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4. ABSTRACT 

 

The urokinase-type plasminogen activator system (uPA-system), whose main components 

are the serine protease uPA (PLAU), the cell surface receptor uPAR (PLAUR) and the uPA 

inhibitor PAI-1 (SERPINE1), has been extensively studied for its involvement in cancer 

pathogenesis. Specifically, nowadays the components of the uPA-system are well-

characterised determinants for the prognosis of breast cancer. The regulation of the gene 

expression of the uPA-system components is very complex and depends on a plethora of 

stimuli acting both at transcriptional and post-transcriptional level. The uPA-system 

components are often over expressed in breast cancer but the detailed molecular 

mechanisms regulating the expression are still to uncover. In an expression analysis 

conducted on a cohort of unselected breast cancer patients, we found that the expression of 

PLAU and PLAUR is highly correlated. Meta-analyses of published experimental data and 

in silico studies pointed out the possibility that PLAU, PLAUR and also SERPINE1 might 

be negatively regulated at post-transcriptional level by a microRNA, the miR-340. We 

experimentally validated the role of miR-340 as negative regulator of the expression of the 

three uPA-system components using MDA-MB-231, a triple negative breast cancer cell 

line. Microarray experiments, performed to characterise the global transcriptome changes 

induced by miR-340 in MDA-MB-231 cells, showed that miR-340 down regulates also the 

expression of desmoplastic reaction-related genes underlining a possible role of miR-340 

in regulating tumour-associated genes. Notably, most of the identified miR-340 target 

genes were found indeed to be associated with poor clinical outcome in breast cancer. 

Functional studies carried out in MDA-MB-231 cells suggested that miR-340 might 

modulate cell proliferation, even if this effect was not confirmed in vivo. In order to better 

define the functional role of miR-340, we generated a miR-340 deficient mouse model, 

taken advantage of the zinc finger nuclease technology. Overall these data identify, for the 

first time, a single microRNA that is able to down regulate the expression of the three main 
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components of the uPA-system together with desmoplastic reaction and breast cancer 

prognosis-related genes, thus representing a new potential player in the pathogenesis of 

breast cancer. 
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5. INTRODUCTION 

 

Breast cancer is the most common cancer in women worldwide. Despite the progresses in 

early diagnosis, surgical techniques and therapies, breast cancer is still the second cause of 

death in women (reviewed in1).  The complexity in developing efficacious therapies that 

completely eradicate the disease is mainly due to the great heterogeneity of the neoplasm 

and the plasticity of the tumour microenvironment.  

The main constituent of the microenvironment is the extracellular matrix (ECM). The 

ECM is a network of fibrous structural proteins embedded in a visco-elastic gel of 

glycosaminoglycans, proteoglycans and glycoproteins. In addition, a meshwork of secreted 

proteins and numerous stromal cells, including endothelial and immune cells, fibroblasts 

and adipocytes, complete the microenvironment composition. The communication between 

the microenvironment and the epithelial compartment is essential for many biological 

functions such as cell adhesion, proliferation, polarity, differentiation and apoptosis. The 

microenvironment may communicate to the epithelial compartment by changing structural 

properties and via transmembrane receptors. In the same way, secreted proteins derived 

from the epithelium, like growth factors and cytokines, binding ECM through 

glycosaminoglycans, can influence microenvironment remodelling altering matrix stiffness 

and/or inducing ECM proteolysis (reviewed in2). A proper regulation of the networks 

between the microenvironment and the epithelium is important for the correct homeostasis 

of tissues. The knowledge of the molecular mechanisms, which regulate genes acting on 

the microenvironment architecture and signalling, may be useful to define how these 

mechanisms are altered during tumour formation and progression.  

The urokinase-type plasminogen activator system (uPA-system) is an important player in 

the homeostasis of the microenvironment both in normal and in pathological conditions. In 

the context of pathological conditions, it participates in the tumour microenvironment 

remodelling and in mediating the signalling between epithelium and stroma (reviewed in3). 
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In breast cancer the expression levels of the components of the uPA-system are associated 

with the outcome of the disease. Therefore, the characterisation of the molecular 

mechanisms regulating the uPA-system expression might disclose new cues to understand 

the machinery, which govern the plasticity of the microenvironment during breast cancer 

pathogenesis. 

 

5.1 MAMMARY GLAND MICROENVIRONMENT 

 

5.1.1 The extracellular matrix 

The ECM of the mammary gland can be divided into three structurally different layers: the 

highly specialised basal lamina, bordering the basal membrane of mammary epithelial cells, 

the intra- and interlobular stroma, neighbouring the alveoli and lobules respectively and the 

fibrous connective layer. 

 

5.1.1.1 Basal lamina 

The basal lamina is the most specialised ECM compartment that directly underlies the 

mammary glands epithelium. The main components of the basal lamina are laminins, 

collagen IV, nidogens and perlecan (fig. 1). 
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Figure 1: basal lamina. 

The main components of the basal lamina: laminins (blue), collagen IV (red), nidogens (yellow) and perlecan 

(green) are schematically depicted.  

 

Laminins (LNs) are large heterotrimeric glycoproteins present in 15 different combinations, 

according to five α, three β and three γ subunits. LNs are in physical contact with 

epithelial cells acting as critical mediator of ECM-epithelium interactions. In mammary 

microenvironment the most abundant LN is LN111 (previously named LN1), which is 

mainly released by myoepithelial cells4. LN111 is one of the major components of the 

basal lamina. It participates in the maintenance of the breast tissue (reviewed in5) 

especially in mammary cells differentiation6, polarization7 and acinar formation8.  

Collagen IV is a network-forming collagen consisting of heterotrimer comprised of six 

possible genetically distinct α chains distributed in a tissue-specific manner9. Specifically 

in the mammary glands, collagen IV has been supposed to be the primary scaffold protein 

of the basal lamina (reviewed in10), which provides the principal mainstay for mammary 

epithelial cells11,12. Furthermore cryptic domain of collagen IV fragments might show anti-

angiogenic effects (reviewed in13). 

Adapted from figure 19-43  “Molecular Biology of the Cells” 5/e (© Garland Science 2008)!
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Nidogens are sulphated glycoproteins, synthesised by fibroblasts in different tissues14,15, 

which are incorporated into the basal lamina upon secretion15. They are present in 1:1 ratio 

with LNs and in the mammary microenvironment they act as stabiliser of the basal lamina 

creating a bridge between LN111 and collagen IV16. 

Perlecan is a proteoglycan composed of a core protein covalently linked to the 

proteoglycan heparin sulphate. The mammary epithelial cells themselves can secrete 

heparin sulphate behaving as a source of perlecan. Perlecan is essential for the assembly of 

basal lamina in several organs17 and for the bone marrow matrix functions18. Moreover 

perlecan can also synergise the biological effect of the fibroblast growth factor (FGF) 

family19. A perlecan soluble C-terminal fragment, called endorepellin, is able to inhibit 

endothelial cell migration and angiogenesis altering the morphogenesis of capillaries20.  

 

5.1.1.2 Intra- and interlobular stroma 

The intralobular stroma is a collagen-rich structure adjacent to the basal lamina, which 

surrounds the alveoli; the interlobular stroma refers to band of stroma, which envelopes 

cluster of alveoli composing a single lobule (fig. 2). The principal constituents of this layer 

are the fibrillar collagen and several ECM components such as fibronectin, tenascin family 

proteins, secreted protein acidic and rich in cysteine (SPARC) and small leucine-rich 

proteoglycan family proteins (reviewed in2). 
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Figure 2: anatomic distribution of the intra- and interlobular stroma. 

The intralobular stroma (light green) surrounds the alveoli; whereas the interlobular stroma (yellow) 

envelopes cluster of alveoli, which compose a single lobule. 

 

The main collagen molecule involved in the fibrillar collagen is collagen I together with 

collagen III and V. Fibrillar collagen I is considered the stroma backbone of mammary 

glands, it is mainly produced by mesenchymal cells as fibroblasts, chondroblasts, 

osteoclasts and odontoblasts, during normal development, and by activated fibroblasts in 

the wound healing process. The collagen I synthesis is a multi-step process starting from a 

collagen precursor. The precursor is assembled in a triple helix procollagen structure, 

which is further arranged by different peptidases in the mature form. The mature form is 

stabilised by covalent intra- and intermolecular cross linking by the lysyl oxidase (LOX) 

resulting in the basic fibrillar structure (reviewed in21). In the mammary tissue the interplay 

between fibrillar collagen, integrins and growth factors is necessary to the mammary duct 

development22 and evolution23,24.  

Fibronectin (FN) is a dimeric glycoprotein implicated in cell adhesion, migration, 

proliferation and branching morphogenesis. During the involution of the mammary gland, 

high level of a specific class of endopeptidases, known as metalloproteinases (MMPs), 
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highly correlates with FN fragments suggesting a positive feedback loop between these 

two players. This feedback loop is usually aimed to the clearance of epithelium since the 

MMPs can remodel the ECM and FN fragments are able to induce apoptosis25. 

The tenascin (TN) family consists of five members: TN-C, TN-R, TN-W, TN-X and TN-Y, 

which generally mediate anti-adhesive phenotype interfering with the interaction between 

the transmembrane heparin sulphate receptor synden-4 and the FN receptor α5β1 integrin26. 

In mammary glands the most abundant TN isoforms are the TN-C and TN-X. Up 

regulation of TN-C has been observed in breast cancer (reviewed in27). As opposed to TN-

C, TN-X seems to have a role in the maintenance of tissue elasticity28.  

SPARC is a secreted glycoprotein that mediates cell-matrix interaction binding collagen I 

and LN111 (reviewed in29). SPARC exhibits anti-adhesive properties causing cell 

rounding30; in contrast SPARC positively regulates FN assembly and integrin-linked kinase 

activity eliciting FN-induced stress fiber formation31.  

The small leucine-rich proteoglycan (SLRP) family members were initially associated to 

structural support participating in collagen fiber formation; recent findings have shown that 

SLRPs are implicated in signal transduction and cellular processes binding directly cell 

surface receptors and growth factors (reviewed in32). In the mammary glands the most 

abundant SLRPs are decorin and biglycan (reviewed in33). Decorin is a secreted 

glycoprotein composed of a core protein covalently bound to a single chondroitin sulphate 

or dermatan sulphate (reviewed in34). Different biological functions have been conferred to 

decorin. It is involved in the proper spatial alignment of stroma collagen fibers35, in 

inhibiting epidermal growth factor receptor (EGFR) signalling through EGFR 

internalization and degradation by caveolar endocytosis36 and in sequestering the 

transforming growth factor beta (TGF-β)37. In breast cancer decorin has the ability to 

suppress the Erb-B2 receptor tyrosine kinase 2 (ERBB2) signalling both in vitro and in 

vivo38; furthermore decorin negative affects angiogenesis since it is able to down regulate 

vascular endothelial growth factor (VEGF) expression in tumour cells39. Biglycan, as 
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decorin, is a glycoprotein composed of a core protein covalently bound to two 

glycosaminoglycans34. Biglycan may be hormonally regulated40,41 and may participate in 

elastic fiber formation42.  

 

5.1.1.3 Fibrous connective tissue 

The third layer of ECM consists of acellular fibrous connective tissue characterised by the 

absence of epithelium and the presence of fibroblasts, immune cells and high fibrillar 

collagen amount. This layer shares many ECM proteins with the other layers such as 

fibrillar collagen, FN, TNs, SLRPs and SPARC; the unique feature of fibrous connective 

tissue is the presence of the elastic fibers (reviewed in2). 

The elastic fibers provide structural support and elasticity to different tissues. As for 

collagen I, the elastic fibers formation is a multi-step process starting with the binding of a 

secreted protein called microfibril-associated glycoprotein (MAGP) with the glycoprotein 

fibrillin. Several MAGP/fibrillin complexes are firstly assembled into 10- to 20 nm 

microfibrils and subsequently the microfibrils are associated with elastin, fibulins and 

proteoglycans. Also in this case the stabilization of the elastic fibers occurs through LOX-

mediated cross linking (reviewed in2). The function of elastic fibers in mammary glands is 

still not clear. A correlation between mammary density, tissue tension and increase of 

breast cancer risk has been observed43. 

 

5.1.2 The stroma cells 

The microenvironment is not only made up of structural acellular components but also of 

stromal cells. Different cell populations are present in the ECM meshwork including 

endothelial, immune and stem cells, pericytes, fibroblasts and adipocytes. The fibroblasts 

are the stroma cells that mainly orchestrate the ECM functions and regulate the recruitment 

of the other cellular components. 
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5.1.2.1 Fibroblasts 

As described by Maller et al.2 fibroblasts are the main components of the connective tissue. 

They are elongated cells with extended cell protrusions located within the fibrillar matrix. 

They represent a very heterogeneous family and different fibroblast phenotypes have been 

identified according with their secretome. Although several fibroblast markers have been 

identified, the classification of the different fibroblasts phenotype is not straightforward 

since none of the markers are exclusive. Fibroblasts synthesise many ECM components 

such as type I, III, IV and V collagen, LNs and FN, thus contributing to the formation of 

the basal lamina44. Fibroblasts secrete also ECM-degrading proteins, whose best example 

is represented by the MMPs, suggesting their role in the regulation of ECM homeostasis. 

Fibroblasts not only exert a role in the ECM homeostasis but also affect the epithelium 

compartment through both paracrine factors and mesenchymal-epithelial interaction, as it 

has been demonstrated in the development of mammary glands (reviewed in45). Fibroblasts 

play a prominent role also in pathological conditions such as wound healing (reviewed 

in46) and fibrosis (reviewed in47) sustaining the production of ECM components. 

Fibroblasts participating to wound repair and fibrosis are different from those present in 

normal conditions and are defined “activated”. The activated fibroblasts are characterised 

by the expression of α-smooth muscle actin (α-SMA) and called myofibroblasts. 

Fibroblast activation may be induced by different stimuli released from injured tissue 

including TGF-β, epidermal growth factor (EGF), platelet-derived growth factor (PDGF) 

and FGF-2 (reviewed in48) or by direct cell-cell communication with leukocytes through 

adhesion molecules such as intercellular-adhesion molecule 1 (ICAM1) and vascular-cell 

adhesion molecule 1 (VCAM)49. As for resting fibroblasts, also activated fibroblasts may 

secrete different factors. They are still able to secrete MMPs to facilitate ECM turnover 

and remodelling50. In addition, they secrete a great amount of growth factors such as 

hepatocyte growth factor (HGF), insulin growth factor (IGF), nerve growth factor (NGF), 

wingless-type MMTV integration site family, member 1 (WNT1), EGF and FGF-2 
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providing proliferative signals to the surrounding epithelial cells (reviewed in51). The 

activated fibroblasts can also communicate with immune cells through the release of 

cytokines such as chemokine (C-C motif) ligand 2 (CCL2, also known as MCP1)52. Once 

the wound is repaired, the number of activated fibroblasts decreases and the resting 

phenotype is restored. During fibrosis activated fibroblasts create a self-perpetuating 

autocrine loop, which stimulates the activation of other fibroblasts often until organ death.  

This phenomenon has been also observed in activated fibroblasts, which make up the 

tumour microenvironment.  

 

5.2 TUMOUR MICROENVIRONMENT 

 

One of the first definition of tumour described it as “a wound that do not heal” forewarning 

the role of tumour microenvironment in cancer progression53. Nowadays the role of the 

microenvironment is well established in each step of tumourigenesis. Indeed, tumour 

microenvironment, dynamically arranging its composition, creates a proper milieu for 

tumour implantation, progression and metastases (reviewed in54) (fig. 3). These changes 

require heterotypic signalling and back-and-forth reciprocal interaction between the 

tumour parenchyma and the stroma (fig. 4). 
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Figure 3: tumour microenvironment. 

 (A) Cellular components of the tumour microenvironment. (B) During cancer progression the transition 

from in situ to invasive carcinoma is characterised by the degradation of the basal lamina and the 

desmoplasia reaction. The microenvironment of a metastatic tumour has to sustain tumour migration, 

adhesion and homing of the tumour cells in a distant organ.  

 

 
 

Figure 4: cross talk between tumour and stroma. 

The main heterotypic signals between the tumour parenchyma and the stromal cells are schematically 

represented. 
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In the early stage of tumourigenesis, cancer cells form a neoplastic lesion embedded in an 

organ-specific microenvironment within the basal lamina but separated from the healthy 

epithelium. This tumour stage is called carcinoma in situ (CIS). CIS is associated with a 

tumour microenvironment similar to those observed during wound healing, characterised 

by an increased number of fibroblasts, enhanced capillary density and a high amount of 

collagen I and fibrin deposition55. Furthermore, the tumour microenvironment may sustain 

different pro-migratory pathways modulating the release and availability of growth factors 

by direct interaction with tumour cells through integrins (reviewed in56). 

 In the transition from CIS to invasive carcinoma (IC), the tumour cells invade the 

surrounding stroma. The evolution to invasive carcinoma is characterised by the 

degradation of basal lamina (reviewed in57). Furthermore, the invasive tumours show an 

abnormal tumour stroma and increased deposition of ECM (reviewed in58). This 

phenomenon is known as desmoplastic reaction, distinguished by an increased amount of 

fibrillar collagen, fibronectin, proteoglycans and TN-C55.  

The cellular components that mainly orchestrate the dynamic plasticity of the tumour 

microenvironment are the cancer-associated fibroblasts. 

 

5.2.1 Cancer-associated fibroblasts 

As described by Xing et al.59, a specific group of fibroblasts, called cancer-associated 

fibroblasts (CAFs), is well established to actively participate to tumour progression and 

invasion providing a highly specialised tumour microenvironment. CAFs, as the normal 

counterpart, are highly heterogeneous and morphologically similar to myofibroblasts, even 

if perpetually activated. They may derive from resident fibroblasts, bone marrow, 

epithelial and endothelial cells after the acquisition of genetic or epigenetic alterations that 

may be induced by tumour-secreted paracrine factors. CAFs contribute to every step of 

tumourigenesis. In the early stages, tumour cells need specific pro-proliferative factors to 
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sustain their growth. CAFs secrete various growth factors and cytokines that support the 

proliferative rate of tumours including TGF-β, HGF, S100 calcium binding protein A4 

(S100A4) and chemokine (C-X-C motif) ligand 12 (CXCL12). CAFs may enhance tumour 

growth also inducing mutations in cancer cells secreting the highly mutagen reactive 

oxygen species (ROS) under acidic conditions (reviewed in60). Furthermore, CAFs may 

affect cancer growth interfering with their metabolic pathways sustaining the switching to 

the faster anaerobic glycolysis, even in presence of oxygen61. CAFs are also involved in 

promoting tumour invasion and metastasis formation through transient heterotypic cell-cell 

contacts or secreting paracrine factors (reviewed in48). Specifically, the cross talk between 

the cancer cells and CAFs can induce both types of cells to modify tumour epithelium and 

microenvironment respectively to favour metastasis formation. For this reason, CAFs can 

mediate both ECM proteolytic and structural modification to create a path for the cancer 

cells to invade a distant organ. To this purpose, CAFs may secrete various matrix-

degrading proteases, as MMPs, and their activators such as the urokinase-type 

plasminogen activator (uPA) (reviewed in59). CAFs may support tumour also sustaining a 

chronic inflammatory microenvironment and immune tolerance (reviewed in62). CAFs may 

recruit immune cells, including macrophages, neutrophils and lymphocytes through direct 

or direct mechanisms. Directly, secreting specific chemoattractant factors as 

thrombospondin-1 (TSP-1), which affects both angiogenesis and immune cells recruitment 

(reviewed in63); indirectly, since the CAFs-secreted MMPs may degrade ECM components, 

such as FN and collagen, whose fragments display both chemotactic properties for 

leukocytes and the ability to modulate the proliferation of the immune cells (reviewed in59). 

CAFs are also present in the cancer stem cell niches where they may regulate the 

differentiation and proliferation of cancer stem cells providing a unique specialised 

microenvironment (reviewed in59). The tumour niche comprised of CAFs is molecularly 

different from that of a normal stroma, even if several tumour niche-secreted factors have 

been also found in the normal counterpart64. Further studies are needed to better define the 
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cancer stem cell niche composition, origin and the role of CAFs in this type of 

microenvironment. 

 

5.3 THE UROKINASE-TYPE PLASMINOGEN ACTIVATOR SYSTEM  

 

The urokinase-type plasminogen activator system (uPA-system) is an important player in 

the homeostasis of the microenvironment both in normal and in pathological conditions, 

including wound healing and tumours (reviewed in65). The main components of the uPA-

system are the serine protease uPA, the cell surface receptor uPAR and the uPA inhibitor 

PAI-1. The uPA-system-mediated functions may be divided into two interconnected 

branches: the proteolytic and the non-proteolytic functions (fig. 5). The uPA-system was 

firstly studied for its involvement in the modulation of pericellular proteolysis since it 

triggers the generation of plasmin at the cell surface. The non-proteolytic functions are 

based instead on the ability of uPAR-initiated cell signalling to support a plethora of 

biological functions. uPAR-mediated signalling requires the cross talk of the receptor with 

different players in the pericellular space, such as vitronectin (VN) and several membrane 

signalling receptors including integrins, receptor tyrosine kinases (RTKs) and G-protein 

coupled receptors (GPCPs).  
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Figure 5: uPA-system functions. 

The proteolytic and non-proteolytic functions of the uPA-system are schematically represented. The 

proteolytic function requires the activation of uPA, which in turn cleaves plasminogen thus to generate the 

active protease plasmin. In the ECM plasmin may cleave ECM components, promote the activation and 

release of growth factors and generate the active form of the MMPs, which further sustain matrix degradation. 

The proteolytic activities of uPA and plasmin are antagonised by PAI-1/PAI-2 and α2AP, respectively. 

uPAR-mediated cell signalling is mainly orchestrated by uPAR-VN interaction and the cross talk with 

integrins. 

 

5.3.1 The urokinase-type plasminogen activator  

The serine protease family is a class of proteases specialised in the degradation of peptide 

bonds through a serine residue located into the active site (reviewed in66). A member of 

this class of proteases is the urokinase-type plasminogen activator (uPA). 

uPA is protease of 411 amino acids composed of two α helices and two anti-parallel β 

strands arranged into two disulphide bridge-linked polypeptide chains: the N-terminal A 

chain and the C-terminal B chain. The A chain harbours a kringle (KD) and a growth 

factor-like domain (GFD). The KD and the GFD domains, also denoted as amino terminal 
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fragment (ATF), are connected to the B chain through a linker region containing the 

activation site. The B chain contains the catalytic triad Asp120, His205 and Ser356 67.  

As described by Andreasen et al.68, cells release uPA as an inactive single-chain zymogen 

(pro-uPA), which is converted into the active two-chains uPA by plasmin-mediated 

cleavage of the peptide bond Lys158-Ile159. Active uPA in turn activates plasminogen (Plg), 

the zymogen form of plasmin (Pli), through the cleavage of the peptide bond Arg506-Val561. 

As a consequence, uPA and Pli create a positive feedback loop to active each other. This 

function is also ascribed to the homologue tissue-type plasminogen activator (tPA). While 

uPA-generated Pli is mainly involved in the pericellular proteolysis, tPA is believed 

primarily to mediate Pli generation in the fibrinolysis process. Despite the predominant 

role of plasmin, uPA may be cleaved by other proteases, which are involved in the 

activation process or in the generation of different uPA forms. Kallikrein, factor XIIa and 

cathepsins may activate uPA (reviewed in69). Indeed, in vivo experiments, conducted on a 

plasminogen deficient mouse model, demonstrated that a glandular kallikrein promotes the 

conversion of uPA into the active form70. Other proteases participate to the cleavage within 

the linker region generating instead the low molecular weight uPA, the N-terminal 

truncated variant71,72.  

Once Pli is generated, it may be involved in several ECM remodelling processes since it 

shows broad substrate specificity. Indeed, it may promote the cleavage of different 

extracellular matrix proteins such as LNs, FN and fibrin. Moreover, Pli may sustain both 

the conversion of the zymogen form of MMP-3, MMP-9, MMP-12 and MMP-13 into 

active MMPs and the activation and release of growth factors including FGF-2 and TGF-β. 

The involvement of uPA in promoting plasmin generation highlights the importance of 

uPA regulation for a balanced ECM remodelling.  
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5.3.2 The urokinase-type plasminogen activator receptor  

The complexity of the uPA-system functions is mainly due to the great versatility of the 

urokinase-type plasminogen activator receptor (uPAR). uPAR is indeed not only involved 

in sustaining the uPA-mediated proteolytic functions but it is also able to orchestrate 

several signal transduction pathways interacting with the matricellular protein VN and 

different transmembrane signalling receptors.  

uPAR is synthesised as a protein of 335 amino acids characterised by a 22 amino acids 

long-N-terminal secretion signal peptide and a 30 amino acids long-C-terminal, which is 

cleaved upon the attachment to the plasma membrane73. The mature form is a highly 

glycosylated protein of 283 amino acids composed of three homologous domains DI, DII 

and DIII, belonging to the Ly-6/uPAR protein domain family (reviewed in74), tethered to 

the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor.  

In normal conditions, uPAR is moderately expressed in various tissues including lungs, 

kidneys, spleen, vessels, uterus, bladder, thymus, heart, liver and testis. uPAR expression 

increases as a result of extensive tissue remodelling75 or in pathological conditions such as 

cancer, inflammation and infections (reviewed in76). Two types of post-translational 

modifications are believed to globally and irreversibly regulate uPAR expression and 

activity: uPAR shedding and uPAR cleavage. The uPAR shedding consists of the release 

of the whole protein moiety from the cell surface. This process is mediated by 

phospholipases such as phosphatidylinositol-specific phospholipase D or by proteases 

including plasmin77 and tissue kallikrein 478. As a result a soluble form of uPAR, known as 

suPAR is released. uPAR shedding prevents most of cell surface uPAR activity but the 

soluble fragments may exert different functions, namely chemotactic mediators79. This 

mechanism allows a negative regulation of the number of receptor located at the cell 

surface. uPAR cleavage occurs in the linker region connecting the DI and DII and is 

mediated by several proteases including uPA80, plasmin80, neutrophil elastase (indicated 

in74) and different MMPs81. The cleavage causes the release of the N-terminal domain DI 
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thus inactivating uPAR binding with most of its ligands. Also in this case the generated 

fragments may acquire different biological activities as demonstrated both in vitro82 and in 

vivo83. 

