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Chapter 1

Introduction

In this thesis we study semilinear problems of the following type

(1.0.1)

Lu = f(x, u) in Ω

B(x, u,Dαu) = 0 on ∂Ω,

where Ω is a bounded domain (open set) of RN with sufficiently smooth boundary, L

is an elliptic differential operator of order two or four, f(x, u) is the forcing term and

B(x, u,Dαu) are the boundary conditions. We are interested in proving existence/non-

existence of (weak) solutions of problem (1.0.1), regularity of the possible solutions and

a priori estimates for solutions. The thesis is divided in two main parts, the first one

is dedicated to the Hardy-Sobolev inequalities and some applications, while the second

one is more focused on the Trudinger-Moser inequality.

In particular, the first part is divided in two main chapters. The first one is dedicated

to the study of second order Hardy-Sobolev inequalities. We consider the second order

case of the Hardy-Sobolev inequalities and, moreover, the case in which the origin is

inside the domain. Then, there exists a positive constant C such that for all u ∈ H2
0 (Ω)1

the following inequality holds∫
Ω
|∆u|2dx ≥ C

(∫
Ω

|u|p

|x|τ
dx

)2/p

,

with N ≥ 5, 0 ≤ τ ≤ 4 and 2 ≤ p ≤ σ := 2∗(τ) := 2(N−τ)
N−4 . We study the possibility to

add to the preceding inequality a remainder term. Historically, the study of remainder

terms for the Hardy-Sobolev inequalities has been a large field of research. We want

to cite, among all the results, the well known results by H. Brezis and L. Nirenberg

for the Sobolev inequality [14] and its counterpart for the Hardy inequality [16], by

H. Brezis and J. L. Vázquez. We want to generalyze their results to the case of the

1The Sobolev space W 2,2(Ω) with Dirichlet boundary conditions.
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6 1 Introduction

biharmonic operator (−∆)2. The main difficulty, in the fourth order case, is that some

of the standard methods for second order elliptic equations are not available, namely

symmetry argument and maximum/minimum principles, at least in the case of Dirichlet

conditions.

The second chapter is devoted to the study of a specific biharmonic problem with

Dirichlet boundary conditions. We consider the Hardy potential 1
|x|4 and the related

biharmonic problem with Dirichlet conditions
(−∆)2u =

up−1

|x|4
in Ω

u =
∂u

∂ν
= 0 on ∂Ω \ {0}

u > 0 in Ω,

where Ω is a star-shaped domain with respect to the origin 0 ∈ ∂Ω and

1 < p− 1 < 2∗ − 1 :=
2N

N − 4
− 1 =

N + 4

N − 4
.

Our aim is to generalize the result by J. Dávila and I. Peral Alonso [22] to the fourth

order case. We are able to prove non-existence of (weak) solutions in star-shaped domain

but we are not able to prove the existence of positive (weak) solutions in pathological

domains, namely dumbbell domains, as done by Dávila and Peral in their paper. As

before, the main difficulty here is the fact that maximum principles are not available.

Moreover, we have to prove a priori regularity of the solutions. The key ingredient, in

the proof of the non-existence, is an a priori estimate, in the spirit of the work of B.

Gidas and J. Spruck [38]. Another difficulty here is the position of the origin, which is

located on the boundary of Ω and not, as usual, in the interior of the domain Ω.

In the second part, we consider the limiting case of Sobolev embeddings for W 1,p(Ω),

that is p = N . It is well known by the Trudinger-Moser inequality that the maximum

order of integrability for functions in the Sobolev space W 1,N (Ω) is e|u|
N
N−1

. We study

a priori estimates in L∞ for (weak) solutions of the following problem−∆Nu = f(u) in Ω

u = 0 on ∂Ω,

where ∆N is the N−laplacian operator and f(s) has some specific growth conditions.

We improve the results obtained in [44] considering more general functions f . Also in

this case, we have to prove a priori regularity for solutions. The main problem is that we

want to fill the gap in the work [44] between subexponential forcing terms and functions

which behave like the exponential. We are able to improve their results but we are not

still able to fill completely the gap.
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1.1 Hardy-Sobolev inequalities

1.1.1 Hardy-Sobolev inequalities with remainder terms

In this chapter we present a joint work with Bernhard Ruf of Università degli Studi di

Milano [53].

Let us consider N ≥ 3 and the critical Sobolev embedding W 1,2
0 (Ω) ⊂ L2∗(Ω), where Ω

is a bounded domain in RN and 2∗ = 2N
N−2 denotes the critical Sobolev exponent. It is

known that the best embedding constant SN in the corresponding Sobolev inequality∫
Ω
|∇u|2dx ≥ SN

(∫
Ω
|u|2∗dx

)2/2∗

,

is independent of Ω and is never attained if Ω 6= RN . A natural question is whether the

preceding inequality remains valid if some suitable lower order terms (so-called remainder

terms) are added. Brezis and Nirenberg showed in [14] that this is indeed the case.

They proved the following result. Let 1 ≤ q < N
N−2 . Then there exists a constant

C = C(Ω, q) > 0 such that for all u ∈W 1,2
0 (Ω)∫

Ω
|∇u|2dx ≥ SN

(∫
Ω
|u|2∗dx

)2/2∗

+ C‖u‖2Lq .

Brezis and Lieb proved in [11] a slightly stronger form with the weak Lebesgue norm in

place of the strong Lebesgue norm. Similar results are obtained for the Hardy inequality

by Brezis and Vázquez in [16] and for Hardy-Sobolev inequalities by many others authors.

Similar questions can be asked about higher order Sobolev and Hardy inequalities. The

best Sobolev and Hardy constants are given by

Sk,p(Ω) := inf
Wk,p

0 (Ω)\{0}

‖u‖p
Wk,p(Ω)

‖u‖p
Lp∗ (Ω)

, p∗ =
Np

N − kp
,

and

Hk,p(Ω) := inf
Wk,p

0 (Ω)\{0}

‖u‖p
Wk,p(Ω)

‖ u
|x|k ‖

p
Lp(Ω)

, p > 1.

The constants Sk,p and Hk,p are again independent of Ω, and are not attained if Ω 6= RN

in the Sobolev case, and never attained in the Hardy case. It is a natural question

whether the best embedding constants depend on all these traces or not. It is clear that

the best constants computed in the space with Navier boundary conditions are less or

equal than the constants computed in the space with Dirichlet boundary conditions, but

the question is whether the opposite inequality holds. When k = p = 2 the question was

answered positively, just for the Sobolev constant, by Van der Vorst in [76]. Also for

general k and p the answer is positive, and it was given by Gazzola, Grunau and Sweers
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in [31]. Moreover Gazzola-Grunau-Sweers showed improvements of higher order Sobolev

inequalities in [32].

Let us consider the following second order Hardy-Sobolev inequality∫
Ω
|∆u|2dx ≥ CτHS

(∫
Ω

|u|p

|x|τ
dx

)2/p

,

for all u ∈ W 2,2
0 (Ω), where N ≥ 5, 0 ≤ τ ≤ 4 and 2 ≤ p ≤ σ := 2∗(τ) := 2(N−τ)

N−4 .

A priori, the fourth order critical Hardy-Sobolev constants may depend on the domain

and on the boundary traces we are considering. By a simple scaling argument it is easy

to see that the critical constants for W 2,2(Ω) do not depend on the domain, coherently

with the second order case.

We consider the following questions.

1. Does the critical Hardy-Sobolev constant depend on all traces or not?

That is, if we define

CτHS,ϑ(Ω) := inf
W 2,2

0,ϑ(Ω)\{0}

∫
Ω
|∆u|2dx(∫

Ω

|u|σ

|x|τ
dx

) 2
σ

,

is it true that CτHS,ϑ(Ω) = CτHS for all 0 ≤ τ ≤ 4?

The answer to this question is positive and is given by the following result.

Theorem 1. Let N ≥ 5, and Ω ⊂ RN a bounded domain containing the origin with

boundary ∂Ω ∈ C4, 0 ≤ τ ≤ 4. Then

CτHS,ϑ(Ω) = CτHS(Ω) = CτHS .

The second natural question is:

2. Can the preceding inequality be improved by adding some lower order terms, which

can depend on the Lq-norm or on the weak Lq-norm of the function u?

The answer is, again, positive and it depends on the boundary conditions. In the case

of Navier boundary conditions we have the following result.

Theorem 2. Let us consider N ≥ 5, Ω ⊂ RN a bounded domain containing the origin

with ∂Ω ∈ C4, 0 ≤ τ ≤ 4 and 1 ≤ q < N
N−4 . Then there exists a constant C > 0,

C = C(Ω, q, τ), such that for any u ∈W 2,2
ϑ (Ω) the following inequality holds∫

Ω
|∆u|2dx ≥ CτHS

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

+ C‖u‖2Lq .

For the Dirichlet boundary conditions we have a slightly stronger result.
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Theorem 3. Let N ≥ 5, Ω ⊂ RN a bounded domain containing the origin with ∂Ω ∈ C4,

0 ≤ τ ≤ 4 and 1 ≤ q ≤ N
N−4 . Then there exists a constant C > 0, C = C(Ω, q, τ), such

that for any u ∈W 2,2
0 (Ω) the following inequality holds∫

Ω
|∆u|2dx ≥ CτHS

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

+ C‖u‖2Lqw .

1.1.2 A supercritical semilinear biharmonic problem with Hardy po-

tential

In this chapter we present a result in collaboration with Maŕıa Medina of Universidad

Autónoma de Madrid [46].

In the framework of Hardy-Sobolev inequalities, we consider the following particular

biharmonic problem with Dirichlet boundary conditions and with a Hardy-type potential

(1.1.1)


(−∆)2 u =

up−1

|x|4
in Ω,

u > 0 in Ω,

u =
∂u

∂ν
= 0 on ∂Ω \ {0}.

We assume Ω ⊂ RN a smooth bounded domain with 0 ∈ ∂Ω, N ≥ 5 and p−1 subcritical

with respect to the Sobolev embedding and supercritical with respect to the Hardy

weight, that is,

1 < p− 1 < 2∗ − 1 :=
2N

N − 4
− 1 =

N + 4

N − 4
.

The main result we prove is the following.

Theorem 4. Let Ω star-shaped with respect to the point 0 ∈ ∂Ω. Then the problem

(1.1.1) has no positive (weak) solutions.

This result is a generalization of the result in [22]. The key point in the proof is an a

priori estimate in the spirit of [22, Lemma 2.2] and [38].

In the second order case the preceding problem with N ≥ 3 is well studied. In

the subcritical case, that is 0 < p − 1 < 1, it is simple to prove existence of weak

solutions, independently of the location of the origin. If p = 2, that is in the critical

case, the problem was studied by Ghoussoub-Kang in [34] and by Ghoussoub-Robert

in [36]. Finally J. Dávila and I. Peral studied in [22] the problem in the supercritical

setting, that is 1 < p−1 < N+2
N−2 . Dávila and Peral proved in [22] non existence of positive

weak solutions if the domain Ω is star-shaped. There are also some generalizations of

problem (4.1.1), for example in the case of more general second order operators, that is

in the case of p-Laplacian operator, as in the series of papers [47], [48] and [49].
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1.2 A priori estimates for superlinear problems

In this chapter we present a joint work with Bernhard Ruf of Università degli Studi di

Milano [54]. We consider the following problem

(1.2.1)


−∆Nu = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where Ω is a strictly convex, bounded and smooth domain in RN , N ≥ 2 and ∆Nu :=

div
(
|∇u|N−2∇u

)
is the N -Laplacian operator. On the function f we assume the follow-

ing conditions

(1.2.2) f : R+ → R+ is a locally Lipschitz function;

(1.2.3) ∃ d > 0 : lim inf
s→+∞

f(s)

sN−1+d
> 0;

and

(1.2.4) ∃σ > 0, ∃C, s0 > 0 : f(s) ≤ Ces/logσ(e+s) ∀ s ≥ s0

or

(1.2.5) ∃ 0 < α < 1 ∃C1, C2, s0 > 0 : C1
es

(s+ 1)α
≤ f(s) ≤ C2e

s ∀ s ≥ s0.

The main result is the following a priori estimate.

Theorem 5. Under assumptions (1.2.2)-(1.2.3)-(1.2.4) or (1.2.2)-(1.2.3)-(1.2.5) there

exists a constant C > 0 such that every positive weak solution u ∈W 1,N
0 (Ω) satisfies

‖u‖L∞(Ω) ≤ C.

The first general result for a priori estimates for superlinear elliptic equation is

due to Brezis and Turner [15]. They considered a second order elliptic equation with

nonlinearity f = f(x, u) and they proved a priori bounds for positive weak solutions

under the assumption

0 ≤ f(x, s) ≤ Csp−1 1 < p− 1 < 2∗ − 1 :=
N + 1

N − 1
.

If we restrict to the case of much more regular solutions, that is classical solutions, the

Brezis-Turner exponent is not critical anymore. Indeed Gidas-Spruck proved in [38] that
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the a priori estimates hold for positive classical solutions, under the condition that there

exists a continous function a : Ω→ R such that

lim
s→+∞

f(x, s)

sp−1
= a(x),

uniformly in x ∈ Ω, for 1 < p − 1 < 2∗ − 1. A similar result was obtained by de

Figueiredo, Lions and Nussbaum in [23].

All the preceding results are for N ≥ 3 and are based on the fact that, thanks to

the Sobolev embedding Theorem, we have H1
0 (Ω) ↪→ Lq(Ω) for all 1 < q ≤ 2∗, and the

embedding is compact for all q < 2∗. For N = 2 we have the embedding H1
0 (Ω) ↪→ Lq(Ω)

for all q > 1, but it is easy to prove that H1
0 (Ω) 6↪→ L∞(Ω). Thus, one may ask which is

the maximal growth function g(s) such that∫
Ω
g(u)dx < +∞ ∀u ∈ H1

0 (Ω).

This maximal growth is given by the Trudinger-Moser inequality, which says, for N = 2,

that

sup
‖u‖

H1
0(Ω)
≤1

∫
Ω
eαu

2
dx ≤ C(Ω) ∀α ≤ αN .

So, one can ask whether in dimension N = 2 it is possible to prove a priori estimates for

nonlinearities with growth up to the Trudinger-Moser growth. This is not possible since

Brezis and Merle provided in [13] examples of nonlinearities f(x, s) = h(x)e|s|
α

with

α > 1 for which there are no uniform estimates. Moreover, using the result of Brezis-

Merle and the boundary estimates of de Figueiredo-Lions-Nussbaum for Ω a convex

domain, it is possible to prove a priori estimates for nonlinearities f such that C1e
s ≤

f(x, s) ≤ C2e
s, s ≥ 0. Recently, Lorca-Ubilla-Ruf proved in [44] an a priori result

for the N -Laplacian in dimension N and for nonlinearities of maximal growth e|s|
α

for

α < 1 in the subcritical case or for f ∼ es in the critical case, s ≥ 0. Our result is a

direct improvement of their work, since we are able to prove a priori estimates also for

nonlinearities f of maximal growth es/logσ(e+s) with σ > 0 in the subcritical case or for

nonlinearities f such that C1
es

(s+1)α ≤ f(s) ≤ C2e
s with α < 1 in the critical case, s ≥ 0.
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Hardy-Sobolev inequalities
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Chapter 2

Preliminaries

2.1 First order Hardy-Sobolev inequalities

Sobolev inequalities are well known functional inequalities. They estimate the integra-

bility of a function u in terms of the integrability of its derivatives. They are often used,

in the theory of PDEs, in the process of regularization of a solution. We want to consider

here the first order version of the Sobolev inequalities.

Let N ≥ 2 and Ω be a bounded domain in RN with sufficiently smooth boundary

∂Ω. The Sobolev embedding theorem asserts that if 1 < p < N then

(2.1.1) W 1,p
0 (Ω) ↪→ Lq(Ω) 1 ≤ q ≤ p∗ :=

Np

N − p
,

that is there exists a positive constant SN,p such that for all u ∈ W 1,p
0 (Ω) the following

inequality holds

(2.1.2) ‖u‖Lq(Ω) ≤ SN,p‖∇u‖Lp(Ω) 1 ≤ q ≤ p∗.

Equivalently

sup
u∈W 1,p

0 (Ω)

‖∇u‖p
Lp
≤1

∫
Ω
|u|pdx < +∞.

Moreover, the embedding in (2.1.1) is compact if q < p∗. The exponent p∗ is called

Sobolev critical exponent and the maximal growth |u|p∗ for which (2.1.1) holds in the

case p < N is called critical Sobolev growth. A priori, the constant SN,p in (2.1.2) may

also depend on the domain Ω. In [71] and [7] G. Talenti and T. Aubin computed the

best constant SN,p for the Sobolev embedding in the whole RN in the critical case q = 2∗

and they found that

SN,p(RN ) := π−
1
2N
− 1
p

(
p− 1

N − p

)1− 1
p

 Γ
(
1 + N

2

)
Γ(N)

Γ
(
N
p

)
+ Γ

(
1 +N − N

p

)
 1

N

.

15



16 2 Preliminaries

Moreover, they computed the explicit value of functions, often called Talenti’s functions,

for which the equality sign holds in the Sobolev inequalities. These functions have to be

of the form

u(x) :=
(
a+ b|x|

p
p−1

)1−N
p
.

By the Aubin-Talenti result, it is easy to prove that the best constant in the Sobolev

inequality (2.1.2) in the critical case q = p∗ is independent of the domain Ω and it is

never attained if Ω 6= RN . Indeed, it is sufficient to note that the norms in (2.1.2) are

invariant under the following scaling

u 7→ uε(x) := ε
−N
q u
(x
ε

)
.

Hence, we have SN,p(Ω) = SN,p(RN ) for each bounded domain Ω sufficiently smooth.

Since in the next section we want to consider higher order Sobolev inequalities with

constants depeding also on k1, we drop the dependence on N and we denote the Sobolev

constant with Sp.

In their groundbreaking article [14], H. Brezis and L. Nirenberg showed that the

critical elliptic equations associated to the Sobolev embeddings have solutions if they

are perturbed with suitable lower order terms. They proved the following result.

Let Ω be a smooth domain in RN with N ≥ 3 and let us consider the following semilinear

problem

(2.1.3)


−∆u = u2∗−1 + λu in Ω

u > 0 in Ω \ {0}

u = 0 on ∂Ω.

If N ≥ 4, then for any λ ∈ (0, λ1), with λ1 the first eigenvalue of the Laplacian operator,

there exists a positive weak solution of the preceding problem. If N = 3 then there exists a

λ∗ ∈ [0, λ1) such that for any λ ∈ (λ∗, λ1) there exists a positive weak solution. Moreover

if Ω = B1(0) ⊂ R3 they computed λ∗ = λ1
4 .

Furthermore, due to the Pohozaev identity [56], the corresponding critical elliptic equa-

tion with λ ≤ 0 has no solution if Ω is starshaped. This result had an enormous impact

on the study of critical equations, for understanding lack of compactness, for illuminat-

ing the phenomena of concentrating solutions, and leading eventually to the solution of

the famous Yamabe problem.

A related question is whether critical Sobolev inequality for p = 2

(2.1.4)

∫
Ω
|∇u|2dx ≥ SN

(∫
Ω
|u|2∗dx

)2/2∗

,

1The k denotes the number of derivatives.
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remains valid if some suitable lower order terms (so-called remainder terms) are added.

In [14], among the main result, Brezis and Nirenberg showed that this is indeed the case.

They proved the following.

Let 1 ≤ q < N
N−2 . Then there exists a constant C = C(Ω, q) > 0 such that

∫
Ω
|∇u|2dx ≥ SN

(∫
Ω
|u|2∗dx

)2/2∗

+ C

(∫
Ω
|u|qdx

)2/q

for all u ∈W 1,2
0 (Ω).

The following slightly stronger form was obtained by H. Brezis and E. H. Lieb in [12].

Let ‖u‖p.w denote the weak Lq-norm of u and assume that q = N
N−2 . Then there exists

a constant C such that∫
Ω
|∇u|2dx ≥ SN

(∫
Ω
|u|2∗dx

)2/2∗

+ C ‖u‖2Lqw(Ω) for all u ∈W 1,2
0 (Ω).

In this result the remainder term is given by the weak Lebesgue norm, defined by

‖u‖Lpw(Ω) :=

(
sup
t>0

tpδu(t)

)1/p

,

with δu the distribution function of u

δu(t) :=

∣∣∣∣{x : |u(x)| > t}
∣∣∣∣.

We can also use the following equivalent definition of weak Lebesgue norm, due to

Calderón, see [41, Equation 1.7],

‖u‖Lpw(Ω) := sup
A⊂Ω
|A|<+∞

{
|A|−

1
q

∫
A
|u|dx

}
.

Another fundamental inequality in mathematical analysis is the (generalized) Hardy

inequality, see [28],∫
Ω
|∇u|pdx ≥ Hp

∫
Ω

∣∣∣ u|x| ∣∣∣pdx for all u ∈W 1,p
0 (Ω).

The critical constant Hp is independent of Ω, and is never attained (not even in RN ).

Hardy inequality, sometimes called Uncertainty Principle, can be viewed as a weighted

version of the Poincaré inequality.

So, it is natural to ask if the Hardy inequality may be improved by adding lower

order terms. This is indeed possible, and again the name of Häım Brezis is connected

to the pioneering result; together with L. Vázquez they proved in [16]



18 2 Preliminaries

Suppose that 0 ∈ Ω, and let 1 ≤ q < 2N
N−2 . Then there exists a constant C > 0 such that∫

Ω
|∇u|2dx ≥ H2

∫
Ω

∣∣∣ u|x| ∣∣∣2dx+ C

(∫
Ω
|u|qdx

)2/q

for all u ∈W 1,2
0 (Ω).

In their paper, Brezis and Vázquez asked if it is possible to find an infinite improvement

of the Hardy inequality, in the sense of adding an infinite sequence of remainder terms.

This question was answered positively by Filippas-Tertikas in [27]. They proved

Suppose that 0 ∈ Ω and let D ≥ supx∈Ω |x|, then for any u ∈ H1
0 (Ω) there holds∫

Ω
|∇u|2dx ≥ H2

∫
Ω

∣∣∣ u|x| ∣∣∣2dx+
1

4

∞∑
i=1

(∫
Ω

|u|2

|x|2
k=i∏
k=1

X2
k

(
|x|
D

)
dx

)

where X1(t) = (1− log(t))−1 for t ∈ (0, 1] and Xk(t) = X1(Xk−1(t) for all k ∈ N.

Moreover, in [35] Ghoussoub and Moradifam gave a characterization of the optimal

allowed perturbation term.

In the article [17] Caffarelli-Kohn-Nirenberg derived a family of sharp first order

interpolation inequalities with weights. They proved

Let N ≥ 3 then there exists a positive constant C such that the following inequality holds

for all u ∈ C∞0 (RN )(∫
RN
|x|γr|u|rdx

)1/r

≤ C
(∫

RN
|x|αp|∇u|pdx

)a/p(∫
RN
|x|βq|u|qdx

)(1−a)/q

,

for p, q, r, α, β, γ, a real parameters which satisfy some technical conditions.

A special case are the so-called Hardy-Sobolev inequalities∫
Ω
|∇u|pdx ≥ C(p, r)

(∫
Ω

∣∣∣ u|x|γ ∣∣∣rdx
)p/r

for all u ∈W 1,p
0 (Ω),

where 1
r + γ

N = 1
p , which are intermediate cases between the Sobolev and the Hardy

inequalities. Also in these cases, improvements with lower order terms have recently

been proved, see Rădulescu, Smets, and Willem in [60] and Z.-Q. Wang - Willem in [77].

