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Abstract

We consider QCD radiative corrections to the production of colorless high-mass systems in hadron
collisions. The logarithmically-enhanced contributions at small transverse momentum are treated to all
perturbative orders by a universal resummation formula that depends on a single process-dependent hard
factor. We show that the hard factor is directly related to the all-order virtual amplitude of the corresponding
partonic process. The direct relation is universal (process-independent), and it is expressed by an all-order
factorization formula that we explicitly evaluate up to the next-to-next-to-leading order (NNLO) in QCD
perturbation theory. Once the NNLO scattering amplitude is available, the corresponding hard factor is di-
rectly determined: it controls NNLO contributions in resummed calculations at full next-to-next-to-leading
logarithmic accuracy, and it can be used in applications of the qT subtraction formalism to perform fully-
exclusive perturbative calculations up to NNLO. The universality structure of the hard factor and its explicit
NNLO form are also extended to the related formalism of threshold resummation.
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1. Introduction

The transverse-momentum (qT ) distribution of systems with high invariant mass M produced
in hadron collisions is important for physics studies within and beyond the Standard Model
(SM). This paper is devoted to a theoretical study of QCD radiative corrections to transverse-
momentum distributions.

We consider the inclusive hard-scattering reaction

h1(p1) + h2(p2) → F
({qi}

) + X, (1)

where the collision of the two hadrons h1 and h2 with momenta p1 and p2 produces the triggered
final state F , and X denotes the accompanying final-state radiation. The observed final state F is
a generic system of one or more colorless particles, such as lepton pairs (produced by Drell–Yan
(DY) mechanism), photon pairs, vector bosons, Higgs boson(s), and so forth. The momenta of
these final state particles are denoted by q1, q2, . . . , qn. The system F has total invariant mass
M2 = (q1 + q2 + · · · + qn)

2, transverse momentum qT and rapidity y. We use
√

s to denote the
centre-of-mass energy of the colliding hadrons, which are treated in the massless approximation
(s = (p1 + p2)

2 = 2p1 · p2).
The transverse-momentum cross section for the process in Eq. (1) is computable by using

perturbative QCD. However, in the small-qT region (roughly, in the region where qT � M)
the convergence of the fixed-order perturbative expansion in powers of the QCD coupling αS is
spoiled by the presence of large logarithmic terms of the type lnn(M2/q2

T ). The predictivity of
perturbative QCD can be recovered through the summation of these logarithmically-enhanced
contributions to all order in αS [1–10]. As already stated, we shall limit ourselves to considering
the production of systems F of non-strongly interacting particles. The all-order analysis of the
qT distribution of systems F that involve colored QCD partons has just started to be investigated,
by considering [11] the specific case in which F is formed by a t t̄ pair.

In the case of a generic system F of colorless particles, the large logarithmic contributions to
the qT cross section can be systematically resummed to all perturbative orders, and the structure
of the resummed calculation can be organized in a process-independent form [4,6,9,10]. The all-
order resummation formalism was first developed for the DY process [6] (and the kinematically-
related process of two-particle correlations in e+e− annihilation [4]). The process-independent
extension of the formalism has required two additional main steps: the understanding of the all-
order process-independent structure of the Sudakov form factor (through the factorization of a
single process-dependent hard factor) [9], and the complete generalization to processes that are
initiated by the gluon fusion mechanism [10].

The all-order process-independent form of the resummed calculation has a factorized struc-
ture, whose resummation factors are (see Section 2) the (quark and gluon) Sudakov form factor,
process-independent collinear factors and a process-dependent hard or, more precisely (see Sec-
tion 4), hard-virtual factor. The resummation of the logarithmic contributions is controlled by
these factors or, equivalently, by a corresponding set of perturbative functions whose perturba-
tive resummation coefficients are computable order-by-order in αS. The perturbative coefficients
of the Sudakov form factor are known, since some time [5,7,12,8,13], up to the second order in
αS, and the third-order coefficient A(3) (which is necessary to explicitly perform resummation
up to the next-to-next-to-leading logarithmic (NNLL) accuracy) is also known [14]. The next-to-
next-to-leading order (NNLO) QCD calculation of the qT cross section (in the small-qT region)
has been explicitly carried out in analytic form for two benchmark processes, namely, SM Higgs
boson production [15] and the DY process [16]. The results of Refs. [15,16] provide us with
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the complete knowledge of the process-independent collinear resummation coefficients up to the
second order in αS, and with the explicit expression of the hard coefficients for these two specific
processes. The purpose of the present paper (see below) is to explicitly point out and derive the
underlying universal (process-independent) structure of the process-dependent hard factor of the
QCD all-order resummation formalism.

In Refs. [17,18,14,19–22], the resummation of small-qT logarithms has been reformulated
in terms of factorization formulae that involve Soft Collinear Effective Theory operators and
(process-dependent) hard matching coefficients. The formulation of Ref. [14] has been applied
[23] to the DY process by explicitly computing the (process-independent) collinear quark–quark
coefficients and the DY hard coefficient at the NNLO. The results of this calculation [23] agree
with those obtained in Ref. [16]. Transverse-momentum cross sections can also be studied by
using other approaches (which go beyond the customary QCD resummation formalism of the
present paper) that use transverse-momentum dependent (TMD) factorization (see Refs. [24–27]
and references therein) and, consequently, k⊥-unintegrated parton densities and partonic cross
sections that are both TMD quantities.

In this paper we study the process-dependent hard factor of the transverse-momentum resum-
mation formula. We show that, for any process of the class in Eq. (1), the all-order hard factor
has a universal structure that involves a minimal amount of process-dependent information. The
process-dependent information is entirely given by the scattering amplitude of the Born-level
partonic subprocess and its virtual radiative corrections. Knowing the scattering amplitude, the
hard-virtual resummation factor is determined by a universal (process-independent) factorization
formula. The universality structure of the factorization formula has a soft (and collinear) origin,
and it is closely (though indirectly) related to the universal structure of the infrared divergences
[28] of the scattering amplitude. This process-independent structure of the hard-virtual term,
which generalizes the next-to-leading order (NLO) results of Ref. [13], is valid to all perturba-
tive orders, and we explicitly determine the process-independent form of the hard-virtual term
up to the NNLO. Using this general NNLO result, the hard-virtual resummation factor for each
process of the class in Eq. (1) is straightforwardly computable up to its NNLO, provided the
corresponding scattering amplitude is known.

In the final part of the paper, we consider the related formalism of threshold resummation
[29,30] for the total cross section. The process-independent formalism of threshold resummation
also involves a corresponding process-dependent hard factor. We shall show that this factor has
a universality structure that is analogous to the case of transverse-momentum resummation. In
particular, we directly relate the process-dependent hard factors for transverse-momentum and
threshold resummation in a form that is fully universal and completely independent of each
specific process (e.g., independent of the corresponding scattering amplitude).

The knowledge of the NNLO hard-virtual term completes the qT resummation formal-
ism in explicit form up to full NNLL+NNLO accuracy. This permits direct applications to
NNLL+NNLO resummed calculations for any processes of the class in Eq. (1) (provided the
corresponding NNLO amplitude is known), as already done for the cases of SM Higgs boson
[31–33] and DY [34,35] production.

The NNLO information of the qT resummation formalism is also relevant in the context of
fixed order calculations. Indeed, it permits to carry out fully-exclusive NNLO calculations by ap-
plying the qT subtraction formalism of Ref. [36] (the subtraction counterterms of the formalism
follow [36] from the fixed-order expansion of the qT resummation formula, as in Section 2.4
of Ref. [31]). The qT subtraction formalism has been applied to the NNLO computation of
Higgs boson [36,37] and vector boson production [38], associated production of the Higgs boson
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with a W boson [39], diphoton production [40] and Zγ production [41]. The computations of
Refs. [36–39] were based on the specific calculation of the NNLO hard-virtual coefficients of the
corresponding processes [15,16]. The computations of Refs. [40,41] used the NNLO hard-virtual
coefficients that are determined by applying the universal form of the hard-virtual term that is
derived and illustrated in the present paper.

The paper is organized as follows. In Section 2 we recall the transverse-momentum resumma-
tion formalism in impact parameter space, and we introduce our notation. In Section 3 we present
the explicit expressions of the process-independent resummation coefficients up to NNLO. Sec-
tion 4 is devoted to the process-dependent hard coefficients. We discuss and illustrate the uni-
versal all-order form of the hard-virtual coefficients by relating them to the process-dependent
scattering amplitudes, through the introduction of suitably subtracted hard-virtual matrix ele-
ments. The process-independent structure of the hard-virtual coefficients is explicitly computed
up to the NNLO. In Section 5 we extend our discussion and results on the universal structure
of the hard-virtual coefficients to the case of threshold resummation. In Section 6 we summarize
our results. In Appendix A we report the explicit expressions of the NLO and NNLO hard-virtual
coefficients for DY, Higgs boson and diphoton production.

2. Small-qT resummation

In this section we briefly recall the formalism of transverse-momentum resummation in im-
pact parameter space [1–10]. We closely follow the notation of Ref. [10] (more details about our
notation can be found therein).

We consider the inclusive-production process in Eq. (1), and we introduce the corresponding
fully differential cross section

dσF

d2qT dM2 dy dΩ
(p1,p2;qT,M,y,Ω), (2)

which depends on the total momentum of the system F (i.e. on the variables qT,M,y). The
cross section also depends on the set of additional variables that controls the kinematics of
the particles in the system F . In Eq. (2) these additional variables are generically denoted
as Ω = {ΩA,ΩB, . . .} (correspondingly, we define dΩ ≡ dΩAdΩB . . .). To be general, we
do not explicitly specify these variables, and we only require that the kinematical variables
{ΩA,ΩB, . . .} are independent of qT,M and y and that the set of variables {qT,M,y,Ω} com-
pletely determines the kinematical configuration (i.e., the momenta qi ) of the particles in the
system F . For instance, if the system F is formed by two particles, there are only two variables
in the set Ω , and they can be the rapidity yi and the azimuthal angle φ(qTi ) of one of the two
particles (the particle with momentum qi ). Note that the cross section in Eq. (2) and the corre-
sponding resummation formula can be straightforwardly integrated with respect to some of the
final-state variables {ΩA,ΩB, . . .}, thus leading to results for observables that are more inclusive
than the differential cross section in Eq. (2).

We also recall that we are considering the production of a system F of colorless particles
or, more precisely, a system of non-strongly interacting particles (i.e., F cannot include QCD
partons and their fragmentation products). Therefore, at the Born (lowest-order) level, the cross
section in Eq. (2) is controlled by the partonic subprocesses of quark–antiquark (qq̄) annihilation,

qf + q̄f ′ → F, (3)
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and gluon fusion,

g + g → F. (4)

Owing to color conservation, no other partonic subprocesses can occur at the Born level. More
importantly (see below), the distinction between qq̄ annihilation and gluon fusion leads to rele-
vant (and physical) differences [42,10] in the context of small-qT resummation.

