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Abstract
Two methods for estimating Avogadro’s number from the observation of the
daylight sky are presented, both suitable for undergraduate students. One is
very simple and based on simple naked-eye observation, and the other exploits
a common digital camera as a photometer.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Every amateur astronomer knows that the Sun, the Moon and the planet Venus are the only
celestial bodies visible in the daylight, Venus being close to the limit of visibility for the
naked eye. Under a dry and unpolluted sky, preferably near maximum elongation from the
Sun, Venus can be observed at noon, with the Sun very high over the horizon. Here we show
how this actually gives enough information for a rough estimate of Avogadro’s number (NA).
The origin of daylight, one of the earliest question of philosophers and scientists wondered
about, is ultimately related just to the molecular composition of the atmosphere. Providing
evidence for the actual existence of atoms and molecules was a challenge for scientists at the
beginning of the twentieth century, when people like Maxwell, Perrin, and Einstein, among
others, devised a number of methods for measuring NA. In 1899 Rayleigh estimated the
amount of light scattered by air molecules and related it to the scattering of sunlight. In 1910
Einstein, following Smoluchowski [1], found a formula for evaluating the intensity of light
scattered by density fluctuations in a fluid [2], thus giving an unexpected solution to many
problems that the simple question of the origin of daylight had led to. The sky is still far from
completely understood [3, 4], but the milestone work done by Rayleigh and Einstein leads to
an explanation complete enough for a quantitative description of daylight.

In this work I first introduce the issue of daylight and the most fundamental questions
animating the dispute a century ago (section 2). Both Einstein’s and Rayleigh’s approaches
are presented to derive an expression for the brightness of the sky (sections 3 and 4). To
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estimate NA, two methods are presented: 1) from the daylight observation of the planet Venus,
which is very easy but only gives a lower limit (section 5), and 2) from digital pictures of the
sky taken with a digital camera, properly calibrated (section 6). Both methods and the
necessary mathematics are simple enough to make it a suitable experiment for undergraduate
students, as I have experienced several times in recent years.

2. The puzzle of the blueness of the sky

Before Einstein, the early contributors to the explanation of the sky’s blueness were Goethe,
Tyndall and Rayleigh, who introduced the scattering of light by small particles (Goethe’s
urphaenomenon [3]), studied the diffusion of light from a dilute suspension (Tyndall light) [5]
and described the light scattered from a point-like oscillator (Rayleigh scattering) [6]. After a
suggestion by Maxwell, Rayleigh applied his own theory to the scattering of light from air
molecules [7]. He thus related NA to the so-called visual range, the maximum distance at
which an object can be seen through pure air [8] (thus also giving an explanation for the aerial
perspective used by Leonardo da Vinci in painting far objects). The result is in rough
agreement with the accepted value for NA.

Rayleigh opened a new era in the study of daylight, overcoming the main problem of
Goethe and Tyndall’s approaches. Air molecules are always there, while dust depends on
several conditions: what would happen without dust? With Rayleigh’s theory the answer is in
the atmosphere itself.

Nevertheless, Rayleigh used an important assumption that is worth discussing, as it
captured the attention of remarkable thinkers a century ago, driving a scientific controversy
that is almost forgotten nowadays. He considered the scattering by air molecules to be
incoherent, meaning that the intensity of light perceived by an observer looking towards an
ensemble of molecules is just the sum of the intensities of the light scattered by each molecule
(as if each was isolated). This actually occurs when the phases of the scattered waves are
random, for example due to the random positions of rarefied random scatterers. But air is not
so rarefied as to fit this assumption, since the average distance between molecules at sea level
is only 3 nm, much smaller than the wavelength of visible light (on the order of half a
micron). A huge number of molecules are driven in phase by the incoming field within a
distance comparable to the wavelength. For each molecule scattering light with a given phase,
another molecule half a wavelength away will scatter light with the opposite phase, thus
producing destructive interference. The only constructive interference will be in the forward
direction (coherent scattering), where the incoming wave is simply phase lagged, giving the
air its refractive index. For this reason Mandelstam [9] was convinced that the Rayleigh
theory was wrong, since it leads to the conclusion that air must be completely transparent,
against observation. By contrast, Rayleigh (and Planck) argued that the scattering should be
considered incoherent due to the thermal motions of the molecules, which randomize the
phases (even if they did not explain how). Smoluchowski [1] and Einstein [2] entered this
controversy from a different point of view, the study of the scattering by density fluctuations
in fluids. Einstein gave a completely new description that leads to a result formally identical to
that of Rayleigh (as Einstein himself noted in his paper; for a proof of this equivalence see for
example [10]). With no fluctuations at all, light would pass undisturbed through the medium,
as Mandelstam correctly pretended. But the air is not really uniform, and small density
fluctuations locally produce different scattering efficiencies, affecting the coherence phe-
nomena responsible for constructive interference in the forward direction and destructive
interference in any other direction. Incidentally, Einstein noticed that the direct assumption of
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the atomic structure of matter is not really necessary in his theory, since he modeled the fluid
as a continuum. Nevertheless, he proved that the atomic structure is of fundamental impor-
tance from a statistical point of view, in determining the density fluctuations within the fluid.

