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Via Celoria 16, I-20133 Milano, Italy
gPhysik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland
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Abstract: We study the prediction for the Higgs transverse momentum distribution in
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a twofold comparison. On the one hand, we present a detailed qualitative and quantitative

comparison of two recently introduced algorithms for determining the matching scale [1, 2].

On the other hand, we apply the results of both methods to three widely used approaches for

the resummation of logarithmically enhanced contributions at small transverse momenta:

the MC@NLO and POWHEG Monte Carlo approaches, and analytic resummation. While the

three sets of results are largely compatible in the low-p⊥ region, they exhibit sizable differ-

ences at large p⊥. We show that these differences can be significantly reduced by suitable

modifications of formally subleading terms in the Monte Carlo implementations. We ap-

ply our study to the Standard Model Higgs boson and to the neutral Higgs bosons of the

Two-Higgs-Doublet Model for representative scenarios of the parameter space, where the

top- and bottom-quark diagrams enter the cross section at different strengths.
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3.2 Matching scale determination à la BV 13
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1 Introduction

After the discovery of a Higgs boson at the LHC in 2012 [3, 4], many detailed studies have

analyzed its properties in order to assess its compatibility with the Standard Model (SM)

(see, e.g., refs. [5, 6]). These analyses rely on accurate theoretical predictions of Higgs cross

sections and decay rates. Recently, the first experimental results for the Higgs transverse-

momentum (p⊥) distribution have been published in ref. [7, 8]. Such measurements, in

particular with the increased statistics expected from LHC Run II, open up many new

interesting possibilities to test the nature of the Higgs couplings to the SM fields, and

thus to probe for signs of physics beyond the SM (BSM). Indeed, the gluon-gluon-Higgs

vertex could be mediated by loops of non-SM particles which can affect the shape of the
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p⊥ distribution [9–17]. Similarly, a modification of the Higgs Yukawa couplings can have a

significant effect on the shape of the p⊥ spectrum. The search for additional Higgs bosons,

as predicted in extensions of the SM, therefore requires the development of an accurate

description of the Higgs p⊥ distribution. For non-SM Higgs bosons, it could exhibit sizable

differences to the SM prediction, even if their mass and cross section was the same as that

of the observed particle [1, 11].

The theoretical prediction of the Higgs transverse-momentum distribution belongs to

the classic chapters of perturbative calculations. While the leading order1 (LO) QCD result

of refs. [18, 19] as well as the effects induced by electro-weak gauge bosons [20, 21] cover the

full quark-mass dependence in the internal loops, the NLO QCD corrections [22–24] have

originally been evaluated only in the limit of an infinitely heavy top quark. The impact of a

finite top-quark mass at NLO QCD has been studied subsequently in refs. [25, 26]. The first

results towards the determination of the Higgs production at large transverse momentum

with next-to-NLO (NNLO) QCD accuracy have been presented in refs. [27–29], again in the

heavy-top limit.

It is well known that these fixed-order predictions are logarithmically divergent as

p⊥ → 0. Only after the resummation of terms enhanced by powers of log(p⊥/mφ) to all or-

ders in αs, where mφ is the mass of the Higgs boson,2 does the distribution exhibit a regular

behavior towards small p⊥. This resummation is based on universal properties of QCD radi-

ation in the soft and collinear limits [30–39], and can be achieved either analytically, or nu-

merically through the so-called Parton Shower (PS) in Monte Carlo (MC) event generators.

Since the resummation of the logarithms is strictly valid only as p⊥ → 0 (implying

p⊥ � mφ), a physical prediction for the transverse-momentum distribution which extends

to p⊥ ∼ mφ requires a matching of the resummed to the fixed-order result, while avoid-

ing any kind of double counting. Various matching approaches have been proposed, both

for analytic resummation [38, 40–42],3 as well as in the framework of Monte Carlo event

generators [46, 47]. Common to all of these approaches is the introduction of an auxil-

iary, possibly effective, momentum scale (from now on generically referred to as “matching

scale”), which indicates the transverse-momentum region of the transition from the re-

summed to the fixed-order result. The dependence of the distribution on this matching

scale is of higher logarithmic order. However, inadequate choices of the matching scale may

spoil the accuracy of the result, which is why its central value requires a careful choice.

Moderate variations (typically by a factor of two) around this central value may then be

used to estimate the residual uncertainty of the resummation/matching procedure.

The choice of the matching scale becomes particularly problematic once the process

depends on more than one mass scale. One example here is Higgs production in gluon

fusion. In the SM and many extended theories, it is predominantly described by Feynman

diagrams involving top- and bottom-quark loops. In the SM it is mh ∼ mt (mh and mt

1At non-zero p⊥, “LO” denotes terms of order α3
s, etc.

2We employ the symbol φ to generically denote an electrically neutral Higgs boson.
3Detailed studies of the approaches based on Soft-Collinear Effective Theory (SCET) [41, 42] concerning

scale choices and the resulting Higgs phenomenology have been performed in refs. [43–45]. In this paper

we will limit ourselves to the standard QCD framework of refs. [38, 40].
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denote the Higgs and the top-quark mass, respectively), so it seems obvious that for the

dominant top-loop induced contribution the matching scale should be chosen to be of the

order of mh. However, despite its rather small contribution to the total cross section, the

bottom-loop plays a non-negligible role at small values of the Higgs p⊥. Since it involves two

very different scales (mh and the bottom-quark mass mb), the choice of the matching scale

is not at all obvious in this case. In fact, it was observed that the theoretical prediction

depends quite sensitively on the resummation method as well as on the nature of the

respective matching scale [11, 48, 49].

Recently, two algorithmic strategies for determining an adequate central value for the

matching scale have been proposed [1, 2]. It is important to note that, even though the

matching scales of the various approaches have different origins and meanings, i.e., they

deal with the unknown higher-order terms in different ways, the proposed strategies may

be applied to all of the resummation and matching approaches mentioned above, as will

be discussed in more detail below.

From this discussion, it is clear that the resummed transverse-momentum distribution

suffers from a number of ambiguities which are formally of higher logarithmic order. It is

the goal of this paper to study their numerical impact on the Higgs p⊥ distribution in and

beyond the SM. Since the explicit analytic form of these ambiguities is not fully accessible,

our analysis will rely on the numerical comparison of the results obtained in the various

approaches, assuming specific phenomenological parameters.

We consider the following three representative theoretical approaches:4

• analytic resummation (AR) as formulated in refs. [38, 40];

• the POWHEG method, described in refs. [47, 50];

• the MC@NLO method of ref. [46].

The implementations of these approaches on which we base our study are all publicly

available:

• for the AR approach, we use MoRe-SusHi, which includes the description of the re-

summed p⊥ distribution at next-to-leading logarithmic (NLL) accuracy consistently

matched to the fixed-order cross section at NLO QCD [1, 48, 51];

• the NLO+PS accurate POWHEG implementations of the gluon-fusion process are

contained in the directories gg H quark-mass-effects and gg H 2HDM [11] of the

POWHEG-BOX [52, 53];

• the corresponding MC@NLO implementation at NLO+PS is available in

aMCSusHi [54, 55] which combines the MadGraph5 aMC@NLO package [56] with

the SusHi amplitudes [57].

4Note that all approaches feature NLO accuracy (up to α3
s) on the total Higgs production cross section,

which implies, however, a formally LO accurate prediction at large p⊥.
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Leaving aside the specific values of the associated matching scales, we will refer to these

three approaches and their implementations as “resummation codes” or simply “codes”.

All codes work at NLO QCD accuracy in the prediction of the Higgs production total cross

section, i.e., O(α3
s). The differences in the p⊥ distribution are formally subleading,5 but

can be numerically sizable, as we will see later on. In order to assess the impact of these

differences, we compare their numerical results using the same values of the matching scales

for all of them. On the other hand, we compare the results of a single code for the two

different strategies of setting the matching scale proposed in refs. [1, 2]. As we will see,

both the intrinsic difference in the formulation of the codes as well as the dependence on

their matching scales are a source of sizable ambiguities in the theoretical prediction of

the Higgs p⊥ distribution, in particular at intermediate and large p⊥. The sources of these

differences will be investigated in detail in the course of this paper.

In the SM, the matching of fixed-order and resummed results has been achieved with

NNLO QCD accuracy on the top-quark induced component of the total cross section, i.e.,

NNLO+next-to-NLL (NNLL) in AR [40, 49, 58, 59] and NNLO+PS accurate Monte Carlo [60–

64]. Since our main focus is on the p⊥ distribution in BSM scenarios with large bottom-

quark effects and the possibility of new additional heavy states, we refrain from including

such effects in our discussion.

This paper is organized as follows: in section 2 we introduce the gluon-fusion process at

NLO QCD and summarize the underlying resummation procedures of the three codes under

consideration. Our focus is on the respective matching prescriptions and corresponding

matching scales. In section 3 we recall the two strategies of refs. [1, 2] to determine proper

values for the matching scales. The two approaches are then subject to a qualitative and

quantitative comparison, where we quote values for the matching scales in a large range

of Higgs masses. Our main study of the matching ambiguities is presented in section 4 for

the SM and for various scenarios in a generic type-II Two-Higgs-Doublet Model (2HDM),

designed in order to emphasize specific contributions to the gluon-fusion Higgs cross section.

Section 5 contains our conclusions.

2 Resummation procedures

In this section, we briefly review the ingredients that are required for the theoretical pre-

diction of the Higgs production cross section via gluon fusion with NLO accuracy. We then

summarize the main features of three procedures that allow to resum logarithmic terms

in the Higgs transverse-momentum distribution at small p⊥, namely AR, MC@NLO, POWHEG.

The main focus will be put on their matching prescription and the corresponding matching

scales.