To study the qT dependence of the differential cross section in Eq. (2) within QCD perturba-
tion theory, we introduce the following decomposition:

dσF = dσ
(sing)

F + dσ
(reg)

F . (5)

Both terms in the right-hand side are obtained through convolutions of partonic cross sections
and the scale-dependent parton distributions fa/h(x,μ2) (a = qf , q̄f , g is the parton label) of
the colliding hadrons. We use parton densities as defined in the MS factorization scheme, and
αS(q2) is the QCD running coupling in the MS renormalization scheme. The partonic cross sec-
tions that enter the singular component (the first term in the right-hand side of Eq. (5)) contain all
the contributions that are enhanced (or ‘singular’) at small qT . These contributions are propor-
tional to δ(2)(qT) or to large logarithms of the type 1

q2
T

lnm(M2/q2
T ). On the contrary, the partonic

cross sections of the second term in the right-hand side of Eq. (5) are regular (i.e. free of loga-
rithmic terms) order-by-order in perturbation theory as qT → 0. More precisely, the integration
of dσ

(reg)

F /d2qT over the range 0 � qT � Q0 leads to a finite result that, at each fixed order in
αS, vanishes in the limit Q0 → 0.

The regular component dσ
(reg)

F of the qT cross section depends on the specific process in

Eq. (1) that we are considering. In the following we focus on the singular component, dσ
(sing)

F ,
which has a universal all-order structure. The corresponding resummation formula is written as
[6,9,10]

dσ
(sing)

F (p1,p2;qT,M,y,Ω)

d2qT dM2 dy dΩ

= M2

s

∑
c=q,q̄,g

[
dσ

(0)
cc̄,F

] ∫
d2b

(2π)2
eib·qTSc(M,b)

×
∑
a1,a2

1∫
x1

dz1

z1

1∫
x2

dz2

z2

[
HF C1C2

]
cc̄;a1a2

fa1/h1

(
x1/z1, b

2
0/b

2)fa2/h2

(
x2/z2, b

2
0/b

2),
(6)

where b0 = 2e−γE (γE = 0.5772 . . . is the Euler number) is a numerical coefficient, and the
kinematical variables x1 and x2 are

x1 = M√
s
e+y, x2 = M√

s
e−y. (7)

The right-hand side of Eq. (6) involves the Fourier transformation with respect to the impact pa-
rameter b and two convolutions over the longitudinal-momentum fractions z1 and z2. The parton
densities fai/hi

(x,μ2) of the colliding hadrons are evaluated at the scale μ = b0/b, which de-
pends on the impact parameter. The function Sc(M,b) is the Sudakov form factor. This factor,
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which only depends on the type (c = q or c = g) of colliding partons, is universal (process inde-
pendent) [9], and it resums the logarithmically-enhanced contributions of the form lnM2b2 (the
region qT � M corresponds to Mb 	 1 in impact parameter space). The all-order expression of
Sc(M,b) is [6]

Sc(M,b) = exp

{
−

M2∫
b2

0/b2

dq2

q2

[
Ac

(
αS

(
q2)) ln

M2

q2
+ Bc

(
αS

(
q2))]}

, (8)

where Ac(αS) and Bc(αS) are perturbative series in αS,

Ac(αS) =
∞∑

n=1

(
αS

π

)n

A(n)
c , Bc(αS) =

∞∑
n=1

(
αS

π

)n

B(n)
c . (9)

The perturbative coefficients A
(1)
c ,B

(1)
c ,A

(2)
c [5,7], B

(2)
c [12,8,13] and A

(3)
c [14] are explicitly

known.
The factor that is symbolically denoted by [dσ

(0)
cc̄,F ] in Eq. (6) is the Born-level cross section

dσ̂ (0) (i.e., the cross section at its corresponding lowest order in αS) of the partonic subprocesses
cc̄ → F in Eqs. (3) and (4) (in the case of the cc̄ = qq̄ annihilation channel, the quark and
antiquark can actually have different flavors). Making the symbolic notation explicit, we have

[
dσ

(0)
cc̄,F

] = dσ̂
(0)
cc̄,F

M2 dΩ

(
x1p1, x2p2;Ω;αS

(
M2)), (10)

where x1p
μ
1 (x2p

μ
2 ) is the momentum of the parton c (c̄). In Eq. (6), we have included the

contribution of both the qq̄ annihilation channel (c = q, q̄) and the gluon fusion channel (c =
g); one of these two contributing channels may be absent (i.e. [dσ

(0)
cc̄,F ] = 0 in that channel),

depending on the specific final-state system F .
The Born level factor [dσ

(0)
cc̄,F ] is obviously process dependent, although its process depen-

dence is elementary (it is simply due to the Born level scattering amplitude of the partonic process
cc̄ → F ). The remaining process dependence of Eq. (6) is embodied in the ‘hard-collinear’ factor
[HF C1C2]. This factor includes a process-independent part and a process-dependent part. The
structure of the process-dependent part is the main subject of the present paper.

In the case of processes that are initiated at the Born level by the qq̄ annihilation channel
(c = q), the symbolic factor [HF C1C2] in Eq. (6) has the following explicit form [9][

HF C1C2
]
qq̄;a1a2

= HF
q

(
x1p1, x2p2;Ω;αS

(
M2))

× Cqa1

(
z1;αS

(
b2

0/b
2))Cq̄a2

(
z2;αS

(
b2

0/b
2)), (11)

and the functions HF
q and Cqa = Cq̄ā have the perturbative expansion

HF
q (x1p1, x2p2;Ω;αS) = 1 +

∞∑
n=1

(
αS

π

)n

HF(n)
q (x1p1, x2p2;Ω), (12)

Cqa(z;αS) = δqaδ(1 − z) +
∞∑

n=1

(
αS

π

)n

C(n)
qa (z). (13)

The function HF
q is process dependent, whereas the functions Cqa are universal (they only

depend on the parton indices). We add an important remark on the factorized structure in the
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right-hand side of Eq. (11): the scale of αS is M2 in the case of HF
q , whereas the scale is b2

0/b
2

in the case of Cqa . The appearance of these two different scales is essential [9] to disentangle the
process dependence of HF

q from the process-independent Sudakov form factor (Sq ) and collinear
functions (Cqa).

In the case of processes that are initiated at the Born level by the gluon fusion channel (c = g),
the physics of the small-q cross section has a richer structure, which is the consequence of
collinear correlations [10] that are produced by the evolution of the colliding hadrons into gluon
partonic states. In this case, the resummation formula (6) and, specifically, its factor [HF C1C2]
are more involved than those for the qq̄ channel, since collinear radiation from the colliding glu-
ons leads to spin and azimuthal correlations [42,10]. The symbolic factor [HF C1C2] in Eq. (6)
has the following explicit form [10]:[

HF C1C2
]
gg;a1a2

= HF
g;μ1ν1,μ2ν2

(
x1p1, x2p2;Ω;αS

(
M2))

× Cμ1ν1
ga1

(
z1;p1,p2,b;αS

(
b2

0/b
2))Cμ2ν2

ga2

(
z2;p1,p2,b;αS

(
b2

0/b
2)),
(14)

where the function HF
g has the perturbative expansion

HFμ1ν1,μ2ν2
g (x1p1, x2p2;Ω;αS) = HF(0)μ1ν1,μ2ν2

g (x1p1, x2p2;Ω)

+
∞∑

n=1

(
αS

π

)n

HF(n)μ1ν1,μ2ν2
g (x1p1, x2p2;Ω), (15)

and the following lowest-order normalization:

HF(0)μ1ν1,μ2ν2
g gμ1ν1gμ2ν2 = 1. (16)

Analogously to Eq. (11), in Eq. (14) the function HF
g;μ1ν1,μ2ν2

is process dependent (and it is

controlled by αS at the scale M2) and the partonic functions C
μν
ga are process independent (and

they are controlled by αS at the scale b2
0/b

2). At variance with Eq. (11) (where the factoriza-
tion structure in the right-hand side is independent of the degrees of freedom of the colliding
quark and antiquarks), in Eq. (14) the process-dependent function HF

g depends on the Lorentz
indices (and, thus, on the spins) {μiνi} of the colliding gluons with momenta xipi (i = 1,2) and
this dependence is coupled to (and correlated with) a corresponding dependence of the partonic
functions C

μiνi
gai

. The Lorentz tensor coefficients C
μiνi
gai

in Eq. (14) depend on b2 (through the
scale of αS) and, moreover, they also depend on the direction (i.e., the azimuthal angle) of the
impact parameter vector b in the transverse plane. The structure of the partonic tensor is [10]

Cμν
ga (z;p1,p2,b;αS) = dμν(p1,p2)Cga(z;αS) + Dμν(p1,p2;b)Gga(z;αS), (17)

where

dμν(p1,p2) = −gμν + p
μ
1 pν

2 + p
μ
2 pν

1

p1 · p2
, (18)

Dμν(p1,p2;b) = dμν(p1,p2) − 2
bμbν

b2 , (19)

and bμ = (0,b,0) is the two-dimensional impact parameter vector in the four-dimensional nota-
tion (bμbμ = −b2). The gluonic coefficient function Cga(z;αS) (a = q, q̄, g) in the right-hand
side of Eq. (17) has the same perturbative structure as in Eq. (13), and it reads
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Cga(z;αS) = δgaδ(1 − z) +
∞∑

n=1

(
αS

π

)n

C(n)
ga (z). (20)

In contrast, the perturbative expansion of the coefficient functions Gga , which are specific to
gluon-initiated processes, starts at O(αS), and we write

Gga(z;αS) = αS

π
G(1)

ga (z) +
∞∑

n=2

(
αS

π

)n

G(n)
ga (z). (21)

We recall [10] an important physical consequence of the different small-qT resummation
structure between the qq̄ annihilation and gluon fusion channels: the absence of azimuthal corre-
lations with respect to qT in the qq̄ annihilation channel, and the presence of correlations with a
definite predictable azimuthal dependence in the gluon fusion channel. Indeed, in the case of qq̄

annihilation, all the factors in the integrand of the Fourier transformation on the right-hand side
of the resummation formula (6) are functions of b2, with no dependence on the azimuthal angle
φ(b) of b. Therefore, the integration over φ(b) in Eq. (6) can be straightforwardly carried out,
and it leads [4,6] to a one-dimensional Bessel transformation that involves the 0th-order Bessel
function J0(bqT ). This implies that the right-hand side of Eq. (6) and, hence, the singular part
of the qT differential cross section depend only on q2

T , with no additional dependence on the az-
imuthal angle φ(qT) of qT. Unlike the case of qq̄ annihilation, the gluon fusion factor [HF C1C2]
in Eqs. (6) and (14) does depend on the azimuthal angle φ(b) of the impact parameter b. There-
fore, the integration over φ(b) in the Fourier transformation of Eq. (6) is more complicated. It
leads to one-dimensional Bessel transformations that involve J0(bqT ) and higher-order Bessel
functions, such as the 2nd order and 4th-order functions J2(bqT ) and J4(bqT ). More importantly,
it leads to a definite structure of azimuthal correlations with respect to the azimuthal angle φ(qT)

of the transverse momentum qT. The small-qT cross section in Eq. (6) can be expressed [10]
in terms of a contribution that does not depend on φ(qT) plus a contribution that is given by
a linear combination of the four angular functions cos(2φ(qT)), sin(2φ(qT)), cos(4φ(qT)) and
sin(4φ(qT)). No other functional dependence on φ(qT) is allowed by the resummation formula
(6) in the gluon fusion channel.

