upset.
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The next step after submission of the SRAM prototype is to develop a test

system to characterize the prototype. In additional to the test in laboratory

environment, another test under radiation will be performed to characterize

radiation tolerance of design to Single Events Effects such as SEU and SEL,

and Total Dose Effects.

6.1 Test Set-up

The developed test set-up has mainly three parts:

1. Mother-board with FPGA.

2. A passive board where SRAM prototype chips are assembled and fixed

on (Figure 6.1).

3. An intermediate board between mother-board and the passive board

(Figure 6.2).

A KINTEX-7 FPGA is implemented by VHDL firmware on a XILINX

mother-board. The FPGA sends and receives data to the chip and control

different functions during the prototype test. The on-board buttons of mother-

board are employed to change the function modality of the chip. Radiation

test of the prototype with this approach can be done without exposing the

mother-board and the PC to the radiation beam.

The radiations can damage electronic components of mother-board such

as FPGA and cause malfunction. Therefore the mother-board should be kept

out of radiation environment during the test of chip prototype, exposed to

the radiation in the vacuum chamber.

The plastic package of chip prototypes prevents the radiation to reach

the chip and make impossible to characterize the chip with radiation effects.

Therefore the plastic package of SRAM prototype chip is not closed and the
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Fig. 6.1: Developed passive board with mounted chip.

top part can be easily removed. It is impossible the use of a standard socket

between chip and test board, as it would prevent us from opening the chip

package. Therefore a small passive board is developed for every chip and the

chips are mounted on these boards (Figure 6.1).

The passive board is connected to the mother-board by a home-made

intermediate board. The intermediate board has two connectors, DSub-50,

FMC and extra interconnection pins for the signals generated by FPGA.

The interconnection pins give the access to generated signals by FPGA and

the possibility of external measurement by an oscilloscope or a multimeter

(Figure 6.2). The FMC connector on the intermediate board is connecting to

the mother-board by the FMC connector to characterize the chip prototype in

laboratory environment (Figure 6.4) and the DSub-50 connector is provided to

characterize the chip prototype exposed to the radiation in vacuum chamber.

The INFN Legnaro radiation test laboratory, the chip inside the vacuum

chamber can get connected to the external components through a D-sub50

connector (Figure 6.3). The figure 6.5 shows schematically the set-up of

prototype radiation test in Legnaro.

The test board has two power suppliers of 1.2 V for core and 2.5 V for

pads of the chip. The blocks of chip prototype mentioned below are supplied

independently by 5 jumpers which are provided on intermediate board:

• Write and Read circuit : VDD-general;
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Fig. 6.2: Intermediate board with two connector options of Dsub-50

and FMC, and pins for control of each input and output

signals of the chip.

• SRAM first version design;

• SRAM second version design;

• SRAM third version design;

• PAD powering.

Moreover the test setup gives the possibility of connecting and disconnect-

ing separately each of power supplies.

6.2 VHDL architecture

The schematic in figure 6.6 shows the architecture of developed firmware

written in VHDL to perform the prototype characterization with the FPGA,

both in laboratory and in radiation environments. The approach of VHDL

firmware architecture is to execute the radiation test in an automatic way

because of the particular environment in vacuum chamber where the chip

is exposed to the radiation. The firmware has no need to interact with an

external PC during the test.
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Fig. 6.3: Legnaro laboratory vacuum chamber and interface connectors

between inside and outside.

The SRAM prototype has three function modes: write, read and standby

which can be chosen using button on the mother-board. The VHDL architec-

ture gives also the possibility of changing the type of written bits in three

modes: write cells with alternative bit ’1’ and ’0’, with bit ’0’ or with bit

’1’. The clock frequency has three options: 5, 10 and 20 MHz and they are

optional during the test by the bottoms on the mother-board. The output bits

can observed by ChipScope IP-Core through the JTAG (Joint Test Action

Group) interface of the FPGA. The ChipScope tool integrates the measure-

ment hardware components with the target design inside the FPGA device.

The tool communicates with VHDL components and provides the designer

with a logic analyzer solution.