The first characterised role of uPAR is in regulating extracellular proteolysis acting as uPA 

receptor. In this context, it does not only cooperate with uPA for the conversion of 

plasminogen into active plasmin but it may also mediate the internalization of inactive 

uPA:PAI-184/protease nexin-1 (PN-1)85 complexes in collaboration with the low density 

lipoprotein receptor (LRP) family86. Subsequently, it was discovered that uPAR functions 

go beyond its role as a receptor for uPA.  Many biological functions of uPAR occur indeed 

independently of uPA proteolytic activity. These functions are mainly related to the 

regulation of the cross talk between epithelium and the surrounding microenvironment 

through the physical or functional interaction with: VN87, adhesion receptors belonging to 

the integrin family88 and other interactors such as RTKs (e.g. EGFR89 and platelet-derived 

growth factor receptor (PDGFR)90), caveolin91, LRP family86,92,93, GPCRs94, the cation-

independent mannose 6-phosphate/insulin-like growth factor-II receptor (CIMPR/IGH-II) 

implicated in the targeting of uPAR to lysosome95. All these interactions deeply affect cell 

proliferation, adhesion and migration, through the activation of signalling molecules 

including the proto-oncogene tyrosine-protein kinase Src, the serine kinase rapidly 

accelerated fibrosarcoma (Raf), the focal adhesion kinase (FAK), p130Cas and the 

extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) 

(reviewed in96). 

Despite the high number of uPAR interactors that have been proposed, uPA and VN are 

the only two binding partners that have been deeply characterised from a biochemical point 

of view. 
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5.3.2.1 uPAR-uPA binding 

The uPA-uPAR binding is a high affinity interaction that does not involve additional co-

factors. The resolution of the crystal structure of the uPA:uPAR complex has shown that 

the binding occurs between the GFD domain of uPA and a large hydrophobic pocket made 

up of all the three-uPAR domains97,98. As a consequence, the interaction is mainly 

dependent on the integrity of the three-domain structure of the receptor99 but also on the 

type and degree of glycosylation100. 

 

5.3.2.2 uPAR-VN interaction  

VN is an adhesive glycoprotein of 459 amino acids mainly expressed as soluble protein in 

the plasma as well as a multimeric form in the ECM. It consists of a N-terminal 

somatomedin B domain (SMB)101 followed by a long connecting peptide harbouring the 

integrin binding site Arg-Gly-Asp (RGD)102 and C-terminal hemopexin-like domains103. In 

the ECM, VN acts as matricellular protein, namely a protein that does not participate in the 

ECM structural arrangement but rather in the cross talk at the cell-matrix interface, binding 

ECM components, cell surface receptors (e.g. integrins, uPAR)104 or other proteins present 

in the pericellular space such as PAI-1105, uPA106, Plg107 and heparin108.  

The uPAR-VN interaction has been fully characterised. It consists of a high affinity 

binding109, which requires the intact three-domain structure of the receptor110. Indeed the 

binding is mediated by a composite epitope on the DI/DII uPAR interface and the SMB 

domain of VN111,112. The binding of uPA to uPAR increases the affinity of uPAR for VN as 

a consequence of both uPA-induced uPAR conformational changes113,114 as well as uPAR 

dimerization and/or oligomerization115,116,117. Trp32 and Arg91 were identified as uPAR key 

residues for the uPAR-VN interaction99,111.  
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5.3.2.3 uPAR-integrins interaction 

In addition to uPA and VN, important players of the uPAR-mediated non-proteolytic 

functions are integrins. Integrins are cell-surface adhesion receptors that anchor cells to the 

ECM and transduce signals between the microenvironment and the cells. Integrins 

influence cell shape and mediate intracellular signalling interacting with molecules that 

regulate cytoskeletal organization and signal transduction. Several studies associate 

integrins to uPAR-uPA-mediated cell migration, adhesion and proliferation89,118,119. The 

uPAR/integrin interaction is still mater of debate since conflicting results have been 

obtained. The interaction between uPAR and the FN receptor α5β1
120 as well as the VN 

receptor αvβ3
121 and αvβ5

122
 have been reported. Moreover, uPAR has also been shown to 

interact with integrin receptors expressed on the immune cells, such as the cell surface 

macrophage I antigen (Mac1, also known as αMβ2 integrin)123. Specific uPAR residues 

involved in the integrin binding have been proposed: Glu134, Glu135, Ser245, His249 and Asp262 

suggesting the existence of multiple and diverse binding sites. The binding requires the 

intact three-domain structure of uPAR69 and is promoted by uPA and integrin ligand 

binding to uPAR and integrins, respectively120. In spite of these findings, a comprehensive 

study, aimed to specifically characterised the uPAR integrin-binding sites, failed to 

identify any of these sites104. Moreover, recently it has been shown that uPAR-mediated 

cell adhesion to VN triggers a novel type of integrin signalling that is independent of 

integrin–matrix engagement but dependent on membrane tensions supporting the 

hypothesis that uPAR and integrins are not necessarily in physical contact to mediate cell 

signalling124. 

 

5.3.3 The plasminogen activator inhibitor 1  

The serpin (serine proteases inhibitor) family includes a wide range of serine protease 

inhibitors characterised by a globular structures consisting of three β-sheets and 9 α-

helices and a common inhibition mechanism. Approximately 20 amino-acids-long reactive 
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centre loop (RCL) is the hub of the mechanism of inhibition of the serpine family. Indeed, 

the reactive centre peptide bond (P1-P1
’) within the RCL, is the part of the inhibitor which 

interacts with the specific protease by a 1:1 stable complex125,126. The P1 residue confers the 

substrate specificity. 

The plasminogen activator inhibitor-1 (PAI-1) and α2-antiplasmin (α2AP) belong to the 

serpine family and represent the main negative regulators of the Pli generation. While 

α2AP directly inhibits Pli, PAI-1 exerts the inhibitory effect on Pli generation targeting 

both uPA and tPA. Three other members of the serpin family, PAI-2, PN-1 and the protein 

C inhibitor (PCI) have also been shown to inhibit uPA and tPA at physiologically relevant 

rate (reviewed in127). Among these different serine protease inhibitors, PAI-1 is the fastest 

and specific inhibitor of uPA and tPA (reviewed in128).  

PAI-1 is either 379 or 381 amino acids glycosylated protein due to the presence of two 

possible cleavage sites for the N-terminal signal peptide. PAI-1 is mainly released by 

endothelial cells, megakaryocytes as well as smooth muscle cells and stored in the platelets. 

After the release in the bloodstream, PAI-1 circulates as active form in complex with VN129. 

In order to inhibit uPA, PAI-1 binds active uPA generating a covalent uPA-PAI-1 complex. 

When bound to uPAR, this complex is internalised, through LRP-related protein family-

mediated mechanism, into clathrin-coated vesicles130. uPA-PAI-1 complex is degraded into 

the lysosomes while uPAR is recycled back to the cell surface131. Specifically, as described 

by Dupont et al.128, during the complex formation the P1-P1
’ bond of PAI-1 (Arg348/358-

Met349/359) is inserted into the uPA active site, therefore uPA can cleave the P1-P1
’ bond and 

the P1 residue is linked to the active site of uPA by an ester bond. The N-terminal of the 

RCL is inserted into the β-sheet A, relocating uPA to the opposite pole of PAI-1. The 

distortion of the active site completely impairs the catalytic activity of the enzyme. 

Premature RCL insertion into the β-sheet A results in the conversion of the active PAI-1 

into the so-called latent state. In vitro, PAI-1 latency can be bypassed by denaturation and 

refolding of the inhibitor. 
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PAI-1 can bind VN not only in the blood but also in the pericellular space. The binding 

occurs within the SMB domain through an epitope, which overlaps with the uPAR binding 

site; therefore PAI-1 and uPAR may compete for the binding of VN132. In addition, the 

binding of PAI-1 with VN sterically prevents also the binding of integrins with the RGD 

motif of VN133,134. As a consequence, PAI-1 does not act only as negative regulator of 

plasmin generation but it is also involved in the modulation of cell adhesion and 

migration132. In addition, it has been shown that PAI-1 has a role in the negative regulation 

of apoptosis as well as PAI-2135. 

 

5.4 uPA-SYSTEM AND CANCER 

 

The role of uPA-system in cancer is well established. Both branches of the uPA-system 

functions have a role in each step of tumourigenesis. It is widely believed indeed that the 

role of the uPA-system in promoting tumour growth and dissemination is mediated by its 

proteolytic activity capable of remodelling the ECM and generating pro-tumour factors. 

Additionally, important processes occurring in cancer such as cell migration, proliferation 

and release from states of dormancy have been linked to uPAR-initiated cell signalling 

independently of extracellular proteolysis.  

 

5.4.1 Tumour formation 

The tumour formation is enhanced by an uncontrolled cell proliferation sustained by an 

alteration of the apoptosis pathways. uPA-mediated Pli generation may support mitogenic 

pathways through the activation and release of growth factors that can act both on 

epithelial and endothelial cells. These factors include FGF-2 and VEGF, targeting the 

endothelial cells, and HGF and IGF-1, which affect the epithelial compartment (reviewed 

in136). uPAR-initiated cell signalling may also activate pathways involved in sustained 

proliferation. In MCF-7, an oestrogen positive breast cancer cell lines, PAI-1, uPA, uPAR 
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and very low density lipoprotein receptor (VLDLR) have been shown to cooperate in 

promoting ERK/MAPK signalling137. Furthermore, down regulation of uPAR results in cell 

dormancy in epidermoid carcinoma HEp cancer cells as a consequence of an impaired 

uPAR-α5β1 integrin interaction which causes a reduction of ERK and FAK mediated-

signalling138. A recent in vivo study provided direct evidence that the uPAR-VN interaction 

influences tumour growth likely because the interaction strengthens the uPAR-dependent 

adhesion and proliferation signalling139. 

 

5.4.2 Angiogenesis 

Another important biological event necessary for tumour growth and invasion is 

angiogenesis. Angiogenesis requires the formation of new blood vessels, a process 

mediated by the migration of endothelial cells and new ECM synthesis (reviewed in140). In 

this context, the uPAR-uPA interaction is involved both in ECM remodelling (reviewed 

in141), allowing the flux of new endothelial cells in the tumour stroma, and in the activation 

and release of pro-angiogenic factors such as FGF-2, TGF-β and VEGF (reviewed in136). 

Moreover, angiostatin142 and K1-5143, products derived from plasmin proteolysis, can act as 

potent angiogenesis inhibitors. As a consequence, uPAR-uPA interaction may exert both 

pro- and anti-angiogenic effects that can be dependent on the stage of angiogenesis. Also 

PAI-1 shows a dual behaviour that may be related to the concentration of the inhibitor. It 

can sustain angiogenesis at basal concentration (nanomolar range) but an increase to a 

micromolar range results in an anti-angiogenic effect144. 

 

5.4.3 Invasion 

The first characterised cancer-related uPA-system function is the trigger of pericellular 

proteolysis thus to support cancer invasion. During invasion cancer cells penetrate and 

remodel ECM according to the different tumour needs. As reviewed by Duffy145, this 

demand is accomplished by different proteases such as MMPs, cathepsins, heparinases, 
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uPA and Pli. The positive feedback loop between uPA and Pli is fundamental to sustain 

ECM proteolysis. As already mentioned, despite uPA, Pli may sustain extensively ECM 

proteolysis degrading different ECM components including fibrin, LN, FN and perlecan. 

In addition, plasmin may further support ECM proteolysis activating the precursor form of 

MMPs, which in turn break down ECM components. The uPA-system proteolytic 

functions may also favour the release of pro-invasive factors. ECM-associated TGF-β may 

be released as a consequence of protease-dependent ECM degradation. Free TGF-β can 

exert a dual role in tumourigenesis, tumour suppressor in early stage and metastasis 

promoter in later steps146. Finally, ECM degradation products can acquire pro-tumour 

features as shown for LN5147 and FN148. The role of uPA-system-mediated ECM 

remodelling to sustain invasion149 and intravasation150 has been also shown in vivo 

performing experiments in chicken embryos. 

 

5.4.4 Metastasis 

In order to metastasise, tumour cells migrate from their primary site to a distant organ. 

Therefore migration and adhesion are two important biological processes involved in the 

metastasis formation. Both branches of the uPA-system functions are involved in tumour 

metastases. The proteolytic functions may sustain migration through a limited ECM 

degradation and release of motility factors such as FGF-2 and TGF-β, while uPAR-

initiated cell signalling can enhance cell adhesion in consequence of the cross talk with 

integrins (reviewed in96). It has been shown that the expression of uPA, Plg/Pli, uPAR and 

PAI-1 is up regulated during migration151 and several studies have suggested the 

importance of the uPA-system components in this process. Indeed, antisense 

oligonucleotides against uPA inhibit migration in vitro152 and Plg/Pli enhances cell 

migration since an enzymatically inactive uPA, but proficient for uPAR binding, inhibits 

cell migration of endothelial cells153. In monocytes a pro-migratory effect is also exerted by 

uPAR alone through the interaction with the integrin αMβ2
154. PAI-1 inhibits instead cell 
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migration, independently of the inhibition of uPA, interfering in the binding of VN with 

integrins133,134. 

 

5.4.5 uPA-system in breast cancer 

A great deal of effort was invested to determine the localisation of the uPA-system 

components in breast cancer tissue. Immunohistochemistry and in situ hybridization 

analyses conducted on breast cancer patients’ tissues have shown that the uPA-system 

components are mainly localised in the stromal compartment155,156,157. Specifically, 

colocalisation experiments revealed that uPA is mainly expressed by a subset of 

myofibroblasts, macrophages and capillary endothelial cells158. Nevertheless, the 

expression of uPA in the tumour epithelial compartment is not completely ruled out159,160. 

uPAR expression in ductal breast carcinoma is particularly evident in macrophages161. Yet, 

the localisation of uPAR in a subpopulation of different type of cancers has been also 

proposed159,160,162. Subsequently, Nielsen et al.163 unambiguously demonstrated the 

prominent localisation of both uPA and uPAR in myofibroblasts and macrophages in early 

invasive foci of ductal carcinoma in situ (DCIS). Also PAI-1 staining indicated a stromal 

localisation especially in a subpopulation of myofibroblasts, myoepithelial cells and 

endothelial cells164 but the localisation in breast and skin tumour cells was also 

observed159,160. 

Breast cancer provided the first evidence of the role of uPA-system components as 

prognostic factors. The prognostic value of uPA and PAI-1 in breast cancer has been 

extensively studied along the years. Duffy et al.165 firstly showed that in primary breast 

carcinoma elevated levels of uPA were associated with poor prognosis. Subsequently, 

Look et al.166 revealed that high level of PAI-1 was also associated with poor outcomes in 

primary breast cancer. Nowadays uPA and PAI-1 are among the strongest independent 

breast cancer prognostic markers with the highest level of evidence (LOE-1)167. In lymph 

node-negative patients, the protein levels of uPA and PAI-1 are indeed useful to design 
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individualized treatment strategy. Specifically, the quantification of uPA and PAI-1 levels 

allows the identification of patients that may benefit from adjuvant chemotherapy168. High 

level of uPAR is also associated with negative outcome in breast cancer, even if the 

prognostic impact is less strong than uPA and PAI-1169. Interestingly, the mRNA level of a 

specific uPAR transcript variant, lacking the exons four and five (uPAR-del4/5), was 

significantly associated with disease-free survival (DFS)170. Both the wild type and uPAR-

del4/5 have been reported to be independent prognostic markers in lymph node negative 

breast cancer171. The localisation of uPAR may influence its impact on breast cancer 

prognosis since, in invasive breast carcinoma, the level of uPAR expression in cancer cells, 

but not in stromal cells, was significantly associated with patients’ prognosis, thus 

contributing to a more aggressive phenotype172.  

The widely adopted breast cancer classification, based on immunohistochemistry analysis, 

identifies three major breast cancer subtypes: hormone receptor positive (oestrogen and 

progesterone receptor positive, ER+/PR+), ERBB2 positive (ERBB2+) and triple negative 

(TN). The uPA-system components show some controversial correlation with the hormone 

receptor status. In vitro studies conducted in human breast cancer cell lines reported an 

arguable association between oestrogens and uPA expression. On the one hand, oestradiol 

(E2) was shown to enhance uPA expression in ER+ breast cancer cell lines173, on the other 

hand E2 is able to reduce uPA expression both at mRNA and protein level in ER+ MDA-

MB-231 variant eliciting a reduction of invasive capacity174. Also PAI-1 expression was 

found to be negatively affected by E2 in ER+ MDA-MB-231 variant; while no effect was 

observed on uPAR expression175. In vivo experiments reported that progesterone inhibits 

tumour growth of the triple negative breast cancer cell line MDA-MB-231, which highly 

expresses uPA-system components176. Nevertheless, in breast cancer patients a negative 

correlation between high levels of uPA177 and PAI-1178 with the ER and PR status was 

shown. On the contrary, no correlation between uPAR level and ER/PR status was 

observed179. In spite of these divergences, uPA, uPAR, PAI-1 levels were shown to be 
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predictive for the benefit of hormone therapy180,181. The ERBB2+ breast cancer represents 

approximately the 20% of breast cancer subtypes. It is characterised by the over expression 

of ERBB2 (also known as HER-2), which is associated with poor clinical outcomes. 

uPA/PAI-1 levels and ERBB2 status were considered independent prognostic markers, 

which provide complementary information about DFS, overall survival (OS) and therapy 

in lymph-node negative patients182. Several studies showed the co-amplification and co-

expression of uPAR and ERBB2 in advanced breast cancer circulating tumour cells 

(CTCs), in touch preps (TPs) of frozen primary breast carcinomas183,184 and in bone marrow 

micro metastatic cells185. The possibility of cooperation between uPAR and ERBB2 has 

been also supported in vitro. Different studies showed indeed the existence of a cross talk 

between EGFR family and uPAR in different cancer cell lines, which enhanced a 

proliferative signalling mainly by ERK and Src89,186,187,188. 

 

5.5 GENE REGULATION OF THE uPA-SYSTEM  

 

The involvement of the uPA-system in a plethora of biological functions suggests a 

complexity in gene regulation both at gene and transcript level. The characterisation of the 

main players implicated in regulating the gene expression of the uPA-system components 

may be useful to define the molecular mechanisms, which alter the uPA-system expression 

during tumourigenesis. 

 

5.5.1 Transcriptional regulation 

 

5.5.1.1 PLAU  

The uPA gene PLAU is located at the positive strand of chromosome 10q22.2. It is 6.4 kb 

long and encodes for two transcript variants: the preprotein isoform 1 and the isoform 2. 

The isoform 2 is alternatively spliced at the 5' end, as a result of an additional downstream 



 47 

transcriptional start site (TSS), thus generating a shorter transcript, with a distinct N-

terminal, compared to isoform 1. The two transcripts are translated into the same identical 

protein uPA. 

PLAU is expressed endogenously at low level in a wide range of cells and its expression 

may be induced by various signalling molecules including growth factors, cytokines, 

peptide and steroid hormones, genotoxic agents and cell morphology changes (reviewed 

in189) . 

The PLAU minimal promoter region contains a canonical TATA-box, a 200 bp GC-rich 

region and one copy of CAAT sequence (fig. 6). The GC-rich region and the CAAT 

sequence are targeted by two main transcription factors: specificity protein 1 (SP1) and 

CCAAT-binding transcription factor (CTF) respectively, which are involved in the basal 

expression of PLAU. SP1 may be recruited upon ERK/Jun N-terminal kinase (JNK)-

mediated phosphorylation190.  

 

Figure 6: schematic representation of PLAU promoter. 

PLAU minimal promoter region contains a canonical TATA-box, a 200 bp GC-rich region and one copy of 

CAAT sequence. The GC-rich region and the CAAT sequence are targeted by two main transcription factors: 

SP1 and CTF, respectively. Additional transcription factor binding sites are reported in the promoter region. 

 

PLAU transcription may be also mediated by several enhancers located at -2.0 kb from the 

TSS191. Enhancer activity requires the cooperation with an upstream conserved composite 
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E26 transformation-specific (Ets)/activation protein 1a (AP1a) (Ets/AP1a) and a 

downstream AP1b sites. The two AP1 sites are separated by 74 bp long region, known as 

cooperation mediator (COM), containing binding sites for several urokinase enhancer 

factors (UEF) (fig. 6). In addition, another conserved Ets/AP1 site is present in the 

opposite orientation of the human uPA gene (reviewed in189).  

The Ets sites, characterised by the minimal consensus sequence GGAA, may bind many 

Ets family members even if only Ets1192,193,194,195 and Ets2196,197 have been found to activate 

PLAU expression. The AP1 sites are recognised by the transcription factor complex AP1, 

consisting of either homodimer of Jun or heterodimer of Jun and Fos family members198,199. 

The transcription factors, that bind the Ets/AP1 sites, may be activated by several MAPK 

signalling-mediated intracellular stimuli. As a consequence, the PLAU transcription 

responds to several stimuli including phorbol 12-myristate 13-acetate (PMA)200, okadaic 

acid201, cytoskeletal reorganization201, mechanical stimuli (e.g. laminar shear stress202), 

growth factors (e.g.  FGF-2203, HGF204,205 and IGF206), oncogenes207,208, genotoxic agents 

(e.g. UV209 and methylnitronitrosoguanidine (MNNG)210) and cytokines (e.g. tumour 

necrosis factors-α (TNF-α)211 and colony stimulating factor 1 (CSF-1)212,213). These 

signalling molecules mediate PLAU expression predominantly by ERK-induced signalling. 

On the contrary, genotoxic agents and TNF-α follow JNK-mediated PLAU promoter 

activation (reviewed in189). Furthermore, AP1 site may also mediate the repression of 

PLAU by the transcription factor E2F1214.  

The transcription of PLAU is also controlled by nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB) transcription factor since conserved NF-κB-like binding 

sequence at -1583 and two additional Rel-like binding sites in tandem repeats at -1865 and 

-1835 are located in PLAU human promoter215 (fig. 6). The NF-κB binding sequences seem 

to be sensitive to PMA stimulation that lead to the generation of NF-κB heterodimeric 

complexes: c-Rel/p65 and p65/p50215. The NF-κB binding sites are required for the 

αvβ3/VN-induced down regulation of PLAU216.  
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Cyclic adenosine monophosphate (cAMP) responsive enhancer was located in porcine 

uPA gene 3.4 kb upstream the cap site217,218. It is composed of three protein-binding 

domains, recognised by cAMP response element-binding protein (CREB), the activating 

transcription factor 1 (ATF1) and the LFB3 transcription factors219. cAMP-mediated PLAU 

activation in cell line derived from pig kidney epithelia has been shown to require physical 

interaction between CREB/ATF1 and LFB3 and to follow a tissue specific hormonal 

regulation220. In the end a negative regulator of the enhancer activity was found at -600 

bp221. 

In tumours, it has been shown that the over expression of PLAU seems to be mediated by 

NF-κB through the constitutive expression of RelA in pancreatic adenocarcinomas222. β-

catenin, instead, promotes PLAU expression in colorectal cancer through two different 

consensus motifs located at -737 (TBE1) and -562 (TBE2)223. The deregulation of PLAU 

expression has been also ascribed to changes in the methylation status of the promoter. 

Indeed, high PLAU expression is associated to a hypomethylation of the promoter in the 

triple negative breast cancer cell line MDA-MB-231224; while low PLAU expression, 

observed in the oestrogen receptor positive breast cancer cell line MCF-7, is due to the 

hypermethylation of the PLAU promoter225. 

 

5.5.1.2 PLAUR 

The uPAR gene PLAUR is located at the negative strand of chromosome 19q13.31 and 

consists of seven exons. Exon 1 encodes the 5’UTR and the signal peptide while the exons 

2-3, 4-5, 6-7 encodes the domains DI, DII and DIII, respectively226. Different splicing 

variants spanning 22 to 24 kb are reported, even if a complete characterisation has not been 

fully assayed yet227. Use of an alternative exon 7, lacking the GPI anchor, so as to encode 

for a soluble form of PLAUR, was documented both in mouse228 and human229; variants 

lacking exon 5 and 4-5 have been also described226,227. The different transcript variants may 
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be translated in likewise different proteins, even if the most abundant is the one derived 

from the transcript variant 1227. 

PLAUR is expressed in many different cell types at low level in a tissue specific manner230 

(reviewed in189). Several stimuli may enhance PLAUR expression including oncogenes, 

cytokines, hormones and growth factors (reviewed in189).  

A strong promoter regulates PLAUR expression. The promoter region, which shows the 

maximal activity, consists of 188 bp between -141 and +47 relative to the TSS231. It is 

characterised by the lack of conventional TATA and CAAT boxes but the presence of a 

short CpG-rich island, recognised by SP1 transcription factor231. Several sequences related 

to consensus cis-acting elements for AP1 (-70; -184)232, AP2 (-170)231, NF-κB (-45)233 and 

SP1 transcription factors (-94; -103)231, involved in the basal PLAUR expression (reviewed 

in 189) have also been identified (fig. 7). The Kruppel-like factor 4 (KLF4) has been also 

identified as new transcription factor, which promotes PLAUR expression234.  

 

Figure 7: schematic representation of PLAUR promoter. 

The promoter region, which shows the maximal activity, consists of 188 bp between -141 and +47. It is 

characterised by the lack of conventional TATA and CAAT boxes but the presence of a short CpG-rich 

island recognised by SP1 transcription factor. The additional transcription factor binding sites are reported in 

the promoter region. 

 

Different studies provided some biological mechanisms involved in PLAUR transcription. 

Namely, PMA235,236 and Ras-dependent237 PLAUR expression involves a combination of 

+1!

CpG 
island!

-141! +47!

Maximal promoter 
region activity!

NF-κB !AP-1/SP1!SP1! SP1!

-70!-94! - 45!-103!

AP-2!

-170!

AP-1!

-184!

PEA3!

-249!

AP-1!

-465!

SP1!

AP-2!

KLF4!KLF4!

-51!-105!

-154!



 51 

downstream ERK/JNK activation, which elicits the nucleus translocation of c-Jun/JunD 

heterodimers; in turn c-Jun/JunD activates PLAUR expression binding the AP1 site. 

Furthermore, it has been shown that TGF-β promotes PLAUR transcription through the 

binding of SP1 at -70 bp from the TSS in human monocyte-like cells U937238. A silencing 

motif has been also identified at -249 bp consisting of PEA3/Ets binding site239 (fig. 7). 

PEA3 is involved in the silencing of PLAUR upon uPAR-β3 integrin interaction239, thus 

supporting the hypothesis of a feedback loop between uPAR-mediated adhesion and 

proteolysis. In addition, over expression of the integrin binding protein β3-endonexin 

decreases PLAUR expression through the binding with the p50/p65 transactivation 

complex thus inhibiting the association of the κB site to the NF-κB transcription factor240.  

