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Abstract

Ghrelin is a hormone with a crucial role in the regulation of appetite, regulation of inflammation, glucose metabolism and
cell proliferation. In the brain ghrelin neurons are located in the cortex (sensorimotor area, cingular gyrus), and the fibres of
ghrelin neurons in hypothalamus project directly to the dorsal vagal complex (DVC). Ghrelin binds the growth hormone
secretagogue receptor (GHS-R) a G-protein-coupled receptor with a widespread tissue distribution, indeed these receptors
are localized both in nonnervous, organs/tissues (i.e. adipose tissue, myocardium, adrenals, gonads, lung, liver, arteries,
stomach, pancreas, thyroid, and kidney) as well as in central nervous system (CNS) and higher levels of expression in the
pituitary gland and the hypothalamus and lower levels of expression in other organs, including brain. A GHS-R specific
monoclonal antibody has been developed and characterized and through it we demonstrate that GHS-R is expressed in
primary neurons and that its expression is dependent upon their developmental stage and shows differences according to
the brain region involved, with a more pronounced expression in hippocampal rather than cortical neurons. A
characterization of GHS-R within the central nervous system is of extreme importance in order to gain insights on its role in
the modulation of neurodegenerative events such as Alzheimer’s disease.
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Introduction

Ghrelin is a multifunctional 28-amino acid (aa) hormone

produced in a wide variety of tissues, including the brain, where

it can act as a paracrine/autocrine factor [1].

Ghrelin was originally identified based on its ability to stimulate

GH release. However, subsequent studies demonstrated that the

ghrelin system is involved in a number of divergent functions such

as regulation of food intake, body weight gain, insulin release and

b-cell survival, adiposity, and the control of energy homeostasis

[2,3], as well as, it participates in many other physiological

processes such as circulation, cell proliferation, differentiation and

apoptosis [4,5]. Likewise, the ghrelin system has also been shown

to be involved in inflammation [6,7] and modulation of neuronal

functions [8–10].

In the brain ghrelin is present in the hypothalamic arcuate

nucleus (ARC), where it is especially abundant in the ventral part,

an important region in the control of appetite [11]. Ghrelin

neurons are located also in the cortex (sensorimotor area, cingular

gyrus), and the fibres of ghrelin neurons in hypothalamus project

directly to the dorsal vagal complex (DVC) [12].

Ghrelin binds the growth hormone secretagogue receptor

(GHS-R), a G-protein-coupled receptor, localized both in

nonnervous, organs/tissues (i.e. adipose tissue, myocardium,

adrenals, gonads, lung, liver, arteries, stomach, pancreas, thyroid,

and kidney) as well as in central nervous system (CNS). It has been

demonstrated that GHS-R shows different levels of expression in

different tissues [13–19].

GHS-R is prominently expressed in different regions of the

brain. Indeed, GHS-R mRNA has been reported in the ARC and

ventromedial nuclei (VMN) and in CA2 and CA3 regions of the

hippocampus, in the substantia nigra, the ventral tegmental area,

the dentate gyrus of the hippocampal formation, and the dorsal

and median raphe nuclei [15,20].

Ghrelin has been shown to regulate brain functions such as

modulation of cognitive processes, not only in the hypothalamus

but also in other brain areas with stimulatory effect on memory

retention through promotion of synaptic plasticity [8], and

generation of long-term potentiation [21,22,23]. Interestingly,

these ghrelin-induced synaptic changes were closely paralleled by

enhanced hippocampus-dependent spatial learning and memory

[10].
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Studies concerning the neuroprotective role of ghrelin were

carried out in hypothalamus, in a model of rat injury, where it was

able to significantly increase the number of surviving neurons and

reduce the number of apoptotic neurons in CA1 area of the

hippocampus [24].

