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The scope of the paper is to apply a state-of-the-art beyond mean-field model to the description of the
Gamow-Teller response in atomic nuclei. This topic recently attracted considerable renewed interest, due, in
particular, to the possibility of performing experiments in unstable nuclei. We study the cases of 48Ca, 78Ni, 132Sn,
and 208Pb. Our model is based on a fully self-consistent Skyrme Hartree-Fock plus random phase approximation.
The same Skyrme interaction is used to calculate the coupling between particles and vibrations, which leads to
the mixing of the Gamow-Teller resonance with a set of doorway states and to its fragmentation. We compare our
results with available experimental data. The microscopic coupling mechanism is also discussed in some detail.
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I. INTRODUCTION

Spin-isospin resonances are not a new subject, yet they
still capture the interest of researchers, both experimentalists
and theorists, not only in nuclear physics but also in particle
physics and astrophysics. There exist some review papers [1,2],
that do not cover, however, the most recent developments.
From the experimental point of view, the forefront of such
kind of research is the exploration of the spin-isospin modes
in exotic nuclei (mainly neutron-rich and possibly drip-line
isotopes). This is nowadays possible due to the advent of
radioactive beam facilities, and a dedicated effort focused on
charge-exchange reactions leading to spin-isospin modes is
ongoing, e.g., in Japan and in the USA. The Gamow-Teller
(GT) excitations are the main goal but spin-dipole and other
multipoles are also of interest.

Effective nucleon-nucleon forces are poorly constrained in
the spin-isospin channel, and they often display unphysical
ferromagnetic instabilities in nuclear matter at high densities
that need to be cured (cf. [3,4] and references therein). A
systematic exploration of spin-isospin transitions, from light
to medium-heavy systems and from the neutron-deficient to
the neutron-rich side, is needed, in order to tune such effective
nucleon-nucleon interactions in the nuclear medium and to
study the nuclear equation of state. It has been shown, for
instance, that the spin-dipole strength is a good indicator of
the neutron skin (cf. [5] and references therein). Most of the
GT strength in the t− channel lies at high excitation energy
in stable nuclei; however, as the neutron excess increases,
one expects that a sizable part of it can move down into
the β-decay window [6]. To what extent this happens, and/or
brings new information on the spin-isospin part of the nuclear
Hamiltonian, is still an open question; although it can be at
present mainly tackled in light nuclei such as 8He [7] and
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12Be, there are attempts toward the neutron-rich side in heavy
systems as well (for instance, in the case of 132Sn).

Spin-isospin excitations play an important role in the
weak-interaction processes such as electron capture, β decay,
and neutrino-nucleus reactions. Therefore, the knowledge of
selected transitions in a specific series of nuclei, or in specific
regions of the nuclear chart, is of great interest for nuclear
astrophysics [8,9]. A clear and well-known example is that
of core-collapse supernovae. In this case, the electron capture
rates govern the evolution of the system and, consequently,
GT transition matrix elements must be accurately known
in the iron region [8–12]. The β-decay half-lives set the
time scale of the rapid neutron capture process (r process),
and hence influence the production of heavy elements in
the universe [13–15]. Last but not least, a very accurate
knowledge of spin-isospin matrix elements is also instrumental
to extract the properties of the neutrinos from the double-β
decay [16,17].

From the theoretical point of view, in the last two decades
there has been significant progress in microscopic models
aimed at the description of collective excitations such as
the charge-exchange GT and spin-dipole resonances. Most
nuclei in the nuclear chart can be studied by models based
on self-consistent mean-field or density functional theory.
At present, they can be employed in the form of a Hartree
[or Hartree-Fock (HF)] approximation for the ground-state
plus charge-exchange random phase approximation (RPA) to
determine the main resonance properties. This can be done
using Skyrme [18–23] or Gogny [24] effective Hamiltonians,
as well as using covariant effective Lagrangians [25–27].
Some of these Hamiltonians or Lagrangians can reproduce
the experimentally observed mean energy, and the fraction
of the exhausted sum rule, for the GT and spin-dipole
resonances, although they are not based on the same physical
picture.

Self-consistent mean-field models have also limitations.
It is well known that they cannot account for the spreading
widths of giant resonances. The problem of the fragmentation
of the GT strength has been addressed using second RPA [28]
and the quasiparticle-phonon model [29] (see also Ref. [30]).
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Generally speaking, models based on particle-vibration cou-
pling (PVC) are quite effective in reproducing the giant
resonance widths [31]. We apply such an approach in the
present paper, which is a followup of Ref. [32]. As described
in that work, some of us implemented a scheme based on the
fully self-consistent Skyrme HF plus RPA, in which specific
diagrams associated with PVC corrections at lowest order
are introduced, and no further approximation has been done.
In particular, the same Skyrme force is used to calculate
the single-particle levels and the RPA spectrum (including
both the GT state and the low-lying surface vibrations to be
coupled to it), as well as the PVC vertices (see next section).
While the model is similar to the one of Ref. [33], it includes
many improvements; in particular, all the terms of the Skyrme
interaction are taken into account. Our goal here is to see
if we can reproduce the line shape of the strength function,
and the associated spreading width, observed in different
nuclei and in different mass regions. In particular, we wish to
make predictions for exotic nuclei for which experiments have
already been carried out and not yet analyzed, or are planned.
We share part of our motivations with the recent work of
Ref. [34], which adopts a model similar to ours, but based on a
covariant description. We also present a detailed discussion of
the spreading mechanism within our approach. The damping
width of giant resonances has also a contribution coming
from the escape width; that is, from the nucleon emission.
In the GTR case, experiment indicates that the escape width
is very small (of the order of ≈4% of the total width in
208Pb, cf. Table 8.3 of Ref. [35]). Consequently, we have not
included the continuum coupling in the present paper, and we
compare directly the calculated spreading width with the total
experimental width.

The outline of our work is as follows. In Sec. II a short
account of the formalism is presented. In Sec. III A the GT
strength distributions and cumulative sums calculated for nu-
clei 208Pb, and 48Ca are compared with the experimental data,
while predictions are provided for 132Sn and 78Ni. The overall
features of the GT resonance (GTR) and phonons are summa-
rized in Sec. III B. The PVC mechanism for the spreading and
fragmentation of GTR is discussed in Sec. III C. Finally, the
main conclusions of this work are summarized in Sec. IV.

