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Abstract 

Genetic variation is the main reason of the phenotypic differences among individuals, 

as well as of many human genetic diseases. Recent advances in the methods to study the 

human genetic variation allow better identification of its different forms, in particular of 

copy number variations (CNVs). The causative role of germline CNVs in Mendelian 

diseases and in cancer predisposition is well established. Moreover, the driver role of 

cancer somatic CNVs is recently emerging, and large-scale quantitative analyses 

elucidating their functional role in cancer genomes are needed. To achieve this, we have 

analysed the genomic landscape of somatic CNVs in cancer genomes in comparison to 

germline CNVs in the genomes of healthy individuals. We observed that somatic CNVs 

substantially affect the genic portion of the genome, preferentially targeting cancer genes. 

Moreover, this is independent of genomic features, such as DNA repeating elements and 

recombination rate. In particular, we confirmed that oncogenes are preferentially amplified 

and tumour suppressors are preferentially deleted. To investigate their functional impact, 

we measured the gene expression changes upon copy number variation. We observed that 

amplification of a gene leads to its higher expression whereas deletion results in decreased 

gene expression, which suggests that amplifications activate dominant genes and deletions 

inactivate recessive genes. The two classes of cancer genes are vastly modified consistent 

with their functional roles as oncogenes and tumour suppressors, with the few exceptions 

of frequently amplified recessive genes underlying complex epigenetic regulation. 

The mutational spectrum of the human genes in cancer, together with their systems-

level properties, can be exploited to identify novel targets for anti-cancer therapy, in which 

synthetic lethality emerges as a promising approach. Based on the working hypothesis that 

paralogous genes may engage in synthetic lethal interactions due to the functional 

redundancy between them, we combined several gene properties to predict synthetic 

lethality between paralogous gene pairs. Out of 37 candidate gene pairs, we experimentally 
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validated the synthetic lethal interaction between two components of the cohesin complex, 

STAG1 and STAG2. 

Finally, we present the latest release of Network of Cancer Genes (NCG 5.0), a 

manually curated database of cancer genes and their systems-level properties. NCG 5.0 

collects a list of 1,571 cancer genes mutated in 13,315 cancer samples and 24 primary sites 

from 175 published papers. NCG has been increasingly appreciated as a central resource 

for cancer genomics research, facilitating candidate prioritization for hypothesis testing 

and experimental planning in a wide range of studies. 
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1 Introduction 

1.1 Genetic variability in the human genome 

Not two individuals have the same genetic make-up. Even monozygous twins meet 

variability soon after the fertilisation, becoming genetically different (1). Why do not twins 

look identical? Why do the patients respond to the same drug differently? Why do some 

individuals in a population develop certain genetic disorders but not others? These types of 

questions can be explained by the presence of genetic variability, underlying the 

uniqueness of each individual’s genetic make-up. Although the concept of genetic 

variability is well established (2-5), it took decades for scientists to identify the elements 

that contribute to it, yet, elucidating its role on phenotype is still ongoing. This is 

challenging because most phenotypes have a complex origin, due to the involvement of a 

combination of genetic and environmental risk factors (Figure ). Assessing the individual 

contribution of all possible factors is not only important to understand the aetiology of a 

disease, but also to develop treatment strategies. The ultimate goal of such studies is to 

decipher a genotype-phenotype map of the entire genome, and variation is the starting 

material for this difficult task. 

The completion of the Human Genome Project (HGP) made it clear that we are far 

from understanding human genomic variability (2,5). Initially, single nucleotide 

polymorphisms (SNPs) have been thought to be the major source of genetic variability 

between individuals, simply because SNPs were widely studied and better defined owing 

to the availability of traditional detection platforms (6). Emergence of a variety of 

genotyping platforms led to a better characterisation of such variants in the human 

genome. For example, the International HapMap Project catalogued several millions of 

common SNPs (allele frequency >1%) in 270 individuals from several nations (7). 

Currently, dbSNP (v145) stores more than 85 million human SNPs derived from a large 

range of genotyping and other studies, and this number is likely to increase in the new 

releases (8). 
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Figure : Combined impact of genetic and environmental risks in a complex 
phenotype 
 

 

Legend: In a complex phenotype, both genetic and environmental risks are involved. 
Genetic risks can be in different forms, which are grouped here according to their genomic 
size. Adapted from Beckmann et. al., Nature Reviews, 2007. 

Soon after the deciphering of the human genome sequence, the thought that SNPs are 

the major source of the genetic variability was challenged by the introduction of Next 

Generation Sequencing (NGS) technology, which revolutionised human genetic studies. 

NGS platforms were quickly adapted in genomic studies because they offer a number of 

advantages over previous techniques, such as unbiased detection of novel variants, 

increased specificity and sensitivity, and easier detection of rare variants (9). A huge 

progress towards deciphering a complete genetic variation map has been made by large-

scale projects based on NGS, such as 1000 Genomes Project (3). Consequently, the 

spectrum of known genomic variation enlarged from common SNPs to structural variations 

(SVs), and the detection power improved to include also low-frequency variants (allele 

frequency < 1%). Together, collective efforts with an unbiased perspective and an 

innovative methodology advanced our knowledge and understanding of the genomic 

variation. With all these data and opportunities available, now the challenge has been 

changing from uncovering missing variability to interpreting this variability. 

1.2 Copy number variations and disease 

1.2.1 Definition of copy number variations 

Discovery of structural variations revealed that human genome is much more dynamic 

than previously thought. An obvious reason is that structural variations account for a larger 
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portion of the genomic variation than do SNPs (10). Among SVs, the most common type is 

copy number variations (CNVs), which can be in the form of insertions, deletions and 

duplications. CNVs are initially defined as DNA segments between 1Kb and 3Mb present 

at a variable copy numbers in comparison with a reference genome (11). These thresholds 

are, however, arbitrarily chosen to distinguish CNVs from SNPs and large microscopic 

alterations, which are not strictly used today. For example, the Database of Genomic 

Variants (DGV) (12) collects germline CNVs between 50bp and 3Mb. In cancer, somatic 

CNVs are often defined as arm-level that covers an entire chromosome arm or focal that 

affects shorter genomic regions than an arm (13-15). Despite the flexibility in the 

definition of the CNV length, increase in the copy number of a DNA segment is generally 

referred as amplification, whereas copy number decrease as compared to the reference 

genome is regarded as deletion (Figure ). Today, DGV (12) reports about 500,000 CNV 

regions and stands as the major resource for germline CNVs, among few others such as 

CNV DB (https://gwas.biosciencedbc.jp/cgi-bin/cnvdb/cnv_top.cgi) and The Copy 

Number Variation Project (http://www.sanger.ac.uk/research/areas/humangenetics/cnv/). 

 

Figure : Types of copy number variations 
 

 

Legend: Copy number variations can be broadly classified into two groups: Amplification 
results in gain of a DNA segment (highlighted in yellow) and deletion causes loss of a 
genomic region compared to the wild type. 
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1.2.2 Significance of copy number variations in diseases 

In addition to their contribution to genetic variability (10), CNVs are often involved in 

disease onset. Indeed, CNVs were first recognized due to their causative role in rare 

genetic disorders (16). Since then, several rare human genetic syndromes as well as 

common disorders (such as Parkinson’s disease, autism, schizophrenia, epilepsy) have 

been associated with CNVs (6,10,17) (Table ). Today, a large collection of pathogenic 

CNVs associated with human genetic disorders is stored in public databases, (DECIPHER 

(18), ECARUCA (19), CNVD (20)). These public data are useful for researchers to study 

CNVs in a systematic way, as well as for clinicians referring to diagnostic purposes. For 

example, a deletion of 1.40Mb on chromosome 7 containing the elastin gene (ELN) is 

causative for Williams-Beuren Syndrome (DECIPHER, https://decipher.sanger.ac.uk). 



table continued on the next page… 
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Table : Mendelian and complex diseases associated with CNVs 
Phenotype Locus/Gene CNV References 
Mendelian (autosomal dominant)    Williams-Beuren syndrome 7q11.23 del (21) 
7q11.23 duplication syndrome 7q11.23 dup (22) 
Spinocerebellar ataxia type 20 11q12 dup (23) 
Smith-Magenis syndrome 17p11.2/RAI1 del (24) 
Potocki-Lupski syndrome 17p11.2 dup (25) 
HNPP 17p12/PMP22 del (26) 
CMT1A 17p12/PMP22 dup (27) 
Miller-Dieker lissencephaly syndrome 17p13.3/LIS1 del (28,29) 
Mental retardation 17p13.3/LIS1 dup (30) 
DGS/VCFS 22q11.2/TBX1 del (31,32) 
Microduplication 22q11.2 22q11.2 dup (33-35) 
Adult-onset leukodystrophy LMNB1 dup (36) 
Mendelian (autosomal recessive)    Familial juvenile nephronophthisis 2q13/NPHP1 del (37,38) 
Gaucher disease 1q21/GBA del (39) 
Pituitary dwarfism 17q24/GH1 del (40,41) 
Spinal muscular atrophy 5q13/SMN1 del (42,43) 
beta-thalassemia 11p15/beta-globin del (44) 
alpha-thalassemia 16p13.3/HBA del (45) 
Mendelian (X-linked)    Hemophilia A F8 inv/del (46) 
Hunter syndrome IDS del/inv (47-49) 
Ichthyosis STS del (50) 
Mental retardation HUWE1 dup (51) 
Pelizaeus-Merzbacher disease PLP1 del/dup/tri (52-56) 
Progressive neurological symptoms (MR+SZ) MECP2 dup (57-59) 
Red-green colour blindness opsin genes del (60) 
Complex traits    Alzheimer disease APP dup (61) 

Autism 3q24 inherited 
homozygous del (62) 
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16p11.2 del/dup (63-66) 

Crohn disease HBD-2 copy number loss (67) 
IRGM del (68) 

HIV susceptibility CCL3L1 copy number loss (69,70) 

Mental retardation 
15q13.3 del (71) 
17q21.31 del (72-74) 
Xp11.22 dup (51) 

Pancreatitis PRSS1 tri (75) 
Parkinson disease SNCA dup/tri (76-80) 
Psoriasis DEFB copy number gain (81) 

Schizophrenia 
1q21.1 del (82-84) 
15q11.2 del (82) 
15q13.3 del (82,83) 

Systemic lupus erythematosus FCGR3B copy number loss (85-87) 
C4 copy number loss (88) 

Legend: A literature-derived collection of genomic disorders associated with CNVs. del: deletion, dup: duplication, inv: inversion, tri: 
triplication. Adapted from Zhang et. al., Annu. Rev. Genomics Hum. Genet., 2009. 
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For years, genome wide association studies (GWAS) used SNPs to identify 

biomarkers for susceptibility to complex diseases. Due to the improved detectability and 

the increasing significance of CNVs in disease, it did not take long for researchers to 

notice that CNVs may also be incorporated into GWAS (89,90). As a result, many de novo 

CNVs increasing disease risk have been discovered (91-93). Moreover, together with 

SNPs, CNVs also contribute to differential response to drugs. At present, certain forms of 

genetic disorders (developmental delay/intellectual disability (94), multiple congenital 

anomalies (95) and neuropsychiatric disorders (96)) can be routinely diagnosed via the 

presence of abnormal copy numbers of specified genes or DNA segments. 

1.2.3 Copy number variations and cancer 

In addition to their pathogenic role in human genetic diseases, CNVs also play a major 

role in cancer. Owing to the advance in the CNV detection techniques, a large amount of 

CNV data from tumour samples have become available, leading to the systematic analysis 

of such variants in cancer. Initially, the role of CNVs in cancer predisposition gained 

supporting evidence (97-100) (Table ). For example, individuals with genomic 

rearrangements involving BRCA1 and BRCA2 genes carry a higher risk for hereditary 

breast and ovarian cancers (101-103). 

Subsequent studies revealed that cancer genomes might be heavily affected by somatic 

CNVs, which substantially changed the interpretation of cancer genomics from SNP-only 

analysis to an integrated approach including structural variations. In cancer, CNVs may 

arise due to the increased genomic instability that favours copy number gain or loss, 

resulting in an increase (amplification) or decrease (deletion) of the genomic regions that 

often contains genes. For example, RB1 and APC deletions are associated with familial 

retinoblastoma and colorectal cancer, respectively (104,105). The detrimental effects of 

CNVs mainly arise from the unbalance in gene copy numbers that lead to altered gene 

expression (106). This may bring to the activation of oncogenes or to the inactivation of 

tumour suppressor genes (107). Many oncogenes (such as MYC (108)) and tumour 



 17 

suppressor genes (such as PTEN (109)) are found amplified or deleted, respectively, in 

several cancer types. The recent advent of technology such as microarray-based 

hybridisation and next-generation sequencing has made it possible to precisely identify 

CNVs in large number of samples with higher resolution and at lower cost (3,13). 

Currently, genomic databases such as TCGA, Tumorscape (13) and COSMIC (110) store 

huge data on somatic CNVs from large cohorts of cancer samples. 

Somatic CNVs may substantially vary in quantity, length and genomic position across 

and within cancer types (13,15,111). Therefore it is important to quantify and characterize 

somatic CNVs to better understand their impact on cancer. Despite such a prominent role, 

it is challenging to identify the genomic regions that bear the actual effect on phenotype 

(driver events). Because a single CNV can contain several to hundreds of genes and there 

may be several such variant regions within a single genome. A common approach to find 

driver events is to consider recurrent CNV regions across samples (13,112). For the same 

purpose, increasing number of studies use an integrative approach by combining CNV data 

with other types of information, such as somatic mutations, DNA methylation and gene 

expression (14,113). 



table continued on the next page… 
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Table : Known cancer predisposition genes associated with CNVs 
Gene Cancer type Locus References 
APC Colorectal, pancreatic, desmoid, hepatoblastoma, glioma, other CNS cancers 5q22.2 (105,114) 
BMPR1A Gastrointestinal polyps 10q22.3 (115) 
BRCA1 Breast, ovarian 17q21 (101,116) 
BRCA2 Breast, ovarian, pancreatic, leukaemia (FANCB, FANCD1) 13q12.3 (103) 
CDH1 Gastric, breast 16q22.1 (117) 
CDKN1B Pituitary tumour, testicular tumour 12p13.1 (118) 
CDKN2A Melanoma, pancreatic 9p21 (119) 
CHEK2 Breast, prostate 22q12.1 (120,121) 
CREBBP Nervous system, brain, leukaemia 16p13.3 (122) 
CYLD Multiple skin appendage tumours 16q12.1 (123) 
EPCAM Colorectal, endometrial 2p21 (124) 
EXT1 Exostoses, osteosarcoma 8q24.11 (125) 
EXT2 Exostoses, osteosarcoma 11p11.2 (125) 
FANCA Acute myeloid leukaemia 16q24.3 (126) 
FH Lieomyomatosis, renal 1q42.1 (127) 
FLCN Renal cell carcinoma 17p11.2 (118) 
GPC3 Wilms’ tumours Xq26 (118) 
HRPT2 Parathyroid carcinoma, renal cell carcinoma 1q31.2 (128) 
JAG1 Hepatocellular carcinoma, papillary thyroid carcinoma 20p12 (129,130) 
MADH4 Gastrointestinal polyps 18q21.1 (131) 
MEN1 Parathyroid adenoma, pituitary adenoma, pancreatic islet cell, carcinoid 11q13 (132) 
MSH2 Colorectal, endometrial, ovarian 2p21 (114) 
MSH6 Colorectal, endometrial, ovarian 2p16 (133) 
NF1 Neurofibroma, glioma 17q11.2 (134) 
NF2 Meningioma, acoustic neuroma 22q12.2 (135) 
NSD1 Increased risk of benign or malignant tumours, including neuroblastoma and gastric carcinoma 5q35.3 (118) 
PMS2 Colorectal, endometrial, ovarian, medulloblastoma, glioma 7p22 (136) 
PRKAR1A Myxoma, endocrine, papillary thyroid 17q24.2 (137) 
PTCH1 Skin basal cell, medulloblastoma 9q22.3 (138) 

PTEN Breast cancer, leukaemia, renal cell adenocarcinoma, neuroendocrine carcinoma, Merkel cell 
carcinoma 10q23.31 (139) 

RB1 Retinoblastoma, sarcoma, breast, small cell lung 13q14.2 (140) 
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RUNX1 Acute myeloid leukaemia 21q22.12 (141) 
SDHB Paraganglioma, pheochromocytoma 1p36.13 (142) 
SDHC Paraganglioma, pheochromocytoma 1q21 (143) 
SDHD Paraganglioma, pheochromocytoma 11q23 (143) 
SMAD4 Colon, stomach, small bowel and pancreas 18q21.2 (131) 
SMARCB1 Schwannomas, malignant rhabdoid 22q11 (144) 
STK11 Jejunal harmartoma, ovarian, testicular, pancreatic 19p13.3 (145) 
TP53 Breast, sarcoma, adrenocortical carcinoma, glioma, multiple other tumour types 17p13.1 (146) 
TSC1 Hamartoma, renal cell 9q34 (147) 
TSC2 Hamartoma, renal cell 16p13.3 (147) 
VHL Renal, hemangioma, pheochromocytoma 3p25.3 (148) 
WT1 Wilms’ tumour 11p13 (149) 
Legend: A literature-derived collection of cancer predisposing genes associated with CNVs. Adapted from Krepischi et. al., Future Oncol., 
2012. 
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1.3 Detection of copy number variations 

CNVs can be detected using a variety of platforms, which can be broadly classified 

into two groups: hybridisation-based and sequencing-based platforms. Between the two 

groups, there are substantial differences in terms of the approach used, therefore the 

resolution of the output greatly varies. 

Hybridisation-based platforms span a wide range of methods, which are essentially 

evolving forms of the same biological principal throughout time. For a long time, 

cytogenetics has been in play, which includes karyotyping, fluorescence in situ 

hybridisation (FISH), comparative genomic hybridisation (CGH), array comparative 

genomic hybridisation (aCGH) and SNP arrays (150,151). The earliest studies used 

karyotyping, where unique banding patterns of the chromosomes are observed by using a 

microscope, allowing of the detection of chromosomal abnormalities (152). In FISH, 

fluorescently labelled probes are hybridized to specific DNA segments, which are then 

analysed by fluorescence microscopy (153). CGH was used to reveal the ploidy of cells by 

labelling the DNA of a test and a reference sample hybridized to metaphase chromosomes 

(154). All of these techniques, however, are limited to detect copy number changes at 

chromosome level, or down to 5 Mbp in ideal conditions. More recent techniques, 

therefore, focused on detecting smaller CNVs. Use of microarrays together with CGH 

(aCGH) led to a locus-specific measure of CNVs, which increased the resolution to detect 

variants as short as 100Kb (155). Moreover, compared to CGH, aCGH does not require the 

use of metaphase chromosomes (156). However, both techniques are unable to detect 

aberrations that do not result in copy number changes (balanced structural variations) 

(155). SNP arrays have overcome this limitation: they are capable of detecting loss of 

heterozygosity events, which are commonly observed in tumorigenesis (157). However, 

the resolution of SNP arrays is still confined to the designed probes and prior knowledge of 

the variants to be analysed is required. 
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Sequencing-based platforms provide a completely different approach to detect CNVs, 

overcoming the aforementioned limitations. Ideally, NGS-based technology allows 

detection of much smaller SVs compared to the hybridisation-based platforms. This 

improvement led to the refinement of the definition of CNV length i.e. currently CNVs are 

widely accepted as segments longer than 50bp (158). Moreover, the boundaries of the 

CNVs can be identified at single-base resolution, fostering studies on CNV breakpoint 

analyses (13,159,160). Another powerful feature of sequencing-based approach is the 

capability of detecting novel variants (158). 

Currently SNP arrays and sequencing-based platforms are widely used in CNV 

analyses as they provide a quick and cost-effective solution. However, an important aspect 

of such platforms is the accuracy of the downstream analysis, i.e. identification of the 

actual regions altered in the genome, known as CNV calling. A number of efficient tools 

were developed to call copy number variations from both SNP arrays and sequencing data. 

The design of SNP arrays is rather straightforward, whereas the sequencing strategies can 

be diverse, reflecting on the diversity of the tools developed. Each tool has its own 

advantages and limitations, and there is not always a high concordance among them. 

Comparison of different platforms and CNV calling tools has been extensively reviewed in 

the literature (161,162). 

1.4 Systems-level properties of cancer genes 

To understand the impact of diseases on the cell fitness, it is crucial to elucidate how 

they alter the gene function. Copy number variations that we have explained so far 

represent a class of mechanical changes to the genome, with an immediate potential to alter 

the dosage of gene function (163). In a broader context, human genes have also adapted 

some intrinsic properties throughout evolution that can help characterise their functional 

role in diseases. For example, disease genes tend to be non-essential and their products 

occupy functionally peripheral positions in protein networks (164). 
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The better understanding of the complexity of biological systems urged to analyse 

biological data differently than the classical methods. In many fields, scientific research 

has substantially changed perspective from single-case analysis to a broader outlook. New 

studies started to integrate all potential contributors of a given condition to better assess the 

actual causes and mechanisms leading to that condition. As a result, also triggered by the 

availability of advanced computational tools to explore genomics data, a new research field 

has emerged: systems biology. 

Biological systems are dynamic and complex, and their behaviour may be challenging 

to predict from the properties of individual parts (165). Systems biology is thus the study 

of interacting biological components as a whole. Emergence of systems biology not only 

expanded the vision of the approaches to the biological problems, but also helped better 

identify the components of the whole picture (166). In this context, a wide range of gene 

properties is studied to address different biological questions. Here we overview several 

systems-level gene properties which we use to distinguish the cancer genes from the rest of 

human genes and to identify novel targets for anti-cancer therapy: 

1.4.1 Gene duplicability 

Gene duplicability is defined as the tendency of a gene to preserve its duplicates in the 

genome (167). Gene duplications can arise from different mechanisms such as 

retroposition (168), segmental duplication (169), chromosomal duplication or whole 

genome duplication (170). Following the duplication event, most of the cases the new gene 

copies are lost due to the deleterious mutations, which render them non-functional (Figure 

A). Rarely, and more importantly in evolutionary terms, duplication may result in creation 

of new genes via two possible processes: neofunctionalization or subfunctionalization 

(171). In neofunctionalization, one of the copies gains a new function by acquiring a 

beneficial mutation, which is positively selected and fixed in the population, while the 

other copy retains its original function (Figure B) (172). In subfunctionalization, both 

copies go through functional divergence, specializing to perform different parts of the 
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original gene function, which gives rise to paralogs with complementary functions (Figure 

C) (172). A variety of methods have been developed to measure gene duplicability and 

identify paralogous genes. In our group, we use our pipeline which relies on the sequence 

conservation (173) and utilises the sequence alignment tool BLAT (174). Based on our 

pipeline, for example, TP53 has only one duplicate, TP73, covering 13% of its sequence 

(NCG 5.0, http://ncg.kcl.ac.uk/). In general, cancer genes tend to be less duplicated than 

the rest of human genes (173,175). 

