Physics and Applications of High Brightness Beams Workshop, HBEB 2013

Inverse Compton cross section revisited

C. Curatoloa,b,* L. Lanza, V. Petrilloa,b

aUniversity of Milan, via Celoria 16, 20133 Milan, Italy
bINFN - Milan, via Celoria 16, 20133 Milan, Italy

Abstract

The design of advanced machines working in the quantum regime (ELI-NP, IRIDE, \(e - \gamma\) and \(\gamma - \gamma\) colliders) requires to set the fundamentals needed to have an accurate prediction of the radiation qualities after the Compton scattering. Due to the high energy of the electron beam in the cases above mentioned, the quantum effects, referred as inverse Compton, which occur during the collision with the laser radiation, are not negligible. We present a rigorous method to obtain the inverse Compton cross section in the general case of not null initial momentum of the electrons from a pure QED calculation, avoiding the usual approaches based on the derivation of this cross section either from the Klein and Nishina formula and the Lorentz transformations or thought Feynman diagrams and Mandelstam invariants. In the derivation of the cross section from the transition amplitude we pay particular attention to the long time behavior of the system evolution. Proceeding in this way we obtain the transition probability in the time unit, which integrated over the solid angle of emission defines spectrum and number of the scattered photons.

\(© 2014\) Elsevier B.V. Open access under CC BY-NC-ND\ license. Peer-review under responsibility of the scientific committee of HBEB 2013

Keywords: Inverse Compton scattering; QED; differential cross section

1. Introduction

In the approach to Compton effect, which consists in the calculation of the cross section of the process \(e^- + \text{photon} \rightarrow e^- + \text{photon}\), the electron at the initial stage is considered at rest, \(q_i = 0\), as it happens in case of a \(X\) or \(\gamma\) radiation heading a target. The target’s particles have kinetic energy negligible compared to the one of the incident photons. Under this hypothesis, considering in the electromagnetic interaction between electron and photon the transition amplitude up to the second order, the standard Klein and Nishina formula \([1, 2]\) is obtained. Since the theory is relativistic, the result expressed by the Klein and Nishina formula is supposed to be generalized to the case \(q_i \neq 0\) with an appropriate Lorentz transformation. This transformation acts on the photon’s 4-momentum \(k\) and polarization vectors \(e_\lambda(k)\) with \(\lambda = 0, 1, 2, 3\), which are related to the plane waves of the electromagnetic field potential \(A^\mu(x, t)\). In each inertial frame, only the vectors whose index is \(\lambda = 1, 2\) correspond to physical photons. This choice is not covariant: for

* Corresponding author.

E-mail address: camilla.curatolo@unimi.it
this reason the Lorentz transformation has to be associated to a gauge transformation or it is necessary to consider the transformation law of the electromagnetic field’s tensor and to write the electric field through the vectors $e_i(k)$. Since in quantum mechanics the interaction is expressed utilizing the electromagnetic potential, the procedure [3, 4, 5, 6] described above could be not completely justified. On the other hand the use of Feynman diagrams and Mandelstam invariants as in [7, 8] leads to some controversial mathematical procedure such as Dirac δ functions squared and forces the actual physical setting into the formalism. In the following is presented the alternative method we developed and the results obtained.

2. Preliminaries

We recall here some preliminaries and notations useful in the following calculation, for a more detailed treatise see [9]. Concerning the electrons we introduce the field operator

$$\hat{\Psi}_s(x) = \sqrt{m_c} \sum_{r=1}^{2} \int \frac{d^3p}{p^0} \left(\frac{e^{i\mathcal{A}_p^x}}{2\pi\hbar} \gamma^r \hat{c}_r(p) + \frac{e^{i\mathcal{A}_p^x}}{2\pi\hbar} \hat{c}^\dagger_r(p) \right)$$

(1)

where $\hat{c}_r(p)$ and $\hat{c}^\dagger_r(p)$ are respectively the annihilation operator for particles and the creation operator for the antiparticles 1, satisfying the Dirac equations

$$\left(i \sum_{\mu} \gamma^\mu \frac{\partial}{\partial x^\mu} - \frac{m_c c}{\hbar} \right) \hat{\Psi}_s(x) = 0 \Leftrightarrow p \cdot p = m^2 c^2$$

(2)

and the adjoint field operator $\hat{\Psi}_s(x) = \Psi^\dagger(x) \gamma^0$. The operator acting on the photons is the potential vector

$$\hat{A}^\mu(x) = \frac{e}{\sqrt{2}} \int \frac{d^3p}{p^0} \left(\frac{e^{i\mathcal{A}_p^x}}{2\pi\hbar} \gamma^0 \hat{d}_r(p) + \frac{e^{i\mathcal{A}_p^x}}{2\pi\hbar} \sum_{\lambda=0}^3 \hat{e}^\mu_{\lambda r}(p) g^{\lambda \nu} \gamma^\nu \hat{d}_{\lambda r}(p) \right)$$