PLAUR is highly expressed in almost all cancer tissue241,242,160 and a predominant 

expression in stroma compartment has been observed163. Tumour-specific transcription 

factors binding a AP2/SP1 site have been identified in gastrointestinal tumours243. 

Moreover, two AP1 consensus motifs have been shown to be required for the PMA-

inducible PLAUR expression in colon cancer cells235,232. Recently, it has been observed that 

the over expression of B-cell lymphoma 2 (BCL-2) in breast cancer cells, in hypoxia 

condition, provokes SP1-mediated PLAUR expression induced by ERK1/2 signalling244. 

 

5.5.1.3 SERPINE1  

The PAI-1 gene SERPINE1 is located at the positive strand of chromosome 7q22.1. It is 

transcribed into a single pre-mRNA, which may generate two different transcripts: a long 

isoform 3.2 kb long and a short one 2.2 kb long. The two mRNAs codify for the same 

protein since they differ only for the polyadenylation site, which confers a more extended 

3’UTR to the long transcript245,246. 

SERPINE1 is expressed in almost all cell types but mainly in adipocytes, hepatocytes and 

endothelial cells and the expression may be induced by different stimuli including growth 

factors, inflammatory cytokines and hormones (reviewed in189).  
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SERPINE1 promoter is characterised by a consensus TATA box and the presence of 

several binding sites for AP1, AP2, CCAAT-binding transcription factor nuclear factor I 

(CTF/NF-1) and SP1 transcription factors (reviewed in189) (fig. 8).  

 

Figure 8: schematic representation of SERPINE1 promoter. 

SERPINE1 promoter is characterised by a consensus TATA box and is responsive to several stimuli. The 

main transcription factor biding sites, together with the polymorphism 4G/5G are reported.  

 

SERPINE1 transcription is susceptible to PMA stimulation, which enhances the binding of 

c-Jun homodimers to AP1 sites247,248. Transcription factors, belonging to switch/sucrose 

non-fermentable (SW1/SNF) family of proteins, have been identified to induce SERPINE1 

transcription both in human249 and mouse250.  

An extracellular signal particularly involved in the induction of SERPINE1 expression is 

TGF-β. In the human hepatocellular carcinoma cell line HepG2, sequences displaying high 

homology to the consensus binding sites for CTF/NF-I and the ubiquitous factor E-box 

have been identified as TGF-β responsive elements251. Thereafter, in the same cell line 

other three TGF-β responsive elements, termed CAGA boxes, have been found (fig. 8). 

They cooperate for TGB-β-mediated SERPINE1 expression through the interaction with 

SMAD3/SMAD4 heterodimers252. In human hepatoma Hep3B cell line a 12 bp-long 

sequence, called TGF-β responsive sequence (TRS), which overlaps with the CAGA box, 

has been reported to mediate a strong transcriptional activation upon TGF-β binding when 

multiple copies are located upstream of the promoter253. In fibrosarcoma-derived HT 1080 
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cells, it has been shown that the transcription factor E-box 3 (TFE3)-binding protein 

synergises with SMAD3/SMAD4 complex to mediate TGF-β induction of SERPINE1 in a 

SMAD3 phosphorylation-dependent manner. This synergism acts through the 

simultaneous binding of TFE3 with an E-box spanning -568 to -563 bp, and of the 

SMAD3/SMAD4 with a sequence immediately upstream the CAGA boxes (-590 to -

572)254. Another example of TGF-β regulation of the SERPINE1 expression has been 

proposed: TGF-β is able to elicit the interaction between SMAD3 and SP1 through two 

SP1-binding sites255. This new mechanism might underline the predominance of SP1 site in 

TGF-β-dependent SERPINE1 expression against the TGF-β-responsive elements. Indeed, 

SP1 mediates SERPINE1 transcriptional activation by other mediators including 

glucose/glucosamine256,257, fatty acids258 and angiotensin II259. 

Another important signal implicated in the regulation of SERPINE1 expression is cAMP. 

Indeed, an increase of intracellular cAMP level promotes a decrease of SERPINE1 

expression260. The mechanism proposed hypothesises that cAMP inhibits PMA-induced 

transcription via the proximal AP1 site interfering with the c-Jun homodimer binding261.  

Glucocorticoids are potent promoters of SERPINE1 expression in different cells and 

tissues (reviewed in262). Two glucocorticoid-responsive elements have been identified in 

SERPINE1 promoter between positions -100 to +75 and -800 to -549263 but show little 

homology with the standard glucocorticoid response element (GRE) consensus sequence 

suggesting an indirect mechanism of activation. 

SERPINE1 may be responsive also to the glucose; indeed high level of SERPINE1 has 

been observed in diabetes264. Glucose regulates SERPINE1 expression through two SP1 

sites located between -85 to -42 bp in vascular smooth muscle cells265. The exact 

mechanism involved in the glucose-mediated SERPINE1 expression has not been fully 

understood. In pathological conditions such as obesity and insulin-resistance an increase of 

PAI-1, TNF-α, TGF-β and insulin levels has been observed. In this context, SERPINE1 

promoter activation seems to be mediated by TNF-α via, at least partially TGF-β 
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activation 266; indeed a functional NF-κB binding site responsive to TNF-α has been 

located at -15 kb in SERPINE1 promoter 267 (fig. 8). The over expression of SERPINE1 

may be also due to insulin268. Ligand-bound insulin receptor can trigger the activation of 

both ERK and phosphatidylinositol-3-kinases (PI3K) and the former sustains SERPINE1 

expression through AP1 transcription factor269. Finally, SERPINE1 gene may be also 

negatively regulated by the E2F family members214 that are transcription factors known to 

regulate cell-cycle-related genes.  

An unusual mechanism of increase in basal transcription of SERPINE1 is based on the 

allele-specificity. One polymorphism of SERPINE1, consisting of a single nucleotide 

insertion/deletion (4G/5G), is identified in the promoter region (fig. 8). The 4G allele has 

been associated with higher plasma PAI-1 activity270. Transcriptional studies have shown 

that both alleles bind a specific transcription factor but only the allele 5G is also able to 

interact with a repressor protein271.  

Other mediators of SERPINE1 expression include the serum in quiescent cells272, 

endotoxin273 and lipopolysaccharide (LPS)274 in endothelial liver cells and growth factors 

such as EGF275, heparin-binding EGF-like growth factor (HB-EGF)276, VEGF277,278 and 

FGF-2279. 

Malignant and invasive tumours show an up regulation of PAI-1. The expression of 

SERPINE1 may be related to the onco-suppressor p53 through the binding with a p53-

binding site located at -159 to -134 on the SERPINE1 promoter280 (fig. 8). In addition, 

SERPINE1 expression is regulated by hypoxia. Hypoxia is a phenomenon occurring in 

different pathological condition including tumour (reviewed281). This condition supports 

the activation of several genes through an increase of the hypoxia-inducible factors 1 (HIF-

1) transcription factor level282. SERPINE1 is strongly positively regulated by hypoxia in 

human endothelial cells283 and different mechanisms have been suggested. In rat hepatoma 

cells putative hypoxia-responsive elements (HRE) 1 and HRE2 have been characterised284. 

Yet the upstream stimulatory factor-2a (USF-2a) interacts with HRE1 down regulating 
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SERPINE1 expression285. Therefore HIF-1 and USF-2a balance the effect of hypoxia on 

SERPINE1 expression. Also in HepG2 cells HIF-1-dependent SERPINE1 expression is 

mediated by a HRE (fig. 8); furthermore, in the same cells, it has been reported that 

hypoxia-mediated SERPINE1 induction may be suppressed by p38MAPK and PI3K 

inhibitors286. A similar behaviour has been also observed in freshly prepared human keloid-

derived fibroblasts287. 

 

5.5.2 Regulation of mRNA stability 

 

5.5.2.1 PLAU 

PLAU mRNA stability is dependent on either positive or negative regulators, which have 

been characterised over the last years. 

In LLC-PK1 pig kidney epithelial cells, it has been observed that PLAU mRNA, induced 

by cAMP or PMA, shows a short half-life of 70 minutes but the inhibition of the protein 

synthesis by cycloheximide, puromycin or pentamycin stabilises PLAU mRNA288,289. In the 

same cells, it has been observed that PLAU mRNA half-life can be prolonged by down 

regulation of the protein kinase C (PKC)290 and Ca2+ 291. In addition, in human colon cancer 

cells HCT116, PMA and cycloheximide increase PLAU mRNA accumulation acting both 

at transcriptional and post-transcriptional level292. The metastatic rat mammary tumour cell 

line MAT 13762 shows high PLAU level that may be affected upon dexamethasone 

treatment293; in human transformed keratinocyte cell line, 2,3,7,8,-tetrachlorodibenzo-p-

dioxin (TCDD) stabilises PLAU mRNA294. 

The finding that the insertion of PLAU 3’UTR upstream the poly(A) of a stable globin 

mRNA makes it unstable suggested that the main determinants of PLAU mRNA instability 

are located within the 3’UTR295. Three regions have been found to contribute to the 

instability of PLAU mRNA: a sequence with a stem-structure, a region requiring on going 

transcription to destabilise the mRNA and the ARE sequences295. The latters are the most 
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important defined mRNA instability elements. They consist of AU-rich sequences defined 

as AU-rich responsive elements (AREs). The AREs are characterised by pentameric 

(AUUUA) or nonameric (UUAUUUAUU) sequences296,297 and are classified into three 

classes (I, II, III) according to the presence or not of the pentamer and how these motifs are 

arranged298. PLAU 3’UTR harbours 50 nt long highly conserved class I ARE characterised 

by two distinct AUUUA and AUUUUUA motifs295. It was firstly defined as the region 

responsible for PLAU mRNA stabilisation induced by the down regulation of PKC295. The 

increase of PLAU expression observed in breast cancer cells is mainly due to an 

impairment of ARE-mediated mRNA degradation that results in a longer mRNA half-

life299. The ARE-mediated PLAU mRNA degradation mechanism has been found to 

depend in vitro on the binding of the heterogeneous ribonuclear protein C (hnRNP C) to 

the AREs sequence299. On the contrary, the constitutive activation of mitogen-activated 

protein kinase-activated protein kinase 2 (MK2) sustains PLAU mRNA stability300,301 likely 

through the cytoplasmic accumulation of the ARE-binding protein HuR, whose interaction 

with the AREs stabilises PLAU mRNA300. Other AREs binding proteins have been 

identified: nuclear factors associated with dsRNA (NFAR) and DExH RNA helicase 

associated with AU-rich element (RHAU) (also known as DEAH box protein 36 

(DHX36))302. The latter provided a mechanism for the ARE-dependent degradation of 

PLAU mRNA. Namely, DHX36 recruits the deadenylase poly(A)-specific ribonuclease 

(PARN) and exosomes to PLAU 3’UTR AREs. DHX36 and PARN synergise the 

degradation of mRNA through the PARN-mediated deadenylation and the displacement of 

the mRNA stabiliser AREs binding proteins HuR and NFAR by a DHX36-adenosine 

triphosphate (ATP)-dependent mechanism. The hydrolysis of ATP elicits the association of 

exosomes to the AREs thus directing the mRNA degradation302.  
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5.5.2.2 PLAUR 

The first characterised post-transcriptional stabilisers of PLAUR mRNA were pro-

inflammatory agents such as PMA, LPS and TGF-β in lung carcinoma cells303,304. 

Subsequently, phosphoglyceraldeide kinase (PGK), a PLAUR mRNA binding protein, 

which binds a 51 nt long sequence within the coding region, has been identified. Over 

expression of PGK in lung carcinoma cells line results in a decrease of PLAUR mRNA 

level and cell surface uPAR protein expression305.  

In line with PLAU regulation of mRNA stability, also PLAUR 3’UTR harbours an 

approximately 50 nt conserved class I ARE, marked by the nonameric motif 

(UUAUUUAUU)306. Indeed, experiments conducted in Jurkat T and HeLa cells showed 

that this region confers instability to a β-globin mRNA suggesting that PLAUR 3’UTR is 

fundamental for the regulation of mRNA instability. In addition, it has been found that the 

lymphocyte-function-associated antigen-1 (LFA-1) induces PLAUR mRNA stabilisation306 

as well as the AREs binding protein HuR300. In PLAUR transfected kidney cells307 and in 

non-small cell lung cancer primary cells308, it has instead been reported that uPA acts at 

PLAUR post-transcriptional level increasing the activity of a novel unknown factor.  The 

binding of this factor to the coding region of PLAUR mRNA seems to stabilise the 

transcript. 

 

5.5.2.3 SERPINE1 

In line with the other uPA-system components, SERPINE1 mRNA stability depends on 

both AREs within the 3’UTR and several different signalling molecules. 

As reviewed by Nagamine et al.189, the 3’UTR of the longest SERPINE1 transcript shows 

one copy of the AUUUA, which confers less stability compared to the shorter counterpart. 

On the other hand, the signalling molecules able to affect SERPINE1 mRNA stability 

include growth factors, cytokines and hormones. In human HepG2 hepatoma cell line, 

TGF-β309 and insulin310 increase the 3.2 kb transcript half-life but no effect is observed in 
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the 2.2 kb transcript. Conversely, IGF-1 stabilises both SERPINE1 transcripts310. 8-bromo-

cAMP, a cyclic nucleotide analogous, causes a decrease of SERPINE1 mRNA level in 

HTC rat hepatoma cells; while SERPINE1 3’UTR may affect the instability of a β-globin 

mRNA in a cAMP-dependent manner311. This observation suggests that PAI-1 cAMP-

responsive elements (PAI-CRS) might be located within SERPINE1 3’UTR, as it has been 

later demonstrated311,312. Even if PAI-CRS binding proteins have been isolated, their role in 

SERPINE1 mRNA level regulation has not been completely elucidated yet. Other 

regulators of SERPINE1 mRNA half-life have been defined including the osteogenic 

protein-1313, angiotensin II314,315 and Rickettsia rickettsii infection316. 

 

5.6 uPA-SYSTEM AND microRNAs  

 

5.6.1 microRNAs  

microRNAs (miRNAs) are a class of small, approximately 21 nt-long, non-coding RNAs 

involved in the post-transcriptional regulation of gene expression. The majority of 

microRNAs are encoded from dedicated miRNA gene loci whereas roughly the 30% 

derived from introns of protein-coding genes. The process of miRNA biogenesis is 

schematically illustrated in fig. 9. In the nucleus the microRNA sequence is transcribed by 

a RNA polymerase II (Pol II) into a capped, spliced and polyadenylated primary double 

strand miRNA (pri-miRNA)317, which may give rise to a single miRNA or cluster of 

miRNAs. The pri-miRNA is folded into a hairpin structure characterised by an imperfect 

base-paired stem and is processed into a mature miRNA by the RNase III type 

endonucleases DROSHA and DICER in a two-steps mechanism. Specifically, the 

DROSHA and Di George syndrome critical region gene 8 (DGCR8) form a complex 

(called microprocessor), which fosters the DROSHA-mediated cleavage of one strand 

portion of the pri-miRNA thus generating 60-70 nucleotides-long hairpin double strand 

precursor miRNA (pre-miRNA)318,319. The pre-miRNA is exported into the cytoplasm by 
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exportin 5320 where it is further cleaved by the RNAse III DICER, complexed with the 

TAR RNA binding protein (TRBP), to generate the mature double strand miRNA321. 

Subsequently, one strand, generally the 3’, is degraded while the 5’ end is selected as 

functional mature miRNA322. In order to induce repression of the gene expression, the 

mature miRNA is assembled into the ribonucleoprotein (RNP) complex micro-RNPs 

(miRNPs), also known as miRNA-induced silencing complex (miRISCs), through the 

interaction with the Argonaute (AGO) family protein, key components of the miRISCs, 

together with GW182 family proteins (Gregory 2005).  

 

Figure 9: miRNA biogenesis. 

The figure summarises the miRNA biogenesis. In the nucleus the microRNA sequence is transcribed by a 

RNA polymerase II in a double strand pri-RNA. The pri-miRNA is converted in a double strand precursor, 

the pre-miRNA, by DROSHA together with DGCR8. The pre-miRNA is exported into the cytoplasm and 

converted into the mature form by the complex DICER/TRPB. The functional strand of the mature miRNA is 

loaded, through the interaction with the AGO proteins, into the RISC complex to silence target mRNAs 

through inhibition of mRNA translation or mediating mRNA degradation. 

 

GW182!AGO!
AGO!AGO!

Adapted from Winter J., Nat Cell Biol. 2009!
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The miRNA-mediated repression of gene expression is mainly based on an imperfect 

binding between the miRNA and the 3’UTR of the target mRNA. Nevertheless, a 

continuous and perfect base pairing between a 2-8 nucleotides-long miRNA sequence, 

called seed region, and the 3’UTR is a stringent requirement323. The binding of a miRNA 

to the target mRNA elicits either inhibition of mRNA translation or mRNA degradation, 

on the one hand interfering with the translational machinery324,325,326, on the other hand 

sustaining the destabilisation of the mRNA through a miRNA-mediated mRNA 

deadenylation and decay327,328,329. According to these mechanisms, miRNAs may target 

hundreds of different mRNAs and a single mRNA may be regulated by different miRNAs. 

Several miRNAs are involved in the regulation of tumour-promoting or tumour-suppressor 

genes; as a consequence, an alteration of the miRNA levels may exert a role in the 

tumourigenesis process.  

 

5.6.2 miRNAs-mediated post-transcriptional regulation of the uPA-system components 

The post-transcriptional regulation of the uPA-system components is also dependent on 

several microRNAs. Defects of this mechanism of gene regulation may be associated to 

the tumour-promoter function of this system.  

PLAU expression is mainly modulated by miR-193a/b in breast330,331,332,333, prostate334 and 

liver cancer335. In hepatocellular carcinoma (HCC) PLAU expression is also regulated by 

miR-23b336 as also in human papillomavirus (HPV)-mediated cervical cancer337 and in the 

angiogenesis process338. miR-181 family members have also been shown to influence 

PLAU expression in breast cancer332,333 and fibrosis339. In addition, an indirect mechanism 

has been proposed to stabilise PLAU mRNA through miR-29a-mediated HuR expression 

in breast cancer340. 

Different miRNAs may also directly target PLAUR mRNA341,342,343,344. Moreover, the 

indirect regulation of PLAUR may also occur through the targeting of transcription factors, 

as shown for miR-10b-mediated homeobox D10 (HOXD10) inhibition in glioma cells345,346 
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and HCC347 and for miR-155-mediated indirect AP1 activation in breast cancer cell lines 

by a miR-155/MAPK/AP1 mechanism348. Finally, through an indirect mechanism miR-

146a is able to target both PLAUR and PLAU in mouse brain metastases349. 

Consistently with the versatility of SERPINE1 in different biological functions, it is 

targeted by a plethora of miRNAs. miR-30 family is involved in SERPINE1 regulation 

during adipocyte differentiation350,351, endothelium formation352 and gastric cancer353. miR-

34 family regulates SERPINE1 directly in human choriocarcinoma cell line354 and in lung 

epithelium355, indirectly through the repression of an inhibitor of KLF4 transcription factor 

during endothelium formation356.  

 

5.7 AIM 

In the last years the microenvironment is emerging as a new important hallmark of cancer. 

During tumourigenesis, the microenvironment continuously arranges itself in order to 

support tumour onset and progression. The study of the determinants, which might have a 

role in the plasticity of the tumour microenvironment, has been receiving increasing 

attention. The uPA-system is an important player in the homeostasis of the 

microenvironment sustaining both ECM proteolysis and the cross talk between the 

microenvironment and the epithelium compartment. The uPA-system has been extensively 

studied for its involvement in cancer pathogenesis. Indeed, both uPA-system-mediated 

pericellular proteolysis and signalling may sustain tumour growth, invasion and 

dissemination. In breast cancer the uPA-system components are often co-over expressed 

and high levels are associated with poor clinical outcomes. Specifically, uPA and PAI-1 

are among the strongest prognostic markers whereas uPAR has been proposed to cooperate 

with ERBB2 in the aggressiveness of the ERBB2+ breast cancer subtype.  

The regulation of the gene expression of the uPA-system components is very complex and 

depends on a plethora of stimuli acting both at transcriptional and post-transcriptional level. 

In the promoter region, specific enhancers and responsive-elements have been 
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characterised for each uPA-system component. Studies on the post-transcriptional 

regulation reported that the mRNA half-life is mainly dependent on “instability elements”, 

known as AU-rich elements (AREs). Furthermore microRNAs, which modulate directly or 

indirectly the expression of the uPA-system components are emerging.  

Taken into account the relevance of uPA-system in tumourigenesis, the aim of the present 

study is to characterise the molecular mechanisms that orchestrate the coordinated over 

expression of the uPA-system components in the context of breast cancer. 
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6. MATERIALS AND METHODS 

 

6.1 PATIENTS AND MATERIALS 

 

DNA and cDNA samples of an unselected cross-section of 133 primary breast cancer 

patients were kindly provided by Dr. Paul N. Span (Radboud University Nijmegen 

Medical Centre, NL). Scramble lentiviral vector (SBI) and the packaging vectors VSV-G, 

pMDL and REV (Addgene) were kindly gifted by Dr. P.P. Di Fiore (IFOM, Milan) and Dr. 

F. D’Adda di Fagagna (IFOM, Milan), respectively. suPAR used for the immunoassay 

standard curve was produced in our laboratory according to the protocol described in 

Resnati et al.79; uPA and PAI-1, employed for the immunoassay standard curve, were 

kindly provided by Dr. J. Henkin (Abbott Laboratories Abbott Park, IL, USA) and Dr. P.A. 

Andreasen (Århus University, Denmark), respectively. α-uPAR monoclonal antibody R2 

and α-PAI polyclonal antibody are a kind gift of Dr. G. Høyer-Hansen (Finsen Laboratory, 

Denmark) and Dr. P.A. Andreasen (Århus University, Denmark), respectively. α-uPAR 

and biotinylated α-uPAR polyclonal antibody SI369 and α-uPA and biotinylated α-uPA 

polyclonal antibody SI367 were generated in IFOM Antibody Facility immunising rabbits 

with the following made in house antigens: 

human pro-uPA: 

SNELHQVPSNCDCLNGGTCVSNKYFSNIHWCNCPKKFGGQHCEIDKSKTCYEGNG

HFYRGKASTDTMGRPCLPWNSATVLQQTYHAHRSDALQLGLGKHNYCRNPDNR

RRPWCYVQVGLKPLVQECMVHDWADGKKPSSPPEELKFQCGQKTLRPRFKIIGGE

FTTIENQPWFAAIYRRHRGGSVTYVCGGSLISPCWVISATHCFIDYPKKEDYIVYLG

RSRLNSNTQGEMKFEVENLILHKDYSADTLAHHNDIALLKIRSKEGRCAQPSRTIQ

TICLPSMYNDPQFGTSCEITGFGKENSTDYLYPEQLKMTVVKLISHRECQQPHYYG

SEVTTKMLCAADPQWKTDSCQGDSGGPLVCSLQCRMTLTGIVSWGRGCALKDKP

GVYTRVSHFLPWIRSHTKEENGLVL 
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human suPAR: 

LRCMQCKTNGDCRVEECALGQDLCRTTIVRLWEEGEELELVEKSCTHSEKTNRTL

SYRTGLKITSLTEVVCGLDLCNQGNSGRAVTYSRSRYLECISCGSSDMSCERGRHQ

SLQCRSPEEQCLDVVTHWIQEGEEGRPKDDRHLRGCGYLPGCPGSNGFHNNDTFH

FLKCCNTTKCNEGPILELENLPQNGRQCYSCKGNSTHGCSSEETFLIDCRGPMNQC

LVATGTHEPKNQSYMVRGCATASMCQHAHLGDAFSMNHIDVSCCTKSGCNHP 

 

6.2 CELL CULTURE 

 

6.2.1 Cell lines 

The human embryonic kidney (HEK) 293 cell line and the variant expressing the large T 

antigen HEK 293T were purchased from DSMZ and ICLC, respectively. They are cultured 

in Dulbecco's modified Eagle's medium (DMEM) (Lonza) supplemented with 10% foetal 

bovine serum south American (FBS SA) (Biowest), 5 mM L-glutamine (Microtech®), 100 

U/mL penicillin (Microtech®), 100 U/mL streptomycin (Microtech®) in humidified cell 

culture incubator (Galaxy S RSBiotech, Scientific Laboratory Supplies) at 37 °C, 5% CO2. 

The NCI-60 panel cell lines were purchased from the National Cancer Institute (Bethesda, 

MD) and cultured in Roswell Park Memorial Institute (RPMI) 1640 (Lonza) supplemented 

with 10% FBS north American (NA) (Sigma-Aldrich®), 5 mM L-glutamine (Microtech®), 

100 U/mL penicillin (Microtech®), 100 U/mL streptomycin (Microtech®) in humidified 

cell culture incubator (Galaxy S RSBiotech, Scientific Laboratory Supplies) at 37 °C, 5% 

CO2. 

 

6.2.2 Transfections 

MDA-MB-231 cells (NCI-60), cultured in antibiotics-free medium, were reverse 

transfected for 48 h with 10 nM oligonucleotides [miR-340 mimic/control (Life 

Technologies), esiRNAs/controls (Sigma-Aldrich®)] mixed with Lipofectamine® 
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RNAiMAX transfection reagent (Life Technologies) diluted in Opti-MEM® (Life 

Techologies). The transfection mix was incubated at room temperature (rt) 20’ in the dark 

before transfecting cells. 

 

6.2.3 Infections 

Viral particles were produced co-transfecting 5*105 HEK 293T cells, plated in complete 

medium, with the packaging vectors VSV-G, pMDL and REV (Addgene) and either the 

miR-340 precursor construct pMIRNA1 (SBI) or scramble lentiviral vector (SBI). The 

supernatant containing the virus particles was collected, filtered and added to MDA-MB-

231 cells in order to generate the stable over expression of the miR-340 precursor or 

scramble miRNA. 