We recall that, due to its specific factorization structure, the resummation formula in Eq. (6)
is invariant under the following renormalization-group transformation [9]

HF
c (αS) → HF

c (αS)
[
hc(αS)

]−1
, (22)

Bc(αS) → Bc(αS) − β(αS)
d lnhc(αS)

d lnαS
, (23)

Ccb(αS) → Ccb(αS)
[
hc(αS)

]1/2
, (24)

where hc(αS) = 1 + O(αS) is an arbitrary perturbative function (with hq(αS) = hq̄(αS)). More
precisely, in the case of gluon-initiated processes, Eq. (24) becomes

Cμν
ga (z;p1,p2,b;αS) → Cμν

ga (αS)(z;p1,p2,b;αS)
[
hg(αS)

]1/2
. (25)

In the right-hand side of Eq. (23), β(αS) denotes the QCD β-function:

d lnαS(q2)

d lnq2
= β

(
αS

(
q2)), (26)

β(αS) = −β0αS − β1α
2 +O

(
α3), (27)
S S
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β0 = 11CA − 2Nf

12π
, β1 = 17C2

A − 5CANf − 3CF Nf

24π2
, (28)

where Nf is the number of quark flavors, Nc is the number of colors, and the color factors are
CF = (N2

c −1)/(2Nc) and CA = Nc in SU(Nc) QCD. As a consequence of the renormalization-
group symmetry in Eqs. (22)–(25), the resummation factors HF , Sc, Cqa and C

μν
ga are not

separately defined (and, thus, computable) in an unambiguous way. Equivalently, each of these
separate factors can be precisely defined only by specifying a resummation scheme [9].

To present the main results of this paper in the following sections, we find it convenient to
specify a resummation scheme. Therefore, in the rest of this paper we work in the scheme,
dubbed hard scheme, that is defined as follows. The flavour off-diagonal coefficients C

(n)
ab (z),

with a �= b, are ‘regular’ functions of z as z → 1. The z dependence of the flavour diagonal
coefficients C

(n)
qq (z) and C

(n)
gg (z) in Eqs. (13) and (20) is instead due to both ‘regular’ functions

and ‘singular’ distributions in the limit z → 1. The ’singular’ distributions are δ(1 − z) and
the customary plus-distributions of the form [(lnk(1 − z))/(1 − z)]+ (k = 0,1,2 . . .). The hard
scheme is the scheme in which, order-by-order in perturbation theory, the coefficients C

(n)
ab (z)

with n � 1 do not contain any δ(1 − z) term. We remark (see also Section 4) that this definition
directly implies that all the process-dependent virtual corrections to the Born level subprocesses
in Eqs. (3) and (4) are embodied in the resummation coefficient HF

c .
We note that the specification of the hard scheme (or any other scheme) has sole practical

purposes of presentation (theoretical results can be equivalently presented, as actually done in
Refs. [15] and [16], by explicitly parameterizing the resummation-scheme dependence of the
resummation factors). Having presented explicit results in the hard scheme, they can be trans-
lated in other schemes by properly choosing the functions hc(αS) (c = q,g) and applying the
transformation in Eqs. (22)–(25). Moreover, and more importantly, the qT cross section, its all-
order resummation formula (6) and any consistent perturbative truncation (either order-by-order
in αS or in classes of logarithmic terms) of the latter [9,31] are completely independent of the
resummation scheme.

The process-independent partonic coefficients Cab(z;αS) in Eqs. (11) and (14) are explicitly
known up to the NNLO (see references in Section 3). The universality structure of the process-
dependent coefficients HF

c at NNLO and higher orders (see Section 4) is one of the main result
of the present work.

3. Process-independent coefficients

Before discussing the general structure of the resummation coefficients HF
c , in this section we

present the expressions of the process-independent resummation coefficients in the hard scheme,
which is defined in Section 2.

The partonic functions Cab and Ggb in Eqs. (13), (20) and (21) depend on the par-
ton indices. Owing to charge conjugation invariance and flavour symmetry of QCD, the de-
pendence on the parton indices is fully specified by the five independent quark functions
{Cqq,Cqq ′ ,Cqq̄ ,Cqq̄ ′ ,Cqg} [16] (q and q ′ denote quarks with different flavour) and the four
independent gluon functions {Cgg,Cgq,Ggg,Ggq} [15].

The first-order coefficients C
(1)
ab (z) are explicitly known [12,43,8,13]. Their expressions in the

hard scheme can be obtained from their corresponding expressions in an arbitrary scheme by
simply setting the coefficient of the δ(1 − z) term to zero. We get

C(1)
qq (z) = 1

CF (1 − z), (29)

2
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C(1)
gq (z) = 1

2
CF z, (30)

C(1)
qg (z) = 1

2
z(1 − z), (31)

C(1)
gg (z) = Cqq̄(z) = Cqq ′(z) = Cqq̄ ′(z) = 0. (32)

The first-order coefficients G
(1)
ga are resummation-scheme independent, and they read [10]

G(1)
ga (z) = Ca

1 − z

z
, a = q,g, (33)

where Ca is the Casimir color coefficient of the parton a with Cq = CF and Cg = CA.

According to Eq. (23), the coefficients B
(n)
a with n � 2 of the Sudakov form factor do de-

pend [9] on the resummation scheme. The second-order process-independent coefficient B
(2)
c in

Eq. (9) is known [12,13]. In the hard scheme, its value reads

B(2)
a = γa(1)

16
+ πβ0Caζ2, (34)

where γa(1) (a = q,g) are the coefficients of the δ(1 − z) term in the NLO quark and gluon
splitting functions [44,45], which read

γq(1) = γq̄(1) = (−3 + 24ζ2 − 48ζ3)C
2
F

+
(

−17

3
− 88

3
ζ2 + 24ζ3

)
CF CA +

(
2

3
+ 16

3
ζ2

)
CF Nf , (35)

γg(1) =
(

−64

3
− 24ζ3

)
C2

A + 16

3
CANf + 4CF Nf , (36)

and ζn is the Riemann zeta-function (ζ2 = π2/6, ζ3 = 1.202 . . . , ζ4 = π4/90).
The second-order process-independent collinear coefficients C

(2)
ab (z) of Eqs. (13) and (20)

have been computed in Refs. [36,38,15,16]. The quark–quark coefficient C
(2)
qq (z) has been inde-

pendently computed in Ref. [23]. The expressions of these coefficients in the hard scheme can
be straightforwardly obtained from the results of Refs. [15,16] and are explicitly reported below.

Starting from the quark channel, the coefficient C
(2)
qq can be obtained from Eq. (34) of

Ref. [16], and we have

2C(2)
qq (z) =HDY(2)

qq̄←qq̄ (z)
∣∣
no δ(1−z)

− C2
F

4

[(
2π2 − 18

)
(1 − z) − (1 + z) ln z

]
, (37)

where HDY(2)
qq̄←qq̄ (z)|no δ(1−z) is obtained from the right-hand side of Eq. (23) of Ref. [16] by setting

the coefficient of the δ(1−z) term to zero. Analogously, the coefficient C
(2)
qg can be obtained from

Eq. (32) of Ref. [16] as

C(2)
qg (z) =HDY(2)

qq̄←qg(z) − CF

4

[
z ln z + 1

2

(
1 − z2) + (

π2 − 8
)
z(1 − z)

]
, (38)

where HDY(2)
qq̄←qg(z) is given in Eq. (27) of Ref. [16]. The flavour off-diagonal quark coefficients

C
(2)
qq̄ , C

(2)

qq ′ , C
(2)

qq̄ ′ are scheme independent and are presented in Eq. (35) of Ref. [16]. Moving to

the gluon channel, the coefficient C
(2)
gq (z) can be obtained from Eq. (32) of Ref. [15], and we

have
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2C(2)
gg (z) =HH(2)

gg←gg(z)|no δ(1−z) + C2
A

(
1 + z

z
ln z + 2

1 − z

z

)
, (39)

where HH(2)
gg←gg(z)|no δ(1−z) is obtained from the right-hand side Eq. (24) of Ref. [15] by setting

the coefficient of the δ(1 − z) term to zero. Finally, the coefficient C
(2)
gq (z) can be obtained from

Eq. (30) of Ref. [15], and we have

C(2)
gq (z) =HH(2)

gg←gq(z) + C2
F

3

4
z + CF CA

1

z

[
(1 + z) ln z + 2(1 − z) − 5 + π2

4
z2

]
, (40)

where HH(2)
gg←gq(z) is given in Eq. (23) of Ref. [15].

The second-order gluon collinear coefficients G
(2)
ga (z) (a = q,g) of Eq. (21) are not yet

known. We can comment on the role of G
(2)
ga in practical terms. In the specific and important

case of Higgs boson production by gluon fusion, the coefficient G
(2)
ga does not contribute to the

cross section at the NNLO (and NNLL accuracy). The Higgs boson cross section is discussed in
detail in Ref. [10]: by direct inspection of Eq. (45) of Ref. [10], we can see that G

(2)
ga starts to

contribute at the N3LO. In most of the other processes (e.g., F = γ γ,Zγ,W+W−), the system
F can be produced by both qq̄ annihilation and gluon fusion. In these case, due to the absence
of direct coupling of the gluons to the colorless particles in the system F , the production channel
gg → F is suppressed by some powers of αS with respect to the channel qq̄ → F . Therefore,
also in these cases the coefficient G

(2)
ga does not contribute to the NNLO cross section. This for-

mal conclusion (based on counting the powers of αS) has a caveat, since the gg → F channel can
receive a quantitative enhancement from the possibly large luminosity of the gluon parton densi-
ties. However, the knowledge of the first-order coefficients C

(1)
ga and G

(1)
ga should be sufficient to

compute the contribution from the channel gg → F to a quantitative level that is comparable to
that of the contribution from the channel qq̄ → F (whose collinear coefficients are fully known
up to the second order). In summary, we conclude that the effect of G

(2)
ga rarely contributes in

actual (practical) computations of the qT cross section at the NNLO or NNLL accuracy.

4. Hard-virtual coefficients

In this section we focus on the process-dependent coefficient HF . In the hard scheme that we
are using, this coefficient contains all the information on the process-dependent virtual correc-
tions, and, therefore, we can show that HF can be related in a process-independent (universal)
way to the multiloop virtual amplitude Mcc̄→F of the partonic process cc̄ → F . In the follow-
ing we first specify the notation that we use to denote the all-loop virtual amplitude Mcc̄→F .
Then we introduce an auxiliary (hard-virtual) amplitude M̃cc̄→F that is directly obtained from
Mcc̄→F by using a process-independent relation. Finally, we use the hard-virtual amplitude
M̃cc̄→F to present the explicit expression of the hard-virtual coefficient HF up to the NNLO.