 

Figure : Evolutionary processes following gene duplication 
 

 

Legend: Three possible fates after gene duplication. Each rectangle represents a gene and 
each colour represents a different function. A) Most common outcome is a non-functional 
gene copy which is lost in time. B) Duplicated copy may gain a new function which is 
fixed if beneficial while the original gene retains its function. C) Both original gene and 
duplicated copy specialize on complementary functions. The functional divergence in each 
process is driven by a mutational event. Adapted from B. Conrad and S.E. Antonarakis, 
Annu. Rev. Genomics Hum. Genet., 2007. 

1.4.2 Orthology and evolutionary appearance 

Unlike paralogs, which originate via a duplication event within the same genome, 

orthologs are genes in different species which diverged from a common ancestral gene by 

a speciation event. Orthologs often have similar functions (176), but not always (177). The 

identification of orthologs is not an easy task, which led to the development of many 

different tools with a variety of approaches. Briefly, some approaches use graphs cluster of 
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genes from different species into groups based on all-against-all sequence comparison. 

Reciprocal best hits between genes of two different species are then regarded as orthologs 

(178-183). Other methods start from multiple sequence alignments of gene families to 

build phylogenetic trees. These trees are reconciled based on the species tree, and used to 

detect speciation and duplication events within each gene family. Then speciation and 

duplication events are associated with orthology and paralogy relationships, respectively 

(184-187). In addition to detect functional counterparts, orthology assignment is also 

useful to trace back to the evolutionary origin of a gene, defined as the most ancient 

internal node where an ortholog can be found (188). For example, TP53 originated in 

opisthokonts according to the eggNOG database (v4.0) (189) (Figure ). 

 

Figure : Evolutionary origin of TP53 
 

 

Legend: Tree of life representing the evolutionary origin and presence of orthologs of 
TP53. Shown are seven branches in evolution and representative groups of species at each 
branch. Yellow denotes the presence of orthologs and red stands for the most ancient node 
in which an ortholog is found, i.e. the origin. Adapted from (NCG 5.0, 
http://ncg.kcl.ac.uk/). 
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1.4.3 Network properties 

A network is a graphical representation of entities (nodes) and connections between 

them (edges). In a biological network, for example, nodes may represent proteins and 

edges may represent physical interactions between them (190). Each network has its own 

structure, which can be assessed through many properties including size, density and 

diameter. Within a network, nodes can also be characterized by their individual properties. 

The most widely analysed node properties are degree, betweenness and clustering 

coefficient (191). 

In a protein-protein interaction network (PPIN), degree is the number of direct 

interactions of a protein, which is a measure of the connectedness of that protein (Figure 

A). Highly connected proteins are regarded as hubs, defined as proteins with a degree 

above a certain threshold in the degree distribution. For example, p53 and Myc are two 

important hubs with a degree of 859 and 560 in human PPIN, respectively (NCG 5.0). 

Betweenness is a measure of centrality, defined as the number of shortest paths from all 

nodes to all others that pass through that node (Figure B). Central nodes, thus, represent 

key proteins that are potentially involved in many cellular processes. For example, FBXO6 

and MDM2 are two extreme proteins with high centrality, with a betweenness score of 

1,458,093 and 1,400,662, respectively (NCG 5.0). Clustering coefficient is the ratio of 

existing links between the neighbours of a node to the maximum possible number of such 

links (Figure C). In other words, it shows how much the neighbours of a protein is 

connected or clustered together. For example, INO80D has a degree of 14, and all of them 

are connected to each other, hence the clustering coefficient is the maximum, i.e. 1 (NCG 

5.0). In general, proteins encoded by cancer genes are enriched in hubs and in central 

positions in human PPIN (167,173). 
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Figure : Basic network properties 
 

 

Legend: A simple undirected graph with 13 nodes and 23 edges representing basic 
network metrics. Highlighted on the graph are A) a highly connected node with a degree of 
6 and a peripheral node with a degree of 1, B) a highly central node located on most of the 
paths between any two nodes and a peripheral node rarely visited across the paths, C) a 
highly clustered node whose neighbours have 8 out of 15 possible edges and a lowly 
clustered node with 1 out of 10 possible edges. Note that the same node can be highly 
central (B) but lowly clustered (C), showing that each measure indicates a distinct 
property. Adapted from Sporns, Front. Comput. Neurosci., 2011 and Sporns, Dialogues 
Clin. Neurosci., 2013. 

1.4.4 Gene expression 

The central dogma of molecular biology explains the information flow from DNA to 

RNA (transcription), and RNA to protein (translation) as a unidirectional process (192). In 

this flow, gene expression refers to the synthesis of a functional product (i.e. RNA or 

protein) from the genetic code, and they are synthesized only when and as much as they 

are needed (gene regulation). In functional studies, assessing the expression of the genes of 

interest is a crucial step because it gives information on the cellular processes or pathways 

operating in the cell. This might be particularly important when comparing a disease 

condition to the normal state. For example, expression of TNFSF10, a member of the 
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tumor necrosis factor (TNF) ligand family, induces apoptosis (193) and overexpression of 

the oncogene EGFR triggers cell proliferation in tumour cells (194). 

 Gene expression can be measured by quantifying the mRNA or protein levels. mRNA 

quantification is more widely used as it is easier to detect and can be performed by a 

variety of lab techniques such as nuclease protection assay, northern blotting and RT-

qPCR. For high-throughput expression profiling, microarrays and RNA sequencing are 

commonly used. Microarrays are based on the hybridisation of the pre-designed probe 

sequences to the mRNA of the target genes. Instead, RNA sequencing gives information 

on the abundance of RNA transcripts that are present at the cell. One of the many 

applications of gene expression measurement is to assess the functional impact and the 

underlying mechanisms of gene copy number changes on the genome (195,196). 

1.5 Synthetic lethality 

We have explained some of the systems-level properties of genes and illustrated with 

some examples. In principle, these and other gene properties can be helpful in addressing 

many different research questions, for example to distinguish cancer genes from the rest of 

human genes, as well as in practical implications in developing treatment strategies. Next, 

we demonstrate how such gene properties can be used to identify potential targets in anti-

cancer therapy. 

Increasing amount and better accessibility of the genomic data led to the rapid 

development of novel tools and strategies fostering our understanding of the human 

genetic diseases. However, there is still a gap between genomic research and patient 

treatment, which urges the need to translate biological knowledge into practical 

applications in therapy. In this respect, one of the strategies proved to be promising in anti-

cancer therapy is known as synthetic lethality. The concept of synthetic lethality has been 

very popular and widely exploited in the recent literature as it represents an alternative and 

effective approach to identify novel therapeutic targets. This is much appreciated when 
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considering the complexity of targeting cancer, such as low rate of druggability of cancer 

drivers (197) and “non-oncogenic addiction” of cancer state (i.e. dependency on genes that 

are not oncogenes themselves but act in oncogenic pathways) (198). 

Two genes are regarded as synthetic lethal if mutation in one of them does not 

interfere with cell viability while mutation in both leads to cell death (Figure A). Such a 

scenario implies the existence of a specific function required for the cell survival that is 

dependent on either of these two genes. In addition, both genes must be non-essential 

because the cell would not survive as well in case of mutation in one of them. In principle, 

synthetic lethality provides a powerful framework for killing cancer cells in a specific 

manner. Because only cancer cells carry the mutated gene whose function is impaired, 

therefore knockout of its synthetic lethal partner will result in the death of the cancer cells 

only (Figure B). In addition to loss-of-function mutations, synthetic lethality with gain of 

function mutations, gene overexpression (199,200), epigenetic changes (201) and cell 

extrinsic differences (202,203) have also been reported. Detecting such alterations in the 

genome is straightforward, but how can their synthetic lethal partners be identified? 
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Figure : Synthetic lethality 
 

 

Legend: A representative scheme of synthetic lethality between two genes. In the simplest 
terms, a red cross represent mutations or perturbations that lead to the functional 
impairment of the gene. A) In the presence of synthetic lethality, co-mutation of the genes 
leads to cell death, while in any other combination the cells are viable. B) In cancer cells, 
one of the synthetic lethal genes is already mutated (highlighted in red), and mutagenesis 
of its partner selectively kills cancer cells. Adapted from Hühn et. al., Swiss Medical 
Weekly, 2013. 

A variety of approaches have been used to discover synthetic lethality. Early studies 

mainly focused on the high throughput screenings of the yeast genome (S. cerevisiae) by 

using RNA interference (RNAi) or drug libraries to identify synthetic lethal interactions 

(204). Yeast has been a popular model organism for this purpose because of abundance of 

genetic interactions reported in functional analyses, also known as yeast knockouts (205). 

For example, a genome-wide strategy through synthetic genetic array (SGA) analysis has 

been developed for the systematic construction of double mutants (206,207). Another 

technique introduced the use of microarrays to probe genome-wide gene-chemical and 

gene-gene interactions, called synthetic lethality analysis by microarray (SLAM) 

(208,209). Moreover, a modified version of the SGA method, called epistatic miniarray 

profiles (E-MAPs), was developed for quantitative pairwise measurements of the genetic 

interactions in a selected subset of the genome (210-212). In addition to these experimental 

designs, a number of computational algorithms utilizing in silico predictions were 
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developed aiming to understand the patterns at genome scale resulting in synthetic lethality 

(213-220). These approaches collectively identified numerous synthetic lethal interactions 

in yeast and other model organisms (221-224). However, such genome-wide screening 

studies have a number of limitations including high cost, high rate of false positives, 

variation among different strains, different growth conditions and lack of mechanistic 

explanation. Most importantly, synthetic lethal pairs found in yeast are not readily 

applicable to human genes, which require orthologous mapping and investigation of 

additional factors intrinsic to the human genome (225). 

More recently, synthetic lethality has gained great importance in human genome 

studies. Several reasons can be listed for this: better understanding of the human 

interactome owing to the functional analyses and RNA sequencing, development of 

efficient molecular tools for cell engineering, and urging need for alternative therapeutic 

strategies in cancer (226). As a result, a large number of synthetic lethal interactions have 

been identified and experimentally validated, yet many more were predicted in silico 

(227). Approaches to identify synthetic lethal interactions can be divided into 3 groups: 

screening-based, hypothesis-driven and computational approach. 

Screening-based approaches rely on the genome-wide comparison of the effect of chemical 

compounds or RNAi interference between a test and genetically matched cell line. In this 

design, the only difference between the two cell lines is the expression/activation status of 

the gene of interest. Different libraries can be prepared for such a screening. For example, 

chemical libraries (Figure A) were used to identify the synthetic dependencies of VHL-

deficient renal cell carcinomas (228,229) and Fanconi anaemia pathway-deficient ovarian 

cancer (230). Small interfering RNAs (siRNA) libraries, which are prepared on a plate 

wherein each siRNA is transfected separately in its own well (Figure B), led to the 

identification of FAT1 as an antagonist of caspase-8 in extrinsic apoptosis in patient-

derived glioblastoma cell lines (231), and of ATR sensitized by the topoisomerase I 

inhibition in a breast cancer cell line (232). Use of small hairpin RNA (shRNA) libraries, 
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which consist of shRNA virus pools (Figure C), led to the identification of synthetic 

lethality between CCNE1 amplification and loss of BRCA1 (233), and KRAS and STK33 

suppression (234). In addition, an emerging method of genome editing called clustered 

regularly interspaced short palindromic repeats (CRISPR) (235) is likely to be used in 

synthetic lethality screens more frequently in the near future. 

 
Figure : Screening-based approaches to detecting synthetic lethal interactions 
 

 

Legend: Steps of library preparation and target identification for synthetic lethality screens 
of A) chemical, B) siRNA, and C) shRNA library approaches. Adapted from Thompson et. 
al., Yale J. Biol. Med., 2015. 

Hypothesis-driven approaches rely on established knowledge of well-characterized 

patterns of genomic alterations or other events that may give hint of specific vulnerabilities 

in cancer. For example, frequent mutations in the BRCA1 and BRCA2 genes in breast and 

ovarian cancers and the functional role of these genes in homologous recombination and 

DNA double-strand break repair are well known. This led to the hypothesis that targeting 

the DNA repair defect would be synthetically lethal with loss of BRCA1/2, which led to 

discovery of PARP inhibitors as a therapeutic target in these tumours (236,237). Likewise, 
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paralogous genes may have functional redundancy due to their common ancestral origin 

and certain level of sequence conservation, particularly in the early course of evolution 

after a duplication event. Based on this, hypothesizing that functionally paralogous cancer 

genes may act as negative genetic interactors, our group previously demonstrated synthetic 

lethal interactions between three novel gene combinations, SMARCA4-SMARCA2, CDH1-

CDH3 and DNMT3A-DNMT3B-DNMT1 (188). Another study utilised the mutual 

exclusivity of KRAS and EGFR mutations in human lung adenocarcinomas, and observed 

that co-expression of both genes are toxic to cells, implying synthetic lethality (238). The 

same concept of mutual exclusivity was also used at the genome scale in a study of breast, 

prostate, ovarian and uterine cancers, revealing 718 genes that are likely to be synthetic 

lethal with six key DNA-damage response genes (239). 

Computational approaches integrate multiple types of data to predict synthetic lethal 

interactions based on a model. These approaches take advantage of high calculation 

capability to exploit large genomic profiles. A comprehensive pipeline for this purpose 

(data mining synthetic lethality identification pipeline, DAISY) statistically infers 

synthetic lethal interactions from cancer genomic data of both cell lines and clinical 

samples (240). DAISY builds a cancer synthetic lethality network collecting mutational 

and functional profiles of the human genes in cancer samples (Figure ). Another tool uses a 

hybridised method, which combines a data-driven model with knowledge of signalling 

pathways to simulate the influence of single and double gene knock-down to cell death, 

and assigns a probability score to the synthetic lethal candidates based on the cell viability 

(241). 
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Figure : The workflow of DAISY 
 

 

Legend: DAISY is a computational approach to predict synthetic lethal interactions in 
cancer. Shown are the steps of three different inference procedures leading to the 
construction of a synthetic lethality network. Adapted from Jerby-Arnon et. al., Cell, 2014. 

1.6 Aim and rationale of the thesis 

The aim of this thesis is to understand the role of somatic CNVs in cancer. In 

extension, systems-level properties of cancer genes are utilised to identify novel 

therapeutic targets that confer synthetic lethality. 

Variability in the human genome is the ultimate source of genetic diseases. Although 

each genome is unique, certain chromosomal abnormalities or gene aberrations result in 

the same phenotype in different individuals. For example, extra copy of chromosome 21 

(trisomy 21) leads to Down syndrome which is essentially characterized by intellectual 

disability (242). At a smaller scale, the functional impairment of a single gene, PRF1, 

leads to an autosomal recessive disorder known as familial hemophagocytic 

lymphohistiocytosis type 2 (243). These examples indicate the presence of a certain level 

of robustness in the human genome, which allows a systematic analysis of disease-

phenotype associations. However, in complex diseases such as cancer, linking a phenotype 

to its causal genotype is often much more complicated. This is mainly due to the multiple 
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genomic aberrations that simultaneously occur in cancer cells, which include only a few 

driver events and many passenger events. For example, TP53, a well-known tumour 

suppressor involved in cell cycle, DNA repair and other key regulatory mechanisms, is 

frequently mutated in more than 20 different cancer types (International Cancer Genome 

Consortium, ICGC, https://dcc.icgc.org/). However, TP53-mutated samples also include 

several to hundreds of other mutated genes, yet some samples lack mutation in TP53. In 

such a scenario, it is not possible to link the same cancer phenotype to a single driver in 

each tumour; it is actually a challenging task to identify the drivers in each sample. On the 

other hand, some drivers mutate at a higher frequency in certain cancer types. For example, 

mutations in APC are observed in more than 30% of the colorectal cancers, similarly, 

PIK3CA is mutated in above 30% of the breast cancer samples (ICGC). Recurrence of a 

genomic alteration, thus, may be informative of the driver role of the altered gene in 

certain contexts. Taken together, these observations imply that most of the cancer genes 

are tumour and even sample specific (244,245). 

Nevertheless, answers to the challenging questions raised above ultimately lie in the 

sequence of the human genome. The genomic sequence is the raw material that must be 

processed to understand the mechanistic causes of diseases. The sequence alterations can 

be in many different forms, including single nucleotide variations, copy number variations 

and genomic rearrangements. Among these, this thesis particularly deals with copy number 

variations. Briefly, the properties of somatic CNVs that are acquired in the cancer genomes 

are characterised and compared to those of germline CNVs that are inherited. Then the 

impact of somatic CNVs on gene expression is investigated to explain how this can lead to 

the activation or inactivation of cancer genes. The genomic features, which may potentially 

impact on CNV formation, are further inquired. Finally, the genes that are frequently 

amplified and deleted in cancer are analysed to see the potential contributors of the disease. 
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2 Methods 

2.1 Dataset of human genes and cancer genes 

2.1.1 Human genes 

To derive the human gene set, we used the pipeline previously developed in our group 

(173). First, we downloaded the protein sequences of all human genes from NCBI RefSeq 

database (version 51) and aligned them to the reference human genome (Hg19) using a 

sequence similarity search tool (BLAST-like Alignment Tool (BLAT) (174)). For each 

protein sequence, the tool gives an alignment hit in the genome with the highest score (best 

hit), and any possible additional hits at lower coverages (duplicates). The best hit of each 

protein is considered as the gene locus. We retained only the hits that map to the autosomal 

or sex chromosomes on the reference genome, and discarded those mapping to alternate 

haplotype sequences or random chromosomes. In cases of overlapping best hits, we 

retained only the longest one as the representative of the locus, to have only one isoform 

for each gene corresponding to a unique genomic region. Finally, we removed all the genes 

with their best hit shorter than 60% of the original protein length. This was done to 

eliminate spurious hits, which do not correspond to the original locus of the gene. This 

resulted in 19,045 unique human genes. 

2.1.2 Cancer genes 

Cancer genes are the mutated genes that are causally implicated in oncogenesis (246). 

Based on this definition, we collected a union of 501 cancer genes from the Cancer Gene 

Census (CGC (246), 448 genes (January 2012) and the literature ((247), 77 genes). Genes 

from the CGC are divided into dominant (349) and recessive (103) genes, and 4 of them 

can act as both dominant and recessive. The dominant and recessive cancer genes can be 

defined as the following: 
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1) Dominant cancer genes acquire mutation on single allele and this is sufficient to 

promote cancer 

2) Recessive cancer genes require both alleles to be mutated to promote cancer 

Usually, oncogenes correspond to dominant genes, since these require a gain-of-

function mutation. Tumour suppressors are instead recessive genes, since loss-of-function 

mutations usually require complete gene inactivation. In our analyses, we considered 

dominant and recessive cancer genes separately for comparison with the rest of human 

genes. For more recent analyses, we used the updated list of cancer genes from the Cancer 

Gene Census, of which the latest one included 518 cancer genes (February 2014). 

2.2 Dataset of CNVs 

2.2.1 Germline CNVs 

In order to understand the genomic landscape of CNVs in normal population, we 

initially studied germline CNVs in healthy individuals. We obtained germline CNVs from 

the Database of Genomic Variants (DGV) (12), which stands as the largest curated 

repository of human genomic structural variations identified in apparently healthy control 

or normal samples. Before inclusion in the database, DGV applies a set of filters to ensure 

high quality data: 

1) CNVs from patients are excluded, only those from controls are included, 

2) CNVs that map to alternate haplotype sequences, random chromosomes or 

mitochondrial chromosome are excluded, only those that map to the autosomal or 

sex chromosomes are kept, 

3) CNVs from the same study that overlap by at least 70% in length and position are 

merged (i.e. these are likely to be the same variant), 

4) CNVs smaller than 50bp, larger than 3Mb, found in gaps and associated with 

known disorders are removed. 
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We downloaded 133,693 CNVs from DGV (March 2012), which contained 120,883 

deletions, 2,054 amplifications, 9,843 insertions and 913 complex CNVs. The data was 

derived from 35 studies and represented a non-homogeneous collection due to the various 

methods used to detect the CNVs (such as fluorescence in situ hybridisation (FISH), 

comparative genomic hybridisation (CGH), PCR-based copy number arrays, microarray 

and sequencing). Deletions constituted the vast majority of germline CNVs, owing to the 

large contribution from the pilot phase of 1000 Genomes Project (3). To reduce the bias 

towards deletions, we integrated 48,931 segmental duplications into amplifications, which 

are blocks of highly conserved repeated DNA segment longer than 1 kb, as derived from 

UCSC Table Browser (248). To obtain unique regions, we merged individual CNVs of the 

same type that overlap by genomic coordinates. This resulted in a final dataset of 67,782 

unique regions (Table ). DGV is regularly updated and current version (July 2015) 

includes 491,894 CNVs derived from 67 studies. 
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Table : Dataset of germline and somatic CNVs 
CNV Dataset CNV Type Number Genome Coverage Samples Cancer Types 

Germline 
Amplifications 8,635 7% 

NA NA Deletions 50,943 22% 
Total 67,782 25% 

Tumorscape All 
Amplifications 75,700 97% 

3,056 54 

Deletions 55,101 97% 
Total 130,801 97% 

Tumorscape Peaks 
Amplifications 76 6% 

Deletions 82 13% 
Total 158 18% 

TCGA All 
Amplifications 242,745 96% 

6,213 23 

Deletions 342,501 96% 
Total 585,246 96% 

TCGA Recurrent 
Regions 

Amplifications 1,425 72% 
Deletions 2,214 76% 

Total 3,639 90% 

TCGA Core 
Regions 

Amplifications 61 22% 
Deletions 234 36% 

Total 295 55% 
Legend: For each CNV dataset, reported are the numbers of amplifications, deletions and all CNVs, the percentages of their genome 
coverage, and the corresponding number of samples and cancer types. Germline CNVs are merged by overlapping coordinates and segmental 
duplications from UCSC Table Browser (248) are integrated as amplifications. Genome coverage shows the cumulative percentage of genome 
that undergoes CNV. For germline CNVs, only amplifications and deletions are shown for comparison with other datasets (Insertions and 
Complex CNVs are included in the total). 
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2.2.2 Somatic CNVs 

2.2.2.1 Tumorscape 

As the first dataset of somatic CNVs, we downloaded data from the Tumorscape 

database (13) (http://www.broadinstitute.org/tumorscape/pages/portalHome.jsf). This 

study represents one of the first large-scale analyses of high-resolution somatic copy 

number variations, which collects 130,801 somatic CNVs from 3056 samples 

corresponding to 54 cancer types (Table ). All the copy-number measurements are 

obtained on the same platform (Affymetrix 250K Sty array), representing a homogeneous 

set of CNVs across samples. 

The authors further identified focal regions of somatic copy number alterations by 

using GISTIC 2.0 algorithm (249), defined as “peak regions”. Briefly, GISTIC 2.0 is a 

gene-centric approach that identifies regions that occur significantly more frequently than 

the expected background rate. For our analysis, we used 158 peak regions from the original 

study (Table ). 

2.2.2.2 TCGA 

As a second dataset of somatic CNVs, we used data from The Cancer Genome Atlas 

(TCGA, https://tcga-data.nci.nih.gov/tcga/), which is a comprehensive and on-going 

project to profile the genomes of more than 10,000 patients from above 30 cancer types. 

We downloaded somatic CNVs available in 6,213 tumour samples from 23 cancer types 

(January 2013) (Table ). 