(3)

with $\hat{c}_r(p)$ and $\hat{c}^\dagger_r(p)$ the annihilation and the creation operator respectively 2 and $g^{\mu \nu} \frac{\partial}{\partial x^\mu} \hat{A}^\nu(x) = 0$. The physical states are characterized by photons having $\lambda = 1, 2$, the one with transverse polarization, i.e. the states $|f\rangle$ and $|g\rangle$ solutions of

$$\langle f| \frac{\partial}{\partial x^\mu} \hat{A}^\mu(x) |f\rangle = 0$$

Quantum Electrodynamics describes the time evolution of the system constituted by an electron and a photon colliding at a certain instant non exactly localized in a macroscopic time interval $[t_1, t_2]$:

$$|\Psi^\text{inter}_{t_2}\rangle = \hat{U}^\text{inter}(t_2, t_1)|\Psi^\text{inter}_{t_1}\rangle \quad \text{where} \quad \hat{U}^\text{inter}(t_2, t_1) = e^{i \hat{\mathcal{A}}_{t_2} - i \hat{\mathcal{A}}_{t_1}} e^{-\frac{1}{2} \left(\frac{\partial}{\partial x^\mu} \right)^2}$$

(4)

1 For these operators anticommutators are null for all cases except

$$[\hat{c}_r(p), \hat{c}^\dagger_s(p)\rangle = \delta^{rs} (\not{c}_r - \not{c}_s)$$

$$[\hat{d}_r(p), \hat{d}^\dagger_s(p)\rangle = \delta^{rs} (\not{d}_r - \not{d}_s)$$

2 For these operators commutators are null for all cases except

$$[\hat{c}_r(p), \hat{c}^\dagger_s(p)\rangle = -\delta^{rs} (\not{c}_r - \not{c}_s)$$

$$[\hat{d}_r(p), \hat{d}^\dagger_s(p)\rangle = \delta^{rs} (\not{d}_r - \not{d}_s)$$

for $l=1,2,3$
The Hamiltonian is

\[\hat{H} = \hat{H}_0 + \hat{H}_{\text{inter}} \quad \text{with} \quad \hat{H}_{\text{inter}} = e \int d^3x : \vec{\Psi}(x)\gamma^\mu \vec{\Psi}(x)\hat{A}_\mu(x) : \]

(5)

and, being \(T \) the chronological ordering operator, the interaction operator has the form

\[\hat{U}_{\text{inter}}(t_1, t_1) = T \left(e^{-i \int_{t_1}^{t_1} dt' \int_0^\infty d^3x e^{i \vec{\Psi}(x')(\gamma^\mu) \hat{A}_\mu(x')} \right) \]

(6)

3. Calculation

The electron-photon system is described by an appropriate mixture of the initial states

\[|\Psi_{i_1}\rangle = \int \int \frac{d^3q'}{q'} \frac{d^3k'}{k'} e^{i(q' + k')} \sum_{r,\Lambda = 1}^2 \Psi_{1r}(q', r')\Psi_{1\Lambda}(k', \Lambda') \hat{b}^{r \Lambda}(q') \hat{c}^{r \Lambda}(k') |0\rangle \]

(7)

with the wave functions peaked respectively at \(\vec{q}' \) and \(\vec{k}' \) and displaced inside the beams. We are interested in the transition from \((q'_f, k'_f) \) at \(t_1 \) to \((q'_f, k'_f) \) at the final time \(t_2 \) such that \(\Psi_{1r}(q_f, r) = 0, \Psi_{1\Lambda}(k_f, \Lambda) = 0 \), i.e. not belonging to the initial state. The statistics of these events is obtained by using

\[\hat{E}^{\Lambda}(M) = \int \frac{d^3q}{q^0} \frac{d^3k}{k^0} \hat{b}^{r \Lambda}(q) \hat{c}^{r \Lambda}(k) |0\rangle |0\rangle \]

(8)

normalized in the sense that \[\sum_{r,\Lambda} \hat{E}^{r \Lambda}(M) = \hat{P}_{e,y} \]

(9)

In order to calculate the probability \[||\hat{E}^{r \Lambda}(M)\hat{U}_{\text{inter}}(t_2, t_1)|\Psi_{i_1}\rangle||^2 \]

we consider

\[\Gamma^{\Lambda}(q'_f, k'_f; t_2, t_1) = \langle \Phi_{i_2} | T \left(e^{-i \int_{t_2}^{t_1} dt' \int_0^\infty d^3x e^{i \vec{\Psi}(x')(\gamma^\mu) \hat{A}_\mu(x')} \right) |\Psi_{i_1}\rangle \]

