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We establish a direct connection of quantum Markovianity of an open system to its classical counterpart by
generalizing the criterion based on the information flow. Here the flow is characterized by the time evolution
of Helstrom matrices, given by the weighted difference of statistical operators, under the action of the quantum
dynamical map. It turns out that the introduced criterion is equivalent to P divisibility of a quantum process,
namely, divisibility in terms of positive maps, which provides a direct connection to classical Markovian stochastic
processes. Moreover, it is shown that mathematical representations similar to those found for the original
trace-distance-based measure hold true for the associated generalized measure for quantum non-Markovianity.
That is, we prove orthogonality of optimal states showing a maximal information backflow and establish a local
and universal representation of the measure. We illustrate some properties of the generalized criterion by means
of examples.
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I. INTRODUCTION

Even though experimental techniques are developing
rapidly, perfect isolation of fragile quantum systems from
noisy environments cannot be warranted in general, which ne-
cessitates effective descriptions for nonunitary dynamics [1].
A well-known treatment of the dynamics of such systems is
provided by a quantum dynamical semigroup represented by
a generator of the Gorini-Kossakowski-Sudarshan-Lindblad
form [2,3].

However, this description uses several rather drastic ap-
proximations that do not apply to open quantum systems in
general. The mismatch is typically associated with the neglect
of memory effects. Classically, there exists a well-established
mathematical theory dealing with stochastic dynamics fea-
turing memory effects, based on the theory of stochastic
processes, yet the definition of classical Markovian stochastic
processes cannot be straightforwardly carried over to the
quantum regime. This led to an intense debate along with
different proposals for the characterization and quantification
of memory effects in the dynamics of open quantum systems.
Among others, approaches to non-Markovianity were based
on deviation from semigroup dynamics [4], on divisibility
in terms of completely positive maps [5], on dynamics of
entanglement [5] and correlations [6], and on the Fisher
information [7] (see [8] for a review).

In this work we focus on a straightforward extension of
the measure of non-Markovianity introduced in Refs. [9,10]
and reviewed in [11], which characterizes memory effects
by an exchange of information between the open quantum
system and the environment. This interpretation applies also
to the generalized measure that uses Helstrom matrices known
from quantum estimation theory [12]. A similar approach was
already introduced in Ref. [13], focusing, at variance with the
present proposal, on divisibility in terms of completely positive
maps (CP divisibility). However, CP divisibility yields only
a sufficient condition for quantum Markovianity with respect

to the characterization proposed in this article, which turns
out to be equivalent to divisibility in terms of positive maps
(P divisibility) and has in addition a clear-cut connection
to classical Markov stochastic processes. The generalized
criterion introduced in Sec. II thus combines a physical
interpretation of non-Markovianity in terms of an information
flow and a relation to the well-known classical definition.

Moreover, the associated measure has mathematical fea-
tures and representations similar to those found for the original
definition [14,15], which simplify its analytical, numerical,
and experimental determination drastically. Indeed, we prove
in Sec. III A that, first, optimal initial states for non-Markovian
dynamics, experiencing a maximal backflow of information,
must be orthogonal and, second, the measure admits a local
representation showing locality and universality of quantum
memory effects.

An illustration of the essential features of the generalized
characterization of non-Markovianity in comparison with the
original definition and approaches based on CP divisibility
is provided in Sec. III B. The examples show the sensitivity
of the present approach to memory effects of dynamics to
which the original definition was unsusceptible and illustrate
the existing difference between different types of divisibility
of a dynamical process. Finally, we summarize our results in
Sec. IV.

II. STATE DISCRIMINATION AND P DIVISIBILITY

Henceforth, H refers to the Hilbert space of the open
quantum system and the corresponding set of physical states,
i.e., the set of positive trace class operators with unit trace, is
denoted by S(H). Moreover, we assume that the dynamics of
the open quantum system is determined by a one-parameter
family � = {�t |0 � t � T } of completely positive, trace-
preserving linear maps �t , where �0 refers to the identity [1].
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A. Ensemble discrimination

The previously introduced definition of quantum non-
Markovianity [9,10], which was based on the concept of an
information flow between system and environment, relied on
the trace distance between two quantum states ρ1 and ρ2

defined by [16]

D(ρ1,ρ2) ≡ 1
2‖ρ1 − ρ2‖1. (1)

Here ‖A‖1 = Tr|A|, where the modulus of an operator is given
by |A| =

√
A†A, refers to the so-called trace norm on the

set of trace class operators [17]. A natural and interesting
generalization of this quantity is obtained when one also allows
for biased probability distributions. That is, one considers

‖p1ρ1 − p2ρ2‖1 = Tr|p1ρ1 − p2ρ2|, (2)

where {pi} refers to an arbitrary binary probability distribution,
i.e., p1,2 � 0 and p1 + p2 = 1. Clearly, choosing an unbiased
distribution, i.e., p1,2 = 1/2, one obtains the original expres-
sion (1). This generalization was first proposed in this context
by Chruściński et al. [13].

The Hermitian operator � = p1ρ1 − p2ρ2 is also known as
the Helstrom matrix [12,18] and we find, applying the triangle
inequality to Eq. (2),

|p1 − p2| � ‖�‖1 � p1 + p2 = 1. (3)

Clearly, the lower bound is obtained for ρ1 = ρ2, whereas the
upper bound is attained if and only if ρ1 ⊥ ρ2, meaning that
the two states have orthogonal support (which is defined as the
subspace spanned by the eigenvectors with nonzero eigenval-
ues). This is easily shown by means of the characterization of
the trace norm

‖�‖1 = 2 max
�

Tr{��} + p2 − p1, (4)

where the maximum is taken over all projection operators
�. Here Eq. (4) is derived by employing the Jordan-Hahn
decomposition of the Hermitian Helstrom matrix � in terms
of two positive and orthogonal operators, i.e., � = S − Q,
where S,Q � 0 and S ⊥ Q.