If molecules move independently, as they do in air at standard temperature and pressure
(STP), the number of molecules within a given volume will change accordingly to Poisson’s
statistics: the fluctuations will depend on the number of molecules. On average, coherent
scattering by the fluctuations of N molecules gives the same intensity as incoherent Rayleigh
scattering by the same N molecules. In the former case the observed intensity is the sum of
√N field contributions, while in the latter it is given by the sum of N equal-intensity con-
tributions [11, 12]. If fluctuations are not driven by Poisson’s law, as occurs for example in
liquids, incoherent Rayleigh scattering will not give the correct description of the
phenomenon.

It can also be noticed that the size of the density fluctuations we are dealing with must be
much smaller than the wavelength, since daylight is isotropically scattered.

A question still remains: in usual conditions, is daylight due to air or dust? The Rayleigh
scattering law is the same for both cases, as for any other object much smaller than the
wavelength. The blue coming from air is identical to that coming from dust particles. A
spectral measurement cannot distinguish between the two cases: only the scattering efficiency
changes, this change being with the sixth power of the size.

3. Einstein’s equation

Einstein [2] related the intensity I of the light scattered by a gas to the intensity of the
impinging light, I0:
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where R is the gas constant, T the absolute temperature, ε the dielectric constant of the gas, p
the pressure, Φ the illuminated volume, D the distance between the volume and the observer,
and f the angle between the polarization of the incoming light and the scattering plane (the
plane containing both the incoming and the emerging beams).

By integrating over the solid angle the intensity of light scattered with any polarization
state, substituting (ε−1)2=4(n−1)2 (n2=ε∼1 for air at STP and at optical fre-
quencies), and RT/p with NA/N from the perfect gas law (the number density is N=ρ NA/M,
with ρ the gas density and M the molecular weight of air), one obtains the scattered power:
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where typically k=2π/λ=1.39 107 m−1 for blue light (λ=450 nm) and
M=28.96 g mol−1 for air.

Here we refer to a simplified model of the atmosphere based on the isothermal
assumption, which despite its simplicity gives a good approximation of the real case, as
detailed for example in [13]. Therefore, gas density ρ decreases with altitude z with an
exponential law ρ=ρ0 exp[−z/z0], with ρ0=1.2 10−3 g cm−3 and z0=8800 m (see for
example [8]). In order to evaluate the term (n−1) and its dependence on the altitude z, recall
the so-called Lorentz–Lorenz (LL) formula [14], relating the polarizability of the single
molecule, α, to the refractive index n of a gas composed of the same molecules with number
density N:
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This result holds true if N is large enough that a large number of molecules are present
within a volume comparable to a cube one wavelength on a side [15, 16]. The term
(n−1)=(n2−1)/2 is then proportional to N, and therefore to the gas density ρ. The term
(n-1) will then be described by (n−1)=(n0−1) exp[−z/z0], and (n−1)2/ρ can be
simplified to (n0 −1)/ ρ0 exp[−z/z0]. For air at STP conditikns, the refractive index is given
by the Cauchy relation:
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with A=1.000 287 566, B=1.3412 10−18 m2, and C=3.777 10−32 m4. For blue light at
λ=450 nm this gives n0=1.000 29, or n0−1=2.9×10−4.