To reduce possible false positives, we applied filters on the amplitude of the 

alterations. Amplitude is the log2 ratio of the copy numbers in a given genomic region 

between the tumour sample and the reference sample, and calculated as the mean of all 

amplitudes of the individual probes for that region (defined as segment). We considered 

the segments with amplitude higher than 0.3 as amplified, and those with amplitude lower 

than -0.3 as deleted. These thresholds are widely used in the literature (250-254). 
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2.3 Dataset of somatic mutations 

We used a modified version of Level 2 somatic mutation data on TCGA samples in 

the mutation annotation format (MAF) downloaded from the Synapse repository (255) 

(https://www.synapse.org/#!Synapse:syn1729383/wiki/, March 2013). The curators 

applied data cleaning steps to ensure accurate annotation and high quality of variants, i.e. 

mapping genomic loci of all variants to Hg19, filtering out variants that are unlikely to be 

somatic, classifying variants in pseudogenes as silent, excluding variants from metastases 

or recurrences if variants from the primary tumour are already present. The clean dataset 

consisted of 19 MAF files corresponding to 20 cancer types (COAD and READ are 

combined as colorectal). For our purpose, we used a subset of this dataset including 

427,995 non-silent mutations identified in 11 cancer types. 

2.4 Dataset of gene expression 

We downloaded gene expression data from TCGA for the cancer types with also CNV 

data, which was available for 11 cancer types out of 23. Each expression file included 

expression values for 17,814 genes processed by the same microarray platform (Agilent 

244K Custom Gene Expression G4502A-07). All the tumour samples in the array were 

hybridized against a common reference, Stratagene’s Universal Human Reference RNA 

(http://www.chem-agilent.com/pdf/strata/740000.pdf). This reference sample is composed 

of equal quantities of total RNA from 10 human cell lines and designed to be used as a 

control for spot intensity rather than a biological reference. Then the expression value 

obtained for each sample was (lowess) normalized and the log2 ratio between the sample 

and the reference was given as the output. We directly used these normalized expression 

values for our analysis. 
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2.5 Combined dataset 

In order to track the genetic and regulatory modifications of genes together, we 

created a dataset by combining the 3 types of data from TCGA at sample level (Table ). 

This resulted in 1,245 samples from 11 cancer types in which somatic CNV, mutation and 

gene expression data were available for each sample. In the combined dataset, we labelled 

each gene in each sample for different data types as the following: 

1) CNV à Amplified, Deleted, Wild-type 

2) Mutation à Mutated, Wild-type 

3) Gene expression à Highly expressed, Medium expressed, Lowly expressed 

For CNV categories, we considered 25% of the gene length for the intersection. For 

mutation categories, we accounted for the presence or absence of a non-silent mutation 

based on the annotation in the original file. For the gene expression, we determined the 

categories based on the gene expression distribution in each sample; labelling the gene as 

highly expressed if it had an expression value falling in the top 10% of the distribution, as 

lowly expressed if in the bottom 10% and as medium expressed if anywhere else. 
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Table : Combined dataset of somatic CNVs, mutation and expression 
Cancer Type Samples Human Genes Cancer Genes Dominant genes Recessive genes 

BRCA 259 5,438 204 145 62 
COAD 110 9,668 318 242 80 
GBM 253 6,213 224 168 59 
KIRC 46 1,900 85 52 34 
KIRP 15 790 37 26 12 
LGG 25 661 30 17 13 

LUAD 31 4,812 182 128 57 
LUSC 114 9,766 319 232 90 

OV 304 6,745 245 173 73 
READ 46 3,031 121 82 39 
UCEC 42 9,936 325 240 86 

Unique total 1,245 14,288 427 328 103 
Legend: For each of 11 cancer types, reported are the number of samples with somatic CNVs, mutation and expression data from TCGA, and 
the corresponding number of genes with all 3 types of data. 
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2.6 Identification of recurrent regions of copy number alteration 

We observed that somatic copy number variations, unlike the germline copy number 

variations, are pervasive in the genome, covering more than 95% of the genome when 

merged. To analyze them in the same way as for germline CNVs, we applied a different 

methodology to the somatic CNVs than that we applied to the germline CNVs. Instead of 

merging all the individual CNVs from different samples (which was the case for germline 

CNVs), we first defined recurrent CNV regions that occur frequently across the samples. 

We identified recurrent regions in each cancer type based on an iterative procedure (Figure 

A). Among CNVs that overlap at least 70% reciprocally by coordinates, the shared region 

(minimal common region) is identified, whereas CNVs that overlap less than 70% 

reciprocally are discarded. This step is repeated iteratively until no two regions with >70% 

overlap remains. Among the surviving regions, only those present in >5% of the samples 

of the corresponding cancer type are retained. This led to 1,245 amplifications and 2,214 

deletions, defined as “recurrent regions” (Figure B). This approach resulted in a reduction 

of genome coverage of somatic CNVs from ~95% to ~70%, which was still high compared 

to that of the germline CNVs. 

Above approach is limited to define cancer-specific recurrent regions. To obtain the 

regions that are common in cancer, we further refined the recurrent regions retaining those 

present in at least 4 cancer types and merging if the distance between the regions is 

minimal (<1 Mbp). This resulted in 61 amplifications and 234 deletions, defined as “core 

regions” (Figure C). Biologically, these regions should possess higher propensity to 

undergo copy number variations than the rest of the genome as they follow a pan-cancer 

pattern. The core regions we identified were comparable to the germline CNVs in terms of 

genome coverage, and to the peak regions from Tumorscape dataset in terms of both 

coverage and number. 
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Figure : Identification of recurrent somatic CNV datasets 
 

 

Legend: Methodology to identify recurrent regions of somatic CNVs and core regions in 
TCGA dataset. A) Starting from the original data from TCGA, the shared region (minimal 
common region) is identified among CNVs that overlap at least 70% reciprocally by 
coordinates, whereas those that overlap less than 70% are discarded. This step is repeated 
iteratively until no two regions with >70% overlap remains. B) Among the surviving 
regions, only those present in >5% of samples of the corresponding cancer type are 
retained, resulting in “Recurrent regions”. C) Recurrent regions are further refined by 
retaining those present in at least 4 cancer types and such regions are merged if the 
distance between them is minimal (<1 Mbp), resulting in “Core regions”. 

Our approach to define recurrent regions was a simple alternative to the widely used 

GISTIC algorithm (249), which is essentially based on the frequency (recurrence across 

samples) and the amplitude (copy number) to identify significantly recurrently altered 

CNV regions in tumour samples. 
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2.7 Intersection of CNVs with genes 

To assess the gene content of CNVs, we intersected genes with CNVs by the genomic 

coordinates using BEDTools (256). For the intersection, we used the merged regions from 

all the individuals for the dataset of germline CNVs, instead the recurrent and the core 

regions that we identified for the datasets of somatic CNVs. At least 25% of the gene 

length was required to overlap with a copy number variation to mark the gene as altered. 

This threshold was the best compromise between the gene portion spanned by a CNV to 

consider the gene as affected and the number of CNVs that still overlap with a gene (at 1% 

threshold the gene is not likely to be affected and at 100% threshold there are too few 

CNVs that overlap with genes) (Figure ). Each gene can be amplified or deleted in the 

same sample, as amplifications and deletions do not overlap. However, the same region 

can be amplified and deleted in different samples, indicative of cancer type-specific 

alteration or involvement of different mechanisms leading to copy number variation in 

different set of individuals. 

2.8 CNV coverage and distribution along the chromosomes 

To see how the somatic CNVs are distributed along the human genome, we first 

measured the CNV coverage of each chromosome and chromosome arm. For each 

chromosome/arm, we calculated the non-redundant number of bases that undergo copy 

number variation and divided by the total number of bases in that chromosome/arm. This 

led us to rank the chromosomes/arms according to their overall CNV coverage. We further 

assessed the chromosome arms that are most frequently altered across the samples and the 

cancer types and explored the cancer genes within these regions. 
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Figure : Determining threshold for gene length overlapping with CNVs 
 

 

Legend: A) For each percentile of gene length as the minimum portion to be contained 
within a CNV, shown is the percentage of genes overlapping with CNVs. B) For each 
percentile increment in gene length, shown is the decrease in the percentage of genes 
overlapping with CNVs. For values higher than 25%, the decrease is constant. 

2.9 Intersection of CNVs with genomic features 

In order to distinguish whether somatic copy number variations in cancer occur in 

some genomic regions in a recurrent fashion due to their involvement in cancer-specific 

processes or simply due to the genomic features underlying their fragility, we investigated 

the distribution of genomic features along the genome and their overlap with CNVs. We 

first checked the fragile sites of the genome, which are thought to have an increased local 

rate of DNA breakage (257), to see if CNVs have a propensity to lye within them. Then we 

obtained other relevant genomic features from the UCSC Table Browser (258) that might 

potentially lead to CNV formation. We divided the genomic features into two as discrete 

and continuous features. The former consisted of those which have a definitive quantity 

and length (such as genes, SNPs) that can be attributed as present or absent within CNVs. 
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Instead the latter are continuous throughout the genome which show varying local rates per 

unit (such as recombination rate, level of expression). For discrete features, we compared 

the proportion of each feature within CNVs to the proportion within the rest of the genome 

by Chi-square test. For continuous features, the original data is given in a format that the 

genome is divided into bins of equal length and each bin is assigned to a score reflecting 

the abundance of the feature in that bin. For each CNV, we calculated the average score of 

a given feature over the spanned bins. Similarly, we calculated the average scores of non-

CNV regions, where the bins between CNV regions were considered. Having the scores 

for each CNV and non-CNV regions, we compared the distribution between the two by 

Wilcoxon rank-sum test. We realized that comparing distributions is more accurate than 

comparing proportions in case of such large quantity of data, therefore we applied this 

method also to the discrete features. 

We intersected each set of genomic features with recurrent somatic CNV datasets 

(Tumorscape peaks, TCGA recurrent and TCGA core regions). We compared the CNV 

regions with the rest of human genome for their overlap with a given feature. We excluded 

the regions in the reference genome with poor mappability (telomeric ends, centromeres 

and the short arms of the acrocentric chromosomes from UCSC Table Browser Hg19 gap 

file) to eliminate possible bias, as CNVs from TCGA SNP array did not map to these 

regions. We merged the overlapping discrete features to count each base once. 

2.10 Gene expression change upon copy number alteration 

In order to measure the impact of somatic CNVs on gene expression, we used a 

method previously used in similar studies (14). This method is simple yet useful where 

expression data from the normal samples is not available, which was the case in our 

analysis.  

Starting from the normalized gene expression levels in the array, we calculated the 

average expression levels of genes in 3 conditions by using the formula: 
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where n is equal to the number of samples where gene g: 

1) is amplified, 

2) is deleted, 

3) does not undergo copy number variation. 

Then we compared the distribution of average expression levels of genes in the 

amplified samples (1) and the deleted samples (2) to those in the samples in which genes 

do not undergo copy number variation (3) by Wilcoxon rank-sum test. This allowed us to 

see the general trend on gene expression change upon copy number alteration. 

2.11 Preferential modification of cancer genes 

We used somatic CNV and mutation data to determine the primary modification that 

genes have incurred. For each gene, the fraction of samples in which the gene is amplified, 

deleted and mutated over the total number of modified samples for that gene were 

calculated by using the formulae: 

, ,  

 

 
 

 

where 

• f denotes fraction of samples, 

• g denotes gene, 

• n denotes number of samples. 

average expression levelg =
expression levelg, n

1

n

∑
n

fg, amplified =
ng, amplified

ng, modified

fg, deleted =
ng, deleted

ng, modified
fg, mutated =

ng, mutated

ng, modified

ng, modified = ng, amplified + ng, deleted + ng, mutated
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However, due to the few number of mutations per sample, the fractions of mutated 

samples were too low to compare to the fractions of amplified and deleted samples. 

Therefore only amplifications and deletions were considered to determine the primary 

modification between the two that affect the cancer genes. In general, to determine the 

primary modification of a gene, we considered more than 90% of the samples to have the 

same type of alteration. 
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3 Results 

In this section, we first describe the features of germline copy number variations in 

healthy population. This provides an understanding of how changes inherited in the human 

genome may remain compatible with a normal phenotype. Next we compare these features 

to those of somatic copy number variations that occur in cancer samples. Comparison 

between germline and somatic CNVs reveals substantial differences, suggesting a role for 

the latter in cancer. We then quantify the link between somatic CNVs and genes, in 

particular with dominant and recessive cancer genes, leading to interesting findings. 

Enrichment of amplifications in dominant cancer genes and of deletions in recessive 

cancer genes suggest two opposite patterns of tumourigenic activation. This result is 

supported by the high correspondence of dominant and recessive cancer genes to 

oncogenes and tumour suppressors, respectively. As a further support, we found a positive 

correlation between amplification and overexpression and between deletion and decreased 

expression across cancer samples. More generally, such correlations were also shown 

between germline CNVs and contained genes across healthy individuals (89,196,259). 

Taken together, we propose that dominant cancer genes, which are mostly oncogenes, are 

activated through their genomic amplification, instead recessive genes, which are mostly 

tumour suppressors, are inactivated via deletion. 

Next we look into gene copy number variation, in particular gene amplification, in a 

broader context in the evolution extending to the gene duplicability, defined as the 

propensity of multiple copies of a gene retained in the genome (167). Gene duplicability 

has important implications in genome evolution, such as emergence of new genes, which 

give rise to paralogous genes. We use gene duplicability as well as other gene properties to 

define paralogous gene pairs for a practical purpose, that is the identification of novel 

synthetic lethal gene pairs in cancer, which has been previously demonstrated to be a 

working hypothesis by our group (188). By integrating numerous gene properties 

(duplicability, network properties, protein domain composition, functional redundancy, 
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pathway information) with the genomics data derived from cancer samples (somatic 

mutation and gene expression from The Cancer Genome Atlas (TCGA), https://tcga-

data.nci.nih.gov/tcga/), we predict putative gene pairs with potential synthetic lethal 

interaction. 

Finally, we present the last release of the Network of Cancer Genes (NCG), a database 

curated in our group (175,260-262). NCG provides literature information and system-

levels properties on a manually curated set of cancer genes. In addition to the general 

description of the database, we demonstrate how NCG can be useful for hypothesis testing, 

as was the case for prioritizing our candidates with putative synthetic lethal interaction. 

3.1 Somatic CNVs are pervasive in the genome compared to germline CNVs 

To investigate the genomic landscape of CNVs in normal individuals and cancer 

samples, we derived a dataset of germline CNVs from the Database of Genomic Variants 

(DGV) (12) and two datasets of somatic CNVs from Tumorscape (13) and TCGA 

(https://tcga-data.nci.nih.gov/tcga/). Within these datasets, we characterized CNVs in terms 

of their length, genome coverage and gene correspondence (number of genes contained 

within a CNV). 

We found that the vast majority of germline CNVs is less than 5kb long (Figure A), 

and they cover 25% of the genome when merged by coordinates (amplifications cover 7% 

and deletions cover 22%, separately) (Table ). In general, genes tend to fall within long 

CNVs while CNVs tend to overlap with short genes (Table ). In addition, there is a trend 

for one-to-one correspondence between germline CNVs and genes (i.e. one gene 

undergoes only one CNV and one CNV affects only one gene) (Figure A, B). This trend is 

more prominent for cancer genes (Figure C, D).  

Somatic CNVs, however, are significantly longer than germline CNVs (in the order of 

megabase pairs) and in some cases they may span the entire arm of a chromosome (Figure 

B, C). This is not surprising considering that cancer genomes are often associated with 

large-scale genomic alterations (263). In the last years, somatic CNVs affecting an entire 
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chromosome arm (arm-level CNVs) were extensively identified and distinguished from 

smaller ones (focal CNVs) (13,15,264). As a result, the original sets of somatic CNVs 

cover the entire genome when merged. On the other hand, recurrent somatic CNV regions 

that we identified have more comparable genome coverage to that of germline dataset. For 

this reason, we used only recurrent regions of somatic CNVs for further analyses. 

In addition, we observed that the average number of somatic CNVs per sample varies 

among cancer types, which might suggest a distinguishing characteristic for each cancer 

type (Table ). For example, ovarian cancer and sarcoma have the highest number CNVs 

per sample in average (104 amplifications and 125 deletions per sample for ovarian cancer, 

and 170 amplifications and 104 deletions per sample for sarcoma). In a pan-cancer 

analysis, ovarian cancer was shown to be primarily characterized by CNVs rather than 

mutations (14). On the other extreme, thyroid cancer has the lowest number of CNVs per 

sample in average (2 amplifications and 13 deletions per sample). 
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Figure : Length distribution of CNVs 
 

 

Legend: Shown are length distributions of amplifications and deletions in A) germline, B) 
Tumorscape (13) and C) TCGA original datasets. Distributions of germline and somatic 
CNVs are given in kilobase pairs (Kbp) and megabase pairs (Mbp), respectively. Wilcoxon 
rank-sum test is applied to compare the length distributions of both somatic CNV datasets 
to that of the germline CNVs (p-value < 2.2e-16). 

These results imply that germline CNVs tend to minimally affect the protein-coding 

part of the genome. This is expected considering the fact that abnormal number of gene 

copies may cause certain genetic diseases (6,17) and germline CNVs used here derive from 

apparently healthy individuals. On the other hand, somatic CNVs alter the genetic makeup 

substantially, complying with the cancer phenotype. For example, somatic copy number 

alteration of certain genes were shown to play a driver role in several cancer types, such as 

amplification of MYC (265), ERBB2 (266), and deletion of CDKN2A (267), CHD1 (268). 
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Table : Length distribution of germline CNVs and genes 
  Number Median length (kb) Average length (kb) p-value 
All CNVs 67,782 2.000 15.460  
Amplifications 8,635 2.242 25.463  
Deletions 50,943 2.050 13.025 NA 
Insertions 7,430 0.342 13.203  
Complex CNVs 774 10.155 85.830  
All Genes 19,045 15.558 48.421  Cancer Genes 501 35.194 75.061 < 2.2e-16 Rest of Human Genes 17,336 14.268 42.634 
     
Genes That Overlap with CNVs 6,919 9.202 34.518 < 2.2e-16 Genes That Do not Overlap with CNVs 12,126 19.811 56.353 
     
Cancer Genes That Overlap with CNVs 178 18.080 62.041 1.96E-06 Cancer Genes That Do not Overlap with CNVs 323 44.666 82.235 
     
CNVs That Overlap with Genes 4,278 46.069 148.832 < 2.2e-16 CNVs That Do not Overlap with Genes 63,504 1.850 6.476 
     
CNVs That Overlap with Cancer Genes 195 157.070 384.315 < 2.2e-16 CNVs That Do not Overlap with Cancer Genes 67,587 2.000 14.400 
Legend: Reported are the numbers, median and average length of germline CNVs and genes. The length distribution of cancer genes is 
compared to that of the rest of human genes, where candidate cancer genes are excluded. Wilcoxon rank-sum test is applied to compare the 
distributions between the two groups. P-value is highlighted in red in case there is enrichment and in green in case there is depletion for the 
first observation. 



 55 

Figure : Correspondence between genes and germline CNVs 
 

 

Legend: Shown are distributions of numbers of A) CNVs that overlap with genes, B) 
genes that overlap with CNVs, C) CNVs that overlap with cancer genes, D) cancer genes 
that overlap with CNVs. 
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Table : Dataset of TCGA somatic copy number variations 

Cancer Type Samples (n) Amplifications (n) Average Amplifications 
per Sample Deletions (n) Average Deletions 

per Sample (n) 
BLCA 114 6,047 53 7,461 65 
BRCA 841 49,415 60 46,196 55 
CESC 103 2,223 22 4,044 39 
COAD 403 7,913 20 20,177 50 
DLBC 14 252 21 628 45 
GBM 515 13,820 27 37,754 73 
HNSC 297 8,524 29 13,073 44 
KICH 65 1,338 22 2,693 41 
KIRC 519 5,008 10 15,605 30 
KIRP 111 1,635 15 4,013 36 
LGG 176 2,148 13 5,150 29 
LIHC 96 5,125 55 4,528 47 
LUAD 359 13,057 37 15,752 44 
LUSC 347 17,262 50 24,020 69 

OV 567 58,891 104 70,952 125 
PAAD 45 427 10 965 21 
PRAD 156 1,624 12 6,856 44 
READ 144 3,780 26 8,207 57 
SARC 28 4,746 170 2,907 104 
SKCM 271 10,685 40 13,794 51 
STAD 227 9,093 42 11,802 52 
THCA 341 576 2 4,536 13 
UCEC 474 19,156 43 21,388 45 
Total 6,213 242,745 41 342,501 55 

Legend: For each of 23 cancer types from TCGA with available somatic CNV data, reported are the total numbers of samples and of the 
alterations, and average numbers of alterations per sample. Only those samples that have at least one alteration are considered to calculate the 
average numbers. 
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3.2 Somatic CNV coverage varies throughout the genome 

To assess to which extent somatic CNVs affect the individual chromosomes, we 

measured the cumulative CNV coverage of each chromosome and chromosome arm (Table 

, Table ). Cumulative coverage was defined as the percentage of bases covered by all 

CNVs divided by the total number of bases on that chromosome/arm. Unlike the germline 

CNVs, which never span more than half of a chromosome arm (Table , Table ), somatic 

CNVs often cover almost an entire chromosome (>90%) (Table , Table ). For example, 

chromosomes 7,5,3,18,17 have more than 90% of their length as recurrently (in more than 

5% of the samples) amplified in at least one cancer type, of which chromosome 7 is 

recurrently amplified by 83% in at least 5 cancer types (Table ). There are also 

chromosome arms that are highly (>90%) amplified (12p, 8q, 11q, 1q, 6p, 10p). Similarly, 

chromosomes 2,4,10,6,5,11,9 have more than 90% of their length as recurrently deleted in 

at least one cancer type, of which chromosome 10 is recurrently deleted by 87% in at least 

4 cancer types, and 18q, 1p, 16q, 3p, 8p, Xq are deleted by >90% (Table ). Although most 

of these chromosomal regions were already known to undergo recurrent somatic copy 

number alterations (13,15,111), a few of them are novel to our study (18, 11q, 10p as 

amplified by >90%; 2, 1p as deleted by >90%). 