The interpretation of the trace distance of two states
ρ1,2 ∈ S(H) as a measure of their distinguishability directly
carries over to the trace norm of a Helstrom matrix �. Consider
a one-shot two-state discrimination problem where Alice
prepares one out of two quantum states ρ1,2 with corresponding
probability p1,2, i.e., we have p1 + p2 = 1. Hence, we allow
for the general situation of a biased preparation by Alice.
She finally sends the prepared state to Bob, who performs
a single (strong) measurement to infer which state he had
received [17]. To guess the state from the measurement with
possible outcomes �, Bob defines two sets of possible results
R and �\R and assigns the state to be ρ1 if the measurement
outcome is in R and ρ2 if a value in �\R is obtained. This
strategy results in an effective two-valued positive-operator-
valued measure {TR,1 − TR}, where TR refers to the collection
of effects corresponding to outcomes in R. The probability for
correct state discrimination via this strategy is then given by

Psuccess = p1Tr{TRρ1} + p2Tr{(1 − TR)ρ2}
= p2 + Tr{�TR}, (5)

which is maximal if TR is the projection �{��0} on the
subspace spanned by eigenvectors corresponding to positive
eigenvalues of �. Employing that Tr|X| = Tr{X(�{X�0} −
�{X<0})} for any Hermitian operator X, one shows that
the maximal success probability for correct discrimination
obeys [17]

P max
success = max

0�TR�1
Psuccess = 1

2 (1 + ‖�‖1). (6)

Hence, the trace norm of the Helstrom matrix � = p1ρ1 −
p2ρ2 is the bias in favor of the correct state identification
of the state prepared by Alice, so it may be interpreted as a
measure for the distinguishability of the two states ρ1 and ρ2

with associated weights p1 and p2.
Due to a result by Kossakowski [19,20], the trace norm can

also be used to witness positivity of a trace-preserving map
�. That is, a trace-preserving map � is positive if and only
if it defines a contraction for any Hermitian operator X with
respect to the trace norm, i.e.,

‖�X‖1 � ‖X‖1 for all X = X†. (7)

We thus obtain for two states evolving according to a
dynamical map �t ,

‖p1�t (ρ1) − p2�t (ρ2)‖1 � ‖p1ρ1 − p2ρ2‖ (8)

for all t where we also used linearity of the map.
Adopting the previous characterization for quantum non-

Markovianity [9,10], one then directly derives a generalized
criterion that still relies on the concept of an information flow.

Definition 1. A quantum process � is defined to be
Markovian if ‖p1�t (ρ1) − p2�t (ρ2)‖1 is a monotonically
decreasing function of t � 0 for all sets {pi,ρi} with pi � 0,
p1 + p2 = 1, and ρi ∈ S(H).

We stress that the authors of Ref. [13] introduced a different
definition for Markovianity, which used the Helstrom matrices
of a dilated system making it equivalent to CP divisibility of
the dynamical process. However, as we shall see in Sec. II B,
Markovianity as defined here can be related to the concept of
P divisibility and provides a clear-cut connection to classical
Markov stochastic processes.

We conclude this section by showing that the previously
developed explanation to substantiate the interpretation of
quantum memory as an information backflow from the
environment to the system [21] also applies here. To this end,
we define the quantities

Iint(t) = ∥∥p1ρ
(1)
S (t) − p2ρ

(2)
S (t)

∥∥
1 (9)

and

Iext(t) = ∥∥p1ρ
(1)
SE(t) − p2ρ

(2)
SE(t)

∥∥
1 − Iint(t), (10)

where ρ
(i)
SE(t) = Utρ

(i)
S ⊗ ρEU

†
t refers to the state of the system

and environment at time t subject to a unitary evolution Ut .
We thus have ρ

(i)
S (t) = TrEρ

(i)
SE(t) and, similarly, the state of

the environment at time t is given by ρ
(i)
E (t) = TrSρ

(i)
SE(t).

As discussed in [21], Iint(t) describes the distinguishability
of the open system at time t , while Iext(t) can be interpreted
as the information on the total system that is not accessible by
measurements on the open system only. Due to contractivity
of the trace norm under positive and trace-preserving maps
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[cf. Eq. (7)], we conclude that both quantities are positive
as the partial trace is (completely) positive and preserves the
trace. Moreover, the existence of the quantum dynamical map
implies that the initial state is factorized, therefore Iext(0) = 0,
so unitary invariance of the trace norm implies

Iint(t) + Iext(t) = Iint(0) = const. (11)

This relation clearly expresses the idea of exchange of
information between the open system and the environment as
an increase of Iext(t) necessarily forces Iint(t) to decrease. One
may also derive upper bounds for the external information that,
however, do not allow for a clear interpretation in terms of the
formation of correlations between the system and environment
and changes in the environmental states as proven for the trace
distance in Ref. [22].

B. Distinguishability and divisibility

In this section we introduce the concept of divisibility of a
dynamical map, which has been at the basis of several other
proposals for quantum non-Markovian dynamics [5,13,23],
and elucidate its connection to the distinguishability measure
defined before. We start by revisiting the notion of n positivity.
A map � on H is said to be n positive if and only if the
linear tensor extension of the map given by (� ⊗ 1n)(A ⊗
B) = �(A) ⊗ B for linear operators A on H and B on Cn is
positive, that is, (� ⊗ 1n)C � 0 for all positive linear operators
C on H ⊗ Cn.

Clearly, 1 positivity is equivalent to the map � being
positive and the concept of n positivity is hierarchical, which
means that n positivity of � implies that the map is also k

positive for all 1 � k � n [24]. The converse, however, is
not true in general [25,26]. Finally, one speaks of complete
positivity if a map is n positive for all n ∈ N. For a
finite-dimensional system with dimH = N this property is
equivalent to N positivity [27].

