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Abstract

The design of advanced machines working in the quantum regime (ELI-NP, IRIDE, e − γ and γ − γ colliders) requires
to set the fundamentals needed to have an accurate prediction of the radiation qualities after the Compton scattering.
Due to the high energy of the electron beam in the cases above mentioned, the quantum effects, referred as inverse
Compton, which occur during the collision with the laser radiation, are not negligible.
We present a rigorous method to obtain the inverse Compton cross section in the general case of not null initial
momentum of the electrons from a pure QED calculation, avoiding the usual approaches based on the derivation of
this cross section either from the Klein and Nishina formula and the Lorentz transformations or throught Feynman
diagrams and Mandelstam invariants. In the derivation of the cross section from the transition amplitude we pay
particular attention to the long time behavior of the system evolution. Proceeding in this way we obtain the transition
probability in the time unit, which integrated over the solid angle of emission defines spectrum and number of the
scattered photons.
c© 2013 The Authors. Published by Elsevier B.V.
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1. Introduction

In the approach to Compton effect, which consists in the calculation of the cross section of the process
e− + photon→ e− + photon, the electron at the initial stage is considered at rest, �qi = 0, as it happens in case
of a X or γ radiation heading a target. The target’s particles have kinetic energy negligible compared to the
one of the incident photons. Under this hypotesis, considering in the electromagnetic interaction between
electron and photon the transition amplitude up to the second order, the standard Klein and Nishina
formula [1, 2] is obtained. Since the theory is relativistic, the result expressed by the Klein and Nishina
formula is supposed to be generalized to the case �qi � 0 with an appropriate Lorentz transformation. This
transformation acts on the photon’s 4-momentum k and polarization vectors eλ(k) with λ = 0, 1, 2, 3, which
are related to the plane waves of the electromagnetic field potential Aμ(x, t). In each inertial frame, only
the vectors whose index is λ = 1, 2 correspond to physical photons. This choice is not covariant: for
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this reason the Lorentz transformation has to be associated to a gauge transformation or it is necessary to
consider the transformation law of the electromagnetic field’s tensor and to write the electric field through
the vectors eλ(k). Since in quantum mechanics the interaction is expressed utilizing the electromagnetic
potential, the procedure [3, 4, 5, 6] described above could be not completly justified. On the other hand the
use of Feynman diagrams and Mandelstam invariants as in [7, 8] leads to some controversial mathatical
procedure such as Dirac δ functions squared and forces the actual physical setting into the formalism.
In the following is presented the alternative method we developed and the results obtained.

2. Preliminaries

We recall here some preliminaries and notations usefull in the following calculation, for a more detailed
treatise see [9].
Concerning the electrons we introduce the field operator
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where b̂r(�p) and d̂r†(�p) are respectively the annihilation operator for particles and the creation operator for
the antiparticles 1, satisfying the Dirac equations
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and the adjoint field operator Ψ̂σ(x) = Ψ̂†(x)γ0. The operator acting on the photons is the potential vector
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with ĉν(�p) and ĉ†ν(�p) the annihilation and the creation operator respectively 2 and gμν ∂2

∂xμ∂xν Â
μ(x) = 0. The

physical states are characterized by photons having λ = 1, 2, the one with transverse polarization, i.e. the
states | f 〉 and |g〉 solutions of

〈g|∂Â
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| f 〉 = 0

Quantum Electrodynamics describes the time evolution of the system constituted by an electron and a
photon colliding at a certain instant non exactly localized in a macroscopic time interval [t1, t2]:
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The Hamiltonian is

Ĥ = Ĥ0 + Ĥinter
1 with Ĥinter

1 = e
∫
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and, being T the chronological ordering operator, the interaction operator has the form
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3. Calculation

The electron-photon system is described by an appropriate mixture of the initial states
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with the wave functions peaked respectively at (�qi and �ki) and displaced inside the beams. We are interested
in the transition from (�qi, �ki) at t1 to (�q f , �k f ) at the final time t2 such thatΨ1e(q f , r) = 0,Ψ1γ(k f , λ) = 0, i.e. not
belonging to the initial state. The statistics of these events is obtained by using
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with P̂e,γ projector on the Fock space of one electron and one photon.
In order to calculate the probability ||Êrλ(M)Ûinter(t2, t1)Ψt1 ||2 we consider
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From a second order perturbative approach expansion of the time evolution operator we obtain
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where (+) e (−) are respectively the annihilation and creation part of the operators and SF describes the
normal order.
To proceed with the calculation of this expression, the most important steps are the following:

• To put in evidence the energy conservation we consider the long time behavior of the system evolution.

• Since
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we integrate on k and develop the calculation of the integral on k0 by using the complex analysis
methods.
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• We take into accont that the initial wave function are peaked around initial momentum �qi for the
electron and �ki for the photon, so that the initial momentum of the particles is in good approximation
�qi and �ki.

• The wave function of a single particle describes the momentum of the particle through its modulus
and is related to the position through the phase. The position of the photon is hardly determined, so
it is necessary to take an average over the infinite possible choices of �x0 in a macroscopic space region
ωwith volume V, inside the bunch, symmetric around the origin, where the density of the photons is
constant.

4. Differential cross section

The calculation provides the transition probability, defined as the probability that a photon characterized
by initial polarization and momentum λi,�ki, after the scattering has polarization and momentum λ f , �k f :
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where /a = a · γ, dΩ = dΩ(θ, φ) is the solid angle and θ is the angle between the directions of the incoming
electron and the emitted photon.
From the transition probability we can extract the geometrical quantity called differential cross section:
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(13)

In the usual Compton scattering the electron at the initial stete is considered at rest, �qi = 0. In this case, we
get the Klein and Nishina formula:
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Considering the inverse Compton scattering we have to analize the general case of �qi � 0 and the result is:

σλi,λ f (θ, φ) = A · B (16)
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This formula keeps into account all the possible polarization of the photons.

5. Results

We consider now the situation in which the electron and the photon are perfectly counterpropagating
with |�qi| � mec� |�ki| and m2
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and by operating the sum and the average on the polarizations, eq. (18) becomes
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We notice that the dependence on the angle θ is critical for both A and B implying a strong decreasing
of σλi,λ f (θ, φ) as shown in Fig.(1), where the cross section (16) is presented as function of the angle θ.
The electron’s energy increasing enhances the critical dependence of the differential cross section on the
emission angle, reason why the acceptance angle is determined by the energy of the electron and is usually
θacc =

1
γ .

6. Conclusions

In this work, we revise the derivation of the electron-photon cross section in the case of scattering between
moving particles. The method we propose is based on a pure QED rigorous calculation. In the classical
approximation we obtain the Thomson cross section, in the case of Compton scattering (with electrons at
rest) we get the Klein and Nishina formula (14) and considering the inverse Compton scattering our result
is in agreement with the ones reported in litterature [3, 4, 5, 6, 7, 8].
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Fig. 1. (a) Differential cross section for inverse Compton scattering as function of the scattering angle 0 < θ < 0, 001 for |�qi| = 150 MeV
( in black ) and |�qi| = 720 MeV ( in red ); (b) Differential cross section for inverse Compton scattering as function of the scattering angle
0 < θ < 0, 01 for |�qi| = 150 MeV ( in black ) and |�qi| = 720 MeV ( in red ).
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