Subsequently, in vitro studies on primary hypothalamic neurons

exposed to oxygen–glucose deprivation protocol (OGD) further

supported a neuroprotective role of ghrelin. Specifically, ghrelin

exerted their actions by inhibiting generation of reactive oxygen

species and stabilizing mitochondrial transmembrane potential. In

addition, ghrelin-treated neurons showed an increased Bcl-2/Bax

ratio, a reduced cytochrome c release, and reduced caspase-3

activation [25]. Moreover, similar to hypothalamic neurons,

ghrelin exerts its neuroprotection in cortical neurons by inhibiting

pro-apoptotic molecules associated with mitochondrial pathways

and by activating endogenous protective molecules [26].

Overall, evidence so far collected suggests a crucial role for

ghrelin in the modulation of several phenomena associated with

aging processes, such as development of reactive oxygen species,

memory loss and onset of neuroinflammatory scenarios. There-

fore, aim of this work is study the modulation of GHS-R levels of

expression in neurons at different stages of development and

obtained of different brain regions. In order to do that we

produced and characterized a monoclonal antibody specific for

the N-terminal region of GHSR.

Materials and Methods

Sequence Analysis
Monoclonal antibody sequence was analysed by FASTA from

European Bioinformatics Institute to exclude the existence of

human membrane proteins with significant sequence homology.

GHSR N-Terminal human sequence. The ghrelin receptor

(GHS-R) amino acid sequence. Monoclonal antibody sequence

(here undescored) is a portion of N-terminal sequence of GHS-R

and is a shared sequence between the two GHSR isoforms 1a and

1b:

MWNATPSEEPGFNLTLADLDWDASPGNDSLG-

DELLQLFPAPLLAGVTATC VALFVVGIAGNLLTMLVVSR

FRELRTTTNL YLSSMAFSDLIFLCMPLDL

Figure 1. Production and characterization of Mab anti-GHS-R. A. Immunoprecipitation of 22RV1 cell lysates with Mab 1D8B2 and commercial
polyclonal antibody (CTRL). Lysates from cells were immunoprecipitated with Mab (8 mg) or polyclonal antibody, resolved and transferred to
nitrocellulose membranes. The western blot analysis were performed with the polyclonal antibody when the monoclonal was used for
immunoprecipitation and the other way around, both immunoprecipitation analysis clearly showed a 48 kD band corresponding to the predicted
size of GHS-R. Sizes (kD) of molecular mass markers are indicated on the left. These experiments were performed independently at least twice with
similar results. B. Binding analysis of Mab 1D8B2 to 22RV1 cells by flow cytometry. Purified monoclonal antibody (6 mg) were analyzed with a flow
cytofluorimetric analysis to assess the binding of antibodies to the GHSR on the surface of the cells. The control consisted of an anti-GHSR purified
polyclonal antibody. Experiments were performed four times with reproducible results C. Representative image of 22VR1 cells cotransfected with
GHS-R siRNA and eGFP. eGFP (green) expressing cells do not show positivity for GHSR (red). D. Relative mRNA expression of GHS-R in transfected
22VR1 normalized on GAPDH. GHS-R expression is significantly lower in transfected cells(siRNA GHSR) than in non-transfected cells (GHSR UT).
doi:10.1371/journal.pone.0064183.g001

Time-Region Dependent Expression of GHS-R in Brain
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VRLWQYRPWN FGDLLCKLFQ FVSESCTYAT VLTI-

TALSVE RYFAICFPLR AKVVVTKGRVKLVIFVIWAVAFC-

SAGPIFVLVGVEHENGTDPWDTNECRPTE-

FAVRSGLLTVMVWVSSIFFFLPVFCLTVLY-

SLIGRKLWRRRRGDAVVGASLRDQNHKQTVKM-

LAVVVFAFILCWLPFHVGRYLFSKSFEPGSLEIAQIS-

QYCNLVSFVLFYLSAAINPILYNIMSKKYRVAVFRLLG-

FEPFSQRKLSTLKDESSRAWT.