In particular Rădulescu, Smets, and Willem proved the following result, which is a direct

generalization of the result by Brezis-Lieb in the more general setting of Hardy-Sobolev

inequalities.

For 0 < a < 1 there exists a positive constant C such that for every u ∈ H1
0 (Ω) the

following inequalitiy holds∫
Ω
|∇u|2dx ≥ Sa

(∫
Ω

|u|p

|x|ap
dx

)2/p

+ C‖u‖2Lqw(Ω), q =
N

N − 2
.
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2.2 Higher order Hardy-Sobolev inequalities

For a bounded domain Ω ⊂ RN let

W k,p
0 (Ω) = cl

{
u ∈ C∞0 (Ω) : ‖u‖Wk,p(Ω) <∞

}
,

where

‖u‖Wk,p(Ω) =

∑
|j|≤k

‖Dju‖pLp(Ω)

1/p

,

denotes the standard Sobolev norm. Moreover, it is well known that

‖u‖Wk,p(Ω) :=

‖∆hu‖Lp(Ω) for k = 2h

‖∇(∆hu)‖Lp(Ω) for k = 2h+ 1,

denote equivalent norms on W k,p
0 (Ω). We denote by ∆h the polyharmonic operator of

order h, given by

(∆)h u := ∆
(

∆h−1u
)
.

In particular, we are interested in the biharmonic operator (−∆)2 = ∆2.

Alternatively, if the boundary ∂Ω is sufficiently smooth, it is possible to define the

traces of a function u ∈ W k,p(Ω) as the continuous extensions to the space W k,p(Ω) of

the following linear operators defined on Ck(Ω)

Tju :=
∂ju

∂νj

∣∣∣∣
∂Ω

,

where ν denotes the unit outer normal to ∂Ω. In this case, we can define equivalently

W k,p
0 (Ω) :=

k−1⋂
j=0

ker(Tj).

Note that for functions u ∈ W k,p
0 (Ω) all traces ‖Dj(u)‖Lp(∂Ω) up to order k − 1 are

vanishing. These are the so-called homogeneous Dirichlet boundary conditions.

It is also possible to define other closed subspaces of W k,p(Ω) with different types

of boundary conditions. A natural choice is the space of functions with homogeneous

Navier boundary conditions which is given by

W k,p
ϑ (Ω) :=

{
u ∈W k,p(Ω) : ∆ju |∂Ω = 0 in the sense of traces ∀ 0 ≤ j < k

2

}
.

Moreover, if k = p = 2 it is well known that H2
ϑ(Ω) = H2(Ω) ∩ H1

0 (Ω). In this work,

we consider only Dirichlet and Navier boundary conditions. For more general boundary
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conditions and also for a more precise introduction to polyharmonic elliptic problems we

refer to the book of Gazzola-Grunau-Sweers [32].

For k = 1 the Sobolev inequality has an underlying geometric meaning which is

situated in the deep relation between isoperimetric inequalities and best constants for

Sobolev embeddings. This is more clear if we consider the case p = 1, but is also true for

1 < p < N . For higher order Sobolev spaces, that is W k,p(Ω) for k > 1, this geometric

connection between Sobolev inequalities and isoperimetric inequalities is less clear but

the Sobolev embedding theorem still holds. The generic formulation of the Sobolev

embeddings theorem says that if N ≥ 2, Ω a bounded domain in RN with sufficiently

smooth boundary ∂Ω and 1 < p < N then

W k,p
0 (Ω) ↪→ Lq(Ω) 1 ≤ q ≤ p∗ :=

Np

N − kp
,

and the embedding is compact for q < p∗. In terms of inequalities this means that there

exists a constant Sk,p such that for all u ∈W k,p
0 (Ω) the following inequality holds

‖u‖Lq(Ω) ≤ Sk,p‖Dku‖Lp(Ω) 1 ≤ q ≤ p∗.

The same natural extension to higher order Sobolev spaces can be done for the

Hardy inequality. The best Sobolev and Hardy constants are then given by

Sk,p(Ω) := inf
Wk,p

0 (Ω)\{0}

‖u‖p
Wk,p(Ω)

‖u‖p
Lp∗ (Ω)

,

and

Hk,p(Ω) := inf
Wk,p

0 (Ω)\{0}

‖u‖p
Wk,p(Ω)

‖ u
|x|k ‖

p
Lp(Ω)

.

The constants Sk,p and Hk,p are again independent of Ω, and are not attained if Ω 6= RN

in the Sobolev case, and never attained in the Hardy case. This is, as in the first

order case, a consequence of the invariance under scaling of the norms considered in the

inequalities.

It is a natural question whether the best embedding constants depend on all these

traces or not. In other words, if we consider the Sobolev space with Navier conditions

W k,p
ϑ (Ω) and we define the Sobolev and Hardy constants in the same way as before, that

is

Sk,p,ϑ(Ω) := inf
Wk,p
ϑ (Ω)\{0}

‖u‖p
Wk,p(Ω)

‖u‖p
Lp∗ (Ω)

,

and

Hk,p,ϑ(Ω) := inf
Wk,p
ϑ (Ω)\{0}

‖u‖p
Wk,p(Ω)

‖ u
|x|k ‖

p
Lp(Ω)

.
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then it is clear that

Sk,p,ϑ(Ω) ≤ Sk,p, Hk,p,ϑ ≤ Hk,p ,

but the question is whether the opposite inequality holds. When k = p = 2 the question

was answered positively, just for the Sobolev constant, by Van der Vorst in [76]. Also

for general k and p the answer is positive, and was given by Gazzola-Grunau-Sweers in

[31]. The result says that for any dimension N ∈ N and 1 < p < N
k , then for a bounded

domain Ω with sufficiently smooth boundary we have

Sk,p,ϑ(Ω) = Sk,p, Hk,p,ϑ(Ω) = Hk,p.

Concerning improvements of higher order Sobolev inequalities with lower remainder

terms, we mention recent results by Gazzola-Grunau-Sweers who proved such improve-

ments for the polyharmonic Sobolev inequality, [32, Theorem 7.58, Corollary 7.59 and

Theorem 7.60], both for Dirichlet and Navier boundary conditions. They proved the fol-

lowing two results, which generalize both the result of Brezis-Lieb and Brezis-Nirenberg

to the case of higher order Sobolev inequalities with both Dirichlet and Navier conditions.

Let k ∈ N+ and let Ω a bounded domain in RN , N > 2k. Then there exists a constant

C = C(Ω, N, k) such that

‖u‖2
Hk

0 (Ω)
≥ Sk,2‖u‖2L2∗ (Ω)

+ C‖u‖2Lqw(Ω), q =
N

N − 2k
.

Let k ∈ N+ and let Ω a bounded Cm-smooth domain in RN , N > 2k. Then for all

p ∈ [1, q), there exists a constant C = C(Ω, N, k) such that

‖u‖2
Hk
ϑ(Ω)
≥ Sk,2‖u‖2L2∗ (Ω)

+ C‖u‖2Lp(Ω), q =
N

N − 2k
.

There are also analogous improvements of the Hardy inequality for the biharmonic op-

erator, see Tertikas-Zographopoulos [73], Gazzola-Grunau-Mitidieri [30] and Yao-Shen-

Chen [79].

A generalization of the result by Caffarelli-Kohn-Nirenberg done by C. S. Lin [43]

is the following.

Let N ≥ 3 then there exists a positive constant C such that the following inequality holds

for all u ∈ C∞0 (RN )(∫
RN
|x|γr|Dju|rdx

)1/r

≤ C
(∫

RN
|x|αp|Dmu|pdx

)a/p(∫
RN
|x|βq|u|qdx

)(1−a)/q

,
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for p, q, r, α, β, γ, a real parameters and j,m integers such that they satisfied some tech-

nical conditions.

As a Corollary of the result by Lin we can derive, in particular, the following second

order Hardy-Sobolev inequalities

(2.2.1)

∫
Ω
|∆u|2dx ≥ C

(∫
Ω

|u|p

|x|τ
dx

)2/p

, u ∈W 2,2
0 (Ω),

where N ≥ 5, 0 ≤ τ ≤ 4 and

2 ≤ p ≤ σ := 2∗(τ) :=
2(N − τ)

N − 4
.

Inequality (2.2.1) is an interpolation inequality between the Sobolev and the Hardy

inequality, and appeared in this form in Yao-Shen-Chen [79] and Yao-Wang-Shen [80].

We can define the critical Hardy-Sobolev constant as the largest constant such that

(2.2.1) holds for any u ∈W 2,2
0 (Ω) in the critical case p = σ = 2∗(τ) or, equivalently, as

CτHS(Ω) := inf
W 2,2

0 (Ω)\{0}

∫
Ω
|∆u|2dx(∫

Ω

|u|σ

|x|τ
dx

)2/σ
,

The critical Hardy-Sobolev constant does not depend on the domain Ω (see below) and

so if we define

CτHS := inf
D2,2(RN )\{0}

∫
RN
|∆u|2dx(∫

RN

|u|σ

|x|τ
dx

)2/σ
,

with

D2,2(RN ) := cl

{
u ∈ C∞0 (RN ) :

∫
RN
|∆u|2 <∞

}
,

we have CτHS(Ω) = CτHS .

We consider then the following two natural questions.

1. Does the critical Hardy-Sobolev constant depend on all traces or not, that is, if we

define

CτHS,ϑ(Ω) := inf
W 2,2

0,ϑ(Ω)\{0}

∫
Ω
|∆u|2dx(∫

Ω

|u|σ

|x|τ
dx

)2/σ
,

is it true that

CτHS,ϑ(Ω) = CτHS , for all 0 ≤ τ ≤ 4?

2. Can inequality (2.2.1) be improved by adding some lower order terms, which can

depend on the Lq-norm or on the weak Lq-norm of the function u?
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2.3 A conjecture by Pucci and Serrin

The problem of adding remainder terms to functional inequalities like Hardy-Sobolev

inequalities is not only interesting by itself but it is also related to a conjecture of P. Pucci

and J. Serrin. Let us denote with λ1,k the first eigenvalue of (−∆)k under homogeneous

Dirichlet boundary conditions. As we said before, H. Brezis and L. Nirenberg proved

that in the case k = 1 if Ω is a ball then there exists a positive radial solution of (2.1.3)

for every λ ∈ (0, λ1,1) if N ≥ 4 and for every λ ∈
(
λ1,1

4 , λ1,1

)
if N = 3. Moreover, in

this second case, they proved that problem (2.1.3) has no nontrivial radial solution if

λ ≤ λ1,1

4 . We can consider the polyharmonic version of problem (2.1.3) as the following.

(2.3.1)


(−∆)k u = |u|2∗−2u+ λu in Ω

u 6≡ 0 in Ω

Dαu = 0 on ∂Ω, ∀ |α| ≤ k − 1.

P. Pucci and J. Serrin in [58] raised the question in which way this critical behavior

of certain dimensions depends on the order 2k of the semilinear problems (2.3.1). Let

Ω ⊂ RN be a ball. The dimension N is called critical with respect to problem (2.3.1) if

there exists a positive λ∗ such that if there exists a nontrivial radial solution of problem

(2.3.1) then λ > λ∗, or equivalently if λ ≤ λ∗ then there are no nontrivial radial solutions

of problem (2.3.1). Brezis and Nirenberg proved in [14] that N = 3 is critical for second

order problems, so for k = 1. Pucci and Serrin proved that for all k ∈ N the dimension

N = 2k + 1 is critical and moreover if we consider k = 2 then also dimensions N = 6, 7

are critical. So, they conjectured:

the critical dimensions for problem (2.3.1) are exactly N = 2k + 1, ..., 4k − 1.

Hence, the conjecture is proved completely for k = 1, 2 by the work of Brezis-Nirenberg

and Pucci-Serrin. For a generic k > 2, only the fact that N = 2k+ 1 is critical is known.

By the well known result by Gidas-Ni-Nirenberg [37], for k = 1 and λ ≥ 0 if the do-

main Ω is radial it is equivalent to consider positive solutions or positive radial solutions

of problem (2.3.1). A generalization of the result by Gidas-Ni-Nirenberg to polyhar-

monic operators is given by [32, Theorem 7.1] and hence also for a generic k it is true

that it is equivalent to consider positive solutions or positive radial solutions of problem

(2.3.1). Hence, Gazzola-Grunau-Sweers proposed a weakened version of the Pucci-Serrin

conjecture. The dimension N is called weakly critical with respect to problem (2.3.1) if

there exists a positive λ∗ such that if there exists a positive solution of problem (2.3.1)

then λ > λ∗.

In this weakened formulation, the conjecture is proved by Gazzola-Grunau-Sweers

and it is strictly related with the existence of remainder terms in the Sobolev inequalities.
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For more details about the Pucci-Serrin conjecture and its weakened version by Gazzola-

Grunau and Sweers we refer to [32] and [58].

Since symmetry results, like Gidas-Ni-Nirenberg, hold also for semilinear problems

with Hardy-Sobolev type potentials, which is opposite to what happens for Hénon type

potentials in which symmetry breaking phenoma may occur, the question to add remain-

der terms to Hardy-Sobolev inequalities in any order k is possibly related to a weakened

version of the preceding conjectures for more generic polyharmonic problems.



Chapter 3

Hardy-Sobolev inequalities for

the biharmonic operator with

remainder terms

The results written in this chapter are collected in the paper [53]. The techniques we use

to prove the following results are a combination of old techniques, coming from the pa-

per of Brezis-Nirenberg [14] and Brezis-Lieb [12] and some adaptations to polyharmonic

problems, see for example [32]. In particular it is important to remark that the situation

with Navier boundary conditions is easier than the case with Dirichlet boundary con-

ditions. Indeed, polyharmonic problems with homogeneous Navier boundary conditions

can be treated as systems of coupled harmonic problems, leading to a substantially easier

argument. In the Dirichlet conditions case, on the opposite, the problem is inherently

a fourth order problem and some of the well known techniques of second order elliptic

problems, like maximum principles and symmetrization, are not true.

3.1 A Talenti comparison principle

We recall here a few basic concepts about symmetrization and rearrangements. A more

detailed treament of this argument can be found in the book of S. Kesavan [40].

Given a bounded measurable set Ω ⊂ RN and a measurable function u : Ω→ R, we

define the distribution function of u as

δu(t) := |{x ∈ Ω : u(x) > t}| .

The (unidimensional) decreasing rearrangement of u is hence defined as the function

25
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u] : [0, |Ω|]→ R such that

u](t) :=

{
esssupΩ (u) for t = 0

inf{s : δu(s) < t} for t > 0.

Given a set Ω with finite measure, we denote with Ω∗ the open ball centered at the

origin and having the same measure of Ω, i.e |Ω∗| = |Ω|. Moreover, we denote with ωN

the measure of the unit ball in RN . Finally, the Schwarz symmetrization or spherically

symmetric and decreasing rearrangement of u is the function u∗ : Ω∗ → R such that

u∗(x) := u]
(
ωN |x|N

)
∀x ∈ Ω∗.

Among all the well known properties of rearrangements, we recall here two of the most

important. Given a non-negative Borel measurable function F : R→ R, then∫
Ω∗
F (u∗(x))dx =

∫
Ω
F (u(x))dx.

In particular this implies that

‖u∗‖Lp(Ω∗) = ‖u‖Lp(Ω) ∀ 1 ≤ p < +∞.

The second one is the famous inequality by G. Pólya and G. Szegő, see [57].

Let 1 ≤ p < +∞ and let Ω ⊂ RN be a bounded domain and u ∈ W 1,p
0 (Ω) such that

u ≥ 0. Then ∫
Ω∗
|∇u∗(x)|pdx ≤

∫
Ω
|∇u(x)|pdx.

A crucial tool in the proof of our results about Hardy-Sobolev inequalities is the

following result due to G. Talenti [72, Theorem 1]. Altough the result presented here

is not original, we include the higher order version given in [31, Proposition 3] with a

detailed proof, in order to make the dissertation more self-contained.

Proposition 3.1.1. Let N ≥ 2, Ω ⊂ RN be a bounded domain with ∂Ω ∈ Ck such that

|Ω| = ωN . Let r ≥ 2N
N+2 and k = 2h. Let f ∈ Lr(Ω) and u ∈ W k,r

ϑ (Ω) be the unique

strong solution to

(3.1.1)

(−∆)h u = f in Ω,

∆ju = 0 on ∂Ω, ∀ j = 0, ..., h− 1.

Let f∗ ∈ Lr(Ω∗), u∗ ∈W 1,r
0 (Ω∗) and let v ∈W k,r

ϑ (Ω∗) be the unique strong solution to

(3.1.2)

(−∆)h v = f∗ in Ω∗,

∆jv = 0 on ∂Ω∗, ∀ j = 0, ..., h− 1.

Then v ≥ u∗ a.e. in Ω∗.
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Proof. We proceed by finite induction. For h = 1 the result is exactly [72, Theorem

1]. Hence we consider h ≥ 2. As we said before, with Navier boundary conditions is

often convenient to rewrite a polyharmonic problem as a system of coupled harmonic

problems. Hence, we may rewrite problems (3.1.1) and (3.1.2) as

(3.1.3)

−∆u1 = f in Ω

u1 = 0 on ∂Ω,

−∆ui = ui−1 in Ω

ui = 0 on ∂Ω,
i = 2, ..., h,

(3.1.4)

−∆v1 = f∗ in Ω∗

v1 = 0 on ∂Ω∗,

−∆vi = vi−1 in Ω∗

vi = 0 on ∂Ω∗,
i = 2, ..., h.

Clearly uh = u and vh = v. Applying the result for i = 1, we know that v1 ≥ u∗1 in Ω∗.

Assume that vi ≥ u∗i for i = h− 1. Then, by (3.1.3) and (3.1.4), we have that

(3.1.5)

−∆ui+1 = ui in Ω

ui+1 = 0 on ∂Ω,

−∆vi+1 = vi in Ω∗

vi+1 = 0 on ∂Ω∗.

By combining equation (3.1.5) with the maximum principle for the Laplacian and a

further application of the Talenti result we have that v ≥ u∗ a.e. in Ω∗.

As pointed out in [31, Remark 4], to apply the Talenti original result we need only

that the boundary of Ω is C1,1 and not Ck. In this case, the solution of the problem with

right hand side f ∈ Lr(Ω) is in W 2,r
ϑ (Ω). Nevertheless, if we do not have more regularity

on ∂Ω, the solution of (3.1.1) is not in W k,r
ϑ (Ω).

3.2 The dual cone decomposition of Moreau

We discuss here an abstract result by J. J. Moreau in [50] about the decomposition of a

generic Hilbert space into dual cones. Altough this result is well known, we report here

the full detailed proof in order to make the work more self-contained. We recall that a

cone in a real Hilbert space is defined as a subset X ⊂ H such that if u ∈ X and a ≥ 0

is a scalar then au ∈ X . Given a cone X in a real Hilbert space H we define its dual

cone as

X ∗ := {w ∈ H : (w, v)H ≤ 0 v ∈ X} .

Then we have the following decomposition of an Hilbert space into dual cones, due to

Moreau. See [50] and also [32] for more considerations about the dual cone decomposition

and its applications.
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Proposition 3.2.1. Let H a Hilbert space. Let X ⊂ H be a closed convex nonempty

cone and let X ∗ be its dual cone. Then for any u ∈ H there exists a unique pair

(u1, u2) ∈ X × X ∗ such that

u = u1 + u2, (u1, u2)H = 0.

Moreover if we decompose u, v ∈ H in u = u1 + u2 and v = v1 + v2 then we have

‖u− v‖2H ≥ ‖u1 − v1‖2H + ‖u2 − v2‖2H .

In particular, the projection onto X is Lipschitz-continuous with constant 1.

Proof. Let u ∈ H fixed. Let u1 the projection of u onto X defined as

‖u− u1‖H := min
v∈X
‖u− v‖H ,

and let u2 := u− u1. Then for all t ≥ 0 and v ∈ X we have, by the definition of a cone

and of u1, that

‖u− u1‖2H ≤ ‖u− (u1 + tv)‖2H = ‖u− u1‖2H − 2t(u− u1, v)H + t2‖v‖2H ,

so that

2t(u2, v)H ≤ t2‖v‖2H .

Then, dividing the preceding expression by t and letting t↘ 0, we obtain that

(u2, v)H ≤ 0 ∀ v ∈ X ,

and hence u2 ∈ X ∗. Choosing v = u1 allows us to take t ∈ (−1, 0] and then, dividing by

t < 0 and letting t↗ 0, we have that

(u2, u1)H ≥ 0.

Hence, we have that

(u2, u1) = 0,

and this proves the existence.

Now we prove the Lipschitz continuity of the projection. We take u, v ∈ H and we

consider u = u1 + u2 and v = v1 + v2. Then by the inequalities

(u1, v2)H ≤ 0, (v1, u2)H ≤ 0,

and by the orhtogonality, we obtain

‖u− v‖2H = (u1 + u2 − v1 − v2, u1 + u2 − v1 − v2)H

= ((u1 − v1) + (u2 − v2), (u1 − v1) + (u2 − v2))H

= ‖u1 − v1‖2H + ‖u2 − v2‖2H + 2(u1 − v1, u2 − v2)H

= ‖u1 − v1‖2H + ‖u2 − v2‖2H − 2(u1, v2)H − 2(v1, u2)H

≥ ‖u1 − v1‖2H + ‖u2 − v2‖2H ,
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and then we have the Lipschitz continuity. By the Lipschitz continuity, taking u = v,

we obtain the uniqueness of the decomposition.

The dual cone decomposition by Moreau is a generalization of the standard decom-

position of a function u in its positive and negative part, u+ and u− respectively. To see

this fact it is sufficient to consider as X the positive cone in H, that is

X :=

{
u ∈ H : u ≥ 0 a.e

}
,

for H =
{
L2(Ω), H1

0 (Ω), ...,Hk
0 (Ω)

}
. If H = L2(Ω) then X ∗ = −X and then the dual

cone decomposition is the standard decomposition

u = u+ − u−.

If H = H1
0 (Ω) then v ∈ X ∗ if and only if∫

Ω
∇u · ∇vdx ≤ 0 ∀u ∈ X .

Therefore

X ∗ =

{
v ∈ H1

0 (Ω) : v is weakly subharmonic

}
( −X .

Then, altough ∫
Ω
∇u+ · ∇u−dx ≤ 0,

the decomposition obtained in H1
0 (Ω) is different from the decomposition in positive

and negative part. In higher order Sobolev spaces the decomposition in u+ and u− is

no longer admissible since if u ∈ Hk(Ω) then a priori u+, u− /∈ Hk(Ω). In general, if

H = Hk
0 (Ω) then

X ∗ =

{
v ∈ Hk

0 (Ω) : (−∆)kv ≤ 0 weakly

}
.

3.3 The Boggio formula

Here we present the well known result by T. Boggio in [10]. We do not report the proof

of this result because it is extremely technical. We refer to the book [32] for a complete

analysis of the Boggio formula and its consequences.

Let us consider a generic polyharmonic boundary problem with homogeneous Dirich-

let boundary conditions

(3.3.1)

(−∆)ku = f in Ω

Dαu = 0 on ∂Ω ∀ |α| ≤ k − 1,
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where Ω ⊂ RN is a bounded smooth domain and the datum f is in a suitable functional

space. In order to give an explicit solution of the problem (3.3.1) we have to compute

the fundamental solution of (−∆)k in RN . We define

Φk,N (x) :=

Ak,N |x|2k−N if N > 2k or N is odd

Bk,N |x|2k−N (− log |x|) if N ≤ 2k is even,

with Ak,N and Bk,N two constants, so that, in distributional sense,

(−∆)kΦk,N = δ0.

