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Nothing in life is to be feared, it is only to be understood.  

Now is the time to understand more, so that we may fear less. 

MARIE CURIE 
 

 

 

 

Imagination is more important than knowledge. 

ALBERT EINSTEIN 
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ABSTRACT 
 

My PhD project addressed the paternal and maternal contribution associated 

with correct early embryonic development, focusing on microRNAs (miRNAs, 

short non-coding RNAs regulating gene expression at post-transcriptional 

level) involved in controlling reproductive function in cattle. To this end, next 

generation sequencing (NGS) methods and bioinformatic analysis pipelines 

were set up and validated using low quantities of starting materials, e.g. 

blastocysts and oocytes. The role of miRNAs carried by spermatozoa during 

early embryogenesis was investigated by assessing in vitro produced 

blastocysts from semen of bulls with high and low blastocyst rates. Moreover, 

follicular fluid and oocyte miRNAs were analyzed in order to unravel molecular 

mechanisms involved in poor fertility cows. In particular, a model based on 

low and high antral follicle count ovaries was used to study the influence of 

ovarian function on oocyte developmental competence. The results indicated 

that: 1) sperm miRNAs may impact embryo developmental competence 

affecting the expression of gene networks involved in several cellular 

processes including cell adhesion, communication and metabolism of the 

blastocyst; 2) the different oocyte quality is associated with a different miRNA 

blueprint in both follicular fluids and oocytes through the mis-regulation of 

biological processes critical for oocyte competence. In conclusion, these 

studies contributed to improve our knowledge on the function of miRNAs in 

the sperm, oocytes and pre-implantation embryos. Several miRNAs were 

identified as potential biomarkers of blastocyst and oocyte competences, 

which will be valuable to optimize Reproductive Biotechnologies. 
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Chapter 1 

General Introduction 

For several decades, selection for production traits has been the main goal for 

cattle breeding. However, many functional traits, such us milk production, 

have negative correlation with genetic merit for health and fitness [1]. Indeed, 

milk production of the modern dairy cows has increased, but the fertility of 

these cows has steadily declined [2]. The reasons for this are difficult to 

understand because fertility is a complex trait affected by the environment, 

genetics and management. It is estimated that the calving rate in high 

producing cows is less than 40% and foetal loss is closer to 60%. Moreover, 

70-80% of these losses occur during the pre-implantation period of embryonic 

growth, between days 8 and 16 [3, 4]. 

 
The PhD project was focused on the study of early stages of reproduction to 

unravel the molecular mechanisms associated with poor cow and bull fertility.  

 

1.1. Advances in cattle reproductive biotechnologies: state of the art 

The problem of bovine reproduction is closely linked to the livestock industry 

as breeding techniques have usually been motivated by curiosity and 

consolidated by breeder’s needs and interests. Indeed, artificial insemination 

(AI) was initially developed as a hygiene measure to prevent disease 

transmission but is now widely used for genomic selection. The advent of 

embryo genotyping, in combination with Assisted Reproduction Techniques 

(ARTs) [5, 6], allows the reproduction of the desired genotype from selected 

parents. The close similarities between humans and livestock species, such 

as cattle, sheep and horses, have allowed the improvement of knowledge in 

ARTs, to be translated to humans. ARTs are dependent on two factors: the 

easy availability of both the gametes and pre-implantation embryos and the 

ethical requirements [7]. In the last 25 years new ARTs, which were 
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developed for cattle, have been transferred and adapted for other species, 

such as human, buffalo and horses. The most important of these are: (a) 

ovum pick up (OPU), which followed the establishment of reproducible 

techniques for in vitro maturation [8], fertilization [9,10] and culture of sheep 

[11] and cattle embryos [12], in OPU oocytes are collected from living donors 

of known genetic value; (b) intracytoplasmic sperm injection (ICSI), which is 

useful in cases of sperm-related male infertility but its efficiency in cattle is still 

not comparable to that in humans so it is usually only used for research 

purposes [13]; (c) nuclear transfer and somatic cell nuclear transfer (SCNT) 

widely used in cattle for cloning animals of great commercial interest [14]. In 

livestock species, the main objective for these reproductive biotechnologies is 

to give rise to in vitro produced (IVP) embryos, which are then transferred to 

recipients. According to Embryo Transfer Society statistics (Fig. 1), the 

number of embryo transfers (ET) has increased more than 10 times [15] in 

recent years and is now approaching the number of embryos produced in 

vivo. In conclusion, ARTs in cattle are becoming a consolidated reproductive 

biotechnology and, in particular, OPU is increasingly preferred for ET over 

conventional superovulation.  