Therefore the firmware architecture implement the FPGA to generate

optional types of wire and read bits and frequencies of the clock.
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7. FAST TRACKER TRIGGER SYSTEM

7.1 ATLAS and Triggering system

The luminosity of the Large Hardron Collider (LHC) at CERN is increasing to

achieve a higher physics output in the next years. Higher luminosity requires

more complex trigger system. Trigger system in LHC reduces event rate

to just interesting events for physicist and has three main levels. Several

upgrading of triggering and Data acquisition system (TDAQ) in ATLAS is

going on to achieve an efficient event rate reduction at future LHC higher

luminosity. The Fast TracKer (FTK) processor is an important part of trigger

system upgrading in ATLAS. The FTK processes all events selected from

level 1 of trigger system and pass to level 2 of trigger system, the rate of event

coming from level 1 is up to 100 kHz with a latency in order of 100 ms [42].

7.2 Fast TracKer Trigger System

The block diagram shown in Figure 7.1 illustrates the function of the FTK

system.

The pixel (PIX) and strip detectors (SCT) data are transmitted from

the Readout Drivers (RODs) and received by the Data Formatters (DF).

The Mezzanine cards on each DF perform cluster finding before the data are

reorganized into η-φ towers and the DF transmits the cluster centroids of the

eight layers to the processing units. The Data Organizers (DO) store hits from

the DFs at full resolution and also convert them to coarse resolution superstrips

(SS) which are appropriate for pattern recognition in the associative memory

(AM) system. The DOs hold smart databases where full resolution hits are

stored in a format that allows rapid access based on the pattern recognition

road ID and then retrieved when the AM finds roads with the requisite

number of hits. The associative memory (AM) system contains AM chips

which contain a very large number of pre-loaded patterns, corresponding to

the possible combinations for real tracks passing through a SS in each silicon



86 7. Fast Tracker Trigger System

Fig. 7.1: FTK architecture.

layer. These are determined in advance from a full ATLAS simulation of

single tracks using detector alignment extracted from real data. The AM

system is a massively parallel system in that each hit is compared with all

patterns simultaneously. After being found by the AM system, roads are

returned to the DOs, which immediately fetch the associated full resolution

hits and send them, together with the road, to the Track Fitter (TF). Because

each road is quite narrow, the TF can obtain helix parameters with high

resolution from a linear fit using the local coordinates in each layer. Such a

fit is extremely fast and a modern FPGA can fit approximately 109 track

candidates per second. Following fitting, duplicate track removal is carried

out by the Hit Warrior (HW) for those 8-layer tracks in a road.

When a track passes the quality cuts of the 8-layer fit, the road number

and hits are sent to the Second Stage Board (SSB). The track is extrapolated

into the 4 additional layers, nearby hits are found, and a full 12-layer fit is

carried out.

Duplicate track removal is again applied. SSB output data consisting of
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the hits on the track and the helix parameters of the track are sent to the FTK

Level 2 Interface Crate (FLIC). The FLIC formats and organizes the tracks

and sends them to the HLT using the standard ATLAS data transmission

protocols, and carries out monitoring functions [43].

The AM chip is the core of FTK system. The whole AM system stores

109 patterns with 128 k patterns stored in each chip.

AMchip compares stored patterns to input data received as 16 bit words

at a 100 MHz rate in parallel over 8 input channels. At maximum speed the

system will be able to perform 8 · 1017 comparisons per second in parallel

between 16-bit words.

The AMchip design is a very challenging because:

• the high number of stored pattern requires a large silicon area;

• the I/O signal congestion at the board level;

• the power limitation due to cooling system.

The FTK system contain 8000 AM chips in 8 VME crates and 4 racks

and the power consumption should not exceed (da chiedere) per AM chip. for

this reason the power consumption of chip is very critical for FTK system.

In this dissertation a new architecture of fully CMOS Content Addressable

Memory (CAM) is proposed to reduce the power consumption of FTK AM

chip. This architecture is integrated in the version 5 of AMchip (AMchip05).

The test results of AMchip05 confirm the simulation results successfully.

The proposed architecture is integrated in final version of FTK AMchip

(AMchip06).

The AMchip06 prototype has been fabricated and its characterization is

going on.

7.3 New Content Addressable Memory

Content Addressable Memory (CAM) is an electronic device which compares

input data with stored data and returns the address of matching data [44].