II. FORMALISM

We employ the same formalism as in Ref. [32], and
here we only recall its essential points. We first carry out

a self-consistent HF+RPA calculation of the GT strength,
using a standard Skyrme interaction. The HF equations are
solved in coordinate space on a radial mesh of size 0.1 fm,
within a spherical box having a radius equal to 21 fm. The
continuum is discretized by requiring vanishing boundary
conditions for the wave functions at the edge of this box. A set
of RPA eigenstates |n〉 for the GT excitations are obtained
by the diagonalization of the RPA matrix. Forward-going
and backward-going amplitudes associated with the RPA
eigenstates |n〉 will be denoted by X

(n)
ph and Y

(n)
ph , respectively.

Single-particle states up to 100 MeV have been included in
the particle-hole (p-h) configuration space. Within PVC, the
RPA strength will be shifted and redistributed through the
coupling to a set of doorway states, denoted by |N〉, made of
a p-h excitation coupled to a collective vibration of angular
momentum L. The properties of these collective vibrations,
i.e., phonons |nL〉 are, in turn, obtained by computing the
RPA response with the same Skyrme interaction, for states of
natural parity Lπ = 0+, 1−, 2+, 3−, 4+, 5−, and 6+. For the
PVC model space, we have retained the phonons with energy
less than 20 MeV and absorbing a fraction of the total isoscalar
or isovector strength larger than 5%, and included intermediate
particle states up to an energy of 100 MeV.

The GT strength associated with RPA+PVC, is given by

S(ω) = − 1

π
Im

∑
ν

〈0|ÔGT±|ν〉2 1

ω − �ν + i
(

�ν

2 + �
) , (1)

where the GT operator is ÔGT± = ∑A
i=1 σ (i)τ±(i). In our

calculation, we will only focus on the GT− excitations. |ν〉
denote the eigenstates [associated with the complex eigenval-
ues �ν − i �ν

2 and eigenvectors (F (ν),F̄ (ν))] that are obtained
by diagonalizing the energy-dependent complex matrix

(D + A1(ω) A2(ω)
−A3(ω) −D − A4(ω)

) (
F (ν)

F̄ (ν)

)

=
(

�ν − i
�ν

2

) (
F (ν)

F̄ (ν)

)
. (2)

Here, D is a diagonal matrix containing the positive RPA
eigenvalues, and the Ai matrices are associated with the
coupling to the doorway states. The expressions of Ai in the
RPA basis |n〉 are given by

(A1)mn =
∑

ph,p′h′
W

↓
ph,p′h′(ω)X(m)

ph X
(n)
p′h′ + W

↓∗
ph,p′h′(−ω)Y (m)

ph Y
(n)
p′h′ , (3)

(A2)mn =
∑

ph,p′h′
W

↓
ph,p′h′(ω)X(m)

ph Y
(n)
p′h′ + W

↓∗
ph,p′h′(−ω)Y (m)

ph X
(n)
p′h′ , (4)

(A3)mn =
∑

ph,p′h′
W

↓
ph,p′h′(ω)Y (m)

ph X
(n)
p′h′ + W

↓∗
ph,p′h′(−ω)X(m)

ph Y
(n)
p′h′ , (5)

(A4)mn =
∑

ph,p′h′
W

↓
ph,p′h′(ω)Y (m)

ph Y
(n)
p′h′ + W

↓∗
ph,p′h′(−ω)X(m)

ph X
(n)
p′h′ , (6)
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where W↓ reads

W
↓
ph,p′h′(ω) =

∑
N

〈ph|V |N〉〈N |V |p′h′〉
ω − ωN

. (7)

The matrix elements are given by the sum of the four Feynman diagrams represented in Fig. 1, whose analytic expressions are

W
↓
1php′h′ = δhh′δjpjp′

∑
p′′,nL

1

ω − (ωnL + εp′′ − εh) + i�

〈p||V ||p′′,nL〉〈p′||V ||p′′,nL〉
ĵ 2
p

,

W
↓
2php′h′ = δpp′δjhjh′

∑
h′′,nL

1

ω − (ωnL − εh′′ + εp) + i�

〈h′′||V ||h,nL〉〈h′′||V ||h′,nL〉
ĵ 2
h

,

(8)

W
↓
3php′h′ =

∑
nL

(−)jp−jh′ +J+L

ω − (ωnL + εp − εh′) + i�

{
jp jh J
jh′ jp′ L

}
〈p′||V ||p,nL〉〈h′||V ||h,nL〉,

W
↓
4php′h′ =

∑
nL

(−)jp′−jh+J+L

ω − (ωnL + εp′ − εh) + i�

{
jp jh J
jh′ jp′ L

}
〈p||V ||p′,nL〉〈h||V ||h′,nL〉.

In the above formulas, p and h label particle and hole
states, respectively. The corresponding angular momentum
and single-particle energies are given respectively by jp , jh and
εp, εh. ĵ 2

i is a shorthand notation for 2ji + 1, while ωnL denotes
the energy of the phonon state |nL〉. The averaging parameter
� is introduced to avoid singularities in the denominator of
Eq. (8), and a convenient practical value is � = 200 keV.
Such a value is usually smaller than �ν/2 and does not
affect appreciably the RPA+PVC calculation of the strength
in Eq. (1) (it was in fact neglected in the calculations of the
strength in Ref. [32]). In the following, we shall also show
calculations with larger values of �, in order to simulate
the experimental resolution. A larger value of � can also
effectively take into account the coupling to more complex
configurations not included in the current model.

FIG. 1. Diagrammatic representation of the four terms whose sum
gives the matrix element W ↓

ph,p′h′ . The analytic expressions are shown
in Eq. (8).