We consider the partonic elastic-production process

c(p̂1) + c̄(p̂2) → F
({qi}

)
, (41)

where the two colliding partons with momenta p̂1 and p̂2 are either cc̄ = gg or cc̄ = qq̄ (we do
not explicitly denote the flavour of the quark q , although in the case with cc̄ = qq̄ , the quark
and the antiquark can have different flavors), and F({qi}) is the triggered final-state system in
Eq. (1). The loop scattering amplitude of the process in Eq. (41) contains ultraviolet (UV) and in-
frared (IR) singularities, which are regularized in d = 4−2ε space–time dimensions by using the
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customary scheme of conventional dimensional regularization (CDR).2 Before performing renor-
malization, the multiloop QCD amplitude has a perturbative dependence on powers of αu

Sμ2ε
0 ,

where αu
S is the bare coupling and μ0 is the dimensional-regularization scale. In the following we

work with the renormalized on-shell scattering amplitude that is obtained from the correspond-
ing unrenormalized amplitude by just expressing the bare coupling αu

S in terms of the running
coupling αS(μ2

R) according to the MS scheme relation

αu
Sμ2ε

0 Sε = αS
(
μ2

R

)
μ2ε

R

[
1 − αS

(
μ2

R

)β0

ε
+ α2

S

(
μ2

R

)(β2
0

ε2
− β1

2ε

)
+O

(
α3

S

(
μ2

R

))]
, (42)

where μR is the renormalization scale, β0 and β1 are the first two coefficients of the QCD
β-function in Eq. (28) and the factor Sε is

Sε = (4π)εe−εγE . (43)

The renormalized all-loop amplitude of the process in Eq. (41) is denoted by Mcc̄→F (p̂1, p̂2;
{qi}), and it has the perturbative (loop) expansion

Mcc̄→F

(
p̂1, p̂2; {qi}

)
= (

αS
(
μ2

R

)
μ2ε

R

)k

[
M(0)

cc̄→F

(
p̂1, p̂2; {qi}

) +
(

αS(μ2
R)

2π

)
M(1)

cc̄→F

(
p̂1, p̂2; {qi};μR

)
+

(
αS(μ2

R)

2π

)2

M(2)
cc̄→F

(
p̂1, p̂2; {qi};μR

)
+

∞∑
n=3

(
αS(μ2

R)

2π

)n

M(n)
cc̄→F

(
p̂1, p̂2; {qi};μR

)]
, (44)

where the value k of the overall power of αS depends on the specific process (for instance, k = 0
in the case of the vector boson production process qq̄ → V , and k = 1 in the case of the Higgs
boson production process gg → H through a heavy-quark loop). Note also that the lowest-order
perturbative term M(0)

cc̄→F is not necessarily a tree-level amplitude (for instance, it involves a

quark loop in the cases gg → H and gg → γ γ ). The perturbative terms M(l)
cc̄→F (l = 1,2, . . .)

are UV finite, but they still depend on ε (although this dependence is not explicitly denoted in
Eq. (44)). In particular, the amplitude M(l)

cc̄→F at the l-th perturbative order is IR divergent as
ε → 0, and it behaves as

M(l)
cc̄→F ∼

(
1

ε

)2l

+ · · · , (45)

where the dots stand for ε-poles of lower order. The IR divergent contributions to the scattering
amplitude have a universal structure [28], which is explicitly known at the one-loop [47,28],
two-loop [28,48] and three-loop [49,50] level for the class of processes in Eq. (41).

The explicit calculations and the results of Ref. [13] show that the NLO hard-virtual co-
efficient HF(1) is explicitly related in a process-independent form to the leading-order (LO)
amplitude M(0)

cc̄→F and to the IR finite part of the NLO amplitude M(1)
cc̄→F . The relation between

2 The relation between the CDR scheme and other variants of dimensional regularization is explicitly known [46] up
to the two-loop level.
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HF
c and Mcc̄→F can be extended to the NNLO and to higher-order levels. This extension can be

formulated and expressed in simple and general terms by introducing an auxiliary (hard-virtual)
amplitude M̃cc̄→F that is directly obtained from Mcc̄→F in a universal (process-independent)
way. In practice, M̃cc̄→F is obtained from Mcc̄→F by removing its IR divergences and a definite
amount of IR finite terms. The (IR divergent and finite) terms that are removed from Mcc̄→F

originate from real emission contributions to the cross section and, therefore, these terms and
M̃cc̄→F specifically depend on the transverse-momentum cross section of Eq. (2), which we
consider throughout this paper.

The hard-virtual amplitude M̃cc̄→F has a perturbative expansion that is analogous to that in
Eq. (44). We write

M̃cc̄→F

(
p̂1, p̂2; {qi}

)
= (

αS
(
μ2

R

)
μ2ε

R

)k

[
M̃(0)

cc̄→F

(
p̂1, p̂2; {qi}

) +
(

αS(μ2
R)

2π

)
M̃(1)

cc̄→F

(
p̂1, p̂2; {qi};μR

)
+

(
αS(μ2

R)

2π

)2

M̃(2)
cc̄→F

(
p̂1, p̂2; {qi};μR

)
+

∞∑
n=3

(
αS(μ2

R)

2π

)n

M̃(n)
cc̄→F

(
p̂1, p̂2; {qi};μR

)]
. (46)

At the LO, M̃cc̄→F and Mcc̄→F coincide, and we have

M̃(0)
cc̄→F =M(0)

cc̄→F . (47)

At higher-perturbative orders, M̃(l)
cc̄→F is expressed in terms of the amplitudes M(n)

cc̄→F at equal
or lower orders (i.e. with n � l). At NLO and NNLO (see Section 4.1 for higher-order terms),
we explicitly have

M̃(1)
cc̄→F =M(1)

cc̄→F − Ĩ (1)
c

(
ε,M2/μ2

R

)
M(0)

cc̄→F , (48)

M̃(2)
cc̄→F =M(2)

cc̄→F − Ĩ (1)
c

(
ε,M2/μ2

R

)
M(1)

cc̄→F − Ĩ (2)
c

(
ε,M2/μ2

R

)
M(0)

cc̄→F . (49)

In Eqs. (48) and (49) the functional dependence of the perturbative amplitudes on their argument
(p̂1, p̂2; {qi};μR) is not explicitly recalled. The perturbative terms Ĩ

(1)
c and Ĩ

(2)
c act as IR sub-

traction operators (factors), and their functional dependence is explicitly denoted in Eqs. (48) and
(49). These terms are process independent (they do not depend on F and on its specific produc-
tion mechanism in Eq. (41)): they only depend on the invariant mass M of the system F (through
the dimensionless ratio M2/μ2

R), on the type c (c = q,g) of colliding partons, and on ε. In par-

ticular, Ĩ
(1)
c and Ĩ

(2)
c include ε-pole contributions that cancel the IR divergences of M(1)

cc̄→F and

M(2)
cc̄→F , so that the hard-virtual amplitudes M̃(1)

cc̄→F and M̃(2)
cc̄→F are IR finite as ε → 0. We

also note that the structure of Eqs. (48) and (49) and the explicit dependence of Ĩ
(1)
c and Ĩ

(2)
c on

M2/μ2
R guarantee (see Eqs. (50), (55) and Section 4.1) that the hard-virtual amplitude M̃cc̄→F

is renormalization-group invariant (analogously to Mcc̄→F ).
The explicit expression of the first-order (one-loop) subtraction operator Ĩ

(1)
a is

Ĩ (1)
a

(
ε,M2/μ2

R

) = Ĩ (1)soft
a

(
ε,M2/μ2

R

) + Ĩ (1)coll
a

(
ε,M2/μ2

R

)
, (50)

with
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Ĩ (1)soft
a

(
ε,M2/μ2

R

) = − eεγE

Γ (1 − ε)

(
1

ε2
+ iπ

1

ε
+ δqT

)
Ca

(
M2

μ2
R

)−ε

, (51)

Ĩ (1) coll
a

(
ε,M2/μ2

R

) = −1

ε
γa

(
M2

μ2
R

)−ε

, (52)

and

γq = γq̄ = 3

2
CF , γg = 11

6
CA − 1

3
Nf . (53)

The coefficient δqT affects only the IR finite part of the subtraction operator. The known results
on the NLO hard-collinear coefficients H

F(1)
c [13] are recovered by fixing

δqT = 0. (54)

The second-order (two-loop) subtraction operator Ĩ
(2)
c is

Ĩ (2)
a

(
ε,M2/μ2

R

) = −1

2

[
Ĩ (1)
a

(
ε,M2/μ2

R

)]2 +
{

2πβ0

ε

[
Ĩ (1)
a

(
2ε,M2/μ2

R

)
− Ĩ (1)

a

(
ε,M2/μ2

R

)] + KĨ (1)soft
a

(
2ε,M2/μ2

R

)
+ H̃ (2)

a

(
ε,M2/μ2

R

)}
, (55)

with

H̃ (2)
a

(
ε,M2/μ2

R

) = H̃ (2)coll
a

(
ε,M2/μ2

R

) + H̃ (2)soft
a

(
ε,M2/μ2

R

)
(56)

= 1

4ε

(
M2

μ2
R

)−2ε(1

4
γa(1) + Cad(1) + εCaδ

qT

(1)

)
, (57)

where H̃
(2)coll
a is the contribution that is proportional to γa(1) and H̃

(2)soft
a is the remaining con-

tribution (which is proportional to Ca) in Eq. (57). The QCD coefficients K in Eq. (55) and d(1)

in Eq. (57) (they control the IR divergences of Ĩ
(2)
a ) are [28]

K =
(

67

18
− π2

6

)
CA − 5

9
Nf , (58)

d(1) =
(

28

27
− 1

3
ζ2

)
Nf +

(
−202

27
+ 11

6
ζ2 + 7ζ3

)
CA, (59)

and the coefficients γa(1) (a = q,g) are given in Eqs. (35) and (36). The coefficient δ
qT

(1) in
Eq. (57) affects only the IR finite part of the two-loop subtraction operator. We find (see Sec-
tion 4.1)

δ
qT

(1)
= 20

3
ζ3πβ0 +

(
−1214

81
+ 67

18
ζ2

)
CA +

(
164

81
− 5

9
ζ2

)
Nf . (60)

Having introduced the subtracted amplitude M̃cc̄→F , we can relate it to the process-
dependent resummation coefficients HF

c of Eqs. (6), (11) and (14). In the case of processes
initiated by qq̄ annihilation (see Eqs. (11) and (12)), the all-order coefficient HF

q can be written
as
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α2k
S

(
M2)HF

q

(
x1p1, x2p2;Ω;αS

(
M2)) = |M̃qq̄→F (x1p1, x2p2; {qi})|2

|M(0)
qq̄→F (x1p1, x2p2; {qi})|2

, (61)

where k is the value of the overall power of αS in the expansion of Mcc̄→F (see Eqs. (44) and
(46)). In the case of processes initiated by gluon fusion (see Eqs. (14) and (15)), the analogue of
Eq. (61) is

α2k
S

(
M2)hFμ1ν1μ2ν2

g

(
x1p1, x2p2;Ω;αS

(
M2))

= [M̃μ1μ2
gg→F (x1p1, x2p2; {qi})]†M̃ν1ν2

gg→F (x1p1, x2p2; {qi})
|M(0)

gg→F (x1p1, x2p2; {qi})|2
, (62)

and the all-order coefficient HF
g is [10]

HFμ1ν1μ2ν2
g (x1p1, x2p2;Ω;αS) = d

μ1
μ′

1
d

ν1
ν′

1
d

μ2
μ′

2
d

ν2
ν′

2
h

Fμ′
1ν

′
1μ

′
2ν

′
2

g (x1p1, x2p2;Ω;αS), (63)

where dμν = dμν(p1,p2) is the polarization tensor in Eq. (18) and it projects onto the Lorentz
indices in the transverse plane.