Since the sky is an extended source we will consider its photometric radiance, namely the
power received from a unit solid angle Ω on a unit surface on the ground. For daylight coming
from the zenith, such that D=z, the volume dΦ contributing to the light impinging on the
ground from height z will be determined by the reference solid angle Ω, dΦ=Ωz2dz. Also,
we will refer to a unit surface S on the ground, determining a solid angle ω(z)=S/(4πz2) at
height z. The radiance of the daylight at ground level will then be obtained by integrating over
the entire air volume determined by the solid angle Ω. We will assume that the solar irra-
diance I0 (power per unit surface, here considered in the blue range of the solar spectrum) is
uniform over the entire height of the atmosphere, which for blue light and pure air is correct
within 20% (as is evident from a comparison of the extraterrestrial and the sea level spectral
irradiances). This gives
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which can be inverted to obtain the value for NA once B and I0 are known. The result can be
easily generalized for the intensity of daylight observed from any altitude zobs.

4. Rayleigh scattering

Here we will briefly address the same issue following Rayleigh, since this is the most
common way the result is derived in the literature. For a single, spherical dielectric particle
much smaller than the wavelength (<λ/20) of polarizability α, the Rayleigh cross section is
given by [5]:

k
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4 2 ( )s
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To evaluate the polarizability α of each molecule we will use the LL formula (3) again, with
the approximations n 2 30

2 + = and n 1 20
2 - = (n0−1), and get the rough estimate

σS=10−30 m2.
Alternatively, one can obtain a similar result on the basis of the most elementary model

for the polarizability, that is, by considering the resonances of electric dipoles with proper
frequencies ωk (ω=2πc/λ (c is the speed of light in vacuum)). The polarizability is given by
(see for example [17]):
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where e and me are the electron charge and mass, and fk are the oscillator strengths for the
resonances at frequencies ωk. The strongest emission for nitrogen molecules occurs at
λ0=120 nm, the Lyman α of the N2 molecule, which is also the strongest line in the
atmosphere [18, 19]. The polarizability can be approximated as due to one oscillator
with fk=1, and for λ=450 nm one finds ω=0.27 ω0. Since e2/me=c2r0
(r0=2.82×10−15 m is the classical electron radius), it is easy to find a value for the
cross section that gives results just slightly smaller than the one evaluated above, namely
σS=4×10−31 m2. For the sake of completeness, we note that the radiation damping for
atomic transitions lasts for something like 10−8 s, so the linewidth is of the order of 108 Hz,
which is negligible with respect to the difference between the frequencies ωk and ω. We
conclude that the approximation used to write equation (7) does not introduce appreciable
uncertainties.

Nitrogen is actually a diatomic molecule, with an anisotropic charge distribution that
alters the pure Rayleigh scattering. Nevertheless, on the basis of the results obtained by King
[20], this would affect the polarizability by a factor F(ω)=1.034+0.080 ω2. For blue light
this amounts to about F=1.036, so it is negligible here.

The incoherent scattered intensity coming from N molecules is simply σS N. Dividing for
a given volume, we get a specific scattered intensity equal to σSN. Given the density profile
ρ(z) above, we will immediately get the number density profile in terms of NA, N(z)=N0 exp
[−z/z0], where N0=ρ0NAM−1.

The radiance at the ground of daylight from the zenith will therefore be given by:

B I z N z z z zd expS0
0

0 0
2[ ] ( )ò s w= -

¥
/

or:

B I N z 4 8S0 0 0 ( )s p= /

which can be easily reduced to equation (5). This expression is particularly suitable for
finding the radiance of the daylight if NA is known.

5. Estimating Avogadro’s number from observations of Venus

The sky’s brilliance can be estimated on the basis of two simple observations: (1) Venus’ light
is close to the limit of naked eye visibility over daylight from a very clear atmosphere; and (2)
the angular resolution for the naked eye adapted for diurnal vision of the bright sky is
approximately θ=80–100 arcsec, very close to the apparent diameter of Venus,
80–90 arcsec. This allows us to derive a limit to the specific magnitude of the sky.

