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Chapter 1

Introduction

Isogeometric Analysis (IGA) was first introduced in 2005 by T. Hughes, Y. Bazilevs
et. al. in [25] as a first attempt to merge Computer Aided Design (CAD) and
Computer Aided Engineering (CAE), and then further explored in [8].
IGA shares many aspects with Finite Element Method (FEM) in the numerical
solution of partial differential equations, but has a different way of representing
domains and discrete function spaces.
The IGA framework is based on B-spline ([31]) and non-uniform rational B-
splines (NURBS) basis functions ([28]). B-splines are piecewise polynomial func-
tions of assigned degree p, and they can enjoy high regularity up to Cp−1, a dis-
tinctive feature for IGA. B-splines have compact support, form a partition of unity
and have optimal approximation properties ([7]), making them a suitable choice
as basis functions for Petrov-Galerkin discretizations.
NURBS basis functions are weighted B-spline functions, i.e. they are rational
piecewise polynomials and share all the properties of B-splines. They are a de
facto industrial standard in CAD for representing common curved geometries,
such as conics, spheres or cylinders. Geometries in CAD (and now with IGA,
PDE domains) are represented as image of a parametric domain [0, 1]D via a map
F obtained as linear combination of NURBS basis functions. Geometry represen-
tation is exact and invariant under any type of mesh refinement: knot insertion
(h-refinement), degree elevation (p-refinement) and k-refinement, a third type of
refinement that has no equivalent in FEM. In k-refinement, knot insertion and de-
gree elevation are performed at the same time in order to decrease the mesh size
and increase the regularity of the basis functions.
In classic FEM, geometries are typically represented with polygonal meshes, with
consequent approximation for curved boundaries representation, and implemen-
tation of high regularity basis functions is cumbersome. The FEM, on the other
hand, has been extensively researched and applied for decades, and many tech-
niques have been developed in order to solve any flavor of engineering problems.
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Among these techniques there are the Domain Decomposition Methods, intro-
duced and developed for parallel computing in [32] and [33]. The theory and
implementation is well-known for the FEM case, but it is still in development
for IGA. Recent works on IGA and Overlapping Domain Decomposition are [9],
[11], [12], [14], and [23], among with application-oriented works [18], [19]. Non-
overlapping techniques have been developed in an IGA framework in [10], [13],
[17], [26], while multigrid solvers have been explored in [21] and [22]. Some
studies of iterative solvers performance in IGA and Domain Decomposition in
general can be found respectively in [20] and [4].
The main focus of this thesis is the construction of a multi-level Domain Decom-
position preconditioner of Overlapping Additive Schwarz type that can be effec-
tively used in a massively parallel environment to solve linear systems arising
from scalar elliptic and advection-diffusion PDEs.
In order to show its scalability, two model problems are considered. The first
model problem is a scalar elliptic equation:{

−∇ · (k(x)∇u) = f in Ω

u = 0 on ∂Ω

It will be shown that the diffusivity coefficient k does not affect the preconditioner
scalability with respect to the number of processors involved in the computation,
even in case of highly discontinuous jumps between subdomains.
The second model problem is the advection-diffusion equation:{

−∇ · (k(x)∇u) + b · ∇u = f in Ω

u = 0 on ∂Ω

Although (and to our knowledge) there is no theory in support of the precondi-
tioner for the advection-diffusion problem, numerical results are shown with a
strong emphasis on the advection-dominated case, in which the advective part of
the equation dominates the diffusivity part. This is a well-known problem that
brings some of the difficulties that can be found in the Navier-Stokes equations.
The performance of the preconditioner deteriorates with the advection domina-
tion, but it can still be recovered with SUPG stabilization.
We are now ready to introduce the preconditioner in its two different forms. As
Domain Decomposition suggests, the domain Ω of a PDE is decomposed in sev-
eral overlapping subdomains. Associated with each subdomain there is a local
basis function space:

Ω =
N⋃
j=1

Ωj, Ω←→ V = span {Np
i , i = 1, ..., n} , Ωj ←→ Vj ⊂ V .
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where Np
i are NURBS basis functions. There are at least three strategies for con-

structing Vj , but they can be generally thought as spaces in which basis functions
have support in Ωj .
From the Petrov-Galerkin discretization of the two model problems previously
introduced, we obtain a linear system Au = f , where

A = [a(Np
` , N

p
κ)], ∀Np

` , N
p
κ ∈ V ,

with a(·, ·) being the bilinear form coming from the variational forms of the PDEs.
A local system matrix is associated to each subdomain:

Ωj ←→ Vj ←→ Aj = [a(Np
` , N

p
κ)], ∀Np

` , N
p
κ ∈ Vj.

If we denote with Rj : V → Vj the projection operator that restricts a vector of V
into a vector of Vj , with RT

j being the extension-to-zero transposed operator, then
the 1-level Additive Schwarz Preconditioner is defined as:(

A
(1)
ASO

)−1

=
N∑
j=1

RT
j A
−1
j Rj,

This preconditioner can be constructed with no knowledge of the underlying PDE
structure, i.e. it can be constructed by algebraic means in a black-box fashion,
although theory and numerical results show that it does not scale with the number
of domain (or processors) involved in the decomposition. The higher the number
of subdomains, the higher the condition number of the preconditioned system
matrix, the higher the number of iterations required by the iterative solver in order
to compute a discrete solution.
The main reason of this behavior is that the information stored in the local sub-
systems Aj requires many iteration to flow from one subdomain to the ones that
are not directly adjacent. In other words, the 1-level OAS preconditioner does not
have a global view of the linear system.
This motivates the introduction of a global coarse problem to be added (literally)
to the local problems. The mesh arising from the domain decomposition can be
used as a mesh for the coarse problem, so that in each iteration each processor
has to solve both a fine local problem for detailed analysis and the coarse global
problem for the global analysis.
The construction is the following: V0 ⊂ V is the coarse space, and it is a proper
subspace of V . The mesh used for V0 has the subdomains as elements. We denote
with R0 : V → V0 the fine-to-coarse projection operator, while its transposed
RT

0 is the coarse-to-fine operator. Due to the properties of B-spline and NURBS,
and the fact that h-refinement generates collections of nested vector spaces, the
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operator RT
0 is exact, i.e. there is no approximation in extending a vector from V0

to V . The 2-level Additive Schwarz Preconditioner is(
A

(2)
ASO

)−1

= RT
0A
−1
0 R0 +

N∑
j=1

RT
j A
−1
j Rj,

with A0 being the system matrix associated with the coarse space V0.
It will be proved that the 2-level preconditioner is scalable with the number of
subdomains. If we denote with h the fine mesh size and H the coarse mesh size,
then for the linear system arising from the scalar elliptic equation there exists a
constant C > 0, independent on h and H and the number of subdomains N , such
that the following bound for the condition number holds:

cond

((
A

(2)
ASO

)−1

A

)
≤ C

(
1 +

H

h

)
.

Numerical results will be shown as a confirmation of the theory. Both 2D and 3D
tests are taken into account, and in both cases the model problem is defined over
simple geometries (squares and cubes) with B-spline discretizations and complex
curved geometries with a full NURBS discretization.
The structure of this work is the following: in Chapter 2 we give formal definitions
of B-spline and NURBS, their usage for geometry representation and as basis
function for discrete functional spaces, explanations on the three different types
of refinement and finally a brief overview of their approximation properties.
Chapter 3 is firstly devoted to the abstract setting of overlapping Domain Decom-
position and their theoretical requirements. We then present the steps required to
plug Isogeometric Analysis into the abstract setting. Three decomposition strate-
gies are proposed and one of them is chosen for both theoretical and implementa-
tion settings.
Chapter 4 presents the numerical results on the performance of the 2-level Addi-
tive Schwarz Preconditioner. First are presented the scalar elliptic equations tests
with different diffusivity coefficients, for both 2 and 3 dimensions. The advection
diffusion equations results will follow, with an emphasis on the preconditioner
behavior with respect to advection-dominated problems.
Finally, Chapter 5 presents an overview the main program of the code used for
this work and the two core functions: Projection and ShellPCApply. The
former is the parallel implementaion of the construction of the coarse-to-fine pro-
jection operator RT

0 , while the latter is the implementation of its action during a
preconditioned solver iteration. Most of the code, such as the implementation of
the grid construction and the element loop-based matrix assemble, is omitted for
brevity, as it comprise thousands of line of code. The analysis of the execution
times will conclude the Chapter befor the Conclusions.
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Chapter 2

B-spline and NURBS

In this Chapter we sketch the main mathematical object at the foundation of Iso-
geometric Analysis. Starting with the definition of B-spline basis functions, we
then explain their extension to the multivariate case and how to use them for mesh
representation with different types of refinement. The presentation of NURBS
basis functions will follow, along with their usage as basis functions in physical
domain for Petrov-Galerkin discretizations. We refer to [8] for deeper analysis.
Finally, we will present some theoretical results that ensure the good approxima-
tion properties of B-spline and NURBS, for which we refer to [7].

2.1 Univariate B-splines
Definition 2.1. Let p ∈ N be the polynomial degree1 and n ∈ N. We define knot
vector the ordered set of real numbers

Ξ = {0 = ξ1 ≤ ξ2 ≤ ... ≤ ξn+p ≤ ξn+p+1 = 1} . (2.1)

The elements of the sets ξi are called knots. Repetitions of the knots in the knot
vector are allowed. We denote with mi = m(ξi) the multiplicity of the knot ξi. A
knot vector is said to be open if

ξ1 = ... = ξp+1 = 0, ξn+1 = ... = ξn+p+1 = 1,

while it is said to be uniform if knots are equally spaced.

Definition 2.2. Given a knot vector Ξ = {ξ1 ≤ ... ≤ ξn+p+1} we call univariate
B-spline basis functions (for brevity B-splines) the n functions B̂p

i : [0, 1] → R
1In CAD literature it is more common to refer to the polynomial degree with the term order m,

for which it holds m = p + 1.
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recursively defined with the Cox-De Boor formula:

B̂0
i (ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
B̂p
i (ξ) = ξ−ξi

∆p
i
B̂p−1
i (ξ) +

ξi+p+1−ξ
∆p
i+1

B̂p−1
i+1 (ξ),

i = 1, ..., n, (2.2)

where ∆p
i = ξi+p+1−ξi with the convention of considering zero every fraction for

which ∆p
i = 0. This is well-defined because ∆p

i = 0 if and only if B̂p−1
i (ξ) is zero.

We denote the linear space of B-spline functions with the following notation:

B̂ = B̂ (Ξ, p) = span
{
B̂p
i , i = 1, ..., n

}
. (2.3)

We define parametric element an interval q = [ξi, ξi+1] with positive measure and
parametric mesh the set of elementsQ = {Q}. Finally, we define parametric ele-
ment size the number ĥQ = diam(Q) and parametric mesh size ĥ = maxQ∈Q ĥQ.

B-spline basis functions are piecewise polynomial functions and have properties
that make them a suitable choice as basis functions for a Petrov-Galerkin dis-
cretization:

• Local support. The support of the B-spline B̂p
i is [ξi, ξi+p+1]. The measure

of the support depends on the multiplicity of the knots ξi, ..., ξi+p. The sup-
port is reduced whenever there is a knot in [ξi, ξi+p+1] with a multiplicity
greater than 1.

• Regularity. B-splines are Cp−mi in the knot ξi, with Cp−1 the highest regu-
larity, and C∞ elsewhere. Multiplicity mi = p leads to a single nonzero ba-
sis function on the knot ξi, belonging to C0 and interpolatory, i.e. B̂(ξi) = 1.
Multiplicity mi = p + 1 is allowed and leads to discontinuous and inter-
polatory basis functions. This motivates the use of open knot vectors for
representing geometry boundaries and boundary conditions.

• Partition of unity. B-splines form a partition of unity:
n∑
i=1

B̂p
i (ξ) = 1 ∀ξ ∈ [0, 1].

• Derivatives. B-spline derivatives can be easily computed with lower degree
B-splines:

∂

∂ξ
B̂p
i (ξ) = p

(
B̂p−1
i (ξ)

∆p
i

−
B̂p−1
i+1 (ξ)

∆p
i+1

)
. (2.4)

As usual, a denominator ∆p
i can be zero if and only if the B-spline at the

numerator is zero, hence the fraction has to be considered null.
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• Dual basis. There exists a set of linear functionals {λpi : B̂(Ξ, p) −→ R}ni=1

defined as a local integral:

λpi [f ] =

∫ ξi+p+1

ξi

f(ξ)Λ(ξ) dξ, i = 1, ..., n, (2.5)

where Λ is a particular B-spline function. We refer to [31] for a deeper
analysis. The functionals constitute a dual basis for B̂(Ξ, p), i.e. λpi [B̂

p
j ] =

δij . Moreover, for q ∈ [1,+∞] and f ∈ Lq(suppB̂p
i ) it holds:

|λpi [f ]| ≤ (2p+ 3)9p(∆p
i )
− 1
q ‖f‖Lq(suppB̂pi ). (2.6)

Figure 2.1 shows the B-spline basis functions of degree p = 2 defined over the
open knot vector

Ξ =

{
0, 0, 0,

1

4
,
1

4
,
1

2
,
3

4
, 1, 1, 1

}
,

so that it represents a mesh of four elements:

Q̂ =

{[
0,

1

4

]
,

[
1

4
,
1

2

]
,

[
1

2
,
3

4

]
,

[
3

4
, 1

]}
.

The first and last p + 1 = 3 knots are repeated, hence the first basis function
(depicted in blue) and the last one (depicted in gray) are interpolatory and have
a minimum support of one parametric element. Boundary conditions are easily
assigned to those functions. The multiplicity of the knots ξ3 = ξ4 = 1/4 is 2 so
that basis functions in ξ = 1/4 have regularity Cp−m3 = C0. In any other knot,
regularity is Cp−1 = C1.

2.2 Tensor product and geometries
Tensor product is the main tool for the construction of multivariate discrete func-
tion spaces. Due to the strong structure, tensor product spaces are easy to im-
plement and can be computed efficiently. On the other side they don’t allow for
adaptive techniques such as local mesh refinement.
Because of the fact that tensor product structures bring heavy notations, we will
introduce a compact notation for multiindeces:

i←→ (i1, ..., iD) ∈ ND.

The index id ranges from 1 to nd, while i can be interpreted as the full multidimen-
sional index or as an integer ranging from 1 to n =

∏D
d=1 nd. The code written
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Figure 2.1: B-spline basis functions.

for this thesis is implemented with the following bijection from the multiindex
(i1, ..., iD) to the index i:

i =
D∑
d=1

Pdid, id = bi/Pdcnd, d = 1, ..., D. (2.7)

where

Pd =

{
1 d = 1,∏d

d′=1 nd′ d > 1.

The bijection respects the counting order from the first dimension to the last one.
In three dimensions, for example, we have:

(0, 0, 0), (1, 0, 0), ..., (n1 − 1, 0, 0),

(0, 1, 0), (1, 1, 0), ..., (n1 − 1, 1, 0),

(0, 2, 0), ...

...

..., (n1 − 1, n2 − 1, n3 − 2), (n1 − 1, n2 − 1, n3 − 1).

Note that, in pure C programming language style, n indexes range from 0 to n−1.
For theoretical studies in the following pages we will also adopt the more reader-
friendly 1-based index convenction: i = 1, ..., n. Due to the bijection, there is

11



no ambiguity from i to (i1, ..., iD) and vice-versa. For consistency, index and
multiindex with the same letter are considered the same index, i.e. (i1, ..., iD)
corresponds only to i and not j.
The bold notation will be extended to non-ranging entities such as polynomial
degrees or sets of knot vectors:

(p1, ..., pd) = p, (Ξ1, ...,Ξd) = Ξ.

Summation over multiindeces are intended as multiple summations over the asso-
ciated indexes:

n∑
i=1

=

n1∑
i1=1

...

nD∑
iD=1

.

Definition 2.3. Let D ∈ N be an integer and Ξ = (Ξ1, ...,ΞD) knot vectors with

Ξd =
{

0 = ξd1 ≤ ξd1 ≤ ... ≤ ξdnd+pd
≤ ξdnd+pd+1 = 1

}
, d = 1, ..., D,

with p = (p1, ..., pD) being the polynomial degrees. We define multivariate B-
spline basis functions (or again for brevity B-splines) the functions

B̂p
i = B̂p1,...,pD

i1,...,iD
: [0, 1]D −→ R,

B̂p
i (ξ) = B̂p1,...,pD

i1,...,iD
(ξ1, ..., ξD) =

D∏
d=1

B̂pd
id

(ξd). (2.8)

The B-spline function space is denoted with

B̂ = B̂(Ξ1, ...,ΞD, p1, ..., pD) = B̂(Ξ,p) =

=
D⊗
d=1

B̂(Ξd, pd) = span
{
B̂p

i , i = 1, ...,n
}
.

(2.9)

The notion of elements Q =
⊗D

d=1[ξdid , ξ
d
id+1], mesh Q, element sizes and mesh

size are extended to the multivariate case.

The properties listed in Section 2.1 are trivially valid for multivariate spaces as
well.
With multivariate basis functions it is possible to construct multidimensional ge-
ometries such as surfaces or volumes. This geometry representation is one of the
fundamental aspect of IGA: domains of a PDE are parametrically described with
B-spline or NURBS geometric functions.
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Definition 2.4. Given dimensionsD,D′ ∈ N, a set of knot vectors Ξ with polyno-
mial degrees p and a set of control points {Ci1,...,iD′}

n1,...,nD′
i1,...,iD′=1 = {Ci}ni=1 ⊂ RD′ ,

we define B-spline geometry the function

F : [0, 1]D → RD′ , F(ξ) = F(ξ1, ..., ξD) =
n∑

i=1

CiB̂
p
i (ξ1, ...ξD). (2.10)

In case of D = 1, 2, 3 the geometry can be also referred respectively as curve,
surface or volume.

The key concept is that a domain Ω of a PDE is represented as image of the
parametric domain [0, 1]D via a geometric map F:

Ω = F
(
[0, 1]D

)
.

With Finite Element analysis in mind, many aspects have to be considered in
order to obtain a good geometrical description of Ω: shape regularity, non-zero
Jacobians, mesh topology and many others. The construction of a high quality
geometry can be trivial for a CAD user and cumbersome for a FEM one, especially
in the 3D case. The generation of complex and analysis-suitable geometries are
beyond the scope of this thesis. In this work all treated geometries are simply
connected, shape-regular and embedded in RD′ with D′ = D.

2.3 Refinements
A knot vector, and subsequently a B-spline space, can be refined in three different
ways: the h-refinement, in which new knots are added in the knot vector; the p-
refinement, in which the polynomial degree is elevated; the k-refinement, which
is a combination of h-refinement and k-refinement that allows an increase in both
element number (and thus a decrease of mesh size) and basis functions regularity.
This particular refinement has no equivalent in FEM.
It has to be noticed that B-spline spaces depend only on the knot vectors, which
means that in order to generate a richer B-spline space (in terms of both mesh size
and degree) it suffices to define new knot vectors. The refining procedures work
only on a coefficient level, which is not needed with B-spline but it is required for
NURBS, as we will see in Section 2.4.
Any type of refinement that can be performed with B-splines (and NURBS) does
not change the shape and the parametrization of a geometry. The refinement pro-
cess is performed dimension-wise, hence it will be shown in details for univariate
spaces only.
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2.3.1 h-refinement
The h-refinement, or knot insertion in CAD literature, is used to refine the knot
vector in order to obtain a finer one. h-refinement is the IGA equivalent of the
FEM mesh refinement.
Given a knot vector Ξ, let ξ̄ ∈ [ξk, ξk+1] be a new knot for which we construct
Ξ̄ = Ξ ∪ {ξ̄}. It can be easily shown that B̂(Ξ, p) ⊂ B̂(Ξ̄, p) with dim B̂(Ξ̄, p) =
dim B̂(Ξ, p) + 1, so that a function v ∈ B̂(Ξ, p) belongs also to B̂(Ξ̄, p) and has a
representation in terms of B-splines in both spaces:

B̂(Ξ, p) 3
n∑
i=1

viB
p
i (ξ) = v(ξ) =

n+1∑
i=1

v̄iB̄
p
i ∈ B̂(Ξ̄, p).

The following algorithms computes the new Fourier coefficient {v̄i}n+1
i=1 from the

Fourier coefficient {vi}ni=1:

v̄i = θivi + (1− θi)vi−1(ξ), θi =


1 1 ≤ i ≤ k − p,
ξ̄−ξi

ξi+p−ξi k − p+ 1 ≤ i ≤ k,

0 k + 1 ≤ i ≤ n+ p+ 2.
(2.11)

We first notice that h-refinement is a local procedure: the insertion of ξ̄ ∈ [ξk, ξk+1]
affects coefficients i = k−p+1, ..., k, the other coefficients remaining unchanged.
We then notice that the new knot can be equal to knots that already exist. In this
particular case, the multiplicity of the knot is augmented and the regularity of
the basis functions whose support includes the new knot is reduced. Geometrical
regularity and the parametrization of v is unchanged.
In case of v being a geometric function as in Definition 2.2, the algorithm has to
be applied to the set of control points component-wise.
The procedure can also be seen as a matrix-vector multiplication: if v = [vi]

n
i=1

and v̄ = [v̄i]
n+1
i=1 are the coefficients vectors belonging respectively to Rn and

Rn+1, then
v̄ = Rv, (2.12)

with R = R(Ξ, Ξ̄) being a (n + 1) × n matrix called refining matrix. It does not
depends on the particular Fourier coefficient but only on the two knot vectors Ξ
and Ξ̄. It can be easily deduced from 2.11 that the entries rij of R are

rij =



1 1 ≤ i ≤ k − p and i = j
ξ̄−ξi

ξi+p−ξi k − p+ 1 ≤ i ≤ k and i = j

1− ξ̄−ξi
ξi+p−ξi k − p+ 1 ≤ i ≤ k and i+ 1 = j

1 k + 1 ≤ i ≤ n+ p+ 2 and i+ 1 = j,
0 otherwise.

(2.13)
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If multiple knots have to be added, then the h-refinement has to be applied multi-
ple times. The order of insertion is irrelevant, i.e. inserting ξ̄ and then ξ̃ leads to
the same coefficients as inserting first ξ̃ and then ξ̄.
In terms of refining matrices, if ξ̄1, ..., ξ̄m are the new knots then an ordered se-
quence of nested knot vectors is created:

Ξ0 = Ξ,

Ξj = Ξj−1 ∪ {ξ̄j} j = 1, ...,m,

Ξm = Ξ ∪ {ξ̄1, ..., ξ̄m} = Ξ̄.

Each time a new knot is added, a new refining matrixR(Ξj,Ξj+1) ∈ R(n+j+1)×(n+j)

is computed. The complete h-refining process from Ξ to Ξ̄ is then expressed2 by
the products of the refining matrices:

R(Ξ, Ξ̄) =
m∏
j=1

R(Ξm−j,Ξm−j+1). (2.14)

Once again the full refining matrix R(Ξ, Ξ̄) does not depends on the order of the
insertion of the knots, although the order used for the creation of the nested knot
vectors must be kept in the productory.
In the multivariate case, if the knot vectors Ξ = {Ξd}Dd=1 are h-refined to Ξ̄ =
{Ξ̄d}Dd=1, then the refining matrix is computed with the Kronecker product:

R(Ξ, Ξ̄) =
D⊕
d=1

R(Ξd, Ξ̄d).

2The author is confident that a more efficient procedure exists in order to apply multiple knots
insertion, although for IGA purposes the computational costs of mesh refining are negligible.
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(d) h-refined basis functions.

Figure 2.2: h-refinement at its finest.