 

6.3 MOLECULAR BIOLOGY 

 

6.3.1 Nucleic acid extraction and cDNA synthesis 

 

6.3.1.1 DNA extraction 

IFOM Cell Biology Unit provided 2*106 cell pellet of MCF10A (ATCC®) and 3.2*106 of 

MDA-MB-231 (ATCC®) cell lines. The genomic DNA was extracted using Genomic 

DNA Buffer Set with Genomic-tip 20/G (QIAGEN) following the manufacturer’s 

instructions. The DNAs were suspended in Tris-HCl pH 8.5 at 55 °C 2 h in Thermomixer 

compact (Eppendorf) and quantified by a microvolume UV spectrophotometer 

(NanoDrop® ND-1000). The plasmidic DNA was extracted using Wizard® Plus SV 

Minipreps DNA purification system (Promega) or QIAGEN® Plasmid Maxi Kit 

(QIAGEN) according to the manufacturer’s instructions. Murine DNAs were extracted 

from tail biopsies stored in ethanol at rt. Tails were digested in 50 μl of lysis buffer [0.1 M 

Tris-HCl, 5 mM ethylenediaminetetraacetic acid (EDTA), 0.2% sodium dodecyl sulphate 
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(SDS), 0.2 M NaCl] supplemented with 0.1 mg/ml proteinase K (PK) (Roche) at 55 °C 

over night (o/n) in Thermomixer compact (Eppendorf). The PK was inactivated incubating 

at 95 °C for 5’ in Thermomixer compact (Eppendorf). The DNAs were suspended in 600 

μl of Milli-Q (MQ) H2O (Q-POD® Element, Merck Millipore).  

 

6.3.1.2 RNA extraction and cDNA synthesis 

Cells were rinsed twice with sterile 1X phosphate buffered saline (PBS) and detached 

incubating with 1X trypsin-EDTA (Microtech®) in 1X PBS at 37 °C. Cell suspension was 

collected and centrifuged at 1200 revolutions per minute (rpm) for 5’. The supernatant was 

discarded and the cell pellet collected. RNAs were extracted using miRNeasy Mini Kit 

(QIAGEN) following the manufacturer’s instructions. Possible DNA contamination was 

removed by 15’ of incubation with DNAse (QIAGEN) according to the manufacturer’s 

instructions. RNAs were eluted in 30 μl of MQ H2O (Q-POD® Element, Merck Millipore) 

and quantified by a microvolume UV spectrophotometer (NanoDrop® ND-1000). The 

RNA quality control was carried out by agarose gel electrophoresis. 

The complementary DNA (cDNA) was obtained by reverse transcription (RT) following 

the manufacturer’s instructions of the reverse transcriptase SuperScript II® (Life 

Technologies) for the random primers method357. RNA (1 μg) was mixed with 3 μg/μl of 

random primers (Life Technologies) diluted in MQ H2O (Q-POD® Element, Merck 

Millipore) and incubated at 65 °C for 5’ in a thermal cycler GeneAmp® PCR System 9700 

(Life Technologies). Subsequently a master mix composed of 5X Buffer FS, 10 mM 

dNTPs mixture (Promega), 100 mM dithiothreitol (DTT), 40 U/μl RNAse OUT™ and 200 

U/μl SuperScript II® was added. Different incubation steps were performed in thermal 

cycler GeneAmp® PCR System 9700 (Life Technologies) according to the following 

protocol: 25 °C, 5’; 50 °C, 50’ and 72 °C, 15’. All the reagents of the master mix were 

purchased from Life Technologies, except the dNTPs mixture. The cDNA for miR-340 

expression analysis was obtained using High-Capacity cDNA Reverse Transcription Kit 
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(Life Technologies) starting from 10 ng of 2 ng/μl RNA and following the manufacturer’s 

instructions. Different incubation steps were performed in Applied Biosystems® 2720 

Thermal Cycler (Life Technologies): 16 °C, 30’; 42 °C 30’ and 85 °C 5’. 

 

6.3.2 Genotyping  

The genotype of the mice was assayed by polymerase chain reaction (PCR) on genomic 

DNA extracted from mouse tail biopsies. PCR reaction was performed according to the 

manufacturer’s instructions of Go Taq G2 (Promega) and is composed of 10 μl of 5X 

buffer (Promega), 1 μl of 10 mM dNTP mixture (Promega), 2.5 μl each of 10 μM forward 

and reverse primer (Sigma Aldrich®), 0.25 μl of 5 U/μl Go Taq G2 (Promega) and 1 μl of 

DNA.  Amplification protocol: initial denaturation 95 °C, 4’; denaturation 95 °C, 30’’; 

annealing 55 °C, 1’; extension 72 °C, 10’; final extension 72 °C, 10’; 35 cycles in thermal 

cycler GeneAmp® PCR System 9700 (Life Technologies). 

forward primer (Sigma-Aldrich®): 5’ – AATTAAATTTTTCTTTCCCAAACA – 3’ 

reverse primer (Sigma-Aldrich®): 3’ – TCTAATAAAGTGAATAAACCGTTTTGA – 5’ 

 

6.3.3 Agarose gel electrophoresis 

Separation of DNA fragments by size was solved by agarose gel electrophoresis358 in Tris-

acetate-EDTA (TAE) 1X buffer. The agarose gel was obtained dissolving agarose (0.7-

2%) (GellyPhorLE, EuroClone®) in TAE 1X and 1X GelRed™ nucleic acid gel stain 

(Biotium). The size of fragments was determined by a 100 bp or 1 kb DNA ladder 

(Promega) and visualised in an UV trans illuminator (EuroClone®). The separation of 

RNA fragments was performed using the same procedure described above but using Tris-

borate-EDTA (TBE) 1X as electrophoresis buffer. 
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6.3.4 Quantitative polymerase chain reaction (qPCR) 

 

6.3.4.1 Copy number variation 

TaqMan® probe sets (Life Technologies) for PLAUR Hs02762685_cn (intron 1 - exon 2) 

or ERBB2 Hs02416554_cn (exon 18 – intron 18) and endogenous copy number reference, 

the telomerase reverse transcriptase (TERT) were mixed with 20 ng of genomic DNA 

samples and TaqMan® Universal PCR Master Mix, no AmpErase® UNG (Life 

Technologies) according to the manufacturer’s instructions. Each sample was analysed in 

triplicate in standard 96-well plates (Life Technologies) according to the following 

amplification protocol: initial denaturation 95 °C, 10'; denaturation 95 °C, 15"; 

annealing/extension 60 °C 1'; 40 cycles and analysed on a 7900HT Fast real-Time PCR 

System (Life Technologies). PLAUR and ERBB2 copy number was calculated as relative 

quantification (RQ = 2-ΔΔCt) according to the ΔΔCt method359. 

 

6.3.4.2 Gene expression analysis 

Gene expression analyses on breast cancer patients and cell lines were conducted by 

reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) using Taqman® 

low-density arrays (Life Technologies) or standard 96-well plates (Life Technologies), 

respectively. cDNA quality control was evaluated measuring the expression level of 18S, 

mixing 5 ng of cDNA with TaqMan® Universal PCR Master Mix, no AmpErase® UNG 

(Life Technologies) with the specific 18S Taqman® probe set (Life Technologies), in 

technical duplicates (breast cancer patients) or triplicates (cell lines) according to the 

manufacturer’s instructions and following the amplification protocol: initial denaturation 

95 °C, 10'; denaturation 95 °C, 15"; annealing/extension 60 °C, 1'; 40 cycles and analysed 

on a 7900HT Fast real-Time PCR System (Life Technologies). qPCR reactions, containing 

5 ng of cDNA, or 2 ng for miR-340 quantification, mixed with Taqman® Universal PCR 

Master Mix, no AmpeErase® UNG (Life Technologies) and the specific Taqman® probe 
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set (Life Technologies), were analysed on a 7900HT Fast real-Time PCR System (Life 

Technologies) according to the manufacturer’s instructions and using the previous 

amplification protocol. The expression levels were calculated according to the ΔΔCt 

method 359. 

The following Taqman® probe sets (Life Technologies) were used: 18S: Hs99999901_s; 

ACTA2: Hs00426835_g1; B2M: Hs99999907_m1; CAV1: Hs00971716_m1; CDK12: 

Hs00212914_m1; COL1A1: Hs00164004_m1; CXCL12: Hs00171022_m1; CTGF: 

Hs00170014_m1; ERBB2: Hs01001580_m1; FN1: Hs00365052_m1; GAPDH: 

Hs99999905_m1; HGF: Hs00300159_m1; HMBS: Hs00609293_g1; HPRT1: 

Hs02800695_m1; LOX: Hs00942480_m1; miR-340: TM 002258; MKI67: 

Hs01032443_m1; PLAU: Hs01547054_m1; PLAUR: Hs00182181_m1; ROCK1: 

Hs01127699_m1; SERPINE1: Hs01126606_m1; SNAI1: Hs00195591_m1; TAZ: 

Hs00794094_m1; YAP1: Hs00902712_g1. 

 

6.3.5 Cloning 

The ambiguous rearrangements obtained during the generation of the Mir340 knock out 

mouse were solved cloning the genotyping PCR products using TOPO® TA Cloning® Kit 

(Life Technologies) in one shot® TOP10 chemically competent E.Coli (Life 

Technologies) and following the manufacturer’s instructions. The positive clones were 

identified by agarose gel electrophoresis of EcoRI restriction enzyme (NEW ENGLAND 

BioLabs® Inc.) digested plasmid DNAs and sequencing the insert with the universal M13 

reverse primer (Sigma Aldrich®): 5’– CAGGAAACAGCTATGACC – 3’. The 

sequencing was performed by IFOM Sequencing Facility according to Big Dye terminator 

method360 using BigDye® Terminator v3.1 Cycle Sequencing Kit (Life Technologies) 

following the manufacturer’s instructions and analysed on 3500xL Dx Genetic Analyzer 

(Life Technologies). 
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6.3.6 Microarray 

The RNA quality control was assessed using Bioanalyzer 2100 (Agilent Technologies). 

Biotin-labelled cDNA targets were synthesised starting from 150 ng of total RNA using 

Ambion® WT Expression Kit (Life Technologies) following the manufacturer’s 

instructions. cDNAs were fragmented and labelled with Affymetrix GeneChip® WT 

Terminal Labelling Kit (Affymetrix) according to the manufacturer’s instructions. Targets 

cDNAs were hybridised on Human Gene 2.1 ST Array Strip (Affimetrix) in which 19607 

human genes are spotted. Hybridization was performed using the GeneAtlas® 

Hybridization, Wash and Stain Kit (Affimetrix) following the manufacturer’s instructions 

at 48 °C for 20 h in the GeneAtlas® Hybridization Station (Affimetrix). The Array Strips 

were washed and stained in the GeneAtlas® Personal Fluidics Station (Affimetrix) 

according to the manufacturer’s instructions and the array strips were imaged using the 

GeneAtlas® Imaging Station (Affimetrix). The data were analysed using Partek® 

Genomics Suite® v6.4 (Partek®) and normalised according to Robust Multi-array Average 

(RMA) algorithm361,362,363. The genes significantly differential expressed are identified 

employed as cut off values adjusted p value (Benjamini-Hochberg method364) < 0.05 and 

fold change negative control versus miR-340 mimic ≥ 1.4. 

 

6.4 BIOCHEMESTRY 

 

6.4.1 Protein lysates and supernatants  

IFOM Cell Biology Unit provided NCI-60 protein lysates for uPAR immunoassay in RIPA 

lysis buffer [RIPA buffer 1X (50mM Tris-HCl pH 8, 150 mM NaCl, 1% Tritox-X-100, 0.5 

sodium deoxycholate, 0.1% SDS), 1:500 cocktail of protease inhibitors (Calbiochem), 

1:200 Na3VO4, 1:200 NaF]. The protein lysates for immunoblot analysis were obtained 

plating 106 cells in 10-cm dish. After 48 h cells were washed with 1X PBS and 1 ml of 

RIPA lysis buffer was added and incubated for 10’ on ice. The cells were then scraped, the 
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protein lysates collected and stored at -20 °C. The NCI-60 supernatants were obtained 

plating 4.3*106 cells in a FN (Sigma Aldrich®)-coated 10-cm dish in 10 ml of Opti-

MEM® (Life Technologies). After 48 h, the cell-conditioned media were centrifuged at 

1200 rpm for 5’ and the supernatants collected, filtered and stored at -80 °C. 

 

6.4.2 Protein quantification 

Protein lysates were quantified by DC™ Protein Assay (Bio-Rad) using a bovine serum 

albumin (BSA) standard curve as reference and following the manufacturer’s instructions. 

Absorbance at 595 nm was measured using Wallac VICTOR3
™ 1420 Multilabel Counter 

(PerkinElmer®). The standard curve was fitted to the experimental data and the sample 

concentrations were interpolated by linear regression using Microsoft Excel.  

 

6.4.3 Immunoassay 

 

6.4.3.1 suPAR 

suPAR quantification was performed by suPARnostic® Standard ELISA Assay 

(ViroGates) following the manufacturer’s instructions.  This kit is based on a double 

monoclonal antibody sandwich enzyme-linked immunosorbent assay (ELISA) whereby 

samples and peroxidase-conjugated α-suPAR are first mixed together and then incubated 

in α-suPAR pre-coated 96-well plates. Absorbance at 450 nm was measured using Wallac 

VICTOR3
™ 1420 Multilabel Counter (PerkinElmer®). The standard curve was fitted to the 

experimental data and the sample concentrations were interpolated by non-linear 

regression using GraphPad Prism v5.0b. 

 

The immunoassays for protein quantification of uPAR, uPA and PAI-1 were performed by 

an ELISA-based technique called dissociation-enhanced lanthanide fluorescent 

immunoassay (DELFIA®).  DELFIA® utilises the unique chemical properties of 
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lanthanide chelates in concert with time-resolved fluorescence (TRF) detection providing a 

high sensitivity, wide dynamic range, superior stability and excellent flexibility assay 

compared to the standard ELISA. 

 

6.4.3.2 uPAR 

Black 96-well plates (MAXI-SORP, NUNC Corp.) were coated with 1 μg/ml of α-uPAR 

monoclonal antibody R2365 in coating buffer (50 mM Na2CO3, pH 9.6) at 4 °C o/n. After 

plates washing with the washing buffer, consisting of 1X PBS and 0.1% Tween-20 (PBS-

T), wells were blocked with 150 μl of blocking solution (2% of BSA diluted in 1X PBS) at 

rt for 1 h shaking. After 1 h, wells were washed and incubated with 100 μl of 1:10, 1:20 or 

1:50 NCI-60 protein lysates and suPAR79 standard curve (2-fold dilution, 8 points starting 

from 16 pM), diluted in 1% BSA in 1X PBS (dilution buffer) at rt for 2 h shaking. 

Subsequently, wells were washed and bound uPAR was detected incubating with 100 μl of 

1 μg/ml biotin-conjugated α-uPAR polyclonal antibody SI369 in dilution buffer at rt for 1 

h shaking. The wells were further washed and incubated with 100 μl of 1:10000 of Eu3+-

labelled streptavidin (PerkinElmer®) in dilution buffer at rt for 1 h shaking. After an 

extensive plate washing, 100 μl of DELFIA® enhancement solution (PerkinElmer®) was 

added. The Eu3+-label was detected after 5’ by measuring TRF intensity using an Envision 

Xcite plate reader (PerkinElmer®) employing the DELFIA® label protocol. The standard 

curve was fitted to the experimental data and the sample concentrations were interpolated 

by non-linear regression using GraphPad Prism v5.0b.  

 

6.4.3.3 uPA 

Black 96-well plates (MAXI-SORP, NUNC Corp.) were coated with 1 μg/ml α-uPA 

polyclonal antibody SI367 in coating buffer at 4 °C o/n. After plate washing with PBS-T, 

wells were blocked in blocking solution at rt for 1 h shaking. After 1 h, wells were washed 

and incubated with 100 μl of 1:20 NCI-60 supernatants and uPA standard curve (3-fold 
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dilution, 8 points starting from 16 pM), diluted in dilution buffer at rt for 2 h shaking. 

Subsequently, wells were washed and bound uPA was detected incubating with 100 μl of 1 

μg/ml biotin-conjugated α-uPA polyclonal antibody SI367 in dilution buffer at rt for 1 h 

shaking. The wells were further washed and incubated with 100 μl of 1:10000 Eu3+-

labelled streptavidin (PerkinElmer®) in dilution buffer at rt for 1 h shaking. After an 

extensive plate washing, 100 μl of DELFIA® enhancement solution (PerkinElmer®) was 

added. The Eu3+-label was detected after 5’ by measuring TRF intensity using an Envision 

Xcite plate reader (PerkinElmer®) employing the DELFIA® label protocol. The standard 

curve was fitted to the experimental data and the sample concentrations were interpolated 

by non-linear regression using GraphPad Prism v5.0b.  

 

6.4.3.4 PAI-1 

Black 96-well plates (MAXI-SORP, NUNC Corp.) were coated with 2 μg/ml of α-PAI 

polyclonal antibody in coating buffer at 4 °C o/n. After plate washing with PBS-T, wells 

were blocked with 150 μl of blocking solution at rt 1 h shaking. After 1 h, wells were 

washed and incubated with 100 μl of 1:10 or 1:100 NCI-60 supernatants and PAI-1 

standard curve (3-fold dilution, 8 points starting from 500 pM), diluted in dilution buffer at 

rt 2 h shaking. Subsequently, wells were washed and bound PAI-1 was detected incubating 

with 100 μl of 1 μg/ml of α-PAI polyclonal antibody in dilution buffer at rt for 1 h shaking. 

The wells were further washed and incubated with 100 μl of 1:2500 Eu3+-labelled α-mouse 

antibody (PerkinElmer®) in dilution buffer at rt for 1 h shaking. After an extensive plate 

washing, 100 μl of DELFIA® enhancement solution (PerkinElmer®) was added. The 

Eu3+-label was detected after 5’ by measuring TRF intensity using an Envision Xcite plate 

reader (PerkinElmer®) employing the DELFIA® label protocol. The standard curve was 

fitted to the experimental data and the sample concentrations were interpolated by non-

linear regression using GraphPad Prism v5.0b.  
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6.4.4 Immunoblot 

Protein lysates were normalised for the lowest sample protein concentration in Laemmli 

loading buffer (62.5 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol and 0.001% 

bromophenol blue) with or without 0.1 M DTT. The protein lysates were sonicated in 3 

cycles of 10’’ each using Bioruptor™ Next Gen (Diagenode) and solved by sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)366. 20 μl of protein 

lysate and 10 μl of NOVEX® Sharp Pre Stained protein standard (Life Technologies) were 

run onto 10% polyacrylamide gel electrophoresis and transferred by dry iBlot® Dry 

Blotting System (Life Technologies) to nitrocellulose membranes (iBlot® Gel Transfer 

Stack, Life Technologies) in 10’. The proper transfer onto nitrocellulose membrane was 

checked by Ponceau S staining solution (0.1 % Ponceau S and 5% acetic acid). Membranes 

were destained in tris-buffered saline-tween (TBS-T) (20 mM Tris-HCl pH 7.4, 500 mM 

NaCl, 0,1% Tween-20) and incubated in blocking solution (5% powder milk dissolved in 

TBS-T) at rt 1 h shaking. The membranes were incubated with the primary antibody at rt 

for 1 h or at 4 °C o/n shaking. After three 5’ washes in TBS-T, the membrane was 

incubated with the proper secondary antibody horseradish peroxidase (HRP)-conjugated in 

blocking solution at rt for 1 h shaking. The bound secondary antibody was detected 

incubating with SuperSignal™ West Pico Chemiluminescent Substrate (ThermoFisher 

Scientific) or SuperSignal® West Dura Extended Duration Substrate (ThermoFisher 

Scientific) according to the manufacturer’s instructions and detected by different exposures 

using Molecular Imager® ChemiDoc™ XRS+ Imaging System (Bio-Rad). The stripping 

of membranes was performed incubating the membranes with Restore™ PLUS Western 

Blot Stripping Buffer (ThermoFisher Scientific) at rt for 15’ shaking. The protein level was 

determined by Image Lab™ software (Bio-Rad). 

Table 1 summarises the proper conditions for each employed antibody. 
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Table 1: antibodies employed for the immunoblot. 

The table summarises the characteristics and the experimental conditions followed for the antibodies 

employed in the immunoblot assay.  

 

6.5 IMAGING 

 

6.5.1 Time-lapse microscopy 

3*105 MDA-MB-231 cells reverse transfected with miR-340 mimic and negative control 

were recorded 16 h post transfection by time-lapse live cell imaging at 37 °C, 5% CO2, for 

24 h with an inverted microscope (IX80, Olympus) equipped with an incubation chamber 

(OKOlab). The frames were visualised and adjusted for brightness/contrast using ImageJ 

v1.47. The adjustments were applied to the entire image.  

 

6.5.2 Fluorescence-activated cell sorting (FACS) 

 

6.5.2.1 GFP positive cells 

106 MDA-MB-231 cells infected with miR-340 precursor construct pMIRNA1 (SBI) or 

scramble lentiviral vector (SBI) were fixed in 1 ml of 4% paraformaldehyde (PFA) for 10’. 

The cells were then centrifuged at 1200 rpm for 5’ and resuspended in 500 μl of 1X PBS. 

The green fluorescence protein (GFP) positive cells were acquired analysing 104 

events/sample on a FACSCalibur (BD Bioscience) and the data were analysed using 

FlowJo software v9.3.2. 

 

 ! Primary Abs! Condition! Dilution! Secondary Abs! Detection!

uPAR! polyclonal rabbit SI369 o/n ! Non reducing! 1:1000 blocking solution! α-rabbit-HRP (Cell Signaling) "
1:2000  blocking solution! Dura!

uPA! polyclonal rabbit SI367 o/n! Non reducing! 1:1000 blocking solution! α-rabbit-HRP (Cell Signaling) 
1:2000 blocking solution! Dura!

YAP1! monoclonal rabbit α-YAP1 
(Cell Signaling) o/n" Reducing (DTT)! 1:500 5% BSA in TBS-T! α-mouse-HRP (Cell Signaling) 

1:2000 blocking solution! Dura!

Vinculin! monoclonal mouse α-vinculin 
1h (Sigma Aldrich®)! Reducing (DTT)! 1:10000 blocking 

solution!
α-mouse-HRP (Cell Signaling)!

1:2000 blocking solution! Pico!

Tubulin ! monoclonal mouse α-tubulin 
1h (Sigma Aldrich®)! Reducing (DTT)! 1:10000 blocking 

solution!
α-mouse-HRP (Cell Signaling) 

1:2000 blocking solution! Pico!
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6.5.2.2 Cell cycle 

106 MDA-MB-231 cells reverse transfected with miR-340 mimic and negative control for 

48 h were pulsed with 33 μM thymidine analogy 5-bromo-2'-deoxyuridine (BrdU) (Sigma 

Aldrich®) for 1 h. The cells were collected centrifuging at 1200 rpm for 10’, resuspended 

in 1X PBS and fixed, adding drop wise cold ethanol on vortexing cells, for 30’ on ice. The 

fixed cells were stained for cell cycle analysis according to the following protocol. The 

cells were washed in cold 1% BSA in 1X PBS, resuspended in cold 2 N HCl and incubated 

at rt for 25’. The cells were then incubated with 3 ml of cold 0.1 M Na2B4O7 at rt for 2’, 

collected centrifuging at 1200 rpm for 10’ and washed twice with cold 1% BSA in 1X PBS. 

The cells were incubated with 100 μl of 1:5 mouse α-BrdU primary antibody (BD 

Bioscience) diluted in cold 1% BSA in 1X PBS at rt for 1 h in the dark. Subsequently, the 

cells were washed twice with cold 1% BSA in 1X PBS and incubated with 100 μl of 1:100 

α-mouse Alexa647-conjugated secondary antibody (Life Technologies) diluted in cold 1% 

BSA in 1X PBS at rt for 1 h in the dark. After the incubation, the cells were washed twice 

with cold 1% BSA in 1X PBS and resuspended in 1 ml of 2.5 μg/ml propidium iodide (PI) 

(Sigma Aldrich®) and 250 μg/ml RNase (QIAGEN) in cold 1% BSA in 1X PBS at 4 °C 

o/n. The samples were acquired the day after by FACSCalibur (BD Bioscience) and 

analysed using FlowJo software v9.3.2. 

 

6.6 LABEL-FREE REAL-TIME CELL-BASED ASSAY (RTCA) 

 

The RTCA technology is a label-free system that allows for real-time monitoring of 

cellular events through measurements of electrical impedance by microelectrodes located 

at the bottom of each well367. The adhesion of the cells to the well plate induces an increase 

of electrode impedance. As a consequence, cellular processes, which cause changes in the 

quantity and/or quality of the cell-matrix interactions (e.g. cell proliferation and cell 

spreading), can be quantitative analysed with this technique. Impedance measurements are 
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reported as a dimensionless parameter called cell index (CI) that is defined as the relative 

change in measured impedance at a given time-point respect to the background 

measurement.   

MDA-MB-231 cells (104 cells/well), mixed with the transfection mix diluted in Opti-

MEM®, were plated in 96-well E-plates (Roche).  Subsequently, the plate was transferred 

to the real time cell analyser instrument (RTCA, xCELLigence SP, Roche) located in a 

humidified cell culture incubator (Sanyo) at 37 ˚C and 5% CO2 and the impedance was 

measured every 30’ for 48 h. 

 

6.7 IN VIVO 

 

6.7.1 Xenograft procedure 

6 weeks-old CD-1® nude mice (Charles River Laboratories) were anesthetised through 

intraperitoneal injection (IP) of 2.5% avertin 15 μl/body weight gram. 5*106 MDA-MB-

231 cells infected with miR-340 precursor construct pMIRNA1 (SBI) or scramble 

lentiviral vector diluted 1:1 with Matrigel (Sigma-Aldrich®) were inoculated into the left 

inguinal mammary fat pad. Tumour formation was monitored every day and tumour 

growth was measured by caliper once a week. The tumour volume was calculated 

according to the following formula: V =  (length*width2)/2. Mice were sacrificed when 

tumour volume reached 1200 mm3. Mice were maintained in high-efficiency particulate 

arrestance (HEPA)-filtered individually ventilated cages (IVC) system and the experiment 

was performed according to the guidelines for animal care. The employed procedures were 

approved by the institutional ethical animal care committee. 
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6.7.2 Mir340 deficient mouse model 

 

6.7.2.1 Generation of Mir340 deficient mouse model 

10 FVB/NCrl and 10 C57BL/6 female mice (Charles River Laboratories) were stimulated 

with hormones to synchronise the oestrous cycle to induce a massive oocytes production. 