Thanks to the fundamental solution one may define the Green function Gk,N (x, y) for a

domain Ω. Formally, the unique solution of problem (3.3.1) is given by

u(x) =

∫
Ω
Gk,N (x, y)f(y)dy.

If the datum f is in a suitable functional space then the preceding equation is well defined

and it gives the explicit formula of the unique solution. As in the second order case,

the explicit representation of the Green function is not easily determined. T. Boggio

computed the Green function for the unitary ball in RN .

Proposition 3.3.1. The Green function for the Dirichlet problem (3.3.1), with Ω the

unitary ball, is positive and given by

Gk,N (x, y) := Ck,N |x− y|2k−N
∫ ∣∣∣|x|y− x

|x|

∣∣∣/|x−y|
1

(v2 − 1)k−1v1−Ndv.

The positive constants Ck,N are defined by

CK,N :=
Γ
(
1 + N

2

)
Nπ

N
2 4k−1((k − 1)!)2

.

The Boggio formula is important for two facts. The first one is that it gives us the

explicit formula of the Green function in the unitary ball. We use this fact to show

the improved Hardy-Sobolev inequalities with Dirichlet boundary conditions. Moreover,

the Boggio formula says also that the Green function in the ball is positive. This is

crucial when we want to consider maximum principles. As we said before, polyharmonic

boundary problems with Navier conditions can be solved as systems of coupled harmonic

problems. This is important because for harmonic problems maximum principles are

well known and hence they also hold for polyharmonic problems with Navier boundary

conditions. In the Dirichlet boundary conditions case, this is not true anymore.
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We say that problem (3.3.1) has the positivity preserving property when for all u

and f satistying (3.3.1) we have that

f ≥ 0 =⇒ u ≥ 0.

In the second order case for regular domain this is given by the maximum principle.

In general, verifying the positivity preserving of a domain is an hard problem. Never-

theless, in case that the Green function exists, the positivity preserving property of the

domain Ω holds true if and only if the Green function for the domain Ω is non-negative.

Then, the Boggio formula says that the positivity preserving property holds also in the

polyharmonic case with Dirichlet boundary conditions for the balls in RN .

3.4 Independence of the critical optimal Hardy-Sobolev

constants on the domain and on the traces

We recall that we are interested in the following second order Hardy-Sobolev inequality

(3.4.1)

∫
Ω
|∆u|2dx ≥ C

(∫
Ω

|u|p

|x|τ
dx

)2/p

, u ∈W 2,2
0 (Ω),

where N ≥ 5, 0 ≤ τ ≤ 4 and

(3.4.2) 2 ≤ p ≤ σ := 2∗(τ) :=
2(N − τ)

N − 4
.

We remember also the definition of the critical Hardy-Sobolev constant with Dirichlet

boundary conditions, that is the largest constant such that inequality (3.4.1) holds

(3.4.3) CτHS(Ω) := inf
W 2,2

0 (Ω)\{0}

∫
Ω
|∆u|2dx(∫

Ω

|u|σ

|x|τ
dx

)2/σ
,

and also the definition of the Hardy-Sobolev constant with Navier boundary conditions

(3.4.4) CτHS,ϑ(Ω) := inf
W 2,2

0,ϑ(Ω)\{0}

∫
Ω
|∆u|2dx(∫

Ω

|u|σ

|x|τ
dx

)2/σ
,

and finally the definition of the Hardy-Sobolev constant on RN

(3.4.5) CτHS := inf
D2,2(RN )\{0}

∫
RN
|∆u|2dx(∫

RN

|u|σ

|x|τ
dx

)2/σ
,
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with

D2,2(RN ) := cl

{
u ∈ C∞0 (RN ) :

∫
RN
|∆u|2 <∞

}
.

A priori, the second order critical Hardy-Sobolev constants may depend on the domain

and on the boundary traces we are considering; but this is not the case, as mentioned

in Chapter 2. We prove first that the critical constants for W 2,2(Ω) do not depend on

the domain.

Proposition 3.4.1. Let N ≥ 5, and Ω ⊂ RN a bounded domain containing the origin

with boundary ∂Ω ∈ C4, 0 ≤ τ ≤ 4. Then

CτHS(Ω) = CτHS .

Proof. By the Dirichlet boundary conditions we can extend any function u ∈ W 2,2
0 (Ω)

by zero outside Ω obtaining a function in D2,2(RN ). So we have that CτHS(Ω) ≥ CτHS .

Conversely, if {uj} is a minimizing sequence for the critical Hardy-Sobolev constant in

D2,2(RN ), that is

CτHS(RN ) = lim inf
j→+∞

∫
RN
|∆uj |2dx(∫

RN

|uj |σ

|x|τ
dx

)2/σ

we can suppose by density that {uj} is in C∞0 (RN ). Now let us consider the scaling

(3.4.6) u 7→ uε(x) := ε−
4−τ
σ−2u

(x
ε

)
.

Scaling the sequence {uj} for sufficiently small εj we find that the sequence of rescaled

function {vj} :=
{
uεj
}

is in C∞0 (Ω). But the quotient

Q(u) :=

∫
|∆u|2dx(∫
|u|σ

|x|τ
dx

)2/σ

is invariant under the scaling (3.4.6). Indeed∫
Ω
|∆uε(x)|2dx =

∫
Ω

∣∣∣∆(ε− 4−τ
σ−2u

(x
ε

))∣∣∣2 dx
= ε−2 4−τ

σ−2

∫
Ω
εN−4|∆u(y)|2dy

= ε−2 4−τ
σ−2

+N−4
∫

Ω
|∆u|2dx,
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and (∫
|u|σ

|x|τ
dx

)2/σ

= ε−2 4−τ
σ−2

(∫
Ω

|u(y)|σ

|εy|τ
εNdy

)2/σ

= ε−2 4−τ
σ−2

+ 2
σ

(N−τ)

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

.

Hence

Q(uε) = εN−4− 2
σ

(N−τ)Q(u)

= Q(u),

since

σ =
2(N − τ)

N − 4
.

Then we have that

CτHS(Ω) ≤ lim inf
j→∞

Q(vj) = CτHS .

Hence, we can drop the dependence on the domain in the critical Hardy-Sobolev con-

stants, writing CτHS .

The second question we want to answer is about the dependence on the traces. We

prove that the critical Hardy-Sobolev constant do not depend on all the traces in the

space W 2,2(Ω), in particular we prove that the constant with Navier conditions coincides

with the constant with Dirichlet boundary conditions. This is a generalization of [31,

Theorem 1 and Theorem 2] concerning the best Sobolev and Hardy constants. Indeed,

the Sobolev case corresponds to τ = 0 and the Hardy case to τ = 4 in the following

Theorem.

Theorem 3.4.1. Let N ≥ 5, and Ω ⊂ RN a bounded domain containing the origin with

boundary ∂Ω ∈ C4, 0 ≤ τ ≤ 4. Then

(3.4.7) CτHS,ϑ(Ω) = CτHS(Ω) = CτHS .

To prove Theorem 3.4.1 we need the following result, which is a Corollary of the

Talenti comparison principle, Proposition 3.1.1.

Proposition 3.4.2. Let N ≥ 5, Ω ⊂ RN be a bounded domain containing the origin

with ∂Ω ∈ C4 and |Ω| = ωN , 0 ≤ τ ≤ 4 and let u ∈W 2,2
ϑ (Ω). Then there exists a positive

radial function v ∈W 2,2
ϑ (Ω∗) such that

(i) r 7→ −∆v(r) is positive and radially decreasing;
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(ii) the following inequality holds∫
Ω
|∆u|2dx(∫

Ω

|u|σ

|x|τ
dx

)2/σ
≥

∫
Ω∗
|∆v|2dx(∫

Ω∗

|v|σ

|x|τ
dx

)2/σ
.

Proof. We are in the even case of [31, Lemmata 5-6]. Moreover we are considering a

weighted Lebesgue space with weight |x|−τ . Let us consider the function v ∈ W 2,2
ϑ (Ω∗)

defined as the unique strong solution of−∆v = (−∆u)∗ in Ω∗,

v = 0 on ∂Ω∗.

Then, by definition of v we have that −∆v is positive, radially symmetric and radially

decreasing in Ω∗. Then, using Proposition 3.1.1, we can conclude that v ≥ u∗ a.e. in

Ω∗. Using the fact that Schwarz symmetrization non decreases Lp-norms with singular

weight [6, Theorem 2.2], we can conclude that

(∫
Ω∗

|v|σ

|x|τ
dx

)2/σ

≥
(∫

Ω∗

|u∗|σ

|x|τ
dx

)2/σ

≥
(∫

Ω

|u|σ

|x|τ
dx

)2/σ

.

Finally, it is clear that∫
Ω∗
|∆v|2dx =

∫
Ω∗
|(∆u)∗|2dx =

∫
Ω
|∆u|2dx.

Hence the quotient

Q(u) :=

∫
|∆u|2dx(∫
|u|σ

|x|τ
dx

)2/σ
,

is non increasing if we replace u with v.

We are now able to prove Theorem 3.4.1.

Proof of Theorem 3.4.1.

Let us consider a minimizing sequence for CτHS,ϑ(Ω) in W 2,2
ϑ (Ω). Since Ω is bounded

and sufficiently regular, then smooth functions are dense in W 2,2
ϑ (Ω). We remark that

2 >
2N

N + 2
=: r̃,



3.4. Independence of the Hardy-Sobolev constants 35

which is the exponent we have in Proposition 3.1.1. So we can reduce, without loss of

generality, to minimizing sequences in W 2,2
ϑ (Ω) ∩W 2,r̃

ϑ (Ω). If we define

R2,2
ϑ (B1) :=

{
convex positive cone of W 2,2

ϑ (B1) containing positive radially

symmetric functions v s.t. r 7→ −∆v(r) is radially decreasing

}
,

then we know, by Proposition 3.4.2, that

CτHS,R := inf
R2,2
ϑ (B1)\{0}

∫
B1

|∆u|2dx(∫
B1

|u|σ

|x|τ
dx

)2/σ
≤ CτHS,ϑ(Ω) ≤ CτHS .

So, the proof is complete if we can prove that

(3.4.8) CτHS,R ≥ CτHS .

Suppose by contradiction that

CτHS,R < CτHS .

Then, we can assume that there exists a function u ∈ R2,2
ϑ (B1) such that

(3.4.9)

∫
B1

|∆u|2dx(∫
B1

|u|σ

|x|τ
dx

)2/σ
< CτHS .

But the function u : B1(0) → R is radial, so we can denote it with u(r) : [0, 1] → R.

Without loss of generality we can assume that u′(1) 6= 0, since u′(1) = 0 would imply

u ∈W 2,2
0 (B1) but this is in contradiction with (3.4.9) and (3.4.3). So we can suppose that

u′(1) < 0, by the decreasing property. Now we apply the extension argument of Gazzola-

Grunau-Sweers, [31, Section 3]. Starting from the function u we construct another radial

function w with the same laplacian but with a larger Lebesgue norm weighted with |x|−τ :

we add a constant in the ball B1(0) and a multiple of the fundamental solution outside

of the ball, namely we define

w(r) :=


u(r) +

1

N − 2
|u′(1)| ∀ r ∈ (0, 1],

r2−N

N − 2
|u′(1)| ∀ r ∈ [1,+∞),

We remark that w, as a function from RN → R, is in D2,2(RN ) and is in C1,1((0,+∞)),

as a real function. Moreover, by construction, we have

‖∆w‖L2(B1) = ‖∆u‖L2(B1).
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Outside of the ball w is a multiple of the fundamental solution and then the laplacian

vanishes. Moreover, by adding a positive quantity, results that(∫
B1

|w|σ

|x|τ
dx

)2/σ

>

(∫
B1

|u|σ

|x|τ
dx

)2/σ

,

and then we have, by (3.4.9) and by the preceding estimates, that

CτHS <

∫
B1

|∆u|2dx(∫
B1

|u|σ

|x|τ
dx

)2/σ
< CτHS ,

which is a contradiction.

The fact that the critical Hardy-Sobolev constant does not depend on all the traces

in the critical case is in contrast with the subcritical embeddings where the best constant

does depend on the traces. as proved for the Sobolev case by A. Ferrero, F. Gazzola

and T. Weth in [26]. Moreover, as we said in Chapter 2, in the case p = 1 the Sobolev

embeddings behave in a different way and Theorem 3.4.1 is false, as proved by D. Cassani,

B. Ruf and C. Tarsi in [19].

As a final comment, we want to remark that the proof of Theorem 3.4.1 follows the

lines of [30, Theorem 1] and it is a generalization of [30, Theorem 1 and Theorem 2] . The

main difference is that we have to recall that symmetrization increases also Lp-norms

with singular radial weight in the origin and not only Lp-norms with no weights.

3.5 Improved Hardy-Sobolev inequalities with Navier

boundary conditions

The result we prove is an Lq-norm improvement of the critical Hardy-Sobolev inequality

(2.2.1) with Navier boundary conditions for a smooth bounded domain Ω. In the Navier

conditions case we can use the generalization of the Talenti comparison principle and

then we can use an argument by symmetrization. So we can reduce to the case of u and

−∆u positive and radially symmetric decreasing. Moreover, the biharmonic problem

(3.5.1)

(−∆)2u = f(u, x) in Ω,

u = ∆u = 0 on ∂Ω,

is equivalent, with the substitution w := −∆u, to the system of harmonic problems−∆w = f(u, x) in Ω,

w = 0 on ∂Ω,

−∆u = w in Ω,

u = 0 on ∂Ω.
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So, we can use standard methods for harmonic problems, such as maximum principle

and Hopf Lemma, and then the proof is an argument of constrained minimization of the

energy functional

Ẽ(u) :=

∫
Ω
|∆u|2dx− C

(∫
Ω
|u|qdx

)2/q

,

on the constraint

F (u) :=

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

= 1.

Thus, in the Navier case, we can basically follow the proof in [14], by adapting the

arguments to the singular potential |x|−τ . We also have to compute a Pohozaev type

identity in the biharmonic case for problem (3.5.1). Pohozaev type identities are well

known, even in the polyharmonic cases and even for Dirichlet conditions, [32, Theorem

7.27, Theorem 7.29], but with f depending only on the solution u. Here, we need to

consider functions f = f(u, x), in particular

f(u, x) := A
|u|σ−1

|x|τ
+B|u|q−1,

with A, B positive constants.

We remark here that, with respect to the original proof of Brezis-Nirenberg, we do

not need that the domain Ω is star-shaped. Indeed, by the symmetrization argument

we can reduce, starting from a general bounded domain Ω containing the origin, to the

case of the ball of radius one centered in the origin. It is also possible to give a proof of

the following result by unconstrained minimization, following the argument in [33] and

using the mountain-pass-type geometry of the free energy functional.

Theorem 3.5.1. Let us consider N ≥ 5, Ω ⊂ RN a bounded domain containing the

origin with ∂Ω ∈ C4, 0 ≤ τ ≤ 4 and 1 ≤ q < N
N−4 . Then there exists a constant C > 0,

C = C(Ω, q, τ), such that for any u ∈W 2,2
ϑ (Ω) the following inequality holds

(3.5.2)

∫
Ω
|∆u|2dx ≥ CτHS

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

+ C

(∫
Ω
|u|qdx

)2/q

.

We want to use the well known argument by Brezis-Nirenberg, [14, Equation 1.53],

that is a proof by contradiction or, equivalently, a non-existence Theorem. For this, we

need a Pohozaev type identity for our problem. As said before, similar identities for

the polyharmonic cases are well known. We need to adapt them to the case of a given

datum f which depends both on x and u and which is, moreover, singular in the origin.
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Proposition 3.5.1. Let N ≥ 5, Ω = B1(0) ⊂ RN , 0 ≤ τ ≤ 4 and 1 ≤ q < N
N−4 . Let

u ∈W 2,2
ϑ (Ω) be a weak solution of the following problem with Navier boundary conditions

(3.5.3)


(−∆)2u = A

uσ−1

|x|τ
+Buq−1 in Ω,

u = ∆u = 0 on ∂Ω,

u > 0 in Ω \ {0},

where A, B are given positive constants. Then u satisfies the following Pohozaev-type

identity

(3.5.4)

∫
Ω
|∆u|2dx = α

∫
Ω

uσ

|x|τ
dx+ β

∫
Ω
uqdx+ γ

∫
∂Ω

∂(∆u)

∂ν

∂u

∂ν
(x · ν) dHN−1,

with

α := A
2(N − τ)

σ(N − 4)
, β := B

2N

q(N − 4)
, γ :=

2

N − 4
.

Proof. We set

Ωε := Ω \Bε(0) = B1(0) \Bε(0).

We can localize the solution u to the set Ωε, obtaining that u is a weak solution of

the same problem but in the smaller set Ωε. Now, viewing the problem as a system of

harmonic and elliptic problems and using elliptic regularity, we can say that u ∈ C4(Ωε).

We can choose x · ∇u as test function in Ωε to obtain∫
Ωε

((−∆)2u)(x · ∇u)dx = A

∫
Ωε

u2σ−1

|x|τ
(x · ∇u)dx+B

∫
Ωε

uq−1(x · ∇u)dx.

Being the function u ∈ C4(Ωε), we can do all the computations in a classical way and

we find

(3.5.5)

∫
Ωε

((−∆)2u)(x · ∇u)dx =

∫
∂Ωε

(
∇∆u(x · ∇u)−∆u∇u

−∆u(x,D2u) +
x

2
|∆u|2

)
· ν dHN−1 +

4−N
2

∫
Ωε

|∆u|2dx,

Doing the same for the right hand side. we obtain

(3.5.6)

∫
Ωε

uq−1(x · ∇u)dx = −1

q

∫
∂Bε

uq|x| dHN−1 − N

q

∫
Ωε

uqdx,

and

(3.5.7)

∫
Ωε

uσ−1

|x|τ
(x · ∇u)dx = − 1

σ

∫
∂Bε

uσ
|x|
|x|τ

dHN−1 − N − τ
σ

∫
Ωε

uσ

|x|τ
dx.

Now, we use in (3.5.5), (3.5.6) and (3.5.7) the facts that u = ∆u = 0 on ∂Ω, that the

limits for ε → 0 of the integrals over Ωε converge to the same integrals over Ω by the
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Dominated Convergence Theorem, and that the limits for ε→ 0 of the surface integrals

over ∂Bε converge to zero, using the same argument as in [18][Pag. 121-122], to obtain

the thesis.

Next, we prove a Brezis-Lieb type result as [11]. Again the problem is to take care

of the singularity due to the weight |x|−τ in the origin.

Proposition 3.5.2. Let Ω ⊆ RN a domain containing the origin, 1 ≤ p < +∞ ,

{fj} ⊂ Lp(Ω) such that

(i) ‖fj‖Lp(Ω) ≤ C < +∞ for all j;

(ii) fj → f for a.e. x ∈ Ω.

Then

(3.5.8)

(∫
Ω

|f |p

|x|p
dx

)2/p

= lim
j→+∞

((∫
Ω

|fj(x)|p

|x|p
dx

)2/p

−
(∫

Ω

|f(x)− fj(x)|p

|x|p
dx

)2/p
)
.

Proof. First of all we observe that for all ε > 0 there exists a constant Cε = C(ε) > 0

such that for all s ∈ R the following inequality in R holds

(3.5.9)
∣∣|s+ 1|p − |s|p − 1

∣∣ ≤ ε|s|p + Cε.

Indeed the function

s 7→ sp

is convex for all 1 ≤ p < +∞. Then, from (3.5.9), we obtain that for all a, b ∈ R the

following inequality holds in R

(3.5.10)
∣∣|a+ b|p − |a|p − |b|p

∣∣ ≤ ε|a|p + Cε|b|p.

Now we define

(3.5.11)

uj :=
∥∥fj |p − |fj − f |p − |f |p∣∣,

vj := (uj − ε|fj − f |p)+ = sup {uj − ε|fj − f |p, 0} .

Since fj → f a.e then uj → 0, vj → 0 for a.e. x ∈ RN . Moreover using (3.5.10) in the

first and the second line of (3.5.11), respectively, we find

0 ≤ vj ≤ Cε|f |p,

and

0 ≤ uj ≤ Cε|f |p + ε|fj − f |p.
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Now passing to the integral and using the fact that uj → 0, vj → 0 a.e., we obtain

lim
j→+∞

∫
Ω

vj(x)

|x|p
dx =

∫
Ω

lim
j→+∞

vj(x)

|x|p
dx = 0,

and ∫
Ω

uj(x)

|x|p
dx ≤ ε

∫
Ω

|fj(x)− f(x)|p

|x|p
dx+

∫
Ω

vj(x)

|x|p
dx

≤ ε

((∫
Ω

|fj(x)|p

|x|p
dx

)1/p

+

(∫
Ω

|f(x)|p

|x|p
dx

)1/p
)p

+

∫
Ω

vj(x)

|x|p
dx

≤ ε (2M)p +

∫
Ω

vj(x)

|x|p
dx,

with

M := sup

{(∫
Ω

|fj(x)|p

|x|p
dx

)1/p
}
.

Then

lim sup
j→+∞

∫
Ω

uj(x)

|x|p
dx ≤ ε (2M)p + lim sup

j→+∞

∫
Ω

vj(x)

|x|p
dx ≤ ε (2M)p .

and so

lim
j→+∞

∫
RN

uj(x)

|x|p
dx = 0,

which implies (3.5.8).

Proof of Theorem 3.5.1.

We need to prove (3.5.2) only for any u ∈W 2,2
ϑ (Ω∗) where Ω∗ is the ball centered in the

origin such that |Ω∗| = |Ω|. Indeed if we suppose that (3.5.2) holds for any u ∈W 2,2
ϑ (Ω∗)

then for any u ∈W 2,2
ϑ (Ω) we can choose a v ∈W 2,2

ϑ (Ω∗) such that v is the unique strong

solution of −∆v = (−∆u)∗ in Ω∗,

v = 0 on ∂Ω∗.

Then by Proposition 3.1.1 and a rescaling argument we can conclude that v ≥ u∗ a.e.

By standard properties of Schwarz symmetrization, we obtain∫
Ω
|∆u|2dx =

∫
Ω∗
|∆v|2dx

≥ CτHS
(∫

Ω∗

|v|σ

|x|τ
dx

)2/σ

+ C

(∫
Ω∗
|v|qdx

)2/q

≥ CτHS
(∫

Ω∗

|u|σ

|x|τ
dx

)2/σ

+ C

(∫
Ω
|u|qdx

)2/q

.
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So we can reduce without loss of generality to the problem with the further assumptions

that Ω is the unitary ball centered in the origin, u ∈ W 2,2
ϑ (Ω) is positive and radially

symmetric decreasing and that −∆u is positive and radially symmetric decreasing.

Step 1. We prove that the following statements are equivalent

(i) there exists a constant C(N, q, τ) > 0 such that (3.5.2) holds for any u ∈ X with

X :=
{
v ∈W 2,2

ϑ (Ω) : v ≥ 0 a.e.
}

;

(ii) there exists a constant C(N, q, τ) > 0 such that C̃τHS = CτHS with

C̃τHS := inf
u∈X\{0}

∫
Ω
|∆u|2dx− C

(∫
Ω
|u|qdx

)2/q

(∫
Ω

|u|σ

|x|τ
dx

)2/σ
.