Concerning the total Higgs production cross section, the three codes considered in this

paper work at the same perturbative accuracy, NLO QCD, using the same matrix elements

for the description of the virtual corrections and the real-emission effects. We introduce a

5Note that the meaning of “subleading terms” is somewhat different for AR and the MC generators. AR

consistently resums NLL terms to all orders, while the PS in the Monte Carlo approaches strictly includes

only the leading logarithms, but resums also some logarithms beyond the leading ones.
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φ φ
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φ

(a) (b) (c) (d)

Figure 1. A sample of Feynman diagrams for gg → φ contributing to the NLO cross section; (a)

LO, (b) virtual and (c-d) real corrections. The graphical notation for the lines is: solid straight =̂

quark; curly =̂ gluon; dashed =̂ Higgs.

common notation to identify these contributions in the three different approaches for the

matching of resummed and fixed-order results.

The Born-level squared matrix elements B determine the LO cross section and multiply

all the soft and collinear counter terms. The corresponding loop-induced Feynman diagrams

are shown in figure 1 (a), with both the top and the bottom quark running in the fermionic

loop.6 The interference of the UV- and IR-regularized virtual corrections with the Born

amplitude will be denoted by V̂fin in the following.7 Its evaluation requires the computation

of the two-loop virtual diagrams [65–68], e.g, in figure 1 (b). Note that there are some

differences in the definition of V̂fin, due to the IR-regularization adopted in each matching

procedure. We simply assume V̂fin to be properly subtracted in the respective approach

under consideration. At the same perturbative order, real-emission subprocesses need to

be taken into account [65, 69]. They involve an additional final-state parton with respect

to the Born-level process; their squared matrix elements are collectively called R. Some

examples of the corresponding diagrams are shown in figure 1 (c-d).

For convenience, we use the following symbolic notation for the convolution over the

parton-density functions (PDFs):

(M ⊗ Γ) (q2, µ2
F ) ≡

∑
i,j

∫
dz1

∫
dz2Mij(q

2, µ2
F , z1, z2)Γij(µ

2
F , z1, z2) , (2.1)

where Mij(q
2, µ2

F , z1, z2) is the squared matrix element for the scattering of partons i and j

carrying proton momentum fractions z1 and z2, respectively, q2 is the momentum transfer

of the scattering process, Γij(µ
2
F , z1, z2) = fi(µ

2
F , z1)fj(µ

2
F , z2) is the product of two PDFs,

and µF is the factorization scale.

2.1 Analytic p⊥ resummation (AR)

The first resummation procedure that we consider is the analytic resummation of soft and

collinear logarithms in the inclusive transverse-momentum spectrum, see refs. [38, 40].

For the matching of the low- and high-p⊥ Higgs cross section at NLO+NLL,8 the

additive procedure of ref. [40] is adopted, and the hadronic differential cross section is

6Diagrams courtesy of S. Liebler.
7We use a hat to indicate IR-regularized quantities in this paper.
8Note that the accuracy (including terms of order α3

s) at large p⊥ is formally only LO.

– 5 –



J
H
E
P
0
1
(
2
0
1
6
)
0
9
0

obtained as

dσ

dp2
⊥

=

∫
dΦB

dp2
⊥

(B + V̂fin)FNLL(Qres) +

∫
dΦ

dp2
⊥
R⊗ Γ−

∫
dΦB

dp2
⊥
B FNLO(Qres) , (2.2)

where dΦB and dΦ represent the phase space of the Born process and of the process that

includes one additional real parton, respectively. By
∫

dX/dp2
⊥ we denote integration over

all variables of X except p2
⊥. The function F is defined as follows:

FNLL(Qres, p⊥) =
m2
φ

S

∫ ∞
0

db
b

2
J0(b p⊥)S(αs, L̃)

×
∑
i,j

∫
dz1 dz2

[
δz1 δz2 +

αs(b0/b)

π
C

(1)
gi (z1) δz2 +

αs(b0/b)

π
δz1 C

(1)
gj (z2)

]
Γij(b0/b, z1, z2) ,

with S(αs, L̃) = exp
{
L̃ g(1)(αs L̃) + g(2)(αs L̃)

}
, (2.3)

where δzi ≡ δ(1− zi) for i ∈ {1, 2} is a short-hand notation, b0 = 2 exp(−γE) = 1.12292 . . .

is a numerical constant,9 J0(x) is the Bessel function of the first kind with J0(0) = 1, S is

the hadronic center of mass energy, and the sum over i, j runs over all kinds of partons.

In the notation of the present paper, we apply the “hard scheme” as defined in ref. [70]

for the collinear coefficient functions Cab(z); their first order expressions for gluon-induced

processes can be also found in that reference.

The Sudakov form factor S(αs, L̃) accounts for the resummation of logarithms of the

form L̃ = ln(b2Q2
res/b

2
0 +1) at NLL accuracy, with αs L̃ being considered of order unity. The

functions g(1) and g(2), relevant for leading logarithmic (LL) and NLL accuracy, respectively,

are given in ref. [40]. The scale Qres is conventionally called resummation scale and controls

up to which values of p⊥ the resummation is effective. Since it thus parameterizes the

arbitrariness in the separation of the “soft” from the “hard” region, it plays the role of the

matching scale in the AR framework and is usually chosen at the order of characteristic scale

of the hard scattering process. Note that the first and the third term on the r.h.s. of eq. (2.2)

are explicitly Qres dependent. However, this dependence is canceled through the matching

formula order by order in the logarithmic expansion, which renders the p⊥ distribution

independent of Qres when computed to infinite logarithmic accuracy. In eq. (2.2), FNLO

is the NLO truncation of FNLL; i.e., for gluon fusion, it includes terms up to α3
s. The last

term in eq. (2.2) subtracts the singular behavior of the real corrections from the fixed-order

expression, given by the second term on the r.h.s.; it therefore avoids double counting of

logarithmic terms which are already contained in the first term.

Furthermore, the matching procedure of eq. (2.2) induces unitarity on the matched

cross section, meaning that integration of eq. (2.2) over p2
⊥ yields the total NLO cross

section: ∫
dp2
⊥

dσ

dp2
⊥

= σNLO
tot . (2.4)

The AR approach has been implemented, using parts of HqT [40, 58, 59], in the code

MoRe-SusHi [1, 48, 51] that will be used in all the numerical simulations based on AR in

this paper.

9γE = −Γ′(1) is the Euler constant.
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2.2 NLO+PS Monte Carlo

An alternative to the analytic resummation is offered by PS Monte Carlo event genera-

tors, where PS algorithms allow the numerical simulation of multiple parton emissions. A

consistent matching of the fixed-order NLO QCD predictions10 with the PS has been dis-

cussed in ref. [46] and in refs. [47, 50, 52], and implemented in the MC@NLO Monte Carlo

event generator [71] and in the POWHEG-BOX [72], respectively. We refer the reader to the

above publications for a detailed discussion of the two implementations and summarize

here the main differences of these two approaches, from the point of view of the matching

of resummed and fixed-order results.

We introduce the “shower operator” In(t1) to represent in a compact form the action

of the PS to describe n parton emissions; the latter are ordered with respect to a param-

eter t, which for simplicity we assume to be the transverse momentum of the emission in

this paper (other options are the virtuality, or the angle, for example), starting from a

maximum value t = t1. For the ith emission of a parton, the PS associates a Sudakov form

factor times an approximate emission probability, both evaluated at the same value ti of

the specific ordering parameter. The ordering of the emissions is a requirement for the PS

algorithm to reach the LL accuracy.

In both the MC@NLO and POWHEG approaches, the hardest parton emission is treated

retaining the accuracy of the exact matrix elements, whereas the others are generated

according to the PS algorithm.

Given a hard scattering process, we describe the evaluation of the cross section dσn for

the radiation of n additional partons in terms of two steps. The first step results in the cross

section dσ1, which includes only the hardest emission; the remaining n − 1 emissions are

taken into account in the second step. This splitting is represented symbolically as applying

In−1(t1) to dσ1, and multiplying by the relevant phase space of the additional n−1 particles:

dσn = In−1(t1) dσ1dΦn−1 . (2.5)

The formula that describes the hard scattering with the emission of 0 or 1 additional parton

can be written, in a sufficiently general way, as11

dσ1 = B̄s ⊗ Γ dΦB

{
∆s
tmin

+ ∆s
t

Rs

B
dΦr

}
+Rf ⊗ Γ dΦ +Rreg ⊗ Γ dΦ , (2.6)

where tmin is the value of the ordering variable t below which no emissions are allowed,12

and where we used the factorization of the real phase space into the Born one times the

one of a single additional real parton, dΦ = dΦB dΦr.

10Note also in this case that the description is formally only LO accurate as far as large p⊥ are concerned.
11While in the POWHEG approach the first emission is explicitly implemented as given in eq. (2.6), it is vital

for the subsequent discussion to stress that, in the case of MC@NLO, the terms in the curly brackets in the

first term of eq. (2.6) are implicitly generated when attaching the shower to the Born-level configurations.
12The physics below the scale tmin is not properly accounted for by a perturbative description. Its

numerical value is typically set to the hadronization scale of the PS, coherent with the fact that the first

term in the curly bracket describes the no-emission probability.
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As defined before, R contains collectively all the squared matrix elements of the real-

emission subprocesses, and we further split them into two groups: Rdiv is the sum of squared

matrix elements which are divergent in the limit of soft or collinear emissions (in our case

gg → gφ and qg → qφ); the regular ones are denoted by Rreg instead (in our case qq̄ → gφ).

The squared matrix elements of the divergent subprocesses can be further split in two parts:

Rdiv = Rs +Rf . (2.7)

The term Rs contains the soft- and collinear-singular part of Rdiv, while Rf is the finite re-

mainder.13 Obviously, this splitting is not unique, since finite parts can be shifted between

Rs and Rf .

The generalized Sudakov form factor [73] is denoted by the symbol ∆s
t in eq. (2.6),

with t the shower ordering variable; it depends on Rs and expresses the probability of not

emitting any parton with a value for the ordering variable larger than its own argument t:

∆s
t = exp

{
−
∫

dt′

t′
Rs ⊗ Γ

B ⊗ Γ
dΦrθ(t

′ − t)
}
. (2.8)

The factor B̄ in eq. (2.6) is defined by

B̄s = B + V̂fin +

∫
R̂s dΦr (2.9)

and includes the contributions of the Born squared matrix elements, the corresponding

virtual corrections, and the integral over the radiation phase space of Rs. The finiteness of

the B̄ factor is guaranteed by the fact that all the divergent terms are properly subtracted;

this is possible thanks to the renormalization of the UV divergences, to the cancellation of

the IR soft singularities between virtual and soft real contributions, and to the cancellation

of the collinear singularities, reabsorbed in the definition of the physical proton PDFs.