Figure 2.2 shows how the h-refining process affects B-spline basis functions and
geometries. From the open knot vector Ξ = {0, 0, 0, 1, 1, 1} consisting of only
one element we have three quadratic B-spline basis functions (b). The curve is
generated from the three control points {(0, 1), (1, 2), (1, 0)} ⊂ R2, graphically
connected in (a) with the red segments. For the h-refinement, knot ξ̄ = 1/2 is
inserted. The mesh now owns two elements: [0, 1/2], represented in light blue on
the curve, and [1/2, 1], represented in blue on the curve. The curve is generated
from 4 basis functions (d) and hence the 4 control points (c) obtained from 2.11.
Before the h-refinement the curve is a linear combination of polynomial functions,
therefore it is C∞([0, 1]). After the h-refinement the curve is a linear combination
of piecewise polynomials that are globally C1, but it still preserve the previous
geometrical regularity C∞.

2.3.2 p-refinement
The p-refinement, or degree elevation in CAD literature, is a procedure aimed
to raise the polynomial degree of the B-spline space. It is similar to the degree
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refinement of the spectral methods.
There are different algorithms that perform p-refinement, and we refer to [28] for
the theoretical concepts and to [24] for the algorithm used in the code.
Independently from the used algorithm, p-refinement raises the polynomial degree
of the entire B-spline space, dimension-wise. One can elevate the degree along a
single direction but cannot mix different degrees along the same direction.
Moreover, p-refinement does not change the shape and parametrization of a ge-
ometry. It also maintain the regularity at the knots so that the multiplicities of the
knots are elevated as well. This means that, for example, a globally C1 B-spline
space of degree p = 3, once is p-refined by 4 degrees, will become a C1 B-spline
space of degree 7. Any internal knot of multiplicity m = 2 will become a knot of
multiplicity m = 6.
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(d) p-refined basis functions

Figure 2.3: p-refinement at its finest.

Figure 2.3 shows the p-refinement process applied to the curve of Figure 2.2. The
p-refinement consists of augmenting the degree from 2 to 3. The number of B-
spline basis functions goes from 3 to 4 because the coarse knot vector contains
only one element. As already stated, p-refinement doesn’t rise the number of
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elements nor the global regularity. Once again, the curve is geometrically and
parametrically unchanged. It is worth to notice that the new 4 control points are
different from those obtained with h-refinement.

2.3.3 k-refinement
The k-refinement arises from the fact that h-refinement and p-refinement don’t
commute. The h-refinement adds one basis function for each inserted knot, while
p-refinement adds a basis function for each element Q̂ in the knot vector. If we
start from an open knot vector of degree p with no intermediate knots and hence
only one element, there are p + 1 basis functions. With an h-refinement of n
new distinct knots with multiplicity 1, we obtain p + 1 + n basis functions over
n+ 1 mesh elements, with global regularity Cp−1. Now, p-refining the knot vector
m times adds a basis function for each element, therefore the p-refined B-spline
space has dimension p+ 1 + n+m(n+ 1) and global regularity Cp−1.
Starting again from the single element knot vector, the application of p-refinement
m times generates a B-spline space of p+ 1 +m functions belonging to Cp+m−1.
The h-refinement adds n basis function and we obtain a B-spline space with di-
mension p+ 1 + n+m and maximum regularity Cp+m−1.
This means that with a wise application of p- and h-refinement, it is possible to
both elevate the polynomial degree and regularity, and decrease the mesh size.
It is clear that a coarse mesh size consisting of only one element is not a real world
scenario: complex geometries of industrial or engineering interest are described
with more than 1 element. Anyway, applying h-refinement before p-refinement
will results in an overabundance of basis functions with no regularity gains, at
least across the new element created from h-refinement. With the wise order there
are no regularity gains across coarse mesh knots but basis functions are kept in a
minimum number with the highest regularity across the new knots.
Figure 2.4 shows how h-refinement and p-refinement don’t commute. Starting
from a one-element degree 1 open knot vector, the h-refinement consists in in-
serting knots ξ = 1/4 and ξ = 3/4, while p-refinement augments the polynomial
degree by 4.
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(a) Basis functions of degree p = 1
from knot vector Ξ = {0, 0, 1, 1}.
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(b) h-refinement of (a).
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(d) Unwise result.
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(g) k-refined basis functions.

Figure 2.4: k-refinement at its finest.

2.4 NURBS
Definition 2.5. Given a knot vector Ξ = {ξ1 ≤ ... ≤ ξn+p+1} and a set of weights
w = {wi}ni=1 we call univariate NURBS basis functions (for brevity NURBS) the
n functions N̂p

i : [0, 1] −→ R defined as

N̂p
i (ξ) =

wiB̂
p
i (ξ)

W (ξ)
, (2.15)
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where W : [0, 1] −→ R is the so-called weight function defined as

W (ξ) =
n∑
i=1

wiB̂
p
i (ξ). (2.16)

We denote the linear space of NURBS functions with the following notation:

N̂ = N̂ (Ξ, p, w) = span
{
N̂p
i , i = 1, ..., n

}
. (2.17)

The multivariate tensor product NURBS space is denoted with

N̂ = N̂ (Ξ,p,w) = span
{
N̂p

i , i = 1, ...,n
}
. (2.18)

NURBS basis functions are piecewise rational polynomials. They inherit all the
properties of B-splines and allow for the construction of geometries that are com-
mon in industrial applications, such as conics, spheres, cylinders and many others.
See Figures 4.1 and 4.2 for two examples of NURBS exact geometries represent-
ing curved shapes.
We note that when the weights are equally 1, because of the partition of unity
property the weight function W is identically 1, and NURBS basis functions co-
incide with B-splines. NURBS are hence a superset of B-splines.
Due to being a B-spline function itself, the weight function W is invariant under
any type of refinement, therefore it is set at the coarsest level of the mesh. The
collection of weights, though, has to be refined in order to use NURBS basis
functions as a discrete basis for a Petrov-Galerkin discretization. This is the only
motivation for a full implementation of the three refining processes in an IGA
code.

2.5 Basis functions in physical domain
In IGA the physical domain Ω of a PDE is described with a B-spline or NURBS
geometry F, while basis functions are defined only in the parametric space [0, 1]D.
The construction of discrete function spaces in physical domain is performed via
push-forward: if we denote Ω = F([0, 1]D) and x = F(ξ), we define (again)
B-spline basis functions in physical domain as

Bp
i : Ω −→ R, Bp

i (x) = B̂p
i (F−1(x)) = B̂p

i ◦ F−1(x). (2.19)

where B̂p
i ∈ B̂(Ξ,p). The space of B-splines on physical domain is denoted

B = B(Ξ,p). (2.20)
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The same ”hat/no-hat” notation is used for NURBS basis functions and spaces:

Np
i : Ω −→ R, Np

i (x) = N̂p
i (F−1(x)) = N̂p

i ◦ F−1(x). (2.21)

N = N (Ξ,p,w). (2.22)

From an implementation point of view, the evaluation of basis functions in phys-
ical domain is trivial, while the evaluation of derivatives require the computation
of the Jacobian matrix of F or, for second derivatives, the Hessian tensor. The first
derivatives are computed in the following way:

∇Bp
i = ∇B̂p

i JF−1.

Meshes and elements are mapped via F to form equivalent objects in physical
domain. We then define physical element the set K = F(Q) with Q ∈ Q, and
physical mesh the set K of physical elements. The physical element size is hK =
‖∇F‖L∞(Q)hQ and physical mesh size is h = maxK∈K hK .
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Figure 2.5: Examples of degrees p1 = 2, p2 = 1 NURBS basis function in the
quarter annulus of Figure 4.1 as physical domain.
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2.6 Approximation estimates
We present now some approximation estimates for B-spline and NURBS spaces
with decreasing mesh size h, the polynomial degree kept fixed. The main idea is to
adapt the well-known Bramble-Hilbert Lemma ([15]) to B-spline functions, and
then extend it first to NURBS and second to the physical domain Ω = F([0, 1]D).
For the full proofs of the following Lemmas and Theorems, we refer to [7].
Before starting with the approximation results, some machinery and the introduc-
tion of a functional space must be fixed:

• We consider a family of meshes {Qh}h associated to the family of knot
vector {Ξh}, h being the mesh size of Qh. We assume that the family is
shape regular, i.e. the mesh size hQ of each element is bounded uniformly
with respect to Q and h. As usual, the equivalent physical mesh family
{Kh}h is defined.

• We consider the corresponding families of B-spline and NURBS spaces
constructed from the meshes Qh:{

B̂h = B̂h(Ξh,p)
}
h
,

{
N̂h = N̂h(Ξh,p,w)

}
h
,

{Nh = Nh(Ξh,p,w)}h .
For B-spline or NURBS discrete spaces in physical domain, there will only
be considered the notationNh as B-splines are a particular case of NURBS.

• We denote with C a positive dimensionless constant which depends only
on dimension D, polynomial degrees p and the shape regularity of {Qh}h.
Another constant Cshape is considered, depending on h and the geometry
of Ω. It does not depend on the size of the domain, i.e. it is homogeneous
of degree 0 with respect to the weight function W and the Jacobian JF,
although it depends on W/‖W‖L∞ and JF/‖JF‖L∞ .

• The natural number p as polynomial degree has to be considered as the
minimum of the degrees in p.

• We define support extension Q̃ of a parametric element Q ∈ Q the open set

Q̃ =
D⊗
d=1

(
ξdid −mid , ξ

d
id

+mid + 1
)
⊂ RD.

with mid the multiplicity of the knot ξid as in Definition 2.1. The support
extension of an element is the union of all supports of B-splines that don’t
vanish onQ. Via push-forward, the support extension is defined on physical
elements: the support extension of the physical element K is K̃ = F(Q̃).
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• For D > 1, we need the notion of reduced regularity across two adjacent
elements of a mesh, i.e. two elements that share an edge, a face or a D− 1-
dimensional hypercube in general, but not geometric entities whose dimen-
sion is below D − 1. We denote with mQ1,Q2 the regularity of the basis
functions along the direction going from element Q1 to the adjacent ele-
ment Q2. If the edge (or face) shared between Q1 and Q2 correspond to the
knot ξdid , then

mQ1,Q2 = pd −mid ,

Finally, we need a functional space living between the classic Sobolev space
H1

0 (Ω) ([3]), and the broken Sobolev space ([27]), typical from the Discontinuous
Galerkin Methods.

Definition 2.6. We define bent Sobolev spaceHm = Hm(Ω) the set

Hm =

v ∈ L
2
(
(0, 1)d

)
∣∣∣∣∣∣∣∣∣∣
v|Q ∈ Hm(Q) ∀Q ∈ Q,

∇kv|Q1 = ∇kv|Q2 on ∂Q1 ∩ ∂Q2

∀k = 0, . . . ,min{mQ1,Q2 ,m− 1}
∀Q1, Q2 ∈ Q, ∂Q1 ∩ ∂Q2 6= ∅

 , (2.23)

where∇k is the k-th differentiation operator in the trace sense, with∇0v = v.
This space, endowed with seminorms and norm

|v|2Hi =
∑
Q∈Q

|v|2Hi(Q), i = 0, . . . ,m, ||v||2Hm =
m∑
i=0

|v|2Hi , (2.24)

is a Hilbert space. The restriction ofHm to the extension support of an element is
denoted with

Hm(Q̃) =
{
v|Q̃|v ∈ H

m
}
,

|v|2Hi(Q̃)
=

∑
Q∈Q,Q∩Q̃6=∅

|v|2Hi(Q), ‖v‖2
Hm(Q̃)

=
m∑
i=1

|v|2Hi(Q̃)
.

It can be noticed from the definition that bent Sobolev spaces depend on an under-
lying mesh. For the following analysis mesh families have been introduced and
so is the family of spaces {Hm

h }h, whereHm
h is the bent Sobolev space associated

with mesh Qh. We are now ready for the approximation results.
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2.6.1 Approximation in parametric domain
Lemma 2.7. Let k and l be integer indexes with 0 ≤ k ≤ l ≤ p + 1. Given
Q ∈ Qh, its extension support Q̃ and v ∈ Hl

h, there exist b ∈ B̂h such that

|v − b|Hkh(Q̃) ≤ Chl−kQ |v|Hlh(Q̃). (2.25)

Proof. See [7].

We now introduce a family of projectors on the space B̂h:

ΠB̂h : L2
(
[0, 1]D

)
−→ B̂h, ΠB̂hv =

n∑
i

λi[v]B̂i. (2.26)

where the functionals λi are as in 2.5. The projectors have the two following
properties:

• Spline preserving: ΠB̂hb = b for all b ∈ B̂h;

• Local stability: ‖ΠB̂hv‖L2(Q) ≤ C‖v‖L2(Q̃) for all v ∈ L2([0, 1]D) and for
all Q ∈ Qh.

Lemma 2.8. Let k and l be integer indexes with 0 ≤ k ≤ l ≤ p+ 1. Then, for all
Q ∈ Qh we have

|v − ΠB̂hv|Hk(Q) ≤ Chl−kQ |v|Hlh(Q̃), ∀v ∈ Hl
h(Q̃) ∩ L2([0, 1]D). (2.27)

Proof. See [7].

The passage from B-splines to NURBS in parametric domain requires a new pro-
jector operator, inherited from 2.26:

ΠN̂h : L2([0, 1]D) −→ N̂h, ΠN̂hv =
ΠB̂h (Wv)

W
, (2.28)

where W is the weight function as in 2.16.

Lemma 2.9. Let k and l be integer indexes with 0 ≤ k ≤ l ≤ p+ 1. Then

|v − ΠN̂hv|Hk(Q) ≤ Cshapeh
l−k
Q ‖v‖Hlh(Q̃), ∀v ∈ Hl

h(Q̃), ∀Q ∈ Qh. (2.29)

Proof. See [7].
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2.6.2 Approximation in physical domain
The last projector we need is the push-forward version of 2.28.

ΠNh : L2(Ω) −→ Nh, ΠNhv =
(
ΠN̂h(v ◦ F)

)
◦ F−1. (2.30)

Theorem 2.10. Let k and l be integer indexes with 0 ≤ k ≤ l ≤ p+1. GivenQ ∈
Qh, K = F(Q) and their support extensions Q̃ and K̃, for all v ∈ L2(Ω)∩H l(K̃)
we have

|v − ΠNhv|Hk(K) ≤ Cshapeh
l−k
K

l∑
i=0

‖∇F‖i−l
L∞(Q̃)

|v|Hi(K̃). (2.31)

Moreover, for all v ∈ H l(Ω) we have

∑
K∈Kh

|v − Πnhv|2Hkh(K) ≤ Cshape
∑
K∈Kh

h
2(l−k)
K

l∑
i=0

‖∇F‖2(i−l)
L∞(F−1(Q))|v|

2
Hi(K).

(2.32)

Proof. See [7].

From Theorem 2.10 we note that NURBS discrete spaces (and B-spline as a con-
sequence) deliver optimal rate of convergence, as in classic FEM.
Finally, the application of Dirichlet boundary conditions can be proven with small
efforts. Let ∂Ω be the boundary of the domain Ω, with ΓD being the positive-
measured part of ∂Ω where Dirichlet conditions hold. We assume for simplicity
that ΓD consists only of edges or faces of the mesh. Let γD = F(ΓD)−1 be the
Dirichlet boundary in the parametric domain [0, 1]D. We consider also the two
functional spaces

H1
ΓD

=
{
v ∈ H1(Ω)|v = 0 on ΓD

}
, (2.33)

H1
γD

=
{
v ∈ H1([0, 1]D)|v = 0 on γD

}
, (2.34)

and the adapted version of the projectors:

Π0
B̂h

: H1
γD

((0, 1)D) −→ B̂h ∩H1
γD

([0, 1]D),

Π0
B̂h
v =

n∑
i=1,

B̂i∈H1
γD

((0,1)D)

λiB̂i; (2.35)

Π0
N̂h

: H1
γD

((0, 1)D) −→ N̂h ∩H1
γD

((0, 1)D), Π0
N̂h
v =

Π0
B̂h
Wv

W
; (2.36)

Π0
Nh : H1

ΓD
(Ω) −→ Nh ∩H1

ΓD
(Ω), Π0

Nhv =
(

Π0
N̂h

(v ◦ F)
)
◦ F−1. (2.37)
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Lemma 2.11. Let k and l be integer indexes with 0 ≤ k < l ≤ p + 1 and l ≥ 1.
Given Q ∈ Qh, its support extension Q̃ and v ∈ Hl

h(Q̃) ∩ H1
γD

((0, 1)D), there
exists b ∈ B̂h ∩H1

γD
((0, 1)D) such that

|v − b|Hkh(Q̃) ≤ Chl−kQ |v|Hlh(Q̃). (2.38)

Proof. See [7].

Theorem 2.12. Let k and l be integer indexes with 0 ≤ k < l ≤ p+ 1. Then, for
all v ∈ H l(Ω) ∩H1

ΓD
(Ω) we have

∑
K∈Kh

|v − Π0
Nhv|

2
Hkh(K) ≤ Cshape

∑
K∈Kh

h
2(l−k)
K

l∑
i=1

‖∇F‖2(i−l)
L∞(F−1(K))|v|

2H i(K).

(2.39)

Proof. See [7].

2.6.3 Approximation for advection-diffusion equations
As first introduced in Chapter 1, the advection-diffusion problem is finding a func-
tion u : Ω −→ R such that{

−∇ · (K∇u) + b · ∇u = f in Ω,

u = 0 on ΓD,
(2.40)

where the ingredients are:

• Ω ⊂ RD is an open domain with ΓD ⊂ ∂Ω;

• f : Ω −→ R is the body force;

• K : Ω −→ RD×D is the diffusivity tensor. For simplicity we assume that
K = κId, with κ a positive constant. The tensor is hence symmetric, posi-
tive definite and represent an isotropic diffusion;

• b : Ω −→ RD is the velocity field. Again for simplicity we assume
divergence-free field, i.e. ∇ · b = 0.

Integrating the assumption on K we deduce the following operators from 2.40:

Lv = Ladvv + Ldiffv, Ladvv = b · ∇v, Ldiffv = −κ∆v. (2.41)

The weak formulation of the problem is stated as follow:

Find u ∈ H1
ΓD

(Ω) such that a(u, v) = F (v), for all v ∈ H1
ΓD

(Ω). (2.42)
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where
a(v, w) = (Lv, w)L2(Ω) = −

∫
Ω

∇v · (bw − κ∇w) dx, (2.43)

F (v) = (f, v)L2(Ω) =

∫
Ω

vf dx. (2.44)

It is well-known ([29]) that the well-posedness of the associated discrete problem
depends on whether the diffusive part Ldiff or the advective part Ladv of the op-
erator is dominant. To ensure continuity and coercivity of the bilinear form a(·, ·)
one can prove that

a(v, v) ≥ α‖v‖2
H1(Ω), ∀v ∈ H1

( Ω),

a(v, w) ≤M‖v‖H1(Ω)‖w‖H1(Ω), ∀v, w ∈ H1
( Ω),

where
α =

κ

1 + C2
Ω

, M = κ+ ‖b‖L∞(Ω),

with CΩ the Cauchy inequality constant over the domain Ω. If the Sobolev space
H1(Ω) is approximated with a discrete space Vh, it can be shown for the discrete
solution uh ∈ Vh that

‖∇uh‖L2(Ω) ≤
CΩ

κ
‖f‖L2(Ω), (2.45)

‖u− uh‖H1(Ω) ≤
M

α
inf
vh∈Vh

‖u− vh‖H1(Ω). (2.46)

Inequality 2.45 shows that if κ tends to 0, the control over the discrete solution
derivatives may explode and be inaccurate. On the other hand, the constant M

α

in 2.46 is proportional to ‖b‖L∞(Ω)

κ
, therefore the error estimate may be inaccu-

rate whenever there is a considerable jump between the diffusivity and advective
coefficients. The main concept here is that a dominant advective part in the equa-
tions leads to ill-posed discrete problems, especially whenever the solution of the
problem presents the so-called boundary layers, region of the domain where the
solution gradient is relatively high.
As an indicator of the well- or ill-posedness of the discrete problem, we introduce
the Péclet number

Pe =
‖b‖L∞(Ω)h

2κ
,

for which, depending on the chosen mesh-size h, Pe < 1 leads to well-posed
problems while Pe > 1 to ill-posed problems.
The ill-posedness is thus avoidable with a sufficient small mesh size h, although if
κ� 1 and hence Pe� 1 the required h may be computationally unfeasible. This

28



motivates the adoption of stabilization methods. The streamline upwind Petrov-
Galerkin (SUPG) stabilization, first introduced in [16], is a technique designed
to enhance stability of the Galerkin approach without compromising its accuracy.
If we denote with Ω̃ the union of the interiors of elements K ∈ K, the SUPG-
stabilized problem is stated as follow:

Find uh ∈ Vh such that aSUPG(uh, vh) = FSUPG(vh), for all vh ∈ Vh. (2.47)

where the bilinear form and the functional are respectively defined as

aSUPG(v, w) = a(u, v) + (τb · ∇v,Lu)L2(Ω̃), (2.48)

FSUPG(v) = F (v) + (τb · ∇v, f)L2(Ω̃). (2.49)

The choice of the stabilization parameter τ is critical for accuracy, stability and
convergence of the methods. Several choices have been explored in literature.

Lemma 2.13. The bilinear form 2.48 satisfies the following inequalities:

aSUPG(v, v) ≥ C||w||2(1), ∀v ∈ Nh, (2.50)

aSUPG(v, w) ≤ C||v||(1)||w||(2), ∀v ∈ Nh, ∀w ∈ H1
ΓD

(Ω) ∩H2(Ω̃),
(2.51)

where the two norms ‖ · ‖(1) and ‖ · ‖(2) are defined as follow:

||v||2(1) = κ‖∇v‖2
L2(Ω) + ‖

√
τb · ∇v‖2

L2(Ω). (2.52)

‖v‖2
(2) = k‖∇v‖2

L2(Ω)+‖
√
τv‖2

L2(Ω)+‖
√
τb·∇v‖2

L2(Ω)+‖
√
τκ∆v‖2

L2(Ω). (2.53)

Proof. See [7].

A proper combination of the above inequalities gives a bound on the numerical
error in the discrete solution in terms of the interpolation error. If u is solution of
2.40 and uh is a solution of 2.47, then

‖u− uh‖(1) ≤ C‖u− Π0
Nhu‖(2). (2.54)

Finally, we have the following Theorem establishing convergence rates for the
SUPG-stabilized NURBS-discretized advection-diffusion problem:

Theorem 2.14. If the solution u of 2.40 belongs to Hp+1(Ω), then there exists
Cshape > 0 such that

‖u− uh‖2
(1) ≤ C

∑
K∈K

(
‖b‖L∞(K)h

2p+1
K + κh2p

K

) p+1∑
i=0

‖∇F‖2(i−p−1)

L∞(F−1(K))|u|
2
H1(K).

(2.55)

Proof. See [7].
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Chapter 3

Additive Schwarz Preconditioning

In this Chapter we briefly sketch the abstract theory at the foundation of Schwarz
Preconditioning ([33]). A detailed explanation of the construction of local spaces
and the coarse space in IGA will follow. We will finally prove a bound for the
condition number of the preconditioned matrix arising from the IGA discretization
of the scalar elliptic equation. We refer to [9] for the original setting.