 

 

 
Figure 1. Summary of the International Embryo Transfer Society statistical data 

collected by the data retrieval committee. In vitro production of embryos is steadily 

increasing with the majority of them now being produced by ovum pick up (OPU) 

[16]. 
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1.2. Overview of physiology of reproduction and pathways of 
differentiation of the gametes 

The gonads are the primary reproductive organs responsable for producing 

both gametes and steroid hormones which control reproductive function. 

Normal gametogenesis in the gonads is a prerequisite for mammalian 

reproduction. This involves complex molecular mechanisms for cellular 

functions as well as the interaction of different gonadal cell types. Germ cells 

develop into oogonia (primitive eggs) or spermatogonia (stem cell precursors 

of sperm). Germ cells develop also in the supporting somatic cells, which are 

either the Sertoli cells and Leydig cells in the male or the granulosa cells and 

the theca cells in the female. A remarkable aspect of gametogenesis in the 

testis or ovary is that germ cells exhibit strictly regulated spatiotemporal gene 

expression for functional development of sperm or oocytes [17, 18]. Moreover, 

a large proportion of mRNAs are partially stored and translationally inactive in 

mammalian haploid germ cells [19, 20].  

Spermatogenesis is initiated in the male testis with the beginning of puberty, where 

male primary germ cells undergo mitotic division and produce spermatogonia, from 

which the primary spermatocytes are derived. Primary spermatocytes undergo 

successive meiotic division producing four spermatids, and a metamorphic change 

(spermiogenesis) occurrs in the spermatids to produce spermatozoa. The molecular 

mechanisms, which regulate primary germ cells development, differentiation and 

exit from the mitotic cell cycle, are associated with a timed expression of 

meiotic genes. A number of mRNAs located in the nucleous are transcribed 

and stored for some days in spermatocytes without detectable protein 

expression [21]. The expression of meiotic genes which is required for 

initiation of meiotic processes during spermatogenesis and the expression of 

a multitude of testicular genes are known to be under control of post-

transcriptional regulatory mechanisms [22-24].  

Female reproduction is characterized by a dynamically regulated sequential 

recruitment, selection and growth of the follicles, atresia, ovulation, and 

luteolysis, which occur in the ovary and are dependent on precise expression 

and interaction of several intraovarian gene products in both an autocrine and 

paracrine manner. These mechanisms of follicular growth can be classified 
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into three phases: i) the gonadotropin-independent phase that involves 

follicular growth through primordial, primary, and secondary stages; ii) the 

gonadotropin-responsive phase that involves transition of preantral follicles to 

early antral stage, and iii) the gonadotropin-dependent phase that involves 

continual growth beyond the early antral stage and includes follicle 

recruitment, selection, and ovulation [25]. The differentiation of the primordial 

follicles into the diverse follicle developmental stages are initiated by 

primordial germ cells. These cells enter meiosis at birth and develop into mature 

oocytes capable of fertilization. They are nurtured, retained and subsequently 

developed in the ovary through a complex follicular developmental process on a 

cyclic basis [26, 27]. The growth and development of mammalian oocytes is 

critically dependent on a bidirectional communication between the oocyte and 

its companion somatic cells [28]. The viability of primordial and primary 

follicles is determined mainly by survival factors derived from the oocyte, 

whereas the relative expression level of tumor suppressors, apoptotic 

proteins, and survival factors in granulosa cells determines whether an 

ovarian follicle will grow or undergo atresia in the late pre-antral stage [29].  

 

The development of the sexual organs and gametes, i.e. oocyte and spermatozoa, is 

characterized by a substantial reorganization of their transcriptome. Understanding 

the regulation of gene expression at the level of ribonucleic acids (RNAs) in 

gametes and early embryos has improved as the technology available has 

advanced. In particular, the discovery of the microRNAs (miRNAs) in 1993 by 

Ambros and colleagues [30] demonstrated that small non-coding RNAs have 

regulatory roles and impact on cellular phenotype and function. Several 

studies have accumulated evidence on the expression of miRNAs and their 

biogenesis pathway genes in germ cells and gonadal somatic cells [31-35], 

which suggest the potential involvement of miRNAs in translational control 

during reproductive function. The improvement of our knowledge of, in 

particular miRNAs, is revealing numerous pathways and mechanisms which 

may impact on fertility. 
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1.3. Small RNAs: classes and biogenesis in mammalian  

Small non-coding RNAs are post-transcriptional regulators of gene 

expression, which range in size from 18 to 32 nucleotides (nt). They are 

generally divided into three functional classes: microRNAs (miRNAs), 

endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs 

(piRNAs) [37-41]. These classes differ in their biogenesis, i.e. their maturation 

from the primary transcription product to the active form (Fig. 1).  