The curly bracket in eq. (2.6) describes the probability of zero or one parton emission

in those subprocesses that are divergent in the soft/collinear limit, where Rs is the singular

part of the squared matrix elements. The precise definition of Rs (or, equivalently, Rf )

therefore directly affects the expression of the Sudakov form factor. In the following we

comment on the two choices adopted in the POWHEG and in the MC@NLO implementations. We

stress that these two alternatives differ by terms that are formally of higher order in the per-

turbative expansion, but that can nevertheless be numerically sizable. The arbitrariness in

the definition of Rs can be exploited to parameterize the matching procedure uncertainties.

The last two terms in eq. (2.6) depend on the process (Rreg) and on the definition

adopted to split Rs,f ; both yield a regular contribution in the soft and the collinear limit.

The evaluation of the exact real and virtual matrix elements guarantees, for any ob-

servable inclusive over radiation, the NLO QCD accuracy. The latter is preserved by the

unitarity of the PS algorithm in the generation of each additional real parton; this feature

holds also for the first emission, described by the curly bracket in eq. (2.6).

13The splitting into Rdiv and Rreg seems redundant at this point, but will play a role in the POWHEG

approach, see section 2.2.2.
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2.2.1 MC@NLO

In the MC@NLO formulation, the PS algorithm is used to generate all the additional parton

emissions starting from the Born-level and real-emission configurations. The exact O(αs)

corrections are applied in order to recover the exact matrix element description of the first

hard emission and the correct normalization, including the effect of the virtual corrections

to the underlying Born.

The Sudakov form factor implemented in the PS generators uses a universal, process-

independent expression to describe parton radiation in the soft and collinear limit, based

on the Altarelli-Parisi splitting functions P . Using the notation of eq. (2.7), in MC@NLO

the singular part of the squared real-emission matrix element is RsMC@NLO ∝ αsPB, and

the generalized Sudakov form factor that appears in eq. (2.6) is actually not explicitly

implemented, but generated by the first PS emission on top of the Born-level configuration.

Given the assignment for RsMC@NLO, the definition of RfMC@NLO = Rdiv − RsMC@NLO follows

by construction, as the difference between the exact real matrix element correction and its

PS approximation, sometimes called Monte Carlo subtraction term; the latter is needed

to avoid a double counting with the emission described by the second term in the curly

brackets of eq. (2.6) that is generated by the first emission of the shower.

In the MC@NLO approach, the differential NLO+PS cross section with respect to a vari-

able O is:(
dσ

dO

)
MC@NLO

=
∑
n≥0

∫ [
B ⊗ Γ + V̂fin ⊗ Γ +

∫
R̂s

MC@NLO ⊗ Γ dΦMC
r

]
dΦB dΦMC

n

dO
In(t1 ≡ Qs

sh)

+
∑
n≥1

∫ [
R⊗ Γ

dΦ dΦMC
n−1

dO
−Rs

MC@NLO ⊗ Γ
dΦMC dΦMC

n−1

dO

]
In−1(t1 ≡ Qh

sh) , (2.10)

where the sum runs over all possible n-parton configuration after the shower in the final

state. We shall stress at this point that the shower spectrum In in the first and In−1 in

the second line start from different configurations, i.e., from Born-level and real configura-

tions, respectively, and that the observable O is defined on a different phase space in the

two lines. The superscript MC is attached when the phase-space is computed in the PS

approximation. The real Monte Carlo phase space dΦMC tends to dΦ in the IR limits, and

dΦMC
r = dΦMC/dΦB is therefore the PS approximation of the one-particle phase space. By∫

dX
dO we denote integration over all variables of X except O.

In the first line of eq. (2.10) all emissions are described via the PS, denoted as “soft”

events, while in the second line we have the so called “hard” events: the exact matrix

elements with one additional real emission with respect to the Born are sampled over the

real phase space; to avoid a double counting with the first line, there is a MC subtraction

term, which is evaluated over the approximated one-particle phase space and renders the

expression in the squared brackets finite. Expanding eq. (2.10) up to the first emission

(order αs with respect to the Born), we indeed recover the structure of dσ1 in eq. (2.6).

In the MC@NLO approach, the shower emissions are bounded from above by identifying

t1 ≡ Qsh. The so-called “shower scale” Qsh therefore determines the hardest scale accessible

to the shower emissions and is usually set to the characteristic scale of the hard scattering
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Figure 2. Sample of a shower scale distribution in MadGraph5 aMC@NLO for a 125 GeV Higgs boson

produced in gluon fusion. The distribution is normalized such that it integrates to one.

process. Qsh plays the role of the matching scale, since it separates the soft/collinear from

the hard region in the additive MC@NLO matching approach — indeed very similar to the

role of the scale Qres in AR. More precisely, one may choose different shower scales for

the soft (Qssh) and the hard (Qhsh) events, as indicated in eq. (2.10). A general feature of

the default MC@NLO formulation is that the strict bound enforced by Qsh on the shower

emissions suppresses the PS contribution at values of p⊥ � Qsh, resulting in the recovery

of the fixed-order distribution at sufficiently large p⊥, which is regarded to provide a proper

prediction in that region.

The original choice for Qsh in the MC@NLO code [46, 71] was to set its value to the

shower scale of the PS Monte Carlo, which corresponds to a narrow distribution around

the Higgs boson mass. In MadGraph5 aMC@NLO, on the other hand, the shower scale for the

soft events, Qssh, is statistically extracted from a probability distribution with a range that

can be defined by the user.14 The shower scale for the hard events, Qhsh, is fixed to a specific

value (i.e., using a δ-distribution) that by default is chosen to be the upper bound of the

probability distribution applied to the soft events. For reference, figure 2 shows an example

of the shower scale distribution of all events for a SM Higgs boson (mh = 125 GeV) with

the restriction Qsh/GeV ∈ [11.425, 114.25]. The spike at the upper end of the distribution

is due to the hard events. The peak at the center of the distribution can be considered as

“effective” shower scale; we will often refer to it simply as “shower scale” in what follows.

E.g., figure 2 has an (effective) shower scale of Qsh = mh/2 = 62.5 GeV. In this paper, we

always use a distribution with a shape as shown in figure 2, centered around the respective

matching scale, and with ratio of the endpoints equal to ten [54]. The MC@NLO results

in this paper have been obtained with the code aMCSusHi [54, 55] which combines the

MadGraph5 aMC@NLO framework with the matrix elements of the code SusHi.

14Further details can be found in ref. [56]; this technique has been used sparingly also in MC@NLO v3.3 [74]

and higher.
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2.2.2 POWHEG

The fully differential cross section of an event with the emission of additional partons is

obtained by inserting eq. (2.6) in eq. (2.5). For a generic observable O we have(
dσ

dO

)
POWHEG

=
∑
n≥1

∫ [
B̄s dΦB

{
∆s
tmin

+ ∆s
t

RsPOWHEG
B

dΦr

}

+RfPOWHEG ⊗ Γ dΦ +Rreg ⊗ Γ dΦ

]
dΦMC

n−1

dO
In−1(t1 ≡ prad

⊥ ) , (2.11)

where the shower scale t1 is set equal to the transverse momentum prad
⊥ of the parton

radiated using the POWHEG approach.15 In the POWHEG formulation, the splitting of eq. (2.7)

is obtained through a dynamical, i.e. p⊥-dependent, damping factor Dh

Dh ≡
h2

h2 + (p⊥)2
,

RsPOWHEG ≡ DhRdiv , RfPOWHEG ≡ (1−Dh)Rdiv .

(2.12)

In this case, the role of the matching scale is assumed by h. For Higgs transverse momenta

larger than the scale h, the damping factor suppresses Rs, while the Sudakov form factor

quickly approaches 1 and the spectrum is described by the finite remnant RfPOWHEG. Instead,

when p⊥ → 0, RsPOWHEG tends to Rdiv. In this limit, Rdiv factorizes into the product of

the underlying Born multiplied by the universal Altarelli-Parisi splitting functions, and

the POWHEG Sudakov form factor yields a suppression of the transverse-momentum distri-

bution. The role of the scale h can be understood from two points of view: i) it is the

maximum value of Higgs transverse momenta for which the curly bracket in eq. (2.6) is

appreciably different from zero; the normalization factor B̄ multiplies the curly brackets

and rescales them in this p⊥ interval; ii) considering that the (POWHEG) Sudakov form factor

is a function that varies between zero and one, the scale h controls the region of p⊥ where

the suppression is active.

A general feature of the POWHEG approach is that it generates a tail of the p⊥ distribution

that is higher than the fixed-order prediction in this region. The description of the enhanced

p⊥ tail and, in particular, of the weight assigned to each high-p⊥ event, deserves some dis-

cussion. The emission probability given by the squared real-emission matrix elements R in

eq. (2.6) is proportional to αs and is multiplied by the overall factor B̄, which starts at LO

but includes also O(αs) corrections. The latter are related to the total K-factor and en-

hance the first emission weight.16 The damping factor Dh allows to reduce the p⊥ interval

where this reweighting is active. A second relevant element to understand the enhancement

of the large-p⊥ tail is given by the impact of multiple emissions beyond the first one. In

POWHEG the phase space available for the second emission is limited only by the p⊥ value of

the first one and changes on an event-by-event basis. In some cases, the second and follow-

ing emissions can still be very hard. This explains why the POWHEG high-p⊥ tail tends to be

15For the regular events the shower scale is defined by the user on a process-by-process basis. In our case

we follow the same prescription used for all the other event classes, i.e. we set it equal to the transverse

momentum of the radiation.
16In the gluon-fusion process, this enhancement is sizable, because of the large NLO K-factor.
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larger than the one obtained in the other two approaches and at fixed order. This formula-

tion differs in particular from the one adopted in MC@NLO, where instead all the PS emissions

are limited by the shower scale, so that the p⊥ distribution merges into the fixed-order one

at sufficiently large transverse momenta. We will return to this discussion in section 4.2.3.