3.1 Abstract theory
Abstract theory on multilevel Additive Schwarz Preconditioning relies on three
Assumptions. The theory is built upon a finite-dimensional Hilbert space V , a
symmetric positive definite bilinear form a : V × V → R and a linear functional
f : V → R. The abstract problem states:

Find u ∈ V such that a(u, v) = f(v) ∀v ∈ V . (3.1)

As V is a finite-dimensional space, it is spanned by a finite basis so that functions
in V can be expressed as linear combination of the basis functions:

V = span {φ1, ..., φn} =⇒ u =
n∑
i=1

uiφi, v =
n∑
i=1

viφi. (3.2)

With a small abuse of notation, the Problem 3.1 can be rewritten as a linear system
Au = f , where

A = [aij]
n
i,j=1 ∈ Rn×n, aij = a(φi, φj); (3.3)

f = [fi]
n
i=1 ∈ Rn, fi = f(φi). (3.4)
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We assume that the space V is decomposed in a family of subspaces {Vj}Nj=0 such
that

V = RT
0 V0 +

N∑
j=1

RT
i Vj, (3.5)

where RT
j : Vj → V are interpolation operators. The decomposition of V is not

unique, nor the subspaces Vj have to be proper linear subspaces. Spaces Vj with
j = 1, ..., N are typically associated to local subdomains of the PDE domain Ω,
and hence referred as local spaces. The interpolation operators RT

j are typically
represented as matrices of 1 and 0. Their action consists in extending functions to
zero from Vj to V , while in the other direction the transposed operators Rj select
the part of a function of V belonging to Vj .
Generally speaking, even the space V0 has not to be a proper subspace of V , al-
though it is in a suitable IGA context. It is typically associated to a coarse global
mesh and it will be referred as coarse space. The operator RT

0 is a proper interpo-
lation operator from V0 to V while its transposed R0 is a projection operator from
V to V0.
Associated with the decomposition {Vj} there are the local bilinear forms and
local system matrices:

ãj : Vj × Vj → R, Ãj : Vj → Vj, j = 0, ..., N. (3.6)

These local forms can be an approximation of the local action of a(·, ·). In our
case, local forms and local matrices are defined directly from the global ones:

ãj (vj, wj) = a
(
RT
j vj, R

T
j wj

)
, vj, wj ∈ Vj, (3.7)

Ãj = RjAR
T
j . (3.8)

With this explicit definition (the so-called use of exact solver), local forms ãj are
symmetric, positive definite bilinear forms.
Schwarz operators Pi are then defined on the operators P̃j : V → Vj , where P̃jv
is such that

ãj

(
P̃jv, wj

)
= a

(
v,RT

j wj
)
, ∀wj ∈ Vj. (3.9)

The definition of P̃j is well-defined since the local forms are coercive. We then
define the operators

Pj = RT
j P̃j : V → RT

j Vj ⊂ V , j = 0, ..., N. (3.10)

The element Pjv is the only element that satisfies

a
(
Pjv,R

T
j wj

)
= a

(
v,RT

j wj
)
, ∀wj ∈ Vj. (3.11)
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It can be proven ([33]) that in matrix form, Pj can be written in the following way:

Pj = RT
j Ã
−1
j RjA, j = 0, ..., N. (3.12)

Moreover, in case of exact solver, Pj is a projection, i.e. P 2
j = Pj .

We now have all the ingredients to define the Additive Schwarz Operator.

Definition 3.1. Given a finite-dimensional Hilbert space V with decomposition
{Vj}Nj=0, a symmetric positive definite bilinear form a : V × V −→ R and pro-
jection operators as in 3.10, we define the 1-level Additive Schwarz Operator the
operator

P
(1)
ASO =

N∑
j=1

Pj =
N∑
j=1

RT
j Ã
−1
j RjA. (3.13)

We define 1-level Additive Schwarz Preconditioner the operator(
A

(1)
ASO

)−1

=
N∑
j=1

RT
j Ã
−1
j Rj. (3.14)

Analogously we define the 2-level Additive Schwarz Operator the operator

P
(2)
ASO = P0 +

N∑
j=1

Pj = RT
0 Ã
−1
0 R0A+

N∑
j=1

RT
j Ã
−1
j RjA. (3.15)

and the 2-level Additive Schwarz Preconditioner the operator(
A

(2)
ASO

)−1

= RT
0 Ã
−1
0 R0 +

N∑
j=1

RT
j Ã
−1
j Rj. (3.16)

In order to prove lower and upper bounds respectively for the minimum and maxi-
mum eigenvalues of P (2)

ASO, and hence estimates for its condition number, we need
three Assumptions on the decomposition.

• Assumption 1: Stable Decomposition. There exists a constant C0 > 0
such that every v ∈ V admits a decomposition

v =
N∑
j=0

RT
j vj, vj ∈ Vj, (3.17)

that satisfies
N∑
j=0

ãj (vj, vj) ≤ C2
0a(v, v). (3.18)

This assumption ensures a positive lower bound for the minimum eigen-
value λmin (POAS).
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• Assumption 2: Strengthened Cauchy-Schwarz Inequalities. There exist
constants εi,j ∈ [0, 1] with i, j = 1, ..., N such that for all vi ∈ Vi and
vj ∈ Vj we have∣∣a (RT

i vi, R
T
j vj
)∣∣ ≤ εi,ja

(
RT
i vi, R

T
i vi
) 1

2 a
(
RT
j vj, R

T
j vj
) 1

2 . (3.19)

We will denote the spectral radius of the N ×N matrix ε = [εi,j] with ρ(ε).

• Assumption 3: Local Stability. There exists constant ω > 0 such that for
all i = 0, ..., N we have

a
(
RT
j vj, R

T
j vj
)
≤ ωãj(vj, vj), ∀vj ∈ range

(
P̃j

)
⊂ Vj. (3.20)

Theorem 3.2. With Assumptions 1,2,3, we have the following bound for the con-
dition number of the 2-level Additive Schwarz Operator:

cond
(
P

(2)
ASO

)
≤ C2

0ω (ρ(ε) + 1) . (3.21)

For a full proof of Theorem 3.2 we refer to [33], Chapter 2.

3.2 Decomposition strategies
As usual in Isogeometric Analysis, the decomposition of the domain Ω in sub-
domains {Ωj}Nj=0 is performed dimension-wise, hence it will be explained for
univariate NURBS spaces and then extended via tensor-product. In this Section,
we will denote with V a generic B-spline or NURBS function space where the
polynomial degree p is kept fixed.
Let Ξ = {ξ1 ≤ ... ≤ ξn+p+1} be an open knot vector. We select a subset of the
knot vector by choosing N non-repeated knots called interface knots:

{0 = ξi0 < ... < ξiN = 1} ⊂ Ξ. (3.22)

The partition
{
Îj = (ξij , ξij+1

)
}N
j=1

will constitute the subdomains.

Normally B-spline basis functions have a support that spans more than one ele-
ment, therefore there are different strategies for constructing the local spaces Vj
associated to the subdomains Ωj . All of the strategies presented here rely on the
choice of the basis functions across the interface knots, and leads to different lo-
cal spaces. Strategy 1 is the original strategy from [9], Strategy 2 is the strategy
that has been implemented in the code, while Strategy 3 is the algebraic strategy
implemented by PETSc in order to apply Overlapping Domain Decomposition
techniques in their full generality.

33



3.2.1 Strategy 1
An overlap index r ∈ N is chosen to represent the number of overlapping func-
tions among two adjacent subdomains. We then select two basis functions B̂p

i′ ,
B̂p
i′′ such that we have

Îj−1 ∩ supp(B̂p
i′) ∩ Îj 6= ∅, Îj ∩ supp(B̂p

i′′) ∩ Ij+1 6= ∅.

Any choice of B̂p
i′ and B̂p

i′′ is valid. Then we define the local subspace in the
following way:

Vj = span
{
B̂p
i ∈ V|i′ − r ≤ i ≤ i′′ + r

}
.

We notice that there are at most 2r+ 1 overlapping functions among two adjacent
subdomains.

(a) r = 0 (b) r = 1

Figure 3.1: Knot vector decomposition by Strategy 1.

Figure 3.1 shows B-spline quadratic basis functions associated with the uniform
open knot vector of 8 elements, for a total of 10 basis functions. We decompose
in two subdomains, hence only one interface knot has to be chosen. The chosen
one is ξ = 1/2 so that the two subdomains are Î1 = (0, 1/2) and Î2 = (1/2, 1).
In Figure 3.1a, we have r = 0 and we choose basis function B2

5 . We notice that
B2

6 could have been a valid choice. The two local spaces are

V1 = span
{
B̂2
i ∈ V | i = 1, ..., 5

}
, V2 = span

{
B̂2
i ∈ V | i = 5, ..., 10

}
.

In Figure 3.1b the overlap parameter is r = 1, hence there are more overlapping
functions. The local spaces are

V1 = span
{
B̂2
i ∈ V | i = 1, ..., 6

}
, V2 = span

{
B̂2
i ∈ V | i = 4, ..., 10

}
.
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Internal basis function of V1 and V2 are depicted respectively in blue and black.
Overlapping basis functions are depicted in red.

3.2.2 Strategy 2
The following subspaces can be chosen:

Vj = span
{
B̂p
i ∈ V | supp

(
B̂p
i

)
∩ Îj 6= ∅

}
, j = 1, ..., N.

If the multiplicity of the interface knot is 1, the number of overlapping functions
is exactly p. The idea is selecting as overlapping functions those whose support
contains the interface knot. This strategy depends on the polynomial degree, and
can be referred as generous overlap.

Figure 3.2: Knot vector decomposition by Strategy 2.

Figure 3.2 shows the same space V of Figure 3.1, with the same coloring scheme:
10 quadratic B-splines defined over a uniform open knot vector of 8 element.
Again, the knot vector (0, 1) is decomposed in two local subdomains, Î1 = (0, 1/2)
and Î2 = (1/2, 1). Accordingly to this Strategy, the overlapping basis functions
are B2

5 and B2
6 , i.e those whose support include the interface knot ξ = 1/2. The

two local spaces are

V1 = span
{
B̂2
i ∈ V | i = 1, ..., 6

}
, V2 = span

{
B̂2
i ∈ V | i = 5, ..., 10

}
.
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3.2.3 Strategy 3
The last way of selecting the function subspaces is algebraic: basis functions of
V are divided in N disjoint subsets, where in each subset basis functions are con-
secutive accordingly with the index order:

{
B̂p
i

}n
i=1

=
N⋃
j=1

{
B̂p
i

}ij−1

i=ij−1

, 1 = i0 < i1 < ... < iN−1 < iN = n,

Ṽj = span
{
B̂p
i |ij−1 ≤ i < ij

}
.

This preliminary non-overlapping decomposition is the typical partitioning of de-
grees of freedom of the system matrix in a parallel computational environment.
The j-th local subspace is defined as span of all the basis functions coupled with
those of Ṽj:

Vj = span
{
B̂p
i | ∃k with ij−1 ≤ k < ij such that aik 6= 0

}
.

where aik is the i, j-th entry of the matrix A = [aij]. Due to the definition of a
matrix A arising from the Petrov-Galerkin discretization of a PDE, coupled basis
functions (i.e. degrees of freedom) are those whose supports have non-void inter-
section. This construction can be performed directly from the system matrix, and
is typically used for algebraic Additive Schwarz Preconditioner. No knowledge of
the PDE setting underlying the system matrix is required. Moreover, the coupling
procedure can be applied recursively on Vj in order to obtain a more generous
overlapping subspace. This is the default procedure implemented in PETSc.

(a) Non overlapping subspaces. (b) Overlapping subspaces.

Figure 3.3: Knot vector decomposition by Strategy 3.
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Figure 3.3a shows the non-overlapping subdomains Ṽ1 and Ṽ2 constructed from
the usual space of quadratic B-splines on an 8-element knot vector:

Ṽ1 = span
{
B̂2
i ∈ V | i = 1, ..., 5

}
, Ṽ2 = span

{
B̂2
i ∈ V | i = 6, ..., 10

}
.

We add to Ṽ1 all basis functions whose support intersects the blue B-splines in
order to obtain the local space:

V1 = span
{
B̂2
i ∈ V | i = 1, ..., 7

}
= Ṽ1 ∪

{
B̂2

6 , B̂
2
7

}
.

Analogously, by adding the overlapping functions to the black ones we obtain the
second local space:

V2 = span
{
B̂2
i ∈ V | i = 4, ..., 10

}
= Ṽ2 ∪

{
B̂2

4 , B̂
2
5

}
.

3.3 Isogeometric Decomposition setting
In this work, Strategy 2 is chosen for both implementation and theoretical back-
ground. The following definitions are aimed to fix once for all the required ma-
chinery for the adaptation of the abstract theory of Additive Schwarz Precondi-
tioning to the Isogeometric case.
Let Ξ be a knot vector of degree p and mesh size h, {ξij}Nj=1 ⊂ Ξ be interface
knots and V̂ the associated B-spline space. We define the following objects:

• Subdomains are the open intervals Îj = (ξji , ξij+1
), for which the mesh size

is H ≈ Hj = diam(Îj).

• Local spaces are the spaces

V̂j = span
{
B̂p
i ∈ V | supp

(
B̂p
i

)
∩ Îj 6= ∅

}
, j = 1, ..., N. (3.23)

For the sake of simplicity we restrict our analysis to uniform open knot
vectors with the interior knots having multiplicity 1. This means that in each
interior knot there are exactly p overlapping functions. If basis functions
B̂p
i , ..., B̂

p
i+p−1 are all and the only functions belonging to both V̂j and V̂j+1,

we define an index
sj = b2i+ p− 1

2
c, (3.24)

37



so that local spaces can be written as

V̂j =


span

{
B̂p
i ∈ V̂|1 < i ≤ s2 + r

}
, j = 1,

span
{
B̂p
i ∈ V̂|sj − l ≤ i ≤ sj+1 + r

}
, 2 ≤ j ≤ N − 1,

span
{
B̂p
i ∈ V̂|sN − l ≤ i < sN+1

}
, j = N,

(3.25)
with l = bp−1

2
c, r = bp

2
c, l + r + 1 = p. One can notices that in space V̂1

and V̂N the first and last basis functions are respectively removed. This is
due to the fact that those functions (or degrees of freedom) are associated
with Dirichlet boundary conditions, hence they are not directly involved in
the computation.

• Extended subdomains are the intervals

Î ′j =
⋃

B̂pi ∈V̂j

suppB̂p
i =

(
ξsj−l, ξsj+1+r+p+1

)
, j = 1, ..., N. (3.26)

• Further extended subdomains are the intervals

Î ′′j =
⋃

suppB̂pj∩Î′j 6=∅

suppBp
i , j = 1, ..., N. (3.27)

The decomposition of a knot vector defines not only the local spaces but the coarse
space as well. The interface knots as in 3.22 are used to construct a coarse open
knot vector with the same polynomial degree of the starting knot vector Ξ:

Ξ0 =
{
ξ1 = ... = ξp+1 ≤ ξi1 ≤ ... ≤ ξiN−1

≤ ξn0+1 = ... = ξn0+p+1

}
⊂ Ξ.

(3.28)
where n0 is deduced from the construction. Given the set of control weights w,
we denote in the following way the coarse space associated to Ξ0:

V̂0 = N̂ (Ξ0, p, w) .

We notice that the coarse space V̂0 is a proper linear subspace of V̂ .
In the practice (and as implemented in the code), a very coarse mesh defines the
geometry F, a slight h-refinement defines the subdomains and the coarse space
V̂0 and finally a heavy h-refinement defines the local spaces V̂j , so that there is no
actual coarsening process.
As stated in Section 3.1, the interpolation operators RT

j with j = 1, ..., N are
simple matrices of 0 and 1 that activate or deactivate the basis functions that don’t
belong to V̂j . During the activation process, functions of V̂j are extended to 0 in V̂ .
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In the practice matrices RT
j are never explicitly computed: their action is simply

implemented as computing on a certain portion of the set of degrees of freedom.
The interpolation operator RT

0 , instead, has to be computed explicitly in order
to project from V̂0 to V̂ (back and forth) the residual vector during the iteration
of the linear solver. The coarse-to-global projection operator is computed from
Algorithm 2.13:

RT
0 = R(Ξ0,Ξ).

Finally, all concepts and mathematical entities are extended to the multivariate
case via tensor product and to the physical domain via push-forward. For example,
subdomains Îj in parametric space are tensor-product of the relative intervals:

Ω̂j = Îj =
D⊕
d=1

Îjd , j = 1, ...,N, (3.29)

while subdomains in physical space are the image via the geometry F:

Ωj = Ij = F
(
Îj

)
, j = 1, ...,N.

We are now ready for a formal definition of the Additive Schwarz Operators and
Preconditioners for the Isogeometric Analysis of the scalar elliptic equation, along
with the main theoretical result of this work.

Definition 3.3. Let V = N (Ξ,p,w) be a NURBS space defined over Ω ⊂ RD

with decomposition {Vj}Nj=0. Given the bilinear continuous and coercive form

a : V × V −→ R, a(v, w) =

∫
Ω

∇v · ∇w dx,

the associated local and coarse bilinear forms

aj : Vj × Vj −→ R, aj(vj, wj) =

∫
Ω

∇vj · ∇wj dx,

and relative stiffness matrices A, {Aj}Nj=0 and the interpolation operators {Rj}Nj=0,
we define the 1-level Additive Schwarz Operator the operator

P
(1)
ASO =

N∑
j=1

Pj =
N∑
j=1

RT
j A
−1
j RjA. (3.30)

We define 1-level Additive Schwarz Preconditioner the operator(
A

(1)
ASO

)−1

=
N∑
j=1

RT
j A
−1
j Rj. (3.31)
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Analogously we define the 2-level Additive Schwarz Operator the operator

P
(2)
ASO = P0 +

N∑
j=1

Pj = RT
0A
−1
0 R0A+

N∑
j=1

RT
j A
−1
j RjA. (3.32)

and the 2-level Additive Schwarz Preconditioner the operator

(
A

(2)
ASO

)−1

= RT
0A
−1
0 R0 +

N∑
j=1

RT
j A
−1
j Rj. (3.33)

Theorem 3.4. The condition number of the 2-level Additive Schwarz Operator
3.32 for the Isogeometric Analysis of the scalar elliptic equation is bounded by

cond
(
P

(2)
ASO

)
≤ C

(
1 +

H

h

)
, (3.34)

where constant C > 0 is independent of H, h,N, but not of p.

Proof. See Section 3.4.

3.4 Stable splitting
In order to prove the bound of Theorem 3.4, the three Assumptions in Section 3.1
must be satisfied.
Assumption 2 ensures an upper bound for the maximum eigenvalue λmax(PASO).
With a standard coloring argument, the spectral radius ρ(ε) is bounded by the
number of colors. In case of tensor product Cartesian grid, the number of colors
is 2D, hence ρ(ε) ≤ 2D.
Assumption 3 is a generic requirement that is trivially satisfied with use of exact
solvers. One can verify that the definition of exact solver 3.7 satisfies 3.20 with
ω = 1.
Assumption 1 has to be specifically proven for IGA, and it is a nontrivial task. It
relies on the definition of interpolation operators between V̂ and V̂j . These opera-
tors will be firstly presented only for the univariate case and for a decomposition
of two subdomains. Multivariate tensor product structure and the fact that the dif-
ficulties arise on the interface of the two subdomains guarantee an almost trivial
extension to more general cases.
As introduced in Chapter 1, the scalar elliptic equation treated in this work is
defined as follow:

−∇ · (K∇u) = f in Ω.
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We assume that the diffusivity tensor K : Ω −→ RD×RD is of the form K = κId,
with κ = κ(x) ∈ L∞(Ω). Thus the coefficient κ is bounded from both above and
below:

κmin ≤ κ(x) ≤ κmax, ∀x ∈ Ω, κmin, κmax ∈ R.
For the proof of Assumption 1 we assume κ ≡ 1 in Ω, so that the scalar elliptic
equation can be rewritten in the following way:

−∆u = f in Ω. (3.35)

The more general case can be proved straightforwardly with the addition of the
term κmax/κmin. As a standard procedure in calculus, equation 3.35 is written in
variational form and the Laplace operator is seen as an elliptic bilinear form:

a(u, v) =

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx = F (v).

Noticing that a(v, v) =
∫

Ω
|∇v|2 dx = ‖∇v‖2

L2(Ω), Assumption 1 in Section 3.1
will be proved as a bound on theH1-seminorms of the splitting v = v0 +

∑N
j=1 vj:

‖∇v0‖2
L2(Ω) +

N∑
j=1

‖∇vj‖2
L2(Ω) ≤ C

(
1 +

H

h

)
‖∇v‖2

L2(Ω).

Once the latter is established, Theorem 3.4 is proved as a particular case of the
abstract Theorem 3.2.
In what follows, we denote with a . b any inequality of the type a ≤ Cb with
C being a generic constant eventually independent from underlying knot vectors,
thus independent from mesh sizes h,H and the number of subdomains.

3.4.1 Univariate stable splitting
Definition 3.5. Given an univariate B-spline space V̂ = B̂(Ξ, p), the decomposi-
tion Ω̂ = Î1 ∩ Î2 = (0, ξi2) ∩ (ξi2 , 1) and the subsequent local spaces

V̂1 = span
{
B̂p
i |2 ≤ i ≤ s2 + r

}
, V̂2 = span

{
B̂p
i |s2 − l ≤ i ≤ n− 1

}
.

as in Strategy 2 in Section 3.2.2, then for v =
∑
ciB̂

p
i ∈ V̂ we define the two

interpolation operators Π̂j : V̂ −→ V̂j in the following way:

Π̂1v =

s2−l−1∑
i=2

ciB̂
p
i +

s2+r∑
i=s2−l

s2 + r + 1− i
p+ 1

ciB̂
p
i , (3.36)

Π̂2v =

s2+r∑
i=s2−l

l − s2 + 1 + i

p+ 1
ciB̂

p
i +

n−1∑
i=s2+r+1

ciB̂
p
i . (3.37)
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The action of the interpolation operators is the restriction of a function in V̂ to
V̂j , with coefficients of the overlapping functions linearly decreasing from 1 to 0
outward the subdomain. It is easy to see that

v = Π̂1v + Π̂2v.

For brevity, we rewrite the operators with Π̂1v =
∑s2+r

i=2 c̄iB
p
i , where

c̄i = cidi, di =

{
1 2 ≤ i ≤ s2 − l − 1
s2+r+1−i

p+1
s2 − l ≤ i ≤ n− 1.

(3.38)

Lemma 3.6. For all z ∈ V̂ the operators Π̂j , with j = 1, 2, satisfy∥∥∥∥ ddξ Π̂jz

∥∥∥∥2

L2(Î′j)

.

(
1 +

H

h

)∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′j )

+
1

hH
‖z‖2

L2(Î′′j )
, (3.39)

∥∥∥Π̂jz
∥∥∥2

L2(Î′j)
. ‖z‖2

L2(Î′′j )
, (3.40)

where Î ′j and Î ′′j are as in 3.26 and 3.27 respectively.

Proof. We will prove the result for Π̂1, the case of Π̂2 being analogous. First, we
recall the B-spline derivative formula 2.4:

d

dξ
B̂p
i (ξ) = p

(
B̂p−1
i (ξ)

∆p
i

−
B̂p−1
i+1 (ξ)

∆p
i+1

)
.

A telescoping sum follows immediately:

d

dξ
Π̂1z =

s2+r∑
i=2

c̄i
d

dξ
B̂p
i =

s2+r∑
i=2

c̄ip

(
B̂p−1
i

∆p
i

−
B̂p−1
i+1

∆p
i+1

)
=

= p

s2+r+1∑
i=2

(c̄i − c̄i−1)
B̂p−1
i

∆p
i

.

(3.41)

with the convention that c̄1 = c̄s2+r+1 = 0. We now consider that

c̄i − c̄i−1 = cidi − ci−1di−1 = ci(di − di−1) + di−1(ci − ci−1),

and substituting in 3.41 we obtain

d

dξ
Π̂1z =

(
p

s2+r+1∑
i=2

(ci(di − di−1))
B̂p−1
i

∆p
i

)
+

+

(
p

s2+r+1∑
i=2

(di−1(ci − ci−1))
B̂p−1
i

∆p
i

)
= T1 + T2.

(3.42)
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Terms T1 and T2 will be estimated separately. Starting with T1, we now notice
that

di − di−1 =

{
0 2 ≤ i ≤ s2 − l − 1,
−θ s2 − l ≤ i ≤ s2 + r,

θ =
1

p+ 1
.

Due to the mesh regularity, we have that ∆p
i ≥ hp for any i, hence

|T1| =

∣∣∣∣∣p
s2+r+1∑
i=s2−l

(−ci)θ
B̂p−1
i

∆p
i

∣∣∣∣∣ ≤ 1

h

s2+r+1∑
i=s2−l

θ|ci|B̂p−1
i .

Dual basis functionals as in 2.5 are such that λpi [z] = ci, therefore with q = +∞
we get

|ci| = |λpi [z]| . ‖z‖L∞(ξi,ξi+p+1) . ‖z‖L∞(suppT1).