With this analysis, we confirm our previous observation at the chromosome arm level 

that germline CNVs have much lower coverages than somatic CNVs (Table ). Moreover, 

we found that germline CNVs have a homogeneous distribution along the genome (ranging 

from 3% to 12% per chromosome), while somatic CNVs accumulate on some 

chromosomes more than the others (ranging from 0% to 98% per chromosome, depending 

on the dataset) (Table , Table ). We also discovered novel chromosome arms with frequent 

alterations that are not previously reported. 
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Table : Coverage of amplifications per chromosome 
  Germline CNVs Tumorscape Peaks TCGA Recurrent Regions TCGA Core Regions 

Chr 
Chr 

Length 
(Mbp) 

No of 
Amplified 
Regions 

Chr 
Coverage 

(%) 

p-arm 
Coverage 

(%) 

q-arm 
Coverage 

(%) 

No of 
Amplified 
Regions 

Chr 
Coverage 

(%) 

p-arm 
Coverage 

(%) 

q-arm 
Coverage 

(%) 

No of 
Amplified 
Regions 

Chr 
Coverage 

(%) 

p-arm 
Coverage 

(%) 

q-arm 
Coverage 

(%) 

No of 
Amplified 
Regions 

Chr 
Coverage 

(%) 

p-arm 
Coverage 

(%) 

q-arm 
Covera
ge (%) 

chr1 249 709 7 5 9 9 7 6 8 131 68 39 96 6 47 2 90 
chr2 243 540 6 7 6 1 0 0 0 38 22 56 1 0 0 0 0 
chr3 198 490 4 4 3 3 16 6 25 138 92 86 98 4 56 35 75 
chr4 191 372 5 5 5 1 1 0 1 23 87 83 88 0 0 0 0 
chr5 181 441 4 4 4 2 4 0 5 94 95 96 94 7 25 67 10 
chr6 171 461 4 4 4 4 15 40 2 62 53 95 31 3 17 47 0 
chr7 159 581 11 8 12 3 6 1 10 161 97 96 98 8 83 80 85 
chr8 146 320 5 13 2 7 10 1 14 153 88 77 93 12 57 0 83 
chr9 141 351 11 18 7 1 2 0 3 32 86 79 90 0 0 0 0 
chr10 136 437 8 9 7 1 5 0 8 24 52 93 35 1 2 7 0 
chr11 135 364 5 6 5 4 6 11 3 42 85 77 91 0 0 0 0 
chr12 134 354 6 11 5 14 7 8 6 181 88 96 85 2 14 50 0 
chr13 115 285 4 0 4 3 25 0 29 50 76 0 89 3 32 0 38 
chr14 107 217 3 0 4 2 1 0 1 21 76 0 91 0 0 0 0 
chr15 103 293 12 0 14 1 1 0 1 11 60 0 73 1 3 0 4 
chr16 90 246 12 25 3 0 0 0 0 30 56 65 50 1 16 14 18 
chr17 81 391 10 14 8 8 6 5 6 39 90 85 91 3 28 0 40 
chr18 78 160 3 12 1 1 6 0 8 43 91 89 91 1 3 13 0 
chr19 59 376 11 11 11 3 5 0 8 44 86 81 89 1 15 0 28 
chr20 63 162 5 7 3 3 3 0 5 68 87 88 86 7 57 33 77 
chr21 48 108 6 10 5 0 0 0 0 5 29 0 39 0 0 0 0 
chr22 51 202 10 0 14 1 1 0 2 9 43 0 60 1 20 0 28 
chrX 155 621 10 11 10 2 2 0 3 26 40 51 33 0 0 0 0 
chrY 59 154 10 63 17 NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  

 Total 3,036 8,635 7% 9% 7% 74 6% 5% 7% 1,425 72% 69% 73% 61 22% 18% 25
% 

Legend: For each chromosome, reported are the chromosome length, number of amplifications, and cumulative coverage of amplified regions 
in germline and somatic CNV datasets. Coverages are given in percentage and shown separately for p and q arms. Only germline dataset 
included CNVs mapping to chrY. Total coverage is calculated on the entire genome, which may differ than the average of individual 
chromosomes, as chromosome lengths vary. The highest percentage of coverage in each column is highlighted in yellow; green denotes 
amplifications.
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Table : Coverage of deletions per chromosome 
  Germline CNVs Tumorscape Peaks TCGA Recurrent Regions TCGA Core Regions 

Chr 
Chr 

Length 
(Mbp) 

No of 
Deleted 
Regions 

Chr 
Coverage 

(%) 

p-arm 
Coverage 

(%) 

q-arm 
Coverage 

(%) 

No of 
Deleted 
Regions 

Chr 
Coverage 

(%) 

p-arm 
Coverage 

(%) 

q-arm 
Coverage 

(%) 

No of 
Deleted 
Regions 

Chr 
Coverage 

(%) 

p-arm 
Coverage 

(%) 

q-arm 
Coverage 

(%) 

No of 
Deleted 
Regions 

Chr 
Coverage 

(%) 

p-arm 
Coverage 

(%) 

q-arm 
Coverage 

(%) 

chr1 249 3937 20 22 18 5 16 13 19 111 84 91 78 12 37 75 0 
chr2 243 4003 20 21 19 4 10 16 5 88 97 95 98 3 6 0 9 
chr3 198 3253 21 20 22 4 6 5 6 126 81 94 70 2 32 68 0 
chr4 191 3445 19 21 18 3 4 1 5 154 95 93 96 19 63 52 67 
chr5 181 3124 18 22 16 3 29 0 39 133 91 79 96 11 52 0 71 
chr6 171 3059 19 19 19 3 28 2 42 131 93 84 98 14 45 0 70 
chr7 159 2861 23 21 25 4 13 2 20 46 52 73 40 0 0 0 0 
chr8 146 2589 19 25 17 5 31 38 27 128 65 97 50 18 20 66 0 
chr9 141 2269 21 30 17 4 6 16 0 195 90 83 94 19 65 67 64 
chr10 136 2272 21 19 22 4 7 2 8 151 95 90 97 29 87 66 96 
chr11 135 2410 22 21 22 4 13 3 19 121 91 95 88 11 45 54 39 
chr12 134 2420 17 18 17 3 2 2 2 50 44 49 42 1 4 13 0 
chr13 115 1938 18 0 21 3 5 0 6 123 76 0 89 14 64 0 76 
chr14 107 1421 19 0 23 2 26 0 31 65 68 0 81 10 48 0 57 
chr15 103 1267 20 0 25 1 8 0 10 65 67 0 81 11 45 0 55 
chr16 90 1605 25 37 16 6 33 21 41 146 83 69 93 16 44 2 73 
chr17 81 1526 27 29 26 5 6 9 4 80 84 80 86 9 24 74 3 
chr18 78 1605 18 22 17 3 6 3 7 77 89 83 91 13 72 53 77 
chr19 59 1239 41 47 36 3 4 2 5 72 74 76 72 11 20 25 15 
chr20 63 1289 21 22 20 2 3 8 0 15 22 51 0 1 4 10 0 
chr21 48 783 18 4 24 1 7 0 10 27 44 0 60 2 28 0 38 
chr22 51 798 23 0 32 2 9 0 13 69 51 0 71 8 46 0 64 
chrX 155 1725 34 38 32 2 4 11 0 41 16 40 100 0 0 0 0 
chrY 59 105 28 43 25 NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  

 Total 3,036 50,943 22% 23% 21% 76 13% 9% 15% 2,214 76% 75% 76% 234 36% 33% 38% 
Legend: For each chromosome, reported are the chromosome length, number of deletions, and cumulative coverage of deleted regions in 
germline and somatic CNV datasets. Coverages are given in percentage and shown separately for p and q arms. Only germline dataset 
included CNVs mapping to chrY. Total coverage is calculated on the entire genome, which may differ than the average of individual 
chromosomes, as chromosome lengths vary. The highest percentage of coverage in each column is highlighted in yellow; red denotes 
deletions. 
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3.3 Somatic CNV coverage associates with somatic CNV frequency 

The cumulative coverage does not explain the actual frequency of CNVs. In other 

words, it cannot be assessed only by cumulative coverage whether the high coverage of a 

chromosome arm is due to a few long CNVs or to many short ones. A few long CNVs 

from the samples of a single cancer type spanning the entire arm will result in high 

coverage. Similarly, many short CNVs from many samples of several cancer types 

distributed along the entire arm will also result in high coverage. To distinguish between 

the two cases, we calculated the CNV frequency across samples and cancer types. Low 

CNV frequency with a high coverage would imply the former case, where a few CNVs 

span the arm. However, high CNV frequency with a high coverage would imply the latter 

case, where high coverage accounts for many individual CNVs. For this analysis, we 

selected the dataset of TCGA recurrent regions that we defined (Figure B) as they 

represent the highest genome coverages. As each CNV has different frequency, we picked 

only the one with the highest frequency on each arm as the representative of that arm. We 

observed that certain chromosome arms contain amplifications (8q, 7q, 1q, 20q, 3q, 20p, 

5p, 7p) and deletions (8p, 17p) at a higher frequency than others, in agreement with the 

arms with high CNV coverage, but not necessarily having the same order (Figure A). 

Moreover, the high CNV frequency in these arms is not due to samples from few cancer 

types (Figure B). Overall, there is a close relationship between cumulative coverage and 

frequency of somatic CNVs across chromosome arms. 
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Figure : Somatic CNV frequency on chromosome arms 
 

 

Legend: For each chromosome arm, shown are highest observed CNV frequencies in 
terms of A) samples and B) cancer types. For each CNV region, frequency is calculated by 
the number of affected samples divided by the total number of samples in (A), and the 
number of affected cancer types out of 23 in (B). Then the region with the highest 
frequency on each arm is selected as the representative of that arm. 

3.4 CNV datasets have poor overlap 

For our CNV analyses, we used three different datasets from two different sources. 

Before interpreting any result, we wondered to see the overlap between the datasets in 

terms of CNVs and genes. To assess this, we first identified the CNV regions that overlap 

between the two datasets (Figure A). Out of 74 amplifications in Tumorscape peaks, 21 of 

them (28%) overlapped with the amplifications from TCGA core regions. Similarly, 29 

deletions out of 76 (38%) overlapped with the deletions from TCGA core regions. Next we 

identified the altered cancer genes that are shared between the two datasets. At this step we 

also included genes altered in the germline CNVs. Overall, 32 cancer genes are amplified 

in both somatic CNV datasets, of which 5 are also amplified in germline CNVs (Figure B). 

Similarly, 30 cancer genes are deleted in both somatic CNV datasets, of which 7 are also 

deleted in germline CNVs (Figure C). 

We further analysed the genes that are shared between the datasets. Among the 32 

amplified cancer genes, 17 are dominant, 13 are known to be amplified and overexpressed 
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in cancer (247), and 2 are recessive (EXT1, SBDC). These contain functionally validated 

oncogenes reported to be activated by amplification such as MYC, EGFR, KRAS and 

PIK3CA (13). Among the 30 deleted cancer genes, 12 are recessive and 18 are dominant. 

These contain functionally validated tumour suppressor genes reported to be inactivated by 

deletion such as TP53, PTEN, CDKN2A and RB1 (13). 

The poor overlap between the somatic CNV datasets suggests that our conclusions are 

independent of the CNV dataset used. However, there are some regions and well-known 

cancer genes that frequently undergo CNVs in different cohorts. 

 
Figure : Overlap between CNV datasets 
 

 

Legend: A) Number of amplifications and deletions overlapping between somatic CNVs 
from two different sources. B) Number of cancer genes amplified in germline and somatic 
CNVs. C) Number of cancer genes deleted in germline and somatic CNVs. 
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3.5 Germline CNVs are intergenic while somatic CNVs are genic 

Intersection of CNVs with all human genes shows remarkable differences between the 

germline and the somatic CNV datasets. Before the intersection, we noticed that deletions 

constitute the majority (75%) of CNVs in the germline CNV dataset (Table ). This is due 

to the study-specific bias that deletions mostly derive from the pilot study of 1000 

Genomes Project, which reported many more deletions than other types of variants (4). 

This bias was later resolved by the reanalysis of the whole data in the phase 1 of the 

project (3). After the intersection, despite the bias towards deletions, we observed that only 

5% of germline deletions overlaps with human genes along the genome, showing that 

germline CNVs, particularly deletions, are mostly (95%) intergenic. On the contrary, 14% 

of amplifications overlap with genes. 

In the somatic CNV datasets, instead, we observed that more than 70% of somatic 

CNVs overlap with genes (Table ). In particular, more than 95% of Tumorscape peaks that 

we derived from the literature and TCGA core regions that we identified overlap with 

genes. Moreover, the proportions of amplifications and deletions that overlap with genes 

are similar. In overall, these results show that somatic CNVs are mostly genic, which 

seems to be expected given the high genome coverages of somatic CNV datasets. 

However, we observed the same pattern also in Tumorscape peaks, which have 

comparable genome coverage to that of germline CNVs. 

Overall, the low overlap between germline CNVs and genes suggest that germline 

CNVs minimally affect genes, as a result, no disease phenotype is observed. On the other 

hand, somatic CNVs are preferentially located in coding part of the genome, leading to the 

cancer phenotype. 
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Table : Intersection of CNVs with all human genes 

Dataset CNV Type CNVs that overlap with genes Genes that overlap with CNVs 
Overlapping Total Percentage Overlapping Total Percentage 

Germline 
Amplifications 1,180 8,635 14% 1,824 19,045 9.5% 

Deletions 2,442 50,943 5% 5,315 19,045 28% 
Total 4,278 67,782 6.5% 6,919 19,045 36.5% 

Tumorscape Peaks 
Amplifications 70 74 95% 1,509 19,045 8 

Deletions 76 76 100% 1,876 19,045 10 
Total 146 150 97% 3,263 19,045 17 

TCGA Recurrent 
Regions 

Amplifications 1,194 1,425 84% 13,758 19,045 72% 
Deletions 1,617 2,214 73% 14,372 19,045 75.5% 

Total 2,811 3,639 77.5% 17,237 19,045 90.5% 

TCGA Core 
Regions 

Amplifications 60 61 98% 3,991 19,045 21% 
Deletions 229 234 98% 6,456 19,045 34% 

Total 289 295 98% 9,670 19,045 51% 
Legend: For each CNV dataset, reported are the numbers and the percentages of CNVs that overlap with genes and of genes that overlap with 
CNVs. Genes are counted as overlapping if at least 25% of their length intersect with a CNV. 
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3.6 Somatic CNVs are enriched in cancer genes 

Observing that somatic CNVs are vastly genic unlike germline CNVs, we next sought 

how this impacts on cancer genes in particular. In overall dataset, we observed no 

difference between the proportions of cancer genes and of the rest of human genes that 

occur in germline CNVs (35.5% and 37%, respectively, Table ). In particular, 

amplifications are depleted in cancer genes (Table ). In case of somatic CNVs, on the other 

hand, amplifications are enriched in cancer genes regardless of the somatic CNV dataset 

used (Table ). For example, 16.5% of amplifications in Tumorscape peaks overlap with 

cancer genes, whereas only 8% of them contain non-cancer genes. Instead, there is no 

significant difference between the proportions of amplifications that overlap with cancer 

genes and non-cancer genes (11% compared to 10%, respectively). We first thought that 

the overall enrichment of CNVs in cancer genes in Tumorscape dataset could be due to the 

GISTIC algorithm that attributes a higher score to gene-containing regions. To eliminate 

this possible bias, we repeated our analysis with TCGA recurrent and core regions, and 

observed a similar trend. Remarkably, in all three datasets, the signal came from the 

enrichment of amplifications in cancer genes. 

The tendency of cancer genes to increase their copies in cancer genomes led us to 

question if this is valid for all the cancer genes. To answer this, we divided the cancer 

genes into two groups as dominant and recessive cancer genes based on the annotation 

from the Cancer Gene Census (CGC) (246) (see Methods), and repeated the same analysis 

on each group separately. 

We observed an opposite signal between dominant and recessive cancer genes when 

we intersected them with Tumorscape peaks (Table ). Amplifications show enrichment in 

dominant genes and depletion in recessive genes when compared to the rest of cancer 

genes (Table ). We did not observe the same pattern when we analyzed somatic CNVs 

from TCGA datasets. However, by using a different approach (see Methods), we 

confirmed the same pattern also in this dataset. We found that dominant genes are 
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amplified in a significantly higher number of samples than the rest of the human genes 

(Figure A). Similarly, recessive genes are deleted in a significantly higher number of 

samples than the rest of the human genes (Figure B). This suggests that dominant genes are 

preferentially amplified and recessive genes are preferentially deleted compared to the rest 

of human genes. 
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Table : Intersection of CNVs with cancer genes 

Dataset CNV Type Cancer Genes Rest of Human Genes p-value Overlapping Total Percentage Overlapping Total Percentage 

Germline 
Amplifications 30 501 6% 1,716 17,336 10% 2.83E-03 

Deletions 140 501 28% 4,887 17,336 28% 9.60E-01 
Total 178 501 35.5% 6,376 17,336 37% 6.05E-01 

Tumorscape 
Peaks 

Amplifications 83 501 16.5% 1,426 18,544 8% 1.30E-10 
Deletions 56 501 11% 1,820 18,544 10% 3.23E-01 

Total 138 501 27.5% 3,125 18,544 17% 8.98E-14 

TCGA Recurrent 
Regions 

Amplifications 402 523 77% 13,356 18,522 72% 1.74E-02 
Deletions 403 523 77% 13,969 18,522 75.5% 4.20E-01 

Total 489 523 93.5% 16,748 18,522 90.5% 1.55E-02 

TCGA Core 
Regions 

Amplifications 128 523 24.5% 3,863 18,522 21% 4.97E-02 
Deletions 171 523 33% 6,285 18,522 34% 5.74E-01 

Total 280 523 53.5% 9,390 18,522 51% 2.14E-01 
Legend: For each CNV dataset, reported are the numbers and the percentages of cancer genes and other genes that overlap with CNVs. The 
numbers of cancer genes show differences as the updated list of cancer genes from the Cancer Gene Census is used at the time of each 
analysis. Fisher’s exact test is applied to compare the proportions between the two groups. P-value is highlighted in red in case there is 
enrichment and in green in case there is depletion for cancer genes (p-value < 0.05). 



 68 

Table : Intersection of CNVs with dominant and recessive cancer genes 

Dataset CNV 
Type 

Cancer Genes Rest of Cancer 
Genes 

Fisher's Exact 
Test Cancer Genes Rest of Cancer 

Genes p-value 
Dominant Total % Dominant Total % p-value Recessive Total % Recessive Total % 

Germline 
Amps 23 26 88 326 422 77 0.2282 3 26 12 100 422 24 0.228 
Dels 98 123 80 251 325 77 0.6121 25 123 20 78 325 24 0.4518 

Tumorscape Peaks 
Amps 55 61 90 294 387 76 1.23E-02 6 61 10 97 387 24 8.22E-03 
Dels 37 53 70 312 395 79 1.57E-01 16 53 30 87 395 21 2.23E-01 

TCGA Recurrent 
Regions 

Amps 274 353 78 89 117 76 7.99E-01 83 353 24 28 117 24 1.00E+00 
Dels 288 372 77 75 98 77 8.92E-01 87 372 23 24 98 24 7.91E-01 

TCGA Core Regions 
Amps 84 106 79 279 364 77 6.93E-01 24 106 23 87 364 24 8.97E-01 
Dels 125 165 76 238 305 78 5.67E-01 42 165 25 69 305 23 4.97E-01 

Legend: For each CNV dataset, reported are the numbers and the percentages of dominant and recessive cancer genes that overlap with CNVs 
compared to those of cancer genes that do not overlap with CNVs. Fisher’s exact test is applied to compare the proportions between the two 
groups. P-value is highlighted in red in case there is enrichment and in green in case there is depletion for cancer genes (p-value < 0.05). 
Amps: Amplifications, Dels: Deletions. 
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Figure : Enrichment of somatic CNVs in dominant and recessive cancer genes 

 

Legend: Distributions of proportions of samples in which genes are A) amplified and B) 
deleted. Wilcoxon rank-sum test is applied to compare the distributions of dominant and 
recessive cancer genes to that of the rest of human genes and statistical significance is 
shown with an asterisk (p-value < 0.05). Numbers of genes overlapping with CNVs are 
shown in parenthesis. 

3.7 Somatic CNVs show poor correlation with genomic features 

To investigate whether the enrichment of somatic CNVs in cancer genes are 

confounded by other genomic factors, we collected 12 groups of genomic features from 

UCSC Table Browser and checked for their overlap with somatic CNVs (Table , Table ). 

Overall, we did not observe any consistent enrichment/depletion of CNVs within the 

genomic features across the different datasets. However, the enrichment of Tumorscape 

peaks in the genes, exons and transcribed regions from UCSC confirmed our finding that 

somatic CNVs are highly genic (Table ). On the other hand, we did not notice any 

remarkable feature within the DNA repeating elements that consistently correlates with the 

CNVs, and those that correlate with CNVs such as short interspersed nuclear elements 

(SINEs) and long interspersed nuclear elements (LINEs) show differences between 

amplifications and deletions, unlike a previous observation (159). Additionally, this study 

reported two classes of breakpoint hotspots for somatic CNVs, cancer-type specific and 

common hotspots. Cancer-type specific hotspots, are found enriched in cancer genes but 
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poorly correlated with genomic features, similar to our results, although the common 

hotspots showed the opposite patterns. 



table continued on the next page… 
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Table : Intersection of somatic amplifications with genomic features 

Genomic Feature Tumorscape 
Peaks 

Rest of 
the 

Genome 
p-value 

TCGA 
Recurrent 
Regions 

Rest of 
the 

Genome 
p-value 

TCGA 
Core 

Regions 

Rest of 
the 

Genome 
p-value 

Fragile Sites 21.55% 20.67% 3.09E-02 17.37% 18.24% 2.08E-01 25.20% 27.15% 9.66E-01 
Gene Content          Our dataset (19,045 genes) 37.05% 28.95% 1.58E-03 29.51% 34.10% 1.04E-01 33.05% 30.87% 2.56E-01 
UCSC RefSeq Genes 51.41% 38.37% 1.62E-05 41.41% 45.89% 6.29E-02 42.38% 42.95% 5.26E-01 
UCSC Known Genes 55.25% 41.68% 2.19E-05 45.86% 50.74% 2.64E-02 46.07% 46.21% 3.59E-01 
Exon Density          Our dataset (181,690 exons) 2.03% 1.20% 9.52E-04 1.50% 1.60% 9.51E-01 1.07% 1.46% 1.13E-01 
UCSC RefSeq Exons 4.74% 2.59% 3.78E-05 3.17% 3.16% 9.89E-01 2.32% 3.15% 1.17E-01 
UCSC Known Exons 5.52% 3.11% 2.56E-05 3.71% 4.29% 7.10E-01 2.76% 3.77% 1.11E-01 
Association with Variants          COSMIC variants 0.08% 0.24% 3.36E-01 0.15% 0.35% 1.72E-01 0.22% 0.21% 8.69E-02 
Uniprot variants 0.83% 0.09% 1.04E-02 0.06% 0.16% 2.85E-01 0.13% 0.09% 9.74E-02 
GWAS variants 0.00% 0.00% 6.61E-02 0.00% 0.00% 7.51E-01 0.00% 0.00% 3.40E-01 
SNP Density          Common SNPs 0.47% 0.44% 8.92E-01 0.53% 0.53% 2.35E-01 0.49% 0.52% 6.58E-01 
Flagged SNPs 0.01% 0.00% 7.34E-01 0.00% 0.01% 7.91E-01 0.00% 0.01% 2.09E-01 
Multi SNPs 0.06% 0.15% 3.83E-04 0.08% 0.10% 1.94E-01 0.07% 0.10% 1.29E-02 
All SNPs 0.71% 0.65% 8.98E-01 0.91% 0.96% 9.43E-01 1.01% 0.96% 6.69E-01 
Repeating Elements          All repeats 48.13% 44.40% 4.67E-01 50.05% 49.66% 6.42E-01 46.88% 46.61% 8.69E-02 
SINE 18.84% 12.81% 4.00E-05 15.22% 15.99% 7.49E-01 13.13% 14.30% 4.85E-01 
LINE 17.17% 18.21% 2.90E-02 21.68% 20.18% 5.04E-01 19.76% 18.67% 8.04E-02 
LTR 7.04% 8.16% 3.03E-03 8.04% 8.55% 9.44E-01 8.77% 8.19% 1.33E-01 
DNA repeat elements 3.04% 2.91% 9.55E-01 3.15% 2.89% 5.70E-02 3.40% 3.08% 7.78E-03 
Simple repeats (micro-
satellites) 0.92% 0.92% 5.82E-01 0.96% 1.12% 3.98E-01 0.83% 0.99% 8.20E-02 