The POWHEG results in this paper have been obtained with the

gg H quark-mass-effects and gg H 2HDM generators [11]. They are both part of

the POWHEG-BOX framework [53].

3 Determination of the matching scale

In this section we describe and compare two recently proposed algorithms to determine the

matching scales, defined in ref. [2] and [1] and referred to as BV and HMW, respectively,

in what follows. In both approaches, the matching scale µi (i = t, b, int) is determined

separately for the component of the cross section involving only the top- or the bottom-

quark loop (µt, µb), and for the top-bottom interference contribution (µint). The resummed

results for each of these terms are then added in order to yield the best prediction for the

p⊥ distribution:
dσ

dp⊥
=

dσt
dp⊥

∣∣∣∣
µt

+
dσb
dp⊥

∣∣∣∣
µb

+
dσint

dp⊥

∣∣∣∣
µint

. (3.1)

It is worth mentioning that the integral of this equation over p⊥ reduces it to an identity, i.e.

all matching scales drop out from the equation and the correct normalization to the cross

section with both the top and the bottom loop is maintained. The interference term, at

variance with the first two, is not positive definite; in particular, it may vanish for a specific

value of the Higgs mass. This will become relevant for the discussion in section 3.3 and 3.4.

Note that due to the fact that the scales are determined separately for each component,

it is possible to use them in any model with arbitrary relative strength of the couplings of

the Higgs boson to the top and bottom quarks. On the other hand, the presence of any other

colored particle running inside the loop would require a separate consideration. This case

could be treated in the very same fashion using the methods described in this paper though.

3.1 Matching scale determination à la HMW

The idea behind the HMW approach is the fact that (a) for p⊥ & mφ, the p⊥-spectrum

should be well described by fixed-order perturbation theory, and (b) one would like to have

an all-order result for an as large range of p⊥ as possible. Let us first discuss condition (b).

In all the approaches described above, the matching scale (Qres for AR, Qsh for MC@NLO, and

h for POWHEG) can be seen as a measure up to which value of p⊥ the all-order resummation

is effective in the matched p⊥-distribution. Formally, one would thus like to choose the

matching scale as large as possible. However, the resummation is strictly valid only in the

limit p⊥ → 0, so one cannot expect to obtain a sensible result once the matching scale gets

too large. HMW therefore uses condition (a) to determine a maximum value for the match-

ing scale. The basic idea of the HMW prescription applies in principle to any resumma-

tion/matching approach. Nevertheless, let us focus on its application to AR in what follows.
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Even though the matched expression of eq. (2.2) will eventually converge to the fixed-

order result for p⊥ → ∞,17 this transition may happen only at very large p⊥. Typically,

for large values of the matching scale, the integral over p⊥ from zero to mφ becomes rather

large, and may even overshoot the total NLO cross section. Due to the unitarity constraint

of eq. (2.4), it follows that dσ/dp⊥ can deviate significantly from the fixed-order result for

p⊥ ∼ mφ and may even turn negative in order to compensate for the excess at small p⊥.

This spoils the whole idea behind matching the resummed with the fixed-order result and

thus defines an upper limit on the matching scale.

There is certainly quite an amount of arbitrariness in this procedure, in particular:

in what range should the matched result agree with the fixed-order result, and to what

degree? This arbitrariness has to be taken into account in the estimate of the theoretical

uncertainty. In this paper, we define the so-called HMW approach by following ref. [1],

where a particular set of these parameters was defined, from which the maximal matching

scales were determined.

To be precise, Qmax
res is defined as the maximum value of Qres for which the resummed

p⊥-distribution stays within the interval [0,2]·[dσ/dp2
⊥]f.o. for p⊥ ≥ mφ. The default match-

ing scale Q is then defined to be half of that maximum value. As it turns out, the choice

of the central matching scale as defined above indeed leads to a behavior of the matched

result in the large p⊥ region which is very close to the fixed-order result.

As pointed out above, this procedure is applied separately to the top- and the bottom-

quark induced contribution to the cross section, and to the top-bottom interference term,

resulting in three different HMW scales Qt, Qb, and Qint, respectively.

3.2 Matching scale determination à la BV

The validity of the resummation formalism relies on the soft and collinear factorization of

the squared matrix elements describing real parton emissions. The factorization in the soft

limit can be demonstrated in a straightforward way thanks to the fact that, for increasing

radiation wavelengths, the details of the hard scattering process are not resolved, inde-

pendently of all the other kinematic details of the emitted parton. The discussion of the

collinear factorization is more complex. In the BV approach, the accuracy of the collinear

approximation in the gluon-fusion process is discussed, at partonic level, in the presence of

an exact description of the top and bottom quarks running in the virtual loop. The proce-

dure to determine the scales is described by the following steps. The exact squared matrix

elements of the subprocesses gg → gH and qg → qH are compared with their collinear ap-

proximation. A deviation by more than 10% from the exact result signals that the collinear

approximation breaks down.18 The upper limit w of the range of Higgs transverse momenta

where the collinear approximation is accurate is chosen as the value for the matching scale

in any hadron level calculation, either with analytic resummation or in a PS Monte Carlo.

The two partonic subprocesses initiated by gg and by qg have a different collinear behav-

ior, which leads to two different scales wgg and wqg; the final scale w is computed as the

17This follows from the fact that L̃→ 0 as b→ 0, see eq. (2.3).
18A detailed discussion of the dependence of the results on the threshold value can be found in ref. [2],

with a direct proportionality between the threshold parameter and the resulting value of the matching scale.
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average of the two previous values, weighted differentially by their relative importance to

the transverse momentum distribution of the Higgs, in the p⊥ range between wgg and wqg.

The three BV scales associated with the top, the bottom and the interference term will

be denoted by wt, wb and wint, respectively.

3.3 Qualitative comparison of the two approaches

Since the matching scale (or specifically Qres, Qsh, h) is unphysical, its choice is formally

arbitrary, and any prescription for its determination is necessarily heuristic. The BV and

the HMW approach are complementary in at least two aspects. While BV works at the

partonic level and considers the low-p⊥ region, the HMW approach uses the large-p⊥ region

of the hadronic distribution in order to choose a value for the matching scale. Furthermore,

BV does not make any reference to the specific method of resumming the logarithmic terms

at small p⊥. The resulting scales may be interpreted as POWHEG’s h, MC@NLO’s Qsh, the re-

summation scale Qres of AR, or any other matching scale characteristic for the separation of

the soft-collinear from the hard region. The scales determined through the HMW approach,

on the other hand, do in principle depend on the underlying resummation technique. We

will discuss this issue in the light of the three resummation codes considered here in the

next section.

On the other hand, since both approaches separately treat the top-, bottom-, and the

interference term, the resulting scales obtained here and in refs. [1, 2] are independent of

the respective Yukawa-couplings and can be applied to the SM, the 2HDM, and other mod-

els where the gluon-Higgs coupling is predominantly mediated by the third generation of

quarks. In fact, the scales only depend on the CP parity and on the mass of the Higgs boson.

Considering the differences between the two approaches, it is not surprising that the

numerical values of the resulting scales are different. Since the constraints that are adopted

by the two groups act on different parts of the p⊥ spectrum (low p⊥ in the BV case, large

p⊥ in the HMW case), the spread of the results is likely to cover in a quite conservative way

the ambiguities of this scale determination. The hierarchy of the Higgs and of the quark

masses determines a moderate (top) or a very good (bottom) agreement between the two

groups. There is one exception where the scales of BV and HMW may differ by many orders

of magnitude, namely when the LO term is much smaller than the NLO term. This only

happens for the interference contribution which is not required to be positive definite. Since

the resummed contribution is always proportional to the LO term (apart from corrections

due to the virtual contributions which are small compared to the total cross section), it will

also be small in these cases, and the distribution will be given almost completely by the

hard emission from the NLO term. It follows that the BV-scale will vanish as the LO term

tends to zero, because the collinear approximation fails for any value of p⊥ > 0. On the

contrary, since the resummed curve is almost identical to the fixed-order one in this case,

and since the HMW algorithm looks for the largest scale that fulfills the HMW criteria, the

resulting matching scale will tend to be very large.
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3.4 Quantitative comparison of the two approaches

After clarifying the conceptual differences between the two approaches, we can now study

the actual numerical values of the matching scales. The upper plot in figure 3 shows the

three scales for the t, b, and interference contributions for scalar Higgs production in the

two approaches, with mφ ≤ 600 GeV in the HMW case and mφ ≤ 700 GeV in the BV case.

As outlined above, while the BV scales are independent of the resummation procedure, this

is not the case for HMW. The numbers shown in figure 3 are based on AR. In principle,

separate HMW matching scales should be determined for MC@NLO and POWHEG. For MC@NLO, it

turns out though that the HMW scales of figure 3 lead to numerical results close to the ones

obtained in the AR approach, as the matching procedure is indeed rather similar in the two

cases. On the contrary, POWHEG consistently exceeds the fixed-order α3
s distribution (referred

to as fNLO [56] in the following) in the high-p⊥ tail even for very small matching scales h.

Any HMW criterion which requires a transition to fNLO at large p⊥ becomes questionable

in this case. We therefore do not attempt to determine separate HMW scales for POWHEG,

but simply use the ones of figure 3. Let us add that the situation changes significantly

when applying the so-called mPOWHEG modification, to be defined in section 4.2.3. Similar

to MC@NLO, the HMW scales of figure 3 lead to reasonable results in this case.

Concerning the top-induced contribution, wt exhibits a non-trivial structure in a broad

mφ range around the top-quark threshold, between about 220 and 380 GeV. The corre-

sponding HMW scale Qt, on the other hand, increases quite steadily with the Higgs mass,

and the top-quark threshold only has a very mild effect, if any. In addition, the overall

growth of wt with mφ is stronger than for Qt. Nevertheless, over the whole mφ ≤ 600 GeV

region considered here, the two scales never differ by more than a factor of two. Since the

resummation uncertainty in the two approaches will be estimated by varying the matching

scales by a factor of two, we can expect consistent results in cases where the top contribu-

tion is dominant.