If the maps �t comprising a dynamical process are
invertible for all t � 0 with inverse �−1

t , then one can define
a two-parameter family of maps given by

�t,s = �t�
−1
s (12)

for all t � s � 0 such that �t,0 = �t and �t = �t,s�s . We
remark that although the existence of a left-inverse requiring
injectivity of the maps �t would be sufficient, we assume �−1

t

to be the left and right inverse. The notion of divisibility deals
with the properties concerning n positivity of these maps, i.e.,

Definition 2. A dynamical process � is called P divisible
(CP divisible) if �t,s is a positive (completely positive) map
for all t � s � 0.

Even though �t is completely positive for all times by
definition, this does not imply (complete) positivity of �t,s

in general as the inverse of a CP map need not be positive,
showing that the above definition is nontrivial. However,
the concept of divisibility relies on the existence of the
two-parameter family that is limited to processes for which
�−1

t exists for all times. This property though cannot be taken
for granted as, e.g., the damped Jaynes-Cummings model on
resonance [1,10,21] or examples on quantum semi-Markov
processes [28] show, thus making the concept of divisibility
sometimes ill defined.

Typically, however, the inverse maps exist apart from
isolated points in time, so one may describe the dynamical
process by a time-local master equation for the open system
during intermediate intervals. Assuming a sufficiently smooth
time dependence, the generator obeys Kt = �̇t�

−1
t and has

the general structure

Kt ρS(t) = −i[HS(t),ρS(t)] +
∑

j

γj (t)[Aj (t)ρS(t)A†
j (t)

− 1

2
{A†

j (t)Aj (t),ρS(t)}], (13)

which is similar to the well-known Lindblad form [2,3] apart
from the fact that the system Hamiltonian HS(t), the rates
γj (t), and the Lindblad operators Aj (t) may depend on time
as the process might not represent a semigroup.

The maps of the two-parameter family are then given by

�t,s = T← exp

[∫ t

s

dτ Kτ

]
, (14)

where T← refers to chronological time ordering. We thus
have Ks = d

dt
�t,s |t=s , so we conclude that � is (C) P

divisible if and only if Kt is the generator of a (completely)
positive semigroup for all fixed t � 0. The famous Gorini-
Kossakowski-Sudarshan-Lindblad theorem [2,3] and a result
on generators of positive semigroups by Kossakowski [19]
then allow for a characterization of CP and P divisibility in
terms of the generator [21].

Theorem 1. The dynamics generated by Kt (13) (i) is CP
divisible if and only if γj (t) � 0 holds for all j and t � 0 and
(ii) is P divisible if and only if for all n 	= m∑

j

γj (t)|〈m|Aj (t)|n〉|2 � 0 (15)

holds for any orthonormal basis {|n〉} of H and all t � 0.
Proof. The first statement is precisely the Gorini-

Kossakowski-Sudarshan-Lindblad theorem [2,3] and the sec-
ond can be derived from Kossakowski’s result on generators
of positive semigroups [19], which states that the dynamics
generated by L is P divisible if and only if for any set of
projections � = {�m}m∈I defining a resolution of the identity,
i.e.,

∑
m �m = 1H, the relations

amm(�) � 0, m ∈ I (16)

amn(�) � 0, m 	= n ∈ I (17)∑
m∈I

amn(�) = 0, n ∈ I (18)

for amn(�) ≡ Tr{�m(L�n)} are satisfied.
It is easily seen that the condition (18) refers to the

preservation of trace, which is always met for the generator
Kt (13) by its very structure. Rearranging terms of Eq. (18),
one then finds

ann(�) = −
∑
m	=n

amn(�) (19)

for all n ∈ I . The constraints thus reduce to the single
relation (17), which can additionally be restricted to sets
of rank-1 projections � by virtue of linearity. Evaluating
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amn(�) for m 	= n and rank-1 projections associated with an
orthonormal basis {|n〉} of H, one finds

amn(�) = Tr{|m〉〈m|Kt (|n〉〈n|)}
=

∑
j

γj (t)|〈m|Aj (t)|n〉|2, (20)

which is condition (15). �
We point out that condition (15) only guarantees that the

dynamics generated by Kt is positive. To warrant complete
positivity of the dynamics as required for a dynamical map,
one has to impose further constraints on the generator, which
are unfortunately not completely known. Positivity of the rates
γj (t) for all j and t � 0 represents, for example, a sufficient
(but not necessary) condition for this property.

Obviously, the conditions for P and CP divisibility coincide
for a master equation with a single decay channel. We may
alternatively characterize P divisibility by employing the
contraction property (7) and link it to the quantum Markovian
behavior defined above (see Definition 1). To this end, we first
prove the following lemma.

Lemma 1. For any Hermitian operator X 	= 0 there exists a
real number λ > 0 and a Helstrom matrix � such that X = λ�.

Proof. Let X = X† 	= 0 be given. If X � 0, then ρ1 =
(TrX)−1X defines a state so that for λ = TrX the Helstrom
matrix characterized by p1 = 1 and p2 = 0 with arbitrary ρ2

proves the claim, and similarly for X � 0.
Hence, suppose that X is indefinite. Employing the Jordan-

Hahn decomposition, we thus find nonzero operators Y1,2 � 0,
where Y1 ⊥ Y2 such that X = Y1 − Y2 and therefore Tr|X| =
TrY1 + TrY2 > 0. Clearly, the operators ρi = (TrYi)−1Yi de-
fine states and we have

X = λ(p1ρ1 − p2ρ2) (21)

for λ = Tr|X| and pi = λ−1TrYi . These quantities are indeed
positive and sum to one, thus representing a probability
distribution, which concludes the proof. �

Since dynamical maps �t as well as the trace norm
are homogeneous (with respect to positive numbers) it thus
suffices to apply the characterization of positivity (7) to
Helstrom matrices, which yields the following theorem.

Theorem 2. If the dynamical maps defining a process � are
bijective, then � is Markovian if and only if it is P divisible.