A useful approximation to the full diagonalization of the
matrix in Eq. (2) can be obtained by retaining only the diagonal
term (A1)mm, which will be denoted below as self-energy m.
If only a single pronounced GTR peak having energy ERPA

and strength |〈0|ÔGT−|GTR〉|2 from the RPA calculation is
considered, one obtains the following approximate expression
for the strength of Eq. (1):

S(ω) = 1

π

�GTR(ω)
2 + �

[ω − �GTR(ω)]2+(
�GTR(ω)

2 +�
)2 |〈0|ÔGT−|GTR〉|2,

(9)

where

�GTR(ω) = ERPA + Re[(A1)GTR,GTR(ω)] (10)

and

�GTR(ω) = −2 Im[(A1)GTR,GTR(ω)]. (11)

A simple perturbative expression for the strength function of
Eq. (9) can be obtained by putting ω = ERPA in Eqs. (10)
and (11). However, a much better approximation can be ob-
tained by solving Eq. (10) with �GTR(ω) = ω self-consistently.
The effectiveness and usefulness of these approximations will
be further discussed in Sec. III C.

III. RESULTS AND DISCUSSIONS

A. Gamow-Teller strength distributions and cumulative sums

Our calculations can be performed using different Skyrme
parameter sets. Consequently, before discussing in detail the
results for the GT strength functions in a series of nuclei, some
considerations about the interaction dependence are in order.
We display in Fig. 2 the GTR peak energy calculated in 208Pb
within the HF, RPA, and RPA+PVC approaches, as well as the
GTR full width at half maximum (FWHM) calculated within
the RPA+PVC approach, with the Skyrme forces SkI3 [36],
SkM* [37], SAMi [23], and SGII [38], as a function of the
Landau parameter g′

0 associated with each force, and using
the value � = 1 MeV for the averaging parameter. The black
straight line in the left panel denotes the experimental peak
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FIG. 2. (Color online) Gamow-Teller resonance peak energy [panel (a)] and FWHM [panel (b)] in 208Pb, calculated within HF (squares),
RPA (triangles), and RPA+PVC (circles) approaches with the Skyrme interactions SkI3, SkM*, SAMi, and SGII. For convenience, they are
shown as a function of the Landau parameter g′

0 associated with each force. The unperturbed HF energy Eunper is the weighted average of the
two main configurations νi13/2 → πi11/2 and νh11/2 → πh9/2. The experimental peak energy and width are shown by the black straight lines.

energy with respect to the parent nucleus (19.2 MeV), while
the experimental width (5 MeV) is represented in the same way
in the right panel. As is well known, the unperturbed HF peaks
underestimate the peak energy by several MeV. The residual
interaction included in the RPA calculation raises these values
by 4–5 MeV, overestimating the experimental energy by
≈1–2 MeV, except for the interaction SAMi [23], a newly
proposed interaction with a good description of the nuclear
spin-isospin properties, that was fitted so as to reproduce the
experimental value at RPA level. The inclusion of PVC acts in
a similar way in the four cases. The peak energies are shifted
down by about 1.2 MeV and acquire a width. The FWHM is
equal to ≈3.5 MeV. More precisely, the smallest effect from
PVC (1.1 MeV energy shift and 3 MeV FWHM) is obtained
in the case of SkM*, and the largest one in the case of SGII
(1.3 MeV energy shift and 3.6 MeV FWHM). We conclude
that the effects of particle-vibration coupling are only weakly
dependent on the chosen Skyrme set. The best agreement with
experiment is obtained with SkM* and SGII, and we will adopt
SGII in the rest of our work. The results calculated by using
the interaction SAMi will also be presented for a more detailed
comparison in the case of 208Pb.

In Fig. 3, we show the GT strength distributions, their
cumulative sums and the scaled cumulative sums calculated
with the Skyrme interactions SAMi and SGII for the nucleus
208Pb, compared with the experimental data of Ref. [39]. The
excitation energies are given with respect to the parent nucleus
in all the figures. The discrete RPA strength is folded with
Lorentzian functions having full width equal to 2�. In order to
obtain a consistent comparison with data, in panels (a)–(f) we
adopt a value � = 1 MeV, similar to the experimental energy
resolution, in both the RPA and RPA+PVC calculations. In
panels (g)–(i) we also show the results obtained with a smaller
value, namely � = 200 keV, in order to see the features of
the theoretical GT distribution in more detail. The scaled
cumulative sums are obtained by scaling both the RPA and
RPA+PVC total strength at E = 25 MeV to the experimental
value.

As already seen in Fig. 2, the Skyrme interaction SAMi
reproduces the experimental energy of the GTR very well at

the RPA level. Including the coupling with phonons, the GT
energy is shifted downward, worsening the agreement with
the experimental peak energy. On the other hand, the SGII
interaction produces a higher GT peak energy compared to the
experiment at the RPA level, while the RPA+PVC calculation
reproduces very well the line shape of the resonance. Our
results are similar to those obtained in the recent relativistic
time blocking (RTBA) calculations for 208Pb reported in
Ref. [34]. Besides the main GT peak at 19.2 MeV, there
is another low-energy peak produced by the RPA+PVC
calculations, located at about 11.5 MeV (SAMi) or 12.5 MeV
(SGII).

Concerning strengths, the total GT− [
∑

B(GT−)] and GT+
[
∑

B(GT+)] strengths calculated in the RPA approach with
the SGII interaction are 132.95 and 0.96, respectively. The
RPA result for

∑
B(GT−) − ∑

B(GT+) exhausts 99.99% of
the Ikeda sum rule. Only 3% of the calculated GT− strength
lies at energies above 25 MeV. In the RPA+PVC calculation,∑

B(GT−) − ∑
B(GT+) exhausts 95.2% of the Ikeda sum

rule up to the excitation energy 60 MeV while this value be-
comes 97.3% in the case of smearing parameter � = 0.2 MeV.
About 15% of the sum rule is shifted above E = 25 MeV
[
∑