On the other hand, the BV and HMW scales for the bottom-induced contribution are

in much better agreement. The BV scale wb exhibits a slightly steeper dependence on mφ

than Qb, but the difference between the two remains quite small for all mφ . 600 GeV.

Except for very small Higgs masses, wb and Qb are considerably larger than mb. In the

BV approach one observes that this result is driven mainly by the behavior of the partonic

gg → φg channel [2] (see also ref. [75]), while the qg → φq channel would suggest a value

for the bottom matching closer to mb [49].

For the scales of the interference contribution, both approaches lead to a very similar

slope in their respective matching scales as mφ increases from about 40 to 320 GeV, even

though their absolute values differ significantly. While wint remains below about 25 GeV,

Qint is always larger than 20 GeV as long as mφ & 30 GeV. For larger values of mφ, the two

interference scales show a very different behavior: the BV scale wint slowly decreases until it

reaches the value wint = 0 at about 590 GeV, which happens precisely where the interference

term of the total cross section at LO vanishes. In contrast to that, the slope of the HMW

scale increases beyond mφ ≈ 340 GeV, and Qint assumes its maximal value of about 80 GeV

at mφ ≈ 570 GeV. A similar feature is observed around mφ = 30 GeV. The reasons for the
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Figure 3. On the top (bottom) comparison of the matching scales in the BV and the HMW

approach for the scalar (pseudo-scalar). Solid (dashed) curves correspond to the HMW (BV) scales.

The scale corresponding to the top (bottom) quark squared matrix element is shown in red (green),

while the values to be used for the interference term are in blue.

qualitative differences in this case have already been discussed in section 3.3; they are the

clearest manifestation of the different ideas behind the BV and the HMW method.

The corresponding plot for a CP-odd Higgs boson is shown in figure 3; the general

behavior for all the three contributions is quite similar to the scalar case and requires no

separate discussion.
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4 Numerical results

In this section, we present a quantitative comparison of the impact of the BV and of the

HMW scale determinations, using three different codes: MoRe-SusHi, which implements

the analytic resummation of the p⊥ spectrum, gg H 2HDM and aMCSusHi, which apply the

POWHEG and the MC@NLO method, respectively. Although the theoretical basis underlying

these three codes is the same, namely resummation based on soft and collinear factorization,

the specific algorithms involved are quite different, see section 2. Therefore, we will try

to disentangle effects due to these different implementations from those arising from the

different matching scales.

The uncertainty band due to a variation of the matching scale is obtained by the

following procedure: given a set of reference values (µt, µb, µint) for the three matching

scales according to eq. (3.1) (adopting either the BV or the HMW approach) we consider

all the possible combinations which can be generated by taking half and twice these values,

or the reference values themselves; for each setting, we compute the transverse momentum

distribution; collecting all these results, we take the envelope for each p⊥ value, i.e. the

minimum and the maximum values among all the simulations.19

For the analytic resummation, which consistently matches the fixed-order results at

large transverse momenta, we follow ref. [1] and apply an additional factor

d(p⊥) = {1 + exp [α (p⊥ −mφ)]}−1 , α = 0.1 GeV−1 , (4.1)

to the error band which damps it towards large values of p⊥. This takes into account

condition (a) from section 3.1, according to which resummation should not have a big

impact on the large-p⊥ region, and thus also not on its theoretical ambiguities.

As we will see, the shape of the uncertainty band as derived from the variation of the

matching scales has a feature common to all the codes. In a region just above the peak of

the p⊥ distribution, the band is relatively narrow. This is a consequence of the unitarity

constraint, which establishes an anticorrelation between the low- and the high-p⊥ tails of

the distribution. The precise position of this region depends on the position of the peak

of the resummed distribution, on the total variation of the cross section, as well as on the

central value of the matching scale; the interplay of these factors determines the precise

shape of the uncertainty band.

4.1 Setup and representative scenarios in the 2HDM

This section defines the phenomenological scenarios considered in this paper. They have

been designed to highlight possible interplays between the top-quark and the bottom-quark

mediated amplitudes.

We start with the SM, where the p⊥ spectrum of the Higgs boson is known

through NLO+NLL including the full dependence on the quark masses [48] and through

NNLO+NNLL for the top-quark induced terms and by assuming the limit mt →∞ [40, 58,

19Recall that the accuracy of AR is NLL, while the NLO+PS MCs only resum consistently all LL terms

and partially the NLL ones. Therefore, the higher order terms probed by the scale variation procedure are

slightly different in the two cases.
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59].20 In the present study, for uniformity with the BSM codes where only NLO QCD accu-

racy on the total cross section and NLO+(N)LL results on the Higgs transverse momentum

distribution are available, we restrict also the SM analysis to this level of accuracy.

While there is hardly any controversy that the “characteristic scale” for the top-quark

induced contributions in the SM should be of the order of the Higgs boson mass (mh =

125 GeV), already in this case the BV and the HMW methods provides us with a more

quantitative result for the matching scale which turns out to be close to the often adopted

choice of mh/2 in the SM, but becomes significantly smaller than mφ towards larger values

of mφ (see figure 3). One of the main subjects of this paper, however, is the question of

how to take into account the bottom-quark induced contribution. In the SM, the effect of

the bottom quark is suppressed by the Yukawa coupling, and therefore differences in this

treatment have limited effect on the overall momentum distribution. In models with an

extended Higgs sector, however, the bottom-quark Yukawa coupling can be significantly

enhanced, at least for some of the Higgs bosons of such theories.

One of the simplest extensions of the SM in this respect is the 2HDM. Therefore, we

focus on 2HDM scenarios which we devise in order to enhance specific contributions to

the cross section.21 The conclusions of our study, however, trivially generalize to other

models where the gluon-Higgs coupling is predominantly mediated by top and bottom

quarks (e. g. most of the experimentally viable parameter space of the MSSM). Since the

aim of this paper is a conceptual one, we disregard any phenomenological constraints on

the 2HDM parameter space, in general; we do not consider the case of a light Higgs boson

of mass mh = 125 GeV with enhanced bottom-quark Yukawa coupling though, due to the

obvious conflict with experimental observations. We do, however, respect the theoretical

constraints due to unitarity and triviality of the theory, as well as stability of the physical

vacuum. We check these constraints with the help of the program 2HDMC [76, 77]. In all

scenarios, except for the low-mA scenario to be introduced at the end of this section, we

set the mass of the two CP-even Higgs bosons to mh = 125 GeV and mH = 300 GeV,

respectively, while the mass of the CP-odd Higgs boson is set to mA = 270 GeV.

The first scenario we consider is “scenario B” as defined in ref. [78]. For consistency

with the notation in the rest of this paper, however, we will refer to it as “large-b scenario”

in what follows. Since it induces a SM-like light Higgs boson, we only study the production

of the heavy and the CP-odd Higgs boson for that scenario, both of which have strongly

enhanced couplings to the bottom quark.

As a modification of this, we use the same parameters as in the large-b scenario, except

that we set tan β = 1. This will be referred to as “large-t scenario” in what follows. It is

designed to result in a top-quark dominated cross section for the heavy and pseudo-scalar

Higgs boson. Again, the light Higgs is very SM-like and will not be considered in this

scenario.
20Recall that the (N)NLO accuracy denoted here refers to the underlying total cross section (including

terms up to α3
s and α4

s, respectively) and corresponds to (N)LO accurate predictions at large transverse

momenta.
21More precisely, we only consider the type-II 2HDM, in which one doublet generates the masses of the

up-type quarks and the other of down-type quarks and charged leptons. In any case our results are directly

applicable also to the other 2HDM types.
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scenario tanβ sin(β − α) φ
σt/pb σb/pb −σint/pb

LO NLO LO NLO LO NLO

SM — —
H 20.027 33.400 0.220 0.268 2.410 2.433

A 46.355 78.125 0.244 0.291 4.202 4.506

large-b 50 0.999
H 0.002 0.005 5.085 7.089 0.163 0.199

A 0.005 0.010 9.984 13.408 0.334 0.412

large-t 1.0 0.999
H 3.715 6.788 0.002 0.003 −0.132 −0.168

A 12.844 23.832 0.004 0.005 0.334 0.428

large-int
3.2 −0.6 h 2.453 4.091 2.192 2.674 2.665 2.677

7.1 −0.26 A 0.255 0.473 0.201 0.270 0.334 0.430

low-mA 36.9 0.998 A 0.399 0.552 2.480 · 105 2.292 · 105 89.70 −693.6

Table 1. Cross sections for the three 2HDM scenarios considered in our study, obtained with

SusHi (the integration error at NLO is of the order of 0.1%, and negligible at LO). See the text for

a description of their characteristics.

Finally, we devise a set of rather pathological scenarios where the LO cross section

receives a large top-bottom interference contribution. The parameters of these “large-int

scenarios” have to be chosen differently for each of the neutral Higgs bosons.

The precise definition of all scenarios, together with the top-, bottom- and interference

component of the total inclusive cross sections at LO and NLO, is given in table 1. Note

that, while for the light and the pseudo-scalar Higgs the absolute value of the interference

term in the large-int scenarios amounts to more than 100% of the total cross section, we

did not manage to find a parameter point for the heavy Higgs which has a similarly large

interference term while still respecting the theoretical constraints of unitarity, stability, and

perturbativity.

Let us emphasize again that most of these scenarios are in vast conflict with experimen-

tal observations; they only serve as theoretical benchmarks for the study of resummation

ambiguities in the Higgs p⊥ distribution. For phenomenologically viable 2HDM benchmark

points we refer the reader to ref. [79].

We further investigate one phenomenologically interesting scenario with a very low

pseudo-scalar Higgs boson mass. In this case we chose a scenario of ref. [80] that meets all

theoretical as well as experimental constraints. This scenario is referred to as low-mA in

table 1. The masses of the three Higgs bosons are mh = 125.5 GeV, mH = 507 GeV and

mA = 29.9 GeV. For such a low Higgs-boson mass, the gluon-fusion process is particularly

important, since its cross section is highly enhanced with respect to Higgs production in

association with bottom quarks22 and dominant even at large tan β [80].