To this purpose, hormones were administrated through IP injection: first 100 μl of 

pregnant mare serum gonadotropin (PMSG) (MSD Animal Health) (5 UI/female) and after 

46-48 h 100 μl of the human chorionic gonodotropin (hCG) (5 UI/female) (MSD Animal 

Health). Subsequently, each hormone-stimulated female was bred with a wild-type male 

mouse (Charles River Laboratories) of the corresponding background. The day after, the 

females were sacrificed, the oviducts collected and the fertilised oocytes picked up. 20 

ng/μl of RNAs encoding the zinc fingers (ZNFs) (Sigma Aldrich®) and 2 ng/μl of the 

replacement template oligonucleotide (Sigma Aldrich®) diluted in injection buffer (10 mM 

Tris-HCl pH 7.4 and 0.25 mM EDTA) were microinjected into the male pronuclei of 

fertilised oocytes using inverted microscope Aziovert 200 M (Zeiss) equipped with 

microinjector FemtoJet® (Eppendorf) and micromanipulator TransferMan NK 2 

(Eppendorf). The manipulated embryos were incubated in humidified cell culture incubator 

(CB53 Binder) at 37 °C, 5% CO2 for 16 h and the day after were implanted in a pseudo 

pregnant CD-1® female mice (Charles River Laboratories). The pseudo pregnant females 

are the positive plug females derived from breeding with a vasectomised male. During the 

embryo transfer the females were anesthetised through IP injection of 1.25% avertin 0.02 

ml/body weight gram and subsequently treated with analgesic Rimadyl® (Carprofen) 5 

mg/kg. Mice were maintained in HEPA-filtered IVC system; the procedure was performed 

according to the guidelines for animal care and approved by the institutional ethical animal 

care committee. 

ZNFs pair (Sigma Aldrich®):  

5’ – AATCAACTGCGCGGGTAAA – 3’ 
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3’ – TCGGTTAAGGAAATTACTG – 5’ 

Replacement template (Sigma Aldrich®):  

5’ – 

TTCTTTCCCAAACAGCTTCCTGTTGAGATTAGTTGACGCGCCCATTTAGTCATA 

CCTGGTATCTTAACACCACAGATCATGCCTGTTGATCAACATTGTA – 3’  

 

6.7.2.2 Screening of targeted animals 

The PCR products (see genotyping section) were digested, on the one hand with BamHI 

restriction enzyme (NEW ENGLAND BioLabs® Inc.) at 37 °C 2 h in Thermomixer 

compact (Eppendorf); on the other hand the PCR products were denaturated at 95 °C for 4’, 

reannealed gradually reaching 25 °C and digested with T7E1 restriction enzyme (NEW 

ENGLAND BioLabs® Inc.) at 37 °C for 15’ in Thermomixer compact (Eppendorf). The 

PCR products and the two different digestions were run onto agarose gel in TAE 1X buffer 

by electrophoresis. The sequencing of PCR products was performed using the primers 

employed for the genotyping PCR by the IFOM Sequencing Facility according to Big Dye 

terminator method360 using BigDye® Terminator v3.1 Cycle Sequencing Kit (Life 

Technologies) following the manufacturer’s instructions and analysed on 3500xL Dx 

Genetic Analyzer (Life Technologies). 

 

6.8 TISSUE ANALYSIS 

 

6.8.1 Immunohistochemistry (IHC) 

Mice tumours were collected and fixed in 4% formaldehyde at rt for 6 h and then stored in 

70% ethanol at rt. In the IFOM Tissue Unit, the samples were processed using tissue 

processor ASP300 S (Leica) according to the manufacturer’s instructions. 4 μm tissue 

slides were obtained using the microtome RM2125 RTS (Leica). 
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6.8.1.1 Ki-67  

Tissue slides were deparaffinised by two 10’ incubation with xilene and hydrated dipping 

the slides in a descending scale of ethanol (100-90-90-70%) and distilled H2O (dH2O) at rt 

for 5’ each. The antigen (Ag) unmasking was performed in buffer citrate 10 mM pH 6 

Ready-to-Use (Thermo Fisher Scientific) in microwave by one 5’ step and two 90’’ steps 

at max power refilling the buffer citrate after each step. The slides were gradually cooled at 

rt 30’ under chemical hood and then rinsed three times with 1X PBS without ions Ca2+ and 

Mg2+ (PBS -/-). The endogenous peroxidase was inactivated with 0.3% of peroxidase 

blocking solution (Sigma Aldrich®) in 1X PBS containing 0.05% Tween-20 at rt 20’ and 

then rinsed three times with PBS -/-. The slides were incubated with the primary antibody 

rabbit α-Ki-67 (Cell Signaling) 1:400 in PBS -/- at rt for 30’ and then rinsed three times 

with PBS -/-. As secondary antibody MACH 1 Universal HRP-Polymer Detection (Biocare 

Medical) was employed and incubated at rt for 30’. The slides were rinsed three times with 

PBS -/- and incubated with the peroxidase substrate using DAB Peroxidase (HRP) 

Substrate Kit (Vector Laboratories) according to the manufacturer’s instructions. The 

peroxidase reaction was blocked incubating with dH2O at rt for 5’ and counterstained with 

haematoxylin (VWR®) at rt for 1’. The slides were rinsed with running H2O, dehydrated 

in an ascending scale of ethanol (70-90-100-100%) at rt 5’ each and incubated three times 

at rt 5’ each in xilene. The slides were mounted with one drop of Eukitt (O. KINDLER) 

and cover slip. The images were acquired using Slide scanner VS120 dot slide (Olimpus 

Life Science), magnification 20X, and scale bar 1mm. The protein level was determined 

using ImageJ v1.47. 

 

6.8.1.2 Cleaved CASP3 

Tissue slides were deparaffinised by three 10’ incubations with histolemon (CARLO 

ERBA) and hydrated dipping the slides in a descending scale of ethanol (100-95-80%) and 

dH2O at rt 5’ each. The Ag unmasking was performed in buffer citrate 10 mM pH 6 
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supplemented with 0.05% Tween-20 at 95 °C for 50’ in a water bath. The slides were 

gradually cooled at rt 20’ under chemical hood and then washed with dH2O for 5’. The 

endogenous peroxidase was inactivated with 0.3% of peroxidase blocking solution (Sigma 

Aldrich®) in dH2O at rt for 5’ and then rinsed in 1X PBS. The aspecific Ag sites were 

blocked incubating the slides in blocking solution (2% BSA, 2% FBS SA (Biowest), 

0.05% Tween-20 in 1X PBS) for 20’ in a wet chamber. The slides were then incubated 

with the monoclonal primary antibody rabbit α-cleaved CASP3 (Cell Signaling) 1:300 in 

blocking solution at rt for 90’ in wet chamber and then washed twice with 1X PBS 5’ each. 

As secondary antibody biotinylated α-rabbit (Dako) was employed diluted 1:200 in 

blocking solution and incubated at rt for 1 h in wet chamber. The slides were washed twice 

with 1X PBS 5’ each and incubated with avidin-HRP conjugated using VECTASTAIN 

ABC Kit (Standard) (Vector Laboratories) according to the manufacturer’s instructions at 

rt for 45’ in wet chamber. The slides were washed twice with 1X PBS 5’ each and 

incubated with the peroxidase substrate using DAB Peroxidase (HRP) Substrate Kit 

(Vector Laboratories) according to the manufacturer’s instructions. The peroxidase 

reaction was blocked incubating with dH2O at rt for 5’ and counterstained with 

haematoxylin (VWR®) at rt for 1’. The slides were rinsed with running H2O and 

dehydrated incubating with dH2O, an ascending scale of ethanol (70-95-100%) and 

histolemon (CARLO ERBA) at rt 2’ each. The slides were mounted with one drop of 

Eukitt (O. KINDLER) and cover slip. The images were acquired using Slide scanner 

VS120 dot slide (Olimpus Life Science), magnification 20X, and scale bar 1mm. The 

protein level was determined using ImageJ v1.47. 

 

6.8.2 In situ hybridization (ISH) 

miR-340 chromogenic in situ hybridization (ISH) on human normal and tumour breast 

tissues was carried out by Bioneer ISH Service (DK-2970, Hørsholm). An automated 
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locked nucleic acid (LNA)-based ISH was performed according the sketched protocol 

reported in table 2368,369: 

miRCURY LNA™ probe (Exiqon):  

miR-340: AATCAGTCTCATTGCTTTATAA 

scramble: TGTAACACGTCTATACGCCCA 

 

Table 2: ISH protocol. 

The table summarises the protocol steps performed for the ISH analysis on normal and tumour breast tissues. 

 

6.9 BIOINFORMATIC TOOLS AND PROGRAMS 

Correlation and statistical analyses were performed using GraphPad Prism v5.0b. 

Microarray datasets from breast cancer patients and human cancer cell lines were mined 

from Oncomine®370 and CellMiner™371 databases. The list of predictive microRNAs for 

the uPA-system components was downloaded from microrna.org372 

(http://www.microrna.org/microrna) based on miRanda algorithm373. The list of predictive 

miR-340 target genes was downloaded from both microrna.org and Targetscan374 

Step! Cycles! Time 
(min)!

Volume 
(μl)! Reagent! T (°C)!

1! 2! 2! 300! 1X PBS! 25!

2! 1! 3! 200! PK buffer! 37!

3! 2! 4! 200 ! PK in PK buffer! 37!

4! 3! 2! 300! 1X PBS! 37!

5! 1! 15! 100! Prehybridization! 37!

6! 1! 30! 200! Probe addition! 55!

7! 1! 30! 200! Probe addition! 55!

8! 1! 5! 300! 5X Saline Sodium Citrate (SSC)! 55!

9! 1! 5! 300! 1X SSC! 55!

10! 2! 5! 300! 0.2X SSC! 55!

11! 1! 5! 300! 0.2X SSC! 30!

12! 2! 2! 300! 1X PBS! 30!

13! 1! 5! 200! Blocking reagent! 30!

14! 2! 15! 200! α-FAM-alkaline phosphatase, 1:800! 30!

15! 2! 2! 300! 1X PBS! 30!

16! 3! 30! 200! NBT/BCIP substrate incubation! 30!

17! 2! 3! 300! KTBT buffer (Tris-HCl 50 mM, NaCl 150 mM, KCl 10 mM)! 30!

18! 2! 1! 300! H2O! RT!

19! 1! 1! 100! Nuclear Fast Red staining 1:2! RT!

20! 6! 0.1! 200! H2O! RT!
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(http://www.targetscan.org/). The 3’UTR sequences necessary for in silico analyses were 

downloaded from UCSC Genome Browser375 (https://genome.ucsc.edu/). The genes 

spotted on the microarray were annotated according to their association with breast cancer 

prognosis using BreastMark database376 (http://glados.ucd.ie/BreastMark/). The gene 

ontology analysis for the pathway enrichment in miR-340-dependent breast cancer 

signature was performed using Enrichr377 (http://amp.pharm.mssm.edu/Enrichr/). 

 

6.10 STATISTICAL ANALYSES 

 

6.10.1 Student’s t test 

Statistical analysis of normally distributed values was performed by two-tailed unpaired 

Student’s t-test. Differences were considered statistically significant at p value < 0.05. In 

case of multiple comparisons a multiple comparison correction, using the Benjamini-

Hochberg method364,  was applied. 

 

6.10.2 χ2 test 

Statistical analysis to test independence in contingency tables was performed using χ2 test. 

Differences were considered statistically significant at p value < 0.05 with Yates 

correction378. 

 

6.10.3 Cox regression and logrank test 

The hazard ratio is calculated using Cox regression and logrank test.  The association with 

breast cancer prognosis was considered statistically significant at p value < 0.05. Multiple 

comparison correction was applied according to Bonferroni method379. 
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7. RESULTS 

 

7.1 GENE EXPRESSION ANALYSES IN A CROSS-SECTION OF DUTCH BREAST 

CANCER PATIENTS 

 

7.1.1 ERBB2 and PLAUR are neither co-amplified nor co-expressed in the cohort of breast 

cancer patients 

In order to shed light on the role of the uPA-system in breast cancer, we started 

investigating the proposed co-amplification between ERBB2 and PLAUR184,185,380 in a cross-

section of unselected Dutch breast cancer patients (N = 133).  To test this hypothesis, 

ERBB2 and PLAUR copy number variation analysis was performed by qPCR. The ERBB2 

copy number highlighted a group of patients with ERBB2 amplification that likely 

represents the subset of the ERBB2+ breast cancers (fig. 10A). However this subset did not 

show PLAUR amplification. PLAUR copy number was indeed normal in almost all breast 

cancer patients (fig. 10B). These data point out that ERBB2 and PLAUR are not co-

amplified in the cohort of breast cancer patients here analysed. 
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Figure 10: ERBB2 and PLAUR copy number in the cohort of breast cancer patients. 

(A-B) ERBB2 (A) and PLAUR (B) copy number was measured in a cross-section of unselected Dutch breast 

cancer patients (N = 133) by qPCR. The copy number was calculated by relative quantification (RQ = 2-ΔΔCt). 

ΔCts were determined normalising ERBB2 and PLAUR mean Ct values against the mean Ct values of the 

endogenous copy number reference, the telomerase reverse transcriptase (TERT). The ΔΔCt values were 

calculated subtracting the mean ΔCt values of two calibrator samples, the normal copy number cell lines: 

MCF10A (normal breast cell line) and MDA-MB-231 (triple negative breast cancer cell line) to the ΔCt value of 

each sample. The data were sorted for ERBB2 copy number and the dotted line indicates the normal copy number.  

 

To test whether these two genes may be co-expressed in breast cancer, as already shown in 

literature380,185,184, ERBB2 and PLAUR expression levels were measured by RT-qPCR in the 

same cohort of patients. ERBB2 expression pattern showed a subset of patients 

characterised by ERBB2 over expression (fig. 11A), which corresponds to the patients with 

ERBB2 amplification. This correspondence supports the well known finding that in the 
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ERBB2+ breast cancers ERBB2 over expression is mainly due to gene amplification381. On 

the contrary, no trend in PLAUR expression level was detected (fig. 11B).  

 

Figure 11: ERBB2 and PLAUR expression level in the cohort of breast cancer patients. 

(A-B) ERBB2 (A) and PLAUR (B) expression levels were measured in the cross-section of unselected Dutch 

breast cancer patients (N = 133) by RT-qPCR. The mRNA levels were calculated normalising ERBB2 and 

PLAUR mean Ct values against the mean Ct values of two housekeeping genes (GAPDH and HPRT1). The 

ΔΔCt values were calculated subtracting the Ct global mean to the ΔCt value of each sample382. The data 

were sorted for ERBB2 copy number.  

 

To further stress the absence of co-expression, the correlation between ERBB2 and PLAUR 

expression level was evaluated. In this analysis no correlation between ERBB2 and PLAUR 

mRNA level was observed (r = 0.03; p = 0.77) (fig. 12). These results highlight that in our 

subset of breast cancer patients ERBB2 and PLAUR are not co-expressed. 
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Figure 12: ERBB2 and PLAUR expression level are not correlated in the cohort of breast cancer 

patients. 

Scatter plot shows the correlation between ERBB2 and PLAUR mRNA levels. The sample size (N), the 

Pearson correlation coefficient (r) and the p value (p) are reported. 

 

In summary, the copy number and gene expression analyses show that ERBB2 and PLAUR 

are neither co-amplified nor co-expressed in the investigated cohort of breast cancer 

patients.  

 

7.1.2 PLAUR and PLAU expression levels are strongly correlated 

Contextually the qPCR analyses of ERBB2 and PLAUR, we also measured the expression 

of some putative breast cancer-driver genes (data not shown). Table 3 shows the 

correlations between PLAUR expression level and the expression levels of the other genes 

measured in the patient cohort.  
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Table 3: correlation analyses between PLAUR and the breast cancer-driver genes measured in the 

cohort of breast cancer patients. 

The table summarises the correlation analyses between the mRNA levels of each gene analysed in the breast 

cancer cohort with PLAUR expression level. For each correlation the Pearson correlation coefficient (r) and 

the p value (p) are reported. 

 

We found that the strongest correlation is between PLAUR and PLAU expression level (r = 

0.74, p < 0.001) (fig. 13).  

 

Figure 13: PLAUR and PLAU mRNA levels are strongly correlated. 

Scatter plot shows the correlation between PLAUR and PLAU mRNA levels. The sample size (N), the 

Pearson correlation coefficient (r) and the p value (p) are reported. 

Genes! r! p!
PLAU! 0.74! < 0.0001!

LOX! 0.64! < 0.0001!

FN1! 0.58! < 0.0001!

SERPINE1! 0.56! < 0.0001!

SNAI1! 0.45! < 0.0001!

ACTA2! 0.42! < 0.0001!

CAV1! 0.41! < 0.0001!

COL1A1! 0.33! < 0.0001!

CXCL12! 0.32! < 0.0001!

HGF! 0.19! 0.03!

MKI67! 0.06! 0.46!

CDK12! 0.02! 0.83!

TAZ! -0.05! 0.53!
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In order to substantiate this finding in other sample collections, we performed correlation 

analyses between PLAUR and PLAU expression level mining expression data from 

microarrays of breast cancer patients and human cancer cell lines using Oncomine®370 and 

CellMiner™371 databases. Out of more than 20,000 genes covered, PLAU was found to be 

one of the strongest correlated with PLAUR (table 4), corroborating the correlation 

observed in the cohort of breast cancer patients.  

 

Table 4: validation of PLAUR and PLAU correlation in cancer databases. 

Correlation between PLAUR and PLAU expression levels was analysed mining expression data from breast 

cancer patients and human cancer cell lines microarrays using Oncomine® and CellMiner™ databases. The 

table shows the name of the sample collection, the sample size (N), the Pearson correlation coefficient (r), the 

PLAU rank, the total number of genes analysed in the sample collection (in brackets) and the database used 

for the analysis (source). 

 

These observations suggested the possibility that PLAUR and PLAU might be regulated by 

common transcriptional and/or post-transcriptional mechanisms. 

 

 

 

 

 

 

Sample Collection! N! r! PLAU rank! Source!
Barretina cell lines! 917! 0.585! 4 (19574)! Oncomine®!

Wooster cell lines! 318! 0.478! 13 (19574)! Oncomine®!

NCI-60 cell lines! 60! 0.433! 428 (26065)! CellMiner™!

Bittner multi-cancer! 1911! 0.690! 1 (19574)! Oncomine®!

Sorlie breast ! 167! 0.537! 2 (6197)! Oncomine®!

Minn breast ! 121! 0.693! 14 (12624)! Oncomine®!

Perou breast! 65! 0.691! 6 (6625)! Oncomine®!
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7.2 IDENTIFICATION AND VALIDATION OF THE ROLE OF miR-340 AS 

MODULATOR OF THE EXPRESSION OF THE uPA-SYSTEM CORE COMPONENTS 

 

7.2.1 Identification of miR-340 as modulator of the expression of the uPA-system core 

components 

Although the strong correlation between PLAUR and PLAU expression might be due to 

multiple causes, we hypothesised that the regulation on the mRNA stability level by one or 

more microRNA (miRNA) is likely to contribute significantly to this co-expression. To 

identify candidate miRNAs, we inspected PLAUR and PLAU mRNAs for predicted 

miRNA target sites using miRanda algorithm373 available in microrna.org website372. Using 

this prediction tool, we identified predicted target sites for six and 26 different conserved 

miRNAs in PLAUR and PLAU 3’UTR, respectively. The two miRNAs candidate lists 

contained three miRNAs in common: miR-193a-3p, miR-193b and miR-340 (table 5).  
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Table 5: putative miRNAs regulating PLAUR or PLAU expression. 

(A-B) Tables show the lists of putative miRNAs able to target PLAUR (A) or PLAU (B) 3’UTR. The lists of 

putative miRNAs were downloaded from microrna.org website. The miRNAs binding sites are scored for 

likelihood of mRNA target gene down regulation using mirSVR383 and ordered according to this score. In 

bold the miRNAs in common between PLAUR and PLAU. 

 

We mined expression data of the NCI-60 panel (table 6), available in CellMiner™ web 

tool371, to investigate if these miRNAs were likely to regulate PLAUR and PLAU 

expression.  

A B

PLAU miRNAs ordered by 
sum of mirSVR scores!

hsa-miR-23a!

hsa-miR-23b!

hsa-miR-23a!

hsa-miR-181d!

hsa-miR-181a!

hsa-miR-181b!

hsa-miR-181c!

hsa-miR-193a-3p!

hsa-miR-193b!

hsa-miR-342-3p!

hsa-miR-340!

hsa-miR-410!

hsa-miR-874!

hsa-miR-361-5p!

hsa-miR-203!

hsa-miR-192!

hsa-miR-215!

hsa-miR-19a!

hsa-miR-19b!

hsa-miR-143!

hsa-miR-365!

hsa-miR-27a!

hsa-miR-27b!

hsa-miR-149!

hsa-miR-362-3p!

hsa-miR-329!

PLAUR miRNAs ordered 
by sum of mirSVR scores!

hsa-miR-335!

hsa-miR-377!

hsa-miR-340!

hsa-miR-193a-3p!

hsa-miR-193b!

hsa-miR-876-5p!
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Table 6: NCI-60 panel cell lines. 

The NCI-60 panel consists of 59 human cancer cell lines belonging to different cancer types: five breast 

cancer, six central nervous system cancer, seven colon cancer, six leukemia, nine melanoma, nine lung 

cancer, seven ovary cancer, two prostate cancer and eight kidney cancer cell lines. 

 

In this analysis, both PLAUR and PLAU mRNA levels were significantly negatively 

correlated with the expression level of both forms of miR-340 (miR-340 and miR-340*, 

also known as miR-340-5p and miR-340-3p, respectively), but not with miR-193a-3p or 

miR-193b expression levels (table 7A-B). The expression level of miR-340 and mir-340* 

Cancer type! Cell line!
Breast! MCF-7!

Breast! MDA-MB-231!

Breast! HS 578T!

Breast! BT549!

Breast! T-47D!

Central nervous system! SF268!

Central nervous system! SF295!

Central nervous system! SF539!

Central nervous system! SNB-19!

Central nervous system! SNB-75!

Central nervous system! U251!

Colon! Colo205!

Colon! HCC 2998!

Colon! HCT-116!

Colon! HCT-15!

Colon! HT29!

Colon! KM12!

Colon! SW620!

Leukemia! CCRF-CEM!

Leukemia! HL-60!

Leukemia! K562!

Leukemia! MOLT-4!

Leukemia! RPMI-8226!

Leukemia! SR!

Melanoma! LOX IMVI!

Melanoma! MALME-3M!

Melanoma! M14!

Melanoma! SK-MEL-2!

Melanoma! SK-MEL-28!

Melanoma! SK-MEL-5!

Melanoma! UACC-257!

Melanoma! UACC-62!

Melanoma! MDA-MB-435!

Lung! A549!

Lung! EKVX!

Lung! HOP-62!

Lung! HOP-92!

Lung! NCI-H226!

Lung! NCI-H23!

Lung! NCI-H322M!

Lung! NCI-H460!

Lung! NCI-H522!

Ovary! IGROV1!

Ovary! OVCAR-3!

Ovary! OVCAR-4!

Ovary! OVCAR-5!

Ovary! OVCAR-8!

Ovary! SK-OV-3!

Ovary! NCI-ADR-RES!

Prostate! PC-3!

Prostate! DU145!

Kidney! 786-O!

Kidney! A498!

Kidney! ACHN!

Kidney! CAKI!

Kidney! RXF 393!

Kidney! SN12C!

Kidney! TK-10!

Kidney! UO-31!
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are both negatively correlated also with SERPINE1 expression (table 7C), even if miRanda 

algorithm373 does not predict a miR-340 binding site in SERPINE1 mRNA.  

 

Table 7: miR-340/miR-340* level is inversely correlated with the expression of the core components of 

the uPA-system. 

(A-C) The tables show the correlation analyses between the mRNA levels of PLAUR (A), PLAU (B) and 

SERPINE1 (C) and the level of the three candidate miRNAs across the NCI-60 panel. The expression levels 

were mined from CellMiner™ database. The Pearson correlation coefficient (r) is reported for each 

correlation. CellMiner™ database identifies significant correlations at r > 0.334 or < -0.334 on a minimum of 

35 informative cell lines, yielding p < 0.05 in the absence of multiple comparisons correction. Significant 

correlations based on these criteria are presented in bold. 

 

All the correlation analyses between the three uPA-system components with miR-340 and 

miR-340* are statistically significant and are plotted in fig. 14.  

A

B

PLAUR

PLAU

C

SERPINE1

miRNAs! r !
hsa-miR-340! -0.429!

hsa-miR-340*! -0.547!

hsa-miR-193a-3p! 0.291!

hsa-miR-193b! 0.058!

miRNAs! r!
hsa-miR-340! -0.462!

hsa-miR-340*! -0.449!

hsa-miR-193a-3p! 0.083!

hsa-miR-193b! 0.17!

miRNAs! r !
hsa-miR-340! -0.379!

hsa-miR-340*! -0.475!

hsa-miR-193a-3p! 0.299!

hsa-miR-193b! 0.137!
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Figure 14: correlation analyses between the mRNA levels of core components of the uPA-system and 

miR-340/miR-340* levels. 

(A-F) Scatter plots show the significant correlations described in table 4. The expression levels of PLAUR 

(A-B), PLAU (C-D) and SERPINE1 (E-F) and miR-340/miR340* were mined from CellMiner™ database as 

z score and log2 mean intensity, respectively. The Pearson correlation coefficient (r) and the p value (p) are 

reported for each correlation. 

 

In addition, based on expression data in CellMiner™ web tool371, we chose three different 

NCI-60 cell lines, which displayed high (MDA-MB-231 and SF-539) or low (MCF-7) 

PLAUR expression to perform RT-qPCR for PLAUR and miR-340. We focused the 

attention specifically on miR-340, since it is considered the predominant form compared to 
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miR-340*322. RT-qPCR analysis confirmed that MDA-MB-231 and SF-539 showed high 

while MCF-7 low PLAUR expression compared to the calibrator sample HEK 293 (fig.  

15A). The level of miR-340 behaved in the opposite trend: MDA-MB-231 and SF-539 

showed lower miR-340 level compared to MCF-7 (fig. 15B). Thus, the negative 

correlation between PLAUR and miR-340 was further confirmed.  

 

Figure 15: PLAUR and miR-340 expression level in three NCI-60 cell lines. 

(A-B) The expression levels of PLAUR (A) and miR-340 (B) were measured by RT-qPCR. The RQ was 

calculated normalising PLAUR and miR-340 mean Ct values against the mean Ct values of the housekeeping 

genes GAPDH and rnu6b, respectively (ΔCt). The ΔΔCt values were obtained subtracting the ΔCt values of 

the calibrator sample HEK 293 cell line (normal human embryonic kidney cell line) to the ΔCt value of each 

sample. The dotted line indicates the expression level of the calibrator sample. Dots are data from two 

independent experiments, means ± standard error of the mean (SEM) are shown. 