AM chip architecture in FTK system is based on an array of CAMs. The

CAM array in AM chip has 18 bus and compares 18 bits coming from inner

detector related on a single event with 18 stored bits. Output of the CAM

array is the address of storage events which matches with one of the incoming

events.
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BL BLn
MLn MLn+1

Fig. 7.2: Schematic diagram of a NAND single-bit CAM cell.

ML

BL BLn

Fig. 7.3: Schematic diagram of a NOR single-bit CAM cell.

7.3.1 Conventional CAM cells

The figures 7.2 and 7.3 illustrate two examples of conventional CAM single

cells based on NAND and NOR architecture, which are the most used of

CAM cells.

In the FTK application, to achieve a match result for a 18-bit word, 18

CAM single cells must be employed. The 18 single cell CAM in NAND and

NOR architecture can be connected together as illustrated in figures 7.4 and

7.5.

In both architectures, the match-line gains high voltage value before every

comparison operation piloted by P-MOS transistor with ′pre′ control signal

on the gate. CAM single cells discharge, the match-line if input bit does not

match the storage bit and therefore the match-line discharges if all of input
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Fig. 7.4: Schematic of a NAND-based n-bit word CAM.
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Fig. 7.5: Schematic diagram of a NOR-based n-bit word CAM.

18 bits of same work does not match with storage bit in all 18 CAM Single

Cells of an array.

Pre-charging of the match-line is a power consuming operation since it

happens in most of comparison operation (when all 18 bits from the same

work does not match with storage bit of 18 single cells of the same array).

7.3.2 The new XORAM cell

The undesired power consumption of conventional CAMs in case of no match

can be avoided by using a new CAM architecture proposed in this chapter.

The architecture of proposed CAM is based on the XOR boolean function,

although a CAM cell based on XOR (XNOR) boolean function was already

proposed by Kadota in 1985 [45] and it is not widespread. The original

architecture has 4 NMOS pass transistors. A suitable trade-off between the

number of transistor, high robustness of design and low power consumption, a
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Fig. 7.6: Schematic diagram of the XOR-based single-bit CAM cell.

new architecture is proposed in this dissertation. The new cell called XORAM,

consist of a 6T SRAM cell merged with 6T-XOR gate. Since SRAM provides

both (A) and the inverted bit (Ā), the XOR gate can be made using only

4 MOS transistors. The schematic diagram is shown in the figure 7.6 and

developed layout design of single cell in 65 nm TSMC technology in the

figure 7.7. The output signal of XORAM cell is equal to ‘0’ when stored bit

match the bit-lines and it is equal to ‘1’ if it does not match the bit-line.

7.3.3 The 18-bit Word CAM

The 18-bit CAM is made with a 18-input NOR logic gate in three stages

(Figure 7.8):

• six 3-input NOR cells;

• two 3-input NAND cells;
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Fig. 7.7: Layout of the XOR-based CAM cell in 65 nm CMOS technol-

ogy.

• one 3-input NOR cell.

In this new architecture the output (O) of the 18-bit CAM must have a

high logic value when all input bits match the stored data, and a low logic

value if at least one bit does not match. This operation can be performed by

a simple 18-input NOR logic.

To avoid spurious glitches at the output during write operation, the write

signal (WL) is used as an additional input to the last stage of the 18-input

NOR gate.

7.3.4 Simulation Results

The layout of an 18-bit CAM has been designed and simulated after parasitic

extraction. Simulation results confirm that write and compare operations

is perfectly functional up to 1 GHz frequency. However, the printed circuit

board designed for the track recognition system works at a frequency which

cannot exceed 100 MHz. For this reason, simulations were performed with a

100 MHz clock frequency.

Table 7.1 summarizes the results of corner analysis and shows the output

delay, the average current and the peak value of the current drawn from

the VDD supply. The simulations for worst speed (WS), worst power (WP),

worst one (WO) and worst zero (WZ) conditions are performed by using

appropriate parameters of transistors, Temperature (T) and supply voltage
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Fig. 7.8: Schematic diagram of the 18-bit NOR logic gate.