Low complexity repeats 0.64% 0.51% 2.07E-01 0.56% 0.59% 2.84E-01 0.56% 0.57% 6.12E-01 
Satellite repeats 0.22% 0.67% 6.39E-08 0.23% 0.12% 5.03E-01 0.22% 0.61% 3.66E-02 
Microsatellite 0.05% 0.05% 8.60E-01 0.06% 0.05% 4.47E-02 0.06% 0.05% 1.65E-02 
CpG Island 1.64% 0.82% 1.10E-03 1.09% 1.42% 3.43E-01 0.57% 1.19% 7.67E-04 
Level of Transcription 60.79% 46.81% 4.00E-05 51.86% 56.78% 5.20E-02 51.53% 53.48% 9.53E-01 
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Regulatory Elements 0.79% 0.41% 2.20E-02 0.48% 0.45% 7.32E-01 0.38% 0.48% 8.36E-02 
Recombination Rate                   
decodeAvg 1.38 1.31 8.27E-01 1.52 1.50 6.76E-01 1.42 1.69 1.31E-01 
decodeFemale 1.71 1.53 8.71E-01 1.64 1.48 2.67E-02 1.85 1.76 6.00E-01 
decodeMale 1.03 1.07 8.71E-02 1.36 1.48 5.32E-01 0.99 1.60 2.62E-02 
marshfieldAvg 1.31 1.30 6.73E-01 1.56 1.56 8.46E-01 1.38 1.63 5.13E-02 
marshfieldFemale 1.56 1.46 4.90E-01 1.73 1.57 3.71E-02 1.77 1.69 5.87E-01 
marshfieldMale 1.08 1.11 4.57E-01 1.40 1.52 6.32E-01 0.97 1.57 1.11E-02 
genethonAvg 1.24 1.26 4.76E-01 1.52 1.46 6.45E-01 1.37 1.65 4.27E-02 
genethonFemale 1.49 1.45 6.11E-01 1.65 1.47 1.96E-02 1.77 1.68 8.87E-01 
genethonMale 0.96 1.00 1.60E-01 1.33 1.38 9.15E-01 0.96 1.60 1.04E-02 
Level of Expression 995.59 994.27 2.31E-03 994.17 993.80 7.20E-01 994.81 994.08 1.38E-01 
Legend: Reported are 12 groups of genomic features and their overlap with the somatic amplifications and the rest of the genome. The 
average values for the overlap are shown in percentage for discrete features and in number for continuous features. Wilcoxon rank-sum test is 
applied to compare the distributions between the two groups along the genome. P-value is highlighted in red in case there is enrichment and in 
green in case there is depletion for the somatic amplifications. SINE: Short interspersed nuclear elements, LINE: Long interspersed nuclear 
elements, LTR: Long terminal repeat elements. 
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Table : Intersection of somatic deletions with genomic features 

Genomic Feature Tumorscape 
Peaks 

Rest of 
the 

Genome 
p-value 

TCGA 
Recurrent 
Regions 

Rest of 
the 

Genome 
p-value 

TCGA 
Core 

Regions 

Rest of 
the 

Genome 
p-value 

Fragile Sites 29.12% 17.97% 7.70E-01 23.10% 22.54% 6.00E-02 22.83% 20.25% 3.47E-01 
Gene Content          Our dataset (19,045 genes) 41.75% 26.75% 4.98E-05 29.49% 31.96% 5.61E-02 33.65% 34.26% 9.45E-01 
UCSC RefSeq Genes 53.57% 36.16% 4.30E-06 39.70% 44.32% 3.24E-02 44.87% 47.42% 6.89E-01 
UCSC Known Genes 58.80% 38.96% 2.36E-07 43.31% 48.68% 2.93E-02 48.08% 51.24% 5.25E-01 
Exon Density          Our dataset (181,690 exons) 1.40% 1.17% 7.22E-01 0.94% 1.34% 7.33E-05 1.52% 1.63% 5.30E-01 
UCSC RefSeq Exons 2.92% 2.52% 9.42E-01 1.99% 2.82% 6.74E-06 3.12% 3.56% 2.55E-01 
UCSC Known Exons 3.50% 3.00% 8.89E-01 2.35% 3.38% 4.67E-06 3.69% 4.26% 1.59E-01 
Association with Variants          COSMIC variants 2.24% 0.21% 9.04E-01 0.48% 0.20% 5.30E-04 0.20% 0.24% 8.31E-01 
Uniprot variants 0.35% 0.08% 1.19E-02 0.06% 0.14% 1.89E-01 0.08% 0.24% 2.59E-01 
GWAS variants 0.00% 0.00% 1.59E-01 0.00% 0.00% 8.24E-03 0.00% 0.00% 7.22E-01 
SNP Density          Common SNPs 0.56% 0.42% 3.01E-04 0.85% 0.51% 2.86E-04 0.56% 0.56% 5.27E-01 
Flagged SNPs 0.00% 0.01% 5.93E-03 0.00% 0.01% 3.51E-02 0.00% 0.01% 4.54E-01 
Multi SNPs 0.13% 0.18% 4.67E-01 0.06% 0.09% 8.45E-05 0.11% 0.10% 9.87E-02 
All SNPs 0.95% 0.74% 4.67E-01 0.63% 0.66% 8.06E-01 0.62% 0.69% 7.92E-01 
Repeating Elements          All repeats 47.54% 40.83% 1.33E-01 47.29% 47.43% 8.09E-01 46.58% 45.78% 5.67E-02 
SINE 14.45% 12.02% 3.54E-01 12.21% 13.16% 4.42E-02 15.66% 15.57% 9.80E-01 
LINE 19.18% 16.01% 7.16E-02 20.46% 20.14% 3.03E-02 17.96% 17.79% 5.41E-01 
LTR 8.56% 7.69% 6.43E-02 9.15% 8.86% 9.11E-03 7.97% 7.45% 1.39E-01 
DNA repeat elements 3.20% 2.60% 3.34E-02 3.55% 3.18% 4.97E-03 3.00% 2.79% 6.21E-02 
Simple repeats (micro-
satellites) 1.14% 1.00% 1.95E-02 1.08% 1.02% 5.92E-04 0.99% 1.09% 1.89E-01 

Low complexity repeats 0.64% 0.47% 1.00E-03 0.56% 0.60% 7.57E-04 0.58% 0.57% 7.39E-01 
Satellite repeats 0.18% 0.92% 5.07E-04 0.14% 0.20% 9.74E-01 0.22% 0.29% 1.22E-02 
Microsatellite 0.05% 0.04% 7.43E-03 0.13% 0.04% 1.17E-02 0.05% 0.05% 7.98E-02 
CpG Island 1.42% 0.94% 2.97E-01 0.95% 1.50% 2.89E-06 1.10% 2.09% 1.23E-02 
Level of Transcription 62.33% 43.57% 5.85E-06 47.88% 53.19% 4.60E-02 54.65% 58.36% 3.57E-01 
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Regulatory Elements 0.48% 0.37% 8.37E-01 0.38% 0.52% 1.06E-05 0.52% 0.64% 3.61E-01 
Recombination Rate                   
decodeAvg 1.55 1.60 3.76E-01 1.67 1.61 3.78E-01 1.88 1.82 8.48E-01 
decodeFemale 1.45 1.67 7.99E-02 1.80 1.67 4.28E-02 2.07 1.76 3.71E-02 
decodeMale 1.58 1.46 9.60E-01 1.36 1.38 7.89E-01 1.70 1.87 5.45E-01 
marshfieldAvg 1.65 1.58 9.26E-01 1.58 1.49 2.80E-01 1.85 1.74 7.07E-01 
marshfieldFemale 1.59 1.61 3.99E-01 1.78 1.51 2.20E-02 2.07 1.61 1.91E-02 
marshfieldMale 1.67 1.55 7.28E-01 1.37 1.41 5.63E-01 1.65 1.82 4.96E-01 
genethonAvg 1.62 1.46 7.62E-01 1.65 1.50 1.55E-01 1.87 1.82 9.72E-01 
genethonFemale 1.51 1.47 4.17E-01 1.73 1.57 7.42E-02 2.05 1.73 3.59E-02 
genethonMale 1.61 1.42 9.02E-01 1.40 1.35 5.45E-01 1.64 1.91 4.23E-01 
Level of Expression 993.78 994.92 3.60E-01 994.53 995.37 8.20E-02 993.71 994.51 9.44E-01 
Legend: Reported are 12 groups of genomic features and their overlap with the somatic deletions and the rest of the genome. The average 
values for the overlap are shown in percentage for discrete features and in number for continuous features. Wilcoxon rank-sum test is applied 
to compare the distributions between the two groups along the genome. P-value is highlighted in red in case there is enrichment and in green 
in case there is depletion for the somatic deletions. SINE: Short interspersed nuclear elements, LINE: Long interspersed nuclear elements, 
LTR: Long terminal repeat elements. 
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3.8 Amplifications activate oncogenes and deletions inactivate tumour suppressors 

We used gene expression to measure the functional consequences of somatic copy 

number variations in the cancer genomes. We observed that amplification of a gene usually 

leads to its higher expression whereas deletion results in decreased gene expression (Figure 

). We previously showed that amplifications are enriched in dominant genes, while 

deletions are enriched in recessive genes (Figure ). Taken together, these results suggest 

that dominant genes may be activated through their genomic amplification and recessive 

genes may be inactivated via deletion. This is interesting because usually dominant genes 

are oncogenes that are activated by a gain-of-function mutation. Most recessive genes, 

instead, encode tumour suppressors whose loss-of-function mutations require complete 

gene inactivation. Therefore, amplifications may activate dominant genes whereas deletion 

may cause loss-of-function in recessive genes (Figure ). 

 

Figure : Gene expression change upon copy number alteration 
 

 

Legend: Distribution of average expression levels of the genes that are amplified, deleted 
and that do not undergo copy number variation across samples. Only samples with at least 
one amplified or deleted gene are considered. Wilcoxon rank-sum test is applied to 
compare the distributions of amplified genes and deleted genes to that of non-CNV genes 
and statistical significance is shown with an asterisk (p-value < 0.05). 
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Figure : Activation and inactivation of cancer genes via gene expression 
 

 

Legend: Amplification of a gene on average increases its expression; on the other hand, 
dominant genes in particular are enriched in somatic amplifications. Since dominant genes 
are mostly oncogenes, this may provide a link between somatic amplifications and 
oncogenes towards the activation. Likewise, deletion of a gene on average decreases its 
expression; on the other hand, recessive genes in particular are enriched in somatic 
deletions. Since recessive genes are mostly tumour suppressors, this may provide a link 
between somatic deletions and tumour suppressors towards inactivation. 
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3.9 Cancer genes are less expressed than the rest of human genes in cancer samples 

In cancer samples, we observed a different expression pattern for cancer genes 

compared to the rest of human genes. For each gene, we first measured the average 

expression levels across all 1,245 cancer samples. Although a small fraction of genes are 

consistently overexpressed or underexpressed, the distribution of average expression levels 

for all genes are expected to be centered around 0. This is due to the fact that the original 

expression data is normalized around 0 at the sample level. Likewise, any randomly 

selected subset of genes is expected to have such a distribution. Cancer genes, however, 

show significantly lower expression than the rest of human genes, particularly owing to 

recessive cancer genes (Figure A). To better assess the enrichment of cancer genes in 

lowly expressed genes, we next divided the genes into highly expressed, medium 

expressed and lowly expressed based on the gene expression distribution. In the bottom 

10% of the distribution, the fraction of cancer genes is significantly higher than expected 

(Figure B). With these results, we confirm that cancer genes, in particular recessive cancer 

genes, are less expressed than the rest of the human genes in cancer samples. 



 78 

Figure : Gene expression in cancer samples 
 

 

Legend: A) Distribution of average expression levels of genes in the combined dataset of 
1,245 cancer samples grouped by the gene type. Numbers in parenthesis denote the number 
of genes with expression information in the combined dataset. B) Percentages of genes that 
are highly expressed (HE) and lowly expressed (LE) in the cancer samples. The upper and 
bottom 10% of the gene expression distribution in each sample is used to define HE and 
LE genes, respectively. Wilcoxon rank-sum test is applied to compare the distributions of 
all, dominant and recessive cancer genes to that of the rest of human genes, and statistical 
significance is shown with an asterisk (red: enrichment, green: depletion, p-value < 0.05). 

3.10 Frequently amplified recessive cancer genes are involved in epigenetic 

regulation 

Despite the general trend that dominant cancer genes are preferentially amplified and 

recessive cancer genes are preferentially deleted, however, we found interesting 

exceptions. Around 3% of the dominant cancer genes are mainly (>90%) deleted in the 

samples in which they have been modified, whereas 4% of the recessive cancer genes are 

mainly amplified (Table ). This may reflect the fact that dominant cancer genes are not 
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always oncogenes and not all recessive cancer genes are tumour suppressors. However, 

there are also cases of real oncogenes that are mostly deleted and of tumour suppressors 

that are mostly amplified. For example, ASXL1 is a tumour suppressor gene that is 

amplified in the overwhelming majority of cancers where it is altered (95%). 

We searched for such cases in the literature on an extended list (also including genes 

from individual cancer types) and found supporting evidence for some of these genes for 

their modifications opposite to the expected. For example, PER1, an essential component 

of the circadian clock, is reported to have tumour suppressor properties in breast (269,270) 

and lung (271) cancers, which may explain its frequent deletion in our samples (94% of the 

modified samples). On the other hand, EZH2, catalytic subunit of the PRC2 complex 

involved in the transcriptional repression of genes, is reported to have a dual role as 

oncogene and tumour suppressor in haematological malignancies (272). (EZH2 is deleted 

in 86% of the modified samples in the overall dataset, and in >90% in 5 individual cancer 

types.) 

We further investigated other cases that we could not explain through their oncogenic 

role in cancer, if their modifications highlight certain molecular processes related to their 

unexpected behaviour. We found that such recessive cancer genes are overrepresented in 

epigenetic regulation (Figure A). Interestingly, recessive cancer genes in overall are 

enriched in epigenetic regulators compared to the dominant cancer genes (Figure A). 

Moreover, we observed that recessive genes that are mainly amplified (>90% of the 

samples) are highly interconnected via epigenetic regulatory genes (Figure B). Overall, 

these findings suggest that genes involved in epigenetic mechanisms may undergo 

genomic modifications in a complex fashion, underlying the importance of the net 

functional impact of their alteration in tumourigenesis. 



 80 

Table : List of cancer genes with unexpected genetic modifications 

Gene Gene type Amplified 
(n) 

Amplified 
(%) 

Deleted 
(n) 

Deleted 
(%) 

Mutated 
(n) 

Mutated 
(%) 

Total 
Modified 

(n) 
GAS7 Dominant 18 3.58 477 94.83 9 1.79 503 
PER1 Dominant 23 4.62 466 93.57 12 2.41 498 

RABEP1 Dominant 32 6.56 450 92.21 6 1.23 488 
RAP1GDS1 Dominant 19 6.29 278 92.05 6 1.99 302 

MAF Dominant 39 8.92 397 90.85 1 0.23 437 
USP6 Dominant 29 5.85 449 90.52 24 4.84 496 
TLX1 Dominant 37 9 372 90.51 2 0.49 411 
CBFB Dominant 37 8.85 378 90.43 6 1.44 418 

IL2 Dominant 25 8.45 267 90.2 4 1.35 296 
ASXL1 Recessive 406 94.64 8 1.86 21 4.90 429 
CDC73 Recessive 334 91.76 21 5.77 12 3.30 364 
SBDS Recessive 356 91.75 29 7.47 3 0.77 388 
EXT1 Recessive 445 91.56 30 6.17 13 2.67 486 

Legend: Reported are the list of 9 dominant cancer genes that are deleted in more than 90% of the samples and 4 recessive cancer genes that 
are amplified in more than 90% of the samples in which they are modified. Somatic amplifications, deletions and mutations are considered for 
detecting the modified samples. Given numbers and percentages denote of samples. 
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Figure : Enrichment of recessive cancer genes within epigenetic regulatory genes 
 

 

Legend: A) Proportions of dominant and recessive cancer genes within epigenetic 
regulatory genes grouped according to their unexpected genomic modifications. 
Modification refers to any of the three types of genomic alterations: amplification, deletion 
and mutation. Deleted (>90%): genes deleted in >90% of the samples in which they are 
modified. Deleted and Mutated (20%): genes both deleted and mutated in >20% of the 
samples in which they are mutated. Amplified (>90%): genes amplified in >90% of the 
samples in which they are modified. Amplified and Mutated (20%): genes both amplified 
and mutated in >20% of the samples in which they are mutated. Common: genes present in 
both groups with unexpected modifications. The thresholds of percentages are selected to 
define the most extreme cases of the unexpected modification. Fisher’s exact test is applied 
to compare proportions between indicated groups. B) Out of 35 recessive genes that are 
mainly amplified, 20 of them are interconnected in PPI network via a physical or 
functional interaction, of which 8 are involved in epigenetic regulation. The network 
representation is generated in Cytoscape (http://www.cytoscape.org/) by using physical 
PPI data from NCG (http://ncg.kcl.ac.uk/) and functional interactome data from Reactome 
(http://wiki.reactome.org/index.php/Reactome_FI_Cytoscape_Plugin_4). A list of 633 
epigenetic regulatory genes is obtained from the literature (273). 
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3.11 Identification of novel synthetic lethal interactors in cancer 

So far we have mainly shown how somatic CNVs can impact on cancer genomes, 

which helps extend our understanding of the mutational causes of the cancer. It is equally 

important to make use of this knowledge in translational research. For this purpose, we 

used the mutational landscape and the systems-level properties of genes to identify 

targetable cancer-specific vulnerabilities, in particular, synthetic lethality. We 

hypothesized that paralogous genes, i.e. genes duplicated in the genome, are good 

candidates for conferring synthetic lethality due to the functional redundancy between 

them, as both originate from the same ancestral gene. This hypothesis was proved to be 

working for recessive cancer genes and their functional paralogs (188). In the presence of 

synthetic lethal interaction between the paralogous pair, this approach can be a powerful 

strategy to kill cancer cells specifically, where one of the paralogs is mutated and the cells 

are dependent on the remaining paralog. To identify such paralogous pairs in cancer 

samples, I first predicted the mutated genes with loss-of-function mutations in cancer 

samples, and then used several gene properties and additional information to assess their 

functional paralogs. My work included all the steps of the computational work in the 

pipeline described next. 

3.11.1 Prediction of putative candidates 

We exploited the data curated in this work to predict putative synthetic lethal 

interactors in cancer. Starting from the dataset of 1,245 cancer samples from 11 cancer 

types derived from TCGA for our somatic CNV analysis (Table ), we first annotated the 

genes with loss-of-function mutations. Our hypothesis is that if synthetic lethality occurs 

between two genes that exert a specific function that is required for cell survival, impairing 

both of them will lead to cell death. With this aim, we assessed the impact of somatic 

mutations on the protein function based on a combined score of six prediction tools (SIFT 

(274), PolyPhen-2 HumDiv (275), PolyPhen-2 HumVar (275), Likelihood Ratio Test 

(276), MutationTaster2 (277) and MutationAssessor (278)). We considered only those 
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mutations predicted to be damaging by at least 4 out of the 6 tools (>66%). We identified 

11,285 genes that acquired loss-of-function mutations in at least one of the cancer samples. 

We also identified paralogs of these mutated genes by using the method we described 

before (173). We preferentially focused on 2,028 paralogous pairs, i.e. cases where the 

mutated gene has only one paralog. The presence of only one paralog reduces the chances 

of off-target effects in the experimental validation. 

Out of these 2,028 paralogous pairs, we prioritized the best candidates for 

experimental validation considering the following conditions: 

1) Sequence identity and domain composition between the paralogs 

Function of a protein is closely related to its structure, and structure is dictated by its 

primary sequence. Therefore sequence of a protein can be informative of its function. 

Although not always true, two proteins with highly identical sequences can exert similar 

functions. Using this information, we prioritized our candidates based on their sequence 

identity, expecting higher levels of functional redundancy between highly identical 

paralogs. In addition, we focused on the paralogous pairs with shared domains, particularly 

if they are present only in these two genes rather than being a common domain in many 

proteins. In this case, impairment of the shared domain in the gene will sensitize the 

paralog for the specific function, i.e. reducing the possibility of functional compensation 

by another gene with the same domain. 

2) Relative expression levels of the paralogs 

In the presence of functional compensation between paralogous pairs, we 

hypothesized reduced expression of the impaired gene and/or overexpression of its 

paralog. We therefore analysed the expression profile of the paralogous pairs across all 

1,245 cancer samples. For each pair, we compared expression distribution of the mutated 

gene to that of the wild type paralog in the same samples. We prioritized those cases 
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supporting our hypothesis, i.e. down-regulated genes with loss-of-function mutations and 

up-regulated paralogs with wild type phenotype. 

3) Literature and network support of functional redundancy 

Through the literature we searched for evidence of functional redundancy between 

our paralogous pairs, considering that proteins part of the same complex or pathway are 

more likely to be involved in similar biological function. In complement, we assessed the 

proximity of the paralogs in the protein-protein interaction network by measuring the 

shortest path (i.e. the minimum number of nodes) between the two encoded proteins. We 

prioritized cases where the distance between the paralogs are minimal, which may indicate 

the involvement of the two proteins in the same biological pathway. 

4) Availability of cell lines with the ideal genetic make up 

For the experimental validation of synthetic dependence, we used cell-based in vitro 

assays. To decide on the most suited experimental set up for our purpose, we analysed the 

mutational landscape of 1,417 cell lines from two public sources (1,036 cell lines from 

Cancer Cell Line Encyclopedia (279) and 1,030 cell lines from COSMIC Cell Lines 

Project (280)). We prioritized cell lines with homozygous loss-of-function mutations in the 

same genes that were found mutated in the cancer samples but with wild-type paralogs. If 

possible, we used the cell lines from the same cancer type as that of the samples, in which 

the genes were mutated. 

At the end of this selection procedure, we extracted 37 paralogous pairs (Table ). 