We are considering here also CτHS as an infimum over X . If (i) holds then we have∫
Ω
|∆u|2dx− C

(∫
Ω
|u|qdx

)2/q

≥ CτHS
(∫

Ω

|u|σ

|x|τ
dx

)2/σ

and so C̃τHS ≥ CτHS . The opposite inequality is true by definition and then C̃τHS = CτHS .

Conversely we have for any u ∈ X∫
Ω
|∆u|2dx ≥ C̃τHS

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

+ C

(∫
Ω
|u|qdx

)2/q

= CτHS

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

+ C

(∫
Ω
|u|qdx

)2/q

.

And then (3.5.2) holds for any u ∈ X .

Step 2. We prove that if C̃τHS < CτHS then C̃τHS is attained in X \{0}, which means that

there exists a function u ∈ X \ {0} such that

C̃τHS = E(u),

with the energy functional E defined as

E(u) :=

∫
Ω
|∆u|2dx− C

(∫
Ω
|u|qdx

)2/q

(∫
Ω

|u|σ

|x|τ
dx

)2/σ
.

Let us consider a minimizing sequence in X for C̃τHS , that is a sequence {uj} ⊂ X such

that

E(uj)→ C̃τHS .
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We can suppose without loss of generality that∫
Ω

|uj |σ

|x|τ
dx = 1.

If not, we can simply consider

ũj :=
uj(∫

Ω

|uj |σ

|x|τ
dx

)1/σ
.

Using Sobolev and compactness of embeddings, we have, up to a subsequence,
uj → u in Lr(Ω) ∀ r < 2∗

uj ⇀ u in W 2,2
ϑ (Ω)

uj → u for a.e x ∈ Ω.

Moreover, using Fatou Lemma∫
Ω

|u|σ

|x|τ
dx ≤ lim inf

j→+∞

∫
Ω

|uj |σ

|x|τ
dx = 1.

Let vj := uj − u, then 
vj → 0 in Lr(Ω) ∀ r < 2∗

vj ⇀ 0 in H2
ϑ(Ω)

vj → 0 for a.e x ∈ Ω,

We want to prove that u 6≡ 0. By the minimizing property of {uj}, we have that

E(uj)→ C̃τHS which means

(3.5.12) lim
j→+∞

(∫
Ω
|∆uj |2dx− C

(∫
Ω
|uj |qdx

)2/q
)

= C̃τHS .

Now, we can use the fact that vj ⇀ 0 and [11, Theorem 1] to conclude

lim
j→+∞

(∫
Ω
|∆uj |2dx− C

(∫
Ω
|uj |qdx

)2/q
)
≥ CτHS − C

(∫
Ω
|u|qdx

)2/q

,

and then

(3.5.13) C̃τHS ≥ CτHS − C
(∫

Ω
|u|qdx

)2/q

.

Taking into account C̃τHS < CτHS in (3.5.13), we find

C

(∫
Ω
|u|qdx

)2/q

≥ CτHS − C̃τHS > 0,
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and then u 6≡ 0. Using Proposition 3.5.2, we know

1 =

∫
Ω

|vj + u|σ

|x|τ
dx =

∫
Ω

|vj |σ

|x|τ
dx+

∫
Ω

|u|σ

|x|τ
dx+ o(1),

and then

1 ≤
(∫

Ω

|vj |σ

|x|τ
dx

)2/σ

+

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

+ o(1).

Now, we want to prove the following inequality

(3.5.14)

∫
Ω
|∆u|2dx− C

(∫
Ω
|u|qdx

)2/q

≤ C̃τHS
(∫

Ω

|u|σ

|x|τ
dx

)2/σ

.

(a) Let C̃τHS > 0, then

C̃τHS ≤ C̃τHS
(∫

Ω

|u|σ

|x|τ
dx

)2/σ

+ C̃τHS

(∫
Ω

|vj |σ

|x|τ
dx

)2/σ

+ o(1)

≤ C̃τHS
(∫

Ω

|u|σ

|x|τ
dx

)2/σ

+
C̃τHS
CτHS

∫
Ω
|∆vj |2dx+ o(1),

So, we obtain (3.5.14) in the following way∫
Ω
|∆u|2dx− C

(∫
Ω
|u|qdx

) 2
q

≤ C̃τHS
(∫

Ω

|u|σ

|x|τ
dx

)2/σ

+

(
C̃τHS
CHS

− 1

)∫
Ω
|∆vj |2dx+ o(1)

≤ C̃τHS
(∫

Ω

|u|σ

|x|τ
dx

)2/σ

.

(b) Let C̃τHS ≤ 0, then we find

C̃τHS ≤ C̃τHS
(∫

Ω

|u|σ

|x|τ
dx

)2/σ

.

With a similar argument to case (a) we find again (3.5.14).

Then

E(u) ≤ C̃τHS = inf
X\{0}

E(u),

and then u is a minimum.

Step 3. We prove (3.5.2). Suppose on the contrary that for any C > 0 we have that

CτHS 6= C̃τHS , which means C̃τHS < CτHS . By the preceding step, we have that there exists

a function u ∈ X , u > 0, such that

C̃τHS := E(u).
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Now, C̃τHS is a minimum obtained by unconstrained minimization of the functional E.

At the same time. we can obtain C̃τHS as a minimum by constrained minimization of

the functional Ẽ defined as

Ẽ(u) :=

∫
Ω
|∆u|2dx− C

(∫
Ω
|u|qdx

)2/q

,

on the constraint F (u) = 1 with

F (u) =

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

.

The functional Ẽ is Frechet differentiable and then by the Lagrange multiplier theorem

we have

(3.5.15) Ẽ′[u](v) = C̃τHS F
′[u](v) ∀ v ∈W 2,2

ϑ (Ω).

with

(3.5.16) Ẽ′[u](v) = 2

∫
Ω

∆u∆vdx− 2C‖u‖2−qLq(Ω)

∫
Ω
|u|q−1vdx,

and

(3.5.17) F ′[u](v) = 2

(∫
Ω

|u|σ

|x|τ
dx

)(2−σ)/σ ∫
Ω

|u|σ−1

|x|τ
vdx.

Finally, using the boundary conditions of v, we find

(3.5.18)

∫
Ω

∆u∆vdx =

∫
Ω

∆2u vdx.

Using (3.5.16), (3.5.17) and (3.5.18) in (3.5.15), we obtain

2

∫
Ω

∆2u vdx = 2C̃τHS

(∫
Ω

|u|σ

|x|τ
dx

)(2−σ)/σ ∫
Ω

|u|σ−1

|x|ξ
vdx+ 2C‖u‖2−qLq(Ω)

∫
Ω
|u|q−1vdx,

for any v ∈W 2,2
ϑ (Ω). Using the fact that F (u) = 1, we find that u is a weak solution in

W 2,2
ϑ (Ω) of the problem

(3.5.19)


∆2u = A

uσ−1

|x|τ
+Buq−1 in Ω

u = ∆u = 0 on ∂Ω

u > 0 in Ω \ {0},

with

A := C̃τHS , B := C‖u‖2−qLq(Ω).



3.5. Navier boundary conditions 45

We can apply Proposition 3.5.1 to conclude that

(3.5.20)

∫
Ω
|∆u|2dx = α

∫
Ω

uσ

|x|τ
dx+ β

∫
Ω
uqdx+ γ

∫
∂Ω

(∆u)ν
∂u

∂ν
(x · ν) dHN−1.

Moreover, integrating the equation in (3.5.19) and using (3.5.18) with v = u, we obtain

(3.5.21)

∫
Ω
|∆u|2dx = C̃τHS

∫
Ω

uσ

|x|τ
dx+ C‖u‖2−qLq(Ω)

∫
Ω
uqdx.

Taking (3.5.21) minus (3.5.20), we find

(3.5.22) 0 = α̃

∫
Ω

uσ

|x|τ
dx+ β̃

(∫
Ω
uqdx

)2/q

− γ
∫
∂Ω

(∆u)ν
∂u

∂ν
(x · ν) dHN−1.

with

α̃ := C̃τHS

(
1− 2(N − τ)

σ(N − 4)

)
, β̃ := C‖u‖2−qLq(Ω)

(
1− 2N

q(N − 4)

)
, γ :=

2

N − 4
.

Using (3.4.2) and 0 ≤ τ ≤ 4, we obtain α̃ = 0 and then, inserting this in (3.5.22),

(3.5.23) 0 = β̃

(∫
Ω
uqdx

)2/q

− γ
∫
∂Ω

(∆u)ν
∂u

∂ν
(x · ν) dHN−1.

By q < N
N−4 , we have β̃ < 0. We want to find the sign of the second term.

We have x · ν = 1, (∆u)ν = (∆u)′, and ∂u
∂ν = u′. With the substitution w := −∆u, we

can split problem (3.5.19) in−∆w = f(u, x) in Ω

w = 0 on ∂Ω,

−∆u = w in Ω

u = 0 on ∂Ω,

with f(u, x) > 0. Then, applying the maximum principle, we obtain −∆u ≥ 0. Hence,

by the Hopf Lemma, we can conclude

u′ < 0, (−∆u)′ < 0, on ∂Ω.

Then

−γ
∫
∂Ω

(∆u)ν
∂u

∂ν
(x · ν) dHN−1 > 0,

so we have two terms with different signs. But u and ∆u are radially symmetric and

then ∫
∂Ω

(∆u)′u′ dHN−1 = ωN−1u
′(1)(∆u)′(1)

=
1

ωN−1

(∫
∂Ω
u′dS

)(∫
∂Ω

(∆u)′ dHN−1

)
=

1

ωN−1

(∫
∂Ω
∇u · ν dHN−1

)(∫
∂Ω
∇∆u · ν dHN−1

)
=

1

ωN−1

(∫
Ω

∆udx

)(∫
Ω

∆2udx

)
.
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Now, let ϕ the unique radial positive and smooth solution to the problem−∆ϕ = 1 in Ω

ϕ = 0 on ∂Ω,

then

−
∫

Ω
∆udx =

∫
Ω
ϕ∆2udx.

Hence

−
∫
∂Ω

(∆u)′u′ dHN−1 = − 1

ωN−1

(∫
Ω

∆udx

)(∫
Ω

∆2udx

)
=

1

ωN−1

(∫
Ω
−∆udx

)(∫
Ω

∆2udx

)
=

1

ωN−1

(∫
Ω
ϕ∆2udx

)(∫
Ω

∆2udx

)
.

Finally ∫
Ω

∆2udx =

∫
|x|≤ 1

2

∆2udx+

∫
1
2
<|x|≤1

∆2udx

≤
∫
|x|≤ 1

2

∆2udx+K(N)∆2u

(
1

2

)
≤
∫
|x|≤ 1

2

∆2udx+K(N)

∫
|x|≤ 1

2

∆2udx

≤ K(N)

∫
Ω
ϕ∆2udx ;

indeed ϕ is radial symmetric decreasing and then∫
|x|≤ 1

2

ϕ∆2udx ≥ K(N)

∫
|x|≤ 1

2

∆2udx.

Using the Sobolev inequality, we have

−γ
∫
∂Ω

(∆u)′u′ dHN−1 ≥ K(N)

(∫
Ω

∆2udx

)2

≥ K(N)

(∫
Ω
uqdx

)2/q

Coming back to (3.5.23), we find

0 ≥ (K − β̃)

∫
Ω
uqdx > 0 ∀C < C̃,

with

C̃ :=
qK(N − 4)

2N‖u‖2−qLq(Ω)

.

So, we find a contradiction for any 0 < C < C̃.
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3.6 Improved Hardy-Sobolev inequalities with Dirichlet

boundary conditions

The third result we prove is an improvement of the critical Hardy-Sobolev inequality

with Dirichlet conditions with a weak Lq remainder term. The proof of the following

Theorem follows the argument of [12, Inequality 1.4]. The main difference is we cannot

use a symmetrization argument and moreover we cannot use the maximum principle, in

the case of Dirichlet conditions for a biharmonic problem. So, we can not reduce ourselves

to the case of radial and positive functions, as in the Navier conditions case. However,

using Proposition 3.2.1, we can reduce to the case of fixed sign functions. Then, we

need an extension argument to apply the Hardy-Sobolev inequality in RN . This is also

the strategy used in the proof of the Lq-remainder term for the polyharmonic Sobolev

inequality [29] or [32, Theorem 7.58, Corollary 7.59 and Theorem 7.60].

Theorem 3.6.1. Let N ≥ 5, Ω ⊂ RN a bounded domain containing the origin with

∂Ω ∈ C4, 0 ≤ τ ≤ 4 and 1 ≤ q ≤ N
N−4 . Then there exists a constant C = C(Ω, q, τ) > 0,

such that for any u ∈W 2,2
0 (Ω) the following inequality holds

(3.6.1)

∫
Ω
|∆u|2dx ≥ CτHS

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

+ C‖u‖2Lqw(Ω).

Proof. Ω is bounded, then there exists a radius R > 0 such that Ω ⊂ BR(0). Now by

the Dirichlet conditions we can extend any function u ∈ W 2,2
0 (Ω) by zero outside Ω

obtaining a function ũ ∈W 2,2
0 (BR). So we have to prove the Theorem only for functions

u ∈W 2,2
0 (BR(0)).

Consider the closed convex cone in W 2,2
0 (BR) of non-negative functions

X :=
{
v ∈W 2,2

0 (BR) : v ≥ 0 a.e. in BR(0)
}
.

Let g ∈ L∞(BR) and let v ∈W 2,2
0 (BR) a solution of the following problem with Dirichlet

boundary conditions (−∆)2 v = g in BR(0)

v = |∇v| = 0 on ∂BR(0).

Then, v ∈W 2,2
0 (BR)∩L∞(BR). We take a function u ∈ X \{0} and define the auxiliary

function

φ :=


u− v + ‖v‖L∞(BR) in BR

‖v‖L∞(BR)

[(
R
|x|

)N−3
−
(
R
|x|

)N−4
]

in Bc
R.
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So φ is a function in W 2,2
0 (RN ) and we can apply the Hardy-Sobolev inequality to φ in

all RN obtaining

(3.6.2)

∫
RN
|∆φ|2dx ≥ CτHS

(∫
RN

|φ|σ

|x|τ
dx

)2/σ

.

With straightforward computations, we obtain∣∣∣∣∣∆
((

R

|x|

)N−3

−
(
R

|x|

)N−4
)∣∣∣∣∣

2

=
(2−N)2(3−N)2R2N−6

|x|2N−2

−(2−N)(3−N)2(4−N)R2N−7

|x|2N−3
+

(3−N)2(4−N)2R2N−8

|x|2N−4
,

∫
RN
|∆φ|2dx =

∫
BR

|∆ (u− v + ‖v‖L∞) |2dx

+ ‖v‖2L∞
∫
BcR

∣∣∣∣∣∆
((

R

|x|

)N−3

−
(
R

|x|

)N−4
)∣∣∣∣∣

2

dx

=

∫
BR

|∆(u− v)|2dx+ k‖v‖2L∞ ,

k : =

∫
BcR

∣∣∣∣∣∆
((

R

|x|

)N−3

−
(
R

|x|

)N−4
)∣∣∣∣∣

2

dx

= (2−N)2(3−N)2R2N−6

∫
BcR

dx

|x|2N−2

− (2−N)(3−N)2(4−N)R2N−7

∫
BcR

dx

|x|2N−3

+ (3−N)2(4−N)2R2N−8

∫
BcR

dx

|x|2N−4

= C1I1 + C2I2 + C3I3.

Using polar coordinates, we find

I1 =
ωN
N − 2

R2−N , I2 =
ωN
N − 3

R3−N , I3 =
ωN
N − 4

R4−N ,

so that

(3.6.3) k = CRN−4.

Finally, we can conclude

(3.6.4)

∫
RN
|∆φ|2dx =

∫
BR

|∆(u− v)|2dx+ k‖v‖2L∞ .
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But ∫
BR

|∆(u− v)|2dx =

∫
BR

|∆u|2dx+

∫
BR

|∆v|2dx− 2

∫
BR

∆u∆vdx,

and integrating by parts twice and using u = 0 and |∇u| = 0 on ∂BR we find

(3.6.5) 2

∫
BR

∆u∆vdx = 2

∫
BR

ugdx.

Moreover, using u > 0 and −v + ‖v‖L∞ ≥ 0, we can conclude

(3.6.6)

∫
RN

|φ|σ

|x|τ
dx ≥

∫
BR

|u|σ

|x|τ
dx.

Now, using (3.6.4)-(3.6.5)-(3.6.6) in (3.6.2) we find

(3.6.7)

∫
BR

|∆u|2dx+

∫
BR

|∆v|2dx+ 2

∫
BR

ugdx+ k‖v‖2L∞ ≥ CτHS
(∫

BR

|u|σ

|x|τ
dx

)2/σ

.

Substituting g 7→ λg, v 7→ λv, λ > 0 in (3.6.7), we have

E(λ) :=

∫
BR

|∆u|2dx+ λ2

∫
BR

|∆v|2 + 2λ

∫
BR

ugdx+ λ2k‖v‖2L∞

− CτHS
(∫

BR

|u|σ

|x|τ
dx

)2/σ

≥ 0.

Minimizing in λ, we find

d

dλ
E(λ) = 0 iff λ = −

∫
BR

ugdx∫
BR

|∆v|2dx+ k‖v‖2L∞
,

then

(3.6.8)

∫
BR

|∆u|2dx ≥ CτHS
(∫

BR

|u|σ

|x|τ
dx

)2/σ

+

(∫
BR

ugdx

)2

∫
BR

|∆v|2dx+ k‖v‖2L∞
,

for any u ∈ X \ {0}, for any g ∈ L∞(BR) and for any v ∈W 2,2
0 (BR) ∩ L∞(BR) solution

of (−∆)2v = g in BR

v = |∇v| = 0 on ∂BR.

Consider g = χA, with A ⊂ Ω ⊂ BR(0) a measurable set. Then

(3.6.9)

∫
BR

ugdx =

∫
BR

udx.



50 3 Hardy-Sobolev inequalities with remainder terms

(3.6.10)

∫
BR

|∆v|2dx ≤ C|A|1+ 4
N .

Indeed, using the fact that v is a solution of the preceding problem with Dirichlet bound-

ary conditions and integrating by parts we find∫
BR

|∆v|2dx =

∫
BR

vgdx =

∫
A
vdx.

Then, using Hölder inequality Sobolev inequality with p = 2N
N−4 and q = 2N

N+4 ,∫
BR

|∆v|2dx =

∫
A
vdx

≤
∫
A
|v|dx

≤ ‖v‖Lp(A)|A|
1
q

≤ ‖v‖Lp(BR)|A|
1
q

≤ C‖v‖
W 2,2

0 (BR)
|A|

N+4
2N .

Then (3.6.10) is proved, just dividing by ‖v‖
W 2,2

0
and taking the square power.

Finally, using Proposition 3.3.1 and computations as in [31, Theorem 7.58], we find

(3.6.11) ‖v‖L∞ ≤ C|A|
4
N .

Using (3.6.9)-(3.6.10)-(3.6.11), the definitions of k in (3.6.3) and that A ⊂ Ω ⊂ BR,1 we

find

(3.6.12)

∫
BR

|∆v|2dx+ k‖v‖2L∞ ≤ CRN−4|A|
8
N .

Using (3.6.12) in (3.6.8), we obtain,

∫
BR

|∆u|2dx ≥ CτHS
(∫

BR

|u|σ

|x|τ
dx

)2/σ

+

(∫
BR

ugdx

)2

∫
BR

|∆v|2dx+ k‖v‖2L∞

≥ CτHS
(∫

BR

|u|σ

|x|τ
dx

)2/σ

+ C(Ω)|A|−
8
N

(∫
A
udx

)2

≥ CτHS
(∫

BR

|u|σ

|x|τ
dx

)2/σ

+ C(Ω) sup
A⊂Ω

{
|A|−

8
N

∫
A
udx

}2

≥ CτHS
(∫

BR

|u|σ

|x|τ
dx

)2/σ

+ C(Ω)‖u‖2
L

N
N−4
w (BR)

,

1In this way |A| ≤ CRN .
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for any A ⊂ BR, where in the last line we use the following characterization of the weak

norm

‖u‖Lpw(Ω) := sup
A⊂Ω

{
|A|−

1
q

∫
A
udx

}
,

1

q
+

1

p
= 1,

and with the constant

C(Ω) :=
1

CRN−4
.

This concludes the proof of the theorem in the positive cone.

Let u a generic changing sign function in W 2,2
0 (BR). We can just apply the dual cone

decomposition choosing

X := {v ∈W 2,2
0 (BR) : v ≥ 0 a.e in BR},

X ∗ := {v ∈W 2,2
0 (BR) : v ≤ 0 a.e in BR},

to conclude, using [31, Proposition 3.6], that

|u1 + u2| ≤ max{|u1|, |u2|},

and then for any r > 0 we have

|u1 + u2|r ≤ max{|u1|r, |u2|r} ≤ |u1|r + |u2|r for a.e. x ∈ BR.

If r ≥ 2, we fix r = σ, ρ = τ
σ and we have

(∫
BR

|u|σ

|x|τ
dx

)2/σ

=

(∫
BR

( |u|
|x|ρ

)σ
dx

)2/σ

=
∥∥∥ u

|x|ρ
∥∥∥2

Lσ(BR)

=
∥∥∥u1 + u2

|x|ρ
∥∥∥2

Lσ(BR)

≤
(∫

BR

( |u1|
|x|ρ

)σ
+
( |u2|
|x|ρ

)σ
dx

)2/σ

≤
∥∥∥ u1

|x|ρ
∥∥∥2

Lσ(BR)
+
∥∥∥ u2

|x|ρ
∥∥∥2

Lσ(BR)
.

Finally, we know that the thesis holds separately for u1 and u2 and then the theorem is

proved.

Using the properties of the weak Lebesgue norm, namely ‖u‖Lq̄ ≤ ‖u‖Lqw for q̄ < q

(see [39, Pag. 255]), we have the following Corollary, which is the counterpart of Theorem

3.5.1 for the Dirichlet case.
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Corollary 3.6.1. Let N ≥ 5, Ω ⊂ RN a bounded domain containing the origin with

∂Ω ∈ C4, 0 ≤ τ < 4 and 1 ≤ q < N
N−4 . Then there exists a constant C > 0, C =

C(Ω, q, τ), such that for any u ∈W 2,2
0 (Ω) the following inequality holds

(3.6.13)

∫
Ω
|∆u|2dx ≥ CτHS

(∫
Ω

|u|σ

|x|τ
dx

)2/σ

+ C

(∫
Ω
|u|qdx

)2/q

.

From Chebyshev’s inequality we obtain for all 1 ≤ q < +∞

‖u‖Lqw(Ω) ≤ ‖u‖Lq(Ω) ,

and then it is clear that for all 1 ≤ q < N
N−4 Corollary 3.6.1 implies also Theorem 3.6.1.

But in the limit case q = N
N−4 inequality (3.6.13) fails, because the remainder term with

the Lq-norm is too big, while the inequality (3.6.1) still holds, since the remainder term

with the weak Lq-norm is slightly smaller.



Chapter 4

A supercritical semilinear

biharmonic problem with Hardy

potential

The results written in this Chapter are obtained in collaboration with Maŕıa Medina of

Universidad Autónoma de Madrid [46].

4.1 A brief history of the problem

Let us consider the following fourth order problem with Hardy potential
(−∆)2u =

up−1

|x|4
in Ω

u > 0 in Ω

u =
∂u

∂ν
= 0 on ∂Ω,

where 0 < p− 1 < N+4
N−4 and Ω ⊂ RN is a bounded smooth domain, with N ≥ 5.