E�25 MeV B(GT−) = 112.48,
∑

E�25 MeV B(GT+) = 0.72].
The experimental strength integrated up to 25 MeV is equal to
about 79, corresponding to 71% of the RPA+PVC result [39].
This is in agreement with the recent RTBA calculation of
Ref. [34], where the ratio between the experimental strength
integrated up to 25 MeV and the RTBA result is about 72%
using the same smearing parameter � = 1.0 MeV as ours.
Previous studies found that RPA tensor correlations could shift
about 10% of the sum rule to the excitation energy region
above 30 MeV [22,40]. The inclusion of �-isobar excitation
could move strength to very high excitation energy, this amount
being of the order of 10% of the total sum rule or less [41–43].
Concerning the remaining discrepancy with experiment, we
cannot determine to which extent it can be attributed to
deficiencies in the model, or to systematic uncertainties that the
experiment was unable to pin down. Despite the disagreement
in the total strength, the energy dependence of the cumulative
sum calculated with RPA+PVC reproduces quite well the
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FIG. 3. (Color online) Gamow-Teller strength distributions [panels (a), (d), and (g)], their cumulative sums [panels (b), (e), and (h)] and
scaled cumulative sums [panels (c), (f), and (i)], calculated with the Skyrme interactions SAMi (first column) and SGII (second and third
columns) for the nucleus 208Pb. The red-dotted lines and blue-dashed lines denote the results of RPA and RPA+PVC model, respectively. The
smearing parameter � in the calculations is assumed either of the order of the experimental energy resolution (� = 1.0 MeV, first and second
columns), or smaller (� = 0.2 MeV, third column). The experimental data [39] are displayed by black dots and black solid lines.

experimental data. In order to see this more clearly, in panel (f)
we scale the theoretical integrated strength up to E = 25 MeV
to the experimental value. It can be seen that the inclusion of the
phonon coupling improves the description of data considerably
as compared to the RPA result. There is some excess in the
theoretical strength of the RPA+PVC calculation as compared
to the data in the energy region E = 12–16 MeV, due to the
already mentioned low-lying peaks.

By reducing the value of the smearing parameter from � =
1 MeV to � = 200 keV [panel (g)], one can investigate the
detailed structure of the resonance. The main peak, which
had a FWHM equal to 3.6 MeV (cf. Fig. 2 and Table I),
is roughly split into two peaks, located at E = 19.2 MeV
and E = 20.6 MeV, with a FWHM equal to 1.2 and 2 MeV
respectively (cf. Table I). In Ref. [34], the resonance calculated
in RTBA is also split into two subpeaks in a very similar way.

In keeping with the fact that the effects of PVC depend
little on the interaction, in the following we will only display
the results calculated with the interaction SGII. In Fig. 4,
we show GT results for 48Ca. In this case, the experimental
energy resolution is about 200 keV, and the experimental
strength function [44] displays a rather complex structure.
One finds a low-lying peak at about 3 MeV, with a narrow
FHWM of about 0.4 MeV, followed by a broad resonance
region between 5 and 16 MeV displaying two peaks lying
at 8.3 MeV (with a FWHM of 1.5 MeV) and at 10.9 MeV
(with a FWHM of 3.9 MeV); the centroid energy of these
two peaks is equal to 10.5 MeV. Finally, a small and narrow

peak is observed at 17.5 MeV. The RPA+PVC calculation
with the small averaging parameter � = 0.2 MeV reproduces
the strength distribution in the low-energy region reasonably
well: the lowest peak energy (2.8 MeV), as well as its FWHM
(0.4 MeV), match the experimental values. One finds, then,
a very large peak with centroid energy at 10.5 MeV and a
much smaller peak at 13.2 MeV. The associated FWHMs are
too narrow, being equal to 1.2 MeV and 0.7 MeV respectively

TABLE I. Summary of the GTR peak energies and their asso-
ciated FWHMs extracted from the strength functions of the nuclei
we have considered, calculated by the RPA+PVC approach with the
interaction SGII. Also shown are available experimental data.

208Pb 48Ca 132Sn 78Ni

Expt. E1 19.2 8.3
FWHM1 5.0 1.5
E2 10.9
FWHM2 3.9

� = 1 MeV E1 19.6 10.4 14.8 10.5
FWHM1 3.6 2.6 3.6 5.6

� = 0.2 MeV E1 19.2 10.4 13.8 8.8
FWHM1 1.2 0.5 0.7 1.8
E2 20.6 11.2 15 11.6
FWHM2 2.0 0.7 0.9 1.4
E3 13.2 15.8
FWHM3 0.7 1.0
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FIG. 4. (Color online) The same as Fig. 3, in the case of the
nucleus 48Ca and the interaction SGII. The experimental data are
taken from Ref. [44].

(cf. Table I). The calculation with � = 1 MeV, in which
these two peaks merge in a single peak with centroid energy
10.4 MeV and FWHM 2.6 MeV, provides a better overall
description of the experimental line shape [cf. panel (d)],
as well as a better reproduction of the observed cumulated
strength once it is suitably scaled [cf. panel (f)]. The peak
appearing at 17.5 MeV in the experiment is not reproduced by
the calculation. With � = 0.2 MeV, the experimental strength
integrated up to 20 MeV reaches 63% of the RPA+PVC result.
In turn, 8% of the sum rule in the RPA+PVC calculation (2%
in the RPA case) is found beyond this interval.

In the following, we will provide predictions for a few
nuclei for which no measurement has been published up to
date.

In Fig. 5 we show the GT strength distributions and
their cumulative sums for the nucleus 132Sn. Very recently,
a (p,n) experiment on 132Sn was carried out at RIKEN with
the purpose of studying its GT and spin dipole strength
distributions [45]. In our calculation, using the small averaging
parameter � = 0.2 MeV, the PVC lowers the main RPA peak
located at 16 MeV by about 2 MeV and fragments it into three
close subpeaks, which, by using � = 1 MeV, merge into one
broad peak with a FWHM of about 3.6 MeV in the resonance
region (cf. Table I). A secondary RPA peak at about 8 MeV
is also shifted downward by 2 MeV. About 1.5% (RPA) and
9% (RPA+PVC with � = 0.2 MeV) of the sum rule is found
beyond 20 MeV. The latter value increases up to 15% using
� = 1 MeV.

Finally, in Fig. 6 the strength distribution calculated for
the nucleus 78Ni is shown. This nucleus lies on the r-
process path and its β-decay half-life has a considerable
influence on the nuclear abundances around N = 50 [46]. Its
β-decay half-life has been measured [46], and it is quite short

FIG. 5. (Color online) Gamow-Teller strength distributions [pan-
els (a) and (c)] with their cumulative sums [panels (b) and (d)]
calculated with the Skyrme interaction SGII for the nucleus 132Sn.
The red dotted lines and black solid lines denote the results of the
RPA and RPA+PVC models, respectively. The smearing parameter
� in the calculations takes either a small value � = 0.2 MeV (first
column) or a large one � = 1.0 MeV (second column).