All the numerical results are computed for the LHC, with a center-of-mass energy of√
S = 13 TeV. We use the MSTW2008nlo68cl PDF set [83] through the LHAPDF6 library [84]

and the corresponding value of αs(MZ) = 0.120179. The renormalization and factorization

scales are both identified with mφ. The pole masses of the top and the bottom quark

22For details on this process, see refs. [81, 82] and references therein.

– 19 –



J
H
E
P
0
1
(
2
0
1
6
)
0
9
0

are fixed at mt = 172.5 GeV and mb = 4.75 GeV, respectively. We used the on-shell

renormalization scheme for the Yukawa couplings. For simulations involving a parton

shower, we apply Pythia8 [85].

4.2 Numerical results in the different scenarios

This section contains the results obtained with the three codes under study, in the various

scenarios defined in section 4.1. Since our focus is on the uncertainties inherent to the

matching procedure, we compute the uncertainty band by varying only the matching scales,

as described in section 4.

For each scenario we performed two different studies:

1. The predictions for AR, MC@NLO and POWHEG are compared by using the same numer-

ical values for the respective matching scales; in this way we can assess the impact of

the higher-order QCD terms which are included in different ways in the three codes,

due to the different matching procedures.

2. For each code, the predictions obtained by setting the matching scale to the BV and

to the HMW values are compared; this allows us to assess the sensitivity of each code

to a matching scale variation, the impact of the BV vs. the HMW prescription, and

the overlap of the respective uncertainty bands.

4.2.1 Results in the Standard Model

Even though for the SM one may expect consistency among the three codes, it will be in-

structive to start our discussion with this case, because it highlights certain generic features

of the individual approaches which will be carried forward also to some of the other scenarios

considered in this paper. Figure 4 shows the shape of the transverse-momentum distribu-

tion (i.e., the integral of each curve is normalized to one) for a SM Higgs of mh = 125 GeV in

the range 0 ≤ p⊥/GeV ≤ 400. In the two upper plots, we compare the results of the three

codes, setting the matching scales to the same numerical values: BV scales in the left and

HMW scales in the right panel (cf. item i) above). Each of the lower plots, on the other hand,

was obtained with one particular code (left: AR; center: MC@NLO; right: POWHEG); the dif-

ferent lines correspond to different values of the matching scales, BV and HMW (cf. item ii)

above). All plots contain the fNLO result as a reference. In order to facilitate the discussion,

we show the same plots in figure 5, but with enlarged low-p⊥ region (0 ≤ p⊥/GeV ≤ 100).

Apart from the fact that, as expected, the three codes yield compatible results within

uncertainties (at least for p⊥ ≤ mh), it is worth noting the following characteristics:

• The central POWHEG and the MC@NLO spectra are in excellent agreement (at the few-

percent level) between about 10 < p⊥/GeV < 130, while they differ by about 20%

from the central AR prediction in most of this region.

• The peak position for both POWHEG and MC@NLO is at around p⊥ = 12 GeV, while the

peak for AR is about 2 GeV below that.
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• The central value of AR approaches fNLO at the level of . 5% above p⊥ ≈ 130 GeV;

for MC@NLO, such a transition to the fixed-order curve occurs at about p⊥ ≈ 180 GeV,

while POWHEG always remains about 20% above fNLO in the tail of the distribution.

The latter characteristic is a general feature of the default POWHEG matching, as

described in section 2.2.2, and will be analyzed in detail in section 4.2.3.

• Above p⊥ ≈ 130 GeV, the uncertainty band for AR is suppressed due to the damping

factor introduced in eq. (4.1). Concerning the two MCs, in MC@NLO the uncertainty,

expressed in unit of the AR central value, is of the order of ±10% from p⊥ = 130 GeV

all the way up to p⊥ = 400 GeV, while for POWHEG it decreases uniformly from ±20%

to ±10%.

• The MC@NLO and POWHEG bands nicely overlap for p⊥ ≤ 100 GeV; above this value the

overlap is only partial, because of the different central predictions.

• Towards smaller values of p⊥, the uncertainty bands for all three codes develop a

bulgy structure with a maximum of about ±20% (±35%) for AR (the Monte Carlos)

and a minimum of a few percent slightly above the peak position.

• Towards even smaller values of p⊥, the AR uncertainty band quickly grows to the

100% level, and the POWHEG band to about ±40%. Only the MC@NLO band increases

to a moderate ±15%.

Since, for a SM Higgs of mh = 125 GeV, the BV and HMW scales are quite close to

each other (see figure 3), the two upper plots in figure 4 are very similar. In order to see

this more explicitly, we study the impact of the different scale choices (BV or HMW) within

one particular code (left: AR; right: MC@NLO) in the lower three plots of figure 4. From

the latter we can indeed see that the results obtained in the two cases are in very good

agreement with each other, both with respect to the central value and the uncertainty

band; the only difference being at very low transverse momenta (p⊥ < 10 GeV) in the

central predictions of AR and POWHEG. This can be traced back to the different matching

scales for the interference term, which constitutes the largest contribution induced by the

bottom-quark loop in the SM.

4.2.2 Results in the large-t scenario

Let us now consider the production of a heavy Higgs with mH = 300 GeV in the large-t

scenario, where, similar to the SM, the bottom-loop and the interference contribution play

only a minor role. In contrast to the SM, however, the matching scales for the top-loop

contribution derived using BV and HMW differ by almost a factor of two. The results for

the p⊥ distribution are shown in figure 6.

Using BV scales, one notices that AR deviates quite significantly (∼ 50%) already at

p⊥ = 400 GeV from the fNLO result; this deviation tends to further increase towards larger

p⊥ values. This is not unexpected since the HMW scales are designed to guarantee similarity

between the resummed and the fNLO curve at large p⊥. Scale choices larger than the values

determined by HMW will therefore necessarily lead to a deviation from the fNLO in that
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Figure 4. Shapes of the transverse-momentum distributions (i.e., normalized such that the integral

yields one) for a SM Higgs boson with mh = 125 GeV. In the upper plots we show the distributions

computed with AR (black, solid), MC@NLO (red, dotted) and POWHEG (blue, dashed overlaid by points),

setting the matching scales to the BV values (left) or the HMW values (right). For reference, we

also show the fixed-NLO (fNLO) prediction (green, dash-dotted with open boxes). The main frame

shows the absolute distributions, the first inset the shape-ratio of the central values to the AR

distribution, and the second inset the uncertainty bands, normalized again to the central AR value.

In the lower three plots we compare the results within each code, using for the matching scales the

BV values (red, dotted) and the HMW values (black, solid), taking the HMW results as reference

for the ratios of the insets.
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Figure 5. Same as figure 4, but restricted to the low-p⊥ region.

region. In the case of POWHEG and MC@NLO, their canonical high-p⊥ behavior starts to appear

only for relatively large values of p⊥, the reason for this being again the relatively high value

of the scale for the top contribution (wt = 111 GeV). Indeed, the agreement between the

two Monte Carlos turns out to be excellent, at least up to p⊥ values as large as the Higgs

mass. Despite the large deviations of AR in the tail and the much softer AR spectrum,

all approaches are compatible within uncertainties at small to intermediate transverse

momenta (p⊥ . 200 GeV). It should be noted that this is partly due to the fact that the

uncertainty bands are significantly larger (almost by a factor of two) than in the SM.

Using HMW scales, the transition to the high-p⊥ region is more similar to the SM case

(including the consistent overshooting of the POWHEG spectrum) because of the relatively

flat dependence on the Higgs mass of the HMW scales, implying Qlarge-t
t /QSM

t ' 1.3. The

results from the three codes appear to be more compatible, in particular in the tail of

the distributions, mainly due to the different AR behavior. The bulges of the uncertainty

bands above the peak position extend to considerably larger values of p⊥, and their width

is similar to what we observed for the SM.
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Figure 6. Same as figure 4, but for a 2HDM heavy scalar Higgs boson with mH = 300 GeV in the

large-t scenario.

Despite the apparent differences between the left and the right upper plots, the dedi-

cated analysis of the impact of the scales choice in the lower plots reveals that the results

are nicely compatible within the respective uncertainty bands. The only exception from

this occurs for AR at large p⊥. But one should bear in mind that the uncertainty band for

AR is manually suppressed at large p⊥, a procedure that should strictly be applied only

when HMW scales are used. The observation that the width of the BV-bands is larger than

for HMW is due to the fact that wt is more than twice as large than Qt, and thus the

variation by a factor of two has a bigger impact on the final result.

The results for the CP-odd Higgs boson in the large-t scenario are very similar to the

ones of the heavy CP-even Higgs shown here. We therefore refrain from showing them here.

– 24 –



J
H
E
P
0
1
(
2
0
1
6
)
0
9
0

4.2.3 Results in the large-b scenario

The large-b scenario produces large bottom-Yukawa couplings for the heavy and the pseudo-

scalar Higgs boson which renders the bottom-loop induced contribution by far dominant.

Since the associated matching scales wb and Qb are very close to each other, any difference

in the p⊥ distributions are due to the conceptional variants of the matching in the three

codes under consideration. Figure 7 shows the results for a heavy Higgs boson using HMW

scales (the corresponding plots for BV scales are identical for all practical purposes).

Let us first discuss the upper left plot of figure 7, where the curves are displayed in the

same way as in the corresponding plots of figure 4 and figure 6 for the SM and the large-t sce-

nario, respectively. While the large-p⊥ behavior for AR and MC@NLO is similar to the large-t

scenario, POWHEG produces a spectrum that is significantly harder, exceeding the fNLO result

by about 50% for p⊥ & 200 GeV. Apparently, the specific matching procedure of POWHEG

has a significant impact on the large p⊥ region, where the parton shower, based on the

soft/collinear approximation, is outside its region of validity. Between 10 . p⊥/GeV . 130,

on the other hand, POWHEG and AR agree within 10%, while MC@NLO is significantly higher

in that region. The central predictions of the two Monte Carlo results are in reasonable

agreement only at small transverse momenta (p⊥ . 30 GeV). Moreover, the size of the er-

ror bands is very different in the two Monte Carlo approaches: the MC@NLO band blows up

to O(100%) around p⊥ ∼ 125 GeV; the POWHEG band remains very narrow over the whole

range, indicating an uncertainty even smaller than in the SM. The fact that all approaches

lead to compatible predictions below p⊥ ≈ 200 GeV is mainly due to the large MC@NLO band.