In the Hardy case we have that τ = 4, σ = 4 and hence p = 2 in (3.4.2). When

p − 1 > 1 or equivalently when p > 2 we are in the supercritical case of the Hardy

inequality. We want to prove a non-existence result for the preceding problem when the

origin is located on the boundary of Ω.

In the second order case the problem

(4.1.1)


−∆u =

up−1

|x|2
in Ω

u > 0 in Ω

u = 0 on ∂Ω,

53
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with N ≥ 3 is well studied. In the subcritical case, that is 0 < p − 1 < 1, it is simple

to prove existence of weak solutions, independently of the location of the origin, by

using the Hardy inequality as in [1]. If p = 2, that is in the critical case, the problem

was studied by Ghoussoub-Kang in [34] and by Ghoussoub-Robert in [36]. To be more

precise, they studied the problem in the more general setting of critical Hardy-Sobolev

potential 
−∆u =

uσ−1

|x|τ
in Ω

u > 0 in Ω

u = 0 on ∂Ω \ {0},

for 0 ≤ τ ≤ 2 and σ = 2(N−τ)
N−2 . They gave sufficient local conditions on the boundary at

0, precisely a condition of negativity of the curvatures and the mean curvature at 0, for

the best constant in the corresponding embedding to be attained, which yields existence

of a solution to the preceding problem.

Finally J. Dávila and I. Peral studied in [22] the problem in the supercritical setting,

that is 1 < p − 1 < N+2
N−2 . We recall that u ∈ H1

0 (Ω) is a positive weak solution of the

problem (4.1.1) if u > 0 a.e. in Ω and satisfies∫
Ω
∇u · ∇ϕdx =

∫
Ω

up−1

|x|2
ϕdx,

∣∣∣∣ ∫
Ω

up−1

|x|2
ϕdx

∣∣∣∣ < +∞,

for every ϕ ∈ H1
0 (Ω). Dávila and Peral proved in [22] the following result

Let N ≥ 3 and 1 < p−1 < N+2
N−2 . Then problem (4.1.1) has no positive weak solutions

if 0 ∈ ∂Ω and Ω is a smooth domain star-shaped with respect to 0.

Moreover, they were also able to prove existence of weak solutions for problem (4.1.1)

for domains with specific geometry, in particular for dumbbell domains. A dumbbell

domain Ωδ is a bounded domain with smooth boundary of the form Ωδ = Ω1 ∪ Ω2 ∪ Cδ
where Ω1 and Ω2 are smooth bounded domains such that Ω1∩Ω2 = ∅ and Cδ is a region

contained in a tubolar neighborhood of radius less than δ > 0 around a curve joining Ω1

and Ω2. In this case, they proved the following existence result.

Let N ≥ 3 and 1 < p − 1 < N+2
N−2 . Assume that Ωδ is a dumbbell domain with

0 ∈ ∂Ω1 ∩ ∂Ωδ then there exists a δ0 > 0 such that if δ < δ0 then there exists a positive

weak solution of problem (4.1.1) in Ωδ.

There are some generalizations of problem (4.1.1), for example in the case of more

generic second order operators, that is in the case of p-Laplacian operator, as in the

series of papers [47], [48] and [49].

We want to generalize the non existence result of [22] to the setting of the biharmonic

problem with Dirichlet boundary conditions, that is we want to prove non existence of
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positive weak solutions of the following problem

(4.1.2)


(−∆)2u =

up

|x|4
in Ω

u > 0 in Ω

u =
∂u

∂ν
= 0 on ∂Ω,

with N ≥ 5, Ω a bounded smooth domain star-shaped with respect to 0 ∈ ∂Ω and

1 < p < N+4
N−4 . 1

Still, we are not able to generalize the second part of [22] to the problem (4.1.2).

Indeed, the original proof of Dávila-Peral is heavily based on maximun principles and

comparison principles which are not available in the setting of biharmonic problems with

Dirichlet boundary conditions for dumbbell domains.

4.2 Regularity of solutions

Concerning regularity, in this Chapter we distinguish two different kinds of solutions.

More precisely, if we consider a general problem

(4.2.1)

(−∆)2u = f in Ω,

u =
∂u

∂ν
= 0 on ∂Ω,

by weak and strong solutions we mean the following.

Definition 4.2.1. We say that u ∈ H2
0 (Ω) is a positive weak solution of the problem

(4.2.1) if u > 0 a.e. in Ω and satisfies∫
Ω

∆u∆ϕdx =

∫
Ω
fϕdx,

∣∣∣∣ ∫
Ω
fϕ dx

∣∣∣∣ < +∞,

for every ϕ ∈ H2
0 (Ω).

Definition 4.2.2. We say that u is a positive strong solution of the problem (4.2.1)

if u ∈ H2
0 (Ω) ∩W 4,q(Ω) for some q > 1, u > 0 a.e. in Ω, and the equation and the

boundary conditions in (4.2.1) are satisfied a.e.

The purpose of this section is to prove that positive weak solutions of problem (4.1.2)

are actually much more regular. Indeed we will see that solutions of (4.1.2) are positive

1We notice that here the notation is changed. Indeed, in problem (4.1.2) we denote the exponent by

p while in the notation of the preceding chapter it was denoted by p− 1. Since we are only interested in

the differential problem and not in its variational counterpart it is more comfortable to work with the

simpler form p and not with p− 1.
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strong solutions of the same problem and, moreover, that they are smooth away from

the origin.

From [32, Theorem 2.20 and Corollary 2.21], we know that if we consider f = f(u) ∈
Lq(Ω) with q > 1 in the general problem (4.2.1), then every weak solution of problem

(4.2.1) is also a positive strong solution of the same problem. Moreover, there exists a

constant C = C(Ω, N) > 0 such that

‖u‖W 4,q(Ω) ≤ C‖f(u)‖Lq(Ω).

First of all, we prove that a priori a positive weak solution of (4.1.2) is also inW 4,q(Ω)

for some q > 1. And moreover u satisfies the equation a.e, that is weak solutions are

also strong solutions.

Proposition 4.2.1. Let u ∈ H2
0 (Ω) be a positive weak solution of problem (4.1.2). Then

u is a positive strong solution of the same problem, and in particular, u ∈ W 4,q(Ω) for

every 1 < q < N(p+1)
Np+4 .

Proof. Consider f(x, u) :=
up

|x|4
. We want to check if f(x, u) ∈ Lq(Ω) for some q > 1.

Let us take in particular q ∈ (1, N(p+1)
Np+4 ). Thus, applying Hölder inequality we find that

∫
Ω
|f(x, u)|q dx =

∫
Ω

upq

|x|4q
dx ≤

(∫
Ω

up+1

|x|4
dx

)1/r (∫
Ω
|x|−

4q
p+1−pq dx

)1/s

,

with r = p+1
pq and s = p+1

p+1−pq . Since q < N(p+1)
Np+4 , then 4q

p+1−pq < N and the second

integral is finite. Moreover, since u is a weak solution of (4.1.2), testing in Definition

4.2.1 with ϕ := u we know that necessarily∫
Ω

up+1

|x|4
dx < +∞,

and therefore f ∈ Lq(Ω) provided that q ∈ (1, N(p+1)
Np+4 ).

We notice here that, in order to have u ∈ C0,γ(Ω) for some 0 < γ < 1 directly by

Sobolev embeddings, we need that ⌊
N

q

⌋
≤ 3,

and hence q > N
4 .2 Since by Proposition 4.2.1 q < N(p+1)

Np+4 and by assumptions 1 < p <
N+4
N−4 and N ≥ 5, we have that q < N

4 . So, we can not bootstrap directly from a strong

solution to a continuous solution.

2For Morrey embeddings if u ∈W k,p(Ω) then u ∈ Ck−
⌊
N
p

⌋
−1

(Ω).
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Notice that in the previous result no assumption on the position of the origin is

made. We are assuming that 0 can be either inside or on the boundary of Ω. Let us

suppose now that 0 ∈ ∂Ω, and define, for fixed ε > 0,

(4.2.2) Γε := Bε(0) ∩ Ω, Ωε := Ω \ Γε.

The boundary of Ω and the boundary of Γε are smooth but the boundary of Ωε,

which is exactly

(4.2.3) ∂Ωε := ∂Ω1
ε ∪ ∂Ω2

ε = (∂Ω \ (∂Ω ∩ Γε)) ∪ (∂Γε ∩ Ω) ,

is not smooth in the intersection of the two components ∂Ω1
ε and ∂Ω2

ε. Nevertheless, we

may assume that ∂Ωε is smooth, since locally it is a Lipschitz graph and hence it can be

smoothened by a standard mollification argument. Therefore, without loss of generality,

we will assume that Ωε is a smooth domain for every ε > 0.

We want to prove that solutions of (4.1.2) are indeed smooth far from the origin.

The idea is to consider a cut-off function and to prove that the solution multiplied by

the cut-off function is regular far from the origin.

Proposition 4.2.2. Suppose 0 ∈ ∂Ω. If u is a weak solution of problem (4.1.2), then

for every ε > 0 we have that u ∈ C0,γ(Ωε) for some 0 < γ < 1, where Ωε is defined in

(4.2.2).

Proof. Fix ε > 0 and consider a smooth function η such that 0 ≤ η ≤ 1 and

η(x) :=


0 |x| ≤ ε

> 0 ε < |x| < 2ε

1 |x| ≥ 2ε.

Let us define also the following function,

(4.2.4) w(x) := η(x)u(x), x ∈ Ω.

First of all we observe that w is well defined in Ωε and w has zero Dirichlet values on the

boundary ∂Ωε. Indeed u has zero Dirichlet conditions on ∂Ω1
ε by assumption, while η ≡ 0

on ∂Ω2
ε. Using the cut-off η we are avoiding the origin, where the problem is singular,

obtaining a semilinear problem for the function w. Indeed, let us take ϕ ∈ C∞0 (Ωε).

Thus, using that u is a weak solution of (4.1.2),∫
Ωε

∆w∆ϕdx =

∫
Ωε

ϕηf dx+

∫
Ωε

ϕ
(
2∆u∆η + u∆2η + 2∇∆u · ∇η

+2∇∆η · ∇u+ 2 div(D2u · ∇η) + 2 div(D2η · ∇u)
)
dx,

(4.2.5)
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where f = f(x, u) :=
up

|x|4
. Notice that, by Proposition 4.2.1, we know that u ∈W 4,q(Ω)

with q > 1, and therefore all the previous computations are justified in the weak sense.

Moreover, by a density argument, we can say that (4.2.5) holds for every ϕ ∈ H2
0 (Ωε),

and thus we can conclude that w is a positive weak solution of the problem

(4.2.6)

∆2w = F (x, u, η) in Ωε

w =
∂w

∂ν
= 0 on ∂Ωε,

F (x, η, u) :=u∆2η + ηf + 2∆u∆η + 2∇∆u · ∇η + 2∇∆η · ∇u

+ 2 div(D2u · ∇η) + 2 div(D2η · ∇u).
(4.2.7)

Now we want to compute r such that F (x, η, u) ∈ Lr(Ωε). First of all we observe that

|div(D2u · ∇η)| =

∣∣∣∣∣∑
l

∂l(D
2u · ∇η)l

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
l

∂l

∑
j

uljηj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
l,j

ulljηj +
∑
l,j

uljηjl

∣∣∣∣∣∣
≤ C1

∑
l,j

|ullj |+ C2

∑
l,j

|ulj |.3

Here we used the fact that for weak derivatives the symmetry of mixed derivatives

always holds. The use of formal integration by parts to define weak differentiation puts

the symmetry question back onto the test functions which are smooth and satisfy the

Schwartz theorem. Then we have

‖F‖Lr(Ωε) ≤ C
(
‖u‖Lr(Ωε) + ‖f‖Lr(Ωε) + ‖∇u‖Lr(Ωε) + ‖∆u‖Lr(Ωε)

+ ‖∇∆u‖Lr(Ωε) +

(∫
Ωε

∑
i,j

|uiij |rdx
)1/r

+

(∫
Ωε

∑
i,j

|uij |rdx
)1/r)

.

(4.2.8)

Notice that, since x ∈ Ωε, the term f is not singular anymore. In particular, f(x, u) =
up

|x|4 ≤ Cup. Therefore, using that u ∈ H2(Ω) ∩W 4,q(Ωε), and the Sobolev embeddings

associated to every order of derivatives, we can assure that F belongs to Lr(Ωε) if

r := min

{
max

{
2N

(N − 4)p
,

Nq

(N − 4q)p

}
,

Nq

N − 4q
,

Nq

N − 3q
,

Nq

N − 2q
,
Nq

N − q

}
= min

{
max

{
2N

(N − 4)p
,

Nq

(N − 4q)p

}
,
Nq

N − q

}
.4

By [32, Corollary 2.21] we get that u ∈ W 4,r(Ωε). Now if r ≥ N
4 we conclude. Indeed,

if r > N
4 we can directly apply the Sobolev embedding theorem to conclude that w,

3We are using the following notation. If A := (a(1), ..., a(d))
T is a vector in Rd then (A)l := a(l) is his

lth coordinate. If u : Rd → R is a function in x then ul := ∂u
∂xl

. Hence div(A) :=
∑
l ∂l(A)l =

∑
l ∂la(l).

4The numbers in the definition of r come from the Sobolev embeddings. Since Dju ∈ W 4−j,q

then Dj ∈ L
Nq

N−(4−j)q for j = 0, 1, 2, 3. Moreover, since u ∈ H2 ∩ W 4,q then up ∈ Lα with α :=

max
{

2N
(N−4)p

, Nq
(N−4q)p

}
.
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and therefore u, belongs to C0,γ(Ωε) for some 0 < γ < 1. If r = N
4 we are in the

limit case of the Sobolev embeddings and we can conclude that u,w ∈ Lq(Ωε) for every

q ≥ 1. Repeating the preceding argument, we obtain that there exists an r such that

r = r(q) > N
4 .

Suppose now that r < N
4 . The idea is to perform an iterative argument, via a boot-

strapping technique, to reach the desired integrability. More precisely, let us define

q0 := 0,

qk := min

{
max

{
2N

(N − 4)p
,

Nqk−1

(N − 4qk−1)p

}
,
Nqk−1

N − qk−1

}
, k ∈ N.

(4.2.9)

Firstly, notice that if {qk} is non constant, that is qk 6≡ 2N
(N−4)p , since qk−1 <

N
4 because

if not we can stop the iterative argument in k − 1, then {qk}k∈N is a non decreasing

sequence. This is not enough to assure that qk overcome the value N
4 for some k.

Indeed, we need to study the behavior of the increments qk − qk−1, to exclude the case

where this quantity tends to 0. Suppose first that

qk =
Nqk−1

N − qk−1
.

Thus,

qk − qk−1 =
q2
k−1

N − qk−1
, qk−1 − qk−2 =

q2
k−2

N − qk−2
.

Let us define

g(x) :=
x2

N − x
, x <

N

4
.

It is easy to check that for this range of values of x, g′(x) > 0, that is, g is increasing.

Therefore, since {qk}k∈N is non decreasing, we can assure that for every k ∈ N,

(4.2.10) qk − qk−1 ≥ q1 − q0 =: c1 > 0,

where c1 is independent of k. On the other hand, let us suppose that

qk = max

{
2N

(N − 4)p
,

Nqk−1

(N − 4qk−1)p

}
.

In particular, it can be checked that

2N

(N − 4)p
≥ Nqk−1

(N − 4qk−1)p
if and only if qk−1 ≤

2N

N + 4
.

Thus, assume first

qk =
2N

(N − 4)p
,

and consider the function

h(x) =
2N

(N − 4)p
− x, x ≤ 2N

N + 4
.
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By definition,

h(x) ≥ 2N

(N − 4)p
− 2N

N + 4
=: c2,

with c2 independent of x. Notice that c2 > 0 if and only if p < N+4
N−4 , that is true by the

general assumptions on p. Therefore, we can conclude that also in this case

(4.2.11) qk − qk−1 ≥=: c2 > 0,

with c2 independent of k. Finally, suppose that

qk =
Nqk−1

(N − 4qk−1)p
, i.e., qk >

2N

N + 4
.

Consider

τ(x) :=
Nx

(N − 4x)p
− x, x >

2N

N + 4
.

Hence,

τ(x) =
x(N −Np+ 4xp)

(N − 4x)p
>
x(N −Np+ 4xp)

Np
.

Moreover, since x > 2N
N+4 ,

N −Np+ 4xp > N −Np+ 4
2N

N + 4
p > 0 if and only if p <

N + 4

N − 4
.

Therefore, there exists c3 > 0 such that τ(x) > c3 for all x > 2N
N+4 . Thus, in this case

(4.2.12) qk − qk−1 ≥=: c3 > 0,

with c3 independent of k. Finally, putting together (4.2.10), (4.2.11) and (4.2.12), we

can assure that

qk − qk−1 > c := min{c1, c2, c3} > 0,

with c independent of k.

That is, in every iteration we increase at least by a fixed quantity. Therefore, in a finite

number of steps we obtain necessarily that qk >
N
4 and we finish. More precisely, if

we start with F ∈ Lq0(Ω), after k iterations we know F ∈ Lqk(Ω), and therefore, once

qk >
N
4 , we conclude again by the Sobolev embeddings theorem.

Proposition 4.2.3. Suppose 0 ∈ ∂Ω. If u is a weak solution of problem (4.1.2), then

for every ε > 0 u ∈ Cα,γ(Ωε) ∩Wα+4,q(Ωε), where α := bpc, q > N
4 and 0 < γ < 1.

Proof. We prove first that u ∈ C1,γ(Ωε). Consider w defined in (4.2.4), satisfying prob-

lem (4.2.6). In Proposition 4.2.2 we obtained that w, and therefore u, belong to C0,γ(Ωε)
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by means of an interative argument. More precisely, we proved that F , defined in (4.2.7),

is in Lqk(Ωε) with qk >
N
4 .

The idea now is to reproduce this argument to see that F belongs not only to Lqk(Ωε),

but also to W 1,qk(Ωε). Therefore, we have to compute the gradient of F , and check its

integrability. By straightforward computations we find that

|∇F (u)| ≤ C0|∇u|+ C1pu
p−1|∇u|+ C2∆u+ C3|∇∆u|+ C4∆2u.

Since F ∈ Lqk(Ωε), we knew u ∈ W 4,qk(Ωε), that is, every derivative up to order 4

belongs to Lqk(Ωε). Moreover, since u ∈ C0,γ(Ωε) and p > 1, we can bound uniformly

the term up−1. Thus, ∇F ∈ Lqk(Ωε), and therefore F ∈ W 1,qk(Ωε). Hence, by [32,

Corollary 2.21] we obtain that u ∈W 5,qk(Ωε).

Finally, since qk >
N
4 , by [25, Theorem 6] we conclude u ∈ C1,γ(Ωε) for some 0 < γ < 1.

Likewise, if p > 2, we can reproduce this argument to check if F ∈ W 2,qk(Ωε). In such

a case, u ∈ W 6,qk(Ωε) and finally u ∈ C2,γ(Ωε). But again, D2F ∈ Lqk it is just a

consequence of the fact that u ∈W 5,qk(Ωε) ∩ C1,γ(Ωε), since

|up−2| ≤ C, |∇u| ≤ C, and Dβu ∈ Lqk(Ωε), β ≤ 5.

Iterating this argument, if p ≥ α, we obtain u ∈ Cα,γ(Ωε)∩Wα+4,qk(Ωε) as a consequence

of u ∈ Cα−1,γ(Ωε) ∩Wα+3,qk(Ωε) with qk >
N
4 and 0 < γ < 1.

Finally, we can prove that the solutions are indeed smooth in Ωε.

Proposition 4.2.4. Suppose 0 ∈ ∂Ω. If u is a weak solution of problem (4.1.2), then

for every ε > 0 and for every k ∈ N, u ∈ C∞(Ωε) ∩W k,q(Ωε).

Proof. By Proposition 4.2.3, we know u ∈ Cα,γ(Ωε) ∩Wα+4,q(Ωε) for α ≤ p, q > N
4 and

0 < γ < 1. Let x0 ∈ Ωε and let r > 0 such that Br(x
0) ⊂ Ωε. Taking ε small enough

in Proposition 4.2.3, we know that u ∈ Cα,γ(Br(x0)) ∩Wα+4,q(Br(x
0)). In particular,

since u is positive and continuous in Br,

(4.2.13) there exists a constant ρ > 0 such that u(x) ≥ ρ, ∀x ∈ Br(x0).

Suppose then that α > p. Let us define now w(x) := η(x)u(x), where in this case η

is a smooth cut-off function supported in Br. Thus, one can reproduce the proof of

Proposition 4.2.2 to check that w satisfies the problem (4.2.6) but in Br instead of Ωε.

Hence, as in the proof of Proposition 4.2.3, we reduce the problem to control the

Wα+4,q(Br) regularity. But the conclusion follows in a very similar way, only taking

into account that in this case p − α < 0 and thus, to control the term up−α instead of

the continuity we need to use (4.2.13). Then we obtained that the function u is C∞ in

every point x0 of Ωε and then we get that u ∈ C∞(Ωε).
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4.3 A priori estimates

For second order equations an important tool is the Gidas-Spruck estimate [38, Theorem

1.1]. There is also a polyharmonic version of the same result [62, Theorem 1] and [63,

Theorem 1]. To apply these kind of results we need to have some informations about the

boundary regularity of our solutions. But a priori we can not assure that positive weak

solutions of (4.1.2) are continuous up to the boundary of Ω, due to the presence of the

singularity in the origin, which is located on the boundary. However we can use a scaling

argument, as in the proof of [22, Lemma 2.2], to reduce ourselves to a situation in which

we can apply a blow-up argument to reduce the problem to a Liouville equation, [78,

Theorem 1.4] for the entire space, or [68] for the half-space with Dirichlet conditions.

The key point of the proof is to avoid the possibility that the positive blow-ups of the

function are exploding in the origin. This kind of argument is heavily based on the

fact that the weight we have in the forcing term f(x, u) is coherent with the number of

derivatives we are considering. So, for second order problem, we have the weight 1
|x|2 ,

[22], and for our fourth order problem we have 1
|x|4 .

Proposition 4.3.1. Suppose 0 ∈ ∂Ω. If u is a weak solution of problem (4.1.2), then

u ∈ L∞(Ω).

Proof. Step 1. Suppose x0 ∈ Ω. Define

r = r(x0) :=
1

2
dist(x0, ∂Ω) :=

1

2
inf
y∈∂Ω

|x0 − y|,

Then Br(x0) ⊂ Ω and 0 6∈ Br(x0). Finally notice that

(4.3.1) |x0| ≥ 2r ∀x0 ∈ Ω.

Indeed suppose by contradiction that there exists a x̃0 ∈ Ω such that |x̃0| < 2r then we

have

r =
1

2
inf
y∈∂Ω

|x̃0 − y| =
1

2
|x̃0| < r.

Now we define the rescaled function

(4.3.2) vx0(y) := u(x0 + ry) ∀ y ∈ Ω− x0

r
= B1(0),

that satisfies

(Px0) ∆2vx0 =
r4

|x0 + ry|4
vpx0

in B1(0).

Since 0 /∈ Br(x0) we have that u is smooth in Br(x0) and hence the rescaled function

vx0 is also smooth in B1(0). So vx0 satisfies equation (Px0) pointwise. Thus, noticing
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that u(x0) = vx0(0), if we prove the existence of a constant such that |vx0(0)| ≤ C for

every x0 and for every solution vx0 to (Px0), the result follows.