(VDD) in each cases. The simulation results are shown in the table 7.1.

In typical conditions, the average current required by the 18-bit XORAM-

based CAM is 0.7 µA during read operation (at 100 MHz). The largest

current consumption occurs with worst power MOS parameters and the

average current is 1.3 µA. The previous conventional NAND or NOR-based

CAMs architecture requires an average current of 6 µA and the proposed

scheme achieves a current reduction by a factor of 8 in typical case.

The XORAM architecture is integrated in AMCHIP06. The AMCHIP06 is

final prototype chip of FTK and it is under characterization in our laboratory

at INFN-Milano 7.9.
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Tab. 7.1: Simulation results at 100 MHz: delay time, average current and peak

current in different conditions.

T VDD tclk,match avg(| iDD |) peak(| iDD |)
(◦C) (V) (ps) (nA) (µA)

TM 27 1.20 928 707.6 637.3

WS 125 1.08 1741 650.1 340.1

WS −50 1.32 928 768.8 744.9

WP 125 1.08 909 1310.0 604.5

WP −50 1.32 576 836.0 1163.0

WO 125 1.08 1177 743.3 259.6

WO −50 1.32 687 788.0 901.7

WZ 125 1.08 1358 851.3 429.6

WZ −50 1.32 760 779.0 903.0

Fig. 7.9: AMCHIP05: final prototype chip of Fast TracKer

project.
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8. CONCLUSION AND RESULTS

In this section the results of research activities of this dissertation are dis-

cussed and the contribution of these results in different projects is presented.

Moreover the presented research activities and their results are published in

the literature, and the bibliography of these articles are listed in the final

part of this section.

8.1 Radiation Hard SRAM

The three versions of radiation hard SRAM were designed and simulated

in worth-case conditions, including different types of radiation effects. This

activity is supported with a great interest by INFN and RD53 collaboration

at CERN and was integrated in CHIPIX65 project funded by INFN.

The first prototype chip, which integrating all three versions of radiation

hard SRAM block, has been designed and submitted in TSMC 65 nm tech-

nology. Furthermore, The test set-up which was requiring two home-made

boards for further test of chip prototype in vacuum chamber and exposed to

the radiation is developed.

The first prototype is characterized in laboratory environment and the

results show that the Write and Read operations of SRAM blocks do not have

a proper functionality.

More studies are, been carried out to find the reason of not proper

functioning and after different investigations, the solution is proposed for the

next version of prototype design.

As explained in chapter 3, the DICE SRAM architecture is not sensitive to

not simultaneous changes, and disturbs of redundant pair stored bits, but it

is very sensitive if both stored bits are changed or disturbed in the same way

simultaneously. The position of single memory cell of array, which is selected

by multiplexers, is the interconnection point of selected bit-line and word-line

of memory array. During Write and Read operations, in addition of selected

single memory cell, all the single memory cells of array which has in common
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the selected word-line (all cells of related row), have pass-transistors in ”on”

state with connected bit-line and negative bit-line in floating state. The

hypothesis was that the floating bit-line and inverted bit-line connected to the

feedback of SRAM circuit which have the pass-transistors in ”on” state, do not

disturb the storage bit of SRAM single memory cell. This hypothesis is the

base of regular type of design for simple SRAM memory arrays architecture.

However, the high sensitivity of SRAM DICE architecture to simultaneous

disturbs of both redundant stored bits, combined with parasitic voltage

differences between bit-line and negative bit-line in floating state, because

of high length of wires in 64 k bits array, causes the change of stored bit

in some cells with pass-transistors in ”on” state and bit-line and negative

bit-line wires in floating state.

Vdd

Vdd/2

Fig. 8.1: Voltage generator circuit.

More investigation of DICE SRAM architectures through different simu-

lations confirms that if the bit-line and negative bit-line are biased at half

of high voltage value after every Read and Write operation, the difference of

voltage required in the bit-line and negative bit-line nodes to flip the stored

bit changes from 200 mV in case of floating wires, to at least 400 mV with
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the reference voltage at half voltage value, which is 0.6 V in our case. To

realize this idea an analog circuit of voltage generator is added to the Write

and Read circuits of the first prototype design (Figure 8.1). The circuit drives

all bit-line and negative bit-line wires at half supply voltage value after every

Read and Write operation. The simulations results confirm that the SRAM

block Write and Read operations work properly in this approach.