Proof. We first note that p1�t (ρ1) − p2�t (ρ2) = �t (�)
holds for any probability distribution {pi} and pair of states ρi .
Hence, it suffices to consider the time evolution of Helstrom
matrices when studying quantum Markovianity. Suppose � is
P divisible. It follows that

‖�t (�)‖1 = ‖�t,s(�s(�))‖1 � ‖�s(�)‖1 (22)

for all t � s � 0 and Helstrom matrices � due to positivity of
�t,s . Hence, ‖�t (�)‖1 is a monotonically decreasing function
of time for any � showing that the process � is Markovian.

For the converse, we first note that the inverse map �−1
t

exists for all t as the dynamical maps are bijective on the set
of Hermitian operators by assumption. Thus, the maps �t,s

exist for all t � s � 0. Now let the process be Markovian,
i.e., ‖�t (�)‖1 � ‖�s(�)‖1 for all t � s � 0 and Helstrom
matrices �. We may rewrite this as

‖�t,s(�s(�))‖1 � ‖�s(�)‖1 (23)

from which positivity of �t,s follows according to Eq. (7) by
employing Lemma 1 and the fact that �t is bijective for all t .
Hence, � is P divisible. �

C. Connection to classical Markovian stochastic processes

The definition of Markovianity stated above is thus equiv-
alent to P divisibility of a dynamical process � if this
notion is well defined at all. However, the measure for
non-Markovianity (37) may be evaluated for any dynamical
process, showing its great benefit. Similarly, one could obtain
the equivalence of CP divisibility with Markovian behavior
if the dilated process � ⊗ 1H is considered as shown in
Ref. [13]. However, P divisible quantum processes offer
the relevant feature of a distinct connection to classical
Markovian stochastic processes. To show this, we employ the
characterization of P divisible processes given in Theorem 1.
Let ρ(t) be the solution of the master equation

d

dt
ρ(t) = Kt ρ(t), (24)

with initial state ρ(0) where Kt is given by Eq. (13). The time-
evolved state admits an instantaneous spectral decomposition

ρ(t) =
∑
m

pm(t)|φm(t)〉〈φm(t)|, (25)

so {|φm(t)〉} defines an orthonormal basis on H and {pm(t)}
represents a classical probability distribution for all t � 0.
By virtue of the orthonormality, the eigenvalues pm(t) =
〈φm(t)|ρ(t)|φm(t)〉 obey the following closed differential
equation:

d

dt
pm(t) =

∑
n

[Wmn(t)pn(t) − Wnm(t)pm(t)], (26)

where

Wmn(t) =
∑

j

γj (t)|〈φm(t)|Aj (t)|φn(t)〉|2. (27)

Obviously, the term in Eq. (26) with m = n drops out. Given
any solution of a quantum master equation, one thus obtains
a classical jump process. We emphasize that the rates Wmn(t)
depend in general on the initial eigenbasis {|φm(0)〉} as well as
the initial probability distribution {pm(0)}.

According to the theory of classical stochastic pro-
cesses, any hierarchy of n-point probability distributions
Pn(yn,tn; . . . ; y1,t1) with discrete sample space � satisfying
the consistency relations

Pn(yn,tn; . . . ; y1,t1) � 0, (28)∑
y1∈�

P1(y1,t1) = 1, (29)

∑
ym∈�

Pn(yn,tn; . . . ; ym,tm; . . . ; y1,t1) = Pn−1(yn,tn; . . . ; y1,t1)

(30)

for all 1 � m � n and 0 � t1 < t2 < · · · < tn determines a
stochastic process Y(t) with values in � [29–31]. Here
Pn(yn,tn; . . . ; y1,t1) gives the probability to observe the values
yi at times ti for i = 1, . . . ,n for the stochastic process Y(t).
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For classical Markov processes obeying the relation

P1|n−1(yn,tn|yn−1,tn−1; . . . ; y1,t1)

= P1|1(yn,tn|yn−1,tn−1) (31)

for any conditional probability distribution P1|n−1, the full hi-
erarchy is completely determined by the one-point probability
distribution P1 and the so-called transition probability P1|1.
However, these two non-negative functions cannot be chosen
arbitrarily but must satisfy

P1(y2,t2) =
∑
y1∈�

P1|1(y2,t2|y1,t1)P1(y1,t1), (32)

P1|1(y3,t3|y1,t1) =
∑
y2∈�

P1|1(y3,t3|y2,t2)P1|1(y2,t2|y1,t1),

(33)

where Eq. (33) is called the Chapman-Kolmogorov equation.
These equations thus characterize uniquely a Markov process.

One may equivalently write this relation for the transition
probability in its differential form

d

dt
P1|1(y,t |x,s)

=
∑
z∈�

[Wyz(t)P1|1(z,t |x,s) − Wzy(t)P1|1(y,t |x,s)], (34)

where the transition probability per unit time Wyz(t) is non-
negative and represents the probability for a transition to y

given the classical state was z at time t . It is clear that the
(differential) Chapman-Kolmogorov equation characterizes
the transition probability P1|1 but a similar equation, the so-
called Pauli master equation, can be derived for the one-point
probability distribution, that is,

d

dt
P1(y,t) =

∑
z∈�

[Wyz(t)P1(z,t) − Wzy(t)P1(y,t)]. (35)

One thus concludes that Eq. (26) can be interpreted as a Pauli
master equation for the one-point probability distribution of
a classical Markov process with � = {1, . . . ,dimH} if and
only if

Wmn(t) =
∑

j

γj (t)|〈φm(t)|Aj (t)|φn(t)〉|2 � 0 (36)

for all t � 0 and m 	= n. Hence, P divisibility of the
quantum process is a sufficient condition to warrant
positivity of the rates Wmn(t) [see Eq. (15)]. This shows
that quantum non-Markovianity defined with respect to the
generalized trace-distance-based measure not only provides
an interpretation in terms of an information backflow but
also allows for a connection to classical Markovian stochastic
processes. Namely, to each P divisible quantum process,
given as the solution of a master equation of the form (13)
with Lindblad operators and rates satisfying Eq. (15) for an
initial state ρ(0), one associates a classical Markovian process
obtained as the solution of the classical master equation (26)
with transition rates given by Eq. (27) and initial condition
specified by the eigenvalues of ρ(0).