(≈110 ms) as expected from the large neutron excess so that
the measurement of the GT strength distribution definitely
represents a very severe challenge. In our calculation, the
inclusion of the particle-vibration coupling (calculated with
� = 0.2 MeV) produces in this case a large spreading width
and a strong fragmentation of the main RPA resonance peak
located at about 11.5 MeV, leading to a two-peak structure (cf.
Table I) centered at 10.7 MeV with a FWHM of about 4.2 MeV.
Also the low-lying RPA peak is shifted downward by about 2
MeV and becomes broader. These effects on the low-lying peak
could help to reduce the calculated β-decay half-life which is
usually overestimated in the RPA approach [15,47,48]. As for
the cumulative sum, 1.3% of the RPA sum rule and 7% of the
RPA+PVC sum rule using � = 0.2 MeV (11% using � = 1
MeV) are found beyond E = 20 MeV.

FIG. 6. (Color online) The same as Fig. 5 in the case of the
nucleus 78Ni.
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TABLE II. The imaginary part of the self-energy multiplied by −2 calculated at the RPA energy of the GTR peak in the case of the nuclei
208Pb, 48Ca, 132Sn, and 78Ni with the interaction SGII, using the smearing parameter � = 0.2 MeV. The partial contributions from phonons
with different multipolarities, as well as the total values, are listed.

Nucleus −2Im(1−) −2Im(2+) −2Im(3−) −2Im(4+) −2Im(5−) −2Im (total)

208Pb 0.54 0.075 0.89 0.078 0.29 1.88
48Ca 1.0×10−3 1.75 0.016 0.20 6.6×10−4 1.96
132Sn 0.67 0.30 0.046 0.40 0.030 1.46
78Ni 0.37 0.17 0.22 0.56 3.1×10−3 1.32

B. Overall features of Gamow-Teller resonance and phonons

In the previous subsection, we have seen that the coupling to
vibrations modifies the strength distribution in rather different
ways, depending on the specific nucleus. To summarize this
feature, the energies of the GTR peaks and the associated
FWHMs taken from the strength functions calculated by the
RPA+PVC approach with the interaction SGII, are provided
in Table I. Also the available experimental data are shown.
Using the value � = 0.2 MeV, one finds two or three peaks
with an overall FWHM of 2 MeV in 48Ca, and 3 MeV in 208Pb
and in 132Sn, and a broad and strongly fragmented structure in
78Ni.

In Table II, we provide approximate values for the widths
of the various nuclei, calculated according to the perturbative
expression �GTR(ERPA) [cf. Eq. (11)] with � = 0.2 MeV. The
partial contributions from phonons with different multipo-

larities are also listed. These values are approximated ones,
however, they provide useful information about the differences
and similarities in widths among these nuclei. The 2+ phonon
gives the dominant contribution to the width in 48Ca, while
only negative-parity phonons are important for 208Pb. The 5−
multipolarity is relevant only in 208Pb; the other phonons give
comparable contributions in 78Ni and 132Sn (except for 3− in
132Sn).

These different behaviors are mostly determined by the
properties of the lowest phonons and by the underlying shell
structure in each nucleus. In Table III we report the energies
and reduced transition probabilities of the lowest phonons with
multipolarity 2+, 3−, 4+, and 5− calculated within RPA for all
these nuclei, comparing them with available experimental data.
In most cases, the states have a rather collective character,
their reduced transition probabilities being of the order of

TABLE III. The energies and reduced transition probabilities of the lowest phonons of multipolarity 2+, 3−, 4+, and 5− calculated in the
RPA with interaction SGII are compared with available experimental data, for the nuclei 208Pb, 48Ca, 132Sn, and 78Ni. The experimental data are
taken from Refs. [49–52]. The calculated phonon states shown in parentheses have a strength smaller than 5% of the total isoscalar or isovector
strength, and therefore are not included in the PVC calculation.

208Pb 48Ca 132Sn 78Ni

2+ Expt. E (MeV) 4.09 3.83 4.04
B(EL,0 → L) (e2 fm4) 3.10 × 103 88.84 1.39 × 103

B(EL) (s.p.u.) 8.5 1.7 7.0
Theor. E (MeV) 5.03 3.80 4.54 3.46

B(EL,0 → L) (e2 fm4) 2.74 × 103 51.82 1.10 × 103 3.83 × 102

B(EL) (s.p.u.) 7.5 1.0 5.5 3.9

3− Expt. E (MeV) 2.62 4.51 4.35
B(EL,0 → L) (e2 fm6) 6.12 × 105 4.82 × 103 >5.14 × 104

B(EL) (s.p.u.) 34.1 5.0 >7.1
Theor. E (MeV) 3.09 5.75 5.29 7.61

B(EL,0 → L) (e2 fm6) 6.79 × 105 8.02 × 103 1.19 × 105 1.68 × 104

B(EL) (s.p.u.) 37.7 8.4 16.5 6.6

4+ Expt. E (MeV) 4.32 4.50 4.42
B(EL,0 → L) (e2 fm8) 1.62 × 107 2.17 × 106

B(EL) (s.p.u.) 18.8 8.0
Theor. E (MeV) 4.96 (4.13) 5.00 4.22

B(EL,0 → L) (e2 fm8) 9.77 × 106 (6.82 × 103) 2.08 × 106 2.12 × 105

B(EL) (s.p.u.) 11.4 (0.4) 8.1 3.4

5− Expt. E (MeV) 3.20 5.73 4.94
B(EL,0 → L) (e2 fm10) 4.47 × 108

B(EL) (s.p.u.) 11.0
Theor. E (MeV) 3.76 (7.28) 6.85 (8.11)

B(EL,0 → L) (e2 fm10) 4.64 × 108 (1.58 × 106) 2.43 × 107 (2.61 × 103)
B(EL) (s.p.u.) 11.4 (5.1) 2.7 (0.0017)
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FIG. 7. (Color online) The imaginary part multiplied by −2 [panel (a)] and the real part [panel (b)] of the self-energy of the main RPA
state for the nucleus 48Ca, calculated by the interaction SGII with a smearing parameter � = 0.2 MeV. In addition to the total results, the
contributions from phonons with different multipolarities are shown separately. The vertical short-dotted olive line represents the energy
position ERPA of the GTR peak calculated in the RPA approach, while the dashed line in panel (b) represents the function y = E − ERPA.