Primary Cultures of Hippocampal/cortical Neuron and
Astrocytes

Primary neuronal cultures were prepared from the brains of 20

day-old rat embryos (Charles River) as previously described [27]

with minor modifications. Briefly, the hippocampi or cortices were

isolated from total brain, incubated with trypsin at 37uC, and then

dissociated in order to obtain separated cells, which were then

plated at ranging density from 10,000 to 20,000 cells/cm2 on glass

cover slips previously coated with poly-lysine (Sigma Aldrich) and

grown in Neurobasal medium (Gibco Invitrogen) supplemented

with B27 (Gibco Invitrogen), 0.5 mM glutamine and 12.5 mM

glutamate. All experiments were performed in accordance with the

guidelines established in Fondazione Filarete Campus Principles of

Laboratory Animal Care (directive 86/609/EEC). The protocol

was approved by Italian Health Ministry (art 12 D.L.vo n. 116/92

– Decreto n. 23/2010-A del 01/02/2010. All efforts were made to

minimize suffering. Animals were anesthetized and sacrificed as

indicated by European guidelines CPMP/ICH/302/9.

Immunization Protocol
Six male CD2F1 mice (Charles River), 7–12 weeks old, were

immunized subcutaneously four times at 2-week intervals with

100 mg of peptide/mouse. Peptide conjugated with Keyhole

Limpet Hemocyanin (KLH) was emulsified in the same volume

of Freund’s Adjuvant (Sigma). For priming, the emulsion was

prepared with Complete Freund’s Adjuvant. Mice were housed in

appropriate animal care facilities and handled according to

international guidelines for experiments with animals.

Generation of GHS-R Hybridomas
After four booster injections test bleeds were assayed for positive

reactions to peptide GHS-R by indirect enzyme-linked immuno-

absorbant assay (ELISA). Two weeks later followed an i.v. boost of

75 mg of peptides in normal saline solution and three days post

boost spleen cells from immunized mice were fused to

P3663Ag8.653 mouse myeloma cells (Biological Bank, Istituto

Nazionale per la Ricerca sul Cancro IST, Genova, Italy) in the

presence of a 50% solution (wt/ml) of polyethylene glycol

(Molecular Weight 3350, Sigma) to produce hybridoma cells

according to standard procedures [28]. Cells were plated in 96-

well plates (Corning-Costar Corp) and cultured at 37uC in a

humidified atmosphere in the presence of 5% CO2 and 95% air in

RPMI 1640 medium supplemented with 20% Fetalclone I

(Hyclone,Thermo Scientific), L-glutamine (Euroclone), penicillin,

streptomycin (Sigma), hypoxanthine-aminopterin-thymidine (Sig-

ma) 100 mM, 0.4 mM and 16 mM respectively to select hybrid

cells. Supernatants from the growing hybridomas were screened

Figure 2. Evaluation of anti-GHS-R Mab specificity. A. Western blot of analysis of a selected brain region (hypothalamus) and a non-brain GHS-
R bearing tissue (heart) showing a single band of the predicted molecular weight for GHSR at 48 kDa B. Immunoprecipitation of rat cortical (C) and
hippocampal (H) primary neurons lysates with Mab 1D8B2 and commercial polyclonal antibody. Lysates from rat hippocampal and cortical neurons
after nine days in vitro were immunoprecipitated with Mab (8 mg) or polyclonal antibody (CTRL), resolved and transferred to nitrocellulose
membranes. The western blot analysis were performed with the polyclonal antibody when the monoclonal was used for immunoprecipitation and
the other way around, both immunoprecipitation analysis clearly showed a 48 kD band corresponding to the predicted size of GHS-R. b-actin was
used as a loading control. Sizes (kD) of molecular mass markers are indicated on the right.
doi:10.1371/journal.pone.0064183.g002
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with ELISA. Positive wells were sub-cloned by limiting dilution

and tested by indirect ELISA. Selected hybridoma lines were later

grown and isotypes of the Mab were determined using the Rapid

Isotyping kit (Thermo Scientific) according to the manufacturer’s

instructions. Concentrated MAb supernatants were purified using

Protein L Sepharose Fast Flow (Sigma).

Antibody Purification
Cell culture supernatant was centrifuged at 1270 g for 30 min.