Step 2. Assume by contradiction that for every constant C > 0, there exists a point x0

and a solution vx0 to the problem (Px0) satisfying vx0(0) > C.

Thus, we can build a sequence of pairs {(x0,k, vx0,k
)}, where vx0,k

is a solution of problem

(Px0,k
) ∆2vx0,k =

r4
k

|x0,k + rky|4
vpx0,k

in B1(0),

with rk := r(xx0,k), so that

Mk := ‖vx0,k
‖L∞(B1(0)) →∞, as k →∞.

For simplicity, we denote vk := vx0,k
, but recalling that for every k, vk can be a solution

to a different problem.

Let us now define the blow-up functions

(4.3.3) wk(y) :=
1

Mk
vk

(
M

1−p
4

k y

)
.

Thus, wk is well defined in Bρk(0), where ρk := M
p−1

4
k , and

(4.3.4) ‖wk‖L∞(Bρk (0)) = 1, and wk(0) ≤ 1 for every k ∈ N.

In such a case, clearly

lim
k→+∞

ρk = +∞.

Moreover,

Dαwk(y) = M
1−p

4
|α|−1

k Dαvk

(
M

1−p
4

k y

)
,

and thus,

∆2wk(y) = M−pk ∆2vk

(
M

1−p
4

k y

)
in Bρk(0),

Now from (Px0,k
) we deduce

∆2wk(y) = M−pk ∆2vk

(
M

1−p
4

k y

)
= M−pk

r4
k∣∣∣∣x0,k + rk

(
M

1−p
4

k y

)∣∣∣∣4
vpx0,k

(
M

1−p
4

k y

)

=: fk(y)

where

fk(y) := M−pk
r4
k

|x0,k + rkzk|4
vpk(zk) =

r4
k

|x0,k + rkzk|4
wpk(y) zk := M

1−p
4

k y.
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Then, since y ∈ Bρk(0),

|zk| ≤M
1−p

4
k |y| ≤ 1,

and hence, recalling the definition of rk and (4.3.1),

(4.3.5) |x0,k + rkzk| ≥ |x0,k| − rk|zk| ≥ 2rk − rk = rk.

Thus,

fk(y) =
r4
k

|x0,k + rkzk|4
wpk(y) ≤ wpk(y) ∀ k ∈ N,

and by (4.3.4) we conclude that

(4.3.6) ‖fk‖L∞(Bρk (0)) ≤ 1 ∀ k ∈ N.

Therefore, since ρk → +∞, using [62, Corollary 6] on the balls BR(0) with R > 0 and

(4.3.6), we find that for every q ∈ (1,+∞)

‖wk‖W 4,q(BR) ≤ C(q,R)
(
‖fk‖Lq(BR) + ‖wk‖Lq(BR)

)
≤ C(q,R)

(
‖fk‖L∞(BR) + ‖wk‖L∞(BR)

)
≤ C(q,R).

[62, Corollary 6] is a direct consequence of the general regularity results by Agmon-

Douglis-Nirenberg, [4], using a cut-off function. Now using the Morrey Immersion and

choosing q > N we find that also

‖wk‖C3,γ(BR) ≤ C(q,R,N) for some γ ∈ (0, 1),

so we may extract a subsequence, which we still denote by {wk}k∈N such that

(4.3.7) wk → w in C3,γ(BR) for every R > 0,

so that w ∈ C3,γ
loc (RN ). Moreover by (4.3.7) ‖w‖L∞(RN ) = 1. Furthermore, since for every

compact set K ⊂ RN the sequence {fk}k∈N is uniformly bounded in L∞(K) by (4.3.6),

we can say by Banach-Alaoglu Theorem, that, up to a subsequence, fk
∗
⇀ F in L∞(K).

Now we want to compute the limit function F . Since by (4.3.5) we deduce that the

weight is uniformly bounded

0 ≤
r4
k

|x0,k + rkzk|4
≤ 1,

and by (4.3.7), we can say that, up to a subsequence, there exists a positive constant

C > 0, not depeding on k, such that fk is converging to

F (y) = Cwp(y).
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Since we may assume that wk → w in W 2,q
loc (RN ), we have that w is a bounded weak

solution of the problem

(4.3.8) ∆2w = Cwp(y) in RN .

Furthermore, since F = Cwp ∈ L∞(RN ), by bootstraping we obtain that

w ∈W 4,q
loc (RN ) ∩ C3,γ

loc (RN ),

and therefore, w is a bounded strong solution of (4.3.8). Using now that the right hand

side is much more regular, indeed F ∈ C3,γ
loc , and Schauder estimates for w, we can

conclude that w is also a bounded classical solution of (4.3.8). Now by [62, Lemma A]

we can conclude that w is also non negative. Thus, by [78, Theorem 1.4], necessarily

w ≡ 0, a contradiction with the fact that ‖w‖L∞(RN ) = 1.

Therefore, we have proved the existence of a constant C > 0 such that for every

x0 ∈ Ω,

u(x0) = vx0(0) ≤ C,

and hence u ∈ L∞(Ω).

Since by Proposition 4.2.3 weak solutions of problem (4.1.2) are at least C1 up to

the boundary far from the origin, and by Proposition 4.2.1 they satisfy the equation and

the boundary conditions almost everywhere, we can say, being u = 0 on the boundary

of Ω, that there exists a constant C > 0 such that

u(x) ≤ C ∀x ∈ Ω \ {0}.

By Proposition 4.3.1 we can prove, by scaling, a priori estimates on the derivatives of u

up to order three.

Corollary 4.3.1. Suppose 0 ∈ ∂Ω. If u is a weak solution of problem (4.1.2) then there

exists a constant C > 0 such that

|∇u(x)| ≤ C

|x|
, |D2u(x)| ≤ C

|x|2
, |∇∆u(x)| ≤ C

|x|3
∀x ∈ Ω \ {0}.

Proof. Let us consider x0 ∈ Ω \ {0}. Then we define

r :=
|x0|
2

and Ωr := Br(x0) ∩ Ω. From the choice of r we have that 0 /∈ Ωr. Now we define, as

before, the rescaled function vx0(y) := u(x0 + ry). for every y ∈ Ω−x0
r ⊂ B1(0). Since

|∇vx0(0)| = r|∇u(x0)|, we have that the thesis is equivalent to prove that there exists a

constant C > 0 such that

|∇vx0(0)| ≤ C,
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for each x0 ∈ Ω \ {0} and for each vx0 . We notice that the rescaled function v0 satisfies

in a classically way the problem (Px0) in Ω−x0
r eventually coupled with the Dirichlet

boundary conditions, since we are far from the origin

(4.3.9) vx0 =
∂vx0

∂ν
= 0 on ∂

(
Ω− x0

r

)
∩B1(0).

By the same argument as before and since |u| ≤ C we can prove that the right hand

side of problem (Px0) is uniformly bounded by a constant. Indeed∥∥∥∥ r4

|x0 + ry|4
vpx0

∥∥∥∥
L∞

(
Ω−x0
r

) ≤ sup
r4

|x0 + ry|4
∣∣vpx0

∣∣ ≤ C,
with C which is not depending on x0, by Proposition 4.3.1. 5

Now vx0 is a solution of the more general fourth order problem
Lvx0 =

r4

|x0 + ry|4
vpx0

in B+
1

vx0 =
∂vx0

∂ν
= 0 on {x1 = 0},

where the coefficients of the elliptic operator L are smooth. 6 Now using [62, Corollary

6 part (ii)] we can conclude that

‖vx0‖W 4,q(B+
1 ) ≤ C (‖u‖Lq + ‖f‖Lq) ≤ C.

Using Morrey immersion and choosing q > N , we can say that

vx0 ∈ C3,γ(B+
1 ) for some 0 < γ < 1.

Moreover the bound on the norm is uniform since it depends on the bound of f :=
r4

|x0+ry|4 v
p
x0 which is uniform. So we have that there exists a constant C > 0 such that

‖vx0‖C3,γ(B+
1 )
≤ C.

Hence we have that |∇vx0(0)|, |D2vx0(0)| and |∇∆vx0(0)| are uniformly bounded by

C. Then by scaling we have the thesis which holds for every x0 ∈ Ω \ {0} since x0 is

arbitrary.

5We notice here that the set Ω−x0
r
⊂ B1(0) is not a priori connected. Indeed it is possible, for

pathological domains, that Ωr is given by two or more connected components, and the same holds for
Ω−x0
r

. Restricting to a small connected neighborhood U ⊂ Ω−x0
r

of 0 we can say that vx0 ∈ W 4,q(U)

for every q ∈ (1,+∞). Indeed by a diffeomorfism ϕ we can say that U is diffeomorphic to the half-ball

B+
1 (0) together with zero Dirichlet boundary conditions on {x ∈ B1 : x1 = 0}.

6The coefficients of the elliptic operator L depend also on the diffeomorphism ϕ of the preceding

note.
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4.4 Nonexistence of positive solutions in star-shaped do-

mains

The second tool we need to prove non existence of positive weak solutions of problem

(4.1.2) is a Pohozaev type identity. The original result [56], is for the classical Laplace

operator. Moreover versions of the same identity are well known also for polyharmonic

operators , [32, Theorem 7.27] and [32, Theorem 7.29], both for Dirichlet and Navier

boundary conditions. In Chapter 3 we proved a Pohozaev type identity, in the easier

case with Navier boundary conditions and in which the origin is in the interior of the

domain. Here, we need to consider the situation in which the boundary conditions are

of Dirichlet type and in which the origin is located on the boundary.

Proposition 4.4.1. Suppose 0 ∈ ∂Ω. If u is a weak solution of problem (4.1.2), then

the following Pohozaev type identity holds∫
Ω
|∆u|2 dx =

2

p+ 1

∫
Ω

up+1

|x|4
dx− 1

N − 4

∫
∂Ω
u2
νν(x · ν) dHN−1.

Proof. We define Ωε as in (4.2.2) for any ε positive. If u is a weak solution of (4.1.2),

by Proposition 4.2.2 we know that u is smooth in Ωε, and thus, multiplying both sides

of the equation by (x · ∇u), we get

(4.4.1)

∫
Ωε

∆2u(x · ∇u) dx =

∫
Ωε

up+1

|x|4
(x · ∇u) dx.

We analyze first the left hand side.∫
Ωε

∆2u(x · ∇u) dx =

∫
Ωε

div(∇∆u)(x · ∇u) dx

=

∫
Ωε

div(∇∆u · (x · ∇u)) dx−
∫

Ωε

∇∆u · ∇(x · ∇u) dx

=

∫
Ωε

div(∇∆u · (x · ∇u)) dx−
∫

Ωε

∇∆u · ∇u dx

−
∫

Ωε

∇∆u · 〈x,D2u〉 dx

=

∫
Ωε

div(∇∆u · (x · ∇u)) dx−
∫

Ωε

div(∇u∆u) dx+

∫
Ωε

|∆u|2 dx

−
∫

Ωε

div(∆u · 〈x,D2u〉) dx+

∫
Ωε

∆udiv(〈x,D2u〉) dx.

Moreover, ∫
Ωε

∆udiv(〈x,D2u〉) dx =

∫
Ωε

|∆u|2 dx+

∫
Ωε

∆u(x · ∇∆u) dx,
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∫
Ωε

∆u(x · ∇∆u) dx =

∫
Ωε

x · ∇
(
|∆u|2

2

)
dx

=

∫
Ωε

div
(x

2
|∆u|2

)
dx− N

2

∫
Ωε

|∆u|2 dx.

Thus, putting all together and applying the Divergence Theorem,∫
Ωε

∆2u(x · ∇u) dx =

∫
Ωε

div(∇∆u · (x · ∇u)) dx−
∫

Ωε

div(∇u∆u) dx

−
∫

Ωε

div(∆u · 〈x,D2u〉) dx+

∫
Ωε

div
(x

2
|∆u|2

)
dx

+
4−N

2

∫
Ωε

|∆u|2 dx

=

∫
∂Ωε

∇∆u(x · ∇u) · ν dHN−1 −
∫
∂Ωε

∇u∆u · ν dHN−1

−
∫
∂Ωε

∆u〈x,D2u〉 · ν dHN−1 +

∫
∂Ωε

x

2
|∆u|2 · ν dHN−1

+
4−N

2

∫
Ωε

|∆u|2 dx.

Finally, applying the boundary conditions and reminding (4.2.3)we reach that

∫
Ωε

∆2u(x · ∇u) dx =

∫
∂Ω2

ε

∇∆u · (x · ∇u) · ν dHN−1 −
∫
∂Ω2

ε

∇u∆u · ν dHN−1

−
∫
∂Ωε

∆u · 〈x,D2u〉 · ν dHN−1 +

∫
∂Ωε

x

2
|∆u|2 · ν dHN−1

+
4−N

2

∫
Ωε

|∆u|2 dx.

(4.4.2)

On the other hand, attending to the right hand side of (4.4.1), we get

∫
Ωε

up+1

|x|4
(x · ∇u) dx =

1

p+ 1

∫
Ωε

∇(up+1) · x

|x|4
dx

=
1

p+ 1

∫
Ωε

div

(
up+1 x

|x|4

)
dx− 1

p+ 1

∫
Ωε

up+1div

(
x

|x|4

)
dx

=
1

p+ 1

∫
Ωε

div

(
up+1 x

|x|4

)
dx− N − 4

p+ 1

∫
Ωε

up+1

|x|4
dx,

and again, applying the Divergence Theorem and the boundary conditions, we deduce

(4.4.3)

∫
Ωε

up+1

|x|4
(x · ∇u) dx =

1

p+ 1

∫
∂Ω2

ε

up+1 x

|x|4
· ν dHN−1 − N − 4

p+ 1

∫
Ωε

up+1

|x|4
dx.
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Thus, joining (4.4.2) and (4.4.3), we obtain

N − 4

2

∫
Ωε

|∆u|2 dx =

∫
∂Ω2

ε

∇∆u(x · ∇u) · ν dHN−1 −
∫
∂Ω2

ε

∇u∆u · ν dHN−1

−
∫
∂Ωε

∆u · 〈x,D2u〉 · ν dHN−1 +

∫
∂Ωε

x

2
|∆u|2 · ν dHN−1

− 1

p+ 1

∫
∂Ω2

ε

up+1 x

|x|4
· ν dHN−1 +

N − 4

p+ 1

∫
Ωε

up+1

|x|4
dx

(4.4.4)

Finally, we want to pass to the limit when ε → 0 in this identity. Since u is a weak

solution of problem (4.1.2) we have∫
Ω
|∆u|2dx < +∞,

∫
Ω

up+1

|x|4
dx < +∞.

But then, applying the Dominated Convergence Theorem, we have

(4.4.5) lim
ε→0

∫
Ωε

|∆u|2 dx = lim
ε→0

∫
Ω
|∆u|2χΩε dx =

∫
Ω
|∆u|2 dx,

and

(4.4.6) lim
ε→0

∫
Ωε

up+1

|x|4
dx = lim

ε→0

∫
Ω

up+1

|x|4
χΩε dx =

∫
Ω

up+1

|x|4
dx.

Moreover using Proposition 4.3.1 and Corollary 4.3.1 we know that

|u(x)| ≤ C, |∇u(x)| ≤ C

|x|
, |∆u(x)| ≤ C

|x|2
, |D2u(x)| ≤ C

|x|2
, |∇∆u(x)| ≤ C

|x|3
,

for all x ∈ Ω. Then we have that

lim
ε→0

∫
∂Ω2

ε

∇∆u(x · ∇u) · ν dHN−1 = 0 ⇐⇒

∣∣∣∣∣limε→0

∫
∂Ω2

ε

∇∆u(x · ∇u) · ν dHN−1

∣∣∣∣∣ = 0.

But then∣∣∣∣∣limε→0

∫
∂Ω2

ε

∇∆u(x · ∇u) · ν dHN−1

∣∣∣∣∣ ≤ lim
ε→0

∫
∂Ω2

ε

|∇∆u||x||∇u||ν| dHN−1

≤ C lim
ε→0

∣∣∂Ω2
ε

∣∣
HN−1

ε3

≤ C lim
ε→0

εN−4 = 0.

So we have that

(4.4.7) lim
ε→0

∫
∂Ω2

ε

∇∆u(x · ∇u) · ν dHN−1 = 0.
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Moreover∣∣∣∣∣limε→0

∫
∂Ω2

ε

up+1 (x · ν)

|x|4
dHN−1

∣∣∣∣∣ ≤ lim
ε→0

∫
∂Ω2

ε

up+1

|x|3
dHN−1 ≤ C lim

ε→0
εN−4 = 0,

and ∣∣∣∣∣limε→0

∫
∂Ω2

ε

∇u∆u · ν dHN−1

∣∣∣∣∣ ≤ lim
ε→0

∫
∂Ω2

ε

|∇u||∆u| dHN−1 ≤ C lim
ε→0

εN−4 = 0.

So we have

(4.4.8) lim
ε→0

∫
∂Ω2

ε

∇u∆u · ν dHN−1 = 0,

and

(4.4.9) lim
ε→0

∫
∂Ω2

ε

up+1 (x · ν)

|x|4
dHN−1 = 0.

Using Proposition 4.3.1 and Corollary 4.3.1 we can prove that

lim
ε→0

∫
∂Ω2

ε

x

2
|∆u|2 · ν dHN−1 = 0.

But then

lim
ε→0

∫
∂Ωε

x

2
|∆u|2 · ν dHN−1 = lim

ε→0

∫
∂Ω1

ε

x

2
|∆u|2 · ν dHN−1 + lim

ε→0

∫
∂Ω2

ε

x

2
|∆u|2 · ν dHN−1

= lim
ε→0

∫
∂Ω1

ε

x

2
|∆u|2 · ν dHN−1

= lim
ε→0

∫
∂Ω1

ε

|∆u|2

2
(x · ν) dHN−1

= lim
ε→0

∫
∂Ω

|∆u|2

2
(x · ν)χ∂Ω1

ε
dHN−1

=

∫
∂Ω

|∆u|2

2
(x · ν) dHN−1.

We can put the limit inside the integral using the Dominated Convergence Theorem.

Indeed by Corollary 4.3.1 we have

|∆u(x)| ≤ C

|x|2
∀x ∈ Ω \ {0}.

But then ∫
∂Ω

|x|
2
|∆u|2 dHN−1 ≤ C

∫
∂Ω

1

|x|3
dHN−1
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Now let O(0) := Br(0) ∩ ∂Ω a spherical neighborhood of 0 in ∂Ω. By the regularity up

to the boundary of the function 1
|x|3 far from the origin we can say that∫

∂Ω

1

|x|3
dHN−1 ≤

∫
∂Ω\O

1

|x|3
dHN−1 +

∫
O

1

|x|3
dHN−1 ≤ C +

∫
O

1

|x|3
dHN−1.

Consider a point x ∈ O(0) \ {0}, x = (x1, x2, . . . , xN ). Since Ω is smooth O is a smooth

graph. Thus, after an appropriate rotation, this graph can be written as

xN = h(x1, x2, . . . , xN−1),

with h smooth and in a way such that Ω lies locally above this graph, that is O lies

above this graph. So we have, using the fact that h is smooth, that√
1 + |∇h(x′)|2 ≤ C ∀x′ such that x ∈ O.

But then ∫
O
|x|−3 dHN−1 =

∫
O

(
x2

1 + . . .+ x2
N−1 + (h(x′))2

)− 3
2
√

1 + |∇h(x′)|2 dx′

≤ C
∫
O

(
x2

1 + . . .+ x2
N−1 + (h(x′))2

)− 3
2 dx′

≤ C
∫
O

(
x2

1 + . . .+ x2
N−1

)− 3
2 dx′

≤ C
∫
O
|x′|−3 dx′

= C

∫ r

0
ρN−5 dρ = C ∀N > 4.

(4.4.10)

But this implies that the functions g(x) := x
2 |∆u|

2 ∈ L1(∂Ω) and then, by the Dominated

Convergence Theorem, that

(4.4.11) lim
ε→0

∫
∂Ωε

x

2
|∆u|2 · ν dHN−1 =

∫
∂Ω

x

2
|∆u|2 · ν dHN−1.

Finally, we can apply the same argument to the last term. Indeed

lim
ε→0

∫
∂Ωε

∆u〈x,D2u, ν〉 dHN−1 = lim
ε→0

∫
∂Ω1

ε

∆u〈x,D2u, ν〉 dHN−1

+ lim
ε→0

∫
∂Ω2

ε

∆u〈x,D2u, ν〉 dHN−1.

As before

lim
ε→0

∫
∂Ω2

ε

∆u〈x,D2u, ν〉 dHN−1 ≤ lim
ε→0

∫
∂Ω2

ε

∆u|D2u||x| dHN−1

≤ C lim
ε→0

εN−4 = 0.
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Finally

lim
ε→0

∫
∂Ω1

ε

∆u〈x,D2u, ν〉 dHN−1 = lim
ε→0

∫
∂Ω

∆u〈x,D2u, ν〉χ∂Ω1
ε
dHN−1

=

∫
∂Ω

∆u〈x,D2u, ν〉 dHN−1.

if we are able to put the limit under the integral. To do that we need∫
∂Ω

∆u〈x,D2u, ν〉 dHN−1 < +∞.

But using the regularity up to the boundary of the solution u and the computation in

(4.4.10) we have∫
∂Ω

∆u〈x,D2u, ν〉 dHN−1 ≤
∫
∂Ω

C

|x|3
dHN−1

≤ C
∫
∂Ω\O(0)

|x|−3 dHN−1 + C

∫
O
|x|−3 dHN−1

≤ C.

So we find

(4.4.12) lim
ε→0

∫
∂Ωε

∆u〈x,D2u, ν〉 dHN−1 =

∫
∂Ω

∆u〈x,D2u, ν〉 dHN−1.

Joining (4.4.5), (4.4.6), (4.4.7), (4.4.8), (4.4.9), (4.4.11), (4.4.12) in (4.4.4) we find

N − 4

2

∫
Ω
|∆u|2 dx =

N − 4

p+ 1

∫
Ω

up+1

|x|4
dx+

∫
∂Ω

x

2
|∆u|2 · ν dHN−1

−
∫
∂Ω

∆u · 〈x,D2u, ν〉 dHN−1.

(4.4.13)

Since u ≡ 0 on ∂Ω we have that ∇u = ∂u
∂ν on ∂Ω. Since

D2u :=


∇(u1)

...

∇(uN )

 , 7

and the fact that

∇(ui) =
∂ui
∂ν

ν,

we have

(D2u)ij :=
∂2u

∂xi∂xj
=
∂2u

∂ν2
νiνj .

7We recall the notation used before, that is ul = ∂u
∂xl

.
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But then

∆u :=
∑
i

∂2u

∂x2
i

=
∑
i

∂2u

∂ν2
ν2
i = uνν ,

and

〈x,D2u, ν〉 =
∑
ij

xi
∂2u

∂xi∂xj
νj =

∑
ij

xi
∂2u

∂ν2
νiν

2
j = u2

νν(x · ν).

Finally joining the preceding computations in (4.4.13) we find the thesis.

We have now all the tools to prove the nonexistence of positive (weak) solutions of

problem (4.1.2). We need one more assumption, that is Ω has to be star-shaped with

respect to the origin. We remember that the origin is on the boundary of Ω. We need

to give carefully the definition of a domain star-shaped with respect to a point in its

closure. In general a set S ⊆ RN is star-shaped with respect to a point x0 ∈ S if for

every x ∈ S the line segment [x, x0] ⊂ S. If Ω is a domain, that is a bounded subset of

RN , we define Ω star-shaped with respect to x0 ∈ ∂Ω if the closure of Ω is star-shaped

with respect to x0, with respect to the definition of starshaped set. So, we give the

following definition.