We hence obtain

|T1| ≤
1

h

s2+r+1∑
i=s2−l

θ|ci|B̂p−1
i ≤ θ

h

s2+r+1
max
i=s2−l

|ci|
s2+r+1∑
i=s2−l

B̂p−1
i .

1

h
‖z‖L∞(suppT1).

We now notice that

supp(T1) =

s2+r+1⋃
i=s2−l

supp(B̂p−1
i ) =⇒ supp(T1) = (ξs2−l, ξs2+r+p+1) ⊂ Î ′1.

thus, squaring both sides and integrating over Î ′1 we get∫
Î′1

|T1(ξ)|2 dξ =

∫
supp(T1)

|T1(ξ)|2 dx .
1

h2
|ξs2+r+p+1 − ξs2−l|‖z‖2

L∞(suppT1).

(3.43)
We notice that the extrema of the interval (ξs2−l, ξs2+r+p+1) are knot whose in-
dexes differ by the following quantity:

s2 + r + p+ 1− (s2 − l) = l + r + 1 + p = 2p, (3.44)

thus |ξs2+r+p+1 − ξs2−l| . h due to mesh regularity assumptions. Plugging it in
3.43 we have ∫

Î′1

|T1(ξ)| dξ . 1

h
‖z‖2

L∞(suppT1) .
1

h
‖z‖2

L∞(Î′′1 )
.

With a standard scaling argument from the one-dimensional H1 ⊂ L∞ Sobolev
embedding, we get∫

Î′1

|T1(ξ)| dξ . H

h

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

+
1

Hh
‖z‖2

L2(Î′′1 )
. (3.45)

43



We now prove a bound for the second term T2. Again, using the dual basis func-
tion bound, for every φ =

∑n−1
i=2 βiB̂

p−1
i and for q = 2 we have

|βi| = |λp−1
i [φ]| . h−

1
2‖z‖L2(ξi,ξi+p).

For z =
∑n−1

i=2 ciB̂
p
i we recall the derivative telescoping formula:

d

dξ
z =

n∑
i=2

p
ci − ci−1

∆p
i

B̂p−1
i ,

and combining the two we get that for any i

p
|ci − ci−1|

∆p
i

. |ξi+p − ξi|−
1
2

∥∥∥∥ ddξ z
∥∥∥∥
L2(ξi,ξi+p)

.
1√
h

∥∥∥∥ ddξ z
∥∥∥∥
L2(ξi,ξi+p)

,

with the usual convention c1 = cn = 0. We now rewrite T2 using the definition of
di as in 3.38:

T2 = p

s2−l∑
i=2

(ci − ci−1)
B̂p−1
i

∆p
i

+ p

s2+r+1∑
i=s2−l+1

di(ci − ci−1))
B̂p−1
i

∆p
i

.

We notice that if we restrict T2 to the interval (0, ξs2−l+1), then T2 coincides with
d
dξ
z, hence∫

Î′1

|T2(ξ)|2 dξ =

∫ ξs2−l+1

0

|T2(ξ)|2 dξ +

∫ ξs2+r+p+1

ξs2−l+1

|T2(ξ)|2 dξ =

=

∫ ξs2−l+1

0

∣∣∣∣ ddξ z(ξ)

∣∣∣∣2 dξ +

∫ ξs2+r+p+1

ξs2−l+1

|T2(ξ)|2 dξ.

Moreover, using the definition of T2, the B-spline partition of unity property, the
bound of the B-spline functions coefficients, and the fact that di ≤ 1, we get for
ξ ∈ suppT2

|T2(ξ)| ≤
s2+r+1∑
i=2

p
|ci − ci−1|

∆p
i

B̂p−1
i ≤

≤ s2+r+1
max
i=2

{
p
|ci − ci−1|

∆p
i

} s2+r+1∑
i=2

Bp−1
i .

.
1√
h

∥∥∥∥ ddξ z
∥∥∥∥
L2(ξi,ξi+p)

.

44



We are now ready to conclude the proof of the bound for T2:∫
Î′1

|T2(ξ)|2 dξ =

∫ ξs2−l+1

0

∣∣∣∣ ddξ z(ξ)

∣∣∣∣2 dξ +

∫ ξs2+r+p+1

ξs2−l+1

|T2(ξ)|2 dξ .

.

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′1)

+
1

h

∥∥∥∥ ddξ z
∥∥∥∥2

L2(ξi,ξi+p)

∫ ξs2+r+p+1

ξs2−l+1

dξ .

.

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

.

using the fact that |ξs2+r+p+1 − ξs2−l+1| . h as stated in 3.44.
Combining the bounds on T1 and T2, we finally obtain the first part of the Lemma:∥∥∥∥ ddξ Π̂1z

∥∥∥∥2

L2(Î′1)

= ‖T1 + T2‖2
L2(Î′1) =

∫
Î′1

|T1(ξ) + T2(ξ)|2 dξ ≤

≤
∫
Î′1

2(|T1(ξ)|2 + |T2(ξ)|2) dξ = 2‖T1‖2
L2(Î′1)

+ 2‖T2‖2
L2(Î′1)

.

.
H

h

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

+
1

hH
‖z‖2

L2(Î′′1 )
+

∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

.

.

(
1 +

H

h

)∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′1 )

+
1

hH
‖z‖2

L2(Î′′1 )
.

For the second part of the Lemma, using the bound on the dual basis functionals
with q = 2 and noticing that |ξm+p+1 − ξm−p| ≥ 2hp, we get for ξ ∈ E =

(ξm, ξm+1) ⊂ Î ′1∣∣∣Π̂1z(ξ)
∣∣∣ =

∣∣∣∣∣
m∑

i=m−p

c̄iB̂
p
i (ξ)

∣∣∣∣∣ ≤ m
max
i=m−p

|ci| .
1√
h
‖z‖L2(ξm−p,ξm+p+1),

so that, finally∥∥∥Π̂1z
∥∥∥2

L2(Î′1)
=
∑
E⊂Î′1

∫
e

∣∣∣Π̂1z(ξ)
∣∣∣2 dξ . 1

h

∑
E⊂Î′1

‖z‖2
L2(ξm−p,ξm+p+1)

∫
E

dξ .

.
1

h
h‖z‖2

L2(Î′′1 )
= ‖z‖2

L2(Î′′1 )
.

This Lemma is easily extended to the case of N > 2 subdomains. The interpo-
lation operators associated to inner subdomains will present linearly scaled coef-
ficients in both extrema of the subdomain, while the leftmost and the rightmost
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ones are similar to those in Definition 3.5. If z =
∑n−1

i=2 ciB̂
p
i we have:

Π̂j : V̂ −→ V̂j, j = 1, ..., N,

Π̂1z =

s2−l−1∑
i=2

ciB̂
p
i +

s2+r∑
i=s2−l

s2 + r + 1− i
p+ 1

ciB̂
p
i ,

Π̂jz =

sj+r∑
i=sj−l

sj + r + 1− i
p+ 1

ciB̂
p
i +

sj+1−l−1∑
i=sj+r+1

ciB̂
p
i +

+

sj+1+r∑
i=sj+1−l

l − sj+1 + 1 + i

p+ 1
ciB̂

p
i ,

Π̂Nz =

sN+r∑
i=sN−l

sN + r + 1− i
p+ 1

ciB̂
p
i +

n−1∑
i=sN+r+1

ciB̂
p
i .

(3.46)

Once again, we have that

z =
N∑
j=1

Π̂jz. (3.47)

We thus have the following result:

Lemma 3.7. The operators Π̂j with j = 1, ..., N defined as in 3.46 satisfy for all
z ∈ V̂ the following bounds:∥∥∥∥ ddξ Π̂jz

∥∥∥∥2

L2(Î′j)

.

(
1 +

H

h

)∥∥∥∥ ddξ z
∥∥∥∥2

L2(Î′′j )

+
1

hH
‖z‖2

L2(Î′′j )
, (3.48)

∥∥∥Π̂jz
∥∥∥2

L2(Î′j)
. ‖z‖2

L2(Î′′j )
. (3.49)

3.4.2 Multivariate stable splitting
We now extend Lemma 3.7 to the multivariate case. Let Ξ be a set of D knot
vectors, p the polynomial degrees and V̂ = B̂(Ξ,p) the associated multivariate B-
spline space. We denote the univariate restriction of a function v = v(ξ1, ..., ξD) ∈
B̂ in the following way:

vξ̄,d : (0, 1) −→ R, ξ̄ = (ξ1, ..., ξd−1, ξd+1, ..., ξD) ∈ RD−1,

vξ̄,d(ξ) = v(ξ̄1, ..., ξ̄d−1, ξ, ξ̄d+1, ..., ξ̄D).
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If the domain Ω is decomposed in N = (N1, ..., ND) subdomains Ωj and thus
V̂ is decomposed in local spaces V̂j, we introduce the D univariate interpolation
operators:

Π̂d
jd

: V̂ −→ V̂ , jd = 1, ..., Nd, d = 1, .., D,

Π̂d
jd
v(ξ1, ..., ξD) = Π̂jdvξ̄,d(ξjd), (3.50)

where Π̂jd is the interpolation operator defined in 3.46, acting on the univariate
function vξ̄,d. It is easy to check that these operators commute with respect to
composition and differentiation: for all dimensions d1, d2 = 1, ..., D and indexes
jd1 and jd2 we have

Π̂d1
jd1
◦ Π̂d2

jd2
= Π̂d2

jd2
◦ Π̂d1

jd1
,

∂

∂ξd1

Π̂d2
jd2

= Π̂d2
jd2

∂

∂ξd1

.

We can now define the multivariate interpolation operators:

Definition 3.8. Given a multivariate B-spline space V̂ and a decomposition in
local spaces V̂j with j = 1, ...,N, we define multivariate interpolation operators
the operators

Π̂j = Π̂j1,...,jD : V̂ −→ V̂j, Π̂j = Π̂1
j1
◦ ... ◦ Π̂D

jD
.

where Π̂d
jd

are defined as in 3.50.

Let Π̂0 be the standard spline quasi-interpolant into the coarse global space V̂0 =
B̂(Ξ0, p) (see [31], Theorem 12.6 and 12.7). Given a function u ∈ V̂ we denote

u0 = Π̂0u ∈ V̂0, z = u− u0 ∈ V̂ ,

for which the following bound holds:

‖z‖2
L2(Ω̂)

+H2‖∇u0‖2
L2(Ω̂)

. H2‖∇u‖2
L2(Ω̂)

. (3.51)

Using the linearity of the interpolant operators 3.46 and the splitting property 3.47,
the generic function u ∈ V̂ admits the following splitting:

u = u0 +
N∑
j=1

uj = u0 +

N1∑
j1=1

...

ND∑
jD=1

uj1,...,jD , (3.52)

where
u0 = Π̂0u ∈ V̂0, uj = Π̂ju ∈ V̂j. (3.53)
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Theorem 3.9. For all v ∈ V̂ it holds

‖∇u0‖2
L2(Ω̂)

+
N∑
j=1

‖∇uj‖2
L2(Ω̂)

.

(
1 +

H

h

)
‖∇u‖2

L2(Ω̂)
. (3.54)

Proof. We will prove the bound for D = 2, the generic case D > 2 being analo-
gous. From property 3.51 it immediately follows that

‖∇u0‖2
L2(Ω̂)

. ‖∇u‖L2(Ω̂). (3.55)

For the second term, without loss of generality we treat derivatives in the first
dimension, i.e. with respect to ξ1. We fix a multiindex j = (j1, j2). By definition
we have that

suppuj = Ω̂′j =
2⊗

j=1

Î ′j = Î ′j1 × Î
′
j2
,

so that with the definition of the interpolation operators 3.46 and the commutativ-
ity properties we obtain for u− u0 = z∥∥∥∥ ∂

∂ξ1

uj1j2

∥∥∥∥2

L2(Ω̂)

=

∥∥∥∥ ∂

∂ξ1

Π̂1
j1

Π̂2
j2
z

∥∥∥∥2

L2(Ω̂j1j2 )

=

∥∥∥∥Π̂2
j2

∂

∂ξ1

Π̂1
j1
z

∥∥∥∥2

L2(Ω̂j1j2 )

, (3.56)

where Ω̂j1j2 are defined as in 3.29. From the bound 3.49 we obtain for v ∈ V̂∥∥∥Π̂2
j2
v
∥∥∥2

L2(Ω̂j1j2 )
=

∫
Î′j1

∫
Î′j2

∣∣∣Π̂2
j2
v(ξ1, ξ2)

∣∣∣2 dξ2dξ1 =

=

∫
Î′j1

(∫
Î′j2

∣∣∣Π̂j2vξ̄,2(ξ2)
∣∣∣2 dξ2

)
dξ1 .

.
∫
Î′j1

(∫
Î′′j2

∣∣vξ̄,2v(ξ2)
∣∣2 dξ2

)
dξ1 =

=

∫
Î′j1

∫
Î′′j2

|v(ξ1, ξ2)|2 dξ2dξ1.

(3.57)
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Combining 3.56, 3.57 and bound 3.48 from Lemma 3.7 we obtain∥∥∥∥ ∂

∂ξ1

uj1j2

∥∥∥∥2

L2(Ω̂)

.
∫
Î′ji

∫
Î′′j2

∣∣∣∣ ∂∂ξ1

uj1j2(ξ1, ξ2)

∣∣∣∣2 dξ2dξ1 =

=

∫
Î′ji

∫
Î′′j2

∣∣∣∣ ∂∂ξ1

Π̂1
j1
z(ξ1, ξ2)

∣∣∣∣2 dξ2dξ1 =

=

∫
Î′′j2

∫
Î′j1

∣∣∣∣ ∂∂ξ1

Π̂j1zξ̄,1(ξ1)

∣∣∣∣2 dξ1dξ2 .

.

(
1 +

H

h

)∫
Î′′j2

∫
Î′j1

∣∣∣∣ ∂∂ξ1

zξ̄,1(ξ1)

∣∣∣∣2 dξ1dξ2+

+
1

hH

∫
Î′′j2

∫
Î′j1

∣∣zξ̄,1(ξ1)
∣∣2 dξ1dξ2 =

=

(
1 +

H

h

)∥∥∥∥ ∂

∂ξ1

z

∥∥∥∥2

L2(Ω̂′′j1j2
)

+
1

hH
‖z‖2

L2(Ω̂′′j1j2
)
,

(3.58)

where, with the usual notational consistency, Ω̂′′j1j2 = Î ′′j1 × Î
′′
j2

. Due to the tensor
structure, the number of overlaps of further extended subdomains is uniformly
bounded by 2D, hence by a standard coloring argument a global summation on
inequality 3.58 gives

N1∑
j1=1

N2∑
j2=1

∥∥∥∥ ∂

∂ξ1

uj1j2

∥∥∥∥2

L2(Ω̂)

.

(
1 +

H

h

)∥∥∥∥ ∂

∂ξ1

z

∥∥∥∥2

L2(Ω̂)

+
1

hH
‖z‖2

L2(Ω̂)
. (3.59)

Using property 3.51 and some simple algebra, from 3.59 we finally get
N1∑
j1=1

N2∑
j2=1

∥∥∥∥ ∂

∂ξ1

uj1j2

∥∥∥∥2

L2(Ω̂)

.

(
1 +

H

h

)
‖∇u‖2

L2(Ω̂) .

Combining the latter with 3.55 we obtain the thesis.

3.4.3 Stable splitting in physical domain
The stable splitting is proved for B-spline functions in parametric domain. It will
now be presented in its full generality, i.e. for NURBS functions in parametric
domain. Let F be the geometric map that defines the domain Ω and W the weight
function as in 2.16. It is easy to check that the NURBS space in physical domain
V = N (Ξ,p,w) can be seen in the following way:

V =

{
v̂

W
◦ F−1

∣∣∣∣ v̂ ∈ V̂ = B̂(Ξ,p)

}
.
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Thus, there exists a bijective correspondence between V and V̂ such that for a
function u ∈ V

û

W
◦ F−1 = u ←→ û = W (u ◦ F).

The bijection permits to transport the splitting 3.52 from the parametric space to
the physical space:

uj =
ûj
W
◦ F−1 ∈ Vj, u0 =

û0

W
◦ F−1 ∈ V0.

so that the function u in physical space V can be written in the following way:

u = u0 +
N∑
j=1

uj. (3.60)

Theorem 3.10. For all u ∈ V it holds

‖∇u0‖2
L2(Ω) +

N∑
j=1

‖∇uj‖2
L2(Ω) .

(
1 +

H

h

)
‖∇u‖2

L2(Ω). (3.61)

Proof. As a standard assumption is Isogeometric Analysis (see [7]), functions
F and w are continuous, piecewise regular and fixed at the coarsest level of
mesh discretization. Furthermore the inverse function F−1 is well defined and
with bounded derivatives. Hence, the three functions w, F and F−1 belongs
(component-wise) to the Sobolev space W 1.∞(Ω). With these assumption, a
change of variable from Ω̂ to Ω and a Poincaré inequality on Ω̂ give

‖∇u0‖2
L2(Ω) +

N∑
j=1

‖∇uj‖2
L2(Ω) . ‖∇û0‖2

H1(Ω̂)
+

N∑
j=1

‖ûj‖2
H1(Ω̂)

.

. ‖∇û0‖2
L2(Ω̂)

+
N∑
j=1

‖∇ûj‖2
L2(Ω̂)

.

(3.62)

We now apply Theorem 3.9 to the rightmost end of inequality 3.62, map back into
Ω and finally apply the Poincaré inequality to obtain the thesis.

‖∇u0‖2
L2(Ω) +

N∑
j=1

‖∇uj‖2
L2(Ω) .

(
1 +

H

h

)
‖∇û‖2

L2(Ω̂)
.

.

(
1 +

H

h

)
‖u‖2

H1(Ω) .

.

(
1 +

H

h

)
‖∇u‖2

L2(Ω).
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3.5 On the advection-diffusion equation
As already presented in Section 2.6.3, the advection-diffusion equations with the
therein assumptions on κ, b and f , are:{

−∇ · (κ∇u) + b · ∇u = f in Ω

u = 0 on ∂Ω

In variational form we have

a(v, w) = F (v), ∀v ∈ H1
0 (Ω),

where the bilinear form a and the functional F are defined as follow:

a(v, w) = adiff (v, w) + aadv(v, w) =

=

∫
Ω

κ∇v · ∇w dx+

∫
Ω

w∇v · b dx,
(3.63)

F (v) =

∫
Ω

fv dx. (3.64)

Classical results of Overlapping Domain Decomposition methods ([33]) show that
a similar bound to the one in Theorem 3.4 can be proved with the introduction of
projection-like operators as 3.9: given a decomposition {Vj}Nj=0, the associated
extension operators RT

j , the exact local bilinear forms

aj(vj, wj) = a
(
RT
j vj, R

T
j wj

)
, ∀vj, wj ∈ Vj,

adiffj (vj, wj) = adiff
(
RT
j vj, R

T
j wj

)
, ∀vj, wj ∈ Vj,

with matrix local representation Aj = RjAR
T
j and Adiffj = RjA

diffRT
j , we

define

P̃j : V −→ Vj, aj(P̃jv, w) = a(v,RT
j wj), ∀vj ∈ Vj, (3.65)

Q̃j : V −→ Vj, adiffj (Q̃jv, w) = a(v,RT
j wj), ∀vj ∈ Vj, (3.66)

In a similar fashion of Section 3.1, the final operators that constitute the building
blocks of the preconditioner are:

Pj = RT
j P̃j = RT

j A
−1
j RjA,

Qj = RT
j Q̃j = RT

j (Adiffj )−1RjA
diff ,
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We finally have two similar Additive Schwarz Operators for the advection-diffusion
equation:

P (1) =
N∑
j=0

Pj, (3.67)

P (2) = P0 +
N∑
j=1

Qj. (3.68)

The difference between the two operators relies on the choice of the local projection-
like operators, the coarse one being the same.
It can be shown (see [33], Theorem 11.1) for a classical FEM discretization
scheme (piecewise linear functions on a triangular mesh) that there exist strictly
positive constants H0, c(H0) and C(H0) such that if H ≤ H0, then for i = 1, 2
and u ∈ V

c(H0)C−2
0 a(u, u) ≤ a(u, P (i)u), a(P (i)u, P (i)u) ≤ C(H0)a(u, u). (3.69)

where C0 = (1 + H
δ

) with H the coarse mesh size and δ an overlap parameter.
This result ensures the invertibility of the operators 3.67 and 3.68, whenever the
coarse mesh size H is sufficiently small: H ≤ H0.
To our knowledge, there are still no adaptation of this result for Isogeometric
Analysis, i.e. for NURBS-based discrete functional spaces. Numerical results in
Section 4.2 will show somehow a behavior that, accordingly with the theory in a
FEM context, requires a minimum coarse mesh size H0 in order to be effective.
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Chapter 4

Numerical Results

In this Chapter numerical results for the scalar elliptic equation and for the advection-
diffusion equation are presented. For both 2D and 3D cases are considered. Each
case is tested with two geometries and each geometry is represented with a sin-
gle element at the coarsest level, so that maximum global regularity Cp−1 can be
achieved with proper refinement (see Section 2.3.3).
We list here the 4 considered geometries with their knot vectors, polynomial de-
grees, control points and weights, for which in tables we adopted the format
((Ci)1, ..., (Ci)D) , wi. See Figures 4.1 and 4.2 for graphical representations of
interest.

• Unit square:
Ω = [0, 1]2

Knot vectors and polynomial degrees:

Ξ1 = Ξ2 = {0, 0, 1, 1} , p1 = p2 = 1,

Control points and weights:

i1 = 1 i1 = 2
i2 = 1 (0, 0), 1 (1, 0), 1
i2 = 2 (1, 0), 1 (1, 1), 1

• Quarter annulus:

Ω =
{

(x, y) ∈ R2|x ≥ 0, y ≥ 0, 1 ≤ x2 + y2 ≤ 4
}

Knot vectors and polynomial degrees:
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Ξ1 = {0, 0, 1, 1} , p1 = 1,

Ξ2 = {0, 0, 0, 1, 1, 1} , p2 = 2,

Control points and weights:

i1 = 1 i1 = 2
i2 = 1 (1, 0), 1 (2, 0), 1

i2 = 2
(√

2
2
,
√

2
2

)
,
√

2
2

(√
2,
√

2
)
,
√

2
2

i2 = 2 (0, 1), 1 (0, 2), 1

• Unit cube:
Ω = [0, 1]3

Knot vectors and polynomial degrees:

Ξ1 = Ξ2 = Ξ3 = {0, 0, 1, 1} , p1 = p2 = p3 = 1,

Control points and weights:

i1 = 1 i1 = 2
i2 = 1, i3 = 1 (0, 0, 0), 1 (1, 0, 0), 1
i2 = 2, i3 = 1 (1, 0, 0), 1 (1, 1, 0), 1
i2 = 1, i3 = 2 (0, 0, 1), 1 (1, 0, 1), 1
i2 = 2, i3 = 2 (1, 0, 1), 1 (1, 1, 1), 1

• Quarter hose:

Ω =

{
(x, y, z) ∈ R3| 1 ≤

(
3−

√
x2 + y2

)2

+ z2 ≤ 4, x2 + y2 ≥ 9

}
∪

∪
{

(x, y, z) ∈ R3|x ≥ 0, y ≥ 0, z ≥ 0
}

Knot vectors and polynomial degrees:

Ξ1 = Ξ2 = {0, 0, 0, 1, 1, 1} , p1 = p2 = 2,

Ξ3 = {0, 0, 1, 1} , p3 = 1,

Control points and weights:
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i1 = 1 i1 = 2 i1 = 3

i2 = 1, i3 = 1 (1, 0, 0), 1
(√

2
2
,
√

2
2
, 0
)
,
√

2
2

(0, 1, 0), 1

i2 = 2, i3 = 1
(√

2
2
, 0,
√

2
)
,
√

2
2

(
1
2
, 1

2
, 1
)
, 1

2

(
0,
√

2
2
,
√

2
)
,
√

2
2

i2 = 3, i3 = 1 (3, 0, 2), 1
(

3
√

2
2
, 3
√

2
2
,
√

2
)
,
√

2
2

(0, 3, 2), 1, 1

i2 = 1, i3 = 2 (2, 0, 0), 1
(√

2,
√

2, 0
)
,
√

2
2

(0, 2, 0), 1

i2 = 2, i3 = 2
(√

2, 0,
√

2
2

)
,
√

2
2

(
1, 0, 1

2

)
, 1

2

(
0,
√

2
,

√
22
)
,
√

2
2

i2 = 3, i3 = 2 (3, 0, 1), 1
(

3
√

2
2
, 3
√

2
2
,
√

2
2

)
,
√

2
2

(0, 3, 1), 1

Figure 4.1: Quarter annulus mesh, refined in 16× 16 uniform elements.
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Figure 4.2: Quarter hose mesh, refined in 16 × 16 × 16 uniform elements and
depicted from different points of view.