Among these we focused on STAG1/STAG2 pair for further experimental validation for the 

following reasons: 

1) STAG1 and STAG2 has a relatively high sequence coverage (49%) and high 

sequence identity (83%) within the covered region (NCG 5.0, 

http://ncg.kcl.ac.uk/) 

2) Both proteins contain STAG domain (Pfam, (281)) 
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3) The encoded proteins of the two genes are part of the same complex, i.e. cohesin 

complex (NCG 5.0, http://ncg.kcl.ac.uk/) 



table continued on the next page… 
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Table : Predicted putative synthetic lethal gene pairs 

Gene Gene type Paralog Gene type Sequence 
coverage Samples (n) Expression of 

mutated gene 

Expression of 
wild-type 
paralog 

CYFIP2 Non-cancer CYFIP1 Candidate 83% 9 down - 
VHL Recessive VHLL Non-cancer 60% 23 down - 
TLN2 Non-cancer TLN1 Non-cancer 56% 9 down - 

TRIM3 Non-cancer TRIM2 Non-cancer 52% 2 down - 
SOS2 Non-cancer SOS1 Non-cancer 51% 7 down - 

CDKN2A Recessive CDKN2B Candidate 49% 12 - up 
STAG2 Recessive STAG1 Non-cancer 49% 17 down - 
STXBP5 Non-cancer STXBP5L Non-cancer 38% 3 down up 
KCTD3 Non-cancer SHKBP1 Candidate 34% 11 down - 

OLFML2A Non-cancer OLFML2B Non-cancer 34% 7 down - 
MEGF10 Non-cancer MEGF11 Non-cancer 32% 9 down - 

ADAMTS6 Non-cancer ADAMTS10 Non-cancer 29% 7 down - 
ARID1A Recessive ARID1B Candidate 29% 31 down up 
HAND2 Non-cancer HAND1 Non-cancer 28% 3 down - 

FRY Non-cancer FRYL Non-cancer 28% 13 down - 
RING1 Non-cancer RNF2 Non-cancer 27% 2 - up 
RBM10 Candidate RBM5 Non-cancer 25% 11 down - 
SDK1 Non-cancer SDK2 Non-cancer 22% 18 down - 

PTPRG Non-cancer PTPRZ1 Non-cancer 20% 7 down - 
GYG2 Non-cancer GYG1 Non-cancer 19% 4 down - 

ARNTL Non-cancer ARNTL2 Non-cancer 19% 2 - up 
GPRASP1 Non-cancer GPRASP2 Non-cancer 18% 6 down - 

E2F7 Non-cancer E2F8 Non-cancer 18% 5 - up 
E2F8 Non-cancer E2F7 Non-cancer 15% 2 - up 

MPDZ Non-cancer INADL Non-cancer 15% 5 down - 
ZDHHC17 Non-cancer ZDHHC13 Non-cancer 15% 4 - up 

MAP1B Non-cancer MAP1A Non-cancer 14% 7 down - 
PLEKHH2 Non-cancer PLEKHH1 Non-cancer 14% 9 down - 
COL4A5 Non-cancer COL4A1 Non-cancer 14% 15 down - 

ADAMTS19 Non-cancer ADAMTS17 Non-cancer 14% 9 down - 
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TP53 Recessive TP73 Non-cancer 13% 531 down up 
NFE2L2 Dominant NFE2L1 Non-cancer 12% 16 - up 
ASTN2 Non-cancer ASTN1 Candidate 12% 15 down - 
PRDM1 Recessive ZNF683 Non-cancer 12% 3 - up 
PTEN Recessive ANKFN1 Non-cancer 11% 119 down up 

PPM1E Non-cancer PPM1F Non-cancer 11% 9 down - 
CIC Recessive SEPT14 Non-cancer 10% 8 down - 

Legend: Reported is the list of 37 predicted synthetic lethal pairs and associated properties used for the selection (not all properties are 
shown). Gene types refer to the classification in NCG 5.0 database (http://ncg.kcl.ac.uk/). Sequence coverage is the portion of the gene also 
covered in the paralog. Samples refer to the cancer samples from TCGA carrying the mutated gene and the wild type paralog. Gene expression 
distributions of the mutated gene and of the wild type paralog in the given samples were compared to those in the rest of the 1,245 samples. 
down: significantly decreased expression, up: significantly increased expression. 
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3.11.2 STAG1 and STAG2 is a novel synthetic lethal gene pair 

We performed in our lab in vitro experiments to test the predicted synthetic lethal 

interaction between STAG1 and STAG2. My colleague Lorena Benedetti performed all the 

wet lab experiments described below, and I produced the plots based on these experimental 

data. Then we both discussed on the results and interpreted them, leading to the design of 

the next steps. Briefly, we used transient RNA interference (RNAi) to block the expression 

of STAG1 and STAG2 with small interfering RNA (siRNA) and then measured the cell 

proliferation in Cal-51 breast cell lines on the following conditions: 

1) Wild type STAG2 and wild type STAG1 

2) STAG2 treated with siRNA and wild type STAG1 

3) Wild type STAG2 and STAG1 treated with siRNA 

4) STAG2 and STAG1 treated with siRNA 

First, we measured the expression levels of both genes in four time points (24h, 48h, 

72h, 96h). We verified decreased expression levels of both genes when they were knocked 

down in Cal-51 breast cell lines (Figure A). We also observed an increased expression of 

the paralog (after 96 hours) when we blocked the expression of only one gene. Next we 

tested for the cell proliferation in the same conditions by measuring the proliferation rate 

of the cells at the same time points by using two different proliferation assays (Promega 

ApoLive-Glo Multiplex Assay and XTT Cell Proliferation Assay) and colony formation 

assay. We found that when the expression of only one paralog is knocked down, the cells 

continue to proliferate, although with a reduced rate compared to scrambled. On the other 

hand, cells cease to proliferate when the expression of both genes are knocked down, 

confirmed by using two different proliferation assays (Figure B) and colony formation 

assay (Figure C). Overall, our findings suggest that impairment of both STAG1 and STAG2 

is incompatible with cell viability. 
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Figure : Experimental validation of STAG1 and STAG2 synthetic dependence 
 

 

Legend: A) Expression of STAG1 and STAG2 upon treatment with siRNA oligos 
assessed by qPCR. The ratios are relativized to scrambled. B) Proliferation of cells treated 
with siRNA oligos compared to scrambled assessed by using two different assays. C) 
Colony formation of cells treated with siRNA oligos compared to scrambled. Scr: 
scrambled, KD: transient knockdown, RFU: Relative fluorescence units. 
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3.12 Network of Cancer Genes (NCG 5.0) 

In order to facilitate the research based on cancer genes and their properties, we 

maintain a public database developed in our group: Network of Cancer Genes (NCG). 

NCG is a manually curated repository of cancer genes and associated systems-level 

properties (Figure ). The website was first published in 2010 (261), and is updated every 

two years. The latest version (NCG 5.0) includes 1,571 cancer genes from 175 cancer 

genomics studies and from the CGC (262). These cancer genes were analysed in 13,315 

cancer samples from 49 cancer types corresponding to 24 primary sites. As the main 

developer of the last two versions of NCG, I manually curated all the 175 papers, 

maintained a database to store all the data and implemented the updated content and new 

features on the website. My work included the extraction of cancer genes along with 

complementary cancer information, analysis of their systems-level properties by 

integrating data from internal pipelines and external sources, creating web content to 

display the updated and new features, and improving the visualisation and the performance 

of the website. My colleagues Giovanni Dall’Olio and Thanos Mourikis contributed to the 

development of the latest version as the second curator of the papers, and helping me in 

part to update the website. 

The pipeline for the NCG development consists of two main steps: data curation and 

implementation. 

3.12.1 Data curation 

The main purpose of NCG is to provide a reliable collection of cancer genes. Cancer 

genes in NCG derive from the published cancer genomics studies. We continuously review 

the literature for new publications to include and manually extract cancer genes satisfying 

the following conditions (Figure A): 

1) Genes detected by DNA sequencing in cancer samples: High-throughput 

screenings of cancer samples provide an unbiased approach to detect cancer 
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genes. Studies that analyse only cell lines or that use other approaches than DNA 

sequencing to identify cancer genes are discarded. 

2) Genes altered with point mutations or indels: Genetic alterations are the 

driving force of cancer. Currently NCG collects only mutated genes with non-

silent point mutations or indels. Genes undergoing other types of alterations will 

be added to the database in the future. 

3) Genes identified as drivers based on a method: Studies must apply a method 

to prove the driver role of the mutated genes in cancer. A method can be the 

application of any known tools or software, or other approaches as described in 

the original study. This step is crucial to confine the curation to reliable cancer 

drivers and to avoid any possible false positives detected without a proper 

method. 

We divide curated cancer genes into two groups (Figure B): 

1) Known cancer genes: Genes also reported in CGC and defined as causally 

implicated in oncogenesis (246). Together with other genes from this source, we 

report 518 known cancer genes in NCG. 

2) Candidate cancer genes: The remaining genes derived from the literature. We 

report 1053 candidate cancer genes whose driver role in cancer was described in 

the original studies. 

In addition to cancer genes, we also collect complementary data from each study: 

screening type, tumour description, primary site, cancer type, number of patients, method 

description, experimental validation, and reference (Figure C). We further provide several 

properties for each cancer gene either calculated in-house (duplicability, evolutionary 

origin, network properties) or integrated from external sources (orthologs, protein-protein 

interactions, expression, function, miRNA interactions) (Figure D). 
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3.12.2 Implementation 

We developed the web interface of NCG in PHP and implemented network 

visualisation of protein-protein and miRNA-target interactions in Cytoscape Web 

(http://cytoscapeweb.cytoscape.org/, (282)). NCG 5.0 runs on an Apache web server and 

data are stored in a MySQL database on a virtual Windows machine. The data content can 

be downloaded as a text file in batch, or individually for the specific queries. 

 

Figure : NCG 5.0 home page 
 

 

Legend: Screenshot of the home page of NCG 5.0, the latest version published in October 
2015 (262). 
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Figure : Overview of cancer genes curation and data content in NCG 5.0 
 

 

Legend: A) Criteria for inclusion of cancer genes in the database. B) Number of cancer 
genes in NCG 5.0. C) Curated complementary data from the literature along with the 
cancer genes. D) Analyzed and integrated gene properties. 

3.12.3 Other features 

In addition to the manual curation, another powerful feature of NCG is the annotation 

of experimentally validated candidate cancer genes. Focused on providing a reliable set of 

cancer genes, we searched in the literature for any experimental validation which 

demonstrates the oncogenic role of the curated candidate cancer genes. Out of 1053 

candidate cancer genes, we found experimental evidence for 120 genes spanning a variety 

of methods such as gene overexpression, gene silencing, immunohistochemistry and 

protein activity assay. Thus experimental validation adds a complementary measure to the 

methods used to identify the cancer genes in the original studies. 

On the other hand, NCG also reports a list of 48 possible false positives among the 

candidate cancer genes. These genes are regarded as possible false positive due to the 

following reasons: 
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1) Literature evidence ((283), 14 genes) 

2) Functional irrelevance (i.e. olfactory receptors, 30 genes) 

3) Gene length (i.e. long exons and/or introns, 9 genes) 

Interestingly, we noticed that a gene, CSMD3, is in common between the list of 120 

experimentally validated and 48 possible false positive genes. CSMD3 is proposed as a 

possible false positive due to its length, sequence composition and proximity to fragile 

sites (283), however in another study it is experimentally shown that its stable knockout 

leads to increased cell proliferation (284). In this case, NCG reports information from the 

both sources and leaves the final decision to the user on the gene annotation. 

3.12.4 User interface 

NCG interface allows the users to search for a single gene or a list of genes by 

inserting one of the accepted identifiers (i.e. gene symbol, Entrez id, RefSeq protein id, 

RefSeq mRNA id or Ensembl protein id). An option to retrieve all the genes within a 

genomic region is also provided. Alternatively, the complete list of cancer genes and pre-

compiled list of cancer genes from individual screenings can be browsed. The advanced 

search allows for specific queries based on the shared gene properties. A successful query 

returns information on the annotation and properties of each gene (Figure ): 

1) Gene summary: Description, aliases and cross-links to external databases. 

2) Cancer information: List of all the screenings and complementary data 

demonstrating the involvement in cancer. 

3) Duplicability: Additional copies at different thresholds of coverages. 

4) Orthology: Evolutionary origin and orthologs in the tree of life. 

5) Network properties: Interactions and network properties in human PPI network. 

6) Gene expression: Expression levels in 38 normal tissues and in 1,543 cell lines. 

7) Protein function: List of all functional classes of the encoded protein. 

8) miRNA-gene interactions: miRNAs that regulate the gene and their targets. 
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Figure : Annotation and properties of cancer genes in NCG 5.0 
 

 

Legend: Screenshot of results page of NCG 5.0, showing a summary of annotation and 
systems-level properties of an example cancer gene, PTEN. 
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3.13 NCG can be used to prioritize candidates for experimental validation: A case 

study of STAG1 and STAG2 

NCG database can be used as a central repository for cancer genes and their properties 

to help experimental planning. By using NCG, we explored the properties of our candidate 

gene pairs predicted to have synthetic dependency and decided to start with STAG1/STAG2 

pair for experimental validation. In NCG, STAG2 is reported as a recessive cancer gene 

based on CGC and also as mutated in 4 different cancer types in 11 studies (Figure A). In 

our mutation dataset, we found STAG2 mutated in 17 cancer samples from TCGA, which 

overlapped by one study curated in NCG (285). STAG1, on the other hand, cannot be 

queried in NCG since it is not a cancer gene, however, some of its properties can be still 

derived via STAG2 (see below). For more details on STAG1, we used the external sources 

cross-linked from NCG. We used the following information in NCG for the selection of 

this pair: 

1) STAG2 has only one paralog, STAG1, which has 49% coverage (Figure B). 

Literature mining showed that a second paralog exists, STAG3; however, we 

found that this gene shares very low sequence coverage with STAG2 (<10%) and 

expressed in a tissue-specific manner (only in testis). Therefore we excluded 

STAG3 as a potential gene which can functionally compensate STAG2. 

2) Both genes are physical interactors in binary human PPI network (Figure C), and 

components of the same complex (“cohesin” complex) (Figure D). 

3) Both genes have the same protein domain (“STAG” domain) (Figure E). 

4) Both genes are widely expressed across normal human tissues (Figure F). 

5) Both genes are expressed in many cancer cell lines from different tissues (Figure 

G). We selected Cal-51 breast cancer cell line for our experiment, because we 

found STAG2 mutated also in breast cancer samples from TCGA, among 6 other 

cancer types, and Cal-51 was readily available. 
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Figure : Annotation and properties of STAG2 in NCG 5.0 
 

 

Legend: A) List of studies in which STAG2 is identified as a cancer gene. B) Duplicates of 
STAG2 above 10% coverage of its sequence. C) Primary interactions of STAG2 in human 
PPI network. D) Examples of complexes in which STAG1 and STAG2 are involved. E) 
Cross-linking from NCG to SMART database (286) depicting its domain composition. F) 
Expression levels of STAG2 in 30 normal human tissues from the Genotype-Tissue 
Expression (GTEx) project (287). G) List of cancer cell lines from the Cancer Cell Line 
Encyclopedia (CCLE) (279) in which STAG2 is expressed. 
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4 Discussion 

To study the role of somatic copy number variations (CNVs) in cancer, it is important 

first to understand the landscape of germline CNVs in normal population. This is not only 

required for a grounded comparison, but also provides a basis on how the somatic CNVs 

should be interpreted. In order to map the landscape of CNVs in normal population, we 

have explored germline CNVs from a large collection of healthy individuals (Table ). 

Comparing them to somatic CNVs from cancer samples allowed us to distinguish the 

features of cancer-specific CNVs from inherited CNVs. Then we focused on cancer-

specific CNVs with the aim of understanding their driver role in cancer. With this aim, we 

performed two lines of analyses: 1) quantification of genes contained within CNVs 2) 

assessment of the functional impact of altered genes via gene expression. 

CNVs are not always biomarkers for a disease state. They are also common in normal 

genomes with no apparent phenotype (12), which makes it challenging to distinguish 

disease-causing variants from neutral variants. In cancer, it is more complicated to identify 

the driver variants contributing to cancer onset and progression owing to the passenger 

events. Several tools were developed for this purpose (112,249,288-294) and were 

extensively used in later studies. Here we have used a simple approach to identify recurrent 

regions of CNVs in cancer without attempting to annotate them as driver or passenger. Our 

approach relied on the previous observations that these regions tend to recur because they 

contain potential events favouring the cancer progression (positive selection) (13,15,257). 

Among these events, we explored the importance of genes, in particular cancer genes, and 

several genomic features. 

We observed that somatic CNVs load a much heavier burden on the genome 

compared to the germline CNVs, which is expected due to the genomic instability that 

arise in cancer (295). They may involve focal regions containing driver genes for cancer 

progression (13,264) or span large portions of the genome with an oncogenic role (296). 

On the other hand, germline CNVs are mainly distributed along the intergenic regions, or 
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involve one or few genes with no apparent disease phenotype. This is also compatible with 

one of the suggested roles for germline CNVs, that they are substrates for human evolution 

and adaptation (297). 

A large number of studies reported amplification and deletion of cancer genes in 

individual cancer types, and a few others analysed somatic CNVs in cancer on a large scale 

(13,15,111). Here we also collect a large cohort of samples, and further investigate cancer 

genes in two classes as dominant and recessive genes. We show that there is an enrichment 

of somatic amplifications within dominant genes and an enrichment of somatic deletions 

within recessive genes (Figure ). This result agrees with the functional relevance of these 

two classes of cancer genes to oncogenes and tumour suppressors; moreover, carries the 

discussion further to the genetic basis of cancer genes. 

Primary modification of cancer genes support our proposal that dominant cancer genes 

can be activated by somatic amplifications and recessive cancer genes can be inactivated 

by somatic deletions (Figure ). However, we also found a few cases in which the primary 

modification of the genes seems to be contradictory to this, that dominant genes that are 

mainly deleted (such as GAS7, PER1, RABEP1 deleted in >90% of the tumour samples) 

and recessive genes that are mainly amplified (such as ASXL1, CDC73, SBDS amplified in 

>90% of the tumour samples) (Table ). Investigation of these genes in the literature 

revealed that dominant cancer genes can act as tumour suppressors (EBF1 (298), PER1 

(269-271), ZNF331 (299), CAMTA1 (300-302)) and recessive cancer genes can act as 

oncogenes (EZH2 (272), CBLB (303)) (former is more common). Furthermore, a portion of 

cancer genes can act as both oncogene and tumour suppressor depending on the context, 

such as mutation type or cancer type (such as EZH2 (304), MN1 (305), NSD1 (306)). 

These cases indeed validate our findings and strengthen our proposal (Figure ). Classifying 

cancer genes as oncogenes and tumour suppressors rather than as dominant and recessive 

thereby could give a stronger signal in our analysis. However, such an annotation for all 

known cancer genes is not yet available. 



 100 

We relied on Cancer Gene Census (CGC) (246) for the classification of cancer genes 

as dominant and recessive. CGC is an ongoing effort to catalogue genes for which 

mutations have been causally implicated in cancer that is evidenced in the literature (246). 

The cancer genes in the census are annotated on the basis of molecular genetics of their 

driver mutations, i.e. dominant and recessive. As we discussed before, dominant and 

recessive cancer genes usually correspond to oncogenes and tumour suppressors, 

respectively, however, this should not be taken as a reference. During literature mining, we 

encountered cases in which dominant cancer genes are reported to have tumour suppressor 

roles (EBF1 (298), ZNF331 (299), CAMTA1 (300-302)), and recessive cancer genes are 

regarded as oncogenes (EZH2 (272), CBLB (303)). Among these, we found the case of 

EZH2 very interesting. EZH2 is a histone-lysine N-methyltransferase and the catalytic 

component of Polycomb Repressive Complex 2 (PRC2), acting mainly as a transcriptional 

repressor of a wide range of genes. In T-cell acute lymphoblastic leukaemia (T-ALL), 

EZH2 was found to have loss of function mutations and deletions in 25% of the samples 

together with SUZ12, another important component of the PRC2 complex. Disrupting the 

function of the complex due to the impairment of these two genes in NOTCH1-mutated 

samples triggered oncogenic NOTCH1 signalling, leading to T-ALL (307). In diffuse large 

B-cell lymphoma, EZH2 was found to have a gain of function mutation (Y641), which 

increased the enzymatic activity of the PRC2 complex (308). Moreover, EZH2 was found 

amplified and/or overexpressed that confers proliferative advantage to the cells in a variety 

of cancer types including bladder (309-311), breast (312), colon (313), endometrial (314), 

gastric (315), liver (316), lung (317), melanoma (314) and prostate (318). Overall these 

data suggest multiple roles for EZH2 in cancer in a context dependent manner (i.e. 

mutation type, cancer type) (Figure ), a phenomenon commonly observed among 

epigenetic regulators (319) and signalling proteins (320). 
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Figure : Role of EZH2 in cancer 
 

 

 

Legend: EZH2 is a key gene in epigenetic regulation of transcriptional repression, which 
has been widely studied owing to its important function and increasing significance in 
cancer. A variety of oncogenic alterations in EZH2 have been identified so far, leading to 
different outcomes triggering various mechanisms based on the alteration type and the 
cancer context. The multi-faceted role of EZH2 in cancer has been well established, a 
phenomenon commonly observed among epigenetic regulators (319) and signalling 
proteins (320). 

Copy number variations are mechanical changes in chromosome structure, thereby 

they are prone to be affected by a variety of genomic features. Considering that the human 

genome is not homogeneous along its sequence and CNVs occur more frequently on 

certain regions of the genome than others, we wondered if there is an association between 

the genomic features and CNV formation. To investigate this, we compared the overlap 

between the genomic features and somatic CNVs. We would expect a similar distribution 

between a particular feature and CNVs along the genome in the case of positive 

correlation. Although previous studies found positive correlations between CNVs and 

several genomic features (such as indel rate, exon density and substitution rate), this may 

depend on several factors, such as cancer types included and CNV datasets used (159). 

Similarly, we observed varying patterns depending on the CNV dataset (i.e. Tumorscape 

peaks, TCGA recurrent regions, TCGA core regions) and type of alteration (i.e. 

amplification, deletion) (Table , Table ). There was no feature consistently correlated with 

CNVs in the same direction across all three datasets and two alteration types. On the other 
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hand, there was no inconsistency between amplifications and deletions from the same 

dataset for the same feature, i.e. we did not find enrichment in amplifications and depletion 

in deletions for the same feature. Here we propose two possible explanations for these 

observations: 1) CNV formation is influenced by a combination of genomic features, 

possibly including other features that we did not consider here. 2) Amplifications and 

deletions are selected in the same direction by the genomic features, but not necessarily at 

the same strength. For example, both amplifications and deletions tend to occur in the 

SINEs, but only amplifications show statistically significant enrichment (Table , Table ). 

In our CNV analyses, we did not take the zygosity of the somatic copy number 

variations into account. For our purpose, we used CNV data as a categorical variable, i.e. 

present or absent, to define each gene as amplified, deleted or non-altered. Such an 

assignment led to a clear signal between CNVs and gene expression: a positive correlation 

between amplifications and gene expression, and a negative correlation between deletions 

and gene expression. However, absolute copy numbers can be useful for more detailed 

quantitative analysis, and it is possible to infer this information from the amplitude of each 

segment (defined as the log2 ratio of the signal intensity in a given genomic region 

between the test and the reference sample) given in the original datasets. Illustratively, a 

previous study showed a positive correlation between the copy number and the expression 

of a set of genes involved in colorectal cancer (321), adding an extra layer of information 

to what we have shown here (Figure ). 