Definition 4.4.1. Let Ω ⊂ RN a set. Ω is star-shaped with respect to a point x0 ∈ Ω if

for every x ∈ Ω the line segment [x, x0] is entirely contained in Ω.

Lemma 4.4.1. Let Ω strictly star-shaped with respect to the point 0 ∈ ∂Ω. Then x·ν > 0

for every x ∈ ∂Ω, x 6= 0.

Proof. Suppose by contradiction that there exists a point x 6= 0, x ∈ ∂Ω such that

x ·ν ≤ 0. We remark that x ·ν = |x| cosϑ where ϑ is the angle between x and ν. Since Ω

is star-shaped with respect to the origin we have that for every x ∈ ∂Ω the line segment

(x, 0) = x ⊂ Ω. Moreover if x · ν ≤ 0 then cosϑ ≤ 0 and then ϑ ∈ [π2 ,
3
2π]. Since ν is the

exterior normal vector in the point x ∈ ∂Ω this implies that the segment x 6⊂ Ω which

is a contradiction.

Theorem 4.4.1. Let Ω star-shaped with respect to the point 0 ∈ ∂Ω. Then the problem

(4.1.2) has no positive (weak) solutions.

Proof. If u is a positive weak solution of problem (4.1.2) we have by Proposition 4.4.1∫
Ω
|∆u|2 dx =

2

p+ 1

∫
Ω

up+1

|x|4
dx− 1

N − 4

∫
∂Ω
u2
νν(x · ν) dHN−1.

Integrating the equation in (4.1.2) against the function u we obtain∫
Ω
|∆u|2 dx =

∫
Ω

up+1

|x|4
dx.
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Substracting the first equation minus the second we obtain

0 =

(
2

p+ 1
− 1

)∫
Ω

up+1

|x|4
dx− 1

N − 4

∫
∂Ω
u2
νν(x · ν) dHN−1.

But since (x · ν) > 0 and 2
p+1 − 1 < 0 we have that u ≡ 0 which is a contradiction.



Part II

A priori estimates for superlinear

problems
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Chapter 5

Preliminaries

5.1 Trudinger-Moser inequality

In Chapter 2 we considered the classical case of the Sobolev embeddings, that is p < N ,

and we said that

W 1,p
0 (Ω) ↪→ Lq(Ω) ∀ 1 ≤ q ≤ p∗ :=

Np

N − p
.

Now, we want to consider the limiting case. Let Ω ⊂ RN and N ≥ 2 and let p = N .

Then we have that

W 1,N
0 ↪→ Lq(Ω) ∀ q ≥ 1.

Hence, every polynomial growth is allowed, in contrast with the subcritical case in which

the maximal growth is given by |u|p∗ . Since formally

p∗ :=
Np

N − p
→ +∞ as p→ N,

one may expect that a function u ∈ W 1,N
0 (Ω) is in L∞(Ω), but it is a well known fact

that

W 1,N
0 (Ω) 6↪→ L∞(Ω).

Indeed, one may consider the counterexample given by

u(x) :=

log |log |x|| 0 < |x| < 1
ε

0 elsewhere.

It is easy to see that for any domain Ω ⊂ RN containing the unit ball centered in the

origin

‖∇u‖NLN (Ω) =
ωN−1

N − 1
,

77
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but clearly u 6∈ L∞(Ω). Still, one may look for the maximal growth function g : R→ R+

such that

sup
u∈W 1,N

0 (Ω)

‖∇u‖
LN (Ω)

≤1

∫
Ω
g(u)dx < +∞.

V. I. Yudovich [81], S. I. Pohozaev [55] and N. S. Trudinger [75] proved independently

that the maximal growth is of exponential type. More precisely, they proved that there

exists a positive constant αN , depending only on the dimension N , such that

sup
u∈W 1,N

0 (Ω)

‖∇u‖
LN (Ω)

≤1

∫
Ω
eαN |u|

N
N−1

dx < +∞.

The original arguments by Yudovich-Pohozaev-Trudinger relied on the same idea. They

devoloped the exponential function in a power series and proved that the series of Lp-

norms converges. Howewer, this argument does not produce the optimal exponent αN .

Later, J. Moser [51], using a different approach, found the best exponent αN , proving

the following result.

There exists a constant CN > 0 such that

(5.1.1) sup
u∈W 1,N

0 (Ω)

‖∇u‖
LN (Ω)

≤1

∫
Ω
eα|u|

N
N−1

dx < +∞ ∀α ≤ αN ,

where αN := Nω
1/(N−1)

N−1 . Furthermore, inequality (5.1.1) is sharp, that is if α > αN then

the supremum in (5.1.1) is infinite.

As for the Sobolev embeddings theorem, we may want to consider the general higher

order case k > 1. In this case, the result is given by D. R. Adams in [2].

Let k ∈ N and Ω a domain in RN with k < N . Then there exists a constant Ck,N > 0

such that

(5.1.2) sup
u∈Wk,N/k

0 (Ω)

‖Dku‖
L
N/k(Ω)

≤1

∫
Ω
eβ|u|

N
N−k

dxdx < +∞ ∀β ≤ βk,N ,

where

βk,N :=
N

ωN−1



[
π
N
2 2kΓ

(
k
2

)
Γ
(
N−k

2

) ]N/(N−k)

m is even

[
π
N
2 2kΓ

(
k+1

2

)
Γ
(
N−k+1

2

) ]N/(N−k)

m is odd.
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Furthermore, inequality (5.1.2) is sharp.

We can see the Adams-Trudinger-Moser inequality as the counterpart of the Sobolev

embeddings theorem in the critical case kp = N . In this work, we are interested only in

the embedding of the space W 1,N
0 (Ω) with Ω a bounded domain.

We refer to the monograph of F. Sani [67] and to the related papers [45] and [65] for

more details about Adams-Trudinger-Moser inequalities, their generalizations and some

of their applications to elliptic problems.

5.2 Classical results about a priori estimates

What do we mean by a priori estimates ? Let us consider the following semilinear elliptic

problem

(5.2.1)


−∆u = f(x, u) in Ω

u = 0 on ∂Ω

u > 0 in Ω,

where Ω is a bounded smooth domain in RN , N ≥ 3 and f = f(x, u) is a continuous

function (more generally a locally Lipschitz function) in the second variable with a

superlinear growth at infinity. By an a priori estimate we mean a uniform L∞-estimate

for solutions of problem (5.2.1), that is we want to prove that there exists a constant C

such that

‖u‖L∞(Ω) ≤ C ∀u solution of (5.2.1).

The possibility to obtain such a kind of estimate depends both on the term f and on

the type of solution we are considering.

We want to recall here the basic definitions for solutions of problem (5.2.1). We

assume that the function f is a Carathéodory function, that is f(·, t) is measurable and

f(x, ·) is continuous.

If f(·, u(·)) ∈ C0(Ω) and u ∈ C2(Ω) ∩ C0(Ω) we say that u is a classical solution

of problem (5.2.1) if u satisfies pointwise the equation and the boundary conditions in

(5.2.1).

If f(·, u(·)) is not a regular function then the definition of classical solutions does not

make sense. Hence we may define weakened formulation of solutions. If f(·, u(·)) ∈ L2(Ω)

then we say that u ∈ H1
0 (Ω) is a weak solution of problem (5.2.1) if∫

Ω
∇u · ∇vdx =

∫
Ω
f(x, u)vdx ∀ v ∈ H1

0 (Ω).

It is well known that it is sufficient to check the preceding equality for all v ∈ C∞0 (Ω) by

density. Weak solutions are often called also variational solutions since they are critical
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points of the energy functional

E(u) :=
1

2

∫
Ω
|∇u|2dx+

∫
Ω
F (x, u(x))dx, F (x, t) :=

∫ t

0
f(x, s)ds.

If we accept to relax further the definition of solution we can consider f(·, u(·)) ∈
L1(Ω). In this case case we call a L1-solution of problem (5.2.1) a function u ∈ L1(Ω)

such that ∫
Ω
−u∆vdx =

∫
Ω
f(x, u)vdx ∀ v ∈ C2(Ω), v

∣∣
∂Ω

= 0.

L1-solutions are also called distributional solutions.

Now let us denote with δ(x) := dist(x, ∂Ω) for all x ∈ Ω. For all 1 ≤ p ≤ +∞ we

define

Lpδ(Ω) := Lp(Ω, δ(x)dx),

endowed with the norm

‖u‖Lpδ(Ω) :=

(∫
Ω
|u|pδ(x)dx

)1/p

.

If f ∈ L1
δ(Ω) we say that u is a L1

δ-solution of problem (5.2.1) if u ∈ L1
δ is such that∫

Ω
−u∆vdx =

∫
Ω
f(x, u)vdx ∀ v ∈ C2(Ω), v

∣∣
∂Ω

= 0.

L1
δ-solutions generalize L1-solution in case of singularity on the boundary of Ω.

A priori estimates for solutions of elliptic equations have been a deep focus of research

in the last three decades. We present here some of the classical results about this theme.

The first general result for a priori estimates for superlinear elliptic equation is due

to H. Brezis and R. E. L. Turner [15]. They considered a second order elliptic equation

with nonlinearity f = f(x, u) and proved a priori bounds for positive weak solutions

under the assumption

0 ≤ f(x, s) ≤ Csp 1 < p < 2∗ − 1 :=
N + 1

N − 1
.

The critical exponent

(5.2.2) 2∗ :=
2N

N − 1

is called Brezis-Turner exponent and notice that it is smaller than the critical Sobolev

exponent 2∗ := 2N
N−2 for all N ≥ 3. The proof of Brezis-Turner is heavily based on the

Hardy-Sobolev inequality.

If f(x, u) ∈ L1
δ(Ω) the exponent 2∗− 1 is crucial if we want to consider L1

δ-solutions.

Quittner and Souplet in [59], generalized the result of Brezis-Turner to L1
δ-solutions for
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nonlinearities with p < 2∗ − 1. Moreover Souplet proved in [69], that the Brezis-Turner

exponent is critical for L1
δ-solutions, that is if the growth of the nonlinearity is greater

than up for p > 2∗ − 1, then there exist examples of unbounded L1
δ-solutions. Del Pino,

Musso and Pacard proved a counterexample also for the case p = 2∗ − 1 in [24].

If we consider slightly more regular solutions, namely L1-solutions, then the critical

growth is not anymore given by the Brezis-Turner exponent, but by 2̃ − 1 := N
N−2 .

A priori estimates for L1-solutions were proved in this case by extending the result of

Quittner and Souplet for L1
δ-solutions. Combining two different results by Ni-Sacks and

by Aviles, [52] and [8], it is possible to show that 2̃ − 1 is critical, finding unbounded

L1-solutions for p ≥ 2̃− 1.

If we restrict to the case of much more regular solutions, that is classical solutions,

the Brezis-Turner exponent is not critical anymore and same for 2̃ − 1. Indeed, Gidas-

Spruck proved in [38] that under the condition that there exists a continous function

a : Ω→ R such that

lim
s→+∞

f(x, s)

sp
= a(x),

uniformly in x ∈ Ω, for 1 < p < 2∗ − 1, then for positive classical solutions the a

priori estimates hold. Their technique is based on a blow-up argument and a Liouville

Theorem on RN . A similar result was obtained by de Figueiredo, Lions and Nussbaum,

[23]. They proved a priori bounds under the condition that the domain Ω is convex and

the nonlinearity f is superlinear at infinity and satisfies

f(x, s) ≤ csp 1 < p < 2∗ − 1.

Their argument is based on moving plane techniques and hence on maximum principle.

5.3 A priori estimates for the m-Laplacian operator

Concerning the m−Laplacian case, Azizieh and Clément proved in [9] a priori bounds

for positive solutions of the problem
−∆mu = f(x, u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

for 1 < m < 2 and f(x, u) = f(u) with C1u
p ≤ f(u) ≤ C2u

p and 1 < p < N(m−1)
N−m and

the domain Ω is convex. We recall here that the m-Laplacian operator is defined as

∆mu := div(|∇u|m−2∇u).

It is trivial that if m = N = 2 then ∆mu = ∆u.
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A more general case was studied by Ruiz, [66]. If 1 < m ≤ 2, Ω does not need to

be convex and f can also depend on x. All the preceding results are for N ≥ 3 and

are based on the Sobolev embeddings. Since for m = N we are in the limiting case of

Sobolev embeddings, one may ask whether it is possible to prove a priori estimates for

nonlinearities with growth up to the Trudinger-Moser growth for the operator −∆N .

If we restrict ourselves to the case N = 2 then this is not possible since Brezis and

Merle gave in [13] examples of nonlinearities f(x, s) = h(x)es
α

with α > 1 for which

there exists a sequence of unbounded solutions.

Nevertheless, using the result of Brezis-Merle and the boundary estimates of de

Figueiredo-Lions-Nussbaum for Ω convex, it is possible to prove a priori estimates for

nonlinearities f such that C1e
s ≤ f(x, s) ≤ C2e

s. Recently, Lorca-Ubilla-Ruf proved

in [44] a priori results for the N -Laplacian in dimension N and for nonlinearities of

maximal growth es
α

for α < 1 or for f ∼ es. Howewer, notice that their result leaves

open the small range between es
α

and es, for example nonlinearities of the form es

(s+1)α

or es/logσ(e+1). Our result below narrows this gap. Indeed, we are able to prove a priori

estimates also for nonlinearities f of maximal growth es/logσ(e+s) with σ > 0 in the

subcritical case or for nonlinearities f such that C1
es

(s+1)α ≤ f(s) ≤ C2e
s with α < 1 in

the critical case. Still we are not able to prove the result for nonlinearities f ∼ es

(s+1)α

for α ≥ 1. It it not clear to the authors if this is a matter of techniqualities or whether

the case α ≥ 1 is intrinsically different from the other cases.



Chapter 6

Superlinear problems for the

N-laplacian

The results written in this chapter are collected in the paper [54]. The argument of our

proof is inspired by the original work [44]. By the same argument of de Figueiredo-Lions-

Nussbaum it is possible to obtain uniform boundary estimates, for convex domain. The

boundary estimates lead to uniform L1-estimates of the right hand side f(u). Finally

we can use this uniform bound on the forcing term to obtain uniform L∞-bounds on

u. We use the Trudinger-Moser inequality and some more subtle considerations on the

estimates in [44]. Still, in the case es

(s+1)α for α ≥ 1 our argument does not seem to work.

Let us consider the following problem

(6.0.1)


−∆Nu = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where Ω is a strictly convex, bounded and smooth domain in RN , N ≥ 2 and

(6.0.2) ∆Nu := div
(
|∇u|N−2∇u

)
,

is the N -Laplacian operator. On the function f we are assuming the following conditions:

(f0) f : R+ → R+ is a locally Lipschitz function;

(f1) ∃ d > 0 : lim inf
s→+∞

f(s)

sN−1+d
> 0;

(f2) ∃σ > 0, ∃C, s0 > 0 : f(s) ≤ Ces/logσ(e+s) ∀ s ≥ s0

83
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Figure 6.1: Improvements of conditions in [44] choosing σ = 1 and α = 1
2 in assumptions

(f2) and (f ′2). The limit case es

(s+1)α for α ≥ 1 is still outside from the set of admissible

nonlinearities.

or

(f ′2) ∃ 0 < α < 1 ∃C1, C2, s0 > 0 : C1
es

(s+ 1)α
≤ f(s) ≤ C2e

s ∀ s ≥ s0;

We remark here that conditions (f2) and (f ′2) generalize both conditions [44, (f3),

(f4)] respectively. In case (f ′2) the condition (f1) is unnecessary because condition (f ′2)

implies the superlinearity at infinity.

We consider positive weak solutions for problem (6.0.1) in the following sense.

Definition 6.0.1. We say that u in W 1,N
0 (Ω) is a positive weak solution of problem

(6.0.1) if u is positive a.e and∫
Ω
|∇u|N−2∇u · ∇ϕdx =

∫
Ω
f(u)ϕdx ∀ϕ ∈W 1,N

0 (Ω).

The main result is the following a priori estimate.

Theorem 6.0.1. Under assumptions (f0)-(f1)-(f2) or (f0)-(f1)-(f ′2) there exists a con-

stant C > 0 such that every positive weak solution u ∈W 1,N
0 (Ω) satisfies

‖u‖L∞(Ω) ≤ C.

We divide the proof of Theorem 6.0.1 in two cases. First, we consider the forcing

term f satisfying assumption (f2). Then, we consider f satisfying condition (f ′2).



6.1. Orcliz spaces 85

6.1 Orcliz spaces

We recall here some basic facts about Orlicz spaces, for more details see for example [3]

and [61]. A continuous function φ : R → R+ is called a N -function1, if it is convex,

even, φ(t) = 0 iff t = 0 and

lim
t→0

φ(t)

t
= 0, lim

t→+∞

φ(t)

t
= +∞.

Given a N -function φ we can define its conjugate function φ̃ as

φ̃(s) := sup
t>0
{st− φ(t)}.

Associated to a N -function φ and a domain Ω ⊂ RN we introduce the Orlicz class

of functions defined by

Kφ(Ω) :=

{
u : Ω→ R : u is measurable and

∫
Ω
φ(u(x))dx < +∞

}
.

In general Orlicz classes are convex sets but not linear spaces. We define the Orlicz space

as

Lφ(Ω) := {the vector space generated by Kφ(Ω)} .

On the Orlicz space Lφ(Ω) we can define the following norm, called Luxemburg norm

(6.1.1) ‖u‖φ := inf

{
λ > 0 :

∫
Ω
φ

(
|u|
λ

)
dx ≤ 1

}
.

finding that (Lφ(Ω), ‖ · ‖φ) is a Banach space.

Given a N -function φ and its conjugate φ̃ it is clear that
˜̃
φ = φ. Moreover they

satisfy the Young inequality

(6.1.2) st ≤ φ(t) + φ̃(s) ∀ s, t ∈ R,

with equality when s = φ′(t) or t = φ̃′(s).

Moreover in the spaces Lφ and L
φ̃

the Hölder inequality holds

(6.1.3)

∣∣∣∣∫
Ω
u(x)v(x)dx

∣∣∣∣ ≤ 2‖u‖φ‖v‖φ̃.

Orlic spaces are a generalization of the classical Lebesgue spaces in the following

sense. If we choose as N -function φ(t) = tp for 1 ≤ p < +∞ we have that its conjugate

function is given exactly by φ̃ = sq with 1
p+ 1

q = 1. In this sense the Young inequality and

the Hölder inequality are generalizations of the standard properties of Lebesgue norms.

1N is not related to the dimension of the space RN .
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The definition of spaces in the sense of Orlicz is useful when we consider functions with

exponential or logarithmic growth. For example if

ϕ(t) := t
(
et
γ − 1

)
γ ∈ R,

then its conjugate function is given by

ϕ̃(s) := s(log(s+ 1))
1/γ.

6.2 Regularity of solutions

A priori we are considering weak solutions of problem (6.0.1), that is functions in

W 1,N
0 (Ω). Howewer, we are able to prove that they are in C1,γ(Ω) for some 0 < γ < 1.

If N = 2, that is when the N−Laplacian operator coincides with the classical Laplacian

operator, it is easy to prove more regularity, that is weak solutions are also classical

solutions in C2(Ω) while in the case N > 2 the C1,γ regularity is optimal. The idea of

our argument is similar to [20, Proposition 3.1]. To prove the regularity result we need

the following result by G. Stampacchia [70] .

Proposition 6.2.1. Assume ϕ is a nonnegative, nonincreasing function defined in

[0,+∞). Suppose that there exist positive constants C, δ, β with β > 1 such that

ϕ(h) ≤ C

(h− k)δ
ϕ(k)β ∀h > k ≥ 0.

Then there exists k0 ≥ 0 such that ϕ(h) = 0 for all h ≥ k0.

Proposition 6.2.2. Let u ∈ W 1,N
0 (Ω) be a weak solution of problem (6.0.1). Then

u ∈ C1,γ(Ω) for some 0 < γ < 1.

Proof. By the Trudinger-Moser inequality (5.1.1) we have that

(6.2.1)

∫
Ω
|f(u)|qdx ≤ C(u) < +∞, 2

for all q > 1. Now we define

Ak(u) := {x ∈ Ω : u(x) > k} ∀ k ∈ R+,

and the function Gk : R+ → R+ as

Gk(s) :=

s− k s > k

0 |s| ≤ k.

2We use the notation here C = C(u) to stress the fact that the estimate is not uniform in u.
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Let us consider v := Gk(u). Then v is an admissible test function in the definition of

weak solution. Hence using (6.2.1) and Hölder inequality we obtain∫
Ω
|∇Gk(u)|Ndx =

∫
Ω
|∇u|N−2∇Gk(u)dx

=

∫
Ω
f(u)Gk(u)dx

≤ ‖f(u)‖Lq(Ω)‖Gk(u)‖Lq′ (Ω),

with

1 =
1

q
+

1

q′
.

We can choose also q′ := N
N−1 . Now we take r < N such that

r∗ :=
rN

N − r
> q′.

Then, we have

‖∇Gk(u)‖NLN (Ω) ≤ ‖f(u)‖Lq(Ω)‖Gk(u)‖Lq′ (Ω)

≤ ‖f(u)‖Lq(Ω)‖Gk(u)‖Lr∗ (Ω)|Ak(u)|
1
q′−

1
r∗

≤ C‖f(u)‖Lq(Ω)‖∇Gk(u)‖Lr(Ω)|Ak(u)|
1
q′−

1
r∗

≤ C‖f(u)‖Lq(Ω)‖∇Gk(u)‖LN (Ω)|Ak(u)|
1
q′ .

Hence we obtain

(6.2.2) ‖∇Gk(u)‖N−1
LN (Ω)

≤ C‖f(u)‖Lq(Ω)|Ak(u)|
1
q′ .

Approximating Ak(u) by open sets we find also

(6.2.3) ‖∇Gk(u)‖N−1
LN (Ω)

≥ |Ah(u)|
N−1
N (h− k)N−1.

Now we choose as ϕ in Lemma 6.2.1

ϕ(k) := Ak(u)
N−1
N .

Then we have by (6.2.2) and (6.2.3) that

ϕ(h)ϕ(k)−1(h− k)N−1 ≤ C‖f(u)‖Lq(Ω)ϕ(k),

hence

ϕ(k) ≤ C

(h− k)δ
ϕ(k)2.

Hence by Proposition 6.2.1 we have that there exists k0 such that ϕ(h) = 0 for all h ≥ k0

but hence u ∈ L∞(Ω). Now that we have that every weak solutions of problem (6.0.1) is

bounded we can use the result of Tolksdorf [74], to conclude that u ∈ C1,γ(Ω) for some

0 < γ < 1.
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6.3 Boundary estimate and uniform bound

In this section we consider f satisfying assumptions (f0)-(f1)-(f2) or (f0)-(f1)-(f ′2).

Proposition 6.3.1. There exist positive constants C and r such that every weak solution

u ∈W 1,N
0 (Ω) of problem (6.0.1) satisfies

u ∈ C1,γ(Ωr), ‖u‖C1,γ(Ωr)
≤ C,

for some 0 < γ < 1 with Ωr := {x ∈ Ω : dist(x, ∂Ω) ≤ r}.

Proof. For x ∈ ∂Ω let ν(x) denote the outward normal vector to ∂Ω in the point x.