MiRNAs can be divided into two sub-classes: canonical and non-canonical 

groups. Canonical miRNAs are initially transcribed as long RNAs containing 

self-complementary hairpins, also called pri-miRNAs (Fig. 1A). During 

maturation the 60-75 nucleotide hairpin structures are bound by the RNA-

binding protein Dgcr8 (Di George syndrome critical region 8), which directs 

the RNase III enzyme Drosha to cleave the base of the hairpin [42-47]. 

Following cleavage mediated by Drosha-Dgcr8 complex, also called the 

microprocessor, the released hairpin (pre-miRNAs) is transported to the 

cytoplasm, where Dicer, another RNase III enzyme, then cleaves it into a 

single short 18-25 nt dsRNA [48-51]. Non-canonical miRNAs bypass 

processing of the microprocessor or Dicer [37, 52] using other endonucleases 

or directing transcription of a short hairpin. For example, mirtrons, which are 

miRNAs matured from introns, come from mRNA splicing [53-55]. After 

splicing from host mRNAs, the lariat is de-branched and refolds into a short 

stem–loop structure that resembles as a pre-miRNA. Some mirtrons have 

also extra sequences at the 5ʹ - or 3ʹ - end and are trimmed by exonucleases 

[56]. In other case, endogenous short hairpin RNAs are generated directly 

through transcription [37, 52] and, in particular, although these endogenous 

short hairpin RNAs were initially thought to be transcribed by RNA 

Polymerase III, it has been recently shown that some of them, for example 

mir‑320, are transcribed by RNA Polymerase II [57]. Another important 

example is that of miR-145, which is produced in a dicer-indipendent manner. 

This miRNA requires the catalytic activity of AGO2 [58-60]. Pri-miR-145 

cleavage is first mediated by Drosha, which gives rise to a 18 bp hairpin. This 

hairpin is too short to be bound and processed by Dicer, thus, AGO2 slices 

pri-miR-145 in the middle of the 3ʹ  strand. Then ribonuclease PARN trims 
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down the 3ʹ - end and produces the mature miRNA [61]. The existence of 

alternative pathways reflects the evolutionary flexibility of miRNA biogenesis. 

However, it is notable that the vast majority of functional miRNAs follow the 

canonical pathways for their biogenesis, and that only about 1% of conserved 

miRNAs, for example, miR-320 and miR-451, are produced independently of 

Dicer or Drosha in vertebrates. Most other non-canonical miRNAs are low in 

abundance and poorly conserved. Thus, the functional relevance of non-

canonical miRNAs should be interpreted with caution. Indeed, many miRNAs 

are conserved among different species while some are species-specific [62-

66]. 

In contrast, siRNAs, which are also 18-25 nt in length and derive from long 

dsRNAs (Fig. 1B) in the form of either sense or antisense RNA pairs or as 

long hairpins, are directly processed by Dicer to produce multiple functional 

siRNAs from the same primary transcript [67-72]. In summary, canonical, non-

canonical miRNAs and endo-siRNAs involve generally Dicer processing and 

in the mature form are 18-25 nucleotides in length.  
The piRNAs have a different biogenesis: they are processed by a different 

mechanism, which is not mediated by Dicer [73, 74]. Indeed, how piRNAs are 

produced and their modes of action are not fully understood [75]. The piRNAs 

are 25-32 nt in length and are expressed abundantly in the mammalian 

gametes [76-78]. These kind of small RNAs interact with a distinct family of 

Argonaute proteins, which are the Piwi proteins and include Miwi, Miwi2 and 

Mili, which in mouse are also known as Piwil1, Piwil4 and Piwil2, respectively. 