 

To test whether the inverse correlation is true also at protein level, we measured the protein 

levels of the main uPA-system components (uPAR and its soluble form suPAR, uPA and 

PAI-1) across the NCI-60 panel by immunoassay. We analysed protein lysates for uPAR 

quantification and conditioned media for the other uPA-system components. In line with 

the correlation observed at mRNA level, both miR-340 and miR-340* levels were 

significantly negatively correlated with the protein levels of all the uPA-system 

components except miR-340 with suPAR (fig. 16A-H).  
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Figure 16: correlation analyses between the protein levels of the uPA-system components and miR-

340/miR-340* levels. 

(A-H) Scatter plots show the correlation analyses between the protein levels of the uPA-system components 

with miR-340/miR-340* levels. The protein levels of uPAR (A-B), uPA (C-D), PAI-1 (E-F) and suPAR (G-

H) were quantified by immunoassay. uPAR and the other uPA-system components quantification was 

analysed in the protein lysates and in the conditioned media, respectively. The measured concentrations were 

used to perform correlation analysis with miR-340/miR-340* levels, mined from CellMiner™ database as 

log2 intensity. Pearson correlations coefficient (r) and p values (p) are reported for each correlation. 

 

Taken together these data demonstrate that the expression of miR-340 is negatively 

correlated with the expression of the core components of the uPA-system both at mRNA 

and protein level.  

 

7.2.2 Exogenous administration of miR-340 negatively regulates the expression of the core 

components of the uPA-system in the human triple negative breast cancer cell line MDA-

MB-231 

To test experimentally whether the predominant form of miR-340 may negatively regulate 

the expression of the uPA-system components, we administrated miR-340 in MDA-MB-

231 cells, which showed low miR-340 level (fig. 15B) according to CellMiner™371 
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expression data, transfecting them with a synthetic miR-340 (miR-340 mimic) and a non-

targeting negative control miRNA (negative control). We first verified by RT-qPCR 

whether the miR-340 mimic was efficiently transfected so as to increase miR-340 level. 

We found that miR-340 expression resulted 20,000-fold increased compared to the 

negative control (fig. 17A). Secondly, we tested whether the increase of miR-340 level 

down regulated the mRNA levels of the core components of the uPA-system (PLAUR, 

PLAU and SERPINE1) together with other components of the plasminogen activation 

system (PA-system) (SERPINB2 and PLAT). We uncovered that miR-340 negatively 

regulates the expression of the core components of the uPA-system and PLAT (tPA) 

(subsequently validated by Yamashita et al.384), whereas it seems to up regulate SERPINB2 

(PAI-2) expression, even if the difference with the negative control is not statistically 

significant (fig. 17B-F).  
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Figure 17: exogenous administration of miR-340 down regulates the mRNA levels of the uPA-system 

components. 

(A-F) MDA-MB-231 cells, transfected with miR-340 mimic and the negative control (neg ctrl), were 

analysed by RT-qPCR to verify miR-340 level (A) and the effect of miR-340 administration on the 

expression of the uPA-system components (B-F). The RQ was calculated normalising the miR-340 and uPA-

system components mean Ct values against the mean Ct values of rnu19 and two housekeeping genes (HMBS 

and HPRT1), respectively (ΔCt). The ΔΔCt values were calculated subtracting the ΔCt values of the 

calibrator sample, the negative control, to the ΔCt values of miR-340 transfected cells. The dotted line 

indicates the expression level of the calibrator sample. The graphs represent four independent experiments, 

means ± SEM are shown. Statistical significance was probed using Student’s t-test (* = p < 0.05, ** = p < 

0.01, *** = p < 0.001 and ns = not significant). 

 

These data show that the exogenous administration of miR-340 negatively modulates the 

expression of PLAUR, PLAU and SERPINE1.  

In order to test whether the negative regulation was mirrored by the protein level as well, 

we performed an immunoblot analysis for uPAR and uPA in protein lysates collected from 

MDA-MB-231 cells transfected with the miR-340 mimic and the negative control (fig 

18A).  We found that miR-340 strongly down regulates uPA protein level while the effect 

on uPAR is minor and not statistically significant (fig 18B-C).  

0.0

0.5

1.0

1.5

20000

40000

neg ctrl miR-340 mimic

m
iR

-3
40

 le
ve

l

0.0

0.5

1.0

1.5

neg ctrl miR-340 mimic

SE
RP

IN
E1

 m
R

N
A

 le
ve

l 

0.0

0.5

1.0

1.5

neg ctrl miR-340 mimic

PL
AU

R 
m

R
N

A
 le

ve
l

0.0

0.5

1.0

1.5

2.0

2.5

3.0

neg ctrl miR-340 mimic

SE
RP

IN
B2

 m
R

N
A

 le
ve

l 

0.0

0.5

1.0

1.5

neg ctrl miR-340 mimic

PL
AU

 m
R

N
A

 le
ve

l

0.0

0.5

1.0

1.5

2.0

neg ctrl miR-340 mimic

PL
AT

 m
R

N
A

 le
ve

l 

** * ***

*** ns *

A B C

D E F



 99 

 

Figure 18: exogenous administration of miR-340 down regulates uPAR and uPA protein level. 

(A) Protein lysates collected from MDA-MB-231 cells, transfected with miR-340 mimic and the negative 

control (neg ctrl), were solved by SDS-PAGE and analysed by immunoblot. uPAR and uPA protein levels 

were assayed by polyclonal antibodies. (B-C) The protein levels were quantified in arbitrary unit (A.U.) with 

ImageLab™ software (Bio-Rad) and normalised according to tubulin protein level. The graphs represent four 

independent experiments, means ± SEM are shown. Statistical significance was probed using Student’s t-test 

(* = p < 0.05, ** = p < 0.01, *** = p < 0.001 and ns = not significant). 

 

7.2.3 In silico analysis uncovers miR-340 may affect the mRNA stability of the uPA-system 

components 

The transcriptional and post-transcriptional regulation of the core components of the uPA-

system has been extensively studied (reviewed in189). Concerning the post-transcriptional 

regulation, mRNA instability elements, called AU-rich elements (AREs), were 

experimentally identified and mapped in the 3’UTRs of both PLAUR306 and PLAU295.  

The seed region of a miRNA is a 2–8 nucleotide sequence, located at the 5' end, essential 

for the miRNA binding to generally the 3’UTR of its target genes323. The 3’UTRs of 

PLAUR and PLAU contain one and two miR-340 target sites, predicted by miRanda 

algorithm373, respectively. We found that the miR-340 seed region binding sites coincide 

with the previously identified AREs for both PLAUR306 and PLAU295 (fig. 19). In addition, 
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even if not predicted, a miR-340 seed region binding site is located also in the SERPINE1 

3’UTR, inside an AU-rich sequence (fig. 19), corroborating the role of miR-340 in 

modulating also SERPINE1 mRNA instability.  

 

Figure 19: miR-340 may affect the mRNA instability of the core components of the uPA-system. 

PLAUR and PLAU 3’UTRs display one and two predicted miR-340 binding sites, respectively. The miR-340 

seed region binding sites (in bold) are located within the AREs (underlined), key regulators of PLAUR and 

PLAU mRNA instability. Although SERPINE1 is not a predicted miR-340 target by miRanda algorithm, one 

miR-340 seed region binding site is located in the SERPINE1 3’UTR. The sequences were downloaded from 

UCSC genome browser375 (https://genome.ucsc.edu/) and microrna.org website (http://www.microrna.org). 

 

Overall these observations suggest that the binding of miR-340 to the previously identified 

mRNA instability elements, located within PLAUR and PLAU 3’UTRs, may enhance the 

degradation of the mRNAs.  
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7.3 CHARACTERISATION OF THE ROLE OF miR-340 IN MDA-MB-231 CELL LINE 

TRANSCRITOME  

 

7.3.1 Identification of miR-340 target genes in the transcriptome of the human triple 

negative breast cancer cell line MDA-MB-231 

To get a more complete picture of the genes regulated by miR-340, we repeated the MDA-

MB-231 transfection with miR-340 mimic and the negative control to evaluate the global 

transcriptome changes by microarray analysis using Affimetrix Human Gene 2.1 ST Array 

Strip technology. The genes spotted on the microarray are 19607 and we used the 

following cut off values: adjusted (Benjamini-Hochberg correction364) p value (p) < 0.05 

and fold change (fc) negative control vs. miR-340 mimic ≥ 1.4, to discriminate the genes 

significantly regulated by miR-340. We identified a high number of genes (1987/19607, 

10.1%) significantly regulated by miR-340 among which the majority were down 

regulated (down regulated: 1255/1987, 63.2% vs. up regulated: 732/1987, 36.8%) (table 8).  

 

Table 8: miR-340 regulates the 10% of MDA-MB-231 cells transcriptome. 

The table summarises the microarray results derived from MDA-MB-231 cells transfected with miR-340 

mimic and the negative control in four independent experiments. The total number of genes spotted on 

Affimetrix Human Gene 2.1 ST Array Strip is 19607 (N). The number of genes regulated by miR-340 (n) 

and the corresponding percentage (%) are shown. Statistical significance was probed using Student’s t-test (* 

= p < 0.05, ** = p < 0.01, *** = p < 0.001 and ns = not significant). The multiple comparison correction was 

applied according to Benjamini-Hochberg method.  The adjusted p value (p) < 0.05 and fold change (fc) 

negative control versus (vs.) miR-340 mimic ≥1.4 were chosen as cut off values. 

 

The changes in gene expression were consistent with miRNA-induced mRNA instability as 

1.7-fold more genes were down regulated than up regulated (63.2%/36.8%; 1255/1987 vs. 

n! %!
miR-340 targets! 1987! 10.1%!

miR-340 down regulated targets ! 1255! 63.2%!

miR-340 up regulated targets! 732! 36.8%!

N = 19607; fc ≥ 1.4; p < 0.05!
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732/1987; p < 0.001). Among the genes significantly regulated by miR-340, the core 

components of the uPA-system are affected by miR-340 administration, further confirming 

the role of miR-340 as negative modulator of the three main uPA-system components 

(table 9). 

 

Table 9: microarray analysis confirms that miR-340 down regulates the expression of the core 

components of the uPA-system. 

The table shows the fold change (fc) (negative control vs. miR-340 mimic) and the p value (p) of the core 

components of the uPA-system. 

 

To address whether the experimentally determined miR-340 target genes were enriched in 

predicted ones, we generated a list of miR-340 putative target genes, predicted by both 

Targetscan374 and miRanda algorithms373, which contains 21.5% (4208/19607) of the genes 

recorded on the microarray. This list was intersected with the miR-340 target genes, 

determined by microarray, and 782 genes were found to be in common (fig. 20). 

Consistent with miR-340 contributing to the changes in gene expression, the predicted 

target genes were 1.8-fold over represented among the experimentally regulated genes 

(39.4%/21.5%; 782/1987 vs. 4208/19607; p < 0.001). The enrichment was 2.3-fold for 

genes repressed by miR-340 (48.5%/21.5%, 609/1255 vs. 4208/19607; p < 0.001) and not 

significant for genes induced by miR-340 (23.6%/21.5%; 173/732 vs. 4208/19607; p = 

0.16).  

fc! p!
PLAUR! 1.39! 0.0001!

PLAU! 2.93! 0!

SERPINE1! 2.47! 0!

N = 19607; fc ≥ 1.4; p < 0.05!
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Figure 20: the experimentally determined miR-340 target list is enriched in predicted ones. 

The list of putative miR-340 target genes was generated from miRanda (http://www.microrna.org) and 

TargetScan (http://www.targetscan.org/) algorithms and intersected with the microarray miR-340 targets. The 

two lists have 782 targets in common: 609 down regulated and 173 up regulated by miR-340. Statistical 

significance of the miR-340 putative target genes enrichment was probed using χ2 test with Yates correction 

at the p value (p) < 0.05. The p concerning the enrichment analysis is reported. 

 

Taken together, these data show that miR-340 regulates about 10% of MDA-MB-231 

transcriptome mainly in a negative fashion.  

 

7.3.2 miR-340 modulates desmoplastic reaction-related genes 

The relevance of miR-340 in gene regulation has recently emerged. Several studies 

reported and validated miR-340 target genes involved in the tumourigenesis of different 

cancer types or in other disorders385,386. In cancer, it mainly affects the expression of 

tumour promoting genes such as MET in breast387 and colorectal cancer388, ROCK1 in 

osteosarcoma389,390 and glioblastoma391 and SOX2 in neuroblastoma392. In colorectal cancer 

miR-340 has been shown to be also involved in tumour-related processes as the Warburg 

effect393 and therapy resistance394. Likewise miR-340 modulates cell proliferation targeting 

PUM1, PUM2 and SKP2395, CDK6 and CCND2396, CCND1391,396, EZH2, AKT, EGFR and 

Putative miR-340 target genes 
(miRanda and Targetscan: N = 4208)

Microarray miR-340 target genes 
(N = 1987)

782

Down regulated: 609 
p < 0.001

Up regulated: 173 
p = 0.16 
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BMI1391, invasion and migration through the negative regulation of VEGF, MMP-1, MMP-

2 and MMP-9391 and autophagy-related genes such as LL3-II, p62 and XIAP391. 

The microarray data revealed the ability of miR-340 to significantly down regulate the 

expression of the connective tissue growth factor (CTGF), the Rho-associated, coiled-coil 

containing protein kinase 1 (ROCK1) and the Yes-associated protein 1 (YAP1), which are 

genes involved in the desmoplastic reaction397-399 (table 10).  

 

Table 10: microarray analysis shows that miR-340 down regulates the expression of desmoplastic 

reaction-related genes. 

The table shows the fold change (fc) (negative control vs. miR-340 mimic) and the p value (p) of the cluster 

of genes involved in desmoplasia reaction. 

 

This phenomenon consists of an abnormal growth of fibrous or connective tissue in 

response to a tumour400,401. MDA-MB-231 cells were transfected with miR-340 mimic and 

the negative control and RT-qPCR analysis was performed to validate the ability of miR-

340 to regulate this cluster of genes. In this analysis we also included LOX, which is 

another important player of the desmoplastic reaction402, even if it is not significantly 

regulated in the microarray analysis (data not shown). We found that miR-340 significantly 

down regulates the expression of CTGF, ROCK1 and YAP1, while up regulates the 

expression of LOX (fig. 21A-D).  

fc! p!
CTGF! 2.16! 0!

ROCK1! 2.90! 0!

YAP1! 2.38! 0!

N = 19607; fc ≥ 1.4; p < 0.05!
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Figure 21: validation of miR-340 desmoplastic reaction-related target genes. 

(A-D) The experiment was performed as in figure 17. The mRNA levels of CTGF (A), LOX (B), ROCK1 (C) 

and YAP1 (D) are shown. The graphs represent four independent experiments, means ± SEM are shown. 

Statistical significance was probed using Student’s t-test (* = p < 0.05, ** = p < 0.01, *** = p < 0.001 and ns 

= not significant). 

 

Although the miR-340 regulation of core genes of the desmoplastic response is not 

coordinated in the same fashion, we can conclude that miR-340 might have an impact in 

the regulation of the desmoplastic reaction.  

YAP1 is a nuclear effector of the Hippo signalling pathway, which is involved in a plethora 

of biological functions such as development, growth, repair and homeostasis. Moreover, 

this gene is known to play a role in the development and progression of multiple cancers as 

transcriptional regulator of tumour-related pathways (reviewed in403). Taken into account 

the distinctive role of YAP1 in tumour biology, we also evaluated the capability of miR-

340 to regulate YAP1 expression at protein level. Immunoblot analysis of protein lysates, 

collected from MDA-MB-231 cell line transfected with miR-340 mimic and the negative 

control, showed that miR-340 is able to significantly negatively regulate YAP1 protein 

level (fig. 22A-B).  
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Figure 22: miR-340 down regulates YAP1 protein level. 

(A-B) The experiment was performed as in figure 18. (A) YAP1 protein level was assayed by a monoclonal 

antibody. (B) YAP1 protein level was quantified in arbitrary unit (A.U.) using ImageLab™ software (Bio-

Rad) and normalised according to vinculin protein level. The graph represents four independent experiments, 

means ± SEM are shown. Statistical significance was probed using Student’s t-test (* = p < 0.05, ** = p < 

0.01, *** = p < 0.001 and ns = not significant). 

 

We conclude that miR-340 might have an important role in breast cancer tumourigenesis 

not only acting as modulator of the core components of the uPA-system, but possibly also 

modulating the desmoplastic reaction. 

 

7.3.3 The miR-340 target list is enriched in genes significantly associated with breast 

cancer prognosis 

The ability of miR-340 in regulating genes involved in breast cancer, including the uPA-

system and the desmoplastic reaction-related genes, led us to investigate the potential 

clinical relevance of the experimentally determined miR-340 target genes in breast cancer. 

We annotated all the genes analysed in the microarray according to their association with 

OS performing meta-analyses of published microarray data sets using BreastMark 

database376 (http://glados.ucd.ie/BreastMark/). In this procedure a p value is assigned to 

each gene, reflecting the statistical strength of the association with patient OS, and a 

hazard ratio (HR), indicating the sign and the magnitude of the effect of this association. A 

summary of the findings is shown in table 11.  
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Table 11: miR-340 regulates genes associated with breast cancer prognosis. 

All genes spotted on Affimetrix Human Gene 2.1 ST Array Strip were annotated according to their 

association with breast cancer prognosis by meta-analyses of published microarray data sets using 

BreastMark database (http://glados.ucd.ie/BreastMark/). The association with prognosis is expressed as 

Hazard Ratio (HR > 1, poor; HR < 1, good). The statistical significance of miR-340 target enrichment in 

genes associated with breast cancer prognosis was probed using χ2 test with Yates correction at the p value 

(p) < 0.05. The multiple comparison correction was applied according to Bonferroni method. 

 

Among all the genes on the microarray (19607), 27.2% (5326/19607) are associated with 

significant prognostic value and 2.1% (403/19607) with a highly significant prognostic 

value (i.e. significant after Bonferroni multiple comparisons correction379). Among the 

miR-340 target genes, 36.5% (726/1987) are associated with a significant prognostic value 

and 7.1% (141/1987) with highly significant prognostic value. The experimental miR-340 

target list is thus 1.3-fold enriched in genes associated with a significant prognostic value 

(27.2%/36.5%, 5326/19607 vs. 726/1987; p < 0.001) and 3.4-fold enriched in genes 

associated with a very significant prognostic value (2.1%/7.1%, 403/19607 vs. 141/1987; p 

< 0.001). Overall, miR-340 preferentially regulates genes associated with breast cancer 

prognosis.  

In the whole dataset roughly half of the genes (49.7%, 9743/19607) are associated with a 

poor prognosis (i.e. HR > 1). For the miR-340 target list this fraction is increased 1.2-fold 

(58.3%/49.7%, 1159/1987 vs. 9743/19607; p < 0.001). When the same comparison is 

restricted to genes significantly associated with prognostic value, 54.4% of these have HR 

> 1 in the whole dataset (2901/5326), while this fraction is increased 1.3-fold for the miR-

All! HR > 1! HR < 1! All! HR > 1! HR < 1! All! HR > 1! HR < 1!

All genes! 19607 9743 9864 5326 2901 2425 403 306 97 

miR-340 targets! 1987 1159 828 726 497 226 141 134 7 

miR-340 down 
regulated targets! 1255 814 441 517 413 104 136 129 7 

miR-340 up 
regulated targets! 732 345 387 209 84 125 5 5 0 

All genes! p < 0.05! Bonferroni 
correction!
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340 targets (68.5%/54.5%, 497/726 vs. 2901/5326; p < 0.001). For genes that are highly 

significantly associated with prognosis 75.9% have HR > 1 (306/403) in the whole dataset 

and this fraction is increased 1.3-fold in the miR-340 target list (95.0%/75.9%, 134/141 vs. 

306/403; p < 0.001). Thus, miR-340 preferentially regulates the mRNA levels of genes 

associated with a poor clinical outcome in breast cancer.  

When considering the potential benefit of using miR-340 as a drug, it is desirable that 

genes associated with a poor prognosis (HR > 1) are down regulated and genes associated 

with a good prognosis (HR < 1) up regulated. To address if miR-340 has such selectivity, 

we analysed if the genes down regulated by miR-340 are enriched in genes associated with 

poor prognosis. In this analysis genes with HR > 1 were 1.3-fold over represented among 

genes down regulated by miR-340 when considering the whole dataset (64.9%/49.7%, 

814/1255 vs. 9743/19607; p < 0.001), 1.5-fold when considering only the subset of genes 

significantly associated with prognosis (79.9%/54.5%, 413/517 vs. 2901/5326; p < 0.001) 

and 1.3-fold when considering only the highly significant genes (94.9%/75.9%, 129/136 vs. 

306/403; p < 0.001). Importantly, the enrichment for genes with HR > 1 was not observed 

among genes up regulated by miR-340, in fact genes with HR > 1 were under represented: 

1.1-fold considering the whole dataset (47.1%/49.7%, 345/732 vs. 9743/19607; p = 0.09) 

and 1.4-fold considering the gene significantly associated with prognosis (40.2%/54.5%, 

84/209 vs. 2901/5326; p = 0.02). For genes highly significantly associated with prognosis 

only 5 are up regulated by miR-340 and no significant association was detected 

(100%/75.9%, 5/5 vs. 306/403; p = 0.34). This finding highlights the presence of a putative 

miR-340-dependent breast cancer signature (N = 129), which might be informative for 

both the prognosis and diagnosis of breast cancer patients. 

In order to define the functional role of miR-340-dependent breast cancer signature, we 

performed a gene ontology analysis for functional categories. We found that the 129 genes 

are mainly involved in pathways associated with cell proliferation (fig. 23). 
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Figure 23: functional categories of miR-340-dependent breast cancer signature. 

Wiki pathway of the top ten categories of miR-340-dependent breast cancer signature was performed using 

Enrichr software tool. The threshold of the p value (p = 0.05) was reported as red dotted line. 

 

Moreover, the miR-340-dependent breast cancer signature is enriched in predictive miR-

340 targets (p < 0.0001). Yet, the majority of these genes are not negatively correlated with 

miR-340 level in the NCI-60 panel (data not shown). 

In summary, these data demonstrate that miR-340 targets a fraction of the MDA-MB-231 

transcriptome highly enriched in genes associated with poor prognosis in breast cancer. 

The genes belonging to miR-340-dependent breast cancer signature are mainly involved in 

proliferation-related pathways. These observations suggest that the delivery of exogenous 

miR-340 to breast cancer tissue might ameliorate breast cancer prognosis through a biased 

down regulation of a large number of tumour promoting genes. 

 

 

 

 

 

 

Wiki pathway!
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7.4 FUNCTIONAL CHARACTERISATION OF THE ROLE OF miR-340 IN BREAST 

CANCER  

 

7.4.1 miR-340 expression is spread in different cell population in human breast cancer 

tissues 

Microarray analysis unveiled that the 35% of miR-340 regulated MDA-MB-231 

transcriptome consists of genes associated with poor clinical outcomes in breast cancer. In 

order to understand how miR-340 might influence breast cancer tumourigenesis, we firstly 

verified whether miR-340 is expressed in human breast cancer tissue and where it is 

localised. For this purpose, an in situ hybridization analysis (ISH) was conducted in normal, 

benign and malignant human breast tissues hybridising the tissue slides with a miR-340 or 

scramble LNA-probe. We observed that the miR-340 staining is complex with signal 

present in different cell population (in particular in epithelial cells and lymphocytes) both 

in normal and tumour tissues (fig. 24A-D). 

 

 

Figure 24: miR-340 is expressed in human breast epithelium. 

(A-D) Tissue sections including normal and tumour breast were tested for miR-340 expression by in situ 

hybridization analysis using miR-340 (A-C) and scramble (B-D) LNA-probes. miR-340 signal is present in 

different cell populations, in particular in the breast cancer tissue is expressed in the tumour compartment 

(Ca) and in the inflammatory cells (infl). Representative images are shown. Magnification 20X.  
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 Although this experiment does not indicate if cancer epithelium shows lower or higher 

miR-340 staining intensity than the normal counterpart, it is nevertheless clear that miR-

340 is expressed in human breast epithelium. 

 

7.4.2 Exogenous administration of miR-340 affects cell number and cell morphology of 

MDA-MB-231 cell line 

To understand the effect of miR-340 in breast cancer cells, we recorded the MDA-MB-231 

cells, transfected with miR-340 mimic and the negative control, by time-lapse microscopy. 

16 h after transfection no difference between MDA-MB-231 cells transfected with miR-

340 mimic and the negative control could be appreciated (fig 25A, D); in contrast, at later 

time-points a reduction of cell number and an increased cell-rounding was observed in 

miR-340 mimic transfected cells (fig. 25B, E and C, F).  
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Figure 25: miR-340 administration induces a decreased cell number and increased cell-rounding in 

MDA-MB-231 cell line. 

(A-F) MDA-MB-231 cells were transfected with miR-340 mimic and the negative control (neg ctrl) and 16 h 

post-transfection were recorded by time-lapse microscopy. Three different frames are shown: 16 h (A, D), 28 

h (B, E) and 40 h (C, F) post transfection. The complete time-lapse recording can be found as Movie 1(miR-

340 mimic) and 2 (neg ctrl). Magnification 10X. Scale bar 20 μm. 

 

This effect suggests that miR-340 might modulate genes involved in cell cycle and cell 

morphology. To substantiate this result, we took advantage of the Real Time Cell-based 

Assay (RTCA, xCELLigence) technology, which allows for real-time monitoring of 

cellular events by continuous and non-invasive evaluation of impedance measurements 

(see materials and methods section). In line with the time-lapse observations, miR-340 

transfected cells showed a different behaviour compared to the negative control. We found 

indeed that the miR-340 mimic curve displayed a cell index much lower compared to the 

negative control (fig. 26), again consistent with a growth inhibitory effect.  

miR-340 
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Time post transfection (h)!
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D! E! F!
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Figure 26: miR-340 administration causes a reduced cell index in MDA-MB-231 cell line. 

RTCA experiments were performed on MDA-MB-231 cells transfected with miR-340 mimic and the 

negative control (neg ctrl). Each condition was recorded in quadruplicates and the curves represent the 

average cell index as a function of time. A representative experiment is shown.  

 

To understand which miR-340 target genes is responsible for the behaviour observed in fig. 

25 and 26, we knocked down the main validated miR-340 targets and compared the knock-

down effect with the mimic treatment. Among the main miR-340 target genes, only 

SERPINE1 and YAP1 knockdowns seem to partially recapitulate the effect of miR-340 

administration (fig. 27).  
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Figure 27: SERPINE1 and YAP1 knockdowns partially recapitulate the effect of miR-340 

administration in MDA-MB-231 cell line. 