By [21, Theorem 1.5] there exists a t0 > 0 such that u(x − tν(x)) is nondecreasing for

t ∈ [0, t0]. The number t0 depends only on the geometry of Ω. Now following the proof

of [23, Theorem 1.1] we can prove that there exists an angle ϑ > 0, depending again

only on Ω, such that u(z − tσ) is nondecreasing for all t ∈ [0, t1], where |σ| = 1 is such

that σ · ν(z) ≥ α, z ∈ ∂Ω and t1 depending only on Ω. We remark here that a priori t1

is smaller than t0. Since u(z − tσ) is nondecreasing in t for all z ∈ ∂Ω and σ as above

we can find positive numbers δ and ε, depeding on Ω, and a measurable set Ix = I(x)

such that for all x ∈ Ωε we have

(i) |Ix| ≥ δ,

(ii) Ix ⊂ {x ∈ Ω : dist(x, ∂Ω) ≥ ε
2},

(iii) u(y) ≥ u(x) for all y ∈ Ix.

By the Picone Identity for the N -Laplacian [5], we know that for all u, v differentiable

with u > 0 and v ≥ 0 the following inequality holds

|∇v|N ≥ |∇u|N−2∇
(

vN

uN−1

)
· ∇u.

Now we choose as v = e1, that is the first (positive) eigenfunction of the N -Laplacian

in Ω and u a (positive) weak solution of problem (6.0.1). We may assume also that e1

is normalized. Since by the Hopf Lemma u has nonzero outward normal derivative on

the boundary of Ω and since u is positive then
eN1
uN−1 ∈W 1,N

0 (Ω). So we have, using the

Picone Identity and the fact that the function
eN1
uN−1 is a test function

C ≥
∫

Ω
|∇e1|Ndx ≥

∫
Ω
|∇u|N−2∇u · ∇

(
eN1
uN−1

)
dx =

∫
Ω
f(u)

eN1
uN−1

dx.

We split our domain Ω in Ω1 and Ω2 with

Ω1 := {x ∈ Ω : u(x) < s0}, Ω2 := {x ∈ Ω : u(x) ≥ s0}.
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Now using the condition (f1) we find that there exists a constant d > 0 such that∫
Ω
udeN1 dx =

∫
Ω1

udeN1 dx+

∫
Ω2

udeN1 dx

≤ sd0
∫

Ω1

eN1 dx+ C1

∫
Ω2

f(u)

uN−1
eN1 dx

≤ C + C1

∫
Ω2

f(u)
eN1
uN−1

dx

≤ C.

But this implies

ηN
∫

Ω\Ω ε
2

uddx ≤ C,

where e1(z) ≥ η > 0 for all z ∈ Ω \ Ω ε
2
. By (ii) we have also that

ηN
∫
Ix

ud ≤ C.

Since

ud(x)|Ix| ≤
∫
Ix

ud,

we have that, by (i) and (ii), ud(x) ≤ C
δηN

and hence u(x) ≤ C for all x ∈ Ωε. Finally

by [42, Theorem 2] we have the thesis for r := ε
2 .

Proposition 6.3.2. There exists a positive constant C such that for every positive weak

solutions of problem (6.0.1) it holds ∫
Ω
f(u)dx ≤ C.

Proof. Let ψ be a cut-off function in Ω\Ωr, that is ψ ∈ C∞0 (Ω) such that ψ ≡ 1 in Ω\Ωr,

where r is chosen such that the preceding Proposition holds. Since ψ is an admissible

test function we have that∫
Ω
|∇u|N−2∇u · ∇ψdx =

∫
Ω
f(u)ψdx.

Now using the boundary estimates of Proposition 6.3.1 and the properties of ψ we have∫
Ω
f(u)dx =

∫
Ωr

f(u)dx+

∫
Ω\Ωr

f(u)dx

≤
∫

Ωr

f(u)ψdx+

∫
Ω\Ωr

f(u)ψdx+

∫
Ωr

f(u)(1− ψ)dx

≤
∫

Ω
f(u)ψdx+ C

=

∫
Ω
|∇u|N−2∇u · ∇ψdx+ C =

∫
Ωr

|∇u|N−2∇u · ∇ψdx+ C ≤ C.
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6.4 Case (f2)

In this section we assume that f satisties assumptions (f0), (f1) and (f2). Moreover, let

us consider the N -function

(6.4.1) ϕ(t) := t
(
et
γ − 1

)
,

and its conjugate N -function

(6.4.2) ϕ̃(s) := s(log(s+ 1))
1/γ,

with γ ∈ R to be defined. It is easy to see that there exists dγ > 0 such that

ϕ(t) ≤ edγtγ − 1.

Proof of Theorem 6.0.1. Since u ∈ W 1,N
0 (Ω) is a weak solution of problem (6.0.1) we

have that ∫
Ω
|∇u|Ndx =

∫
Ω
f(u)udx.

But then, since u 6= 0, we can multiply and divide by uβ logα(e + u) for some α and β

to be defined and conclude that∫
Ω
|∇u|Ndx =

∫
Ω

f(u) logα(e+ u)

uβ logα(e+ u))
u1+βdx ≤

∫
Ω

f(u) logα(e+ u)

logα(e+ u)uβ
χuu

1+βdx+ C,

where

χu :=

1 ∀x : u(x) > s0

0 ∀x : u(x) ≤ s0,

with s0 to be defined. Hence, we can conclude by (6.1.3) that∫
Ω
|∇u|Ndx ≤ C

∥∥∥∥f(u) logα(e+ u)

uβ
χu

∥∥∥∥
ϕ̃

∥∥∥∥ u1+β

logα(e+ u)

∥∥∥∥
ϕ

+ C,

with ϕ and ϕ̃ as in (6.4.1) and (6.4.2) respectively. We have to estimate the two Lux-

emburg norms in the preceding inequality.∥∥∥∥ u1+β

logα(e+ u)

∥∥∥∥
ϕ

:= inf

{
k > 0 :

∫
Ω
ϕ

(
u1+β

logα(e+ u)k

)
dx ≤ 1

}
= inf

{
k > 0 :

∫
Ω

u1+β

logα(e+ u)k

(
e

u(1+β)γ

(k logα(e+u))γ − 1

)
dx ≤ 1

}
≤ inf

{
k > 0 :

∫
Ω

(
e
dγ

u(1+β)γ

(k logα(e+u))γ − 1

)
dx ≤ 1

}
.
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First of all we can observe that for all ε > 0∫
Ω

(
e
dγ

u(1+β)γ

(k logα(e+u))γ − 1

)
dx =

∫
Ωε

(
e
dγ

u(1+β)γ

(k logα(e+u))γ − 1

)
dx

+

∫
Ωcε

(
e
dγ

u(1+β)γ

(k logα(e+u))γ − 1

)
dx,

where

Ωε :=

{
x ∈ Ω : logαγ(e+ u) ≥ 1

ε

}
⇐⇒ Ωε =

{
x ∈ Ω : u(x) ≥ e−ε

1
αγ − e

}
.

It is easy to see that ∫
Ωcε

(
e
dγ

u(1+β)γ

(k logα(e+u))γ − 1

)
dx ≤ Cε,k.

It is important to remark that the constant Cε,k is indepedent of u, since in Ωc
ε we have

a uniform bound on u in term of ε, while it is still depending on ε and k. In Ωε we have∫
Ωε

(
e
dγ

u(1+β)γ

(k logα(e+u))γ − 1

)
dx ≤

∫
Ω

(
eεdγ

u(1+β)γ

kγ − 1

)
dx.

If we want to apply the Trudinger-Moser inequality we have to choose γ and β such that

(6.4.3) (1 + β)γ =
N

N − 1
.

With this choice, using the Trudinger-Moser inequality, we find that for all ε > 0

(6.4.4)

∥∥∥∥ u1+β

logα(e+ u)

∥∥∥∥
ϕ

≤ Cε
1
γ ‖∇u‖

N
N−1

1
γ

LN (Ω)
+ Cε.

For the second norm we have∥∥∥∥f(u) logα(e+ u)

uβ
χu

∥∥∥∥
ϕ̃

:= inf

{
k > 0 :

∫
ϕ̃

(
f(u) logα(e+ u)χu

uβk

)
dx ≤ 1

}
= inf

{
k > 0 :

∫
f(u) logα(e+ u)

uβk
χu

(
log

(
f(u) logα(e+ u)

uβk
χu + 1

))1/γ

dx ≤ 1

}

≤ inf

{
k ≥ 1 :

∫
f(u) logα(e+ u)

uβk
χu

(
log

(
f(u) logα(e+ u)

uβk
χu + 1

))1/γ

dx ≤ 1

}

≤ inf

{
k ≥ 1 :

∫
f(u) logα(e+ u)

uβk
χu (log (f(u) + 1))

1/γ dx ≤ 1

}
≤ inf

{
k ≥ 1 :

∫
f(u) logα(e+ u)

uβk
χu (log (Cf(u)))

1/γ dx ≤ 1

}
= inf

{
k ≥ 1 :

∫
f(u) logα(e+ u)

uβk
χu

(
log
(
Ce

u
logσ(e+u)

))1/γ
dx ≤ 1

}
≤ inf

{
k ≥ 1 : C

∫
f(u) logα(e+ u)

uβk
χu

u
1
γ

log
σ
γ (e+ u)

dx ≤ 1

}

= inf

{
k ≥ 1 :

C

k

∫
f(u)(u)

1
γ
−β

log
α−σ

γ (e+ u)χudx ≤ 1

}
.
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Choosing

(6.4.5)
1

γ
− β = 0, α− σ

γ
≤ 0,

we find that

(6.4.6)

∥∥∥∥f(u) logα(e+ u)

uβ
χu

∥∥∥∥
ϕ̃

≤ inf

{
k ≥ 1 :

C

k

∫
Ω
f(u)χudx ≤ 1

}
≤ C.

By (6.4.4) and (6.4.6) we have for all ε > 0

(6.4.7) ‖∇u‖NLN (Ω) ≤ Cε
1/γ‖∇u‖

N
N−1

1
γ

LN (Ω)
+ Cε.

By (6.4.3) and (6.4.5) we have that

γ =
N

N − 1
− 1 =

1

N − 1
,

and

0 < α ≤ σ(N − 1),

which is always possible since σ > 0. Since 1
γ = N − 1 in (6.4.7) we obtain that for all

ε > 0

(6.4.8) ‖∇u‖NLN (Ω) ≤ Cε
N−1‖∇u‖NLN (Ω) + Cε,

for some C and Cε which are not depending on u. Then, for ε sufficiently small, we can

conclude that

(6.4.9) ‖∇u‖LN (Ω) ≤ CN

with

CN :=
Cε

1− CεN−1
,

which is not depending on u. From the uniform energy estimate (6.4.9) we obtain a

uniform L∞- bound in the following way. Let p > 1, then for given ε > 0 there exists a

C = C(ε) such that

ps ≤ εs
N
N−1 + C(ε).

Thus we can estimate ∫
Ω
|f(u)|pdx ≤ C

∫
Ω

(
e

u
logα(e+u)

)p
dx+ C

≤ C
∫

Ω
eε|u|

N
N−1 +C(ε)dx+ C

≤ C(ε)

∫
Ω
eε|u|

N
N−1

dx+ C.
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Now, choosing ε > 0 such that εC
N/(N−1)

N ≤ αN , the estimate (6.4.9) and the Trudinger-

Moser inequality imply

∫
Ω
|f(u)|pdx ≤ C(ε)

∫
Ω
e
εC

N/(N−1)
N

∣∣∣∣ u
‖∇u‖

LN (Ω)

∣∣∣∣N/(N−1)

dx ≤ C(Ω).

So, since ∫
Ω
|f(u)|pdx ≤ C,

we have by [44, Lemma 3.2]

‖u‖L∞(K) ≤ C,

for every K compact set of Ω. Since by Proposition 6.3.1 we have the uniform estimate

near the boundary we have proved the thesis.

6.5 Case (f ′2)

We assume in this section that f satisfies (f0), (f1) and (f ′2). Following the idea in [44]

we introduce the following number

(6.5.1) dN := inf
x,y∈RN
x 6=y

〈|x|N−2x− |y|N−2y, x− y〉
|x− y|N

.

It is easy to see that dN ≤ 1. Moreover by [64, Proposition 4.6] we know that

dN ≥
2

N

(
1

2

)N−2

.

In case N = 2 it is trivial that d2 = 1 and hence the following argument is substantially

easier.

Proof of Theorem 6.0.1. (The proof follows ideas of [15] and [44])

First Step: suppose by contradiction that there is no a priori estimate, then there would

exist a sequence {un} ⊂ W 1,N
0 (Ω) ∩ C1,α(Ω) of weak solutions of problem (6.0.1) such

that

‖un‖L∞(Ω) → +∞ as n→ +∞.

Moreover we know by Proposition 6.3.2 that∫
Ω
f(un)dx ≤ C ∀n ∈ N.

We may assume that f(un)→ µ on Ω in the sense of measures, where µ is a nonnegative

bounded measure, that is∫
Ω
f(un)ψdx→

∫
Ω
ψdµ ∀ψ simple function in Ω.
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We say that a point x0 ∈ Ω is regular with respect to µ if there exists an open neighbor-

hood V ⊂ Ω of x0 such that ∫
Ω
χVdµ =

∫
V
dµ < NN−1ωN .

Next we define the set A in the following way: a point x ∈ A iff there exists an open

neighborhood U ⊂ Ω of x such that∫
U
dµ < NN−1ωNdN .

Since dN ≤ 1 we have that if x ∈ A then x is a regular point. Moreover we define

B := Ω \A and we observe that

#(B) < +∞.

Indeed if x ∈ B then ∫
BR(x)

dµ ≥ NN−1ωNdN ∀R : BR(x) ⊂ Ω,

which implies

µ({x}) ≥ NN−1ωNdN .

Hence, since µ is bounded, ∑
x∈B

µ({x}) ≤ µ(Ω) ≤ C,

then if #(B) = +∞ we would have a contradiction.

Second step: we claim that if x0 is a regular point then there exist a constant C, and a

radius R such that for all n ∈ N there holds

‖un‖L∞(BR(x0)) ≤ C.

First of all we consider the case in which x0 ∈ A. By the definition of points in A we

have that there exists R such that

µ(BR(x0)) < NN−1ωNdN .

Since f(un) converges to µ in the sense of measures then there exist δ and n0 such that

for all n > n0 (∫
BR(x0)

f(un)dx

) 1
N−1

≤
(
Nω

1
N−1

N − δ
)
d

1
N−1

N .

Let ϕn be a solution of

(6.5.2)

−∆Nϕn = 0 in BR(x0)

ϕn = un on ∂BR(x0).
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By the weak maximum principle for the N -Laplacian we have that ϕn ≤ un in BR(x0).

Since by Proposition 6.3.2 and assumption (f ′2), there exists a n1 ∈ N such that for d > 1

C ≥
∫

Ω
f(un)dx ≥ C1

∫
Ω

eun

(un + 1)α
dx ≥ C

∫
Ω
udndx ∀n > n1,

then ∫
Ω
ϕNn dx ≤ C ∀n > n1.

Now applying [44, Lemma 5.3], see also [64, Lemma 4.1 and 4.3], we have∫
BR(x0)

eq|un−ϕn|dx ≤
Nω

1
N−1

N RNC

δ′
,

with

(6.5.3) q :=
Nω

1
N−1

N − δ′

‖f(un)‖
1

N−1

L1(BR)

d
1

N−1

N ,

for all δ′ ∈ (0, Nω
1/(N−1)

N ). Taking δ′ small enough we have that q > 1 and hence∫
BR/2

eq|un−ϕn|dx ≤
∫
BR

eq|un−ϕn|dx ≤ C.

Using [44, Lemma 3.2] we can conclude that

‖ϕn‖L∞(BR/2) ≤ CR−1(‖ϕn‖LN (BR) + c) ≤ C,

and hence ∫
BR/2

equn ≤ C.

Then using (f ′2) we have that for large n∫
BR/2

|f(un)|qdx ≤ C.

Again by [44, Lemma 3.2] we can infer that for large n

‖un‖L∞(BR/4) ≤ C,

and hence

‖un‖L∞(BR/4) ≤ C ∀n ∈ N.

Now let us suppose that x0 /∈ A but still x0 is regular. Since B is finite we can choose

R > 0 such that ∂BR(x0) ⊂ A. Taking x ∈ ∂BR(x0) we have by the preceding point

that there exists r = r(x) such that for all n ∈ N

‖un‖L∞(Br(x)) ≤ C(x).
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This implies, by the compactness of ∂BR, that for some k ∈ N

∂Br ⊆
k⋃
i=1

Br(xi)(xi).

If y ∈ ∂Br then y ∈ Br(xi0 )(xi0) for some 1 ≤ i ≤ k. Hence

‖un‖L∞(∂BR) ≤ max
i=1,...,k

C(xi) =: K ∀n ∈ N.

Let Un be the solution of −∆NUn = f(un) in BR

Un = K on ∂BR,

which is equivalent to −∆N (Un −K) = f(un) in BR

Un −K = 0 on ∂BR.

Therefore UN ≥ un on BR by the weak maximum principle. Thus, by [44, Lemma 5.2],

for any δ′ ∈ (0, Nω
1/(N−1)

N ) we have∫
BR

eq|Un−K|dx ≤
Nω

1/(N−1)

N CRN

δ′
,

with q defined as in (6.5.3). Since x0 is regular there exists R1 < R and n0 ∈ N such

that for all n ≥ n0 we have for some δ > 0(∫
BR1

(x0)
f(un)dx

) 1
N−1

< Nω
1

N−1

N − δ.

Again taking δ′ sufficiently small we obtain that q > 1 and hence∫
BR1

eqUndx ≤ C,

which implies ∫
Br1

equndx ≤ C.

Now, using assumption (f ′2) we have that also∫
BR1

f(un)dx ≤ C,

and then also

‖un‖LN (BR1
) ≤ C.
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Hence by [44, Lemma 3.2]

‖un‖L∞(BR1/2
) ≤ C.

Third step: Now we define Σ := {x ∈ Ω : x is not regular} and we prove that Σ = ∅
and then by the preceding step we have the thesis. We notice that since Σ ⊂ B and

B has a finite number of elements then also Σ is finite. Suppose by contradiction that

there exists x0 ∈ B and R > 0 such that

BR(x0) ∩ Σ = {x0}.

Since all the points in BR(x0)\{x0} are regular we have that, up to subsequence, un → u

in C1(K) for all K compact subsets of BR(x0) \ {x0}. Consider

w(x) := N log
R

|x− x0|
,

such that −∆Nw = NN−1ωNδx0 in BR(x0)

w = 0 on ∂BR(x0).

For k > 0 define

Tk(s) :=


0 s < 0

s 0 ≤ s ≤ k

k s ≥ k,

and

z(k)
n := Tk(w − un).

Then z
(k)
n ∈W 1,N

0 (BR). Moreover z
(k)
n (x0) = k for all n. Also z

(k)
n → z(k) with

z(k) :=

Tk(w − u) x 6= x0

k x = x0,

with z(k) measurable. We have, by the fact that w and un are weak solutions of their

respective problems,∫
BR

(|∇w|N−2∇w − |∇un|N−2∇un) · ∇z(k)
n dx = NN−1ωNk −

∫
BR

f(un)zkndx.

Now, setting dµn := f(un)dx, we have, by [44, Proposition pag. 2052],

lim inf
n→∞

∫
BR

f(un)z(k)
n dx = lim inf

n→∞

∫
BR

z(k)
n dµn

≥
∫
BR

z(k)dµ

≥ NN−1ωNk.
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Hence ∫
BR

(|∇w|N−2∇w − |∇u|N−2∇u) · ∇z(k)dx ≤ 0 ∀ k,

and then ∫
BR∩{0≤w−u≤k}

(|∇w|N−2∇w − |∇u|N−2∇u) · ∇(w − u)dx ≤ 0 ∀ k,

Finally, for k →∞ and using (6.5.1)

dN

∫
BR

|∇(w − u)+|Ndx ≤ 0 ∀ k,

and so w ≤ u by the weak maximum principle. Now we observe that since α < 1 the

function es

(s+1)α is monotone increasing for all s ∈ R+, indeed

d

ds

(
es

(s+ 1)α

)
=

es

(s+ 1)α

(
1− α

s+ 1

)
> 0 iff s > α− 1,

which is true for all s > 0. Then we have, since w ≤ u, and assumption (f ′2)

C ≥ lim inf
n→∞

∫
BR

f(un)dx

≥ lim inf
n→∞

C1

∫
BR

eun

(un + 1)α
dx

≥ C
∫
BR

eu

(u+ 1)α
dx

≥ C
∫
BR

ew

(w + 1)α
dx

≥ C
∫
BR

ew

wα
dx

= C

∫
BR

1

|x− x0|N

(
log

(
1

|x− x0|N

))−α
dx

= C

∫ R

0

1

ρ
(

log
(

1
ρN

))αdρ
= C

(
log
(

1
ρN

))1−α

N(α− 1)

∣∣∣∣R
0

= +∞,

since 0 < α < 1. Hence we have a contradiction and then B = ∅. To conclude the proof,

we may assume that there exists a sequence of points xn in Ω such that

‖un‖L∞(Ω) = un(xn).
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By the compactness of Ω and up to subsequence we may assume that xn → x0 ∈ Ω.

Since by Proposition 6.3.1 we have an a priori estimate near the boundary of Ω we can

conclude that x0 ∈ Ω. It is easy to see that

lim
n→+∞

‖un‖L∞(BR(x0)) = +∞ ∀R > 0,

and hence x0 ∈ B. But this is a contradiction and then we have the thesis.
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[7] Thierry Aubin. Problemes isopérimétriques et espaces de Sobolev. Journal of dif-

ferential geometry, 11(4):573–598, 1976.

[8] Patricio Aviles. On isolated singularities in some nonlinear partial differential equa-

tions. Indiana Univ. Math. J., 32(5):773–791, 1983.
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[15] Häım Brezis and Robert E. L. Turner. On a class of superlinear elliptic problems.

Comm. Partial Differential Equations, 2(6):601–614, 1977.
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[28] Jésus Garćıa Azorero and Ireneo Peral Alonso. Hardy inequalities and some critical

elliptic and parabolic problems. J. Differential Equations, 144(2):441–476, 1998.

[29] Filippo Gazzola and Hans-Christoph Grunau. Critical dimensions and higher order

Sobolev inequalities with remainder terms. Nonlinear Differential Equations and

Applications NoDEA, 8(1):35–44, 2001.

[30] Filippo Gazzola, Hans-Christoph Grunau, and Enzo Mitidieri. Hardy inequal-

ities with optimal constants and remainder terms. Trans. Amer. Math. Soc.,

356(6):2149–2168, 2004.

[31] Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers. Optimal Sobolev and

Hardy-Rellich constants under Navier boundary conditions. Ann. Mat. Pura Appl.

(4), 189(3):475–486, 2010.

[32] Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers. Polyharmonic bound-

ary value problems, volume 1991 of Lecture Notes in Mathematics. Springer-Verlag,

Berlin, 2010. Positivity preserving and nonlinear higher order elliptic equations in

bounded domains.



104 Bibliography

[33] Filippo Gazzola and Bernhard Ruf. Lower-order perturbations of critical growth

nonlinearities in semilinear elliptic equations. Adv. Differential Equations, 2(4):555–

572, 1997.

[34] Nassif Ghoussoub and Xiao Song Kang. Hardy–Sobolev critical elliptic equations

with boundary singularities. In Annales de l’IHP Analyse non linéaire, volume 21,
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