Astronomers express the intensities of light in units of magnitude, defined as follows:

m I I2.5 log 9( ) ( )*= - /

where I is the intensity of light coming from a celestial object, as measured in a reference
spectral range, and I* is a standard intensity in the same spectral range (conventionally
considered to be the intensity of light coming from Vega in the visible range, that is,
1.2×10−8 Wm−2). The magnitude of Venus is approximately −4 and almost constant (with
a minimum of −4.6); this value gives an upper limit for the specific magnitude of the sky as
about −3 arcmin−2. Since the Sun has a magnitude of −26.72 and an irradiance of about
600Wm−2 at sea level in the visible range, we can easily estimate the intensity of light

Eur. J. Phys. 36 (2015) 065040 M A C Potenza

5



coming from the sky. The last needed piece of information comes from the spectral response
of the human eye; response in the blue is approximately 1/10 that in the yellow-green [22],
where the light from Venus will mainly be sensed. Therefore, we estimate
I=3.0–7.5×10−7 Wm−2.

Using equation (5) and the numerical values evaluated above (M=28.96,
k=1.39×107, (n0−1)2=8.4×10−8, ρ0=1.2×103 g m−3, z0=8800 m,
Ω=1.1×10−6 Sr), and since the solar irradiance in the blue range is approximately
I0=180Wm−2 [23], one obtains a lower limit for NA:

N 4.6 10 ,A
23> ´

the correct order of magnitude. The main source of error here can be ascribed to the dust
suspension in the atmosphere, which increases the intensity of daylight with respect to that of
pure air, and leads us to underestimate NA (see equation (5)).

6. Measuring Avogadro’s number through a digital camera

The advent of digital cameras and webcams allowed us to easily handle quantitative data by
converting pictures into arrays of numbers. Advanced data reduction schemes are commonly
used by amateur astronomers.

Here the use of commercial cameras as absolute photometers is proposed to measure the
sky radiance. Any camera can be used, provided that direct control of the objective settings
(focal length and diaphragm aperture) and white balance is possible. Otherwise there is no
chance to calibrate the camera’s response. Commercial cameras that produce any kind of
RGB pictures in standard formats (TIFF, JPG, BMP, etc) are suitable for this purpose. The
case of RAW images produced by professional cameras is not considered here. Several
cameras have been tested successfully, with similar results. The following steps will be
described: (1) setting the conditions to be used in the measurements; (2) measuring the
response curve of the camera; (3) determining the absolute calibration with a known source;
and (4) collecting and reducing data from the daylight sky.

6.1. Measurement conditions

The camera objective, focal length, f-number, must be fixed. Particular care has to be taken to
prevent any firmware/software data processing by the camera before the data is stored. For
the data reported below, the camera was a Nikon D70 set to manual configuration, ISO 200,
f/4.5, 70 mm focal length.

6.2. Calibration of the response curve

Digital cameras ultimately convert light intensity (photons) into electrons generated within
the potential wells associated with each pixel. This conversion is usually linear, so that the
number of electrons is proportional to the energy collected, namely the number of photons.
Pictures are generated by the firmware of the camera by introducing a nonlinear response,
which mimics the response of traditional film emulsions. Inverting this function is the aim
here, in order to recover the intensity of light. The calibration of the response function can be
easily measured through the following procedure (see [24] for a detailed description of the
calibration procedure). (1) Preparing a uniformly illuminated plane surface: the clear sky
close to the zenith is particularly suitable, provided that the overall measurement is fast
enough that the daylight will not change while pictures are taken (this is the case considered
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here). (2) Taking a set of pictures with increasing exposure times, starting from a picture
almost completely dark and progressing to a picture completely saturated in the blue channel.
(3) Importing images to a PC and measuring the frequency histogram of the blue channel,
which provides the number n of pixels assigned to a given tone, b, which ranges from 1 to
256 for a typical 8-bit color coding. Notice that the tone b is not the number of electrons
collected by each pixel, a further constant being here that is related to the sensitivity of the
camera (ISO setting). The central region of the picture is preferable, in order to exclude
unavoidable vignetting effects.