Saturated ammonium sulphate solution was added to the

supernatant to bring the final concentration to 50% saturation

and incubated at 4uC overnight. The solution was centrifuged for

30 min at 1270g and the pellet resuspended in 10% of the starting

volume of phosphate-buffered saline. The antibody solution was

Figure 3. Immunofluorescence staining on primary neuronal cultures. Immunofluorescence staining with GHS-R of either cortical (CN) or
hippocampal (HN) neurons at different stages of development. Both neuronal cultures show correct maturation in vitro, as assayed by positive
staining of vesicular marker for excitatory neurotransmitter transporter Vglut which shows punctuated expression along neuritis at mature stages of
development.
doi:10.1371/journal.pone.0064183.g003

Figure 4. Comparison of GHS-R levels in cortical and hippocampal neurons. A. GHS-R mRNA expression levels in cortical (red) and
hippocampal (blue) primary neurons normalized on expression levels at 4 div. GHS-R show a significant increase in expression levels at 9 and 16 div,
with a significant reduction at later stages (21 div) in both neuronal populations. B. Relative mRNA expression of GHS-R at different developmental
stages of hippocampal (red) and cortical (blue) neuronal cells normalized on GAPDH. GHS-R is significantly more expressed in hippocampal rather
than cortical neurons at 9 and 16 div.
doi:10.1371/journal.pone.0064183.g004

Time-Region Dependent Expression of GHS-R in Brain
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dialysed versus two changes of PB overnight. 4 ml of immobilized

Protein L agarose Flow (Sigma) were packed into a suitable

column under gravity flow. The column was equilibrated in 0.1M

sodium phosphate buffer pH 7.2, containing 0.15 M NaCl

(Binding Buffer). The dialysed solution was diluted 1:1 with

Binding Buffer and loaded onto the column. The column was then

washed with 15 ml of Binding Buffer and then stripped by washing

with 0.1 M glycine, pH 2.7. Eluated fractions containing antibody

were collected, immediately adjusted to pH 7.5 by adding TRIS

1 M pH 9 and tested by means of ELISA.

ELISA
ELISA 96-well plates (Immobilizer – Nunc Streptavidin) were

washed three times with PBS+0.05% Tween-20 (Sigma-Aldrich)

(PBST) and coated with 1 mg/w of peptide GHS-R diluted in

PBST at room temperature (RT) for 1 h with agitation. Plates

were washed four times with PBST and supernatants (50 ml) from

hybridoma cultures, immune serum, or purified antibody diluted

in PBST were added and incubated at RT for 2 h with agitation.

Plates were washed four times with PBST before incubation with

secondary goat anti-mouse Ig antibody conjugated to alkaline

phosphatase (BD Pharmingen) at RT for 1 h. After further washes

with PBST the plates were incubated with p-nitrophenyl

phosphate (Sigma) diluted to 1 mg/mL in diethanolamine

substrate buffer (Thermo Scientific) at RT for 60 min with

agitation. The optical density at 405 nm was detected on a Victor3

plate reader (Perkin Elmer).

Total RNA Extraction and Reverse Transcription
Total RNA was extracted from a maximum of 76105

hippocampal and cortical primary neurons isolated from two

independent rats and kept in culture for 4, 9, 16 and 21 days, using

the RNeasyTM Mini Kit and accompanying QIAshredderTM

(Qiagen) according to the manufacturer’s instructions. Subse-

quently, 0.2 mg was reverse transcribed using the SuperScriptTM

III First-Strand Synthesis System for RT-PCR (Invitrogen) in

accordance with the manufacturer’s instructions and analysed for

the expression of the Grelin Receptor using real-time PCR.

Quantitative Real-time PCR
Gene expression was quantitatively analysed using the ABI

PrismTM 7000 Sequence Detection System (Applied Biosystems)

and SDS software version 1.2.3. The target sequences were

amplified from 10 ng of cDNA in the presence of TaqManH Gene

Expression Master Mix. The TaqManH primer and probe assays

used were rat GHS-R (ID #Rn00821417_m1*), and the endog-

enous controls GADPH (ID #Rn01775763_g1*). The 22DCT

method was used to calculate the results, thus allowing the

normalisation of each sample to the endogenous control.