Finally, we note that P divisibility of the quantum process
is indeed equivalent to the positivity of the rates Wmn(t) of
the classical Pauli master equation if the quantum master

equation has the property that the eigenbases {|φn(t)〉} of
ρ(t) run over all orthonormal bases when varying the initial
state ρ(0). This is satisfied if the maximally mixed state is
in the image of the dynamical map �t , which holds true
for sufficiently small times due to continuity of the process
and as we have �0 = 1. For two-level systems it is shown
in Appendix A that this constraint is not only sufficient but
also necessary. If any orthonormal basis is encountered, all
classical processes derived from the quantum master equation
are classically Markovian if and only if the quantum dynamics
is P divisible.

III. GENERALIZATION OF THE
TRACE-DISTANCE-BASED NON-MARKOVIANITY

MEASURE

Having stated the generalized definition for quantum non-
Markovianity, which allows for a connection to classical
Markov processes, we now consider the expression of the
corresponding measure and address its mathematical and
physical features. According to the definition of a quantum
Markovian process given in Sec. II A, it is natural to con-
sider the following measure for quantum non-Markovianity,
quantifying the degree of memory effects with respect to this
generalized definition [21]:

N (�) ≡ max
{pi ,ρi }

∫
σ>0

dt σ (t,pi,ρi) (37)

with

σ (t,pi,ρi) ≡ d

dt
‖p1�t (ρ1) − p2�t (ρ2)‖1, (38)

where the integration runs over all intervals where the dis-
tinguishability ‖p1�t (ρ1) − p2�t (ρ2)‖1 increases. A process
� is said to be non-Markovian if N (�) > 0. As discussed
in Sec. II A, this measure still admits the interpretation as a
quantifier for the information flow from the environment back
to the open system. In addition, as discussed in Sec. II B,
Markovianity will now be equivalent to P divisibility of a
quantum process. Note that this feature was only sufficient in
the original definition (see Sec. III B).

To begin with, we concentrate on the maximization pro-
cedure contained in the quantifier for non-Markovianity (37),
which, contrary to the original definition [9], now even requires
one to sample also over binary probability distributions. Fortu-
nately, a similar characterization of pairs of states maximizing
Eq. (37) can be proven [15] and yet also a local representation
is admitted [14], simplifying the sampling significantly. We
finally illustrate the present definition of non-Markovianity by
means of examples that show the difference from the original
characterization and other approaches to non-Markovianity.

A. Expressions of the generalized non-Markovianity measure

A set {pi,ρ1,2}, where ρ1,2 ∈ S(H) and {pi} defines a binary
probability distribution, is said to be optimal if the maximum
in Eq. (37) is attained for it. Note that the quantum states of
an optimal set are necessarily nonequal as the dynamics of the
norm of a nonindefinite Helstrom matrix under any dynamical
map is trivial due to trace preservation and positivity of the
map.
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Theorem 3. The states of an optimal set must be orthogonal,
i.e.,

N (�) = max
{pi ,ρ1⊥ρ2}

∫
σ>0

dtσ (t,pi,ρi). (39)

Proof. Suppose {pi,ρ1,2} is optimal with ρ1 	⊥ ρ2. Along
the lines of the proof of Lemma 1 we obtain a probability
distribution {qi} and two orthogonal states 
1,2 such that

p1ρ1 − p2ρ2 = λ(q1
1 − q2
2), (40)

where λ = Tr|p1ρ1 − p2ρ2|. As ρ1 	⊥ ρ2, we have 0 < λ < 1
according to Eq. (3). Here λ > 0 holds as states of an optimal
set are nonequal by definition. By means of linearity of the
dynamical maps �t and homogeneity of the trace norm one
finally obtains

‖q1
1(t) − q2
2(t)‖1 = 1

λ
‖p1ρ1(t) − p2ρ2(t)‖1 (41)

for all t � 0 where λ−1 > 1. This shows that any in-
crease of ‖p1ρ1(t) − p2ρ2(t)‖1 is exceeded by the increase
of ‖q1
1(t) − q2
2(t)‖1. Hence, {qi,
1,2} yields a non-
Markovianity strictly larger than the set {pi,ρ1,2} contradicting
its optimality. �

We define S̊(H) to be the interior of the state space, i.e.,
the set of all quantum states ρ for which there is an ε > 0
such that all Hermitian operators X with unit trace satisfying
||ρ − X||1 � ε belong to S(H). Hence, all states in the interior
have full rank. Note that S̊(H) = ∅ if dimH = ∞, which
implies that the local representation of the measure (37)
introduced below is not available in infinite dimensions.
However, these quantum systems can frequently be accurately
described by finite-dimensional Hilbert spaces.

Based on the orthogonality of states of an optimal set, we
can also establish a local representation for the generalized
measure as provided for the original definition in Ref. [14]. To
this end, one first has to prove a characterization of enclosing
surfaces, which are defined as follows (see Fig. 1): A set
∂U (ρ) ⊂ S(H) not containing ρ ∈ S̊(H) is called an enclosing
surface of ρ if and only if for any nonzero, Hermitian, and
traceless operator Y there exists a real number μ > 0 such that

ρ + 2μY ∈ ∂U (ρ). (42)

Lemma 2. Let ∂U (ρ) be an enclosing surface and X a
nonzero, Hermitian, and indefinite operator. Then there exists

FIG. 1. (Color online) Illustration of an enclosing surface ∂U (ρ)
of an inner point ρ of the state space S(H).