The second prototype of radiation hard SRAM which is including the

corrections is under development and will be integrated in the next submission

of CHIPIX65 project.

8.2 Dual-rail Logic

The DICE architecture increases the tolerance of Single Event Upset (SEU) in

memories, however the Single Event Transient (SET) in combinational logic

needs different architecture methods to mitigate. For instance SET effects in

multiplexer circuits which are used to codify the addresses of memory cells in

SRAM array, can cause the write or read of wrong memory cells.

Double-Rail Redundant Approach (D2RA) is proposed to develop the

standard cells for further development to increase the SET tolerance of

combinational logic.

In D2RA approach the same logic information stores in two different

nets (the bit and the inverted bit), which are spaced at layout level. If a

SET occurs, the bit and the inverted bit will assume the same logic value,

i.e., ‘00’ or ‘11’, which indicates that data is invalid. Hence, a new logic

state which can implemented by a flip-flop is proposed to detect and to stop

SET propagation in combinational and sequential logic. In this way, a SET

propagation will not trigger a SEU (Figure 8.2).

Fig. 8.2: Example of logic chain, with a SET propagation.
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A test chip, containing trees of AND-NAND and XOR-XNOR cells, and

shift registers has been designed. The simulations in worth-case condition

including radiation effects demonstrate the proper function of the circuits.

The designs are submitted in the context of CHIPIX65 project in RD53

collaboration and the characterization will be made in next months.

We have the plan of integrating the D2RA cells with DICE memory cells

to have the final circuit architecture with high tolerance to SEUs and SETs.

This circuits can be used in harsh radiation environments as high energy

physics experiments and space.

8.3 Fast Tracker Trigger

In the Fast TracKer (FTK) project the alternative architecture of XORAM

was successfully characterized in AMchip05 and integrated in the final chip

version (AMchip06). The AMchip06 is under characterization and it will

be an important part of the next generation of trigger system for Run 2 of

ATLAS experiment at CERN.

8.4 Published Papers And Presentations

This dissertation has contributions in: Advanced European Infrastructures for

Detectors at Accelerators (AIDA) project, Fast Tracker Trigger (FTK) project

for ATLAS experiment at CERN and CHIPIX65 project in RD53-CERN

collaboration. The results and progress of dissertation activity are presented

in different meetings and conferences, and the contributions are published in

some articles:

1. A Andreani, A Annovi, R Beccherle, M Beretta, N Biesuz, W Billereau, R Cipriani, S

Citraro, M Citterio, A Colombo, et al. The associative memory serial link processor

for the Fast TracKer (FTK) at ATLAS. Journal of Instrumentation, 9(11):C11006,

2014.

2. Alessandro Andreani, Alberto Annovi, Roberto Beccherle, Matteo Beretta, Nicolo

Biesuz, Mauro Citterio, Francesco Crescioli, Paola Giannetti, Valentino Liberali,

Seyedruhollah Shojaii, et al. Characterisation of an associative memory chip for

high-energy physics experiments. In International instrumentation and measurement



8.4. Published Papers And Presentations 99

technology conference (I2MTC), pages 1487–1491. IEEE, 2014.

3. Matteo Beretta, A Annovi, A Andreani, M Citterio, A Colombo, V Liberali, S

Shojaii, A Stabile, R Beccherle, P Giannetti, et al. Next generation associative

memory devices for the FTK tracking processor of the atlas experiment. Journal of

Instrumentation, 9(03):C03053, 2014.

4. Alessandra Camplani, Seyedruhollah Shojaii, Hitesh Shrimali, Alberto Stabile, and

Valentino Liberali. CMOS IC radiation hardening by design. Facta universitatis-

series: Electronics and Energetics, 27(2):251–258, 2014.

5. Valentina Ciriani, Luca Frontini, Valentino Liberali, Seyedruhollah Shojaii, Alberto

Stabile, and Gabriella Trucco. Radiation-tolerant standard cell synthesis using

double-rail redundant approach. In 2014 21st IEEE International Conference on

Electronics, Circuits and Systems (ICECS), , pages 626–629. IEEE, 2014.