In every test we adopted the isoparametric concept, i.e. the same NURBS basis
functions used for geometry representation are also used as basis (eventually via
push-forward as described in Section 2.5) for discrete function spaces for Petrov-
Galerkin discretizations.
As one can notice, the square and the cube geometries are listed with control
points and weights1, even though the geometric map that describes them is the
identity map. This means that for these two geometries the analysis is performed
directly on the parametric domain with the usage of B-splines, the weights being
identically 1. The other two geometries, the quarter annulus and the quarter hose,
have to be described in a full NURBS fashion. The analysis on these geometries is
hence performed with non-trivial NURBS basis functions in non-trivial physical
domains, resulting in being examples of full Isogeometric Analysis capabilities.

1Just for the sake of completeness.
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We can summarize the discrete function spaces associated to each geometry:

square ←→ B̂(Ξ1,Ξ2, p1, p2),
quarter annulus ←→ N (Ξ1,Ξ2, p1, p2, w),

cube ←→ B̂(Ξ1,Ξ2,Ξ3, p1, p2, p3),
quarter hose ←→ N (Ξ1,Ξ2, p1, p2, p3, w),

(4.1)

where knot vectors, polynomial degrees, control points and weights vary depend-
ing on the chosen mesh size or number of elements, accordingly with the refine-
ment methods of Section 2.3.
The isoparametric concept also implies that discrete functional spaces must have
at least the minimum polynomial degree required for an exact geometry represen-
tation. For the square and the cube, degree p = 1 is allowed along each direction
although the resulting discrete space coincides with a standard FEM-like linear
basis functions space, hence it is not of interest for this work. Test on the quarter
annulus and the quarter hose require at least p = 2. Mixing different polynomial
degrees is beyond the scope of this work: in each test the polynomial degree will
be declared as an unidimensional quantity valid for each dimension. The regular-
ity will always be the highest available.
Finally, we use the following notation for the 2D tests, the 3D being analogous.

• Ndom = ndom× ndom: number of subdomains and hence number of proces-
sors involved in the computation.

• Nel = nel × nel: number of elements per subdomain; the global number of
elements is NdomNel.

• Ndof : the number of degrees of freedom and hence the dimension of the
global discrete space V .
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4.1 The scalar elliptic equation
We recall the scalar elliptic equation in its full generality. Given Ω ⊂ RD, the
problem is finding a function u : Ω −→ R such that{

−∇ · (K∇u) = f in Ω,

u = 0 on ΓD,
(4.2)

where f ∈ L∞(Ω) and K = κ(x)Id. For the diffusivity coefficient we consider
five different functions κ = κ̂ ◦F−1 : Ω −→ R, where F is as usual the geometric
function that defines Ω while

κ̂ : [0, 1]D −→ R,

κ̂(ξ) =

{
k ξ ∈

[
1
4
, 3

4

]D
,

1 otherwise.
k ∈

{
1, 10−4, 10−2, 102, 104

}
. (4.3)

The diffusivity coefficient k = 1 is trivially a globally constant coefficient. The
other four present a highly discontinuous central jump in the two middle quarters
of the knot vectors, and are aimed to show the preconditioner performance with
respect to discontinuous diffusivity coefficients.
The variational form of 4.2 leads to the variational problem: find u ∈ H1

0 (Ω) such
that ∫

Ω

κ∇u · ∇v dx =

∫
Ω

fv dx, ∀v ∈ H1
0 (Ω).

As last step, the Petrov-Galerkin discretization leads to the discrete problem: find
uh ∈ V such that∫

Ω

κ∇uh · ∇vh dx =

∫
Ω

fvh dx, ∀vh ∈ V ,

where the discrete space V = span{φi|i = 1, ..., Ndof} depends on the chosen
geometry Ω, as in 4.1. With a small abuse of notation, the associated linear system
Auh = f is finally defined as follow:

u = [ui]
Ndof
i=1 ,

Ndof∑
i=1

uiφi = uh,

A = [aij]
Ndof
i,j=1, aij =

∫
Ω

κ∇φi · ∇φj dx,

f = [fi]
Ndof
i=1 , fi =

∫
Ω

fφi dx.

(4.4)

where integrals are computed with the (p+ 1)-points Gauss quadrature rule.
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It is well known that the stiffness matrix A is symmetric and positive definite. As
such, in order to solve the system the chosen iterative solver is the Preconditioned
Conjugate Gradient method (PCG). We refer to [30] for a full explanation of the
method.
The PCG is sensitive to the condition number of the system matrix. As general
rule, the higher the condition number, the more the iteration required to solve
the system up to a certain tolerance. The clustering of the eigenvalues is also
important, so that PCG can perform differently with two matrices with identical
condition numbers.
The bound of Theorem 3.4 states that as long as the ratio H/h is kept fixed, the
condition number of the preconditioned stiffness matrix is bounded by a constant,
thus it does not depend from the number of subdomains (i.e. the number of pro-
cessors involved in the computation). As we will see, this behavior is confirmed
by numerical results.
For the following tests, the PCG is set with two stopping criteria: the maximum
number of iterations is 10000 as a divergence criterion, while the Euclidean norm
of the preconditioned residual has to be less than 10−7 as a convergence criterion.
Local matrices A−1

j (see Definition 3.3) are not computed explicitly. The PCG
(as any other iterative solver) requires only their action on a vector v as a matrix-
vector product. Thus, the product A−1

j v is computed as solution of a local linear
system: solve Ajz = v in order to obtain z = A−1

j v. These local systems are set
to be solved exactly with LU factorization. Their solving dominates the global
solving in terms of time. The solver of the coarse problem A−1

0 z is again the LU
factorization.
In each 2D tests we refine each subdomain in 64 × 64 = 4096 elements, so that
the ratio H/h = 1/64 is fixed. The number of overlapping subdomains ranges
from 4× 4 = 16 to 64× 64 = 4096. The biggest tests involves about 16.7 million
elements and a similar number of degrees of freedom. Polynomial degrees range
from 2 to 4.
Lastly, computation of the minimum and maximum eigenvalues is performed with
a Lanczos or Arnoldi iteration during the solving process. The entire computation
is a PETSc black-box algorithm, for which we refer to [5] and [6].
Every test in this Section has been run on Fermi supercomputer ([1]), located
at Cineca, Bologna, Italy. It is a BlueGene/Q machine based on IBM PowerA2
processors running at 1.6 GHz.
In all following Tables and Figures in Sections 4.1.1, 4.1.2, 4.1.3 and 4.1.4 we
denote with red fonts the numerical results for p = 2, with blue for p = 3 and
black for p = 4. In the Figures, plots depicted with full circles represent the
1-level Schwarz Preconditioner, while empty circles the 2-level Preconditioner.
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4.1.1 2D results: the square
The following tests show the scalability of the 2-level Additive Schwarz precondi-
tioner for the B-spline-discretized scalar elliptic equation. Scalability is achieved
with highly discontinuous central jumps, even though the condition number as a
higher asymptotic constant trend. Unsurprisingly, the wider the jump, the higher
the condition number.
In comparison, the 1-level Additive Schwarz Preconditioner does not scale, re-
sulting in being an useful preconditioner only when the decomposition involves
less then a hundred of subdomains (or processors).
It is worth to notice that the maximum eigenvalue is approximately 4 ≈ 2D in any
case, so that it is somehow dimension-dependent. This is a consequence of As-
sumption 2, which involves the domain decomposition and not the coarse space,
hence it is valid for both preconditioners. The maximum eigenvalue of the 2-level
preconditioner is slightly greater due to the dimension dependency: the addition
of a coarse problem add a “fractional dimension” flavor to the estimate.
In each test the fine mesh is refined in 4096 = 64 × 64 elements per subdomain,
while polynomial degrees range from 2 to 4. In the Figures, plots depicted with
full circles represent the 1-level Schwarz Preconditioner, while empty circles the
2-level Preconditioner.
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Diffusivity coefficient k = 1

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 28 4.000
1.587e−02

= 251.99 18 4.000
1.291e−01

= 30.98

64 = 8× 8 42 4.000
4.144e−03

= 965.25 14 4.000
2.286e−01

= 17.50

256 = 16× 16 67 4.000
1.047e−03

= 3.82e+ 03 12 4.000
2.321e−01

= 17.24

1024 = 32× 32 116 4.000
2.625e−04

= 1.52e+ 04 10 4.000
2.330e−01

= 17.17

4096 = 64× 64 210 4.000
6.568e−05

= 6.09e+ 04 7 4.000
2.342e−01

= 17.08

p = 3

16 = 4× 4 25 4.000
2.173e−02

= 184.09 17 4.000
2.826e−01

= 14.15

64 = 8× 8 37 4.000
5.682e−03

= 703.94 16 4.000
2.478e−01

= 16.14

256 = 16× 16 59 4.000
1.437e−03

= 2.78e+ 03 12 4.000
3.074e−01

= 13.01

1024 = 32× 32 102 4.000
3.602e−04

= 1.11e+ 04 9 4.000
3.089e−01

= 12.95

4096 = 64× 64 187 4.000
9.011e−05

= 4.44e+ 04 7 4.000
3.097e−01

= 12.92

p = 4

16 = 4× 4 24 4.000
2.782e−02

= 143.79 17 4.000
3.151e−01

= 12.69

64 = 8× 8 34 4.000
7.287e−03

= 548.93 17 4.000
1.987e−01

= 20.13

256 = 16× 16 54 4.000
1.843e−03

= 2.17e+ 03 14 4.000
1.871e−01

= 21.38

1024 = 32× 32 92 4.000
4.621e−04

= 8.66e+ 03 8 4.000
3.837e−01

= 10.43

4096 = 64× 64 168 4.000
1.156e−04

= 3.46e+ 04 7 4.000
3.843e−01

= 10.41

Table 4.1: Square domain, Nel = 4096 = 64× 64, k = 1
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Figure 4.3: Square domain, Nel = 4096 = 64× 64, k = 1
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Diffusivity coefficient k = 10−4

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 27 4.000
5.349e−02

= 74.79 24 4.003
5.379e−02

= 74.42

64 = 8× 8 52 4.000
1.176e−02

= 340.12 30 4.003
5.140e−02

= 77.89

256 = 16× 16 106 4.000
2.706e−03

= 1.48e+ 03 38 4.003
5.646e−02

= 70.90

1024 = 32× 32 213 4.000
6.448e−04

= 6.20e+ 03 39 4.003
5.802e−02

= 68.99

4096 = 64× 64 432 4.000
1.571e−04

= 2.55e+ 04 40 4.003
5.789e−02

= 69.15

p = 3

16 = 4× 4 24 4.000
7.272e−02

= 55.00 20 4.018
7.447e−02

= 53.95

64 = 8× 8 47 4.000
1.608e−02

= 248.69 30 4.016
4.429e−02

= 90.66

256 = 16× 16 93 4.000
3.709e−03

= 1.08e+ 03 38 4.018
3.553e−02

= 113.08

1024 = 32× 32 186 4.000
8.843e−04

= 4.52e+ 03 45 4.019
3.406e−02

= 118.00

4096 = 64× 64 375 4.000
2.156e−04

= 1.86e+ 04 47 4.020
3.362e−02

= 119.58

p = 4

16 = 4× 4 22 4.000
9.214e−02

= 43.41 18 4.015
9.447e−02

= 42.50

64 = 8× 8 43 4.000
2.057e−02

= 194.46 31 4.029
4.859e−02

= 82.92

256 = 16× 16 83 4.000
4.754e−03

= 841.43 40 4.028
3.715e−02

= 108.41

1024 = 32× 32 167 4.000
1.134e−03

= 3.53e+ 03 46 4.028
3.544e−02

= 113.64

4096 = 64× 64 336 4.000
2.765e−04

= 1.45e+ 04 52 4.028
3.485e−02

= 115.58

Table 4.2: Square domain, Nel = 4096 = 64× 64, k = 10−4

0 10 20 30 40 50 60 70

102

103

104

ndom

lo
g
( co

n
d
(P

(2
)

A
S
O

))

0 10 20 30 40 50 60 70

0

100

200

300

400

ndom

ite
ra

tio
ns

Figure 4.4: Square domain, Nel = 4096 = 64× 64, k = 10−4
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Diffusivity coefficient k = 10−2

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 30 4.000
4.990e−02

= 80.16 26 4.003
5.939e−02

= 67.40

64 = 8× 8 59 4.000
1.141e−02

= 350.63 32 4.003
5.555e−02

= 72.06

256 = 16× 16 111 4.000
2.643e−03

= 1.51e+ 03 39 4.003
5.943e−02

= 67.35

1024 = 32× 32 227 4.000
6.319e−04

= 6.33e+ 03 36 4.003
6.097e−02

= 65.65

4096 = 64× 64 464 4.000
1.542e−04

= 2.59e+ 04 39 4.003
6.091e−02

= 65.72

p = 3

16 = 4× 4 27 4.000
6.771e−02

= 59.07 21 4.014
1.483e−01

= 27.07

64 = 8× 8 52 4.000
1.559e−02

= 256.53 29 4.011
1.030e−01

= 38.96

256 = 16× 16 98 4.000
3.622e−03

= 1.10e+ 03 30 4.010
9.080e−02

= 44.17

1024 = 32× 32 196 4.000
8.665e−04

= 4.62e+ 03 34 4.010
8.884e−02

= 45.14

4096 = 64× 64 404 4.000
2.116e−04

= 1.89e+ 04 32 4.010
8.821e−02

= 45.46

p = 4

16 = 4× 4 25 4.000
8.577e−02

= 46.64 21 4.014
1.156e−01

= 34.72

64 = 8× 8 48 4.000
1.995e−02

= 200.55 27 4.010
9.693e−02

= 41.37

256 = 16× 16 88 4.000
4.643e−03

= 861.48 30 4.010
1.046e−01

= 38.34

1024 = 32× 32 179 4.000
1.111e−03

= 3.60e+ 03 30 4.010
1.102e−01

= 36.39

4096 = 64× 64 363 4.000
2.714e−04

= 1.47e+ 04 31 4.010
1.118e−01

= 35.87

Table 4.3: Square domain, Nel = 4096 = 64× 64, k = 10−2
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Figure 4.5: Square domain, Nel = 4096 = 64× 64, k = 10−2
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Diffusivity coefficient k = 102

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 35 4.000
6.539e−04

= 6.12e+ 03 24 4.010
1.215e−01

= 33.01

64 = 8× 8 73 4.000
1.128e−04

= 3.55e+ 04 31 4.011
8.653e−02

= 46.35

256 = 16× 16 136 4.000
2.442e−05

= 1.64e+ 05 37 4.011
6.621e−02

= 60.57

1024 = 32× 32 272 4.000
5.721e−06

= 6.99e+ 05 39 4.011
6.158e−02

= 65.14

4096 = 64× 64 548 4.000
1.386e−06

= 2.89e+ 06 37 4.011
6.116e−02

= 65.57

p = 3

16 = 4× 4 32 4.000
8.972e−04

= 4.46e+ 03 21 4.023
1.601e−01

= 25.14

64 = 8× 8 63 4.000
1.549e−04

= 2.58e+ 04 27 4.015
1.061e−01

= 37.84

256 = 16× 16 119 4.000
3.352e−05

= 1.19e+ 05 29 4.013
9.172e−02

= 43.75

1024 = 32× 32 236 4.000
7.851e−06

= 5.10e+ 05 32 4.013
8.943e−02

= 44.87

4096 = 64× 64 478 4.000
1.903e−06

= 2.10e+ 06 32 4.013
8.857e−02

= 45.31

p = 4

16 = 4× 4 29 4.000
1.146e−03

= 3.49e+ 03 20 4.029
2.119e−01

= 19.01

64 = 8× 8 57 4.000
1.982e−04

= 2.02e+ 04 25 4.021
1.825e−01

= 22.03

256 = 16× 16 106 4.000
4.295e−05

= 9.31e+ 04 27 4.021
1.410e−01

= 28.53

1024 = 32× 32 211 4.000
1.007e−05

= 3.97e+ 05 30 4.021
1.166e−01

= 34.48

4096 = 64× 64 426 4.000
2.440e−06

= 1.64e+ 06 30 4.021
1.124e−01

= 35.78

Table 4.4: Square domain, Nel = 4096 = 64× 64, k = 102
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Figure 4.6: Square domain, Nel = 4096 = 64× 64, k = 102
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Diffusivity coefficient k = 104

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 38 4.000
6.971e−06

= 5.74e+ 05 22 4.014
8.743e−02

= 45.91

64 = 8× 8 81 4.000
1.162e−06

= 3.44e+ 06 31 4.017
6.759e−02

= 59.43

256 = 16× 16 152 4.000
2.491e−07

= 1.61e+ 07 38 4.017
5.634e−02

= 71.30

1024 = 32× 32 298 4.000
5.812e−08

= 6.88e+ 07 39 4.017
5.496e−02

= 73.10

4096 = 64× 64 606 4.000
1.406e−08

= 2.84e+ 08 34 4.017
5.550e−02

= 72.38

p = 3

16 = 4× 4 33 4.000
9.620e−06

= 4.16e+ 05 23 4.098
9.268e−02

= 44.21

64 = 8× 8 71 4.000
1.599e−06

= 2.50e+ 06 33 4.062
4.559e−02

= 89.09

256 = 16× 16 133 4.000
3.422e−07

= 1.17e+ 07 43 4.054
3.296e−02

= 123.00

1024 = 32× 32 259 4.000
7.980e−08

= 5.01e+ 07 45 4.054
3.289e−02

= 123.26

4096 = 64× 64 524 4.000
1.930e−08

= 2.07e+ 08 43 4.053
3.312e−02

= 122.40

p = 4

16 = 4× 4 31 4.000
1.240e−05

= 3.23e+ 05 23 4.113
9.740e−02

= 42.22

64 = 8× 8 64 4.000
2.057e−06

= 1.95e+ 06 32 4.100
4.262e−02

= 96.19

256 = 16× 16 119 4.000
4.396e−07

= 9.10e+ 06 40 4.084
3.601e−02

= 113.43

1024 = 32× 32 232 4.000
1.024e−07

= 3.90e+ 07 47 4.081
3.488e−02

= 116.99

4096 = 64× 64 467 4.000
2.477e−08

= 1.61e+ 08 50 4.081
3.465e−02

= 117.79

Table 4.5: Square domain, Nel = 4096 = 64× 64, k = 104
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Figure 4.7: Square domain, Nel = 4096 = 64× 64, k = 104
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4.1.2 2D results: the quarter annulus

In the following tests the considered geometry is the quarter annulus, with the
same setting of the square domain. Each subdomain is refined in 64× 64 = 4096
elements thus H/h = 1/64. The number of overlapping subdomains ranges from
4× 4 = 16 to 64× 64 = 4096, while polynomial degrees from 2 to 4.
As one can see, scalability is achieved by the 2-level preconditioner, while the
performance of the 1-level preconditioner deteriorates with an increasing number
of subdomains.
Again, the introduction of a highly discontinuous diffusivity coefficient results in
higher condition numbers.
In the Figures, plots depicted with full circles represent the 1-level Schwarz Pre-
conditioner, while empty circles the 2-level Preconditioner.
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Diffusivity coefficient k = 1

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 57 4.000
1.588e−2

= 251.91 37 4.000
5.776e−2

= 69.25

64 = 8× 8 116 4.000
4.145e−03

= 964.92 45 4.000
3.681e−02

= 108.66

256 = 16× 16 234 4.000
1.048e−03

= 3.82e+ 03 33 4.000
6.635e−02

= 60.29

1024 = 32× 32 463 4.000
2.626e−04

= 1.52e+ 04 28 4.000
7.505e−02

= 53.30

4096 = 64× 64 796 4.000
6.570e−05

= 6.09e+ 04 25 4.000
7.568e−02

= 52.86

p = 3

16 = 4× 4 49 4.000
2.174e−02

= 184.01 28 4.000
1.192e−01

= 33.55

64 = 8× 8 101 4.000
5.685e−03

= 703.56 31 4.000
7.232e−02

= 55.31

256 = 16× 16 202 4.000
1.438e−03

= 2.78e+ 03 26 4.000
9.343e−02

= 42.81

1024 = 32× 32 404 4.000
3.604e−04

= 1.11e+ 04 23 4.000
1.090e−01

= 36.68

4096 = 64× 64 688 4.000
9.016e−05

= 4.44e+ 04 23 4.000
1.021e−01

= 39.19

p = 4

16 = 4× 4 45 4.000
2.784e−02

= 143.70 27 4.000
1.376e−01

= 29.07

64 = 8× 8 90 4.000
7.293e−03

= 548.49 31 4.000
7.611e−02

= 52.55

256 = 16× 16 179 4.000
1.845e−03

= 2.17e+ 03 26 4.000
1.050e−01

= 38.10

1024 = 32× 32 359 4.000
4.625e−04

= 8.65e+ 03 18 4.000
1.456e−01

= 27.47

4096 = 64× 64 618 4.000
1.157e−04

= 3.46e+ 04 21 4.000
1.306e−01

= 30.64

Table 4.6: Quarter annulus domain, Nel = 4096 = 64× 64, k = 1
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Figure 4.8: Quarter annulus domain, Nel = 4096 = 64× 64, k = 1
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Diffusivity coefficient k = 10−4

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 42 4.000
2.987e−02

= 133.92 38 4.004
5.378e−02

= 74.46

64 = 8× 8 94 4.000
7.409e−03

= 539.86 52 4.005
3.057e−02

= 130.99

256 = 16× 16 196 4.000
1.821e−03

= 2.20e+ 03 70 4.005
2.356e−02

= 169.96

1024 = 32× 32 413 4.000
4.491e−04

= 8.91e+ 03 76 4.005
2.016e−02

= 198.66

4096 = 64× 64 825 4.000
1.114e−04

= 3.59e+ 04 73 4.005
1.817e−02

= 220.46

p = 3

16 = 4× 4 38 4.000
4.061e−02

= 98.50 31 4.025
7.446e−02

= 54.06

64 = 8× 8 82 4.000
1.014e−02

= 394.44 53 4.024
3.696e−02

= 108.87

256 = 16× 16 169 4.000
2.496e−03

= 1.60e+ 03 67 4.031
2.076e−02

= 194.14

1024 = 32× 32 356 4.000
6.160e−04

= 6.49e+ 03 78 4.035
1.532e−02

= 263.43

4096 = 64× 64 711 4.000
1.528e−04

= 2.62e+ 04 81 4.037
1.298e−02

= 311.09

p = 4

16 = 4× 4 35 4.000
5.163e−02

= 77.47 29 4.022
9.443e−02

= 42.59

64 = 8× 8 73 4.000
1.298e−02

= 308.19 48 4.044
4.761e−02

= 84.92

256 = 16× 16 150 4.000
3.200e−03

= 1.25e+ 03 64 4.043
2.922e−02

= 138.35

1024 = 32× 32 317 4.000
7.903e−04

= 5.06e+ 03 74 4.043
2.048e−02

= 197.40

4096 = 64× 64 633 4.000
1.961e−04

= 2.04e+ 04 76 4.043
1.669e−02

= 242.32

Table 4.7: Quarter annulus domain, Nel = 4096 = 64× 64, k = 10−4
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Figure 4.9: Quarter annulus domain, Nel = 4096 = 64× 64, k = 10−4
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Diffusivity coefficient k = 10−2