RTCA experiments were performed in MDA-MB-231 cells transfected with miR-340 mimic and the 

negative control (neg ctrl) or esiRNAs, related to the main validated miR-340 target genes, together with the 

corresponding negative (neg ctrl esiRNAs) and positive control (pos ctrl esiRNAs). Each condition was 

recorded in quadruplicates and the curves represent the average cell index as a function of time. The curves 

concerning the effect of miR-340 mimic/negative control are dotted; SERPINE1 and YAP1 knockdowns and 

esiRNA positive/negative control curves are thick while the curves germane to the other knockdowns are thin. 

A representative experiment is shown. 

 

This suggests that these two target genes might be the mediators of phenotypic effect of 

miR-340 in MDA-MB-231 cells. Since we did not knock down all the validated miR-340 

target genes, the involvement of other miR-340 target genes can not be excluded. 

 

7.4.3 miR-340 modulates the cell cycle distribution of the MDA-MB-231 cell line 

To better understand whether miR-340 might have a role in cell cycle distribution, we 

performed a cell cycle analysis. MDA-MB-231 cells transfected with miR-340 mimic and 

the negative control were pulsed with BrdU for 1 h and analysed by flow cytometry. 

MDA-MB-231 transfected with miR-340 mimic showed a reduction in the BrdU positive 

cells compared to the negative control (fig. 28A-B). The quantification of the cell cycle 

distribution highlighted that the mimic transfected MDA-MB-231 cells exhibited a 
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significant reduction in the number of cells in S phase compared to the control. This effect 

may be due to a G1 phase arrest, even if not statistically significant (p = 0.10) (fig. 28C).  

 

Figure 28: miR-340 affects cell cycle distribution in MDA-MB-231 cell line. 

(A-B) MDA-MB-231 cells transfected with the negative control (neg ctrl) (A) and miR-340 mimic (B) were 

pulsed with BrdU for 1 h. The BrdU positive cells were assayed with a α-BrdU primary antibody and 

detected with a α-mouse Alexa 647-conjugated secondary antibody. A representative flow cytometry 

analysis of cell cycle distribution is reported. (C) The graph represents two independent experiments, means 

± SEM are shown. Statistical significance was probed using Student’s t-test (* = p < 0.05, ** = p < 0.01, *** 

= p < 0.001 and ns = not significant). 

 

Overall, the miR-340 shows a role in the regulation of cell cycle distribution since the 

administration of miR-340 may determine a G1 arrest with a consequent reduction of the 

number of cells in S phase. This finding might justify the effect observed in time-lapse 

microscopy and RTCA experiments. As a consequence, the miR-340 target genes 

SERPINE1 and YAP1 might partially act as driver of these cellular changes. 
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7.5 IN VIVO VALIDATION OF THE ROLE OF miR-340 IN BREAST CANCER 

TUMOURIGENESIS 

 

7.5.1 miR-340 over expression does not influence breast cancer growth and apoptosis rate  

To test whether the effect of miR-340 in cell cycle distribution and breast cancer prognosis 

may have an impact on tumour growth in vivo, we generated stable miR-340 over 

expressing MDA-MB-231 cells infecting them with miR-340 or scramble control GFP-

lentiviral vector (see materials and methods section). Before starting with the in vivo 

experiments, we tested viral insertion of the infected MDA-MB-231 cells measuring the 

number of GFP positive cells by FACS analysis. We found that MDA-MB-231 cells 

infected with both miR-340 and scramble lentiviral vector were viable and showed high 

viral insertion (fig 29).  

 

Figure 29: miR-340 and scramble infected MDA-MB-231 cells show high viral insertion. 

(A-B) The viral insertion was tested measuring the GFP positive cells by FACS analysis. (A) The histograms 

show the GFP positive cells within the gate of alive cells. (B) The table reports the mean fluorescence 

intensity of each sample. The negative control (neg ctrl) represents MDA-MB-231 cells treated with H2O. 
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In addition, we also quantified miR-340 levels in MDA-MB-231 cells upon infection by 

RT-qPCR and we observed that miR-340 expression was 100-fold increased compared to 

scramble (fig. 30).  

 

Figure 30: MDA-MB-231 cell line infected with miR-340 lentiviral vector displays a 100-fold increase 

of miR-340 expression. 

MDA-MB-231 cells infected with miR-340 or scramble lentiviral vector were tested by RT-qPCR for miR-

340 expression. The RQ was calculated normalising miR-340 Ct values against the Ct values of the 

housekeeping gene rnu19 (ΔCt). The ΔΔCt values were obtained subtracting the ΔCt values of the calibrator 

sample, wild-type (wt) MDA-MB-231 cells, to the ΔCt values of each sample. The dotted line indicates the 

expression level of the calibrator sample. Dots represent technical triplicates, means ± standard deviation 

(SD) are shown. 

 

We injected MDA-MB-231 cells, infected with miR-340 or scramble lentiviral vector, into 

the mammary fat pad of CD-1 nude mice. The animals were monitored every day and, 

when the tumours onset, they were measured once a week by caliper. miR-340 over 

expression does not negatively influence the tumour volume, as a matter of fact miR-340 

over expression seems to induce a slight increase in tumour growth in late tumour 

progression compared to scramble (fig. 31).  
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Figure 31: miR-340 does not influence breast cancer growth in CD-1 nude mice. 

5*106 MDA-MB-231 cells infected with miR-340 or scramble lentiviral vector were injected into the 

mammary fat pad of CD-1 nude mice (N = 10/group). Tumours were measured every week by caliper until a 

volume of 1200 mm3. The tumour growth curves show a merge of two independent experiments, means ± 

SEM are shown. 

 

Mice were sacrificed when tumours reached 1200 mm3 and the tumours collected and fixed 

in formalin. In order to better elucidate the tumour growth data, we evaluated by 

immunohistochemistry (IHC) analysis the expression of the proliferation marker Ki-67 and 

the apoptosis marker cleaved CASP3 in four mice for each experimental group. We found 

that miR-340 over expression does not affect the expression of Ki-67 (fig. 32 A, C-E) and 

the cleavage of CASP3 (fig. 32 B, F-H). The IHC analysis substantiates the data of tumour 

growth, since it confirm that in vivo miR-340 over expression does not influence both the 

proliferation and the apoptosis rate of breast cancer. 
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Figure 32: miR-340 over expression does not influence the expression of Ki-67 and the cleavage of 

CASP3 in mice tumour samples. 

(A-H) Mouse tumours, described in the legend to fig. 31, were assayed for the proliferation marker Ki-67 and 

the apoptosis marker cleaved CASP3 by immunohistochemistry analysis in four mice/group. (A-B) The 

quantification of the Ki-67 and cleaved CASP3 signal was performed using ImageJ and measured as 

percentage of positive area. Statistical significance was probed using t-test (* = p < 0.05, ** = p < 0.01, *** 

= p < 0.001 and ns = not significant). (C-H) Representative images were shown. The control (ctrl) represents 

the sample without the primary antibody. Magnification 20X. Scale bar 1 mm. 

 

Overall, miR-340 over expression does not affect breast cancer tumour growth in vivo.  

The discordance between in vitro and the in vivo data might be due to the different 

employed miR-340 gain-of-function systems. The lentiviral vector and the mimic increase 

miR-340 level 100- and 20,000-fold, respectively (fig. 17A and 30). Since the validation of 

miR-340 target genes was not performed in infected MDA-MB-231, likely the 200-fold 

less miR-340 level is not sufficient to affect the expression of miR-340 breast cancer-

driver target genes. 
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7.5.2 Generation and characterisation of FVB/NCrl Mir340 deficient mouse model 

As a consequence of the absence of concordance between the results obtained from the two 

different miR-340 gain-of-function systems, we decided to characterise the role of miR-

340 by a more reliable loss-of-function model thus to minimise all the possible off-target 

effects. We first tried to transient inhibit miR-340 using a miR-340 antisense 

oligonucleotide but the inhibitory effect was too slight to appreciate an outcome on target 

genes (data not shown). Taken into account the difficulties in the transient inhibition of 

miR-340, we attempted to generate a stable miR-340 knock out cell line using transcription 

activator-like effector nuclease (TALEN) technology. Regrettably, no miR-340 knock out 

clone was obtained, even if the TALENs were found to target the desired locus (data not 

shown). Subsequently, we chose to generate a straight knock out mouse model taken 

advantage of the zinc fingers (ZNFs) technology404, which are specific genomic scissors for 

the targeted editing of the genome.  

ZNFs are engineered proteins composed of two functional domains: a DNA-binding 

domain, which recognises a specific hexamer on the interested DNA region, and a DNA-

cleaving domain comprised of the nuclease domain of the restriction endonuclease Fok I. 

When these two domains are fused together the ZNFs cut in the specific DNA region 

causing a double-strand break. This DNA damage can be repaired by homologous or non-

homologous end joining recombination obtaining a site-specific mutagenesis or a complete 

knock out, respectively.  

The ZNFs were designed to bind a region located 130 bp upstream the Mir340 locus. The 

ZNFs-directed double strand break was repaired by homologous recombination, providing 

a specific replacement template, which mediates a 188 bp deletion, aimed to the complete 

disruption of Mir340 locus (fig. 33).  
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Figure 33: ZNFs strategy for the deletion of Mir340 locus. 

The zinc fingers (ZNFs) were designed to bind a DNA region (red) 130 bp upstream the miR-340 locus (blue 

and light blue). The replacement template, which mediates the complete deletion (188 bp) of miR-340 locus, 

was depicted in brown. The yellow arrows indicate the primer pair employed for the genotyping and 

sequencing. 

 

Starting from three rounds of ZNFs and replacement template pronuclear microinjection, 

two in FVB/NCrl and one in C57BL/6 background (see material and method section), the 

new born-targeted animals were screened for the Mir340 deletion. The DNAs extracted 

from mouse tail were amplified using the primer pair depicted in figure 33 and digested 

with two different restriction enzymes: BamHI and T7E1. BamHI digestion was assayed 

because the replacement template-mediated deletion causes the lost of a BamHI site; the 

T7E1 restriction enzyme was employed after the denaturation and reannealing of the PCR 

product since it cuts only in the presence of heteroduplex, which indicates the presence of 

mismatches.  

In the first round 19 FVB/NCrl pups were screened and no suspected founder animals were 

found (fig. 34).  

 

Fig. 23!
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Figure 34: screening of pups derived from the first round of pronuclear microinjection. 

The Mir340 locus was amplified using the primer pair depicted in fig. 33 and subsequently digested by two 

different restriction enzymes: BamHI and T7E1. 

 

The sequencing confirmed that the 19 mice did not show the deletion of Mir340 locus 

(table 12).  
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Table 12: sequencing of the targeted animals. 

The Mir340 locus of the mice generated by the three rounds of pronuclear microinjection was sequenced by 

Big Dye chemistry using the primer pair depicted in fig. 33. The strain, mouse ID, sex and sequencing result 

(allele) were reported. 

 

Strain! ID! Sex! Allele!
FVB miR-340! 469! M! wild-type!

FVB miR-340! 471! F! wild-type!

FVB miR-340! 472! F! wild-type!

FVB miR-340! 473! F! wild-type!

FVB miR-340! 474! M! wild-type!

FVB miR-340! 475! F! wild-type!

FVB miR-340! 801! F! wild-type!

FVB miR-340! 802! F! wild-type!

FVB miR-340! 803! M! wild-type!

FVB miR-340! 804! M! wild-type!

FVB miR-340! 805! M! wild-type!

FVB miR-340! 826! M! wild-type!

FVB miR-340! 828! F! wild-type!

FVB miR-340! 829! F! wild-type!

FVB miR-340! 851! F! wild-type!

FVB miR-340! 876! M! 2 bp deletion in ZNFs binding site (homozygote)!

FVB miR-340! 877! F! wild-type!

FVB miR-340! 878! F! wild-type!

FVB miR-340! 879! F! wild-type!

C57BL/6 miR-340! 809! M! wild-type!

FVB miR-340! 810! M! deletion miR-340 locus (heterozygote)!

C57BL/6 miR-340! 818! M! wild-type!

FVB miR-340! 821! F! rearrangement ZNFs binding site (heterozygote)!

FVB miR-340! 822! F! wild-type!

FVB miR-340! 827! F! rearrangement in ZNFs binding site (heterozygote)!

FVB miR-340! 830! F! deletion miR-340 locus (heterozygote)!

FVB miR-340! 853! F! wild-type!

FVB miR-340! 854! M! wild-type!

FVB miR-340! 882! M! wild-type!

FVB miR-340! 883! M! wild-type!

FVB miR-340! 884! M! wild-type!

FVB miR-340! 885! F! wild-type!
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The second and the third rounds of microinjection gave rise to two C57BL/6 and 11 

FVB/NCrl pups, respectively. According to the same restriction enzyme-based assays, we 

identified two suspected founder mice (#810 and #830) in FVB background, one male and 

one female (fig. 35).  

 

Figure 35: screening of pups derived from the second and third rounds of pronuclear microinjection. 

The editing of Mir340 locus was assayed as in figure 34. The founder animals are highlighted with a red 

circle. 

 

Nevertheless, also in this case, we sequenced the Mir340 locus of all pups. The results of 

the sequencing are summarised in table 12. The mice #810 and #830 had the complete 

deletion of miR-340 locus on one allele (fig. 36), whereas #821 and #827 displayed 

ambiguous rearrangements.  

 

Figure 36: #810 and #830 Mir340 allele. 

The two founder mice show the complete deletion of Mir340 locus. The colour legend is the same of fig. 33. 
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In order to better understand the kind of rearrangements in #821 and #827 mice, we cloned 

their miR-340 locus in one shot® TOP10 chemically competent E.Coli using pCR™4-

TOPO® vector. The sequencing of the Mir340 positive colonies revealed that #821 and 

#827 presented only deletions upstream the Mir340 locus.  

To confirm the germ line transmission of the Mir340 deleted allele in F1 offspring the 

founders #810 and #830 were crossed. Since the germ line transmission was confirmed, 

FVB Mir340 colony was generated crossing heterozygous F1 animals, carrying mother 

deleted allele. The breeding pairs were replaced every six months with new heterozygous 

breeders.  

A new genetically modified mouse strain has to be subjected to phenotypic studies in order 

to verify whether the genome editing affects mouse health. According to European 

guidelines for the generation of a genetically modified mouse strain (implementation of 

Directive 2010/63/EU), the phenotypic analysis has to be conducted, from the weaning 

until the sexual maturity, in seven wild type and seven genetically modified animals, 

derived from more than one litter and belonging to F2 onwards generation. This analysis 

revealed that FVB Mir340 knock out mice showed a normal phenotype. The criteria 

followed and the results obtained in the phenotypic analysis are summarised in table 13.  
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Table 13: phenotypic analysis of FVB Mir340 strain. 

The phenotypic analysis was conducted in seven FVB Mir340 knock out and seven FVB Mir340 wild type 

mice from weaning to sexual maturity, derived from more than one litter and belonging to F2 onwards 

generation. The table summarises the criteria followed and the results obtained. 

 

Wild types! Knockouts!

Overall appearance!
Morphologically normal! YES! YES!

Malformations! NO! NO!

Size, conformation and growth!

Deviation from expected size! NO! NO!

Deviation from expected growth curve! NO! NO!

Behaviour!
Social interaction! YES! YES!

Grooming! YES! YES!

Walking! YES! YES!

Running! YES! YES!

Digging! YES! YES!

Climbing! YES! YES!

Movements! NORMAL! NORMAL!

Orientation! NORMAL! NORMAL!

Rigidity and tremors! NO! NO!

Iper- or ipo- activity! NO! NO!

Clinical signs!
Nasal or ocular discharge! NO! NO!

Swollen or closed eyes! NO! NO!

Respiratory rate! NORMAL! NORMAL!

Seizure/twitched/tremors! NO! NO!

Vocalization! NORMAL! NORMAL!

Teeth! NORMAL! NORMAL!

Tumours! NO! NO!

Neurological or muscukoskeletal abnormalities! NO! NO!

Metabolism! NORMAL! NORMAL!

Coat/whiskers/skin! NORMAL! NORMAL!

Numbers!
Death pre- or post- weaning! NO! NO!

Post mortem examination! NORMAL! NORMAL!

Fertility! YES! YES!
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Subsequently, we verified whether the Mir340 allele followed the Mendelian distribution 

in 167 mice born from heterozygous breeders. The expected ratio of Mir340 allele 

distribution is 25% wild type, 50% heterozygous and 25% knock out. We found 23.4% of 

wild type (39/167), 51.5% of heterozygous (86/167) and 25.1% of knock out (42/167) 

mice (table 14). Considering the expected proportion, the distribution of the genetically 

modified allele is completely consistent with Mendel’s rules.  

 

Table 14: Mir340 allele follows Mendelian distribution. 

The table shows the distribution of the Mir340 allele in 167 FVB Mir340 mice derived from heterozygous 

breeders. The absolute numbers of wild type (wt), heterozygous (het) and knock out (ko) mice are shown. 

 

We also checked if the Mir340 knock out mice were fertile. To this purpose, we crossed 

one male and one female FVB Mir340 knock out mice and followed the fertility for two 

oestrus cycles. We obtained new generations for each oestrus, the new-borns were healthy 

and the number of pups/litter was comparable to the expected. Thus, the fertility of knock 

out mice is as good as the wild type and heterozygous mice.  

  

Table 12!

wt! het! ko!

Male! 21! 46! 22!

Female! 18! 40! 20!

All! 39! 86! 42!

N = 167!
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8. DISCUSSION 

 

The emerging importance of the microenvironment during tumourigenesis has raised 

attention to identify determinants, which orchestrate microenvironment plasticity during 

cancer onset and progression. The uPA-system is well established to be involved in 

microenvironment homeostasis both in normal and pathological conditions. In the context 

of cancer, the uPA-system is able, on the one hand to sustain tumour formation enhancing 

proliferative signalling; on the other hand it supports tumour invasion and metastases 

through the activation of pericellular proteolysis and migratory intracellular signalling 

pathways. In breast cancer, the components of the uPA-system are frequently co-over 

expressed and mainly localised in the stromal compartment. Clinical studies unveiled that 

high levels of uPA, uPAR and PAI-1 are associated with poor clinical outcome in breast 

cancer169. Specifically uPA and PAI-1 are among the strongest breast cancer prognostic 

markers with the highest level of evidence167. In spite of the relevant role of the uPA-

system components in breast cancer and the extended characterisation of their 

transcriptional and post-transcriptional regulation, the molecular mechanisms underling the 

co-over expression of PLAU, PLAUR and SERPINE1 are still to uncover. In this study we 

propose that a miRNA, the miR-340, contributes to the coordinated expression of the three 

uPA-system components in the context of breast cancer. In addition, miR-340 is able to 

negatively regulate the expression of desmoplastic reaction and poor breast cancer 

prognosis-related genes, thus representing a new potential drug for breast cancer patients.   

 

8.1 ERBB2 AND PLAUR ARE NEITHER CO-AMPLIFIED NOR CO-EXPRESSED  

The role of uPAR in breast cancer has not been fully elucidated yet. Unlike uPA and PAI-1, 

uPAR is considered a less strong breast cancer prognostic marker169, even if it has been 

reported to be associated with poor clinical outcomes170,171.  Several studies have proposed 

the synergistic effect of uPAR and ERBB2 in the aggressiveness of ERBB2+ breast cancer 
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subtype; co-amplification and co-expression of ERBB2 and PLAUR were indeed observed 

in advanced breast CTSs, TPs of frozen primary breast carcinoma183,184 and in bone marrow 

micro metastatic cells185. The possibility of a functional cross talk between uPAR and the 

ERBB2 has been also supported by in vitro experiments using different breast cancer cell 

lines. Namely, Li et al.188 showed the synergistic effect of uPAR and ERBB2 in supporting 

proliferation via the ERK signalling and in inhibiting apoptosis in ERBB2 and uPAR over 

expressing breast cancer cells.  In addition, Tan et al.186 reported, in breast cancer cell lines 

and patients, that the over expression of uPAR relies on an ERBB2-mediated induction of 

the Src/PKCα signalling axis. Several studies also investigated the cross talk between 

uPAR and EGFR. Jo et al.187 demonstrated that the proliferative signalling triggered by 

EGF is supported by uPAR; indeed they proposed that EGFR and uPAR may enhance 

proliferative signalling pathway through Src-mediated STAT5 activation. A different 

mechanism was suggested by Liu et al.89 in which EGFR mediated the growth of HEp3 

human carcinoma and MDA-MB-231 cells via uPAR/integrin/FN/FAK/ERK signalling 

cascade in uPAR-rich environment.  

In order to test the proposed ERBB2 and PLAUR co-amplification and co-over expression, 

we performed a copy number variation and expression analysis in a cohort of 133 

unselected Dutch breast cancer patients. In our cohort, we identified a subset of patients 

characterised by ERBB2 amplification and over expression (fig. 10A and 11A), which 

confirmed the well known finding that in ERBB2+ breast cancer ERBB2 over expression is 

mainly due to ERBB2 locus amplification381. The cluster of patients with ERBB2 

amplification did not show the concomitant PLAUR amplification (fig. 10B). PLAUR 

expression data indeed did not display a specific trend (fig. 11B). The correlation analysis 

between ERBB2 and PLAUR expression levels clearly showed the absence of a correlation 

between the two genes (r = 0.03; p = 0.77) in our cohort of patients (fig. 12).  

The discordance between our data and those shown in the previous studies may have 

several explanations. First, we carried out the study in a cohort of unselected breast cancer 
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patients, while in the above-mentioned studies the analyses were conducted mainly in 

advanced breast carcinoma patients. Second, the sample types are different: our samples 

derive from standard tumour biopsies, which represent a mixture of different epithelial and 

stromal cells while, in the previous studies, the ERBB2 and PLAUR gene status was 

analysed in CTCs, TPs and isolated micro metastatic cells. Taken into account that tumour 

is a dynamic and heterogeneous disease, which continuously arranges itself during cancer 

progression and different mutations/alterations may be acquired only by a specific subset 

of cells, it can not be excluded that distinct cell types, analysed at different tumour stages, 

might show different rearrangements. This observation is supported by Markiewicz et al.184, 

which also reported the absence of correlation between ERBB2 status in primary tumours 

and CTCs. Furthermore, the studies on the localisation of uPAR in human breast cancer 

tissues mainly support a stromal localisation of the uPA-system components155-157; on the 

contrary ERBB2 is a well-known epithelial marker. Likely ERBB2 and PLAUR co-

amplification and co-expression is a very late step of tumourigenesis and only a small 

portion of cells shows this kind of rearrangement. A third aspect to be considered is the 

kind of assay employed. We analysed gene amplification and gene expression using qPCR 

while, in the previous works, at least one of the two genes was assessed by 

immunofluorescence (IF), IHC or fluorescence in situ hybridization (FISH), which are less 

sensitive than qPCR. 

 

8.2 PLAUR AND PLAU EXPRESSION IS HIGHLY CORRELATED IN BREAST 

CANCER 

In the same cohort of patients, we measured the expression of putative breast cancer-

related genes. Correlation analysis between PLAUR expression level and the expression of 

the other genes measured highlighted that the strongest correlation is between PLAUR and 

PLAU (r = 0.74, p < 0.001) (table 3 and fig. 13). To corroborate this observation, 

correlation analyses mining expression data from microarrays of breast cancer patients and 
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human cancer cell lines were performed. Out of more than 20,000 genes covered, PLAU 

was always one of the strongest correlated with PLAUR (table 4). 

The existence of common mechanisms of transcriptional and post-transcriptional 

regulation of PLAU and PLAUR has already been documented. At transcriptional level, 

they share SP1 transcription factor and several enhancers, which are mainly recognised by 

FOS transcription factor family and NF-κB (reviewed in189).  PLAU and PLAUR may be 

subjected to the same post-transcriptional mechanisms for the regulation of mRNA half-

life. Indeed, the mRNA instability mainly depends on modules of AU-rich sequences, 

called AREs, located within the 3’UTR of both PLAU295 and PLAUR306, and the binding of 

specific RNA-binding proteins. This mechanism might be impaired in cancer as 

demonstrated for PLAU up regulation in MDA-MB-231 cells299. On the contrary, a direct 

evidence of PLAUR up regulation in cancer due to an impairment of AREs-mediated 

mRNA instability has not been reported yet, but a different mechanism of mRNA 

stabilisation has been proposed. Interestingly, a uPA-dependent binding of an unknown 

RNA-binding protein to PLAUR mRNA coding region seems to stabilise the transcript in 

PLAUR transfected kidney cells and in non-small cell lung cancer primary cells307,308. In 

addition, p38α MAPK signalling pathway is important for the maintenance of breast 

cancer invasive phenotype since it promotes the stability of both PLAU and PLAUR 

mRNA405. In contrast, studies on the aberrant transcription of PLAU and PLAUR in cancer 

have not reported shared mechanisms of transcriptional regulation, even if they can not be 

excluded. Indeed, PLAU over expression was shown to mainly depend on NF-κB- and β-

catenin-mediated transcription in pancreatic adenocarcinomas222 and colorectal cancer223, 

respectively. In addition, epigenetic modifications in the methylation status of the promoter 

may also influence PLAU expression in breast cancer cell lines224,225. On the other hand, 

PLAUR over expression in tumours has been shown to mainly depend on tumour-specific 

transcription factors binding the AP2/SP1 sites in gastrointestinal tumours243. Furthermore, 

it has been observed that the over expression of B-cell lymphoma 2 (BCL-2) in breast 
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cancer cells, in hypoxic conditions, induces SP1-mediated PLAUR expression through 

ERK1/2 signalling406. 

The studies on PLAUR and PLAU post-transcriptional regulation suggested us the 

possibility that post-transcriptional regulation mechanisms, in addition to those involved in 

the regulation of transcription, might contribute significantly to the co-expression. In the 

context of post-transcriptional regulation, miRNAs have emerged as important players. 

Several microRNAs have been identified to regulate the expression of individual uPA-

system components and a single microRNA, miR-146a, has been reported to indirectly 

target both PLAUR and PLAU in mouse brain metastases349.  

 

8.3 IDENTIFICATION OF miR-340 AS MODULATOR OF THE EXPRESSION OF 

THE uPA-SYSTEM COMPONENTS 

Starting from the findings concerning PLAUR and PLAU post-transcriptional regulation, 

we hypothesised that one or more microRNAs might be the determinants of the PLAUR 

and PLAU co-expression. To test this hypothesis, we inspected PLAUR and PLAU mRNAs 

for predicted miRNA target sites using miRanda database373 and we found three candidates 

microRNAs in common: miR-193a-3p, miR-193b and miR-340 (table 5). Using the 

CellMinerTM web tool371, we found that only miR-340 level is negatively correlated with the 

expression of PLAUR and PLAU and remarkably also with SERPINE1 (table 7 and fig. 14). 