Immunocytochemical Staining
Primary neurons at different stages of development (4, 9, 16, 21

days ‘‘in vitro’’) were fixed in 4% paraformaldehyde and 4%

sucrose at room temperature (RT), for 10 min. Primary and

secondary antibodies were applied in GDB buffer (30 mM

phosphate buffer, pH 7.4, containing 0.2% gelatin, 0.5% Triton

X-100, and 0.8 M NaCl) for 2 hr at RT. The confocal images

were acquired with a Leica SPE confocal microscope, using a

Nikon (Tokyo, Japan) 406 objective with a sequential-acquisition

setting at a resolution of 102461024 pixels. Each image was a z-

series projection taken at 0.8 mm deep intervals.

The following antibodies were used: Polyclonal abs against

VGlut-1 (1:1000 dilution) was from Synaptic System (Gottingen),

Secondary antibody Alexa 546 was from Life Technologies.

Immunoprecipitation and Western Blot Analysis
For immunoprecipitation experiments, cells were lysed with lysis

buffer containing 20 mM Na2HPO4 (pH 7.2), 150 mM NaCl,

2 mM EGTA, 25 mM NaF, 1 mM Na3VO4, protease inhibition

cocktail (Sigma), 1% Triton X-100, 0.5% saponine (Sigma).

Lysates were clarified by centrifugation at 15900 g at 4uC for

30 min. The BCA protein assay kit (Thermo Scientific) was used

to determine protein concentrations.

Clarified lysates were incubated with Mab GHS-R (8 mg) or

polyclonal antibody at 4uC overnight, then bound to protein L

agarose (Sigma) at 4uC for 2 h. The agarose was washed three

times with lysis buffer and proteins were released from the agarose

by boiling in NuPage LDS Sample buffer (Invitrogen) for 5 min.

The proteins were then subjected to SDS-PAGE and transferred

to 0.45 mm nitrocellulose membranes (Invitrogen) at 30 Volts for

110 minutes at 4uC. After washing three times with PBS+0.1%

Tween and twice with distilled water, the blots were incubated at

4uC overnight with purified commercial polyclonal (Santa Cruz)

or monoclonal antibody specific for GHS-R diluted in blocking

solution (PBS+0.1% Tween+5% Skim milk). The membranes

were washed three times with PBS+0.1% Tween and incubated

with goat anti-rabbit IgG conjugated to horseradish peroxidase

(BIO-RAD) at room temperature for 45 min. Following three

washes with PBS+0.1% Tween and two with distilled water, the

antibody-reactive bands were visualized using chemiluminescence

with ECL and exposure to film (Hyperfilm ECL; Amersham).

Cytofluorimetric Analysis
For cell surface staining, the cells were incubated with FCS at

room temperature for 30 min. 0.56106 cells were then incubated

on ice for 30 min with purified Mab (6 mg) in FACS buffer (PBS

containing 5% FCS and 0.1% sodium azide, 100 mL/sample).

After three washes with FACS buffer, cells were stained with

phycoerythrin-conjugated anti-mouse Ig (Dako) diluted 1:10 in

FACS buffer. Incubation was carried out in the dark at 4uC for

30 min and was followed by three washes with FACS buffer. Cells

were analyzed by FACSCalibur (Becton Dickinson). Analysis was

carried out using a CellQuest software package (Becton Dick-

inson). For all samples, 20,000 events were acquired in the R1

region gate, which was defined based on forward and side light

scatter properties to exclude debris.

siRNA Analysis
In order to carry out GHS-R selective silencing RNA

experiments, we used commercially available probes for GHS-R

siRNA (Ambion selected pre-designed siRNA, Life Technologies).

Transfection was carried out using Lipofectamine (Life Technol-

ogies) following manufacturer’s protocol. Cells at the time of

transfection were cultured on 16 mm diameter coverglass at 60%

confluency. The following volumes of reagents were taken into

consideration: total transfection volume 1 ml, siRNA 15 pMol,

DNA e GFP 0.4 mg, transfection agent 3 ml. Cells were exposed to

transfection agent/siRNA/DNA complex for 1 hour. Following

incubation, cells were washed in Dulbecco’s medium without

phenol red and subsequently cultured in standard conditions.