This distribution must be very narrow, which indicates that daylight is really uniform
over the image (see figure 1). By extracting the average tone from each picture and plotting
the values as a function of the corresponding exposure time Δt, the response curve is
obtained. In figure 2 the experimental results are plotted as a function of arbitrary units on the
x-axis, ultimately proportional to the number of electrons collected by each pixel.

The curve can easily be fitted with typical empirical formulas. In the case of figure 2 we
get:

b c c a90 log 10 15 250 1010( ) ( ) ( )= + -

Figure 1. Example of frequency distribution n(b) for data used in this work.

Figure 2. Response curve as measured by the procedure described in the text. The x-
axis shows the exposure times (arbitrary units), and the y-axis shows the corresponding
average tones of the frequency histograms.
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where c is the arbitrary counts unit. By inverting:

c b b bexp 250 90 15 10 10( ) ( [( ) ] ) ( )= + -/ /

This can be considered accurate enough from tones 20 to 175, which will be enough for
our purposes. Notice that c(b) is ultimately related to the energy emitted from a given solid
angle of the sky, falling on a given area on the ground within the exposure time Δt through
the objective with numerical aperture f. The solid angle is subtended by the projection of each
pixel onto the sky through the camera objective, and the unit surface is the pixel area.

Therefore, by normalizing c(b) for the exposure time Δt and the diaphragm aperture, that
is the inverse of the f number squared, a quantity is obtained that is proportional to the power
emitted within a unit solid angle, impinging on a unit area at ground level, namely to the
radiance:

A b c b f T 112( ) ( ) ( )= /

A(b) will be referred to as the relative radiance. It is worth noticing that relation (11) could
introduce some discrepancies when measuring A(b) for different f values. To get the best
results, this parameter should be kept fixed.

6.3. Absolute photometry

Here the constant relating the relative radiance A(b) to the absolute radiance is determined.
This requires a known source. The moon is suitable, since it is an extended source and allows
calibrating the energy collected by each pixel coming from the corresponding solid angle.
Moreover, measurements can be done with the same camera configuration used for the sky.
Using the Moon needs some care, but it prevents from huge issues occurring when using
point-like sources such as stars.

A set of pictures of the Moon is taken (overnight) with the Moon high over the horizon
and with the sky as clear as possible. The exposure timeΔt has to be set in such a way that no

Figure 3. (a) An example of the pictures used for absolute calibration; (b) the
corresponding frequency histogram (x-axis bluetones, y-axis frequencies plotted on a
log scale).
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pixel saturates. Figure 3 shows one of the pictures used to calibrate, taken approximately 24 h
from the full moon, 62° over the horizon.

Up to a couple of days from the full moon the results are acceptable, while for larger
phase angles the frequency histogram presents a non-negligible tail in the low channel region
that makes it difficult to distinguish between the contribution from the faint regions of the
Moon and the background light.

By means of equations (10a) and (11), the tone distribution shown in figure 3 can be
converted to the corresponding relative radiance distribution A(b), and the average relative
radiance of the Moon finally converted into a tone through equation (11). In our case it
corresponds to tone b=135.7.

The amount of light coming from the Moon depends on both its phase and its position
in the sky, the latter determining the amount of air extinction. The sunlight reflected towards
the Earth is not given just by the geometrical fraction of the illuminated area, because the
shadows cast on the Moon by its mountains play an important role. The magnitude of
the Moon as a function of the phase angle is shown in figure 4 (see for example [25]). Under
the conditions of figure 3(a), namely for a phase angle j=12.6°, this curve gives
m0=−12.3. This is the magnitude of the Moon under ideal atmospheric conditions.