Since the large-b scenario reveals the differences between the three codes under study

in the most striking way, it will be instructive to investigate them in more detail within

this scenario. Consider first the POWHEG approach. As it turns out, both observed fea-

tures — enhanced high-p⊥ tail and small uncertainty band — can be tackled by the same

modification of the matching procedure: in the original POWHEG approach, the scale t1 (see

section 2.2) for each event is identified with the transverse momentum of the first emission.

If the latter is very large, the shower will act up to scales which are way beyond the validity

range of the underlying approximations. If instead we restrict t1 for all remnant events (the

Rf -term in eq. (2.6)) to remain below the matching scale (e.g. BV or HMW), one obtains

the result shown in the lower left plot of figure 7 (magenta, solid curve with stars). Since

the high-p⊥ tail of the distribution is driven by the remnant events, the above restriction

of t1 ensures a transition to the fNLO curve. We will refer to this modified approach as

“mPOWHEG” in what follows.23 It happens that also the uncertainty band is more similar

to the other approaches for the mPOWHEG result (see again the lower left plot of figure 7).

The fact that the mPOWHEG modification applies only to the remnant events ensures

that the formal accuracy of the original POWHEG approach remains unaffected. In this

respect, it is reassuring that at low transverse momenta (p⊥ . 100 GeV), the modifications

have practically no effect (compare the POWHEG with the mPOWHEG curve in figure 7), as this

region is controlled by the soft events (the first term in eq. (2.6)), which remain unchanged.

23Modifications of the shower scale setting were studied also in ref. [86] in order to improve the theoretical

prediction for dijet production.
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Figure 7. The first plot is the same as the upper right plot of figure 4, but for a 2HDM heavy

scalar Higgs boson with mH = 300 GeV in the large-b scenario. The other plots show two additional

curves: MC@NLO applying a fixed value (δ-distribution) to the shower scale of each contribution using

the HMW values (orange, solid with full boxes); a modified-POWHEG (mPOWHEG) approach requiring

emissions in all remnant events to be bounded by the matching scales (HMW in this case) from

above (magenta, solid with stars).
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We checked that the fNLO-like high-p⊥ behavior of mPOWHEG is a generic feature and not

specific to the underlying phenomenological scenario or the details of the parton shower.

A more quantitative study of its numerical impact has to be deferred to a future study

though. Stressing again that, to our understanding, mPOWHEG is only a logarithmically

subleading modification of POWHEG (or rather its interface with the parton shower), one

may consider it as a viable alternative whenever an fNLO-like high-p⊥ behavior is required.

Let us now discuss the MC@NLO approach in this scenario, featuring a peculiarly large

uncertainty regarding shower scale variations, which in turn leads to very different shapes

of both the central predictions and the error band with respect to the other two approaches.

Recall that in the MC@NLO implementation of MadGraph5 aMC@NLO, the values for the shower

scale of the soft events follow a specific distribution with a peak at the matching scale µi
(i = t, b, int; e.g. BV or HMW), see section 2.2.1. We find that, in the large-b scenario, a

restriction of the range of that distribution has a significant effect on the central MC@NLO

prediction, which is not surprising given the large associated uncertainty. In the limit where

this distribution turns into a δ-function δ(Qsh−µi), also the size of the uncertainty band is

strongly reduced, as can be seen in the lower right plot of figure 7 (orange, solid curve with

full boxes). We checked that, besides a slightly earlier matching to the fNLO prediction

controlled by the remnant events, the observed features are due to the restricted shower

scale range accessible to the soft events. This study simply shows that the predictions in

bottom-quark dominated scenarios depend strongly on details of the matching procedure

and thus should be attributed with large uncertainties.

Finally, the upper right plot of figure 7 shows the comparison of the results obtained

with the modifications done for MC@NLO and POWHEG. Indeed, the modified predictions turn

out to be in much better agreement, in terms of both the central curves and the uncertainty

bands.

Similar to the large-t scenario, the distributions for the pseudo-scalar Higgs in the

large-b scenario largely resemble the ones of the heavy Higgs shown in figure 7, and we do

not need to discuss them separately at this point.

4.2.4 Results in the large-int scenario

The matching scales of the interference term in the BV and the HMW approach exhibit

quite a different behavior, as shown in figure 3. It will thus be interesting to see the

distributions in the various approaches in a scenario with a particularly large interference

term. Note, however, that the interference term in the large-int scenarios defined in table 1

is always negative and competes with a similarly large top and/or bottom contribution.

Our 2HDM parameter scan did not reveal a truly interference-dominated scenario, where

both the top and the bottom contribution are small compared to the interference term,

and which passes the unitarity, stability, and perturbativity checks.

Figure 8 shows the results for the light Higgs boson, where the modulus of the top,

the bottom, the interference term, and the total cross section each are roughly of the same

size (∼ 2 pb, see table 1). Note that the top and the bottom matching scales agree well in
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Figure 8. Same as figure 4, but for a 2HDM light scalar Higgs boson with mH = 125 GeV in the

large-int scenario.

the BV and the HMW approach for the light Higgs, while the interference matching scale

is about a factor of three larger in the HMW approach.

Using HMW scales, the comparison of the distributions in the various approaches leads

to a picture that is quite similar to the one that we found in the SM: good agreement

among the Monte Carlos, softer spectrum of AR, compatible results within uncertainties of

all approaches (at least for p⊥ ≤ mh). The error bands, on the other hand, are significantly

larger than in the SM. They amount up to about24 ±60% for AR and MC@NLO, and about

±40% for POWHEG.

Using BV scales, on the other hand, the width of all uncertainty bands is strongly

reduced (up to about ±20% and ±30% for AR and the Monte Carlos, respectively), the

24We disregard the region very close to the threshold (p⊥ = 0), where, as stated before, the AR uncertainty

band blows up.
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Figure 9. Left: same as upper left plot of figure 8, but with enlarged low-p⊥ region. Right: same

scenario and notation, but for a pseudo-scalar Higgs boson with mA = 270 GeV.

reason being again the fact that a large Qint (as in HMW) also induces a large interval

[Qint/2, 2Qint]. While also for BV the results at small p⊥ are compatible within uncertainties

and the high-p⊥ behavior is very reminiscent of the one observed in the SM, there are some

substantial differences at very small transverse momenta (p⊥ < 40 GeV) between the shapes

predicted by the two Monte Carlos. For better visibility, figure 9 shows in the left panel

the BV plot with an enlarged low-p⊥ region. Clearly, the MC@NLO spectrum is harder, while

the POWHEG one actually gets negative in the first bin.25 Since the interference term is not

positive definite, due to its definition by subtraction, the distribution may turn negative in

scenarios where its contribution is large. Clearly, this behavior appears to be amplified at

small p⊥ if the matching scale is particularly small. At least this specific case, therefore,

leads to a similar conclusion as pointed out in ref. [54], that very low scales are not well

suited for NLO matched parton shower predictions.

Indeed, the behavior just observed is even enhanced in the large-int scenario of the

pseudo-scalar Higgs with mA = 270 GeV, see figure 9 (right panel). The MC@NLO distribution

displays some odd behavior between about 10 < p⊥/GeV < 60, developing an almost linear

behavior rather than the ordinary Sudakov shoulder. The POWHEG prediction, on the other

hand, becomes negative in the first and the second bin of the distribution (i.e., below

p⊥ = 10 GeV). There are mainly two reasons for these features being intensified in the

large-int scenario of the pseudo-scalar Higgs: first, the ratio of the interference matching

scale to the Higgs mass is even smaller than for the light Higgs; second, the relative

contribution of the interference term is larger than in the light Higgs case. The latter can

be inferred from table 1: for the pseudo-scalar Higgs, the large-int scenario corresponds to

25Note also that the AR curve for BV scales turns negative at very low p⊥.
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Figure 10. Same as figure 4, but for a 2HDM pseudo-scalar Higgs boson with mA = 270 GeV in

the large-int scenario.

an interference term whose modulus is about 30% larger than the top, 50% larger than the

bottom contribution, and 270% larger than the total cross section.

The other results in the large-int scenario of the pseudo-scalar Higgs are shown in

figure 10. The conclusions are essentially the same as the ones for the light Higgs, which

will thus not be repeated here. It is worth mentioning though that the relative size of the

uncertainty bands for both BV and HMW scales are increased with respect to the light

Higgs case, the reason being again the larger value of the matching scale and the thereby

enlarged variation range.

4.2.5 Results in the low-mA scenario

Also the low-mA scenario produces large bottom-Yukawa couplings, but in this case the

Higgs and the bottom mass are significantly closer than in the large-b scenario. Thus,

all contributions besides the bottom-loop induced one are negligible and Qb is quite close
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Figure 11. Same as upper two plots of figure 7, but for BV scales and a 2HDM pseudo-scalar

Higgs boson with mA = 30 GeV in the low-mA scenario.

to wb. Figure 11 shows, therefore, only the comparison among the three codes for the BV

scales, while the corresponding HMW results are identical for all practical purposes.

Looking first at the left plot in figure 11, we notice that the characteristic features

observed in the large-b scenario appear to be amplified in this case: the MC@NLO uncertainty

band blows up to O(150%) around p⊥ ∼ 25 GeV; the POWHEG curve exceeds the fNLO result

by about 100% for p⊥ & 50 GeV with a very small uncertainty band. The central curves

are vastly different between the two Monte Carlo approaches except for the first two bins.

In the right plot of figure 11 we show the corresponding curves for the modified ap-

proaches (MC@NLO with fixed shower scale, mPOWHEG). Evidently, the agreement among the

results is significantly improved. Also in this case, a restriction of the shower scale in

POWHEG closes the large gap to fNLO in the tail of the distribution, such that the mPOWHEG

curve nicely approaches fNLO at large p⊥. The MC@NLO uncertainty band is very similar

to the one of AR and the central predictions of the Monte Carlos are almost on top of

each other. Note that for such small Higgs boson masses, the shower scale distribution as

defined in section 2.2.1 ranges down to very low values (Qsh ∼ 1 GeV) which are not well

suited for a Monte Carlo approach, both from a physical and a technical point of view.