a real number λ > 0 with λ|TrX| < 1 such that

1

p−
[p+ρ − sgn(TrX)λX] ∈ ∂U (ρ), (43)

where p± ≡ 1
2 (1 ± λ|TrX|) and

sgn(x) =
{

−1 for x � 0

+1 otherwise.
(44)

Proof. Let ∂U (ρ) be an enclosing surface of ρ. Consider a
nonzero, Hermitian, indefinite operator X. The operator

Y = sgn(TrX)[(TrX)ρ − X] (45)

defines a nonzero, Hermitian, and traceless operator. By
definition, there exists a real number μ > 0 such that


 = ρ + 2μY ∈ ∂U (ρ). (46)

We then define a real number λ by means of

μ = λ

1 − λ|TrX| (47)

so that λ = μ/(1 + μ|TrX|) > 0 holds and hence λ|TrX| < 1.
For p± = 1

2 (1 ± λ|TrX|) one finally obtains


 = ρ + 2λ

1 − λ|TrX| {sgn(TrX)[(TrX)ρ − X]}

= ρ − λ

p−
sgn(TrX)X + p+ − p−

p−
ρ

= 1

p−
[p+ρ − sgn(TrX)λX], (48)

which is Eq. (43). �
As proven in Appendix B, Lemma 2 can actually be

augmented to show that the characterization (43) of an
enclosing surface is equivalent to Eq. (42).

Theorem 4. The generalized measure of quantum non-
Markovianity admits a local representation, i.e.,

N (�) = max
{pi },ρ2∈∂U (ρ1)

∫
σ̃>0

dtσ̃ (t,pi,ρi) (49)

with

σ̃ (t,pi,ρi) ≡ 1

‖p1ρ1 − p2ρ2‖1

d

dt
‖p1�t (ρ1) − p2�t (ρ2)‖1,

(50)

where ρ1 ∈ S̊(H) is any fixed inner point of the state space
and ∂U (ρ1) refers to an arbitrary enclosing surface of ρ1.

We emphasize that σ̃ (t,pi,ρi) is well defined as 0 <

‖p1ρ1 − p2ρ2‖1 for any state ρ2 ∈ ∂U (ρ1) and probability
distribution {pi} as by definition of an enclosing surface we
have ρ2 	= ρ1 [cf. Eq. (3)].

Proof. Let ∂U (ρ1) be an enclosing surface of ρ1. To prove
that the corresponding local representation yields a value
smaller than or equal to the original definition (39) one follows
the lines of the proof of Theorem 3. Let ρ2 ∈ ∂U (ρ1) and a
probability distribution {pi} be given. Now, following the proof
of Lemma 1 there exist two states 
1 ⊥ 
2 and a probability
distribution {qi} such that

p1ρ1 − p2ρ2 = λ(q1
1 − q2
2), (51)
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where λ = ‖p1ρ1 − p2ρ2‖1 > 0. We then obtain

σ̃ (t,pi,ρi) = σ (t,qi,
i) (52)

for all t � 0 due to linearity of �t and homogeneity of the
trace norm and the derivative. We conclude that the right-hand
side of Eq. (49) is smaller than or equal to N (�) as defined in
Eq. (39).

Conversely, let 
1 ⊥ 
2 be two orthogonal states and
denote by {qi} a probability distribution. Then � = q1
1 −
q2
2 defines a nonzero, Hermitian, indefinite operator. Thus,
according to Lemma 2, there exists a real number λ > 0 with
λ|Tr�| < 1 such that

p+ρ1 − p−ρ2 = cλ�, (53)

where c = sgn(Tr�) and p± = 1
2 (1 ± λ|Tr�|) for some quan-

tum state ρ2 ∈ ∂U (ρ1) of the enclosing surface. As |c| = 1
it follows that ‖p+ρ1 − p−ρ2‖1 = λ > 0. Linearity of the
dynamical map and homogeneity of the trace norm and the
derivative then yields

σ̃ (t,p±,ρi) = σ (t,qi,
i), (54)

showing that the original definition (39) leads to a value that
is smaller than or equal to the right-hand side of Eq. (49).
This thus concludes the proof, that is, the maximization over
an enclosing surface with an information flux rescaled by the
initial distinguishability reproduces the dynamics of the trace
norm of orthogonal states. �

A careful reformulation of an enclosing surface thus allows
us to establish an equivalent local and universal representation
of the generalized trace-distance-based measure as for the
original definition [14]. This shows that also for the present
characterization, non-Markovianity is a universal feature
appearing everywhere in state space. Similarly, it suffices
if Eq. (42) holds for exactly one μ > 0 as λ is uniquely
determined by this parameter given a nonzero, Hermitian, and
indefinite operator (cf. proof of Lemma 2). In addition, also
here, no assumption on the enclosing surface concerning, for
example, the shape or the smoothness is needed, implying a
great benefit for the analytical, numerical, and experimental
determination of the generalized measure.

B. Examples

As already stated before, the fundamental difference be-
tween the trace-distance-based measure for non-Markovianity
and its generalization is that in the trace-distance approach P

divisibility is only a sufficient criterion for Markovianity. This
fact becomes particularly apparent when uniform translations
of states are encountered in the dynamics that do not describe
positive maps but leave the trace distance unchanged [32].
However, by choosing unequal weights pi , the Helstrom
matrices are no longer invariant under such operations, thus
making it possible to detect the effect of such maps.

To illustrate this property, we consider a two-level open
quantum system, i.e., H = C2, undergoing a dynamics that,
as depicted in Fig. 2, can be described in the Bloch sphere as
an isotropic contraction followed by a translation along the z

axis. The dynamics is analytically described by a time-local

master equation (24) where the generator Kt obeys

Kt ρ(t) =
3∑

j=1

γ (t)

4
[σjρ(t)σj − ρ(t)] (55)

for 0 � t � t1 with t1 < T and

Kt ρ(t) = −b(t)

2

[
σ−ρ(t)σ+ − 1

2 {σ+σ−,ρ(t)}]
+ b(t)

2

[
σ+ρ(t)σ− − 1

2 {σ−σ+,ρ(t)}] (56)

if t1 < t � T holds. Here σj refers to the Pauli matrices and
σ+ (−) describes the usual raising (lowering) operator with
respect to the eigenstates |±〉 of σ3. Moreover, the rates
satisfy γ (t),b(t) � 0 for all t in their respective domains,
so the second phase of the process is neither CP nor P

divisible, which can be easily shown using Theorem 1.
This dynamical process exhibits the essential feature of the
generalized amplitude damping channel studied in Ref. [32].