Our effort to determine the primary genetic modification that affects cancer genes was 

limited to CNVs, and did not include mutations. This was due to the sparsity of the 

mutation data. In TCGA dataset, a typical cancer sample contained an average of 1493 

amplified and 1765 deleted genes, but only 94 mutated genes (Figure ). The fractions of 

samples with mutated genes, therefore, were too low compared to the fractions of samples 

with CNVs to see any correlation. A previous study, however, reported anticorrelation 

between somatic copy number variations and mutations by using a similar cohort of 
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samples from TCGA (14). The approach used in this study considered only the recurrent 

elements (defined as selected functional elements, SFEs) for both copy number variations 

and mutations, detected by GISTIC (322) and MuSiC/MutSig (323,324), respectively. 

Using these SFEs, the authors could obtain a comparable number of samples with CNVs 

and mutations, and observe an anticorrelation between the two (14). 

We used gene expression changes as a measure of the functional impact of somatic 

CNVs. For such an analysis, gene expression values from tumour samples should be 

ideally compared to the original values in the matched normal samples. This will minimize 

the confounding factors on gene expression such as tissue-specificity, and allow for the 

measurement of changes only due to somatic CNVs, as they are present only in the tumour. 

However, due to the lack of expression data for the matched normal samples in TCGA 

samples, we made the comparison by using only the tumour samples, i.e. between tumour 

samples in which a gene is altered versus non-altered. This allowed us to observe a clear 

difference between the two sets of samples, which we concluded as due to the presence of 

copy number variations (Figure ). 
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Figure : Distribution of modified genes across cancer samples 
 

 

Legend: Distribution of A) amplified, B) deleted, and C) mutated genes across 1,245 
cancer samples from TCGA. The summary statistics of each distribution is given for 
comparison. 

Microarray-based platforms have been widely used for decades for gene expression 

detection, as they offered a rapid and low cost solution for functional studies. On the other 

hand, new technologies based on RNA sequencing (RNA-Seq) has several advantages over 

the microarrays, such as unbiased detection of novel transcripts, easier detection of rare or 

weakly expressed genes, and increased specificity and sensitivity. In our analyses, we used 

only microarray-based gene expression data from TCGA, because it was available for a 

wider cohort of samples at the time of data retrieval. At present, public resources on cancer 

genomics (such as TCGA and ICGC) provide RNA-Seq data more widely than 
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microarray-based data for gene expression. Although microarray-based data served well 

for our purpose that is to measure gene expression change upon copy number variation, we 

encountered a limitation: identification of not expressed genes. We classified genes as 

highly, medium or lowly expressed based on the gene expression distribution, however, we 

could not identify the genes that are not expressed, as we used processed data from TCGA 

where each gene had an expression value. Identification of not expressed genes could be 

used to better assess whether the lack of expression of a gene is due to its deletion. 

Large-scale analysis of genomics data not only provides a high statistical power, but 

also depicts a more complete profile of the investigated features. Therefore, we started 

with all available somatic CNVs data from TCGA at the time of analysis, which consisted 

of 6,213 samples from 23 cancer types. For the later analyses, we integrated mutation and 

gene expression data for the same samples wherever available, which led to a smaller 

dataset of 1,245 samples from 11 cancer types. Also the number of human genes with 

corresponding information decreased from 19,045 to 14,288. Although this data reduction 

did not effect our initial observations regarding the characterisation of somatic CNVs on 

the overall dataset, it is possible that we have missed some cancer-type specific patterns. 

For example, previous studies reported cancer genes recurrently altered in cancer types 

which were not part of our dataset (264). It is also possible that in a larger cohort of 

samples, our predicted set of paralogous pairs with functional redundancy would include 

other potential candidates. However, these limitations are likely to disappear in the future, 

because TCGA as well as other public resources on genomics data are continuously 

growing, providing a more complete data profiling on the cancer samples. 

Novel methods and their applications on cancer genomics data hold the promise 

revolutionizing personalised anticancer therapy in the near future. Among these, the 

concept of synthetic lethality has recently gained great importance as it provides an 

opportunity of selective targeting of tumour cells. Utilizing this concept already led to the 

identification of numerous synthetic lethal pairs in cancer (325). Previous studies used 
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different approaches to identify such pairs, including genome-wide screening (199) and 

mutual exclusivity analysis (238). Here we exploited the curated data for copy number 

variation analysis also to identify novel synthetic lethal pairs. In addition to the genomics 

data, we also gathered a variety of information at the gene level (such as gene 

duplicability, sequence identity, protein domain composition, functional redundancy, 

network properties, pathway and complex information) to predict and prioritize the best 

candidate pairs with a possible synthetic lethal interaction. We extended the work 

previously published in our group, which demonstrated that recessive cancer genes sharing 

certain properties are potential candidates for having synthetic lethality with their 

functional paralogs (188). Experimental validation of the pair STAG1/STAG2 presented 

here is a further confirmation of this idea. Efficient molecular tools recently developed for 

cellular engineering such as CRISPR (326,327) will ease and enlarge the applicability of 

similar ideas in the field. 

Our approach to identify putative synthetic lethal pairs has several advantages as well 

as limitations compared to the previous methods (199,216,238,239). First, our analysis is 

biased to the genes that are mutated in at least one cancer sample in our dataset and have 

only one paralog on the genome, which represent about 11% of the annotated genes (2,028 

out of 19,014). Although we might miss many potential candidates among the remaining 

genes, we principally focus on the most relevant selection of genes for our purpose, 

supported by the working hypothesis that paralogous genes are engaged in synthetic lethal 

interaction due to their functional redundancy (188). Second, we curated as many features 

as possible that can support the functional redundancy of the paralogous pairs, by using 

both computational and manual approach. We did not apply strict criteria on the features 

for the prediction, rather we used the data to prioritize the candidate pairs for experimental 

validation. Ideally, all of 2,028 pairs should be experimentally tested to assess our 

prediction accuracy. Such an assessment will also quantify the applicability of our initial 

hypothesis. However, this is not practically feasible in terms of laboratory work, time and 
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cost that it requires. Nevertheless, considering the virtually infinite combinations of gene 

pairs in the genome, our approach is a good approximation of potentially relevant 

candidates, reducing the data to a manageable size. In the future, it will be useful to 

develop a computational tool based on the methodology that we used here to readily 

predict and prioritize candidate pairs on the updated datasets. 

The prediction of putative gene pairs with synthetic lethality relied on several 

assumptions. First, we assumed paralogous genes with certain properties would have 

functional redundancy, such as high sequence identity, shared functional domains and 

being part of the same biological pathway or complex. This is a widely accepted 

assumption based on a number of real examples from the literature (328), although there 

are cases in which two proteins with high sequence identity have different functions 

(329,330). Second, we assumed that the decreased expression of a gene is due to its loss-

of-function mutation. For each gene, we coupled loss-of-function mutations with gene 

expression changes in the cancer samples in which it is mutated, however, there is not 

necessarily a cause-and-effect relationship between the two. Third, we assumed that the 

increased expression of wild-type paralog is due to the functional compensation. We took 

increased expression as an indicative of increased gene activity that replaces the specific 

function disrupted due to the impaired gene. All these assumptions, however, were made 

only to predict and prioritize our candidates for the experimental validation, and we were 

able to validate our prediction for the pair of STAG1/STAG2. 
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Appendix: Published papers 

The two published papers are attached at the end of the thesis: 

1) An, O., Dall'Olio, G.M., Mourikis, T.P. and Ciccarelli, F.D. (2015) NCG 5.0: 

updates of a manually curated repository of cancer genes and associated 

properties from cancer mutational screenings. Nucleic Acids Res. 

2) An, O., Pendino, V., D'Antonio, M., Ratti, E., Gentilini, M. and Ciccarelli, F.D. 

(2014) NCG 4.0: the network of cancer genes in the era of massive 

mutational screenings of cancer genomes. Database (Oxford), 2014, bau015. 
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ABSTRACT

The Network of Cancer Genes (NCG, http://ncg.kcl.
ac.uk/) is a manually curated repository of cancer
genes derived from the scientific literature. Due to
the increasing amount of cancer genomic data, we
have introduced a more robust procedure to ex-
tract cancer genes from published cancer mutational
screenings and two curators independently reviewed
each publication. NCG release 5.0 (August 2015) col-
lects 1571 cancer genes from 175 published studies
that describe 188 mutational screenings of 13 315
cancer samples from 49 cancer types and 24 pri-
mary sites. In addition to collecting cancer genes,
NCG also provides information on the experimental
validation that supports the role of these genes in
cancer and annotates their properties (duplicability,
evolutionary origin, expression profile, function and
interactions with proteins and miRNAs).

INTRODUCTION

Cancer genome projects, including The Cancer Genome At-
las (TCGA, https://tcga-data.nci.nih.gov/) and the Inter-
national Cancer Genome Project (ICGC, https://dcc.icgc.
org/) have so far mapped DNA alterations in more than 13
000 cancer samples. These massive sequencing efforts show
that somatic modifications vary greatly between and within
cancer types (1–3). Only some of the acquired alterations,
however, confer a selective advantage that promotes can-
cer development (driver alterations). The large majority of
alterations have no or little role in cancer and are fixed in
the cancer genome as a by-product of the selection acting
on drivers (passenger alterations). One of the challenges of
cancer genomics is to effectively distinguish between driver
and passenger alterations in order to identify the molecu-
lar determinants of cancer. Most known driver alterations
modify protein-coding genes (cancer genes). The ability to
identify cancer genes among the wealth of mutated genes is

crucial to better understand cancer biology and to empower
the development of innovative anti-cancer therapy.

Network of Cancer Genes (NCG) is a database launched
in 2010 with the aim to collect cancer genes from the
literature. Curators constantly review cancer mutational
screenings and annotate altered genes that either have well-
established cancer functions (known cancer genes) or are pu-
tative cancer drivers (candidate cancer genes). Originally (4),
NCG collected data from only five mutational screenings
and annotated most known cancer genes from the Cancer
Gene Census (CGC) (5). The last five years have seen the
rapid accumulation of cancer genomic data from thousands
of samples, with almost all human genes mutated in at least
one sample (6,7). Due to this overwhelming amount of data
and to avoid the inclusion of mutated genes with no role
in cancer, in this release we have substantially reviewed the
procedure to identify cancer genes. NCG now collects 1571
cancer genes, 518 of which are known cancer genes. The re-
maining 1053 genes are candidate cancer genes whose driver
role has been predicted in the original publication using a
variety of methods (Supplementary Table S1). Given the
importance of a robust experimental support for the cancer
activity of candidate cancer genes, NCG now collects addi-
tional literature describing available orthogonal validations.
NCG also annotates various properties of cancer genes such
as the presence of extra copies in the genome (gene duplica-
bility), the evolutionary origin, the connectivity of the en-
coded proteins in the protein–protein and miRNA interac-
tion networks, and the comprehensive gene expression pro-
file across 38 human tissues and 1543 cancer cell lines.

The manual curation of the literature to extract cancer
driver genes and the annotation of a large number of addi-
tional properties make NCG a comprehensive and updated
resource to navigate the overwhelming amount of cancer
data with a particular focus on the genetic determinants of
cancer.

MANUAL ANNOTATION OF CANCER GENES

In this release of NCG, the procedure for the inclusion of
cancer genes in NCG has been reviewed and standardized
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Figure 1. Curation procedure and comparison between NCG 5.0 and NCG 4.0: (A) Flowchart of the curation procedure used in NCG. After the identifi-
cation of relevant publications describing cancer mutational screenings, two independent curators extract cancer genes and related information on types of
screening and cancer, primary sites, screened samples and supporting methods. (B) Number of publications, screenings, cancer types and screened samples
in NCG 5.0 as compared to NCG 4.0. (C) Venn diagram of cancer genes in NCG 4.0 and NCG 5.0. The reasons for the removal of 778 genes from the
database are detailed in Supplementary Table S2. (D–E) Growth of NCG data in time. Shown are the number of publications, screenings and cancer genes
starting from 2010, year of the first release of NCG. All screenings that were published prior of 2010, were collapsed.

(Figure 1A). The first difference with previous versions is
to restrict the inclusion only to studies that describe mu-
tational screenings of cancer samples and that distinguish
between cancer genes and genes with passenger mutations.
This led to the identification of 119 new publications. To be
consistent with these inclusion criteria, all 68 studies present
in the previous release were re-analysed. Twelve of them
were excluded because they screened cancer cell lines rather
than cancer samples or used no methods to identify cancer
genes among all mutated genes. As a result of this exten-
sive literature search, NCG 5.0 currently collects 175 studies
(Supplementary Table S1). Two curators reviewed indepen-
dently each publication to extract cancer genes and com-
plementary information, such as the screening and the can-
cer types, the primary sites, the number of sequenced sam-
ples and the methods that were applied to identify cancer
genes (Figure 1A). This manual curation resulted in 1260
cancer genes, 207 of which were annotated as known can-
cer genes in CGC. The remaining 1053 genes were candi-
date cancer genes identified in the original study using one
or more methods (Supplementary Table S1). Additional
known cancer genes were also added from CGC (February
2014), leading to a total of 1571 cancer genes. If informa-
tion was available, cancer genes were further annotated as
dominant (mostly oncogenes) or recessive (mostly tumour-
suppressors) genes.

As compared to NCG 4.0 (8), NCG 5.0 now collects
information from more than the double number of publi-
cations, screenings and cancer types and from four times
more cancer samples (Figure 1B). Despite this substantial
increase of data, the number of cancer genes decreased from
2000 to 1571 (Figure 1C), because of the more restrictive

criteria. In particular, 612 genes were removed because the
original publication was excluded and 166 genes because
they had no support as cancer drivers (Supplementary Ta-
ble S2). Overall, the studies in NCG 5.0 describe 188 mu-
tational screenings, including 125 whole exome sequenc-
ings, 33 whole genome sequencings, 17 screenings of se-
lected gene panels and 13 screenings based on multiple ap-
proaches (Figure 1D). Interestingly, the number of cancer
genes with a well-documented role in cancer increases at a
much slower pace as compared to candidate cancer genes
(Figure 1E). This highlights the currently unmet need of ef-
ficient experimental assays that support the predicted role
of candidate genes in cancer.

Almost all mutational screenings collected in NCG 5.0
applied only one method to identify cancer genes (Supple-
mentary Table S1). The most common was the recurrence
of mutation of a given gene across samples, which was taken
as a sign of functional selection (Figure 2A and Supplemen-
tary Table S1). Other commonly used methods included
MutSig (6) and MuSiC (9) (Figure 2A and Supplementary
Table S1). Interestingly, the majority of known cancer genes
(67%) had the support of at least two methods (Figure 2B),
while most candidate cancer genes (78%) have been pre-
dicted by only one method (Figure 2C). In agreement with
this, known cancer genes were overall identified as drivers
across a higher number of mutational screenings and pri-
mary cancer sites as compared to candidate cancer genes
(Figure 2D). The tendency of candidate cancer genes to be
cancer specific was also reflected by the lower overlap be-
tween methods that support them as compared to those that
support known cancer genes (Figure 2E). Cases where the
overlap was higher (i.e. between MutSig and Invex, Figure
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Figure 2. Overview of data in NCG 5.0: (A) Cancer mutational screenings divided according to the method that was applied to identify cancer genes in the
original publication. Methods and corresponding screenings are described in Supplementary Table S1. (B–C) Fractions of known and candidate cancer
genes supported by one or more methods. Gene counts are reported in brackets. (D) Number of mutational screenings and primary sites where each cancer
gene has been reported as a driver. TP53 is an outlier and has been excluded from the analysis because it has been identified in 113 screenings across 22
primary sites. (E) Heatmaps of the overlap between methods identifying known and candidate cancer genes. Each box represents the percentage of cancer
genes identified with one method that are also supported by another. For each method, the total number of associated cancer genes is reported in brackets.

2E) corresponded to screenings where both methods were
used (Supplementary Table S1).

EXPERIMENTAL VALIDATION OF CANDIDATE CAN-
CER GENES

Candidate cancer genes that are identified using computa-
tional methods often lack additional experimental valida-
tion of their cancer driver role. The main reason is that func-
tional follow-ups are often cumbersome and require ad hoc
design for individual genes. The experimental proof of pre-
dicted driver role is however crucial for the translatability
of potentially relevant discoveries into increased knowledge
and novel treatments.

In this release of NCG, we have extensively reviewed the
literature to search for experimental validations of candi-
date cancer genes. NCG now annotates available orthogo-
nal experiments that have been performed in the original
study or in follow-up studies for 120 out of 1053 candidate
cancer genes (11% of the total, Table 1 and Supplementary
Table S3). Most commonly used approaches measure the
effect of gene silencing or gene overexpression in cell lines
(Figure 3A and Supplementary Table S3) and the major-

ity of candidate genes (83 out of 120) have been validated
through multiple assays (Figure 3B).

An interesting case is CSMD3, the gene associated with
benign adult familial myoclonic epilepsy (10) that encodes
a long multi-repeat protein (Figure 3C). CSMD3 has been
found recurrently mutated across several cancer types and,
therefore, has been predicted as a cancer driver by several
methods (Figure 3D). Because of its length, sequence com-
position and location in proximity of fragile sites of the
genome, CSMD3 was regarded as a possible false positive
in NCG 4.0. The fact that CSMD3 is constitutionally not
expressed in many tissues where it is mutated (Figure 3E)
also supports the passenger role of the acquired mutations.
Despite this, however, the stable knockout of CSMD3 in im-
mortalized epithelial cells has been reported to increase cell
proliferation (11), thus suggesting a tumour-suppressor role
for this gene. This example highlights the difficulty to cor-
rectly predict the driver role of mutated genes and the need
of multiple independent pieces of evidence to assess the role
of mutations in cancer.
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Table 1. Experimental validation of candidate cancer genes

Experimental validation Candidate cancer genes (n) Publications (n)

Gene overexpression 60 74
Transient RNA interference 58 52
Mutagenesis 31 41
Immunostaining 25 26
Stable gene knockout 23 22
Survival analysis 20 21
Protein activity assay 19 20
Drug response assay 15 17
In silico protein modelling 12 14
Xenograft 10 11
Rhotekin pull-down 2 5
Total 275 (120 unique genes) 303 (166 unique publications)

For each type of experimental validation, the numbers of validated candidate genes and corresponding publications are shown. The complete gene list with
references to the original papers is given in Supplementary Table S3.

Figure 3. Validation of candidate cancer genes and alteration spectrum of CSMD3: (A) Fractions of validated candidate cancer genes according to the used
experimental assay. Gene silencing refers to stable knockout or transient knockdown via RNA interference. Other assays include in silico protein modelling,
survival analysis, drug response, protein activity, rhotekin pull-down and xenograft cancer models. (B) Percentage of candidate cancer genes that have been
validated using one or more experimental approaches. The corresponding number of genes is shown above each bar. The full list of experiments and genes
is reported in Supplementary Table S3. (C) Protein domain architecture of CSMD3 according to the SMART database (32). (D) Percentage of mutational
screenings, cancer types, primary sites and methods that support the cancer driver role of CSMD3. Corresponding numbers are provided. (E) Expression
profile of CSMD3 in normal human tissues. Tissues where the gene is expressed in GTEx and Protein Atlas are highlighted in red.

ANNOTATION OF CANCER GENE PROPERTIES

To annotate the properties of cancer genes, original data on
human genes, orthology, protein–protein and miRNA in-
teractions and gene expression have been updated (Table 2).

Applying the previously described method (12), protein
sequences from RefSeq v.63 (13) were aligned to the human
genome assembly Hg19 to identify unique gene loci. These
included 1525 of the 1571 cancer genes (13 cancer genes did
not have RefSeq entries and 33 had no match in Hg19 or
were gene isoforms). Cancer genes confirm their lower du-
plicability as compared to non-cancer genes and the signal
derives from recessive cancer genes (P-value = 0.02, chi-
square test, Table 2).

Orthology information from EggNOG v.4 (14) was used
to trace the evolutionary origin of 1501 cancer genes, as de-
scribed earlier (15). In line with previous reports (15–17),
a higher fraction of cancer genes have orthologs in pre-
metazoan species as compared to other human genes (P-
value = 0.03, chi-square test, Table 2).

Four sources of primary interaction data (BioGRID
v.3.4.125 (18); MIntAct v.190 (19); DIP (April 2015) (20);
HPRD v.9 (21)) were integrated to rebuild the human
protein–protein interaction network. This network included

1332 cancer proteins, which encode a higher fraction of
hubs (defined as 25% most connected nodes of the net-
work) as compared to other human proteins (P-value = 2.7
× 10−56, chi-square test, Table 2). We verified that cancer
genes encode a higher fraction of protein hubs also in the
network derived from high-throughput screenings (P-value
= 7.7 × 10−13, chi-square test, Table 2). This excludes bi-
ases due to the higher number of single-gene experiments
involving cancer proteins.

To complete the annotation of protein–protein interac-
tions, NCG now collects also information on 752 cancer
proteins involved in complexes as gathered from three re-
sources (CORUM (February 2012) (22), HPRD v.9 (21),
Reactome v.53 (23)). Supporting the signal from the over-
all protein–protein interaction network, a higher percent-
age of cancer proteins engage in complexes as compared to
non-cancer proteins (P-value = 3.0 × 10−67, chi-square test,
Table 2).

Interactions between 324 miRNAs and 1101 cancer genes
were derived from miRTarBase v.4.5 (24) and miRecords
(April 2013) (25). Similarly to the protein–protein interac-
tion network, also in the miRNA network a significantly
larger fraction of cancer genes are target of miRNAs as
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Table 2. Data and properties of cancer genes in NCG 5.0

Data sets in NCG 5.0
All cancer
genes (1571) Known cancer genes (518)

Candidate cancer
genes (1053)

Other human
genes

Dominant (395) Recessive (112)

Human genes All genes 1525 382 112 1020 17 489
Duplicated genes (%) 280 (18%) 76 (20%) 12 (11%) 187 (18%) 3520 (20%)

Orthology All genes 1501 379 110 1001 16 618
Pre-metazoan genes (%) 992 (66%) 233 (61%) 80 (72%) 672 (67%) 10 516 (63%)

Protein–protein interactions All nodes 1332 371 110 840 13 262
Hubs (%) 558 (42%) 213 (57%) 78 (71%) 257 (31%) 2970 (22%)
All nodes in HT network 1177 339 108 720 11 481
Hubs in HT network (%) 386 (33%) 148 (44%) 52 (48%) 177 (25%) 2681 (23%)

Protein complexes Proteins (%) 752 (49%) 238 (62%) 87 (78%) 418 (41%) 4917 (28%)
miRNA interactions miRNA target genes (%) 1101 (72%) 332 (87%) 99 (88%) 662 (65%) 10 643 (61%)

miRNAs 324 247 163 250 438
Expression in normal tissues All genes in GTEx 1513 379 111 1012 16 818

Ubiquitous genes (%) 965 (64%) 301 (79%) 98 (88%) 555 (55%) 11 077 (66%)
Tissue-specific genes (%) 62 (4%) 5 (1%) 0 (0%) 57 (6%) 726 (4%)
All genes in Protein Atlas 1517 378 112 1016 16 889
Ubiquitous genes (%) 831 (55%) 278 (74%) 95 (85%) 447 (44%) 9492 (56%)
Tissue-specific genes (%) 90 (6%) 11 (3%) 1 (1%) 78 (8%) 1042 (6%)

Expression in cancer cell lines Cancer cell line encyclopedia 1426 367 106 942 15 158
COSMIC Cancer Lines 1398 358 105 924 14 788
Genentech data set 1524 381 112 1020 17 164

Of the 518 known cancer genes derived from CGC, 391 are annotated as dominant (mostly oncogenes), 108 as recessive (mostly tumour-suppressors), four as both as dominant and recessive and 15
have no specified mode of action. Duplicated genes have one or more duplicated loci in the genome covering ≥60% of their length (12). Pre-metazoan genes originated in the Last Universal Common
Ancestor, Eukaryotes or Opisthokonts. Ubiquitously expressed genes are expressed in ≥95% tissues (29 tissues in GTEx and 30 tissues in Protein Atlas). HT = high throughput (publications reporting ≥100
interactions).

compared to other human genes (P-value = 3.0 × 10−18,
chi-square test, Table 2).