Although the mechanism of piRNA biogenesis has not been fully resolved, 

they are generated from long single-stranded RNA precursors that are often 

encoded by complex and repetitive intergenic sequences. One proposed 

model for their biogenesis is the ‘ping-pong mechanism’ (Fig. 1C) [79-96]. In 

this model, the Argonaute protein Mili cleaves the primary piRNA to define the 

5'-end of piRNAs, which is subsequently bound by Miwi2. Miwi2 cleaves the 

other strand of the precursor, thereby generating a 5'-end of the piRNA that 

can bind to Mili, thus forming a positive amplification loop. Many of the details 

of this model remain to be uncovered. Furthermore, the ping-pong model is 

likely to explain the biogenesis of only a subset of mammalian piRNAs, those 

that are derived from repetitive sequences, such as transposons, and those 
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that are associated with Miwi2 and Mili. These piRNAs are involved in the 

early stages of spermatogenesis. The mechanism of biogenesis of piRNAs 

derived from complex intergenic sequences, associated with Miwi2 and Mili, 

which function in the later stages of spermatogenesis, is not known.  

 

 
Figure 1. Mechanisms of biogenesis of the different small RNA classes [82]. 

 

1.4. Mechanism of action of small RNAs 

1.4.1. MiRNAs and endo-siRNAs act in the cytoplasm 

Mature miRNAs and endo-siRNAs interact with Argonaute proteins (AGO 1–4 

and AGO2 in mammals; also known as EIF2C1-4) forming the RNA-induced 

silencing complex, RISC (Fig. 1D) [83]. RISC interacts with target mRNA 

using the complementarity between the miRNA or endo-siRNA sequence and 

the 3'-UTR of the mRNA target. If complete complementarity exists, cleavage 

of the target mRNA can occur through AGO2, which has an endonucleolitic 

activity. If there is incomplete complementarity, the primary mechanism of 

post-transcriptional gene regulation (PTGR) occurs blocking translation 
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through AGO 1-4, which have translational repression and de-adenylation 

activities [84-86]. However, PTGR can act via mRNA degradation even if the 

complementarity is not complete between the small RNA and 3'-UTR of the 

target mRNA [87]. 

The cellular location, where miRNAs and endo-siRNAs act, could be the 

Processing bodies (P-bodies). P-bodies are discrete cytoplasmic foci that 

contain proteins involved in mRNA degradation. They are involved in several 

post-transcriptional processes: mRNA decay, translational repression, non-

sense-mediated mRNA decay and RNAi-mediated repression. All four Ago 

proteins [88-90], GW182 [88] and two RNA helicases RCK/p54 [91] and 

MOV10 [92] have been found in P-bodies, suggesting that miRNA 

suppression is localized to the P-body. However, it has also been suggested 

that P-body formation is a consequence rather than the cause of miRNA-

mediated gene silencing, because when siRNA or miRNA silencing pathways 

are blocked, P-bodies are not formed [93]. 

1.4.2. PiRNA function is in the nuclear and/or perinuclear region 

PiRNAs can act only after their association with PIWI proteins. These small 

RNAs and PIWI proteins are located in the nucleus or perinuclear region [80, 

94, 95], where they repress genetic elements, mainly transposons [61]. 

PiRNAs link the N-terminal PAZ (Piwi/Argonaute/Zwille) and MID (middle) 

domains of the Piwi protiens, which together recognize and bind the 3'- end of 

piRNAs [97]. The C-terminal domain of PIWI proteins has RNase H activity, 

which is capable of recognizing the 5'- end of piRNAs and facilitates the 

cleavage of the target sequence [95, 98]. In gametes, the PIWI-piRNA 

complex acts on transposons before or after their transcription. When they act 

at transcription level, the mechanism of action can be through chromatin 

silencing of transposable elements via histone modification or altering the 

DNA epigenetic status [99, 100]. While post-trascription repression is 

achieved by cleaving trasposons through the PIWI-piRNA complexes, thereby 

producing secondary piRNA through the ‘ping-pong model’ described above 

[80] (see 1.1.). This mechanism of action is supported by the observation that 

transposons are expressed at a higher level in the presence of PIWI protein 
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mutations [101]. In Drosophila, piRNAs are involved in telomere function, 

including telomere protection complex assembly, thereby maintaining 

chromosome integrity [102]. Expression of PIWI proteins in human somatic 

stem cells [103] and neoplastic cells [104-107] suggests that piRNA may also 

be involved in regulating stem cell function and carcinogenesis. However, the 

range of mechanisms and pathways regulated by the Piwi-piRNA complex 

remains unclear. 

1.5. Small RNAs in reproductive function 

MiRNAs are involved in both female and male reproduction. They are 

regulated by a paracrine or autocrine signalling, and are produced by a wide 

array of cells including oocytes, embryos, endometrial and granulosa cells 

[108, 109]. Moreover, they are found in biofluids, such as plasma and serum 

or follicular ovarian fluid as freely circulating stable molecules [110] or enclosed 

in exosomes [111, 112]. The extracellular miRNAs may be taken up by specific 

cells of endometrium, placenta or ovarian follicles, where they bind to their 

target mRNAs, repressing their translation and modulating cellular events and 

functions  [110, 199, 200].  