In Eqs. (61) and (62), the notation |M̃qq̄→F |2 and |M(0)
gg→F |2 denotes the squared ampli-

tudes summed over the colors of the colliding partons and over the (physical) spin polarization
states of the colliding partons and of the particles in the final-state system F . In the numerator
of Eq. (62), the sum over the spin polarization states of the initial-state gluons is not performed,
and the amplitude M̃ν1ν2

gg→F depends on the Lorentz index νi (i = 1,2) of the incoming gluon

leg with momentum xipi . The Lorentz indices of M̃gg→F coincide with those of Mgg→F in

Eqs. (47)–(49), since the subtraction factors Ĩ
(1)
c and Ĩ

(2)
c do not depend on the spin. We recall

that, according to the notation in Eq. (2), the kinematics of the final-state momenta {qi} is fully
specified by the total momentum q = ∑

i qi and the set of variables Ω . Therefore, the dependence
of the amplitudes on {qi} completely determines the Ω dependence of HF

c in Eqs. (61) and (62).
To be precise, we also note that HF

c is computed in d = 4 space–time dimensions and, therefore,
the right-hand side of Eqs. (61) and (62) has to be evaluated in the limit ε → 0 (this limit is well-
defined and straightforward, since M(0)

cc̄→F and the order-by-order expansion of the hard-virtual
amplitude M̃cc̄→F are IR finite). An additional remark regards the dependence on the renormal-
ization scale. According to the resummation formula (6), the all-order factor dσ

(0)
cc̄,F HF

c (and,
consequently, the left-hand side of Eqs. (61) and (62)) is renormalization-group invariant, and it
is perturbatively computable as series expansion in powers of αS(M2), with no dependence on
μR . This property is fully consistent with the form of Eqs. (61) and (62), since the all-order hard-
virtual amplitude in the right-hand side of these equations is a renormalization-group invariant
quantity. Obviously, each side of these equations can be expanded in powers of αS(μ2

R), thus
leading to corresponding perturbative coefficients that explicitly depend on M2/μ2

R .
The expressions (61), (62), (48) and (49) and the explicit results in Eqs. (50) and (55) permit

the straightforward computation of the process-dependent resummation coefficients HF
c for an

arbitrary process of the class in Eq. (1). The explicit computation of HF
c up to the NNLO is

elementary, provided the scattering amplitude Mcc̄→F of the corresponding partonic subprocess
is available (known) up to the NNLO (two-loop) level. Some examples are explicitly reported
in Appendix A. In particular, in Appendix A we use Eqs. (47)–(49) and (61), and we present
the explicit expression of the NNLO hard-virtual coefficient H

γγ (2)
q for the process of diphoton

production [40].
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4.1. The structure of the hard-virtual term

The all-loop amplitude Mcc̄→F receives contributions from loop momenta in different kine-
matical regions. Roughly speaking, the loop momentum k can be in the UV region (k 	 M), in
the IR region (k � M) or in the hard (intermediate) region (k ∼ M). The UV contributions are
treated and ‘removed’ by renormalization. As already anticipated (and discussed below), the sub-
traction factor Ĩc has an IR (soft and collinear) origin, and it ‘removes’ the IR contributions from
Mcc̄→F . The subtracted (hard-virtual) amplitude M̃cc̄→F can thus be interpreted as originating
from the hard component of the virtual radiative corrections to the LO amplitude M(0)

cc̄→F .
The iterative structure of Eqs. (47)–(49) can be recast in factorized form. We have

M̃cc̄→F

(
p̂1, p̂2; {qi}

) = [
1 − Ĩc

(
ε,M2)]Mcc̄→F

(
p̂1, p̂2; {qi}

)
, (64)

with

Ĩc

(
ε,M2) = αS(μ2

R)

2π
Ĩ (1)
c

(
ε,M2/μ2

R

) +
(

αS(μ2
R)

2π

)2

Ĩ (2)
c

(
ε,M2/μ2

R

)
+

∞∑
n=3

(
αS(μ2

R)

2π

)n

Ĩ (n)
c

(
ε,M2/μ2

R

)
. (65)

The factorization formula (64) gives the all-order relation between the hard-virtual ampli-
tude M̃cc̄→F (which determines HF

c through Eqs. (61) and (62)) and the scattering amplitude
Mcc̄→F (the perturbative expansion of Eqs. (64) up to the NNLO exactly gives Eqs. (47)–(49)).
The all-order subtraction factor Ĩc(ε,M

2) in Eq. (64) is independent of μR and, thus, it is
renormalization-group invariant. The order-by-order dependence on μR simply arises from
the expansion (see Eq. (65)) in terms of powers of αS(μ2

R) and perturbative coefficients

Ĩ
(n)
c (ε,M2/μ2

R). Note that Ĩc(ε,M
2) depends on ε, and we are referring to renormalization-

group invariance in d = 4 − 2ε dimensions (i.e., to all orders in ε), where the right-hand
side of Eq. (27) has to be modified by replacing β(αS) with the d-dimensional β-function
β(ε,αS) = −ε + β(αS). The μR independence of Ĩc(ε,M

2) can be explicitly checked up to
the NNLO by using the expressions of Ĩ

(1)
c (ε,M2/μ2

R) and Ĩ
(2)
c (ε,M2/μ2

R) in Eqs. (50)–(57).
We can illustrate the origin and the derivation of the results in Eqs. (61), (62) and (64) by

starting from the direct computation of the qT cross section in Eq. (2). The calculation of the
cross section or, more precisely, of the corresponding partonic cross sections involves three types
of contributions: (i) the elastic-production process in Eq. (41); (ii) inelastic (real-emission) pro-
cesses, where the system F is accompanied by additional final-state partons; (iii) the collinear
counterterm that is necessary to define the MS parton densities in terms of the bare (naïve) parton
densities.

(i) The elastic process directly contributes to the partonic cross section and thus to HF
c with a

term that is proportional to (the square of) the all-loop amplitude Mcc̄→F .
(ii) Since we are interested in the small-qT singular cross section of Eq. (6), the calculation of

the inelastic processes can be simplified. In the small-qT limit, the additional final-state partons
in the inelastic processes must be either soft or collinear to one of the colliding partons (non-
soft and non-collinear partons give cross section contributions that are relatively suppressed by
some powers of qT /M ∼ 1/(bM)). The radiation of soft [51–53] and collinear [54,51,52,55]
partons from two colliding partons is described by QCD factorization formulae, where the sin-
gular soft/collinear term (which includes its virtual radiative corrections) is universal (process
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independent) and it acts onto the all-loop amplitude Mcc̄→F as in the factorized expression on
the right-hand side of Eq. (64). To be precise, soft/collinear factorization works at the amplitude
(and squared amplitude) level, and it can be spoiled by kinematical effects at the cross section
level, i.e., after the (cross section dependent) phase-space integration of the squared amplitudes.
However, in our case, factorization breaking effects of kinematical origin cannot arise, since
we are effectively working in impact parameter space (in the small-qT limit, the kinematics of
the qT cross section is exactly factorized [2] by the Fourier transformation to b space). More
precisely, we are considering the cross section contributions at fixed values of the impact pa-
rameter b, namely, the integrand terms on the right-hand side of Eq. (6): the factorized structure
of these terms directly follows form soft/collinear factorization formulae. The following step in
our discussion consists in the observation that the radiation of collinear or, more precisely, non-
soft collinear partons requires a non-vanishing longitudinal-momentum recoil and, therefore, it
cannot contribute to the factor HF

c in Eq. (6) (non-soft collinear radiation definitely contribute
to the other b-dependent factors on the right-hand side of Eq. (6)). In summary, considering the
inelastic processes, the factor HF

c receives contributions only from soft radiation: these are the
factorized soft contributions that are b-independent and that do not vanish in the near-elastic
limit.

(iii) The calculation of the elastic and inelastic processes gives the bare partonic cross section.
The introduction of the (IR divergent) collinear counterterm of the parton densities amounts to
multiply the entire bare partonic cross section with a process-independent factor that has a convo-
lution structure with respect to the longitudinal-momentum fractions of the colliding partons. The
evolution kernel of the convolution is the Altarelli–Parisi splitting function Pab(z;αS), and only
the soft part (analogously to the contribution of the inelastic processes) and the virtual part (i.e.,
the part that is proportional to δ(1 − z)) of the splitting function can contribute to the factor HF

c

in Eq. (6). This ‘virtual-collinear’ contribution to HF
c is process independent (it only depends on

the type, i.e. quarks or gluons, of colliding partons), and it has the same factorized structure as in
Eq. (64). Note that the explicit form of the collinear counterterm is fully specified [44], since we
are considering parton densities defined in the MS factorization scheme. Moreover, we can add
that the entire virtual part of the collinear counterterm is included in HF

c , since we are working
in the hard scheme (where the perturbative corrections to the coefficients Cab(z;αS) of Eq. (6)
contain no contributions that are proportional to δ(1 − z)).

In summary, from our general discussion we can conclude that, in the hard scheme, the re-
summation factor HF

c has the structure given by Eqs. (61), (62) and (64). The all-loop amplitude
Mcc̄→F of Eq. (64) originates from the elastic process in Eq. (41). The remaining universal factor
Ĩc(ε,M

2) on the right-hand side of Eq. (64) includes two types of contributions: a soft contri-
bution (from inelastic processes and the collinear counterterm) and a collinear contribution from
the virtual part of the MS collinear counterterm. In the following, we combine these conclusions
with two additional properties of HF

c (its renormalization-group invariance and its IR finiteness),
and we shall show that the explicit form of Ĩc(ε,M

2) is (almost) completely determined up to
the NNLO.

The IR divergences of the all-loop amplitude Mcc̄→F have a known universal structure that
can be presented in the following form [28]:

Mcc̄→F = IcMcc̄→F +Mfin.
cc̄→F , (66)

where the all-loop factor Ic has a perturbative expansion that is analogous to that in Eq. (65).
The component Mfin.

cc̄→F of the amplitude is IR finite as ε → 0, while the process-independent
factor Ic includes IR divergent ε-poles. The perturbative (loop) expansion of Eq. (66) iteratively
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determines the IR divergent component of Mcc̄→F (see Eqs. (12) and (18) in Ref. [28]). Note
that the separation between Mfin.

cc̄→F and IR divergent terms depends on the amount of IR finite
contributions that are actually included in Ic (in particular, as discussed below, the hard-virtual
amplitude M̃cc̄→F can be regarded as a specific definition of Mfin.

cc̄→F ).
The relation (66) can be rewritten as

Mfin.
cc̄→F = [1 − Ic]Mcc̄→F , (67)

and it can be directly compared with the form of the hard-virtual amplitude M̃cc̄→F . The rela-
tions (64) and (67) are in one-to-one correspondence through the simple replacement M̃cc̄→F ↔
Mfin.

cc̄→F and Ĩc ↔ Ic. Therefore, by requiring that M̃cc̄→F is IR finite, we conclude that the
ε-pole contributions of the operator Ĩc(ε,M

2) are exactly the same as those of Ic (equivalently,
Ĩc and Ic can differ only through terms that produce IR finite contributions to M̃cc̄→F ).

We continue our all-order discussion at the fixed-order level to make our conclusions more
explicit and clear. We consider the NLO and NNLO terms. The extension to higher orders is
straightforward.

At the NLO (one-loop) level, Ĩ
(1)
a (ε,M2/μ2

R) is written as in Eq. (50) since, as previously

discussed, Ĩ
(1)
a originates from soft terms and from the virtual part of the collinear counterterm.