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 47 4.000
2.976e−02

= 134.42 42 4.004
5.838e−02

= 68.59

64 = 8× 8 100 4.000
7.399e−03

= 540.62 58 4.005
3.284e−02

= 121.96

256 = 16× 16 215 4.000
1.820e−03

= 2.20e+ 03 69 4.005
2.514e−02

= 159.27

1024 = 32× 32 451 4.000
4.491e−04

= 8.91e+ 03 73 4.005
2.169e−02

= 184.61

4096 = 64× 64 907 4.000
1.114e−04

= 3.59e+ 04 68 4.005
1.963e−02

= 203.98

p = 3

16 = 4× 4 42 4.000
4.045e−02

= 98.88 32 4.020
1.313e−01

= 30.62

64 = 8× 8 88 4.000
1.013e−02

= 395.04 44 4.018
8.174e−02

= 49.15

256 = 16× 16 186 4.000
2.495e−03

= 1.60e+ 03 55 4.022
5.507e−02

= 73.04

1024 = 32× 32 389 4.000
6.160e−04

= 6.49e+ 03 56 4.025
4.393e−02

= 91.63

4096 = 64× 64 785 4.000
1.529e−04

= 2.62e+ 04 51 4.025
3.854e−02

= 104.44

p = 4

16 = 4× 4 39 4.000
5.144e−02

= 77.76 30 4.020
1.164e−01

= 34.53

64 = 8× 8 78 4.000
1.296e−02

= 308.63 44 4.016
6.069e−02

= 66.18

256 = 16× 16 166 4.000
3.199e−03

= 1.25e+ 03 53 4.016
4.612e−02

= 87.09

1024 = 32× 32 346 4.000
7.903e−04

= 5.06e+ 03 56 4.016
4.166e−02

= 96.42

4096 = 64× 64 701 4.000
1.961e−04

= 2.04e+ 04 56 4.017
3.843e−02

= 104.53

Table 4.8: Quarter annulus domain, Nel = 4096 = 64× 64, k = 10−2
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Figure 4.10: Quarter annulus domain, Nel = 4096 = 64× 64, k = 10−2
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Diffusivity coefficient k = 102

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 58 4.000
6.387e−04

= 6.26e+ 03 37 4.014
5.429e−02

= 73.94

64 = 8× 8 125 4.000
1.099e−04

= 3.64e+ 04 52 4.012
3.369e−02

= 119.08

256 = 16× 16 264 4.000
2.377e−05

= 1.68e+ 05 61 4.012
2.421e−02

= 165.74

1024 = 32× 32 548 4.000
5.564e−06

= 7.19e+ 05 63 4.012
2.086e−02

= 192.35

4096 = 64× 64 1096 4.000
1.348e−06

= 2.97e+ 06 71 4.012
1.911e−02

= 209.94

p = 3

16 = 4× 4 51 4.000
8.772e−04

= 4.56e+ 03 34 4.030
1.045e−01

= 38.56

64 = 8× 8 109 4.000
1.510e−04

= 2.65e+ 04 43 4.026
6.157e−02

= 65.38

256 = 16× 16 228 4.000
3.263e−05

= 1.23e+ 05 48 4.025
4.544e−02

= 88.58

1024 = 32× 32 472 4.000
7.638e−06

= 5.24e+ 05 48 4.026
3.929e−02

= 102.47

4096 = 64× 64 944 4.000
1.851e−06

= 2.16e+ 06 51 4.026
3.601e−02

= 111.80

p = 4

16 = 4× 4 46 4.000
1.121e−03

= 3.57e+ 03 31 4.032
1.453e−01

= 27.76

64 = 8× 8 97 4.000
1.933e−04

= 2.07e+ 04 37 4.025
8.505e−02

= 47.33

256 = 16× 16 202 4.000
4.183e−05

= 9.56e+ 04 46 4.025
5.234e−02

= 76.90

1024 = 32× 32 419 4.000
9.797e−06

= 4.08e+ 05 48 4.025
4.142e−02

= 97.18

4096 = 64× 64 837 4.000
2.374e−06

= 1.68e+ 06 51 4.025
3.802e−02

= 105.85

Table 4.9: Quarter annulus domain, Nel = 4096 = 64× 64, k = 102
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Figure 4.11: Quarter annulus domain, Nel = 4096 = 64× 64, k = 102
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Diffusivity coefficient k = 104

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom it. cond it. cond

p = 2

16 = 4× 4 65 4.000
6.799e−06

= 5.88e+ 05 40 4.019
4.394e−02

= 91.45

64 = 8× 8 142 4.000
1.131e−06

= 3.54e+ 06 53 4.018
2.863e−02

= 140.36

256 = 16× 16 297 4.000
2.422e−07

= 1.65e+ 07 66 4.018
2.127e−02

= 188.94

1024 = 32× 32 613 4.000
5.649e−08

= 7.08e+ 07 63 4.018
1.872e−02

= 214.63

4096 = 64× 64 1245 4.000
1.366e−08

= 2.93e+ 08 71 4.018
1.742e−02

= 230.64

p = 3

16 = 4× 4 57 4.000
9.395e−06

= 4.26e+ 05 38 4.103
5.400e−02

= 75.98

64 = 8× 8 124 4.000
1.558e−06

= 2.57e+ 06 54 4.067
2.646e−02

= 153.72

256 = 16× 16 257 4.000
3.330e−07

= 1.20e+ 07 68 4.059
1.626e−02

= 249.67

1024 = 32× 32 528 4.000
7.760e−08

= 5.15e+ 07 76 4.059
1.347e−02

= 301.25

4096 = 64× 64 1071 4.000
1.876e−08

= 2.13e+ 08 87 4.059
1.204e−02

= 337.17

p = 4

16 = 4× 4 52 4.000
1.212e−05

= 3.30e+ 05 37 4.139
6.434e−02

= 64.33

64 = 8× 8 110 4.000
2.005e−06

= 1.99e+ 06 50 4.111
3.006e−02

= 136.76

256 = 16× 16 228 4.000
4.280e−07

= 9.35e+ 06 63 4.095
2.076e−02

= 197.31

1024 = 32× 32 468 4.000
9.966e−08

= 4.01e+ 07 69 4.093
1.709e−02

= 239.52

4096 = 64× 64 948 4.000
2.409e−08

= 1.66e+ 08 86 4.093
1.509e−02

= 271.22

Table 4.10: Quarter annulus domain, Nel = 4096 = 64× 64, k = 104
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Figure 4.12: Quarter annulus domain, Nel = 4096 = 64× 64, k = 104
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4.1.3 3D results: the cube
For the cube domain we present relatively small set of tests due to limited avail-
ability of the supercomputers at our disposal.
In these tests, the number of subdomains ranges from 64 = 4 × 4 × 4 to 512 =
8 × 8 × 8, while the number of elements per subdomain is kept fixed at 4096 =
16× 16× 16. Quadratic and cubic functions are considered only, the case p = 4
being too much expensive in terms of computational time at disposal.
The results show how the 1-level Preconditioner is outperformed by the 2-level
one, with analogous behaviors of the 2D case.
In the Figures, plots depicted with full circles represent the 1-level Schwarz Pre-
conditioner, while empty circles the 2-level Preconditioner.

Diffusivity coefficient k = 1

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2
64 = 4× 4× 4 26 8.000

7.095e−02
= 112.75 19 8.000

3.706e−01
= 21.59

512 = 8× 8× 8 36 8.000
1.876e−02

= 426.42 16 8.000
5.813e−01

= 13.76

p = 3
64 = 4× 4× 4 25 8.000

1.015e−01
= 78.85 18 8.007

7.370e−01
= 10.86

512 = 8× 8× 8 34 8.000
2.706e−02

= 295.59 18 8.002
6.083e−01

= 13.15

Table 4.11: Cube domain, Nel = 4096 = 16× 16× 16, k = 1

Diffusivity coefficient k = 10−4

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2
64 = 4× 4× 4 26 8.000

1.450e−01
= 55.18 21 8.004

2.344e−01
= 34.15

512 = 8× 8× 8 46 8.000
3.672e−02

= 217.88 29 8.004
1.697e−01

= 47.18

p = 3
64 = 4× 4× 4 25 8.000

2.010e−01
= 39.80 22 8.035

3.336e−01
= 24.09

512 = 8× 8× 8 43 8.000
5.247e−02

= 152.46 29 8.041
1.616e−01

= 49.75

Table 4.12: Cube domain, Nel = 4096 = 16× 16× 16, k = 10−4

Diffusivity coefficient k = 10−2
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p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2
64 = 4× 4× 4 28 8.000

1.427e−01
= 56.04 24 8.004

2.424e−01
= 33.02

512 = 8× 8× 8 51 8.000
3.628e−02

= 220.49 29 8.004
1.800e−01

= 44.47

p = 3
64 = 4× 4× 4 26 8.000

1.980e−01
= 40.40 22 8.028

4.282e−01
= 18.75

512 = 8× 8× 8 46 8.000
5.186e−02

= 154.27 26 8.029
2.570e−01

= 31.24

Table 4.13: Cube domain, Nel = 4096 = 16× 16× 16, k = 10−2

Diffusivity coefficient k = 102

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2
64 = 4× 4× 4 36 8.000

3.598e−03
= 2.22e+ 03 25 8.016

2.318e−01
= 34.57

512 = 8× 8× 8 62 8.000
6.279e−04

= 1.27e+ 04 30 8.013
1.857e−01

= 43.14

p = 3
64 = 4× 4× 4 33 8.000

5.208e−03
= 1.54e+ 03 23 8.054

2.959e−01
= 27.22

512 = 8× 8× 8 55 8.000
9.101e−04

= 8.79e+ 03 26 8.038
2.243e−01

= 35.83

Table 4.14: Cube domain, Nel = 4096 = 16× 16× 16, k = 102

Diffusivity coefficient k = 104

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2
64 = 4× 4× 4 39 8.000

3.889e−05
= 2.06e+ 05 25 8.060

1.494e−01
= 53.94

512 = 8× 8× 8 70 8.000
6.530e−06

= 1.23e+ 06 31 8.070
1.287e−01

= 62.71

p = 3
64 = 4× 4× 4 37 8.000

5.736e−05
= 1.39e+ 05 25 8.233

1.573e−01
= 52.34

512 = 8× 8× 8 62 8.000
9.548e−06

= 8.38e+ 05 34 8.144
1.089e−01

= 74.75

Table 4.15: Cube domain, Nel = 4096 = 16× 16× 16, k = 104
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4.1.4 3D results: the quarter hose

The hose domain is now considered with a complete suite of tests. The number of
subdomains ranges from 64 = 4×4×4 to 4096 = 16×16×16, while the number
of elements per subdomain is kept fixed at 4096 = 16 × 16 × 16. Quadratic and
cubic functions are considered.
Again, scalability with respect to number of subdomains and jumps on the diffu-
sivity coefficient is achieved.
In the Figures, plots depicted with full circles represent the 1-level Schwarz Pre-
conditioner, while empty circles the 2-level Preconditioner.
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Diffusivity coefficient k = 1

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2

64 = 4× 4× 4 50 8.000
7.098e−02

= 112.70 31 8.000
2.626e−01

= 30.47

512 = 8× 8× 8 92 8.000
1.882e−02

= 425.12 34 8.000
2.090e−01

= 38.29

1728 = 12× 12× 12 137 8.000
8.455e−03

= 946.24 33 8.000
1.913e−01

= 41.82

4096 = 16× 16× 16 184 8.000
4.774e−03

= 1.68e+ 03 32 8.000
1.829e−01

= 43.75

p = 3

64 = 4× 4× 4 50 8.000
1.010e−01

= 79.23 29 8.020
3.501e−01

= 22.91

512 = 8× 8× 8 100 8.000
2.699e−02

= 296.37 35 8.010
2.782e−01

= 28.78

1728 = 12× 12× 12 117 8.000
1.224e−02

= 653.46 32 8.005
2.538e−01

= 31.54

4096 = 16× 16× 16 157 8.000
6.917e−03

= 1.16e+ 03 32 8.004
2.442e−01

= 32.78

Table 4.16: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 1
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Figure 4.13: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 1
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Diffusivity coefficient k = 10−4

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2

64 = 4× 4× 4 44 8.000
1.003e−01

= 79.80 38 8.006
1.956e−01

= 40.93

512 = 8× 8× 8 88 8.000
2.666e−02

= 300.05 54 8.008
1.081e−01

= 74.07

1728 = 12× 12× 12 129 8.000
1.194e−02

= 669.99 59 8.009
7.823e−02

= 102.38

4096 = 16× 16× 16 177 8.000
6.724e−03

= 1.19e+ 03 64 8.009
6.519e−02

= 122.86

p = 3

64 = 4× 4× 4 40 8.000
1.410e−01

= 56.75 43 8.071
1.177e−01

= 45.49

512 = 8× 8× 8 77 8.000
3.828e−02

= 209.01 57 8.091
9.827e−02

= 82.32

1728 = 12× 12× 12 112 8.000
1.724e−02

= 464.13 61 8.083
9.188e−02

= 87.98

4096 = 16× 16× 16 151 8.000
9.722e−03

= 822.90 66 8.102
6.984e−02

= 116.00

Table 4.17: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 10−4
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Figure 4.14: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 10−4
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Diffusivity coefficient k = 10−2

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2

64 = 4× 4× 4 47 8.000
1.002e−01

= 79.85 41 8.006
1.896e−01

= 42.23

512 = 8× 8× 8 96 8.000
2.666e−02

= 300.09 56 8.008
9.300e−02

= 86.11

1728 = 12× 12× 12 146 8.000
1.194e−02

= 670.05 64 8.008
7.184e−02

= 111.48

4096 = 16× 16× 16 196 8.000
6.724e−03

= 1.19e+ 03 65 8.008
6.917e−02

= 115.78

p = 3

64 = 4× 4× 4 42 8.000
1.409e−01

= 56.78 44 8.042
3.196e−01

= 25.15

512 = 8× 8× 8 89 8.000
3.732e−02

= 214.34 47 8.052
1.569e−01

= 51.29

1728 = 12× 12× 12 124 8.000
1.724e−02

= 464.06 50 8.060
1.296e−01

= 62.21

4096 = 16× 16× 16 166 8.000
9.724e−03

= 822.73 53 8.072
1.091e−01

= 73.96

Table 4.18: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 10−2
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Figure 4.15: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 10−2
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Diffusivity coefficient k = 102

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2

64 = 4× 4× 4 63 8.000
3.419e−03

= 2.34e+ 03 43 8.022
1.298e−01

= 61.79

512 = 8× 8× 8 134 8.000
5.908e−04

= 1.35e+ 04 56 8.018
8.199e−02

= 97.80

1728 = 12× 12× 12 205 8.000
2.381e−04

= 3.36e+ 04 62 8.018
6.513e−02

= 123.11

4096 = 16× 16× 16 277 8.000
1.279e−04

= 6.25e+ 04 67 8.018
5.748e−02

= 139.50

p = 3

64 = 4× 4× 4 61 8.000
5.220e−03

= 1.53e+ 03 46 8.083
2.253e−01

= 35.88

512 = 8× 8× 8 144 8.000
8.988e−04

= 8.90e+ 03 48 8.093
1.603e−01

= 50.46

1728 = 12× 12× 12 173 8.000
3.469e−04

= 2.31e+ 04 51 8.090
1.271e−01

= 63.64

4096 = 16× 16× 16 233 8.000
1.863e−04

= 4.30e+ 04 52 8.092
1.126e−01

= 71.86

Table 4.19: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 102
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Figure 4.16: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 102

78



Diffusivity coefficient k = 104

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. cond it. cond

p = 2

64 = 4× 4× 4 74 8.000
3.685e−05

= 2.17e+ 05 46 8.089
9.326e−02

= 86.74

512 = 8× 8× 8 156 8.000
6.132e−06

= 1.30e+ 06 62 8.077
6.349e−02

= 127.21

1728 = 12× 12× 12 238 8.000
2.451e−06

= 3.26e+ 06 69 8.077
5.254e−02

= 153.72

4096 = 16× 16× 16 319 8.000
1.313e−06

= 6.09e+ 06 72 8.077
4.757e−02

= 169.78

p = 3

64 = 4× 4× 4 71 8.000
5.854e−05

= 1.37e+ 05 50 8.215
9.565e−02

= 75.88

512 = 8× 8× 8 170 8.000
9.540e−06

= 8.39e+ 05 65 8.199
6.509e−02

= 125.95

1728 = 12× 12× 12 200 8.000
3.596e−06

= 2.22e+ 06 67 8.178
5.389e−02

= 151.75

4096 = 16× 16× 16 269 8.000
1.921e−06

= 4.17e+ 06 75 8.176
4.658e−02

= 175.52

Table 4.20: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 104

4 6 8 10 12 14 16

102

103

104

105

106

107

ndom

lo
g
( co

n
d
(P

(i
)

A
S
O

))

4 6 8 10 12 14 16

100

200

300

ndom

ite
ra

tio
ns

Figure 4.17: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 104
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4.2 The advection-diffusion equation
We recall the advection diffusion equations as presented in Section 2.6.3. The
model problem is finding a function u : Ω −→ R such that{

−∇ · (κ∇u) + b · ∇u = f in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RD is an open domain with boundary ∂Ω, f : Ω −→ R is the
body force, κ is the diffusivity coefficient and b : Ω −→ RD is the velocity
field, assumed to be divergence-free, i.e. ∇ · b = 0. We recall also the SUPG
stabilization:

aSUPG(v, w) = a(u, v) + (τb · ∇v,Lw)L2(Ω̃),

FSUPG(v) = F (v) + (τb · ∇v, f)L2(Ω̃).

where Lv = −κ∆v + b · ∇v. The stabilization parameter τ depends on the mesh
sizes h and H , respectively for the local problems and the coarse problem. It is
chosen to be

τ = τ(κ, h, p,b) =
hK

2p|b|
φ (PeK) , (4.5)

where hK is the length of the mesh size along the direction of the velocity field b,
PeK = |b|hK

2pκ
is the so called local Péclet number and φ(α) = coth(α) − 1

α
. We

refer to [34] and references therein for a deeper analysis.
For these tests we consider the square and cube domains. The annulus and hose
domains are addressed in some minor preliminar tests. For each hypercubic do-
main, we consider both the unstabilized and the SUPG-stabilized B-spline dis-
cretization of the model problem, with a given constant, divergence-free velocity
field

b(x1, ..., xD) = [D, ..., 1], D = 2, 3. (4.6)

The diffusivity parameter κ ranges in the set {10−1, 10−2, 10−3}. As the numerical
results show, the higher the diffusivity coefficient, the more diffusion-dominated
is the model problem. In order to test the robustness of the preconditioner with
respect to boundary layers, we select exact solutions with gradient depending on
κ, so that lower values for κ give exact solutions with higher boundary layers. The
solutions are

u(x1, ..., xD) =
D∏
d=1

xd

(
1− e

xd−1

2κ

)
.

and the body forces are explicitly computed as f = Lu.
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The system matrix A arising from the Petrov-Galerkin discretization is positive
definite but not symmetric. This implies the use of Generalized Minimal Resid-
ual Method (GMRES) as iterative solver (see [30] for a deeper analysis). In each
test, GMRES is set with a maximum number of 10000 iterations for the 2D tests
and 1000 iterations for the 3D tests. The tolerance of the Euclidean norm of the
preconditioned residual is again 10−7. Due to PETSc limitations, there are no ex-
plicit estimates on the minimum and maximum eigenvalues of the preconditioned
system matrix, hence we report the number of iterations required to achieved the
convergence of the solver up to the said tolerance.
The considered preconditioners are 3.67 and the 1-level version, i.e. the sum of
the same local projection operators without the coarse grid correction given by
P0. The 2-level Isogeometric Additive Schwarz Preconditioner is hence com-
pared with the 1-level Additive Schwarz black-box preconditioner implemented
in PETSc library.
Finally, the machine used2 for these tests is the Mira supercomputer, located at the
Argonne National Laboratory, Illinois, USA. The supercomputer is a BluGene/Q
based on PowerPC A2 processors running at 1.6Ghz. We refer to [2] for technical
details.

4.2.1 2D results: the square
For the square domain, we fix the number of elements per subdomain at 4096 =
16× 16. Polynomial degree ranges from 2 to 4, with the same color scheme from
Section 4.1: red for p = 2, blue for p = 3 and black for p = 4. Regularity of basis
functions is Cp−1. The number of subdomains ranges from 8 × 8 subdomains or
processors, up to 8100 = 90×90 for the κ = 10−2 case, achieving successfully an
Isogeometric discretization of 33 millions elements, or approximately 37 millions
degrees of freedom.
Due to supercomputer utilization limitations, we tested the κ = 10−1 and κ =
10−3 cases with up to respectively 2304 = 48 × 48 and 3136 = 56 × 56 subdo-
mains.
Tables 4.22 shows that a high diffusivity coefficient κ = 10−1, and hence a
diffusion-dominated problem, brings no difficulties to the 2-level Preconditioner,
while the 1-level one quickly fails to converge with an increasing number of sub-
domains. The SUPG stabilization has little to none effect. Similar remarks can be
done for the κ = 10−2 case.
In the advection-dominated case κ = 10−3 (Table 4.24), the 1-level preconditioner
performs better but still shows an increasing trend with respect to the number of
subdomain. The 2-level preconditioner as well shows an increasing trend from

2Supercomputer utilization has been supported and supervised by Professor L. F. Pavarino.
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8× 8 to 24× 24 subdomains. With more subdomains, it recovers the asymptotic
constant trend seen in previous tests.
An explanation of this behavior can be found in a trade-off between the effec-
tiveness of the 1-level preconditioner and the quality of the coarse grid solution.
With a small number of subdomains, the 1-level preconditioned solver converges
rapidly due to quick share of boundary data among the few processors, and the
coarse problem has little effect. When the number of subdomains raises, the 1-
level preconditioner starts to be less effective. The coarse problem, on the other
hand, may be not refined enough to ensure a good global correction, as it is known
that the advection-diffusion problem presents difficulties with insufficiently low
mesh sizes. This behavior agrees with theoretical remarks in Section 3.5: in or-
der to be effective, the 2-level preconditioner requires a maximum mesh size H0,
hence a minimum number of subdomains. As one can see in Table 4.21, the case
k = 10−1 shows that local Péclet numbers for the coarse grid are well below 1,
hence the optimal results, meanwhile in the advection-dominated case k = 10−3

the local Péclet numbers are above the unitary threshold in the 8 × 8 to 32 × 32
subdomains range.
The SUPG stabilization enhances the stability of the discretization scheme in gen-
eral, so that the trade-off between coarse problem and 1-level preconditioning is
less evident.

Ndom = k = 10−1 k = 10−2 k = 10−3

ndom × ndom p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4
64 = 8× 8 0.70 0.47 0.35 6.99 4.66 3.49 69.88 46.58 34.94

256 = 16× 16 0.35 0.23 0.17 3.49 2.33 1.75 34.94 23.29 17.47
576 = 24× 24 0.23 0.16 0.12 2.33 1.55 1.16 23.29 15.53 11.65
1024 = 32× 32 0.17 0.12 0.09 1.75 1.16 0.87 17.47 11.65 8.73
1600 = 40× 40 0.14 0.09 0.07 1.40 0.93 0.70 13.98 9.32 6.99
2304 = 48× 48 0.12 0.08 0.06 1.16 0.78 0.58 11.65 7.76 5.82
3136 = 56× 56 0.10 0.07 0.05 1.00 0.67 0.50 9.98 6.65 4.99
4096 = 64× 64 0.09 0.06 0.04 0.87 0.58 0.44 8.73 5.82 4.37

Table 4.21: Local Péclet number as in 4.5 for the 2D coarse grid.