6. N Demaria, G Dellacasa, G Mazza, A Rivetti, MD Da Rocha Rolo, E Monteil, L

Pacher, F Ciciriello, F Corsi, C Marzocca, et al. Chipix65: Developments on a

new generation pixel readout asic in CMOS 65 nm for hep experiments. In IEEE

International Workshop on Advances in Sensors and Interfaces (IWASI), on pages

49–54, 2015.

7. Natale Demaria, F Ciciriello, F Corsi, C Marzocca, G De Robertis, F Loddo, C

Tamma, V Liberali, S Shojaii, A Stabile, et al. RD53 collaboration and CHPIX65

project for the development of an innovative pixel front end chip for HL-LHC. In

INFN Workshop on Future Detectors for HL-LHC (IFD2014), page 10, 2014.

8. Luca Frontini, Seyedruhollah Shojaii, Alberto Stabile, and Valentino Liberali. A

new XOR-based content addressable memory architecture. In IEEE International

Conference on Electronics, Circuits and Systems (ICECS), pages 701–704, 2012.

9. Pierluigi Luciano et al. The Serial Link Processor for the Fast TracKer (FTK)

processor at ATLAS. International Conference on Technology and Instrumentation

in Particle Physics, 2014.



100 8. Conclusion and Results

10. Seyedruhollah Shojaii, Alberto Stabile, and Valentino Liberali. A radiation hardened

static ram for high-energy physics experiments. In International Conference on

Microelectronics Proceedings (MIEL), pages 359–362, 2014.

11. I am CERN authorship member and co-author of 100 articles in ATLAS collabora-

tion.



BIBLIOGRAPHY

[1] A. Camplani, S. Shojaii, H. Shrimali, A. Stabile, and V. Liberali, “CMOS IC radiation

hardening by design,” Facta universitatis-series: Electronics and Energetics, vol. 27,

no. 2, pp. 251–258, 2014.

[2] G. Abadir, W. Fikry, H. Ragai, and O. Omar, “A new semi-empirical model for

funneling assisted drain currents due to single events,” in 15th International Conference

on Microelectronics, pp. 391–394, IEEE, 2003.

[3] A. Stabile, V. Liberali, and C. Calligaro, “Design of a rad-hard library of digital cells

for space applications.,” in ICECS, pp. 149–152, 2008.

[4] J. Srour et al., “Basic mechanisms of radiation effects on electronic materials, devices,

and integrated circuits,” tech. rep., DTIC Document, 1982.

[5] J. R. Schwank, “Basic mechanisms of radiation effects in the natural space radiation

environment,” tech. rep., Sandia National Labs., Albuquerque, NM (United States),

1994.

[6] J. P. Mitchell, “Radiation-induced space-charge buildup in MOS structures,” IEEE

Transactions on Nuclear Science, vol. 14, no. 11, pp. 764–774, 1967.

[7] F. B. McLean and T. R. Oldham, “Basic mechanisms of radiation effects in electronic

materials and devices,” tech. rep., DTIC Document, 1987.

[8] T. Granlund and N. Olsson, “SEUs induced by thermal to high-energy neutrons in

SRAMs,” IEEE transactions on nuclear science, vol. 53, no. 6, pp. 3798–3802, 2006.

[9] P. McWhorter and P. Winokur, “Simple technique for separating the effects of interface

traps and trapped-oxide charge in metal-oxide-semiconductor transistors,” Applied

physics letters, vol. 48, no. 2, pp. 133–135, 1986.

[10] J. Aitken and D. Young, “Avalanche injection of holes into SiO2,” IEEE Transactions

on Nuclear Science, vol. 24, no. 6, pp. 2128–2134, 1977.

[11] P. Winokur, H. Boesch Jr, J. McGarrity, and F. McLean, “Field-and time-dependent

radiation effects at the SiO2/Si interface of hardened MOS capacitors,” IEEE Trans-

actions on Nuclear Science, vol. 24, no. 6, pp. 2113–2118, 1977.

[12] N. Saks, M. Ancona, and J. Modolo, “Radiation effects in MOS capacitors with
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