The atmospheric conditions that will give the magnitudes plotted in figure 4 are extre-
mely rare. To correct for the effective atmospheric extinction, different approaches can be
used [26–28]. The intensity of light impinging on the ground, I, for a source of intensity I0
outside the atmosphere at a zenith angle θ can be obtained through the Beer–Lambert-
Bouguer extinction law:

I I e 12kX
0 ( )= -

where X is the mass of the air, which can be obtained from the Rozember relation [26, 27]:

X cos 0.025 exp 11 cos 131( ( )) ( )q q= + - -

The parameter k accounts for the atmosphere extinction. It is tabulated in the literature for
different seasons, air conditions, zenith angle θ and altitude. In the case of figure 3 (winter
time, sea level and zenith angle θ=62°) one gets k=0.40, and the Rozemberg relation
gives an extinction factor I/I0=0.46. The best atmospheric conditions give k=0.11, so in
this ideal case the atmosphere would have an extinction factor of 0.84. The ratio of these two
values, 0.54, provides the ratio between the amount of light impinging on the ground when
the picture in figure 3 was taken and the amount of light that the Moon casts on the ground

Figure 4. Lunar magnitude m0 as a function of the phase angle j (adapted from [23]).
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under the ideal atmospheric conditions considered in figure 4. The magnitude of the Moon in
figure 3 can be evaluated from the value reported above, m0=−12.3:

m m 2.5 log 0.54 11.6. 14M 0 10 ( )= - = -

Since the Moon is an extended source, it is straightforward to refer to the specific magnitude,
mM, expressed in magnitude arcmin−2. The solid angle ΩM subtended by the lunar disk can be
evaluated on the basis of the apparent lunar radius when the picture was taken, in this case
being approximately ρ=0.28° (the apparent radius has non-negligible changes; see [21]).
The specific magnitude of the Moon is then:

m I I m pr2.5 log 2.5 log 1 4.26 arcmin . 15M 10 M M M 10
2 2( ( )( ( ) ( )⎤⎦ ⎤⎦*= - W = - = - -/ /

From a solid angle of 1 arcmin2 the Moon delivers an intensity which is that of Vega, I*, times
10 to the power −mM/2.5:

r 6.07 10 W m arcmin . 167 2 2 ( )= ´ - - -

This is the reference radiance to be associated with the average tone b=136.7 and the
relative radiance A(b), and completes the absolute calibration of the response curve.

In conclusion, the radiance (or the specific magnitude) of the sky can be obtained by
taking a picture under known conditions, measuring the average value of the tone distribution,
b′ and converting into the corresponding relative radiance, A(b′) through equation (11). The
ratio between this value and the relative radiance obtained above for the Moon, A(b′), mul-
tiplied by the reference radiance r in equation (16), provides the radiance of the sky.

6.4. The daylight sky and the measure of NA

Once the camera is calibrated, data can be collected from the daylight sky to evaluate its
radiance and therefore NA as described above. Table 1 contains the results of some mea-
surements at different altitudes and temperatures (all measurements were taken around
midday). The first line contains theoretical results for pure air scattering at sea level. The
values for NA have been obtained from equation (5), including the observer altitude zobs, so
that:
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( )
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⎠⎟p r p

=
-
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The main source of errors should be the amount of suspended aerosols. By inspection of
equation (17) this leads to a decrease of the expected NA, as occurs here. This means that from
a large number of measurements we can discard the larger radiance values, which will be
expected to be affected by non-molecular scattering (this selection must be done on data
normalized for the altitude). In our case, for example, by using only the measurements in a
very dry atmosphere from 2500 meters, one would estimate a value NA=4.5×1023 gmol−1,
which is not far from the expected value.

7. Discussion and conclusions

This method has been successfully proposed to undergraduate students several times, and
always proved to be adequate. Different cameras have been used as well as different reference
objects adopted for the calibration of the response curve (section 6.2). The history of
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questions about the daylight sky is a very instructive pathway for students, since it relates
atoms, light, atmosphere, and several other common concepts that can be mixed in a quan-
titative, robust framework which is ultimately related to the proof of atomic theory by famous
scientists at the beginning of the twentieth century. The absolute calibration of the camera
response is good practice for learning how to calibrate a device and, once completed, students
are able to perform measurements at will and to obtain results independently.

Care has to be taken to meet the atmospheric conditions for obtaining precise results.
Nevertheless, an order-of-magnitude estimate is often possible, except for conditions that are
clearly inconvenient. The best results can be obtained during winter and from high altitudes,
when it is easier to find very dry and unpolluted air. Finally, this method has also been
successfully proposed to undergraduate students for using the light from the sky to monitor
air pollution.
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