Lastly, it is worth to notice in Table 4.24 how the case p = 3 achieves scalability
but performs worse than the other two cases. It starts to be known in the IGA
community that there are theoretical and practical differences between odd and
even polynomial degrees discretizations, with the p = 3 case being particularly
anomalous. Further investigation is required and it is beyond the scope of this
work.
In the Figures, plots depicted with full circles represent the 1-level Schwarz Pre-
conditioner, while empty circles the 2-level Preconditioner.
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Diffusivity coefficient κ = 10−1

No stabilization SUPG stabilization
Ndom = p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

ndom × ndom 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl
64 = 8× 8 161 26 147 21 112 21 160 26 147 21 112 21

256 = 16× 16 553 23 319 17 207 18 621 23 320 17 207 18
576 = 24× 24 10000 20 680 15 439 16 10000 20 715 15 438 16
1024 = 32× 32 10000 19 10000 14 651 15 10000 19 10000 15 651 15
1600 = 40× 40 10000 17 10000 13 1281 14 10000 17 10000 14 1228 14
2304 = 48× 48 10000 15 10000 13 2236 13 10000 16 10000 13 2310 13

Table 4.22: Square domain, Nel = 64× 64, κ = 10−1.
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Figure 4.18: Square domain, Nel = 64× 64, κ = 10−1.
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Diffusivity coefficient κ = 10−2

No stabilization SUPG stabilization
Ndom = p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

ndom × ndom 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl
64 = 8× 8 37 43 29 42 27 29 37 38 29 37 27 29

256 = 16× 16 146 34 125 39 114 26 150 35 125 35 114 26
576 = 24× 24 228 30 217 34 192 24 225 34 217 31 192 24
1024 = 32× 32 313 26 258 30 207 22 322 29 260 29 206 23
1600 = 40× 40 395 25 365 27 295 20 389 27 364 27 296 21
2304 = 48× 48 497 24 435 26 394 19 482 25 436 25 395 19
3136 = 56× 56 665 23 525 23 466 18 664 24 520 23 449 18
4096 = 64× 64 820 22 541 21 480 18 829 22 543 21 507 18
5184 = 72× 72 1471 22 652 20 578 17 1203 22 666 20 583 17
6400 = 80× 80 10000 21 748 19 627 17 10000 21 747 18 630 17
7744 = 88× 88 10000 21 844 17 702 16 10000 21 839 18 703 16
8100 = 90× 90 10000 21 882 17 743 16 10000 21 867 17 738 16

Table 4.23: Square domain, Nel = 64× 64, κ = 10−2.
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Figure 4.19: Square domain, Nel = 64× 64, κ = 10−2.
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Diffusivity coefficient κ = 10−3

No stabilization SUPG stabilization
Ndom = p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

ndom × ndom 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl
64 = 8× 8 26 83 29 84 29 60 23 43 26 48 27 41

256 = 16× 16 50 146 40 168 47 92 44 52 40 66 45 58
576 = 24× 24 120 157 119 186 119 113 120 58 120 82 118 72
1024 = 32× 32 161 152 174 182 173 113 153 58 175 80 174 71
1600 = 40× 40 238 115 247 157 192 96 234 53 244 72 192 57
2304 = 48× 48 188 80 267 130 264 75 216 48 267 66 266 46
3136 = 56× 56 316 62 246 110 247 58 313 42 242 59 248 40

Table 4.24: Square domain, Nel = 64× 64, κ = 10−3.

10 20 30 40 50 60
0

100

200

300

ndom

G
M

R
E

S
ite

ra
tio

ns

No stabilization

10 20 30 40 50 60
0

100

200

300

ndom

G
M

R
E

S
ite

ra
tio

ns

SUPG stabilization

Figure 4.20: Square domain, Nel = 64× 64, κ = 10−3.
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4.2.2 3D results: the cube
For the 3D tests we considered the cube domain, refined in 4096 = 16× 16× 16
elements per subdomains. As for the scalar elliptic equation, polynomial degrees
are p = 2 (red) and p = 3 (blue). Tests are a direct comparison between the
1-level and the 2-level preconditioners, with and without SUPG stabilization.
Table 4.25 is one more evidence of the scalability of the 2-level preconditioner for
diffusion-dominated problems. As in the 2D case, there is almost no difference
between the unstabilized and the SUPG-stabilized problems.
Table 4.26 shows instead that with no stabilization the 2-level preconditioned
solver fail to converge for any decomposition and polynomial degree, while the
1-level preconditioner performs surprisingly well, although it still show a grow-
ing behavior with respect to the number of processors. The SUPG stabilization
recovers the scalability and overall performance of the 2-level preconditioner.
Finally, in the the advection-dominated case κ = 10−3 (Table 4.27), the unstabi-
lized tests show failure for the 2-level preconditioner, while the SUPG-stabilized
ones are meaningful if compared with the κ = 10−2 tests. Our idea is that the
2-level preconditioner with p = 3 has a bump trend as discussed in the 2D case,
even though it goes beyond our GMRES settings.
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Diffusivity coefficient k = 10−1

No stabilization SUPG stabilization
Ndom = p = 2 p = 3 p = 2 p = 3

ndom × ndom × ndom 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl
64 = 4× 4× 4 31 27 27 25 31 29 27 27
512 = 8× 8× 8 89 30 64 29 88 35 64 32

1728 = 12× 12× 12 220 29 164 30 208 34 164 34
4096 = 16× 16× 16 258 29 214 32 259 33 214 35

Table 4.25: Cube domain, Nel = 16× 16× 16, κ = 10−1.
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Diffusivity coefficient k = 10−2

No stabilization SUPG stabilization
Ndom = p = 2 p = 3 p = 2 p = 3

ndom × ndom × ndom 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl
64 = 4× 4× 4 32 1000 35 1000 25 33 28 40
512 = 8× 8× 8 33 1000 32 1000 30 37 30 36

1728 = 12× 12× 12 58 1000 48 1000 57 40 47 41
4096 = 16× 16× 16 96 1000 85 1000 95 41 85 42

Table 4.26: Cube domain, Nel = 16× 16× 16, κ = 10−2.
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Diffusivity coefficient k = 10−3

No stabilization SUPG stabilization
Ndom = p = 2 p = 3 p = 2 p = 3

ndom × ndom × ndom 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl 1-lvl 2-lvl
64 = 4× 4× 4 190 359 385 1000 34 42 329 495
512 = 8× 8× 8 118 399 238 1000 43 48 1000 1000

1728 = 12× 12× 12 98 590 193 1000 53 52 1000 1000
4096 = 16× 16× 16 115 1000 169 1000 87 55 143 117

Table 4.27: Cube domain, Nel = 16× 16× 16, κ = 10−3.

2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

ndom

G
M

R
E

S
ite

ra
tio

ns

No stabilization

2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

ndom

G
M

R
E

S
ite

ra
tio

ns

SUPG stabilization

88



4.2.3 Preliminary results on deformed NURBS domains
We present here two early tests on the two deformed domains treated in this work:
the quarter annulus and the hose. The number of subdomains ranges from 8 × 8
to 64 × 64 with polynomial degrees p = 2, 3 for the 2D case, while the number
of subdomains ranges from 4 × 4 × 4 to 16 × 16 × 16 with polynomial degree
p = 2 for the 3D one. The velocity field is again the constant divergence-free field
defined in 4.6.
Due to technical limitations, no SUPG stabilization is considered and the diffu-
sivity coefficient is k = 1, resulting in a diffusion dominated case. These prelim-
inar results show the good scalability of the 2-level Preconditioner for quadratic
(p = 2) NURBS basis functions, easily outperforming the black-box 1-level Pre-
conditioner in both dimensions. With the 2D cubic basis functions the 2-level
Preconditioner does not perform well as in the quadratic case, although it seems
to show an asymptotically constant trend with respect to the number of subdo-
mains.

Quarter annulus 2D domain

Ndom = p = 2 p = 3
ndom × ndom 1-lvl 2-lvl 1-lvl 2-lvl
64 = 8× 8 166 49 142 51

256 = 16× 16 416 52 350 53
1024 = 32× 32 1000 54 1000 133
4096 = 64× 64 1000 51 1000 178

Table 4.28: Quarter annulus domain, Nel = 64× 64, κ = 1.
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Hose 3D domain

Ndom = p = 2
ndom × ndom × ndom 1-lvl 2-lvl

64 = 4× 4× 4 57 42
512 = 8× 8× 8 117 52

1728 = 12× 12× 12 199 56
4096 = 16× 16× 16 284 59

Table 4.29: Hose domain, Nel = 16× 16× 16, κ = 1.
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Chapter 5

Implementation

In this Chapter we overview the implementation of the presented Preconditioner.
As stated before, the code is written in C programming language and utilizes the
PETSc library for all the purposes beyond an Isogeometric Analysis framework:
sparse matrix and vector parallel storage, iterative solvers for Krylov methods
with condition number estimates and communication for distributed-memory par-
allelism.
The PETSc library has its own error checking system based on the integer output
variable ierr, checked after each function call with CHKERRQ(ierr);. This
function has been removed from the presented code for the sake of visual clear-
ity, while the output integer ierr is substituted with .... whenever the called
function is written by the author. We refer again to the official PETSc website [5]
and the documentation [6] for an in-depth explanation of the library.
Core functions such as Refinement and Op_Poisson and all the functions
under the hood are not explained for brevity.

5.1 The main program
The source code presented here is the main code for setting up a 3D scalar elliptic
problem over local subdomains refined in 16× 16× 16 elements. NURBS cubic
basis functions of maximum regularity are computed for the discretization.
The number of subdomains is set with the usual in-line parameter of the com-
mand1 mpiexec, provided the grid subdivision with the in-line option -grid
and the filename of a text file containing the geometry (with the option -fname):
> mpiexec -np 64 ./main -grid 4,4,4 -fname hose.txt

1With the bash script language for the Linux environment.
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As it will be clear, minor changes are needed in order to change the dimension, the
geometry or the differential problem. Here are the first lines of the main program:

1 // problem dimension
2 #define DIM 3
3
4 // PETSc header
5 #include"petscksp.h"
6 // headers
7 #include"utils.h"
8 #include"elements.h"
9 #include"refinement.h"

10 #include"functions.h"
11 #include"operators.h"
12 #include"coarse.h"
13
14 // communicator
15 ProcessID id;

The very first part of the code is the definition of the dimension DIM of the differ-
ential problem as it is constant throughout the entire code. Any positive dimension
is feasible as any function related to the Isogeometric framework is dimension-
free. Some specific part of the code, such as the implementation of the Jacobians
inversions and the determinants computations, depends explicitly on the dimen-
sion as a true dimension-free implementation is inefficient and beyond the purpose
of the code.
The headers are then included, with petscksp.h the main header for the entire
PETSc library. The other headers contain the author’s code.
In line 15 we declare the global variable id as an instance of the following self
explanatory structure:
typedef struct {

MPI_Comm comm; // MPI communicator
PetscMPIInt size[DIM], Size, // number of processes

rank[DIM], Rank; // process rank
} ProcessID;

As a convention throughout the code, lower case integers are arrays representing
multiindexes in ND, while uppercase integers are multiindexes in N, as explained
in Section 2.2. The variable id is used by every function of the code, as there is
only the global communicator. Then, we define the main function and the vari-
ables:

17 // main
18 int main(int argc, char **argv) {
19
20 PetscErrorCode ierr;
21 PetscInt idim;
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22
23 // rite of passage
24 ierr = PetscInitialize(&argc, &argv, PETSC_NULL, PETSC_NULL);
25 id.comm = PETSC_COMM_WORLD;
26 .... = ProcessGrid();
27
28 NURBS grid, // starting geometry
29 fine_grid, // fine grid geometry
30 coarse_grid; // coarse grid geometry
31 LinearSystem fine_system, // fine local linear system
32 coarse_system; // coarse global linear system
33 KSP ksp, // KSP main context
34 *lksp; // KSP local context
35 PC pc, // preconditioners contexts
36 pc1, // first level preconditioner
37 pc2, // second level preconditioner
38 lpc; // local system solver
39 IS is; // index set for overlap
40 ShellPC *shell; // second level context
41 Mat P; // projection operator
42
43 PetscReal emax, emin; // max/min eigenvalue
44 PetscInt it; // number of iterations

Lines 24-26 are the standard initialization of the MPI environment (handled by
PETSc) and the computation of all the fields of id.
For consistency with PETSc, the primitive types int, double are replaced with
the PETSc-defined ones, PetscInt, PetscScalar. The types KSP, PC, IS,
ShellPC and Mat are PETSc objects whose purpose will be clear in the next
lines of the main.
The type NURBS is a structure containing all the informations about the NURBS
geometry, the grid and the parallel/serial setting. The knot vectors and control
points are implemented with the minor structures KnotVector and ControlPoint
that encapsulate appropriate double arrays, while the Stencil is a structure
with information of the overlap of each subdomain along the DIM directions. Here
is the NURBS structure definition:
typedef struct {

// NURBS GEOMETRY INFORMATION
char name[PETSC_MAX_PATH_LEN]; // nurbs name
PetscBool distributed, // distributed flag

refined; // refined flag
PetscInt nel[DIM], Nel, // local number of elements

tnel[DIM], tNel, // total number of elements
deg[DIM], // degrees
reg[DIM], // regularity
ncp[DIM], Ncp, // local number of ctrl points
tncp[DIM], tNcp; // total number of ctrl points

93



// DISCRETE SPACE INFORMATION
PetscInt nqn[DIM], Nqn, // num of quad nodes per el

nbf[DIM], Nbf; // num of nonzero fncts per el

// DOF INDEXING INFORMATIONS
PetscInt dof, // num of dofs per ctrl point

Ndof, // local number of dofs
tNdof, // total number of dofs

*ncon[DIM], // ctrl pts natural ordering

*pcon, // dof parallel ordering
Ngst, // number of ghosted control pts

*gst; // ghosted dof connectivity
PetscBool *bdr; // boundary control points flag
Stencil *layout; // global overlap stencil

// KNOT VECTORS AND CONTROL POINTS
KnotVector kv[DIM]; // knot vectors
ControlPoint *cp; // control points
PetscInt span[DIM][2]; // index of span knot

} NURBS;

Finally, the structure LinearSystem is a simple container of the three objects
of a linear system:
typedef struct {

Mat A; // system matrix
Vec b, // right hand side

x; // solution
} LinearSystem;

Once the main variables are declared, we can start with the construction of the
grids:

46 // loading the starting geometry
47 .... = GeometryReader(&grid);
48
49 // creating the fine grid
50 fine_grid.dof = 1;
51 for (idim=0; idim<DIM; idim++) {
52 fine_grid.nel[idim] = 16;
53 fine_grid.deg[idim] = 3;
54 fine_grid.reg[idim] = 2;
55 }
56 .... = Refinement(&grid, &fine_grid, PETSC_TRUE);
57
58 // creating the coarse grid
59 coarse_grid.dof = 1;
60 for (idim=0; idim<DIM; idim++) {
61 coarse_grid.nel[idim] = id.size[idim];
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62 coarse_grid.deg[idim] = 3;
63 coarse_grid.reg[idim] = 2;
64 }
65 .... = Refinement(&grid, &coarse_grid, PETSC_FALSE);
66 .... = Projection(&coarse_grid, &fine_grid, &P);

In line 47 we call the function that loads the text file hose.txt specified by
the in-line command -fname. In lines 49-56 we first set the number of degrees
of freedom per basis function (i.e. 1 for scalar problems), then we set the de-
sired amount of refinement of the fine_grid along each direction. After the
fields are filled, fine_grid can be refined from grid by a call of the function
Refinement. The last input value of this function is a flag for specifying that
fine_grid has to be refined in a parallel fashion, the domain decomposition
setting being deduced from the global variable id. The refinement process is lo-
cal, which means that only the local knot vectors and control points associated
to local subdomains are computed and stored. Each MPI process owns different
data.
The coarse_grid is created in the same way. The only difference is that now
the flag for Refinement is false, and the refinement is not parallel and local but
global. Each MPI process owns the same data. Notice that the number of elements
is exactly the tensor grid for the processes.
Lastly, from the coarse_grid and the fine_grid the projection operator P
is constructed by the function Projection. We refer to Section 5.2 for a deeper
analysis.
We can now assemble the two linear system, the only difference between a lo-
cal fine problem and a global coarse problem being the call of the preallocation
functions SystemCreator and SystemCreatorSeq:

68 // creating the fine and coarse linear systems
69 .... = SystemCreator(&fine_grid, &fine_system);
70 .... = Op_Poisson(&fine_grid, &fine_system, &f, &k);
71
72 .... = SystemCreatorSeq(&coarse_grid, &coarse_system);
73 .... = Op_Poisson(&coarse_grid, &coarse_system, &f, &k);

The function Op_Poisson wants a NURBS, a preallocated LinearSystem
and two pointers to user-provided functions for the source term f and the diffu-
sivity coefficient k, whose declarations are the following:
PetscScalar f(PetscScalar *coord);
PetscScalar k(PetscScalar *coord);

The function Op_Poisson does not explicitly depends on the locality/globality
of the grid because it is implemented as a classical element loop. On each element,
an element stiffness matrix is computed from the nonzero basis function over the
element, and then it is given to the PETSc routines for the global assembling,
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along with the local-to-global index connectivity stored in the pcon field of the
NURBS variable. Whether the NURBS grid is local or global, the element loop is
the same. As we considered only homogeneous Dirichlet boundary conditions,
there is no need to specify a boundary function. Degrees of freedom associated to
the boundary are set to 0.0 during the assemble of the right hand side. For the
element stiffness matrices associated to boundary elements, off-diagonal entries
of rows and columns of boundary degrees of freedom are set to 0.0 so that there
is no need to a posteriori modifications to the global matrix.
Each MPI process has now available its own local grid in fine_grid, its own lo-
cal problem in fine_system, the global grid in coarse_grid and the global
problem coarse_system. It is time to construct the PETSc machinery for the
preconditioned iterative solver and the preconditioner itself:

75 // creating the KSP context
76 ierr = KSPCreate( id.comm, &ksp);
77 ierr = KSPSetOperators(ksp, fine_system.A, fine_system.A);
78 ierr = KSPSetType(ksp, KSPCG);
79 ierr = KSPSetComputeSingularValues(ksp, PETSC_TRUE);
80 ierr = KSPSetTolerances(ksp, 1.e-7, PETSC_DEFAULT,

PETSC_DEFAULT, 1000);
81
82 // creating the main preconditioner context
83 ierr = KSPGetPC(ksp, &pc);
84 ierr = PCSetType(pc, PCCOMPOSITE);
85 ierr = PCCompositeSetType(pc, PC_COMPOSITE_ADDITIVE);

In lines 76-77 the iterative solver context ksp is created and associated to the
global communicator stored in id.comm and to the fine_system matrix. It
is then set to use the Preconditioned Conjugate Gradient method with the flag
KSPCG (line 78), to compute an estimation of the maximum and minimum eigen-
values (line 79) and finally set with a preconditioned residual tolerance of 10−7

with 1000 maximum iterations (line 80).
Each KSP object contains a preconditioner object PC. We extract it in line 83,
set it as a PCCOMPOSITE, which means that it will be composed of two distinct
sub-preconditioner (the 1-level ASO and the coarse grid correction), and set to
manage in an additive fashion the sub-preconditioners.
We now need to define the first sub-preconditioner:

87 // setting up the first level of preconditioning
88 ierr = PCCompositeAddPC(pc, PCASM);
89 ierr = PCCompositeGetPC(pc, 0, &pc1);
90 ierr = ISCreateGeneral(id.comm, fine_grid.Ndof, fine_grid.pcon

, PETSC_COPY_VALUES, &is);
91 ierr = PCASMSetLocalSubdomains(pc1, 1, &is, PETSC_NULL);
92 ierr = PCASMSetType(pc1, PC_ASM_BASIC);
93 ierr = PCASMGetSubKSP(pc1, PETSC_NULL, PETSC_NULL, &lksp);
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94 ierr = KSPGetPC(lksp[0],&lpc);
95 ierr = PCSetType(lpc,PCLU);

In line 88 we add an Additive Schwarz preconditioner to the main composite
preconditioner list. This is the black-box implementation of the 1-level ASO with
overlap defined with Strategy 3. Different flavors exist, and we select the basic one
in line 92. In order to set pc1 to handle the overlap with Strategy 2, we need to
define a distributed parallel set of indexes IS. We do this in line 90 directly with
the pcon field of the fine_grid. Accordingly with the degrees of freedom
distribution stored in is, the first sub-preconditioner pc1 is set in line 91. The
last three line of code for this part extract the KSP context lksp for the local
solvers of the local problem, extract the local preconditioner lpc and set it to
LU factorization. These are necessary steps for exact direct solving of the local
problems, as PETSc uses incomplete LU factorization as default local solver.
The code so far is the actual implementation of the 1-level ASO, whose results
are shown in Chapter 4. The coarse grid correction, or the second level of domain
decomposition, is set with these lines of code:

97 // setting up the second level of preconditioning
98 ierr = PCCompositeAddPC(pc, PCSHELL);
99 ierr = PCCompositeGetPC(pc, 1, &pc2);

100 .... = ShellPCCreate(&shell);
101 ierr = PCShellSetContext(pc2, shell);
102 .... = ShellPCSetUp(pc2, &coarse_grid, &fine_grid,

coarse_system.A, P, 1);
103 ierr = PCShellSetApply(pc2, ShellPCApply);

Again, being the pc of PCCOMPOSITE type, we add another sub-preconditioner
of type PCSHELL. This kind of PETSc preconditioner is only an interface, and it
is up to the user to define the action of the matrix it represents. It can be thought
as an abstract C++ class that needs a derived implementation. Once added the
PCSHELL preconditioner and extracted its pointer into pc2 (lines 98,99), we con-
struct the ”derived class” shell with a call of the function ShellPCCreate
(line 100), and then we pass it to pc2 (line 101). For now we just set the point-
ers of the infrastructure. The real construction of the PCSHELL preconditioner
pc2 is demanded to the function ShellPCSetUp. Finally, we pass to the pre-
conditioner the function that implements the action of the coarse grid correction:
ShellPCApply.
We are now ready to conclude the main program:

105 // completing the set up
106 ierr = KSPSetUp(ksp);
107 ierr = PCSetUp(pc1);
108 ierr = PCSetUp(pc2);
109
110 // solve the system
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111 ierr = KSPSolve(ksp,fine_system.b,fine_system.x);
112
113 // collect the results
114 ierr = KSPComputeExtremeSingularValues(ksp, &emax, &emin);
115 ierr = KSPGetIterationNumber(ksp, &it);
116
117 // cleaning up
118 ierr = ISDestroy(&is);
119 ierr = PCDestroy(pc2);
120 ierr = MatDestroy(&P);
121 ierr = KSPDestroy(&ksp);
122 .... = SystemDestroyer(&fine_system);
123 .... = SystemDestroyer(&coarse_system);
124 .... = GeometryDestroyer(&fine_grid);
125 .... = GeometryDestroyer(&coarse_grid);
126 .... = GeometryDestroyer(&grid);
127
128 // rite of passage
129 ierr = PetscFinalize();
130 return 0;
131 }

As it is self-explanatory, in lines 105-107 we finalize the setup of the KSP con-
texts along with its sub-preconditioners, in line 111 we solve the system, in lines
113,114 we extract the number of iterations required to reach convergence and the
estimated minimum and maximum eigenvalues, and finally in lines 117-125 we
deallocate everything for a clean termination of the program. Lines 128-130 don’t
require a single word.