48 hrs later, cells were fixed in 4% paraformaldehyde and 4%

sucrose at room temperature (RT), for 10 min. Finally, immuno-

cytochemical staining protocol was carried out, and cells were

stained for GHS-R. In order to verify silencing efficacy, real time

Time-Region Dependent Expression of GHS-R in Brain
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quantitative PCR was carried out on transfected cells lysate as

previously described.

Results

Mab anti-GHS-R was produced immunizing male CD2F1 mice,

with peptide sequence as described in the Material and Methods

section. The amino acid sequence recognized by monoclonal

antibodies anti-GHS-R is a portion of N-terminal sequence of

GHS-R. Furthermore the antigen peptide used to immunize mice

was screened by FASTA from European Bioinformatics Institute,

with the aim of excluding the existence of other human or rat

membrane proteins with significant homology. All mice developed

an antibody titre of approximately .1:2000, as tested by binding

to the unconjugated peptides by ELISA. The mouse developing

the highest antibody titre was selected for fusion with

P3X63Ag8.653 mouse myeloma cells. All clones were screened

by ELISA and only anti-GHS-R producing hybridomas whose

supernatants responded with an OD value .0.4 versus negative

control were selected. After cloning by limiting dilution, hybrid-

omas showed stable murine monoclonal anti-GHS-R production.

The monoclonal antibodies subclass was determined as described

in the Material and Methods section, most of the Mabs obtained

were IgM and we selected the IgM hybridoma: 1D8B2. We used

immunoprecipitation to characterize the ability of the monoclonal

antibody to recognize the GHS-R expression. Protein extracts of

22RV1 cells, a human prostate cell line kown to express the GHS-

R [29], were immunoprecipitated with the selected Mab and with

anti GHSR purified commercial polyclonal antibody as control.

The western blot analysis were performed with the polyclonal

antibody when the monoclonal was used for immunoprecipitation

and the other way around; both immunoprecipitation analysis

clearly showed a 48 kD band corresponding to the predicted size

of GHS-R (Fig. 1A). To characterize this monoclonal antibody we

analyzed its ability to detect the specific epitope on the surface of

22RV1 cells by FACS analysis. This analysis demonstrated that

the anti-GHS-R Mab recognized the GHS receptor on surface of

22RV1 cells (Fig. 1B). The specificity of our monoclonal antibody

was further demonstrated by silencing RNA experiments in which

22RV1 were transfected with GHS-R siRNA. Immunofluores-

cence staining for GHS-R show significant reduction of signal in

transfected cells (Fig. 1C). Moreover, quantitative PCR analysis

show a significant reduction in GHSR expression in transfected

22VR1 cells vs non transfected cells (UT, Fig. 1D). In order to test

more broadly antibody specificity and reveal eventual cross

reactions, a western blot analysis of a selected brain region

(hypothalamus) and a non-brain GHS-R bearing tissue (heart) was

carried out. Fig. 2A shows a single band of the predicted molecular

weight at 48 kDa.

At this point, confirmed the specificity of our antibody, we used

it to evaluate the expression of GHS-R in the central nervous

system. In the rat brain, indeed, detectable levels of GHS-R

transcripts have been documented in areas of the hippocampus,

the substantial nigra, the ventral tegmental area, the dentate gyrus

of the hippocampal formation, and the dorsal and median raphe

nuclei [15]. Lysates from hippocampal and cortex neurons, after

nine days of culture ‘‘in vitro’’ were immunoprecipitated by

1D8B2 and analyzed by a polyclonal antibody solving a 48 kD

band as well as when the immunoprecipitation was performed

with a polyclonal antibody was analyzed by a monoclonal (Fig. 2B).