several single-particle units (s.p.u.). For 208Pb and 132Sn, both
the energies and reduced transition probabilities agree well
with the experimental data. In the case of 48Ca, although
the calculated phonon energies agree well with the data, the
theoretical and experimental reduced transition probabilities
differ by about 40%: theory underestimates the B(E2) value
and overestimates the B(E3) value. Since among the 2+
phonons that provide a dominant contribution to the width,
the lowest 2+ state plays a major role, we can argue that
the calculated width would be approximately doubled if the
B(E2) value were enlarged by the same factor, in which case
the experimental width would be well reproduced. Thus, the
calculated width might be underestimated not due to a basic
failure in our picture but rather to the fact that RPA does not
account well in this case for the collectivity of the low-lying
2+ phonon.

C. Underlying mechanisms for the spreading
width and fragmentation

In this subsection we will discuss in more detail the
microscopic processes leading to the damping of the GT
resonance. We start by considering the case of 48Ca, calculated
with � = 0.2 MeV. Looking at Tables I and II and Fig. 7, we
observe that

(i) The calculated strength function displays three peaks
located at 10.4, 11.2, and 13.2 MeV, with associated
widths equal to 0.5, 0.7, and 0.7 MeV.

(ii) The dominant contribution to the width is provided
by the coupling to quadrupole phonons; 4+ phonons
become important beyond 13 MeV (cf. Fig. 7).
The contributions from negative parity phonons are
negligible.

The result (i) obtained in the full diagonalization can be
quantitatively reproduced by the much simpler expressions
with diagonal approximation Eqs. (10) and (11), in which the
self-energy GTR(ω) for the giant resonance state is given
by the energy-dependent matrix element (A1)GTR,GTR(E). For
convenience we reproduce the equations here, in a slightly

different form:

E − ERPA = Re[(A1)GTR,GTR(E)] (12)

and
�GTR(E) = −2 Im[(A1)GTR,GTR(E)]. (13)

The curve Re[(A1)GTR,GTR(E)] and the line y = E − ERPA

are plotted in panel (b) of Fig. 7. They cross at E = 10.4 MeV.
Furthermore, the quantity |y − Re[GTR(E)]| has two minima
very close to 0 at E = 11.2 and 13.2 MeV. These values give
the GTR peak energies EGTR. Correspondingly, the widths
�GTR(EGTR) for EGTR = 10.4, 11.2, and 13.2 are given by
0.40, 0.79, and 2.52 MeV, respectively. These values of the
energies and widths are in very good agreement with the
complex eigenvalues resulting from the full solution which
are 10.42 − i0.41 MeV, 10.89 − i0.83 MeV, and 13.11 −
i2.36 MeV, where the imaginary parts have been multiplied
by 2 to obtain the width. The first two values correspond well
to the FWHMs (0.5 and 0.7 MeV) extracted from the strength
distribution (cf. Table I). However, the FWHM of the third peak
at 13.2 MeV obtained from the strength function is 0.7 MeV,
smaller than the value given above due to the sharp decrease
of the imaginary part of the self-energy above the peak energy
[cf. panel (a) of Fig. 7].

In order to understand the feature (ii), we need to determine
the configurations which give the largest contributions to the
particle and hole self-energies, i.e., diagrams (1) and (2) of
Fig. 1. The microscopic RPA wave function of the GTR in 48Ca
is dominated by a single p-h transition of energy 8.84 MeV,
namely ν1f7/2 → π1f5/2. In diagram (1) (cf. Fig. 1), the
most important intermediate proton particle states p′′ and
phonons nL are those being able to couple with the π1f5/2

proton state and minimize the denominator �GTR − (ωnL +
επp′′ − εν1f7/2 ) + i� in Eq. (8). The GTR energy is given
approximately by the energy of the particle-hole transition,
plus a shift �E, which takes into account the effects of the
repulsive p-h interaction and of the PVC (cf. Fig. 2). When
we use a small value of the smearing parameter �, several
peaks may appear in the strength distribution (cf. Fig. 4). For
simplicity, in the following approximate analysis, we shall use
the RPA energy ERPA instead of �GTR, and neglect the PVC
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FIG. 8. (Color online) Proton and neutron single-particle spec-
trum in 48Ca obtained from the HF calculation with SGII interaction.

effect on �E. We then put ERPA = επ1f5/2 − εν1f7/2 + �E, so
that the denominator becomes επ1f5/2 − επp′′ − ωnL + �E +
i�. This means that the relevant intermediate states must lie
at an energy επp′′ ≈ επ1f5/2 − ωnL + �E. Given that typical
values for the energies of the low-lying collective phonons ωnL

are 3–4 MeV and �E = 3 MeV, this requires that p′′ lies close
to π1f5/2. Looking at Fig. 8, one realizes that this condition
is fulfilled only by negative parity single-particle levels in the
pf shell, which can couple to the state π1f5/2 only through
positive parity phonons. In a similar way, for diagram (2)
(cf. Fig. 1) the energy of the intermediate neutron hole states
νh′′ coupling to the ν1f7/2 neutron state and giving important
contribution to the GTR width is restricted by the condition
ενh′′ ≈ εν1f7/2 + ωnL − �E. Since the ν1f7/2 state is isolated
(cf. Fig. 8), this relation can only be satisfied by coupling the
ν1f7/2 state with itself through positive parity phonons. In
conclusion, the positive parity low-lying phonons rather than
the negative parity ones give important contributions to the
width because the particle and hole states of the dominant
transition are isolated with other single-particle states or close

to the states with the same parity, since the energy of low-lying
phonons is usually similar to the energy shift �E.

More generally, we can conclude from the previous
discussion that when the GTR wave function is dominated
by a strong νlj> → πlj< transition, the intermediate proton
particle states πp′′ or neutron hole states νh′′ and the phonons
will obey the following relation if the corresponding diagram
gives important contributions to the GTR spreading width,

επp′′≈επlj<
−ωnL + �E and ενh′′ ≈ ενlj>

+ ωnL − �E,

(14)

where �E is the energy difference between the energy of p-h
configuration and the energy of the GTR peak (approximated
by the energy of RPA peak).