Both Ĩ
(1)soft
a and Ĩ

(1)coll
a contain ε poles and IR finite contributions. The coefficients of the ε

poles in Eqs. (51) and (52) are determined by the known explicit expression [28] of the first-
order term I

(1)
a of the IR operator Ia in Eq. (67). The dependence on M2/μ2

R is determined
to all-order in ε by renormalization-group invariance in d = 4 − 2ε dimensions. Therefore, the
expressions of Ĩ

(1)soft
a and Ĩ

(1)coll
a in Eqs. (51) and (52) are completely determined apart from

an ε-independent contribution (the inclusion of higher power of ε is harmless since, in the limit
ε → 0, it gives a vanishing contribution to M̃(1)

cc̄→F according to Eq. (48)). Then, we note that the
entire expression on the right-hand side of Eq. (52) exactly coincides with the virtual part of the
collinear counterterm in the MS factorization scheme [44] (we recall that in the MS factorization
scheme the collinear counterterm has only ε-pole contributions, and that the coefficient γa in
Eqs. (52) and (53) is equal to the coefficient of the virtual part of the first-order Altarelli–Parisi
splitting function). Therefore, we can conclude that the only unknown contribution to Ĩ

(1)
a is an

ε-independent term that has a soft origin. This term is included in the right-hand side of Eq. (51),
and it can be written as δa = Caδ

qT , since the intensity of soft radiation from the parton a is
simply proportional to the Casimir coefficient Ca of that parton. In summary, we have given a
proof of the results in Eqs. (50)–(53), although we cannot give the explicit value of the process-
independent coefficient δqT on the basis of our general discussion. The explicit determination of
δqT requires a detailed calculation, and the value in Eq. (54) is taken from available results in the
literature [13].

At the NNLO (two-loop) level we can repeat the same reasoning and steps as at the NLO
(one-loop) level. Using the explicit form of the ε poles of the operator I

(2)
a [28] in Eq. (67)

and the requirement of renormalization-group invariance, we eventually obtain the second-
order subtraction operator Ĩ

(2)
a (ε,M2/μ2

R) in the form of Eq. (55), where the term H̃
(2)
a =

H̃
(2)soft
a + H̃

(2)coll
a is completely determined apart from ε-independent contributions of soft and

collinear (from the virtual part of the collinear counterterm) origin. However, the ε-independent
contribution of collinear origin is vanishing (as in the case of Ĩ

(1)
a ), since H̃

(2)coll
a (ε,M2/μ2

R) =
1

16ε
γa(1)(M

2/μ2
R)−2ε exactly coincides with the entire collinear-counterterm contribution (in the

MS factorization scheme) due to the virtual part of the second-order Altarelli–Parisi splitting
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function [44,45]. Therefore, the remaining ε-independent contribution to H̃
(2)
a has a soft origin,

and it can be written in the form δa(1) = Caδ
qT

(1) in the right-hand side of Eq. (57). Owing to its
origin from soft factorization (see the Appendix of Ref. [51] and Sect. 5 of Ref. [53]), δa(1) is
simply proportional to the Casimir coefficient Ca of the radiating (colliding) parton a and the
QCD coefficient δ

qT

(1) is fully process independent, namely, it is the same coefficient for processes
that are initiated by either qq̄ annihilation or gluon fusion.

In summary, we have proven the two-loop results in Eqs. (55)–(59), although δ
qT

(1) cannot be

determined from our general discussion. The explicit determination of δ
qT

(1) requires a detailed
calculation. Such a calculation can be explicitly performed in a general process-independent
form by extending the analysis of Ref. [13] (which is based on NNLO soft/collinear factorization
formulae [51–55]) to the necessary level of accuracy (in practice, by including contributions at
higher order in ε that were omitted in the actual computation of Ref. [13]). Alternatively, we can
exploit our proof of the universality of δ

qT

(1) and, therefore, we can determine the value of δ
qT

(1)

from the NNLO calculation of a single specific process. We have followed the latter procedure
(see below) to obtain the explicit result of δ

qT

(1) that is reported in Eq. (60).
The NNLO computation of the DY cross section at small values of qT was performed in

Ref. [38], and the complete result is presented in Ref. [16] in explicit analytic form. From
Ref. [16] we can thus extract the explicit value of the NNLO coefficient H

DY(2)
q for the DY

process (see Appendix A). The same value of H
DY(2)
q is obtained by the fully independent cal-

culation of Ref. [23]. The scattering amplitude Mqq̄→DY for the DY process was computed
long ago up to the two-loop level [56,57]. Therefore, using the result of Refs. [56,57] and the
expressions in Eqs. (47)–(59), we can straightforwardly compute the corresponding hard-virtual
amplitude M̃qq̄→DY and the corresponding coefficient H

DY(2)
q from Eq. (61). Considering the

value of δ
qT

(1) as an unknown parameter, we thus obtain an expression of H
DY(2)
q (which linearly

depends on δ
qT

(1)) that can be directly compared with the explicit value extracted from the calcu-

lation of Refs. [16,23]. This comparison gives the value of δ
qT

(1) that is reported in Eq. (60).

The same procedure can be applied to extract the value of δ
qT

(1) from Higgs boson production
by gluon fusion. Indeed, also for this process we know both the explicit value of the coefficient
H

H(2)
g from a direct NNLO computation [15] (see Appendix A) and the corresponding two-loop

amplitude Mgg→H [48] (both results use the large-Mtop approximation). Using these results, we
confirm the value of δ

qT

(1) that we have extracted from the DY process.

Note that the agreement between these two independent determinations (extractions) of δ
qT

(1)
is

a highly non-trivial check of the results of Section 4, especially because we are considering two
processes that are controlled by the qq̄ annihilation channel and the gluon fusion channel (δqT

(1) is
instead independent of the specific channel). Note also that this agreement can alternatively (i.e.,
assuming the knowledge of δ

qT

(1)
) be regarded as a non-trivial (though partial) cross-check of the

results of the NNLO calculations of DY [16,23] and Higgs boson [15] production.
We add a final comment related to our general discussion on the structure of the hard-virtual

term. The all-loop scattering amplitude Mcc̄→F includes an overall phase factor e+iφCoul.(ε,M
2)

(the phase φCoul.(ε,M
2) is IR divergent), which is the QCD analogue of the QED Coulomb

phase. This phase factor is physically harmless, since it cancels in the evaluation of the squared
amplitude and, consequently, in the computation of cross sections. Our explicit expression of
Ĩ

(1)
c includes an imaginary contribution (the term that is proportional to iπ/ε in Eq. (51)), and

corresponding contributions are present in the expression (55) of Ĩ
(2)
c (through its dependence

on Ĩ
(1)
c ). These contributions of ‘imaginary’ origin exactly correspond to the perturbative expan-
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sion of the Coulomb phase factor, and they lead to a hard-virtual amplitude M̃cc̄→F that does
not include the overall and harmless (but IR divergent) factor e+iφCoul.(ε,M

2). These imaginary
contributions to Ĩc cannot arise from a direct computation of HF

c at the cross section level and,
actually, we have introduced them to the sole practical (aesthetical) purpose of cancelling the IR
divergent Coulomb phase of Mcc̄→F . In other words, by removing these contributions from Ĩ

(1)
c

and Ĩ
(2)
c , we would change the definition of M̃cc̄→F (by the overall factor e+iφCoul.(ε,M

2)), but
the final results of the hard-virtual coefficients HF

c in Eqs. (61) and (62) are unchanged.

5. Universality and threshold resummation

The structure of transverse-momentum resummation and, especially, of the hard-virtual term
can be compared with the analogous structure of threshold resummation [29,30], which arises in
the context of the QCD computation of the total cross section. To highlight the main aspects of
the comparison, we consider the total cross section for the process of Eq. (1) in the simple case
(the restriction to this simple case has the sole purpose of simplifying the notation) in which the
final-state system F consists of a single (‘on-shell’) particle of mass M (for example, F can be
a vector boson or a Higgs boson). The total cross section σF (p1,p2;M2) for the production of
the system F is computable in QCD perturbation theory according to the following factorization
formula:

σF

(
p1,p2;M2)

=
∑
a1,a2

1∫
0

dz1

1∫
0

dz2 σ̂ F
a1a2

(
ŝ = z1z2s;M2;αS

(
M2))fa1/h1

(
z1,M

2)fa2/h2

(
z2,M

2),
(68)

where σ̂ F
a1a2

is the total partonic cross section for the inclusive partonic process a1a2 → F + X

and, for simplicity, the parton densities fai/hi
(zi ,M

2) (i = 1,2) are evaluated at the scale M2

(the inclusion of an arbitrary factorization scale μF in the parton densities and in the partonic
cross sections can be implemented in a straightforward way by using the Altarelli–Parisi evo-
lution equations of fa/h(z,μ

2
F )). The partonic cross section σ̂ F

a1a2
(ŝ;M2;αS(M2)) depends on

the mass M of the system F , on the centre-of-mass energy ŝ of the colliding partons, and it
is a renormalization-group invariant quantity that can be perturbatively computed as series ex-
pansion in powers of αS(M2) (equivalently, we can expand σ̂ F

a1a2
in powers of αS(μ2

R), with
corresponding perturbative coefficients that explicitly depend on M2/μ2

R).
The kinematical ratio z = M2/ŝ parametrizes the distance from the partonic threshold. In the

kinematical region close to the partonic threshold (i.e., where z → 1), the partonic cross sec-
tion σ̂ F

a1a2
receives large QCD radiative corrections of the type ( 1

1−z
lnm(1 − z))+ (the subscript

‘+’ denotes the customary ‘plus-distribution’). The all-order resummation of these logarithmic
contributions can be systematically performed by working in Mellin (N -moment) space [29,30].
The Mellin transform σ̂N (M2) of the partonic cross section σ̂ (ŝ;M2) is defined as

σ̂ F
a1a2,N

(
M2;αS

(
M2)) ≡

1∫
0

dz zN−1σ̂ F
a1a2

(
ŝ = M2/z;M2;αS

(
M2)). (69)

In Mellin space, the threshold region z → 1 corresponds to the limit N → ∞, and the plus-
distributions become powers of lnN (( 1 lnm(1− z))+ → lnm+1 N + ‘subleading logs’). These
1−z
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logarithmic contributions are evaluated to all perturbative orders by using threshold resummation
[29,30]. Neglecting terms that are relatively suppressed by powers of 1/N in the limit N → ∞,
we write

σ̂ F
cc̄,N

(
M2;αS

(
M2)) = σ̂

F (res)
cc̄,N

(
M2;αS

(
M2))[1 +O(1/N)

]
. (70)

Note that we are considering only the partonic channel cc̄ → F + X, with cc̄ = qq̄ or cc̄ = gg,
since the other partonic channels give contributions that are of O(1/N). The expression σ̂

F (res)
cc̄,N

in the right-hand side of Eq. (70) embodies all the perturbative terms that are logarithmically
enhanced or constant in the limit N → ∞. The partonic cross section σ̂

F (res)
cc̄,N has a universal

(process-independent) all-order structure that is given by the following threshold-resummation
formula [29,30,58,59]:

σ̂
F (res)
cc̄,N

(
M2;αS

(
M2)) = σ

(0)
cc̄→F

(
M2;αS

(
M2))Cth

cc̄→F

(
αS

(
M2))Δc,N

(
M2), (71)

where σ
(0)
cc̄→F is the lowest-order cross section for the partonic process cc̄ → F . The radiative

factor Δc,N resums all the perturbative contributions αn
S lnm N (including some constant terms,

i.e. terms with m = 0). This factor only depends on the type (c = q or c = g) of colliding partons
(Δc,N does not depend on the final-state system F ), and it has the form

Δc,N

(
M2) = exp

{ 1∫
0

dz
zN−1 − 1

1 − z

[
2

(1−z)2M2∫
M2

dq2

q2
Ath

c

(
αS

(
q2))

+ Dc

(
αS

(
(1 − z)2M2))]}

, (72)

where Ath
c (αS) and Dc(αS) are perturbative series in αS,

Ath
c (αS) =

∞∑
n=1

(
αS

π

)n

Ath(n)
c , Dc(αS) =

(
αS

π

)2

D(2)
c +

∞∑
n=3

(
αS

π

)n

D(n)
c . (73)

The perturbative coefficients A
th(1)
c ,A

th(2)
c [30,60,61] and A

th(3)
c [62,59] are explicitly known.