The inverse correlation was also observed at protein level, except miR-340 level with 

suPAR (fig. 16).  

suPAR is mainly generated by post-translational processing of the protein through uPAR 

shedding and cleavage77,78. As a consequence, the level of suPAR is mainly dependent on 

the PLAUR transcription. Likely the effect of miR-340-mediated PLAUR down regulation 

was not so strong to induce a down regulation also on suPAR protein level. In addition, a 

PLAUR transcript variant encoding for a soluble form of uPAR has been identified227,229; 
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this variant shows a completely different 3’UTR compared to the most abundant isoform, 

therefore it might be not regulated by miR-340. 

To test whether miR-340 down regulates the expression of the uPA-system components, 

we exogenously administrated miR-340 in MDA-MB-231 cells, which show high PLAUR 

and low miR-340 expression, using miR-340 mimic oligonucleotides and measured the 

expression levels of the three main uPA-system components together with other 

components of the PA-system: SERPINB2 (PAI-2) and PLAT (tPA). In line with the data 

of correlation analyses, miR-340 administration elicited the down regulation of the core 

components of the uPA-system and PLAT (fig. 17B-D, F); on the contrary a trend of 

SERPINB2 up regulation was observed (fig. 17E). Immunoblot analysis of miR-340 mimic 

transfected MDA-MB-231 cells confirmed the negative regulation of uPA also at the 

protein level while the effect on uPAR was minor and not statistically significant (fig. 18). 

The identification of PLAT as miR-340 target is in line with the prediction of miRanda 

algorithm available in microRNA.org and has been recently documented by Yamashita et 

al.384 in glioblastoma samples. The opposite trend observed in SERPINB2 expression level 

is unexpected since two miR-340 binding sites are predicted by miRanda algorithm. The 

mirSVR score suggests a miR-340-mediated negative regulation of SERPINB2. PAI-1 and 

PAI-2 participate to the same biological functions, such as the inhibition of uPA and tPA, 

but are also involved in different cellular mechanisms (reviewed in127). Furthermore, the 

PAI-2-mediated functions are not fully clarified yet (reviewed in407). In breast cancer, for 

example, PAI-1 levels are mainly associated with poor prognosis; on the contrary, PAI-2 

levels are associated with good prognosis, especially in patients with high uPA level408. 

This observation suggests that likely miR-340 might act, on the one hand as negative 

regulator of tumour-promoter genes, on the other hand as positive regulator of 

oncosuppressor-like genes as SERPINB2. 
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8.4 miR-340 MAY AFFECT THE mRNA STABILITY OF THE uPA-SYSTEM 

COMPONENTS  

 

The binding of a miRNA to its target mRNA may elicit either inhibition of mRNA 

translation or mRNA degradation, interfering with the translational machinery324-326 or 

sustaining the destabilisation of the mRNA through miRNA-mediated mRNA 

deadenylation and decay327-329, respectively. The previously published observations suggest 

that miR-340 acts on the degradation of the mRNA. The presence of the AREs sequences 

within the 3’UTR of both PLAU and PLAUR prompted us to investigate whether the 

binding of miR-340 to the AREs sequences might enhance the destabilisation of the 

mRNA. We mapped in silico the miR-340 seed region binding site/s in the 3’UTR of 

PLAUR, PLAU and SERPINE1. We found that miR-340 is predicted to bind the 3’UTR of 

both PLAUR and PLAU within the AREs (fig 19). In addition, even if not predicted, a 

miR-340 seed region binding site is located also in the SERPINE1 3’UTR inside an AU-

rich sequence (fig 19), corroborating the role of miR-340 in regulating also SERPINE1 

expression. The weaker miR-340-mediated PLAUR down regulation on mRNA and protein 

levels, compared to the other components of the uPA-system, might be due to partial 

overlap between miR-340 binding site and the ARE sequence (fig 19). On the other side, 

Tran et al.302 demonstrated the importance of AREs sequences in PLAU mRNA instability 

proposing a mechanism of mRNA instability regulation, which involves different AREs 

binding proteins; in addition Jing et al.409 showed the involvement of miR-16 in AREs-

mediated mRNA instability.  This mechanism might act also on SERPINE1 mRNA since, 

even if miR-340 seed region does not coincide with AREs, the binding of miR-340 occurs 

within AU-rich sequence; on the contrary it does not fit with PLAT and SERPINB2 miR-

340-mediated regulation. The miR-340 binding site in the PLAT transcript does not map 

neither within AREs nor AU-rich sequences. Yet AU-rich sequences, present within the 

PLAT 3’UTR, are associated with mRNA adenylation/deadenylation rather than decay 
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(reviewed in189). Studies on PLAT post-transcriptional regulation underlined that it is 

mainly dependent on the 5’UTR sequence through the control of the translational process 

rather than mRNA instability (reviewed in189). SERPINB2 shows two miR-340 binding 

sites located neither in the identified ARE sequence nor in AU-rich sequences 

(reviewed189). These observations suggest that miR-340 might act as negative modulator, 

through ARE-mediated enhancement of mRNA instability, only of the three main uPA-

system components: PLAUR, PLAU and SERPINE1. 

 

8.5 CHARACTERISATION OF THE miR-340 TARGETOME IN MDA-MB-231 CELL 

LINE 

To get a complete picture of the miR-340 target genes, we performed a microarray analysis 

in MDA-MB-231 cells transfected with miR-340 mimic and negative control. This 

analysis unveiled that miR-340 is able to regulate the expression of 10% (1987/19607) of 

MDA-MB-231 transcriptome mainly in a negative fashion (1.7-fold more genes were 

down regulated than up regulated), consistent with miRNA-induced mRNA instability. 

The negative regulation of the uPA-system components was further confirmed (table 9). 

Actually, the regulation of 10% of the transcriptome is sizeable. This might be due to off-

target effects, since miR-340 level in transfected cells largely exceeds the physiological 

level410, or to indirect miR-340-mediated gene regulation. In the latter case, miR-340 might 

modulate the expression of transcription factors that in turn might regulate the expression 

of a consistent number of genes. On the opposite side, the effect on the MDA-MB-231 

transcriptome might also depend on a toxic effect of miR-340 mimic. To partially exclude 

these hypotheses, we verified whether the experimentally determined miR-340 target list 

was enriched in putative miR-340 targets and we found that the predicted target genes 

were 1.8-fold over represented among the experimentally regulated genes.  

The involvement of miR-340 in regulating gene expression has emerged in the last decade. 

Several papers showed the capability of miR-340 to modulate the expression of cancer-
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related genes such as MET in breast and colorectal cancer387,388, ROCK1 in 

osteosarcoma389,390 and glioblastoma391 and SOX2 in neuroblastoma392. Moreover, miR-340 

has been shown to regulate also the expression of genes involved in cancer-related 

processes such as the Warburg effect393, therapy resistance394, proliferation391,395,396, 

invasion/migration391 and autophagy391. The microarray analysis showed that miR-340 is 

able to negatively regulate genes involved in the desmoplastic reaction397-399: CTGF, 

ROCK1 and YAP1. We validated the microarray data by qPCR including also LOX, 

another important determinant of the desmoplasia, even if it was not significantly regulated 

in the microarray analysis. We found that miR-340 significantly down regulates the 

expression of CTGF, ROCK1 and YAP1, while up regulates the expression of LOX (fig. 

21A-D). This observation suggests that miR-340 might negatively regulate the expression 

of a cluster of genes involved in the desmoplastic reaction. The up regulation of LOX is in 

contrast with the previous conclusion since LOX is a strong promoter of desmoplasia-

related metastasis formation402,411. Nevertheless, it is not obvious that a single miRNA 

should have the same effect on all the genes related to a specific biological process. 

Furthermore, it is also important to stress that miRNAs are an additional layer of gene 

regulation, which follow stronger mechanisms of regulation (i.e. transcriptional regulation). 

The effect on ROCK1 is in line with previous studies in osteosarcoma389,390 and 

glioblastoma391. On the contrary, the identification of CTGF and YAP1 as miR-340 target 

genes, to our knowledge, has never been reported before. YAP1 is involved in a plethora of 

biological functions and in the development and progression of multiple cancers as a 

transcriptional regulator of the Hippo pathway403. For this reason, we also validated the 

miR-340 negative regulation of YAP1 protein level by immunoblot and the effect of down 

regulation was very robust (fig. 22). 

Overall, we conclude that miR-340 might have an anti-tumour effect in breast cancer since 

it is able to negatively regulate not only the uPA-system components but also a cluster of 

desmoplastic reaction-related genes.  Specifically, the effect on YAP1 expression might 
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open new scenarios on the miR-340 potentiality in gene regulation of cancer-related 

pathways. 

The miR-340-mediated down regulation of target genes involved in breast cancer 

tumourigenesis led us to investigate the potential clinical relevance of the experimentally 

determined miR-340 target genes in breast cancer. To this purpose, all the genes analysed 

in the microarray were annotated according to their association with OS performing meta-

analysis of published microarray data sets using BreastMark database376. We found that the 

experimental miR-340 target list is 1.3-fold (p < 0.001) enriched in genes associated with a 

significant prognostic value and 3.4-fold enriched (p < 0.001) in genes associated with a 

very significant prognostic value. Specifically, miR-340 target genes were 1.3-fold 

enriched (p < 0.001) in genes significantly and highly significantly associated with poor 

prognosis. Importantly, miR-340 down regulated target genes are 1.5-fold (p < 0.001) and 

1.3-fold (p < 0.001) enriched in genes significantly and highly significant associated with 

poor prognosis, respectively. The miR-340 down regulated target genes, highly significant 

associated with poor prognosis in breast cancer (N = 129), may act as a miR-340-

dependent breast cancer signature. In order to understand which kind of pathways are 

related to this signature, we performed a gene ontology analysis, which highlighted 

enrichment in proliferation-related pathways (fig. 23). Moreover, the miR-340-dependent 

breast cancer signature is enriched in putative miR-340 targets (p < 0.0001) but the 

negative correlation of each gene with miR-340 levels was not observed in the NCI-60 

panel. These latest observations point out that miR-340 may down regulate cell 

proliferation-dependent genes thus to influence the outcome of breast cancer. This 

hypothesis is partially substantiated by the enrichment in putative miR-340 targets, while 

the absence of an inverse correlation with miR-340 level in the NCI-60 panel might be due 

to the fact that we analysed expression data concerning different human cancer cell lines. 

Likely, the role of miR-340 in cancer prognosis is linked only to a specific type of tumour 
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(i.e. breast cancer), which in the NCI-60 panel represents only five out 59 cancer cell lines 

(table 6). 

In summary miR-340 targets a fraction of the MDA-MB-231 transcriptome highly 

enriched in genes associated with poor prognosis in breast cancer and related to cell 

proliferation pathways. Remarkably, 92% of the highly significant prognostic genes are 

tumour promoters and are repressed by miR-340. On the other side, miR-340 also down 

regulates seven tumour suppressors and up regulates five tumour promoters. However, 

overall, miR-340 acts mainly as an oncosuppressor suggesting the possibility that in the 

future it might represent a good candidate for breast cancer therapy. pre-miR-340 

administration has already been tested in pre-established HCT116 tumours in animal 

models; indeed it has been shown that systemic administration of pre-miR-340 suppresses 

tumour growth in vivo388. 

 

8.6 FUNCTIONAL CHARACTERISATION OF THE ROLE OF miR-340 IN BREAST 

CANCER  

The miR-340-mediated down regulation of genes associated with poor prognosis in breast 

cancer, prompted us to investigate how miR-340 might influence breast cancer 

tumourigenesis. We firstly verified whether miR-340 is expressed in human breast cancer 

tissue and in which compartment it is localised. ISH analyses on normal and tumour breast 

tissues unveiled a complex staining for miR-340. Both normal and tumour tissues 

expressed miR-340 specifically in the epithelial compartment and in lymphocytes but not 

into the bulk of inflammatory infiltrate surrounding tumour cells (fig. 24). Furthermore, the 

magnification of tumour samples highlighted that the localisation of miR-340 seems 

predominantly nuclear (appreciable in fig. 24C). A nuclear localisation of a miRNA means 

that it is mainly expressed as primary or precursor form rather than the mature one, which 

is localised in the cytoplasm317,319,322. In cancer, the components of the microprocessor 

complex are often mutated, as a consequence the functional mature form of miRNAs is not 
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generated and the tumour-related miRNAs target genes are not fully regulated 

anymore332,412,413. This deregulation might concern also miR-340. Although this experiment 

does not indicate if cancer epithelium shows lower or higher miR-340 expression than the 

normal counterpart, it is nevertheless clear that miR-340 is expressed in human breast 

epithelium. 

In order to evaluate whether miR-340 administration might induce a cell proliferation-

dependent phenotypic changes in MDA-MB-231 cells, as the gene ontology analysis 

suggested, we recorded miR-340 mimic transfected MDA-MB-231 cells by time-lapse. It 

is evident that miR-340 mimic transfected cells showed a reduction of cell number and an 

increased cell rounding compared to the negative control (fig. 25). These observations 

corroborated the possibility that miR-340 might influence genes involved in cell 

proliferation and morphology. This hypothesis was further supported by RTCA 

experiments conducted in MDA-MB-231 cells reverse transfected with miR-340 mimic 

and negative control (fig. 26). RTCA experiments were also performed to understand 

which miR-340 target genes might be responsible for the observed phenotype knocking 

down some validated miR-340 targets. We found that SERPINE1 and YAP1 knockdowns 

partially recapitulate the effect of miR-340 administration (fig. 27). This piece of 

information is not fully conclusive since we did not knock down all the validated miR-340 

target genes. To test unambiguously whether miR-340 might have a role in proliferation, a 

cell cycle distribution analysis was performed. miR-340 elicited a significant reduction in 

the number of cells in S phase compared to the control. This effect might be due to a G1 

phase arrest (fig. 28C). The role of miR-340 in cell cycle regulation has been previously 

described. Fernandez et al.395 showed the involvement of miR-340 as negative regulator of 

PUM1, PUM2 and SKP2 in non-small cell lung cancer; Li et al.396 demonstrated the role of 

miR-340 in inhibiting glioblastoma cell proliferation suppressing CDK6, CCND1 and 

CCND2. Huang et al.391 also reported the miR-340-mediated negative regulation of 

CCND1 together with EZH2, AKT, EGFR and BMI1 in multiform glioblastoma. In our 
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experiments, among the few tested candidates, the main proliferation-drivers seem to be 

SERPINE1 and YAP1. This hypothesis is corroborated by the finding that SERPINE1 and 

YAP1 are both involved in cell cycle regulation. Indeed, YAP1 may promote breast cell 

proliferation and survival414 and metastasis formation415, even if it could act also as tumour 

suppressor (reviewed in403). Also SERPINE1 may sustain proliferation; indeed the 

expression of SERPINE1 is under the control of E2F transcription factor family, which 

inhibits the expression of SERPINE1 and PLAU as well214,416, for the proper regulation of 

the cell cycle. The fact that SERPINE1 and YAP1 recapitulate only partially the effect of 

miR-340 administration might be due to the fact that their role on cell cycle might be less 

strong compared to the previously mentioned cell-cycle target genes and/or to the knock 

down efficiency that has not been tested yet. Additionally, SERPINE1 and YAP1 belong to 

the list of miR-340 down regulated target genes significantly associated with breast cancer 

prognosis. Specifically, SERPINE1 (HR = 1.22) and YAP1 (HR = 0.84) are poor and good 

prognosis-related genes, respectively. Therefore, on our hands, YAP1 is associated with a 

good outcome in breast cancer (HR < 1). This observation is in line with to the above-

mentioned references concerning the bivalent role of YAP1 in tumourigenesis processes, as 

a consequence further analyses are needed to better elucidate the role of YAP1 in breast 

cancer prognosis. 

The ability of miR-340 to regulate breast cancer poor prognosis-related genes and the 

possibility that it might negatively regulate proliferation-related genes should have an 

impact in breast cancer growth in vivo. To test this hypothesis, we generated stable over 

expressing miR-340 MDA-MB-231 cells infecting them with miR-340 precursor lentiviral 

vector. We tested cell viability and miR-340 over expression by FACS analysis of GFP 

positive cells (fig. 29) and qPCR, respectively (fig. 30). The qPCR analysis confirmed that 

miR-340 infected MDA-MB-231 cells showed a 100-fold increase of miR-340 expression 

compared to scramble and wild type MDA-MB-231 cells (fig. 30) but 200-fold less miR-

340 level compared to the mimic transfected MDA-MB-231 cells (fig. 17A). We injected 
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MDA-MB-231 cells, infected with miR-340 or scramble lentiviral vector, into the 

mammary fat pad of CD-1 nude mice and we monitored tumour growth. The merge of two 

independent experiments showed that miR-340 over expression does not negatively 

influence the tumour growth (fig. 31). To quantify the cell proliferation, we evaluated by 

IHC analyses the proliferation marker Ki-67 together with the apoptosis marker cleaved 

CASP3 in four tumours/group. We found that miR-340 over expression did not affect the 

expression of Ki-67 (fig. 32 A, C-E) and the cleavage of CASP3 (fig. 32 B, F-H). The 

discrepancy with the in vitro data might be due to the different miR-340 gain-of-function 

systems employed since they induce a different miR-340 levels. We did not test whether 

lentiviral vector-induced miR-340 over expression is sufficient to down regulate the 

previously validated targets. At the same time, the miR-340 level in mimic transfected 

MDA-MB-231 cells might be not comparable with the physiological level of a miRNA410 

and off-target effects can not be excluded. A second explanation might concern the 

possibility of miR-340 silencing as a consequence of epigenetic mechanisms. Indeed, it has 

already been shown that miR-340 can be epigenetically regulated in neuroblastoma 

patients392. Furthermore, it was the first time we performed this xenograft procedure. 

Therefore, variability due to technical inexperience might have affected the results of the 

experiments. 

As a consequence of the absence of concordance between the results obtained from the two 

different miR-340 gain-of-function systems, we decided to characterise the role of miR-

340 by an in vivo loss-of-function model to minimise all the possible off-target effects. We 

generated a straight Mir340 knock out mouse model taken advantage of the ZNFs 

technology404. Mir340 knock out mice show a normal phenotype (table 13), are fertile and 

the edited allele segregation is consistent with Mendel’s rules (table 14). The absence of a 

pathological phenotype in normal condition is in line with previous miRNA knock out 

mice, even if abnormalities has been also reported417. The contribution of the components 

of the uPA-system in breast cancer has been widely studied in in vivo breast cancer mouse 
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model. The straight knock out of each component of the uPA-system mainly affects the 

metastasis formation rather then the tumour growth or burden (reviewed in418). It will be 

interesting to evaluate whether the absence of Mir340 might have an effect in breast cancer 

pathogenesis since the concomitant down regulation of the uPA-system components 

together with the desmoplasia reaction- and poor prognosis related genes should be 

occurred. 

 

8.7 FUTURE EXPERIMENTS AND PERSPECTIVES 

According to the present state of experiments, the characterisation of the miR-340 

targetome and its role in breast cancer tumourigenesis has to be still accomplished. 

The identification of miR-340 as negative modulator of the expression of the uPA-system 

core components, including PLAUR, PLAU and SERPINE1, was first assayed using both 

prediction algorithms, based on the base pairing between mRNA and miRNAs, and 

performing correlation analyses between miR-340 level and the expression level of the 

uPA-system components mining expression data available in CellMiner™ web tool371. The 

correlation analyses showed a negative correlation between miR-340 and the three main 

uPA-system components both at mRNA and protein level. Secondly, the inverse 

correlation was experimentally validated by qPCR through exogenous administration of 

miR-340 mimic oligonucleotides. The same approach was also employed for the validation 

of desmoplasia-related miR-340 target genes: CTGF, ROCK1 and YAP1. The miR-340 

negative regulation at protein level was measured by immunoblot for uPAR, uPA and 

YAP1. To further support the role of miR-340 as negative modulator of the expression of 

the previous validated target genes, a complement over expression approach using an 

efficient inhibitor of miR-340 in miR-340 low expressing breast cancer cell line is 

necessary. Moreover, to demonstrate that these genes are direct miR-340 targets, we will 

perform a reporter assay, taken advantage to the luciferase chemistry. The wild type or 

miR-340 mutated seed region binding sites 3’UTR of the validated miR-340 target genes 
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will be cloned in an expression vector downstream the luciferase reporter gene. HEK 293 

cell line will be transfected with the reporter vector, expressing the 3’UTR of a specific 

miR-340 target, with or without miR-340 mimic administration. The luciferase signal will 

be quantified after 48 h post transfection; a decrease in the luciferase signal will be the 

read out of a direct interaction between the 3’UTR of the target gene and the miR-340. 

In order to understand how miR-340 affects the mRNA half-life of its target genes, a 

mRNA stability assay will be performed. miR-340 binding site is located within the AU-

rich instability region of PLAU, PLAUR and SERPINE1 3’UTR thus to likely negatively 

affect mRNA half-life. Tran et al.302 reported that the binding of specific ARE-binding 

proteins is essential for the regulation of PLAU mRNA decay. Specifically, the binding of 

the ARE-binding protein DHX36 to the PLAU AREs sequences displaces the mRNA 

stabiliser AREs binding proteins HuR and NFAR thus to enhance the degradation of the 

mRNA. In addition, a miRNA targeting AREs has been reported to be essential in ARE-

mediated mRNA degradation409. Our hypothesis is that miR-340 may cooperate with 

DHX36 in order to promote the degradation of PLAU, PLAUR and SERPINE1 mRNA. To 

test this hypothesis in vitro decay experiments, transfecting HEK 293 cells with miR-340, 

DHX36 and the 3’UTR of each component of the uPA-system, will be performed together 

with the identification of all the possible mRNA binding proteins involved in the 

mechanism of mRNA half-life regulation of the uPA-system components. 

The microarray analysis unveiled that miR-340 significantly down regulates a cluster of 

genes involved in desmoplastic reaction: CTGF, ROCK1 and YAP1. To experimentally 

define the role of miR-340 in this phenomenon, contractility assay using miR-340 mimic 

transfected fibroblast cell lines should be informative. Subsequently, qPCR and 

immunoblot might shed light on the regulation of desmoplastic reaction-related genes. 

Furthermore, to better clarify the miR-340 mediated LOX up regulation, a matrix stiffness 

assay might be performed. Fibroblasts cells transfected with miR-340 mimic and negative 

control will be plated in collagen matrices; the collagen deposition and the matrix stiffness 



 144 

will be assayed by LOX-staining through SirCol Assay and shear rheology, respectively. 

The LOX expression at mRNA and protein level will be measured through qPCR and 

immunoblot, respectively. 

The RTCA experiments showed that SERPINE1 and YAP1 knockdowns might partially 

recapitulate the effect of mimic administration. The behaviour observed in miR-340 mimic 

transfected MDA-MB-231 cells both in time-lapse and RTCA experiments seems to be 

due to a miR-340-mediated G1 phase arrest. A cell cycle distribution analysis on miR-340 

mimic transfected MDA-MB-231 and also over expressing SERPINE1 and/or YAP1 will 

elucidate their involvement in the cell cycle regulation. If a rescue of the normal cell cycle 

distribution will be observed, a microarray analysis on SERPINE1 and YAP1 knocked 

down MDA-MB-231 cells should better explain the miR-340-mediated regulation of the 

proliferation pathway, considering that several cell proliferation-related genes are 

negatively affected by miR-340. The microarray analysis should also allow the 

discrimination between direct and indirect targets of miR-340 involved in the control of 

cell proliferation. 

The discrepancy between the results obtained using transiently or stably miR-340 

transfected MDA-MB-231 cells should be elucidated. The two employed gain-of-function 

systems actually elicit a different miR-340 level. The data concerning the xenograft breast 

cancer model do not confirm the miR-340 phenotype observed in vitro. A microarray 

analyses on miR-340 infected MDA-MB-231 cells will reveal whether the 100-fold 

increase in miR-340 expression is sufficient to recapitulate the miR-340 targetome 

identified using the miR-340 mimic. Furthermore, a cell cycle analysis on miR-340 

infected MDA-MB-231 cells will show whether the miR-340 over expression affects the 

cell cycle distribution as observed for mimic transfected MDA-MB-231 cells. If these 

experiments will show that the lentiviral miR-340 over expression recapitulate the miR-

340 mimic-mediated effects in MDA-MB-231 transcriptome and the cell cycle distribution, 

the xenograft experiment will be performed again. 



 145 

The generation of a straight Mir340 knock out animal model will allow us to characterise 

the miR-340 in vivo target genes, bypassing the issue of the off-target effects. We would 

first generate the list of in vivo miR-340 target genes performing a microarray analysis 

starting from RNA isolated from whole mammary gland and epidermis of Mir340 knock 

out and wild-type mice. In this way, considering that the mammary gland is predominantly 

made up of epithelial cells, while the skin contains a large fraction of fibroblasts, we 

believe that we will be able to deconvolute, at least partially, the cellular origin of the 

differentially expressed genes. The target list generated in this way might be employed for 

gene enrichment analysis to evaluate its relevance in breast cancer and desmoplasia 

reaction. This analysis might identify an in vivo miR-340-dependent breast cancer 

signature useful for both diagnostic and prognostic purposes. This approach will allow a 

more direct evidence on what is the effect of miR-340 in a pathological condition rather 

than a stratification of patients according to the a microRNA/host gene expression level. 

The uPA-system components and the desmoplastic response are well accepted to be an 

important driver of breast cancer growth and invasion and miR-340 should act as negative 

regulator of both aspects together with its role in down regulating highly significant breast 

cancer poor prognosis-related genes. To unequivocally determine the role of miR-340 in 

breast cancer tumourigenesis and desmoplastic response, we will cross the Mir340 strain 

with the MMTV-PymT breast cancer model419. Animals will be monitored regularly and 

the appearance of palpable tumours recorded. Tissue biopsies will be collected at different 

stages of tumour development and the histology will be carried out. If these experiments 

will confirm the role of miR-340 in breast cancer, miR-340 precursor with carbonate 

apatite as vehicle will be intravenously administrated via tail vein injection when tumour 

volume reaches approximately 80 mm3 as already tested by Takeyama et al.388. The miR-

340 administration should down regulate the expression of tumour promoter genes and 

ameliorate breast cancer outcome. This might represent a new cue to improve breast cancer 

therapy.  
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