We now turn to the case of 208Pb. In Fig. 9, we display the
values of the imaginary part and real part of the self-energy for
the GTR state from RPA calculation, in the same fashion as
we did for 48Ca. The zeros or the minima of the function |E −
EGTR − Re[GTR(E)]|, in the present case lie at E = 19.4 and
20.4 MeV [cf. panel(b) of Fig. 9], that correspond well to the
peak energies (19.2 and 20.6 MeV) reported in Table I. From
panel (a) of Fig. 9, we obtain that the widths at these two peak
energies are 1.0 and 2.2 MeV, which again are in agreement
with the FWHMs (1.2 and 2 MeV) reported in Table I.

The individual contributions to the self-energy from the
various phonon multipolarities are also shown in Fig. 9, and the
corresponding values of the imaginary part of the self-energy
calculated at the RPA energy ERPA are given in Table II.
Phonons of positive parity give negligible contributions in
this nucleus. This is mainly due to the cancellation between
self-energy diagrams [(1) and (2)] and the phonon exchange
diagrams [(3) and (4)] of Fig. 1. This cancellation, which does
not play so important role in 48Ca, becomes more severe for
large single-particle angular momentum, which occurs in the
case of 208Pb [53]. We also observe that the contribution from
the 1− phonons to the GTR width (0.54 MeV) is comparable to
that from 3− (0.89 MeV) and 5− phonons (0.29 MeV). The 1−
contribution is also important in 78Ni and in 132Sn. This may
appear surprising, if one sticks to the general prejudice that
the largest effects usually originate from low-energy phonons.

We study the reasons for the relevance of the 1− phonons
in Table IV. There are two important p-h configurations
entering the RPA wavefunction of the GTR in 208Pb with

FIG. 9. (Color online) The same as Fig. 7 in the case of the nucleus 208Pb.
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Y. F. NIU, G. COLÓ, AND E. VIGEZZI PHYSICAL REVIEW C 90, 054328 (2014)

TABLE IV. Contributions to (A1)GTR,GTR
php′h′ (ERPA) arising from the two most important particle-hole configurations forming the GTR state in

208Pb, and associated with the coupling to 1− phonons. The calculation is performed with the interaction SGII and smearing parameter � = 0.2
MeV. The self-energy is calculated at the RPA energy of the GTR. i ′′ labels the intermediate particle or hole state of the diagrams, and E1−

is the energy of the 1− phonon state. For given ph and p′h′ configurations, first we provide the total value of W
↓
ph,p′h′ as well as the value of

(A1)GTR,GTR
php′h′ (ERPA). In the following four lines, the individual values Wkph,p′h′ (k = 1, . . . ,4 ) are given. In the fifth line we give the contribution

to W ↓ and (A1)GTR,GTR arising from the most important diagram contributing to the width, associated with a single intermediate state i ′′ = p′′

or i ′′ = h′′. In the last line labeled with “Total”, the value of (A1)GTR,GTR
php′h′ (ERPA) summed over all ph,p′h′ particle-hole configurations of the

RPA model space is given. The notation (a,b) represents the complex number a + ib.

ph p′h′ XGTR
ph XGTR

p′h′ i ′′ E1− (MeV) W
↓
php′h′ (MeV) (A1)GTR,GTR

php′h′ (MeV)

π1h9/2 − ν1h11/2 π1h9/2 − ν1h11/2 −0.51 −0.51 (−0.094, −0.31) (−0.025, −0.083)
W1 (−0.019, −1.88×10−4)
W2 (−0.076, −0.31)
W3 (0,0)
W4 (0,0)

h′ ′ ν1i13/2 12.63 W2 (−0.30, −0.095) ( 0.080, −0.025)
h′ ′ ν1i13/2 13.62 W2 (−0.37, −0.21) (−0.099, −0.056)

π1h9/2 − ν1h11/2 π1i11/2 − ν1i13/2 −0.51 −0.76 (0.10, −0.17) (0.040, −0.065) ×2
W1 (0,0)
W2 (0,0)
W3 (0.11, −0.17)
W4 (−8.00×10−3, −9.23×10−5 )

12.63 W3 (0.25, −0.078) (0.066, −0.021)
13.62 W3 (−0.15, −0.084) (−0.039, −0.022)

π1i11/2 − ν1i13/2 π1i11/2 − ν1i13/2 −0.76 −0.76 (0.089, −0.10) (0.051, −0.060)
W1 (0.10, −0.10)
W2 (−0.012, −1.38×10−4)
W3 (0,0)
W4 (0,0)

p′ ′ π1h9/2 12.63 W1 (0.21, −0.064) (0.12, −0.037)
Total (0.10, −0.27)

forward-going RPA amplitudes in absolute value larger than
0.5, namely π1h9/2-ν1h11/2 and π1i11/2-ν1i13/2. In Table IV
we list the contributions to the self-energy (A1)GTR,GTR

ph,p′h′ (ERPA)
associated with a ph, p′h′ pair, and arising from the coupling
of these ph configurations with the 1− phonons. The leading
role is played by two collective 1− phonons which carry the
strongest isovector transition strength and have energies E1− =
12.63 and 13.62 MeV [i.e., isovector giant dipole resonance
(IVGDR) components]. Note that due to parity conservation
W3 and W4 vanish when ph = p′h′, and W1,W2 vanish when
ph 	= p′h′. For the diagonal matrix element Wph,ph in the
case of π1h9/2-ν1h11/2, the most important contribution to
the width comes from the diagram W2, associated with the
self-energy of the hole ν1h11/2. We can then use Eq. (14)
with ωnL ≈ 13 MeV and �E = ERPA − (επ1h9/2 − εν1h11/2 ) =
6 MeV, and find that the important intermediate neutron hole
states coupling to the 1− phonon and to the ν1h11/2 hole
must lie at an energy ενh′′ ≈ εν1h11/2 + 13 − 6 = −11 MeV,
which is close to the energy of the ν1i13/2 hole state
(ενi13/2 = −10.5 MeV, as can be seen in Fig. 10). So the
intermediate hole state ν1i13/2 could be coupled to ν1h11/2