We recall that A
th(1)
c and A

th(2)
c are exactly equal to the corresponding coefficients A

(1)
c and A

(2)
c

for small-qT resummation (see Eq. (9)), while A
th(3)
c �= A

(3)
c [14]. The perturbative expansion of

Dc(αS) starts at O(α2
S) (i.e., D

(1)
c = 0), and the perturbative coefficients D

(2)
c [63,64] and D

(3)
c

[65,66] are explicitly known.
The factor Cth

cc̄→F in Eq. (71) embodies remaining N -independent contributions (i.e., terms
that are constant in the limit N → ∞) to the partonic cross section. This factor is definitely
process dependent, and it has the general perturbative expansion

Cth
cc̄→F (αS) = 1 +

∞∑
n=1

(
αS

π

)n

C
th(n)
cc̄→F . (74)

The NLO and NNLO coefficients Cth(1) and Cth(2) are explicitly known in the case of DY [57,59]
and Higgs boson [67,64,68,58] production. Considering these two specific processes, relations
between the N -independent factor Cth(αS) and the corresponding virtual amplitudes (namely,
the quark and gluon form factors) were discussed and examined in Refs. [69,65,66,70,71]. Con-
sidering a generic process of the class in Eq. (1) and using soft-gluon factorization formulae
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[51,53,28], the authors of Ref. [72] have recently shown how the NLO and NNLO coeffi-
cients C

th(1)
cc̄→F and C

th(2)
cc̄→F can be directly and explicitly related in a process-independent form

to the one-loop and two-loop scattering amplitude Mcc̄→F of the underlying partonic process in
Eq. (41).

The transverse-momentum resummation formula (6) has close analogies with the threshold-
resummation formula (71) (although the latter is somehow simpler). The process-independent
Sudakov form factor Sc(M,b) in Eq. (6) is analogous to the radiative factor Δc,N(M2) in
Eq. (71). Note that Sc(M,b) and Δc,N(M2) are both renormalization-group invariant. The ana-
logue of the process-independent coefficients Cqa and C

μν
ga in Eqs. (6), (11) and (14) is absent

in the case of threshold resummation, where there is no ensuing distinction in the resummation
structure between the qq̄ annihilation channel and the gluon fusion channel. The hard-virtual
term HF

c in Eq. (6) is analogous to the corresponding hard-virtual term Cth
cc̄→F in Eq. (71).

The analogy between the two hard-virtual terms HF
c and Cth

cc̄→F can be sharpened. Indeed,
we can show that the all-order expression of Cth

cc̄→F can be related to the all-loop scattering
amplitude Mcc̄→F of the process in Eq. (41) in a process-independent form that is similar to that
discussed in Section 4. We can write

α2k
S

(
M2)Cth

cc̄→F

(
αS

(
M2)) = |M̃th

cc̄→F |2
|M(0)

cc̄→F |2
, (75)

with

M̃th
cc̄→F = [

1 − Ĩ th
c

(
ε,M2)]Mcc̄→F , (76)

Ĩ th
c

(
ε,M2) = αS(μ2

R)

2π
Ĩ th(1)
c

(
ε,

M2

μ2
R

)
+

(
αS(μ2

R)

2π

)2

Ĩ th(2)
c

(
ε,

M2

μ2
R

)

+
∞∑

n=3

(
αS(μ2

R)

2π

)n

Ĩ th(n)
c

(
ε,

M2

μ2
R

)
, (77)

where M̃th
cc̄→F is the (IR finite) hard-virtual amplitude for threshold resummation, and the four-

dimensional limit ε → 0 is not explicitly denoted in the right-hand side of Eq. (75) (analogously
to the case of Eqs. (61) and (62)). The hard-virtual amplitude M̃th

cc̄→F is related to the scattering
amplitude Mcc̄→F by Eq. (76), which is completely analogous to Eq. (64). The all-order subtrac-
tion operators Ĩc and Ĩ th

c of Eqs. (64) and (76) are different, since they refer to different physical
observables (namely, the qT -differential cross section versus the total cross section). Nonetheless,
the differences in their structure are minimal. In particular, Ĩ

(n)
c and Ĩ

th(n)
c , with n = 1,2, simply

differ by a constant (ε-independent) contribution, namely, the contribution that is parametrized
by the coefficients δqT and δ

qT

(1). More precisely, the explicit expression of the NLO term Ĩ
th(1)
c is

obtained from Eqs. (50)–(53) by simply applying the replacement Ĩ
(1)
c → Ĩ

th(1)
c and δqT → δth.

Then, the explicit expression of the NNLO term Ĩ
th(2)
c is obtained from Eqs. (55)–(59) by simply

applying the replacement Ĩ
(2)
c → Ĩ

th(2)
c , Ĩ

(1)
c → Ĩ

th(1)
c and δ

qT

(1) → δth
(1). The explicit values of the

threshold-resummation coefficients δth and δth
(1) are

δth = δqT − ζ2 = −ζ2, (78)



436 S. Catani et al. / Nuclear Physics B 881 (2014) 414–443
δth
(1) = δ

qT

(1) + 40

3
ζ3πβ0 + 4ζ 2

2 CA

= ζ2K + 20ζ3πβ0 + CA

(
−1214

81
+ 5ζ 2

2

)
+ 164

81
Nf . (79)

The results in Eqs. (75)–(79) are obtained by using the same reasoning and discussion as in
Section 4.1 and, in particular, by exploiting the properties of soft/collinear factorization. We do
not repeat the entire discussion of Section 4.1, and we limit ourselves to remarking the few points
in which the discussion slightly differs. Considering the computation of the total partonic cross
section, we can directly refer to the classification in contributions from (i) the elastic-production
process, (ii) inelastic processes and (iii) the collinear counterterm. (i) The elastic process directly
contributes to M̃th

cc̄→F in Eq. (76) (Cth
cc̄→F in Eq. (75)) with the all-loop scattering amplitude

M̃cc̄→F (with the squared amplitude). (ii) In the kinematical region close to the partonic thresh-
old, the inelastic processes contribute to the partonic cross section of Eq. (71) only through
final-state radiation of soft partons (in the case of transverse-momentum resummation, collinear
radiation also contributes, and it is responsible for the presence of the collinear coefficients Cqa

and C
μν
ga in Eq. (6) and for the differences between the qq̄ and gg channels). Soft factorization

at the (squared) amplitude level is not spoiled by kinematical effects, since the kinematics of the
total cross section is exactly factorized [29,30] by the Mellin transformation to N space. This
leads to the same conclusion as in Section 4.1 about the contribution of the inelastic processes
to the hard-virtual term. This contribution is factorized and it has a soft origin in both cases of
transverse-momentum and threshold resummation. In particular, at the cross section level (i.e.,
after the corresponding phase space integration), this soft term produces contributions to the co-
efficients δth and δth

(1) in the expressions of Ĩ th
c and Cth

cc̄→F , analogously to the corresponding

contributions to the coefficients δqT and δ
qT

(1) in the expressions of Ĩc and HF
c . (iii) The radiative

factor Δc,N in Eq. (71) is entirely due to soft radiation [29,30]. Therefore, the complete virtual
part of the collinear counterterm in the MS factorization scheme directly contributes to M̃th

cc̄→F

and Cth
cc̄→F (analogously to the contribution to M̃cc̄→F and HF

c ). It follows that the collinear
counterterm contributions to Ĩ th

c and Ĩc are completely analogous.
Owing to their process independence, the threshold resummation coefficients δth and δth

(1)

(analogously to δqT and δ
qT

(1)) can be explicitly evaluated from either the NNLO calculation of
a single process or an NNLO calculation in a process-independent form. We have explicitly
verified that the general results in Eqs. (75)–(77) and the explicit values of the coefficients in
Eqs. (78) and (79) are consistent with the NNLO results of the process-independent calculation
of Ref. [72].

The close correspondence between the hard-virtual terms HF
c and Cth

cc̄→F of the resummation
formulae in Eqs. (6) and (71) can also be expressed in direct form. Using Eqs. (61)–(63), Eq. (75)
and the expressions (64) and (76) of the corresponding hard-virtual amplitudes, we obtain

HF
c (αS)

Cth
cc̄→F (αS)

=
{ |1 − Ĩc(ε,M

2)|2
|1 − Ĩ th

c (ε,M2)|2
}

ε=0
(80)

= exp

{
αS

π
Cc

(
δqT − δth) +

(
αS

π

)2

Cc

[
1

2
K

(
δqT − δth)

− 1 (
δ
qT

(1) − δth
(1)

)] +O
(
α3

S

)}
(81)
8
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= exp

{
αS

π
Ccζ2 +

(
αS

π

)2

Cc

[
5

3
ζ3πβ0 + ζ2

(
67

36
CA − 5

18
Nf

)]
+O

(
α3

S

)}
,

where, in the case of gluon fusion processes, the numerator in the left-hand side of Eq. (80) is de-
fined as HF

g ≡ gμ1ν1gμ2ν2H
Fμ1ν1,μ2ν2
g . The equality in Eq. (82) is obtained by using the explicit

expression of Ĩc(ε,M
2) (see Eqs. (50)–(59)) and the corresponding expression of Ĩ th

c (ε,M2) (see
Eq. (77) and accompanying comments) up to the NNLO.

Considering the ratio of hard-virtual terms for a specific process as in Eq. (80), the effect of the
all-loop amplitude Mcc̄→F (and the associated process dependence) entirely cancels. This ratio
is completely determined by the contribution of the inelastic processes (namely, the factorized
radiation of final-state partons and the corresponding virtual corrections) to the corresponding
cross sections. The ensuing IR (soft and collinear) singularities completely cancel, and the fi-
nal expression in Eq. (82) is entirely determined by the IR finite contributions due to the (real)
emission of soft QCD radiation. The exponent in Eq. (82) is directly proportional to the Casimir
factor Cc (i.e., the color charge) of the colliding partons c and c̄: this proportionality is a straight-
forward consequence of the exponentiating correlation structure of the factorization formulae
for soft-parton radiation from QCD squared amplitudes [51,53]. The value of the perturbative
coefficients δqT − δth and δ

qT

(1) − δth
(1) in the exponent has a kinematical origin.