Primary neuronal cultures from either rat hippocampus (HN) or

cortex (CN) were cultured for different days in vitro (4, 9, 16, 21

div) and immunostained with 1D8B2 MAb. Both neuronal

cultures showed correct maturation in vitro, given staining with

vesicular marker for excitatory neurotransmitter transporter Vglut

show punctuated expression along neuritis branches at mature

stages of development. Interestingly, staining for GHS-R showed

in both neuronal populations a transient positivity, with a stronger

signal at earlier stages of development (up to 9 days) and a

significant reduction at later stages (Fig.3). In order to evaluate at

which stage of neuronal development there was a greater

expression of GHS-R, qRT-PCR experiments were performed

on the mRNA from primary rat hippocampal and cortical

neurons; the expression of specific mRNA, assayed at 4, 9, 16

and 21 days ‘‘in vitro’’ and normalized on the expression at 4 div,

showed increasing levels of expression until the reaching of mature

stage (16 div) and subsequently a significant decrease at later stages

in culture (21 div both in the cortex and in the hippocampus)

(Fig. 4A). When expression was normalized with respect to the

internal control (GAPDH), in order to compare levels of GHS-R

in cortical and hippocampal neurons, a significant higher

expression of GHSR in hippocampal rather than cortical neurons

was observed, thus suggesting a clear temporal and region-specific

expression of the receptor in primary neuronal cultures (Fig. 4B).

Discussion

In the last few years, the involvement of ghrelin and therefore of

its receptors in several physiological and pathological processes has

been shown. In light of this, we thought it could be very useful to

produce monoclonal antibodies specific for GHS-R. Commercial

antibodies specific for GHS-R are all polyclonal antibodies with

different indications for the uses, depending on the product, and

often limited to just one application such as immunohistochemistry

or western blot. The monoclonal antibody produced by us is

specific for human and rat GHS-R and our investigations confirm

that Mab 1D8B2 is specific for the GHS-R and can be used in

immunostaining procedures, such as immunofluorescence, immu-

noprecipitation, western blot and FACS analysis. Moreover

FASTA analysis demonstrated that the chosen peptide sequence,

which have been used to immunize mice, did not share any

homology with other human/rat protein. For the characterization

of this antibody we used a line of human prostate cancer,

described as positive for GHSR, in immunoprecipitation and flow

cytometry experiments (Fig. 1A). These analysis showed that the

monoclonal antibody we obtained was specific for GHS-R.

Moreover the specificity of our monoclonal antibody was

demonstrated by silencing RNA experiments in which GHS-R

expressing prostate cell line was transfected with GHS-R silencing

RNA. Immunofluorescent staining for GHS-R show significant

reduction of signal transfected cells. We then focused our attention

on the brain tissue, more specifically on two selected and distinct

brain areas namely hippocampus and cortex. By immunoprecip-

itation, we identified the presence of GHS-R in both tissues. The

immunostaining of both cortical and hippocampal neurons with

1D8B2 Mab enables us to observe increasing levels of GHS-R

expression in developing neurons, which significantly reduces in

mature neurons at longer times in cultures, representative of a

developed neuronal network enabling aging studies [30]. This

transient behavior correlated with an increase in mRNA

expression during development and a subsequent decrease in

older cultured neurons. Interestingly, a sustained mRNA expres-

sion at 16 div does not correlate with a sustained marker positivity

by IF, thus suggesting a potential modulation of receptor insertion

in the membrane (i.e. internalization) which will be further

elucidated in future studies.

When comparing cortical and hippocampal levels of GHS-R

mRNA normalized to GAPDH, it was clearly noted a significantly

Time-Region Dependent Expression of GHS-R in Brain
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higher expression in the hippocampal with respect to cortical

neurons. This observation is of extreme importance given not only

it indicates that GHS-R expression in primary neurons is

modulated in a time-dependent manner, but that there might

also be a selective regional distribution which might yield to

functional modulatory effects of ghrelin in the two brain areas.

Further studies are needed in order to characterize the effects

induced by ghrelin in selected neuronal populations at different

developmental stages. For example, it is our intention to use this

antibody to investigate the role of ghrelin in aging, as it seems that

some phenomena typical of aging, such as decreased memory

[31,32] and the role of this receptor in some neurodegenerative

diseases such as Alzheimer’s disease.
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