By employing the Bloch vector representation for two-level
systems, the master equation is equivalently described by a
differential equation for the Bloch vector

d

dt
�v(t) =

{
A(t)�v(t), 0 � t � t1 < T

�b(t), t1 < t � T ,
(57)

where A(t) = diag[−γ (t), − γ (t), − γ (t)] and �b(t) =
[0,0,b(t)]T . Hence, the process’s first phase corresponds to an
isotropic contraction of the Bloch sphere B1 = {�v | |�v| � 1}
to the smaller sphere Br = {�v| |�v| � r} with radius

r = exp

[
−

∫ t1

0
dt γ (t)

]
∈ (0,1), (58)

which is clearly CP divisible and therefore Markovian. On the
other hand, the second phase describes a uniform translation
of the Bloch sphere along the z axis, i.e., �v(t1) �→ �v(t1) +
(0,0,a)T with

a =
∫ T

t1

dt b(t) > 0, (59)

where we thus have to require a � 1 − r in order to maintain
positivity of the dynamical map (see Fig. 2). It is easily shown
that this condition is also necessary and sufficient for complete
positivity of the process.

The trace norm of the Helstrom matrix � = p1ρ1 − p2ρ2 at
time t for two quantum states ρ1,2 = 1

2 (12 + �v1,2 · �σ ), evolving
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FIG. 2. (Color online) Bloch sphere representation of the action
of the dynamical map �t corresponding to the time-local generator
Kt defined by Eqs. (55) and (56) for t = 0, t1, and T .
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according to the described dynamical map, is given by

‖�(t)‖1 = 1
2 {|p1 − p2 + | �w(t)|| + |p1 − p2 − | �w(t)||},

(60)
where �w(t) = p1�v1(t) − p2�v2(t). Clearly, if p1 = p2 = 1/2,
then ‖�(t)‖1 = 1

2 |�v1(t) − �v2(t)|, showing that the unbiased
case is unable to detect the non-Markovianity of the process
resulting from the uniform translation.

Without restriction we may assume p1 � p2 so that

‖�(t)‖1 =
{

p1 − p2 for p1 − p2 > | �w(t)|
| �w(t)| for p1 − p2 � | �w(t)| (61)

and, due to Theorem 3, we may restrict ourselves to orthogonal
states corresponding to antipodal unit vectors. That is, �v1 =
−�v2 with |�v1| = 1, which implies �w(t) = �v1(t).

If the probability distribution is such that p1 − p2 > |�v1(t)|
holds for all t1 < t � T , then ‖�(t)‖1 is a monotonically
decreasing function of t . However, if p1 − p2 < |�v1(T )|, then∫

σ>0
dt σ (t) = |�v1(T )| − (p1 − p2) > 0, (62)

indicating non-Markovianity. The change of the trace norm
thus increases with decreasing difference p1 − p2, which is
bounded by p1 − p2 = r = |�v1(t1)|. Calculating explicitly the
change of the trace norm for p1 − p2 � r one finds

‖�(T )‖1 − ‖�(t1)‖1 = |�v1(t1) + (p1 − p2)�a| − |�v1(t1)|,
(63)

which shows that the trace norm attains its maximal value

‖�(T )‖1 − ‖�(t1)‖1 = r|�a| (64)

if �v1 is parallel to �a, i.e., �v1 = c �a for some c > 0, and
p1 − p2 = r . Obviously, this is satisfied by the probability
distribution {pi} = {p± = 1

2 (1 ± r)}. Unlike the original def-
inition, the generalized trace-distance-based measure is thus
able to capture non-Markovian dynamics arising from uniform
translations contained in the dynamical process.

The dynamics generated by Kt for 0 � t � t1 [cf. Eq. (55)]
for any t1 > 0 provides also an example for a process that is not
CP but P divisible. Choosing γ1(t) = γ2(t) = 1 and γ3(t) =
− tanh(t) as proposed in Ref. [33], the dynamical process is
not CP divisible according to Theorem 1. In particular, not
even one interval exists for which CP divisibility is restored as
γ3(t) < 0 for all t > 0. A further example of this property was
constructed in Ref. [28]. However, the dynamics is always P

divisible since

2∑
i=1

|〈m|σi |n〉|2 − tanh(t)|〈m|σ3|n〉|2 � 0 (65)

is valid for all 0 � t � t1 and m 	= n, which is condition (15).
Hence, the trace-distance-based measure and its generalization
are equal to zero in this case, while measures for non-
Markovianity relying on CP divisibility [5,13,33] are of
course nonvanishing. This random unitary evolution [34,35]
illustrates the persisting and significant difference between
the two major approaches for the characterization of quantum
non-Markovianity.

IV. CONCLUSION AND OUTLOOK

We have introduced a generalization of the criterion of
quantum non-Markovianity based on the flow of information.
This characterization relies on the trace norm of Helstrom
matrices, which can also be interpreted as a measure for the
distinguishability. By virtue of this property, the generalized
measure still admits an interpretation as quantifier of an
information backflow from the environment to the open
quantum system.

It was shown that the generalized criterion is equivalent to
P divisibility of the dynamical process, which has an explicit
connection to classical Markovian stochastic processes. That
is, any rate equation obtained from a quantum master equation
of a P divisible process can be interpreted as the Pauli master
equation of a classical Markov process. However, the presented
approach is more general since it can also be applied even
when the notion of divisibility is ill defined and can be
experimentally tested.