(10)

choosing

\[|\Phi_{i_2}\rangle = \hat{b}^{r \Lambda}(q'_f) \hat{c}^{r \Lambda}(k'_f) |0\rangle \]

From a second order perturbative approach expansion of the time evolution operator we obtain

\[\langle \Phi_{i_2} | - i \left(\frac{e}{\hbar c} \right)^2 \int_{t_1}^{t_2} dt' \int_{x_1}^{x_2} dx_1^0 d^3x_1 \int_{x_2}^{x_1} d^3x_2 \hat{\Psi}^-(x_2) \gamma^{\mu_1}(\hat{A}^{(-)}_{\mu_2}(x_2) S_F(x_2 - x_1) \hat{A}^{(+)}_{\mu_1}(x_1) + \hat{A}^{(-)}_{\mu_1}(x_1) S_F(x_2 - x_1) \hat{A}^{(+)}_{\mu_2}(x_2)) \gamma^{\mu_1} \hat{\Psi}^+(x_1) \rangle |\Psi_{i_1}\rangle \]

(11)

where \((-)\) and \((+)\) are respectively the annihilation and creation part of the operators and \(S_F \) describes the normal order.

To proceed with the calculation of this expression, the most important steps are the following:

- To put in evidence the energy conservation we consider the long time behavior of the system evolution.

- Since

\[S_F(x) = \lim_{\epsilon \to 0} \int \frac{d^4k}{(2\pi)^4} \frac{e^{-ikx}}{k^2 + m^2c^2/\hbar^2 + i\epsilon} \]

(11)

we integrate on \(k \) and develop the calculation of the integral on \(k^0 \) by using the complex analysis methods.
We take into account that the initial wave function are peaked around initial momentum \vec{q}_i for the electron and \vec{k}_i for the photon, so that the initial momentum of the particles is in good approximation \vec{q}_i and \vec{k}_i.

The wave function of a single particle describes the momentum of the particle through its modulus and is related to the position through the phase. The position of the photon is hardly determined, so it is necessary to take an average over the infinite possible choices of \vec{x}_0 in a macroscopic space region ω with volume V, inside the bunch, symmetric around the origin, where the density of the photons is constant.

4. Differential cross section

The calculation provides the transition probability, defined as the probability that a photon characterized by initial polarization and momentum λ_i, \vec{k}_i, after the scattering has polarization and momentum λ_f, \vec{k}_f:

$$P(\lambda_i, \lambda_f, \vec{k}_f \in d\Omega) = \frac{d\Omega(t_2 - t_1)/4\pi \hbar c}{V} \frac{1}{|\vec{k}_i|} \frac{1}{\sqrt{m^2 c^4 + |\vec{q}_i|^2}} \frac{1}{\sqrt{m^2 c^4 + |\vec{q}_i + \vec{k}_i - \vec{k}_f|^2}} \frac{|\vec{k}_f|(\sqrt{m^2 c^4 + |\vec{q}_i|^2} + |\vec{k}_i| - |\vec{k}_f|)}{|\vec{k}_f|^2 c^2 + |\vec{q}_i|^2 + \vec{k}_i}$$

$$\cdot \text{Tr} \left\{ \left[(\phi_{\lambda_f}(\vec{k}_f)\phi_{\lambda_i}(\vec{k}_i) + \phi_{\lambda_f}(\vec{k}_f)q_i \cdot e_{\lambda_i}(\vec{k}_i)) \frac{\hbar}{2q_i \cdot \vec{k}_f} + (\phi_{\lambda_i}(\vec{k}_i)\phi_{\lambda_f}(\vec{k}_f) + \phi_{\lambda_i}(\vec{k}_i)q_i \cdot e_{\lambda_f}(\vec{k}_f)) \frac{\hbar}{2q_i \cdot \vec{k}_f} \right] \frac{m_c I + \vec{q}_i}{4m_c} \cdot \frac{m_c I + \vec{q}_i + \vec{k}_i - \vec{k}_f}{4m_c} \right\}$$

where $\vec{d} = a \cdot \gamma$, $d\Omega = d\Omega(\theta, \phi)$ is the solid angle and θ is the angle between the directions of the incoming electron and the emitted photon.