This release of NCG provides information on the ex-
pression of cancer genes in normal tissues and in cancer
cell lines. For normal tissues, NCG relies on GTEx v.1.1.8
(26) and Protein Atlas (April 2015) (27), which both derive
gene expression from RNASeq data in a total of 38 tissues.
Expression values (FPKM for GTEx and RPKM for Pro-
tein Atlas) were used to derive expression categories (low,
medium and high expression) for each gene and to calculate
the distribution of gene expression across samples in each
tissue. In both data sets, larger fractions of known cancer
genes, but not of candidate cancer genes, are ubiquitously
expressed (expression in >95% of all tissues) as compared
to other genes (P-value = 1.3 × 10−13 and P = 1.3 × 10−19

for GTEx and Protein Atlas, respectively, chi-square test,
Table 2). Conversely, significantly lower fractions of known
cancer genes, but not of candidate cancer genes, are tissue
specific (P-value = 4.2 × 10−4 and P-value = 6.9 × 10−4, for
GTEx and Protein Atlas, respectively, chi-square test, Table
2).

Three data sets (Cancer Cell Lines Encyclopedia (28),
COSMIC Cancer Lines Project (29) and the recently re-
leased Genentech data set (30)) were used to derive gene ex-
pression in a total of 1543 cancer cell lines (Table 2). For
each cancer gene, NCG provides the original expression
value in each cell line as well as the normalized expression
score, calculated as previously reported (31).

DATA ACCESS

NCG web interface has been reorganized, with particu-
lar focus on the summary of gene information and on the
visualization of gene expression profiles. The gene sum-
mary now includes additional cross-references to external
resources on protein domain architecture (32), drug and
compound interactions (33,34) and protein druggability
(35). For each cancer gene, the type of mutational screen-

ings, the supporting methods and any experimental valida-
tion are detailed. Gene expression profiles are now shown
as interactive graphs reporting the distribution of expres-
sion levels in each normal tissue and as summary tables in
cancer cell lines.

NCG website provides overview statistics of the data
contained in the database, including the list of 49 cancer
types and corresponding 24 primary sites, the distribution
of known and candidate cancer genes per primary sites, and
information on 48 possible false positives. These include 14
genes derived from the literature (6), 4 additional genes that
likely accumulate a high number of alterations due to their
length and 30 olfactory receptor genes. All data contained
in the database can be exported in batch using the advanced
search option.

NCG USAGE

NCG offers a multi-level annotation of cancer genes that
can be queried to gain insights on mutation status, proper-
ties, function and expression profiles of cancer genes (Fig-
ure 4A). This information facilitates the characterization of
cancer genes and associated features. For example, gene du-
plicability has been exploited to extract duplicated tumour
suppressor genes and to verify the occurrence of negative
epistasis between them and their paralogs (36). Another
useful feature of NCG is the comprehensive overview of
gene expression profiles across a vast range of normal tis-
sues and cancer cell lines. This can guide the selection of
the most adequate cell systems for planning in vitro experi-
ments (Figure 4B).

NCG is exploited widely as a repository of cancer genes
(17,37–50). Examples include the use of NCG to test for the
proximity of cancer genes to retrovirus insertion sites (48)
and to evaluate the features of cancer classification meth-
ods (41). NCG also facilitates the interpretation of cancer
mutational screenings by annotating the properties of mu-
tated genes (Figure 4C) overall and in selected cancer types
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Figure 4. Examples of NCG usage: (A) Example of information available in NCG for a given cancer gene, in this case the oncogene AKT2. NCG summa-
rizes the gene mutation profile across cancer types, information on duplicability, orthology, protein–protein and miRNA interactions and gene expression
(B) NCG can facilitate the selection of the best cell systems for experimental assays by providing the expression profile of the gene of interest in several
tissues and cell lines. (C) NCG can be used to annotate altered genes from mutational screenings. (D) The advanced search interface of NCG allows the
identification of drivers in a variety of cancer types. (E) NCG can be integrated in gene enrichment analysis pipelines as a source of cancer genes.

(Figure 4D). For example, NCG has been used to verify
whether genes undergoing copy number variations in famil-
ial breast cancer were already known cancer genes (49). Fi-
nally, NCG can be easily integrated into more complex an-
alytical pipelines (Figure 4E). In the method developed by
Zeller et al., NCG provides a source of true cancer genes to
prioritize drivers (50). In the DOSE bioconductor package,
NCG is implemented as a source of cancer genes to perform
enrichment analysis (51).

FUTURE WORK

It is expected that mutational screenings of cancer sam-
ples will continue to produce large amounts of data in the
next years. The launch of personal genome initiatives ((52)
and www.genomicsengland.co.uk) and the delivery of pan-
cancer projects will substantially enlarge the spectrum of
cancer types and samples with available mutational profiles.

This will allow the discovery of novel cancer genes, partic-
ularly of those that recur in few samples and are currently
difficult to identify. In parallel, the development of novel
approaches for high-throughput functional screenings (e.g.
based on the CRISPR-Cas technology (53–56)) promises to
improve the efficiency of experimental validation assays.

In this exciting scenario, NCG will continue in its com-
mitment to manually curate the literature to extract can-
cer genes and annotate available orthogonal supports. NCG
will also expand to include other types of cancer driver al-
terations, such as copy number variations, gene rearrange-
ments and non-coding modifications (57,58). In addition to
enlarge the repertoire of cancer drivers, NCG will integrate
new properties, e.g. the epigenetic regulation of cancer genes
and their germline mutations.

As data become available, NCG will include the clini-
cal relevance of cancer genes, such as their actionability
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as pharmacological targets (59) and their applicability as
biomarkers of cancer progression. All these efforts will con-
tribute towards a more complete characterization of the
molecular determinants of cancer.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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NCG 4.0 is the latest update of the Network of Cancer Genes, a web-based repository of systems-level properties of cancer

genes. In its current version, the database collects information on 537 known (i.e. experimentally supported) and 1463

candidate (i.e. inferred using statistical methods) cancer genes. Candidate cancer genes derive from the manual revision of

67 original publications describing the mutational screening of 3460 human exomes and genomes in 23 different cancer

types. For all 2000 cancer genes, duplicability, evolutionary origin, expression, functional annotation, interaction network

with other human proteins and with microRNAs are reported. In addition to providing a substantial update of cancer-

related information, NCG 4.0 also introduces two new features. The first is the annotation of possible false-positive cancer

drivers, defined as candidate cancer genes inferred from large-scale screenings whose association with cancer is likely to be

spurious. The second is the description of the systems-level properties of 64 human microRNAs that are causally involved in

cancer progression (oncomiRs). Owing to the manual revision of all information, NCG 4.0 constitutes a complete and

reliable resource on human coding and non-coding genes whose deregulation drives cancer onset and/or progression.

NCG 4.0 can also be downloaded as a free application for Android smart phones.

Database URL: http://bio.ieo.eu/ncg/

.............................................................................................................................................................................................................................................................................................

Introduction

Sequencing of exomes and genomes from thousands of

cancer samples led to the identification of an increasing

number of mutated genes that may contribute to driving

human cancer (1–3). Owing to the massive amount of infor-

mation derived from these studies, it is often difficult to get

an overview of the genes that play a driver role in cancer on

mutation (cancer genes). Since 2010, the Network of Cancer

Genes (NCG) has been collecting information on a manually

curated list of known and candidate cancer genes (4, 5).

Known cancer genes have robust experimental support on

their role in cancer onset and progression. Candidate cancer

genes instead derive from large-scale mutational screenings

of cancer samples and have been identified using statistical

methods with poor or no experimental follow-up. Candidate

cancer genes are thus prone to include false positives as a

consequence of the difficult discrimination between passen-

ger and driver mutations (6, 7). To account for this, NCG 4.0

reports a list of candidate cancer genes whose association

with cancer is likely to be spurious owing to function, length

and literature evidence.

For each known and candidate cancer gene, NCG 4.0

annotates a series of systems-level properties, defined as

features that distinguish a group of genes (in this case,

cancer-related genes) from the rest, and that cannot be

.............................................................................................................................................................................................................................................................................................
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ascribed to the function of the single gene alone (8).

Systems-level properties currently reported in NCG are of

evolutionary origin and duplicability, primary and second-

ary interaction network of the encoded proteins and

miRNA regulatory networks. In addition, NCG 4.0 provides

information on gene expression in 109 human tissues

and on their functional characterization based on Gene

Ontology (9). Owing to the increasing evidence of the pri-

mary role of microRNA (miRNA) deregulation in the onset

of human cancer (10, 11), NCG 4.0 also annotates the

systems-level properties of 64 cancer-related miRNAs

(oncomiRs) manually derived from the literature.

Compared with other databases collecting all cancer mu-

tations, such as COSMIC (12), ICGC (13) and CGAP (14), NCG

4.0 provides the community with a manually reviewed

and constantly updated repository only of cancer drivers.

In addition, it also annotates the properties of these genes,

thus resulting useful to address different types of ques-

tions regarding cancer determinants (Figure 1) and to

mine the increasing amount of information on cancer

mutations.

Database Description and Updates

Manual collection of cancer genes

NCG 4.0 annotates the properties of 2000 cancer genes,

defined as genes that contribute in promoting the onset

and/or the development of human cancer. This list is

derived from the union of two datasets. The first combined

a literature-based repository of 484 genes from the Cancer

Gene Census (377 dominant, 111 recessive and 4 genes that

can act as both dominant and recessive, as frozen in

January 2013) (15) with 77 genes whose amplification is

causally implicated in cancer (16). This led to 537 experi-

mentally supported cancer genes, which we defined as

‘known cancer genes’. The second dataset consisted of

1463 genes that are likely to be involved in cancer devel-

opment on mutation, which we defined as ‘candidate

Q: Which cancer genes are regulated by oncomiR-200?

OncomiR
Known cancer gene
Candidate cancer gene
Non-cancer gene

A  Properties of cancer genes B  Results of Mutations Screenings

C  OncomiR Annotation

Q: In how many cancer types is BRCA1 mutated?

Q: Does SMARCA4 have duplicates? 

Q: When did ARID2 originate in evolution?

Q: Which cancer genes are the most mutated in colorectal cancer?

Q: Which are the physical interactors of IDH1? 

Figure 1. Examples of queries that can be done in NCG. Information stored in NCG can be used to address different queries
regarding the properties of (A) individual cancer genes, (B) cancer types and (C) oncomiRs. Relevant information to address the
specific queries is highlighted in orange.
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cancer genes’. These genes derived from the manual revi-

sion of 67 publications corresponding to 77 re-sequencing

screenings of the whole exomes (49 screenings), the whole

genomes (19 screenings) and selected gene sets

(9 screenings), conducted on 3640 samples from 23 cancer

types (Supplementary Table S1) (17–83). These papers rep-

resented a comprehensive set of high-throughput cancer

re-sequencing screenings.

Compared with the previous version, NCG 4.0 appreciably

increased the number of cancer genes, particularly candi-

dates, and of sequenced samples (Figure 2A). Such accretion

of knowledge reflects the current massive worldwide efforts

to characterize cancer mutational landscapes in detail.

Although we are expected to reach a plateau in the discov-

ery of new driver genes because genes frequently (and sig-

nificantly) mutated in some cancer types are also mutated at

low frequency in other cancer types (1), our data show that

we are still in the growing phase. In particular, for most

cancer types the number of new candidate cancer genes in-

creases with the number of sequenced samples (Figure 2B).

As already noticed (1, 6), most cancer genes, and in particular

candidates, are specific for a given cancer type, and only few

known cancer genes recurrently mutate in several cancers

(Figure 2C). This observation once again confirms the hetero-

geneity of cancer mutation landscape (3).

Human gene set and orthology information

To identify the list of unique human genes, we aligned 33

427 protein sequences from RefSeq v.51 (84) to the refer-

ence human genome Hg19, using a method previously de-

veloped by our group (5, 8). This led to the identification of

19 045 unique gene loci, including 1961 of the 2000 cancer

genes. Of the remaining 39 cancer genes, 29 did not have

RefSeq protein entries and 10 were discarded because

their protein sequences aligned to the genome for <60%

of their length. For each cancer gene we retrieved
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Figure 2. Overview of the data collected in NCG 4.0. (A) Comparison of data stored in NCG 3.0 and NCG 4.0. (B) Linear regression
curves between the number of known and candidate cancer genes and the number of sequenced samples in each cancer type.
Some cancer types deviate from linearity and this can be due to different reasons. For example, melanoma has a high number of
candidate cancer genes (169) despite the low number of sequenced samples (41). In this case, the most likely explanation is that
most of these candidate genes derive from two screenings (61, 75) that did not apply any methods to identify cancer drivers
(Table 1, Supplementary Table S1). In the case of medulloblastoma, candidate and known cancer genes are only 25 despite 211
samples having been screened. This likely depends on the low mutation frequency of medulloblastoma [<1 mutation/Mb (40, 57,
64, 67)]. (C) Recurrence of known and candidate cancer genes in different cancer types. The only cancer genes that have been
found mutated in more than 10 different cancer types are TP53 (20 cancer types), PIK3CA (13 cancer types) and PTEN (12 cancer
types). (D) Comparison of cancer miRNA targets that have been identified using single gene (i.e. reporter assay, western blot)
and high throughput approaches (i.e. microarray, proteomic experiments and next-generation sequencing).
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duplicability, evolutionary origin, functional annotation,

gene expression profile, protein–protein interaction and

gene-microRNA interaction.

We assessed gene duplicability by the presence of one or

more additional hits on the genome covering at least 60%

of cancer protein length (8). Of the 1961 cancer genes, 325

(17%) had at least one extra copy on the genome. This was

a significantly lower fraction compared with the rest of

human genes (21%, P-value = 7.8� 10�06, chi-square test),

thus confirming the tendency of cancer genes to preserve a

singleton status in the genome (8).

We assessed orthology relationships for 1978 of the 2000

cancer genes annotated in EggNOG v.3.0 (85) and used this

information to infer the evolutionary origin of each cancer

gene, defined as the most ancient node of the tree of life

where the ortholog for that gene could be found (86). As

already reported (86, 87), we confirmed that the fraction of

old cancer genes that originated in prokaryotes and unicel-

lular eukaryotes (1500, 76% of the total) was higher than in

the rest of human genes (68%, P-value = 6.1� 10�13, chi-

square test). Moreover, we also confirmed that recessive

cancer genes are older than dominant cancer genes (4).

The vast majority of recessive cancer genes (87/111, 78%)

originated already with the last universal common ancestor

or with unicellular eukaryotes, compared with only 67% of

dominant cancer genes (P-value = 0.03, chi-square test).

Protein–protein and miRNA-target interaction
networks

We rebuilt the human protein–protein interaction network

integrating direct experimental evidence from five sources:

HPRD (frozen on 13 April 2010) (88), BioGRID v.3.2.96 (89),

IntAct v.159 (frozen on 14 December 2012) (90), MINT

(frozen on 26 October 2012) (91) and DIP (frozen on 10

October 2010) (92). This resulted in a global network of

16 241 proteins (nodes) and 164 008 binary interactions

(edges), supported by 33 497 independent publications.

Interaction data were available for 1706 cancer proteins,

and hubs (defined as proteins with at least 15 interactions)

constituted 45% of all cancer genes, compared with 30%

of the rest of human genes (P-value = 3.60 10�38, chi-square

test).

The interaction network between miRNAs and cancer

genes relied on experimental data extracted from three

different sources: TarBase v.5.0 (93), miRecords v.4.0 (94)

and miRTarBase v.4.4 (95). The integration of these data

led to 1160 cancer targets of miRNAs (58% of the total).

This was a significantly higher proportion compared with

the rest of human genes (48%, P-value = 1.02�10�17, chi-

square test) and confirmed the tendency of cancer genes to

be regulated by miRNAs (4). This enrichment may reflect

the fact that cancer genes are overall better characterized

and thus more information is available on them. However,

>70% of miRNA targets have been identified through

high-throughput screenings (such as microarray, mass

spectrometry and sequencing, Figure 2D), thus partially

reducing the bias. Finally, we also updated the list of

cancer genes that host miRNAs within their genomic loci

(87 genes, 4.4% of the total).

Novel Features of NCG 4.0

Identification of possible false cancer genes

With the increasing evidence of an overwhelming number

of mutations acquired during cancer progression (most of

which with no role in the disease), a number of statistical

methods have been developed to identify cancer drivers

within the whole set of mutated genes. These methods

take into account several features including the tendency

of the same gene to be mutated across many samples, the

cancer-specific background mutation rate, the gene length

and expression and the mutation effect on the encoded

protein (Table 1, Supplementary Table S1). Despite all

efforts to refine the identification of driver mutations, cur-

rent approaches are still prone to false positives, i.e.

mutated genes that are erroneously identified as cancer

drivers (6, 7). For example, genes encoding olfactory recep-

tors are often included in the list of candidates, because

they tend to mutate although the biological function and

expression pattern of these genes strongly dismiss a pos-

sible functional role in the disease. Similarly, overly long

genes are also probable false positives because their recur-

rent mutations in several samples are most likely due to

their length more than to their function (6, 7). Because

the main goal of NCG is to annotate the properties of

cancer genes, we decided to collect all putative cancer

genes from primary data without removing possible false

positives. However, we added a warning concerning the

possible spurious cancer associations for 60 genes (39 olfac-

tory receptors, 14 genes with long exons and/or introns and

7 additional false positives derived from literature (7)

(Figure 3A, Table 1). Although gene length by itself does

not imply spurious associations, we derived the length dis-

tributions of all candidate cancer genes and considered

genes with long introns (Figure 3B) or long exons

(Figure 3C) as possible false positives.

Gene expression profiles

To complete the functional annotation of cancer genes, we

derived expression levels for 1528 of them from two high-

throughput gene expression experiments on 109 human

tissues (99, 100). We normalized and processed the

raw CEL files obtained from the corresponding Gene

Expression Omnibus series (GSE2361 and GSE1133) using

the MAS5 algorithm of the R affy package (101, 102).

Because more than one probe can be associated with one

gene, the expression level of each cancer gene in a given

.............................................................................................................................................................................................................................................................................................
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tissue was defined as the mean expression levels of all

probes with detection P< 0.05. If all probes for a gene

had detection P> 0.05, the gene was considered as not

expressed.

To make a comparative assessment of the expression

levels of a cancer gene i in a given tissue t with those of

all other genes in the same tissue, we first calculated the

expression levels of all human genes in that tissue. We then

derived the normalized expression level n of the cancer

gene i in the tissue t, measured as:

ni,t ¼
ðei,t � EtÞ

ðei,t þ EtÞ

where ei,t was the expression level of the cancer gene i in

tissue t and Et was the median expression level of all genes

in tissue t. Normalized expression levels allowed a direct

comparison of the expression of all genes in each given

tissue.

Manual collection of miRNAs involved in human
cancer (oncomiRs)

We manually gathered the list of oncomiRs from the litera-

ture and included only miRNA families (i.e. miRNAs with

high sequence similarity) and miRNA clusters (i.e. miRNAs

that are neighbors in the genome and co-transcribed)

whose role in cancer was well described and experimentally

supported (103–108). This led to 64 oncomiRs involved in 27

cancer types. Similarly to protein-coding genes we retrieved

details on duplicability, evolutionary origin and interaction

network for all these oncomiRs.

To infer oncomiR duplicability, we downloaded 1424

human miRNAs from miRBase v.17 (109) and considered

all mature miRNAs with the same seed (i.e. the 6–8 nt-

long region at the 50-end of the sequence) as duplicated

miRNAs. The rationale for this choice was that, because

seeds determine the specificity in target recognition, their

sequences are the most conserved among homologous

miRNAs (110). Among 64 oncomiRs, 51 (79%) were dupli-

cated compared with 33% other duplicated human miRNAs

(P = 4.5�10�16, chi-square test). Therefore, unlike protein-

coding cancer genes that maintain a singleton status in the

genome, oncomiRs tend to have additional copies that

share the site of recognition of the RNA targets.

To pinpoint when oncomiRs appeared in evolution, we

developed a procedure similar to that used for protein-

coding genes and traced the most ancient miRNA ortholog.

We first retrieved the orthologs of 835 human miRNAs for

which miRNA families were available in miRBase (including

all 64 oncomiRs). We then assigned the origin of each

miRNA as the most ancient ortholog within the correspond-

ing family. Sixty oncomiRs (94% of the total) had orthologs

in vertebrates, compared with only 19% of the rest of

human miRNAs, thus suggesting that oncomiRs originated

earlier than the rest of human miRNAs. It is worth noticing

that the marked differences in duplicability and origin be-

tween oncomiRs and other human miRNAs are at least

partly inflated by the high interest in oncomiRs that

boosted the search of their paralogs and orthologs in

other species.

Web Interface, Implementation
and Data Availability

NCG 4.0 runs on an Apache web server and data are stored

in a MySQL database. The web interface was developed in

A
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Figure 3. Possible false positives among candidate cancer dri-
vers. (A) Venn diagram of the three groups of possible false
positives. In total, we identified 60 genes, 65% of which were
olfactory receptors, 23% were long genes and the remaining
20% were derived from literature (7). (B) Distribution of the
total length for known and candidate cancer genes. Total
gene length was measured as total number of nucleotides
spanning the entire gene locus, including exons and introns.
Red dots indicate possible false positives (gene longer than
1.5 Mb). (C) Length distribution of the coding regions for
known and candidate cancer genes computed as the
number of nucleotides covering the coding exons. Genes
longer than 20 Kb (red dots) were considered as possible
false positives.
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PHP and network visualization was implemented in

Cytoscape Web (http://cytoscapeweb.cytoscape.org/) (111).

We modified NCG 4.0 web interface to enhance func-

tionalities and facilitate the retrieval of the properties of

cancer genes and oncomiRs. In addition to searching for

single genes or list of genes of interest, the user can now

visualize and browse all 2000 cancer genes, as well as re-

trieve cancer genes based on specific filters. NCG 4.0 also

provides a detailed report on the cancer types and the cor-

responding publications where it was found mutated.

Similar types of searches can be done on the 64 oncomiRs.

All data stored in NCG 4.0 are summarized in the statis-

tics section that provides an overview on the properties of

cancer genes and oncomiRs. For example, it is possible to

compare mutation frequency, number of cancer genes and

oncomiRs as well as their recurrence across the different

cancer types and screenings. The bulk content of the data-

base as well as the list of cancer genes, false positives and

oncomiRs can be downloaded as text files. We developed a

mobile phone application for NCG 4.0 that is freely avail-

able from the Web site.

Supplementary Data

Supplementary data are available at Database online.
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