state and gives a non-negligible W2 value. In a similar
way, for the diagonal matrix element Wph,ph in the case
of π1i11/2-ν1i13/2, with �E = ERPA − (επ1i11/2 − εν1i13/2 ) =
3.5 MeV, we find that important proton particle states coupling
to the 1− phonon and to the π1i11/2 state should satisfy the

condition επp′′ ≈ επ1i11/2 − 13 + 3.5 = −2.5 MeV, which is
well fulfilled by the π1h9/2 orbital, lying at −3 MeV. Besides
these contributions associated with the diagrams W1 and W2, in
the present case one finds an important contribution also from
diagram W3 associated with the nondiagonal matrix element
of the configuration π1i11/2-ν1i13/2 and π1h9/2-ν1h11/2. The
nondiagonal matrix element contributes twice since the two
different configurations could be exchanged with each other.
In conclusion, the IVGDR phonons can give important contri-
butions to the GTR width when an intermediate particle (hole)
state lies below (above) the particle (hole) state associated
with an important GT configuration by 1�ω energy difference,
which can be compensated by the energy of collective dipole
phonon. This condition can be satisfied in nuclei characterized
by large isospin in which the GT state is composed of two or
more important p-h configurations.

The reason for the importance of 1− phonons in 78Ni and
132Sn appears to be analogous to the case of 208Pb. In these
two nuclei the RPA wave function of the GTR is dominated
by two p-h configurations: π1g7/2-ν1g9/2 and π1h9/2-ν1h11/2

in 132Sn, or π1f5/2-ν1f7/2 and π1g7/2-ν1g9/2 in 78Ni. In
the case of 132Sn (78Ni) the energy difference between the
GTR and the collective giant dipole state EGTR − ωnL is
about 1.0 MeV (−5.3 MeV), which is close to the energy
0.5 MeV (−6.1 MeV) of the p-h configuration π1g7/2-ν1h11/2

(π1f5/2-ν1g9/2), i.e., εp′′ − εh or εp − εh′′ . These two nuclei
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FIG. 10. (Color online) Proton and neutron single-particle spec-
trum in 208Pb obtained from the HF calculation with the SGII
interaction.

are similar, also in the sense that the multipolarities 1−, 2+,
and 4+ give comparable contributions, and so do the 3−
phonons for 78Ni. In 78Ni, the 3− phonons cannot produce
spreading width through their coupling to the most important
configurations π1g7/2-ν1g9/2 or π1f5/2-ν1f7/2, due to the
fact that the hole states of these configurations are isolated
from the other levels while the particle states are close to the
states with the same parity, as in the case of 48Ca. However,
the 3− phonons produce some width by coupling to the p-h
configuration π2p3/2-ν2p3/2.

IV. CONCLUSION

Many studies of the GTR are performed at the mean-field
level. However, experiment shows that such a resonance has a
conspicuous width, coming mainly from coupling to complex
nuclear configurations. Benchmarking nuclear models through
their capability to reproduce at the same time not only energies
and strengths, but also widths of the GT states, is not very much
pursued—the only exception being probably the recent work
of Ref. [34]. In the present work, we wish to test systematically
a microscopic model, in which on top of HF+RPA the particle-
vibration coupling is introduced based consistently on the use
of a Skyrme-type force.

In this paper we have applied our model to the cases of
48Ca, 78Ni, 132Sn, and 208Pb, which can be well described as

doubly closed shell nuclei. In the future we plan to include
pairing correlations for systematic calculations in open shell
nuclei. Our results account well for the experimental findings
in 208Pb, especially concerning the line shape of the GT
strength. For 48Ca, the experimental width and fragmentation
is partly reproduced by the coupling with phonons. We have
made predictions for the exotic nuclei 78Ni and 132Sn. Large
spreading widths and strong fragmentation are obtained for
these two nuclei.

For 208Pb the experimental strength integrated up to E =
25 MeV is 71% of the RPA+PVC result, while for 48Ca this
value up to 20 MeV is 63%. So, we can conclude that the
coupling with phonons can produce some quenching of the
main GTR, but also other effects, like the inclusion of tensor
force and the coupling with high-energy, uncorrelated 2p-2h
configurations, need to be considered.

The mechanism for the spreading width and fragmentation
is analyzed in detail, particularly in the case of the two nuclei
48Ca and 208Pb. To a large extent, the diagonal approximation
holds well in the sense that the real part and imaginary part
of the self-energy associated with the RPA resonance state
calculated at the GTR peak energy account quite well for
the energy shift and width of GTR, respectively, produced
by the particle-vibration coupling in the full diagonalization.
The importance of phonons with different multipolarities is
also discussed in detail. The energies of phonons affect the
energy denominators in the self-energy, whereas the reduced
transition probabilities of the phonons influence the matrix
elements of the particle-vibration coupling vertex. General
arguments may suggest that low-lying phonons are the most
effective, in this respect, in particular because they produce
small energy denominators. We have also found, nonetheless,
that in nuclei characterized by a large neutron excess, such as
78Ni, 132Sn, and 208Pb, the isovector giant dipole phonons can
give important contributions to the width. In fact, their energy
can match the energy difference between either the particles
or holes associated with two important GT configurations.

Comparing the phonon energy and reduced transition
probability between the experiment and theory, the phonon
properties of 208Pb are best described, while in 48Ca the
reduced transition probabilities are not reproduced well. This
may indicate that the difference in the quality of the results
between 208Pb on the one side, and 48Ca on the other side, is not
due to a breakdown of our overall physical picture, but rather
to the inaccurate reproduction of the experimental properties
of the low-lying phonons with the adopted interaction.
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[33] G. Colò, N. Van Giai, P. F. Bortignon, and R. A. Broglia,
Phys. Rev. C 50, 1496 (1994).

[34] E. Litvinova, B. A. Brown, D.-L. Fang, T. Marketin, and R. G.
T. Zegers, Phys. Lett. B 730, 307 (2014).

[35] M. Harakeh and A. van der Woude, Giant Resonances:
Fundamental High-Frequency Modes of Nuclear Excitation
(Clarendon, Oxford, 2001).

[36] P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995).
[37] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
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