From the transition probability we can extract the geometrical quantity called differential cross section:

$$\sigma_{\lambda_i, \lambda_f}(\theta, \phi) = \frac{P(\lambda_f, \lambda_i, \vec{k}_f \in d\Omega(\theta, \phi))V}{d\Omega(t_2 - t_1)}$$

In the usual Compton scattering the electron at the initial state is considered at rest, $\vec{q}_i = 0$. In this case, we get the Klein and Nishina formula:

$$(\sigma_{\lambda_i, \lambda_f}(\theta, \phi))_{\vec{q}_i = 0} = \left(\frac{e^2}{4\pi m_c c^2} \right)^2 \left(\frac{m_c}{m_c + |\vec{k}_i|(1 - \cos \theta)} \right)^2 \left[4(\vec{e}_{\lambda_f} \cdot \vec{e}_{\lambda_i})^2 + \frac{|\vec{k}_f|^2(1 - \cos \theta)^2}{m_c(m_c + |\vec{k}_i|(1 - \cos \theta))} \right]$$

Since $|\vec{k}_i| \ll m_c$, for not polarized photon beam and not observed polarization of the scattered photons

$$(\sigma_{\lambda_i, \lambda_f}(\theta, \phi))_{\vec{q}_i = 0} = \left(\frac{e^2}{4\pi m_c c^2} \right)^2 \frac{1}{2} (1 + \cos^2 \theta) = t_0^2 \frac{(1 + \cos^2 \theta)}{2}$$

Considering the inverse Compton scattering we have to analyze the general case of $\vec{q}_i \neq 0$ and the result is:

$$\sigma_{\lambda_i, \lambda_f}(\theta, \phi) = A \cdot B$$

where

$$A = \left(\frac{e^2}{4\pi m_c c^2} \right)^2 \frac{m_c}{\sqrt{m^2 c^4 + |\vec{q}_i|^2}} \frac{m_c}{\sqrt{m^2 c^4 + |\vec{q}_i + \vec{k}_i - \vec{k}_f(\theta, \phi)|^2}} \frac{|\vec{k}_f(\theta)|}{\sqrt{m^2 c^4 + |\vec{q}_i|^2 + |\vec{k}_i - \vec{k}_f(\theta, \phi)|^2}}$$

$$B = \frac{m_c I + \vec{q}_i + \vec{k}_i - \vec{k}_f(\theta, \phi)}{4m_c}$$

\[17\]
6. Conclusions

of θ approximation we obtain the Thomson cross section, in the case of Compton scattering (with electrons at
is in agreement with the ones reported in litterature [3, 4, 5, 6, 7, 8].

This formula keeps into account all the possible polarization of the photons.

5. Results

We consider now the situation in which the electron and the photon are perfectly counterpropagating
with |q| ≫ m_e c ≫ |k| and m_e c^2 ≫ |q||k|. Since

\[
|k'(\theta)| = \frac{|k| \sqrt{m^2 c^2 + |q|^2} + |q||k|}{|k| + \sqrt{m^2 c^2 + |q|^2} - |q| + k_1 \cos \theta}
\]

from eq. (17) we obtain

\[
A \approx \left(\frac{e^2}{4\pi m_e c^2}\right)^2 \frac{8|q|^2}{m^2 c^2} \frac{1}{\left(1 + \frac{2|q|^2}{m^2 c^2}(1 - \cos \theta)\right)^2} = \frac{8\gamma^2}{1 + 2\gamma^2(1 - \cos \theta)} \]

and by operating the sum and the average on the polarizations, eq. (18) becomes

\[
B \approx 1 + \cos^2 \theta - \frac{\sin^2 \theta (1 - 3 \cos \theta)}{8 \left(1 - \cos \theta + \frac{1}{2\gamma^2}\right)} + \frac{\sin^4 \theta \left(1 - \cos \theta + \frac{1}{2\gamma^2}\right)}{8} \]

We notice that the dependence on the angle θ is critical for both A and B implying a strong decreasing
of σ_{\lambda,\lambda'}(\theta, \phi) as shown in Fig.(1), where the cross section (16) is presented as function of the angle θ.
The electron’s energy increasing enhances the critical dependence of the differential cross section on the
emission angle, reason why the acceptance angle is determined by the energy of the electron and is usually
θ_{acc} = \frac{1}{\gamma}.

6. Conclusions

In this work, we revise the derivation of the electron-photon cross section in the case of scattering between
moving particles. The method we propose is based on a pure QED rigorous calculation. In the classical
approximation we obtain the Thomson cross section, in the case of Compton scattering (with electrons at
rest) we get the Klein and Nishina formula (14) and considering the inverse Compton scattering our result
is in agreement with the ones reported in litterature [3, 4, 5, 6, 7, 8].
Fig. 1. (a) Differential cross section for inverse Compton scattering as function of the scattering angle $0 < \theta < 0.001$ for $|\vec{q}_i| = 150\,\text{MeV}$ (in black) and $|\vec{q}_i| = 720\,\text{MeV}$ (in red); (b) Differential cross section for inverse Compton scattering as function of the scattering angle $0 < \theta < 0.01$ for $|\vec{q}_i| = 150\,\text{MeV}$ (in black) and $|\vec{q}_i| = 720\,\text{MeV}$ (in red).

References