This can be avoided by using narrower distributions — a δ-function in our case — for Qsh,

thus leading to a better agreement with the other codes and a more reasonable size of the

uncertainty band.26

26In the default implementation of MadGraph5 aMC@NLO [56], there is a hard cut Qsh ≥ 3 GeV that avoids

such low values; for this study, however, we have removed this cut.
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5 Conclusions

A reliable theoretical prediction of the Higgs transverse-momentum distribution must in-

clude an estimate of the uncertainties associated with the matching of fixed- and all-order

results. The latter are relevant to describe the large- and the low-p⊥ parts of the spec-

trum, respectively. The matching procedure is not unique; in this paper, we studied three

different methodological approaches and their dependence on the respective matching scale.

In general, the gluon-fusion process is characterized by two external, physical scales:

the mass of the Higgs boson and the mass of the quark running in the loop of the gluon-

gluon-Higgs vertex. Since in the SM, where the top quark is dominant, these two scales

are quite close to each other, the issue of setting the matching scale is less problematic. In

BSM scenarios with enhanced bottom Yukawa coupling, however, the proper choice of the

matching scale has become a matter of debate.

In this paper we presented two distinct comparisons:

1. The determination of a suitable central value for the matching scales associated to

the top, bottom, and interference terms, as proposed in the HMW [1] and BV [2]

approaches, is compared qualitatively and quantitatively. Figure 3 summarizes the

main outcome as a function of the Higgs mass, both for a CP-even and a CP-odd

Higgs boson.

2. The predictions of three resummation codes to the problem of the matching (AR,

MC@NLO and POWHEG), all at NLO QCD accuracy concerning their normalization, but

different in their logarithmic accuracy, are compared at the level of their central

values and of the respective uncertainty bands, obtained through variation of the

matching parameter by a factor of two around a central value. The latter has been

fixed following the prescriptions of point i). In this comparison we considered the

production of a Higgs boson in the framework of the SM and a number of 2HDM

scenarios which are representative of the different possible interplays between top-

and bottom-quark effects in the gluon-fusion scattering amplitude.

In these comparisons, it is important to keep in mind that resummation considerably

improves the theoretical prediction in the low-p⊥ region, while one cannot expect the

resummed (and matched) result to be in any way superior to the fixed-order prediction

at intermediate and high-p⊥. We showed that the discrepancies among the codes outside

the low-p⊥ region can be greatly reduced by a modification of the treatment of formally

subleading logarithmic terms.

In the low-p⊥ region, we find very compatible results among the three codes in all

scenarios, independent of whether one uses BV or HMW scales. Even in cases where the

central scales suggested by the two methods differ relatively strongly, the respective p⊥
distributions are consistent with each other once their error band is taken into account.

For the interference term, this reflects the complementary reasoning behind the BV and

HMW methods which allows them to diverge as long as the sensitivity of the p⊥ distribution

on the matching scale is small.
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Let us summarize the outcome of our study as follows:

• The matching uncertainty on the prediction of the Higgs transverse momentum dis-

tribution amounts to one up to several tens of percent, depending on the specific value

of p⊥ and on the model under study. This uncertainty should be combined with the

usual perturbative uncertainty estimated via renormalization and factorization scale

variations.

• As far as small transverse momenta are concerned, we find reasonable agreement

among the codes irrespective of the specific matching scale choice (BV or HMW),

although the central AR result shows a generally much softer spectrum as compared

to the central prediction of the Monte Carlo codes. The agreement among the three

codes is in part caused by an increase of their error band towards very low p⊥ (es-

sentially in the first 5 GeV bin of the distribution), which is most apparent though

for the AR result. Note, however, that the cross section is typically very small in this

region. Let us recall that these results have been obtained with the Pythia8 parton

shower; variations with the parton shower are left for future studies.

• In the intermediate p⊥ range, the estimate of the width of the matching uncertainty

bands shows differences in the three approaches under study, which are more pro-

nounced in the bottom dominated scenarios. In this last case the size and shape of

the uncertainty bands strongly depends on the matching formulation, as it has been

explicitly shown in the MC@NLO case with the use of different probability functions to

extract the value of the shower scale.

• In the large p⊥ range, where all the codes have only LO accuracy, sizable differences

appear in their predictions, where the POWHEG result is systematically larger than the

MC@NLO and AR curves, which in turn are compatible with the fNLO one. One source

of this discrepancy has been identified in the different treatment of high-p⊥ multiple

parton emissions beyond the first one, still allowed in POWHEG and suppressed in the

other two cases. We expect the precise size of the discrepancy to depend on the details

of the parton shower; quantitative studies will be deferred to a future publication. The

codes compared in this note provide either a transition to the LO prediction at large

p⊥ (AR and MC@NLO), which has a well defined perturbative accuracy, but misses the

effects of additional radiation, or a prediction that includes multiple parton emissions

at all transverse momenta, but describes them by means of a PS (POWHEG), which is

not adequate at large p⊥ because it is based on the soft/collinear approximation. It

was shown that a simple modification of the interface between POWHEG and the PS

(referred to as mPOWHEG in the text), which restricts the shower scale of the remnant

events, can be applied to ensure a consistent matching to the fNLO prediction in the

tail of the distribution, similar to the other two approaches.

The approaches studied here do not lead to identical results; not only their central

values, but also their matching-induced uncertainty bands show characteristic differences.
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Nevertheless, it is fair to say that, in the low-p⊥ region and including these error estimates,

the results obtained by following either the BV or the HMW approach, and by employing

either of the three codes are consistent with each other. This allows the conclusion that any

of these approaches leads to a valid prediction for the low-p⊥ distribution once the matching

as well as the perturbative uncertainties are taken into account. The former should be

estimated by a variation of the respective matching scale around its central value, as given

by BV or HMW, the latter by a variation of the renormalization and factorization scales.

In the intermediate- and high-p⊥ region, where large PS effects become quite doubtful, all

approaches can be made compatible with the fNLO result by suitable minor modifications.

Let us point out that the new generation of Monte Carlo event generators, merged at

NLO+PS [87–89] or NNLO QCD accurate for quantities inclusive over the radiation [60–64],

with NLO QCD accuracy in the description of the Higgs transverse momentum spectrum,

offers a more accurate description of the p⊥ spectrum, however only in the SM-like scenario.

The evaluation of the associated matching uncertainties is left to a future study.
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A Numerical values of the matching scales

In the appendix we include two tables with the values of the matching scales as computed in

the HMW and BV approaches, for both a scalar and a pseudo-scalar Higgs boson. The top-

quark pole mass has been set to 172.5 GeV, while the bottom-quark pole mass is assumed

to be equal to 4.75 GeV. Both sets of scales are dependent on inputs at the hadron level.

For HMW this is due to the fact that the scales are determined using resummed hadronic

cross sections, while in the BV procedure, hadronic physics enters in the merging of the two

sets of scales obtained separately for the gg and qg channels. This implies the existence

of a (minimal) dependence on the center-of-mass energy and on the PDF set used in

the determination. For our study we have chosen
√
S = 13 TeV and we have used the

MSTW2008nlo68cl PDF set.
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mh/H [GeV]
HMW [GeV] BV [GeV]

Qt Qb Qint wt wb wint

20 11.5 4 11 29 5 6

25 17 5.5 16 30 5 3

30 21 6.5 28.5 30 6 1

35 23 8 21.5 31 7 2

40 25.5 9 20.5 31 7 3

50 29 11 20.5 33 8 4

60 32.5 12.5 22 34 10 5

70 35.5 14 23.5 36 11 5

80 38 15.5 25 38 12 6

90 40 17 26.5 40 13 6

100 41 18 28 42 14 7

125 45 21 31 48 18 9

150 48 24 34 55 21 11

175 51 27 37 62 24 12

200 53 29 39 71 27 14

225 55 31 41 85 29 16

250 56 34 43 108 32 18

275 58 36 45 112 35 20

300 59 38 47 111 38 23

325 59 40 48 103 41 25

350 58 42 49 87 43 26

375 59 44 52 81 46 25

400 60 46 56 81 49 23

425 61 47 61 84 51 22

450 62 49 65 87 53 21

475 64 50 72 91 56 19

500 66 52 78 96 58 17

525 68 53 — 100 61 14

550 70 55 — 104 63 11

575 71 56 86 108 66 6

600 72 58 84 113 68 6

Table 2. Table of the matching scales (in GeV) in the HMW and BV approach for a CP-even Higgs

boson. A dash is used to indicate the case where the determination procedure of a scale has not

been successful.
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mA [GeV]
HMW [GeV] BV [GeV]

Qt Qb Qint wt wb wint

20 11.5 5 21.5 26 5 2

25 16.5 6.5 18 26 6 1

30 21 7.5 17 27 6 3

35 23 9 17 27 7 3

40 25 10 18 28 8 4

50 29 11.5 19.5 30 9 5

60 32.5 13.5 21 32 10 6

70 35 15 23 34 11 6

80 37.5 16.5 24.5 37 12 7

90 39 18 26 40 13 7

100 41 19 27 43 14 8

125 45 22 31 52 18 10

150 48 25 34 61 21 12

175 50 28 36 72 24 14

200 53 31 39 102 27 16

225 54 33 41 110 30 18

250 56 36 43 112 33 20

275 57 38 44 109 35 23

300 58 40 45 103 38 25

325 57 42 46 91 41 27

350 55 44 52 70 43 23

375 59 46 — 80 46 18

400 61 48 — 86 49 14

425 63 49 — 92 51 10

450 66 51 — 98 53 2

475 68 52 — 104 55 9

500 70 54 — 109 58 14

525 72 55 — 115 61 19

550 73 57 — 120 63 23

575 75 58 — 126 65 28

600 76 60 — 132 68 39

Table 3. Table of the matching scales (in GeV) in the HMW and BV approach for a CP-odd Higgs

boson. A dash is used to indicate the case where the determination procedure of a scale has not

been successful.
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