6. Summary

In this paper we have considered QCD radiative corrections to the production of a generic
colorless high-mass system F in hadronic collisions (see Eq. (1)). Large logarithmic terms arise
in the QCD perturbative expansion when the high-mass system F is produced at small transverse
momentum. These logarithmic terms can be resummed to all perturbative orders by using a uni-
versal (process-independent) resummation formula (see Section 2) and, then, they are controlled
by a set of resummation factors and ensuing perturbative resummation coefficients. After hav-
ing recalled the process independence of the Sudakov form factor and the explicit expressions
(up to NNLO) of the process-independent collinear coefficients (see Section 3), in Section 4 we
have focused on the hard-virtual factor HF

c . We have shown that, although this factor is process
dependent, it can be directly related (see Eqs. (61)–(63)) in a universal (process-independent)
way to the IR finite part of the all-order virtual amplitude Mcc̄→F of the corresponding partonic
subprocess cc̄ → F . Therefore, the all-order scattering amplitude Mcc̄→F is the sole process-
dependent information that is eventually required by the all-order resummation formula. The
relation between HF

c and Mcc̄→F follows from a universal all-order factorization formula (see
Eqs. (64) and (65)) that originates from the factorization properties of soft (and collinear) parton
radiation. We have explicitly determined this relation up to the NNLO. More precisely, we have
shown that this relation is fully determined by the structure of IR singularities of the all-order
amplitude Mcc̄→F and by renormalization-group invariance up to a single coefficient (of soft
origin) at each perturbative order. We have explicitly determined these coefficients at NLO and
NNLO. Therefore, knowing the NNLO scattering amplitude Mcc̄→F , its corresponding hard-
virtual resummation factor HF

c is straightforwardly determined up to NNLO.
The results presented in this paper, with the knowledge of the other process-independent

resummation coefficients (which are recalled in Sections 2 and 3), complete (modulo the second-
order coefficients G

(2)
ga , as discussed at the end of Section 3) the qT resummation formalism in ex-

plicit form up to full NNLL and NNLO accuracy for all the processes in the class of Eq. (1). This
permits applications to NNLL+NNLO resummed calculations for any processes whose NNLO
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scattering amplitudes are available. Moreover, since the hard-virtual (and collinear) resumma-
tion coefficients are exactly the coefficients that are required to implement the qT subtraction
formalism [36], the results that we have presented are directly and straightforwardly applicable
to perform fully-exclusive NNLO computations for each of these processes.

We have also considered the related process-independent formalism of threshold resumma-
tion (see Section 5). We have shown that the process-dependent hard-virtual factor Cth

cc̄→F of
threshold resummation has a universal (process-independent) structure that is analogous to that
of the hard-virtual factor HF

c of transverse-momentum resummation. The process-independent
relation between Cth

cc̄→F and the scattering amplitude Mcc̄→F has been explicitly pointed out up
to NNLO. In particular, we have shown that, for each specific process, the ratio HF

c /Cth
cc̄→F is

completely independent of the process (i.e., independent of Mcc̄→F ), and it is fully determined
by the associated soft-parton radiation.
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Appendix A. Hard-virtual coefficients in DY, Higgs boson and diphoton production

In this appendix we report the explicit expressions of the hard-virtual coefficients in the hard
scheme for the cases of DY, Higgs boson and diphoton production. The NNLO coefficients
H

DY(2)
q and H

H(2)
g for DY and Higgs boson (using the large-mQ approximation) production

were obtained in Refs. [16] and [15] by performing a direct QCD computation of the corre-
sponding qT cross sections. The same results can be recovered (as discussed in Section 4.1) by
using the process-independent structure of the hard-virtual coefficients. The explicit expression
(which is presented in Eq. (90)) of the NNLO coefficient H

γγ (2)
q for diphoton production is

directly obtained by using the results of Section 4.
Starting from the DY process, we consider the production (through the qq̄ annihilation chan-

nel) of a virtual photon or a vector boson (V = γ ∗,W±,Z) and the subsequent leptonic decay.
The corresponding Born-level cross section [dσ

(0)
qq̄,V ] in Eq. (6) depends on the kinematics of

the leptonic final state, while the hard-virtual term HDY
q only depends on the partonic process

qq̄ → V . In particular, H DY
q (αS(M2)) only depends on αS(M2), with no additional dependence

on kinematical variables. The NLO and NNLO hard-virtual coefficients H
DY(1)
q and H

DY(2)
q in

the hard scheme are [16]

HDY(1)
q = CF

(
π2

2
− 4

)
, (82)

HDY(2)
q = CF CA

(
59ζ3

18
− 1535

192
+ 215π2

216
− π4

240

)
+ 1

4
C2

F

(
−15ζ3 + 511

16
− 67π2

12
+ 17π4

45

)
+ 1

CF Nf

(
192ζ3 + 1143 − 152π2). (83)
864
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We then consider the production of the SM Higgs boson H through the gluon fusion chan-
nel, where H couples to a heavy-quark loop. If the Higgs boson decays non-hadronically (e.g.,
H → ZZ → 4 leptons, or H → γ γ ), the dependence on the kinematics of its decay products
only affects the Born-level cross section [dσ

(0)
gg,H ] in Eq. (6), while the corresponding hard-virtual

factor only depends on αS(M2) (as in the case of DY production) and on the mass of the heavy
quark in the loop. The same conclusion applies to the hadronic decay of H , if we neglect the
QCD interferences between the initial and final states. In both cases (i.e., non-hadronic decay
or hadronic decay without interferences), the spin (Lorentz index) correlation structure of the
hard-collinear factor in Eq. (14) can be simplified. Indeed, as shown in Ref. [10], the right-hand
side of Eq. (14) turns out to be proportional to the following (Lorentz scalar) hard-virtual factor:

HH
g

(
αS

(
M2)) = gμ1ν1gμ2ν2H

Hμ1ν1,μ2ν2
g

(
αS

(
M2)), (84)

whose perturbative coefficients H
H(n)
g follow from the perturbative expansion in Eq. (15). As-

suming that the Higgs boson couples to a single heavy quark of mass mQ, the first-order coeffi-

cient H
H(1)
g in the hard scheme is

HH(1)
g = CAπ2/2 + cH (mQ). (85)

The expression in Eq. (85) is obtained by using the process-independent formulae in Eqs. (48),
(62) and (63), and the function cH (mQ) depends on the NLO corrections of the scattering
amplitude Mgg→H . The function cH (mQ) is given in Eq. (B.2) of Ref. [73] in terms of one-
dimensional integrals; analytic expressions of cH (mQ) in terms of harmonic polylogarithms are
given in Eq. (3.5) of Ref. [74] and Eq. (27) of Ref. [75]. In the limit mQ → ∞, the function cH

becomes

cH (mQ) −→ 5CA − 3CF

2
= 11

2
. (86)

In the large-mQ limit, the explicit expression of the NNLO hard-virtual coefficient H
H(2)
g in the

hard scheme is [15]

HH(2)
g = C2

A

(
3187

288
+ 7

8
LQ + 157

72
π2 + 13

144
π4 − 55

18
ζ3

)
+ CACF

(
−145

24
− 11

8
LQ − 3

4
π2

)
+ 9

4
C2

F − 5

96
CA − 1

12
CF − CANf

(
287

144
+ 5

36
π2 + 4

9
ζ3

)
+ CF Nf

(
−41

24
+ 1

2
LQ + ζ3

)
, (87)

where LQ = ln(M2/m2
Q). The scattering amplitude Mgg→H has been computed [76] up to its

NNLO by including corrections to the large-mQ approximation (the evaluation of the corrections
uses the expansion parameter 1/m2

Q). Using the process-independent formulae in Eqs. (49), (62)
and (63), these corrections can be straightforwardly included in the expression of the NNLO
hard-virtual coefficient H

H(2)
g .

We finally consider the case of diphoton production. In this case, the production cross section
receives contributions from both the qq̄ annihilation and gluon fusion channels. The final-state
system F = γ γ can be produced by the elastic partonic subprocesses qq̄ → γ γ and gg → γ γ .
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In the perturbative evaluation of the cross section, the subprocess qq̄ → γ γ first contributes
at the LO (through the corresponding tree-level scattering amplitude), while the subprocess
gg → γ γ starts to contributes at the NNLO (through the corresponding scattering amplitude
that involves the one-loop QCD interaction of light and heavy quarks). Therefore, to the pur-
pose of evaluating the complete qT cross section up to its NNLO, the gluon fusion channel
only contributes at its corresponding lowest order. Having computed [dσ

(0)
gg,γ γ ], the NNLO

contribution to Eq. (6) from the gluon fusion channel is obtained by simply considering the
lowest-order hard-virtual coefficient H

γγ (0)
g (in practice, we can simply implement the replace-

ment H
γγμ1ν1,μ2ν2
g → H

γγ (0)μ1ν1,μ2ν2
g → dμ1ν1(p1,p2)d

μ2ν2(p1,p2)/4 in Eqs. (14) and (15)).
The hard-virtual coefficient H

γγ
q of the subprocess qq̄ → γ γ has instead to be explicitly evalu-

ated up to its NNLO (i.e., we need the perturbative coefficients H
γγ (1)
q and H

γγ (2)
q ).

Using the notation of Eq. (41), to compute H
γγ
q we have to consider the partonic process

q(p̂1)q̄(p̂2) → γ (q1)γ (q2), whose Mandelstam kinematical variables are

ŝ = (p̂1 + p̂2)
2 = M2, û = (p̂2 − q1)

2, t̂ = (p̂1 − q2)
2, (88)

with the constraint ŝ + t̂ + û = M2 + t̂ + û = 0. Unlike the case of DY and Higgs boson pro-
duction, the hard-virtual term H

γγ
q of Eq. (11) depends on the kinematical variables of the

final-state diphoton system. We explicitly specify these two variables (they are generically de-
noted as Ω = {ΩA,ΩB} in Eqs. (2), (6) and (11)) by using the azimuthal angle of q1 and the
ratio v = −û/ŝ = −û/M2. The hard-virtual term H

γγ
q is invariant with respect to azimuthal ro-

tations (see Eq. (61)) and it is a dimensionless function of its kinematical variables. This implies
that H

γγ
q only depends on v, and we simply use the notation H

γγ
q (v;αS(M2)). The first-order

coefficient H
γγ (1)
q (v) of Eq. (12) is known [77]. Its explicit expression in the hard scheme is

H
γγ (1)
q (v) = CF

2

{(
π2 − 7

) + 1

(1 − v)2 + v2

[(
(1 − v)2 + 1

)
ln2(1 − v)

+ v(v + 2) ln(1 − v)

+ (
v2 + 1

)
ln2 v + (1 − v)(3 − v) lnv

]}
. (89)

The second-order coefficient H
γγ (2)
q (v) was computed and used in Ref. [40]. The calcula-

tion of H
γγ (2)
q is performed by using the universality structure of the hard-virtual term (see

Eqs. (47)–(49) and (61)) and the explicit result [78] of the two-loop amplitude Mqq̄→γ γ of the

process qq̄ → γ γ .3 The result that we obtain for H
γγ (2)
q in the hard scheme is

H
γγ (2)
q (v) = 1

4ALO(v)

[
F0×2

inite,qq̄γ γ ;s +F1×1
inite,qq̄γ γ ;s

] + 3ζ2CF H
γγ (1)
q (v)

− 45

4
ζ4C

2
F + CF CA

(
607

324
+ 1181

144
ζ2 − 187

144
ζ3 − 105

32
ζ4

)
+ CF Nf

(
− 41

162
− 97

72
ζ2 + 17

72
ζ3

)
, (90)

3 We note that there are some typos in Ref. [78]: in Eq. (3.13) the factor Γ (1 − ε)/Γ (1 − 2ε) has to be replaced with
the factor Γ (1 − 2ε)/Γ (1 − ε); the overall sign on the right-hand side of Eqs. (C.1), (C.2) and (C.3) has to be reversed
(in particular, without this flip of sign, the coefficients of the IR poles of the NLO and NNLO scattering amplitude have
wrong signs).
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where the functions F0×2
inite,qq̄γ γ ;s and F1×1

inite,qq̄γ γ ;s are defined in Eqs. (4.6) and (5.3) of Ref. [78],
respectively, and the function ALO(v) is

ALO(v) = 8Nc

1 − 2v + 2v2

v(1 − v)
. (91)
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