The experimental determination is substantially simplified
by the derived mathematical representations of the generalized
measure, which are similar to those for the original definition.
First, we have demonstrated that optimal initial states for
non-Markovian dynamics must be orthogonal and, based on
this result, we could finally establish a local representation
for the measure. Hence, orthogonal states, corresponding to a
maximal information content, exhibit maximal memory effects
that can be revealed locally and anywhere in the quantum state
space as provided by the local representation.

An essential feature of the generalized approach to non-
Markovianity in comparison with the original definition is its
sensitivity to memory effects arising from uniform translations
of states. To illustrate this, we constructed a dynamical process
for a two-level system that comprises a uniform translation of
the Bloch sphere. However, there exist dynamical processes
that are not CP divisible but P divisible, as we have shown in
our second example, which manifests the existing difference
of the generalized definition with other approaches to non-
Markovianity.

We believe that the definition of non-Markovianity given
in this paper is of great relevance for the study of memory
effects in the field of complex quantum systems and quantum
information due to the experimental accessibility and its
clear-cut interpretation and connection to classical Markov
processes.
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APPENDIX A: ORTHONORMAL BASES AND
THE MAXIMALLY MIXED STATE

We prove the statement made in Sec. II C about the relation
between the maximally mixed state and the eigenbases of
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the set of time-evolved states Im�t = {�t (ρ)|ρ ∈ S(H)} for
two-level systems, i.e., H = C2. Note that Im�t defines a
nonempty, convex, and compact set for any finite-dimensional
Hilbert space due to linearity of �t along with compactness
and convexity of the state space.

Lemma 3. Any orthonormal basis {|�i〉} of H represents
the eigenbasis of a quantum state ρ(t) ∈ Im�t if and only if
1
212 ∈ Im�t .

The “if” statement is clear from the fact that any orthonor-
mal basis defines a resolution of identity. Hence, if 1

212 ∈ Im�t

then any basis {|�i〉} defines at least the eigenbasis of the
maximally mixed state, proving the claim. It is clear that
the same reasoning actually applies to any finite-dimensional
Hilbert space.

To show the reverse we employ the Hahn-Banach separation
theorem for normed vector spaces. Suppose that 1

212 /∈
Im�t . Then there exists a real-valued, linear, and continuous
functional ϕA separating the disjoint nonempty, convex, and
compact sets Im�t and { 1

212}. That is, we have

ϕA

(
1
212

)
< inf{ϕA(ρ(t))|ρ(t) ∈ Im�t }, (A1)

where ϕA(X) = Tr{AX} for some Hermitian operator A due to
the Riesz representation theorem. By means of the transforma-
tion A �→ A − TrA one may also assume that the operator A

is traceless. The set {X|X = X†,Tr{X} = 1,ϕA(X) = 0} thus
describes a hyperplane that intersects the maximally mixed
state and separates it from Im�t .

Employing the Bloch representation, this hyperplane de-
fines an ordinary plane in R3 that contains the origin and
therefore intersects the surface of the Bloch sphere in a
unit circle. As pure, orthogonal states on C2 correspond to
antipodal points on the surface of the Bloch sphere, we thus
conclude that the (hyper)plane contains an infinite set of
orthonormal bases that do not represent eigenbases of quantum
states ρ(t) ∈ Im�t (cf. Fig. 3). �

APPENDIX B: CHARACTERIZATIONS OF ENCLOSING
SURFACES

In this section we show that the relation for enclosing
surfaces in terms of nonzero, Hermitian, and indefinite
operators derived in Lemma 2 is equivalent to the original
definition, i.e., the following lemma holds.

Lemma 4. A set ∂U (ρ) defines an enclosing surface of ρ if
and only if for any nonzero, Hermitian, indefinite operator X

there exists a real number λ > 0 with λ|TrX| < 1 such that

1

p−
[p+ρ − sgn(TrX)λX] ∈ ∂U (ρ), (B1)

where p± ≡ 1
2 (1 ± λ|TrX|) and

sgn(x) =
{−1 for x � 0

+1 otherwise.
(B2)

FIG. 3. (Color online) Two-dimensional cut of a hyperplane in
the Bloch representation separating the two disjoint nonempty,
convex, and compact sets { 1

212} and Im�t . As the plane intersects the
maximally mixed state its intersection with the state space comprises
an infinite set of pure and orthogonal states defining orthonormal
bases of C2.

Proof. That any enclosing surface obeys a characterization
in terms of nonzero, Hermitian, and indefinite operators has
already been proven in Lemma 2. Conversely, suppose the
states in ∂U (ρ) are characterized by Eq. (B1). Hence, for a
nonzero, indefinite, and Hermitian operator X there exists a
real number λ > 0 with λ|TrX| < 1 such that


 = 1

p−
[p+ρ − sgn(TrX)λX] ∈ ∂U (ρ), (B3)

where p± = 1
2 (1 ± λ|TrX|). Now consider the map

�ρ(X) ≡ sgn(TrX)[(TrX)ρ − X] (B4)

defined on the set of nonzero, Hermitian, and indefinite
operators. The operator Y = �ρ(X) represents a traceless
Hermitian operator and Y = 0 if and only if (TrX)ρ = X,
contradicting that X is indefinite. Thus, we have Y 	= 0 and
one finds


 = 1

p−
{p+ρ − λ[|TrX|ρ − Y ]}

= p+ − λ|TrX|
p−

ρ + λ

p−
Y

= ρ + 2μY, (B5)

where μ ≡ λ/2p− > 0. It remains to show that �ρ defines
a surjection on the set of nonzero, Hermitian, and traceless
operators. This is obviously true as any traceless, nonzero,
Hermitian operator Y is necessarily indefinite and we have
�ρ(Y ) = Y . Hence, the set ∂U (ρ) is indeed an enclosing
surface. �
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