5.2 The projection operator
In this Section we present an overview of the function Projection called in line
66 of the main source code of Section 5.1. For brevity the innermost functions are
omitted. As already noticed, the projection operator depends only on the fine_
grid and the coarse_grid: the NURBS structure contains all the data required
for the computation. The projection operator will be stored as a rectangular dense
PETSc serial matrix.
As common practice in implementations of domain decomposition methods and
in parallel sparse matrices storage, the system matrix fine_system.A is owned
by rows. This means that each processor owns a non overlapping subset of all the
rows of the matrix, i.e. it owns a non overlapping subset of degrees of freedom.
On processor with index id.Rank, the projection P is the refinement operator
described in Section 2.3.1, acting from the (p+1)D nonzero coarse basis functions
of the element number iel=id.Rank to the non overlapping fine basis functions
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owned by id.Rank. As the B-spline (or NURBS) basis functions overlap across
subdomains, the degrees of freedom on the interface require the missing data from
neighboring subdomains. This communication is handled by ShellPCApply,
as we will see in the next section.
We can now present the first part of the construction of P:

1 PetscErrorCode Projection(NURBS *coarse_grid, NURBS *fine_grid,
Mat *P) {

2
3 PetscErrorCode ierr;
4 PetscInt idim, // index for dimension loop
5 irow, icol, // indexes for matrix loops
6 nrow[DIM], // rows of unirefing matrices
7 ncol[DIM], // columns of unirefining matrices
8 Nrow, // rows of complete unirefining mat
9 Ncol, // cols of complete unirefining mat

10 nknt, // number of knots to insert
11 frow, fcol; // indexes for submatrix extraction
12 PetscScalar a, b, // extremas of subdomain interbal
13 *knt, // knots to insert
14 *r, // complete unirefining matrix
15 *R[DIM]; // extracted unrefining matrices
16
17 for (idim=0; idim<DIM; idim++) {
18 // searching knots to insert
19 a = coarse_grid->kv[idim].u[ id.rank[idim] ];
20 b = coarse_grid->kv[idim].u[ id.rank[idim]+1 ];
21 .... = ExtractKnots(coarse_grid->kv[idim], fine_grid->kv[

idim], a, b, &nknt, knt);
22
23 // calcuating complete unirefining matrix r
24 Nrow = coarse_grid->ncp[idim];
25 Ncol = coarse_grid->ncp[idim]+nknt;
26 ierr = PetscMalloc(Nrow*Ncol*sizeof(PetscScalar), &r);
27 .... = UniRefinementMatrix(&coarse_grid->kv[idim], knt, nknt

, coarse_grid->deg[idim], r);
28
29 // creating local unirefining matrix R:
30 nrow[idim] = coarse_grid->deg[idim]+1;
31 ncol[idim] = fine_grid->layout[id.Rank].stncl[idim][1];
32 ierr = PetscMalloc(nrow[idim]*ncol[idim]*sizeof(PetscScalar)

,&R[idim]);
33
34 // searching first index for rows and columns
35 ierr = FindFirstIndexes(coarse_grid, a, b, &frow, &fcol);
36
37 // extracting the local unirefining matrix
38 for (irow = 0; irow<nrow[idim]; irow++) {
39 for (icol = 0; icol<ncol[idim]; icol++) {
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40 R[idim][irow*ncol[idim]+icol] = r[(frow+irow)*Ncol+fcol+
icol];

41 }
42 }
43
44 // cleaning up
45 ierr = PetscFree(knt);
46 ierr = PetscFree(r);
47 }

After the usual declaration of the working variables, we initiate a loop over the
dimension DIM of the problem. In this first part we compute the DIM univari-
ate projection operators acting between the coarse and fine knot vectors. In lines
19-21 we compute from the (global) coarse knot vector the extreme values of the
interval Îj defined by the interface knots as in 3.22. The field kv.u is an array of
doubles storing the non repeated knots, so that the extraction of the extreme val-
ues of the interval can be performed straightforwardly with the processor’s multi-
index id.rank[idim]. We then proceed to compute the knots that needs to be
added to the coarse knot vector in order to obtain the fine knot vector. Some more
knots before a and after b are required and automatically computed accordingly
with the degree deg[idim].
In lines 24-27 we compute the refining matrix acting from the global coarse knot
vector to the coarse knot vector plus the local fine knots in the specific subdomain
owned by the processor. We store the result in the previously allocated array r.
The refining matrix r has a global scope, hence we need to extract the submatrix
of interest. The number of rows is the number of nonzero basis function per
element in the coarse grid, i.e. p + 1 (line 30), while the number of columns
is the number of non overlapping basis functions owned by the processor (line
31). This information is stored inside the array layout of Stencil. This is its
declaration:
typedef struct {

PetscInt stncl[DIM][3]; // overlap stencil
// stncl[idim][0]: left ovrlap
// stncl[idim][1]: owned dofs
// stncl[idim][2]: right ovrlap

} Stencil;

Each stncl[idim] represent the degrees of freedom layout of a particular pro-
cessor along dimension idim. A tensor product treatment of this data gives the
multivariate layout of all degrees of freedom of all processor. It is now clear
that the non overlapping number of univariate basis functions owned by proces-
sor id.Rank is stncl[idim][1]. We know the size of the submatrix to be
extracted but not its position inside r, therefore a call of FindFirstIndexes
is required (line 35). The first row index frow and the first column index fcol
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can be automatically computed with an appropriate exploit of the global variable
id and the field layout containing the Stencils of each processor. Once
we get this informations, the extraction into the previously allocated dense matrix
R[idim] follows in lines 38-42.
The following code is the second part of the function Projection:

49 // calculating tensor product of unirefining matrices
50 ierr = Tensorizer(R, nrow, ncol, P);
51
52 // scaling with control weights
53 Vec lD, rD; // diagonals of scaling matrices
54 PetscInt indexes; // insertion indexes
55 PetscScalar weights; // weights
56
57 ierr = MatGetSize(*P,&Nrow,&Ncol);
58 ierr = PetscMalloc(max(Nrow,Ncol)*sizeof(PetscInt),&indexes);
59 ierr = PetscMalloc(max(Nrow,Ncol)*sizeof(PetscScalar),&weights

);
60 for (irow=0; irow<max(Nrow,Ncol); irow++) {
61 indexes[irow]=irow;
62 }
63
64 // building left diagonal scaling matrix (as vector)
65 .... = ExtractCoarseWeights(coarse_grid, weights);
66 ierr = VecCreateSeq(PETSC_COMM_SELF, Nrow, &lD);
67 ierr = VecSetValues(lD, Nrow, indexes,weights, INSERT_VALUES);
68 ierr = VecAssemblyBegin(lD);
69 ierr = VecAssemblyEnd(lD);
70 // building right diagonal scaling matrix (as vector, again)
71 .... = ExtactFineWeights(fine_grid, weights);
72 ierr = VecCreateSeq(PETSC_COMM_SELF, Ncol, &rD);
73 ierr = VecSetValues(rD, Ncol, indexes,weights, INSERT_VALUES);
74 ierr = VecAssemblyBegin(rD);
75 ierr = VecAssemblyEnd(rD);
76
77 // scaling the matrix
78 ierr = MatDiagonalScale(*P, lD, rD);
79
80 // cleaning up
81 for (idim = 0; idim<DIM; idim++) {
82 ierr = PetscFree(R[idim]);
83 }
84 ierr = VecDestroy(&lD);
85 ierr = VecDestroy(&rD);
86 ierr = PetscFree(weights);
87 ierr = PetscFree(indexes);
88
89 return ierr;
90 }
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In the line 50 we call the function Tensorizer. It applies the Kronecker product
the DIM univariate refining matrices R[idim] into the PETSc serial dense ma-
trix P. This procedure would suffice for B-spline basis functions, but for NURBS
the projection operator P needs a left and right scaling by respectively the coarse
and fine weights. The refining matrix operates exactly between B-spline spaces,
so that in order to act correctly on NURBS basis functions the fine control weights
have to be removed with a right-multiplication by the diagonal matrix of the recip-
rocal of the fine weights. Then the weights are restored with a left-multiplication
by the diagonal matrix of the coarse weights. The weight function is not involved
in this scaling procedure as it is a B-spline function and hence it is refinement
independent.
Luckily PETSc provides a function that scales both sides of a rectangular matrix
given two Vecs. In lines 65-69 the coarse weights are extracted and the Vec
object lD is created and assembled (with some minor machinery in lines 57-62).
The same procedure is performed in lines 71-75 with the exception that weights
now stores the reciprocal of the fine weights. We can now scale the projection
operator P, clean up the memory and terminate the Projection function.

5.3 The shell preconditioner
In this Section we present the source code that implements the action of the second
level of the 2-level ASO. The function ShellPCApply is devoted to project the
global residual from the fine space to the coarse space, solve the coarse problem
and then reproject it back into the fine space. The preconditioner is implemented
on the top of the following structure:
typedef struct {

// 0 |_|_|_|_|X|X|X|X|_|_|_|_| parallel X
Vec sX, // 1 |X|X|X|X| sequential X

lXc, // 2 |X|X| local Xc=P*X
gXc, // 3 |x|x|X|X|x|x| global Xc
Xc, // 4 |X|X|X|X|X|X| Xc
Yc, // 5 |Y|Y|Y|Y|Y|Y| Yc=Acˆ-1 * Xc
lYc, // 6 |Y|Y| local Yc
sY; // 7 |Y|Y|Y|Y| sequential Y=PˆT*Yc

// 8 |_|_|_|_|Y|Y|Y|Y|_|_|_|_| parallel Y

PetscInt nrow, // number of rows of P
ncol, // number of columns of P
ndof; // size of Ac

Mat Ac, // coarse system matrix
P; // projection operator

KSP ksp; // context for coarse problem
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PC pc; // precondtioner for crse prb
VecScatter sct; // all-to-all communication
PetscInt *lind, // local indexes

*gind, // global indexes

*ind; // working variable
PetscScalar *val; // working variable

} ShellPC;

The fancy ASCII picture on the right of the Vec declarations represents the work-
flow required by PETSc in order to apply the coarse grid correction. PETSc makes
a determinant distinction between serial (Seq-type) objects and parallel (MPI-
type) objects, so that for example a sequential usage of a parallel object needs
a hand-made conversion from one type to another. This motivates the following
constructions of all the Vec objects and the all-to-all communication context of
the instance s of the ShellPC (called in the function ShellPCSetUp)
ierr = VecCreateSeq(PETSC_COMM_SELF, ncol, &s->sX);
ierr = VecCreateSeq(PETSC_COMM_SELF, nrow, &s->lXc);
ierr = VecCreateMPI(id.comm, PETSC_DECIDE, ndof, &s->gXc);
ierr = VecScatterCreateToAll(s->gXc, &s->sct, &s->Xc);
ierr = VecCreateSeq(PETSC_COMM_SELF, ndof, &s->Yc);
ierr = VecCreateSeq(PETSC_COMM_SELF, nrow, &s->lYc);
ierr = VecCreateSeq(PETSC_COMM_SELF, ncol, &s->sY);

Indexes arrays lind and gind also are allocated and computed during a call
of ShellPCSetUp. We explain the machinery step by step keeping in mind
the notation used in the name variables: X is the global input vector while Y is
the global output. They respectively store the residual of the Conjugate Gradient
iteration before and after the coarse correction grid. The prefix l as in lXc stands
for local while g for global. The suffix c as in gXc means that the vector lives in
the coarse space. Before the work-flow explanation, for the sake of completeness
we present the declaration of the function ShellPCApply:

1 PetscErrorCode ShellPCApply(PC pc,Vec X,Vec Y) {
2
3 // PETSc rite of passage
4 PetscErrorCode ierr;
5 ShellPC *s;
6 ierr = PCShellGetContext(pc,(void**)&s);
7 // working variables
8 PetscInt nrow = s->nrow, // rows of
9 ncol = s->ncol; // columns of P

10 PetscScalar *val, *lxc, *yc, *sy; // working variables
11 const PetscScalar *x; // working variable
12 PetscInt *ind; // working variable
13 PetscInt idof; // working variable

We are now ready for the work-flow explanation:
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1. From the global parallel vector X we extract the local portion owned by the
processor and we store it into the sequential vector sX.

15 // STEP 1
16 ierr = VecGetArray(X, &x);
17 ierr = VecSetValues(s->sX, ncol, ind, x, INSERT_VALUES);
18 ierr = VecAssemblyBegin(s->sX);
19 ierr = VecAssemblyEnd(s->sX);
20 ierr = VecRestoreArray(X, &x);

2. We project the sequential portion sX with a multiplication by the matrix P,
obtaining the local coarse vector lXc. It is addressed as local because we
have used local data only.

22 // STEP 2
23 ierr = MatMult(s->P, s->sX, s->lXc);

3. The local coarse vector lXc is then copied into the global coarse vector
gXc. This step is required in order to gather the remaining coefficients
from the overlapping degrees of freedom.

25 // STEP 3
26 ierr = VecGetArray(s->lXc, &lxc);
27 ierr = VecSet(s->gXc, 0.0);
28 ierr = VecSetValues(s->gXc, nrow, s->lind, lxc, ADD_VALUES

);
29 ierr = VecAssemblyBegin(s->gXc);
30 ierr = VecAssemblyEnd(s->gXc);
31 ierr = VecRestoreArray(s->lXc, &lxc);

4. The vector gXc is a parallel object, so we can use it as source for the all-
to-all communication via the VecScatter PETSc object, obtaining the
sequential global coarse vector Xc. Each processor has a copy of this vector.

33 // STEP 4
34 ierr = VecScatterBegin(s->sct, s->gXc, s->Xc,

INSERT_VALUES, SCATTER_FORWARD);
35 ierr = VecScatterEnd(s->sct, s->gXc, s->Xc, INSERT_VALUES,

SCATTER_FORWARD);

5. We can now solve the coarse linear system, obtaining the solution in the
sequential coarse vector Yc.

37 // STEP 5
38 ierr = KSPSolve(s->ksp, s->Xc, s->Yc);
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6. Each processor owns the projection operator from the coarse element to the
fine subdomain, hence we need to extract from the coarse corrected vector
Yc the portion associated to the corresponding element. We obtain the local
sequential vector lYc.

40 // STEP 6
41 ierr = VecGetArray(s->Yc, &yc);
42 for (idof=0; idof<nrow; idof++) {
43 val[idof] = yc[ s->lind[idof] ];
44 }
45 ierr = VecSetValues(s->lYc, nrow, ind, val, INSERT_VALUES)

;
46 ierr = VecAssemblyBegin(s->lYc);
47 ierr = VecAssemblyEnd(s->lYc);
48 ierr = VecRestoreArray(s->Yc, &yc);

7. The local sequential vector lYc is projected back into the fine space. The
result of the projection is stored in the sequential vector sY.

50 // STEP 7
51 ierr = MatMultTranspose(s->P, s->lYc, s->sY);

8. Each processor has finally its portion of the final coarse grid corrected vector
Y, but stored in the sequential vector sY. We construct Y as a standard
PETSc Vec. This last procedure does not require communication as it has
already been performed in Step 4.

53 // STEP 8
54 ierr = VecGetArray(s->sY, &sy);
55 ierr = VecSetValues(Y, ncol, s->gind, sy, INSERT_VALUES);
56 ierr = VecAssemblyBegin(Y);
57 ierr = VecAssemblyEnd(Y);
58 ierr = VecRestoreArray(s->sY, &sy);
59
60 return ierr;
61 }

This conclude the PETSc work-flow for a coarse correction grid with the exact
isogeometric projection operator P.
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5.4 On the computational times
The good analytic performance of the 2-level Additive Schwarz Preconditioner for
the scalar equation has been established with the condition number estimation and
the number of iterations. We present here some results about the computational
times for solving the scalar elliptic equation. A selection of cases is considered,
the most meaningful ones.
It is worth to notice that the actual time performance of an algorithm depends
heavily on both the implementation and the hardware. While the author fully
trusts the optimality and efficiency of PETSc, he does not ensure that the work-
flow presented in Section 5.3 of the core function ShellPCApply is the best
implementation of the coarse correction grid. We disclaim that the following re-
sults are meaningful up to a certain point. Nevertheless, the 2-level Preconditioner
outperforms the 1-level one in each test, even though for few percentage points in
the 3D case. An accurate analysis of the execution time is beyond the purpose of
this work.
Implementation efficiency apart, the iteration of the Conjugate Gradient Method
with the 1-level Preconditioner involves MPI communication and the local prob-
lem solving. The same iteration with the 2-level Preconditioner requires the same
amount of work plus the global construction of gXc (Step 3 in Section 5.3), the
all-to-all communication for Xc (Step 4) and the local solving of the coarse linear
problem (Step 5). Whenever the coarse grid size is comparable with the local grid
size, one would expect that a 2-level preconditioned iteration requires roughly
double the time of a 1-level preconditioned one, plus the most time-consuming
work for a distributed memory parallel program: communication. For this rea-
son, we measured the absolute execution time ttot and the time per iteration tit as
simple ratio of absolute time and number of iterations.
Before commenting the actual the execution time of the solvers, we present the
timing procedure with few lines of code:
begin = clock();
ierr = KSPSolve(ksp, fine_system.b,fine_system.x);
end = clock();
time = (double)(end-begin) / CLOCKS_PER_SEC;

Even though the measure is local, KSPSolve has synchronization barriers within,
so that the variable time is roughly the same on each processor2. Like through-
out this entire work, full circles in the graphs represent the 1-level Preconditioner
while the empty ones represent the 2-level Preconditioner.

2The author has checked load balance by comparison of the minimum and maximum execution
time, obtaining the ratio 1.03 for the most unbalanced test, so that load balancing is considered as
fully achieved.
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2D domains, diffusivity coefficient k = 1

Square domain Annulus domain
1-lvl 2-lvl 1-lvl 2-lvl

p Ndom it. ttot tit it. ttot tit it. ttot tit it. ttot tit

2

16 28 0.98 0.04 18 0.90 0.05 57 1.24 0.02 37 1.12 0.03
64 42 1.12 0.03 14 0.87 0.06 116 1.80 0.02 45 1.24 0.03
256 67 1.35 0.02 12 0.87 0.07 234 2.90 0.01 33 1.13 0.03
1024 116 1.80 0.02 10 0.90 0.09 463 5.01 0.01 28 1.21 0.04
4096 210 2.68 0.01 7 1.04 0.15 796 8.12 0.01 25 1.76 0.07

3

16 25 2.39 0.10 17 2.32 0.14 49 2.76 0.06 28 2.52 0.09
64 37 2.64 0.07 16 2.37 0.15 101 3.64 0.04 31 2.66 0.09
256 59 3.00 0.05 12 2.33 0.19 202 5.23 0.03 26 2.60 0.10
1024 102 3.67 0.04 9 2.33 0.26 404 8.39 0.02 23 2.70 0.12
4096 187 5.02 0.03 7 2.56 0.37 688 12.85 0.02 23 3.49 0.15

4

16 24 5.04 0.21 17 4.94 0.29 45 5.54 0.12 27 5.21 0.19
64 34 5.32 0.16 17 4.99 0.29 90 6.69 0.07 31 5.39 0.17
256 54 5.82 0.11 14 4.94 0.35 179 8.88 0.05 26 5.31 0.20
1024 92 6.75 0.07 8 4.83 0.60 359 13.27 0.04 18 5.22 0.29
4096 168 8.64 0.05 7 5.18 0.74 618 19.66 0.03 21 6.36 0.30

Table 5.1: 2D domains, Nel = 4096 = 64× 64, k = 1

0 10 20 30 40 50 60 70

2

4

6

8

ndom

se
co

nd
s

0 10 20 30 40 50 60 70
0

5

10

15

20

ndom

se
co

nd
s

Figure 5.1: Square domain on the left, annulus domain on the right,Nel = 4096 =
64× 64, k = 1
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Table 5.1 shows that the 2D scalar elliptic problem discretized with B-splines
(square domain) or NURBS (annulus domain) is solved in almost scalable times
whenever the 2-level Preconditioner is used. As predicted, the seconds per itera-
tion tit slightly increase with the number of subdomains because the coarse grid
linear problem becomes larger and larger.
For comparison, the performance of the 1-level Preconditioner deteriorates with
the number of subdomains and the execution time raises to the point that a quar-
tic NURBS-based problem with the 2-level preconditioner requires less compu-
tational time of a quadratic NURBS-based one with the 1-level one. For what
concern the seconds per iteration tit measures of the 1-level Preconditioner, the
author has no clear explanation apart from PETSc admirable efficiency.
Table 5.2 shows the execution times ttot and the seconds per iteration tit for scalar
problem on the hose domain. Again, the 2-level Preconditioner shows good scal-
ability. The seconds per iteration are more stable, and we suppose that the com-
munication latency of the supercomputer has a key role in dominating the overall
execution time, being the overlap (and hence the communication) enormously
bigger than the 2D case. The 1-level Preconditioner, again, shows the black-box
behavior analyzed for the 2D case.

Hose domain, diffusivity coefficient k = 1

p
Ndom = 1-level preconditioner 2-level preconditioner

ndom × ndom × ndom it. ttot tit it. ttot tit

p = 2

64 = 4× 4× 4 50 32.71 0.6542 31 31.63 1.0203
512 = 8× 8× 8 92 35.42 0.3850 34 32.21 0.9474

1728 = 12× 12× 12 137 38.34 0.2799 33 33.31 1.0094
4096 = 16× 16× 16 184 41.24 0.2241 32 35.96 1.1237

p = 3

64 = 4× 4× 4 50 215.84 4.3168 29 206.15 7.1086
512 = 8× 8× 8 100 228.79 2.2879 35 212.04 6.0583

1728 = 12× 12× 12 117 233.23 1.9934 32 215.11 6.7222
4096 = 16× 16× 16 157 243.55 1.5513 32 220.25 6.8828

Table 5.2: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 1.
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Figure 5.2: Quarter hose domain, Nel = 4096 = 16× 16× 16, k = 1.
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Chapter 6

Conclusions

In this work we presented a multilevel Overlapping Additive Schwarz Precondi-
tioner for the Isogeometric analysis of the scalar elliptic equations and the advection-
diffusion equation. The preconditioner is endowed with a coarse correction grid
in order to achieve scalability with respect to the number of subdomains involved
in the decomposition. Theoretical results show that the condition number of the
system matrix arising from an IGA discretization of the scalar elliptic equation is
bounded by the ratio H/h, where H and h are respectively the coarse mesh size
and fine mesh size. The result is proved to the full generality of the IGA frame-
work: B-spline- and NURBS-based discrete functional spaces in both parametric
and physical domain can be effectively used with the proposed Preconditioner.
Numerical results in massively parallel computational environments are presented.
The 1-level Preconditioner is a black-box preconditioning technique with a rea-
sonable performance up to few hundreds of subdomains. Higher numbers of sub-
domains are prohibitive for large scale simulations. Accordingly to the theory,
the 2-level Preconditioner shows instead scalability for the scalar elliptic problem
up to 4096 total subdomains for both 2D and 3D tests. The estimated condition
number of the preconditioned matrix tends to a constant value, suggesting that
the decomposition can be potentially pushed further with an even higher num-
ber of subdomains. The introduction of discontinuous diffusivity coefficients in
the scalar elliptic equation deteriorates the condition number of the system matrix
and the overall performance of the preconditioned iterative solver. It is particu-
larly evident for the 1-level Preconditioner, while the 2-level one is still capable of
maintaining an asymptotic trend for the condition number, thus achieving parallel
scalability.
Although there are still no theoretical results, the 2-level Preconditioner is tested
for the advection-diffusion equation as well, and compared again with the 1-level
version. As long as the advection-diffusion problem is diffusion-dominated, the
behavior of the 2-level preconditioner scales with the number of subdomains up
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to 8100 processors, and outperform the 1-level one in both 2D and 3D tests. With
more advection-dominated problems, the 2-level preconditioner presents difficul-
ties in achieving convergence, especially for the 3D case, bringing the necessity of
stabilization techniques such as the SUPG stabilization. Once the stabilization is
plugged into the problem discretization, the 2-level preconditioner gains back sta-
bility and convergence. We suppose that these suboptimal behaviors are due to the
mesh size related difficulties that are typical of the advection-diffusion equations.
The coarse problem arises from a coarse mesh with a relatively large mesh size,
so that the coarse correction grid may be sufficiently accurate only when dealing
with large numbers of subdomains.
A way of dealing with the advection diffuculties may be found in moltiplica-
tive and hybrid Domain Decomposition techniques, where the Schwarz operators
Pj = RT

j A
−1
j Rj are not combined with a summation but with a productory or a

mixture of the two. Non-overlapping Domain Decomposition methods such as
the Balanced Domain Decomposition by Constraints Method (BDDC), already
studied for scalar elliptic equations with isogeometric discretization in [10]) or
FETI-DP Methods (already studied in [26]) can be considered and built for isoge-
ometric discretization of the advection-diffusion equation.
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