1.5.1. Small RNAs and ovarian function 

1.5.1.1. Folliculogenesis 

Follicle development is a highly orchestrated cyclic process that depends on 

gonadotropin action. Folliculogenesis starts with the activation of resting 

follicles and gradually leads to the growth and development of a pre-ovulatory 

follicle. The follicle development is accompanied by the sequential 

differentiation of oocytes and their surrounding somatic cells, which form the 

granulosa and theca layers [113]. 

In cattle, recruitment of follicles (primordial and primary follicles, <2 mm in 

diameter), selection and growth of leading follicles (small and mid-antral 

follicles, 2-8 mm in diameter), ovulation of the pre-ovulatory dominant follicle 

(large antral follicle, >8 mm in diameter) and degeneration of an-ovulatory 

subordinate follicles (Follicular atresia) takes place in a wave-like progression, 

with typically 2 or 3 follicular waves per oestrous cycle [114, 115] (Figure 2).  
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Figure 2. Folliculogenesis in cattle [116]. 

 

In several species folliculogenesis has been shown to be post-transcriptional 

regulated by small RNAs [117-119] and a particular interest is focused on the 

role of miRNAs. Cellular differentiation processes, which occur during follicular 

development, seem to be regulated by the expression and interaction of many 

miRNAs in a spatio-temporal manner in different follicle compartments: granulosa 

cells [120, 121], theca cells [122], follicular fluid and oocyte [123].  

Folliculogenesis may be coordinated by individual miRNAs, which regulate 

ovarian steroid hormones, by targeting hormone receptors as well as affecting 

hormone biosynthesis and release. There are several findings on Estradiol 

(E2), which is important in inducing ovarian follicle development and its 

production is correlated to aromatase. In particular, miR-378 is positively 

linked to aromatase expression and E2 synthesis in granulosa cells [124]. 

Moreover, miR-133b stimulates ovarian oestradiol synthesis by targeting 

Foxl2, which mediates the transcriptional repression of StAR and CYP19A1 to 

promote E2 biosynthesis [125]. Also miR-383 promotes E2 byosintesis in 

ovarian granulosa cells. It inhibits RNA binding motif single-stranded 

interacting protein 1 (RBMS1) altering its mRNA stability and leading to the 

inactivation of c-Myc, which induces steroidogenesis in these cells [126]. 
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Finally, miR-423-5p and miR-378 regulate E2 synthesis by targeting 

CYP19A1 mRNA and repressing CYP19A1 protein content and enzyme 

activity in newborn piglets [127]. 

In addition to the expression of individual miRNAs, there are subsets of 

miRNAs, such as miR-183 cluster and miR-132 cluster, which are organized 

in genomic groups and are differentially expressed during different phases of 

folliculogenesis by specific cells of follicle. This indicates they have a 

functional role during follicular development in granulosa cells [1118]. 

However, only a small set of miRNAs among a large number of expressed 

miRNAs is found to be specific for follicle stages, while majority of the 

miRNAs (>80%) are expressed at all stages [1118]. This indicates that 

commonly expressed miRNAs may play a role in maintaining normal 

physiological ovarian function during all the follicular phases of the oestrus 

cycle. Information on the stage specific miRNAs may help to decipher the 

molecular mechanism of follicular development, ovulation and atresia. 

Finally, follicular fluid miRNAs have been recently identified in cattle. In 

particular, their profiles can be different between developing and mature 

oocytes. Moreover, differences can be associated also with several miRNAs, 

which are present as freely and exosome-vehiculated forms [110]. Those 

miRNAs present at the different stages may be associated with the growth 

status of oocyte and may act as regulators of oocyte developmental 

competence by facilitating cell-to-cell communication in the follicular 

environment [110]. 

1.5.1.2. Oocyte development and maturation: the role of small RNAs 

Mammals are born with a finite oocyte number that originates from the 

primordial germ cells during embryonic development [128] (table 1). In 

particular, in mammals the developmental process begins during oogenesis 

when both maternal RNAs and proteins accumulate as the oocyte grows and 

matures [129]. Oogenesis is reliant on a dynamic gene regulatory network 

that includes oocyte-specific transcriptional regulators [130]. A hallmark of the 

oocyte is its high level of transcription, which is driven on maternal mRNAs, 

and proteins that are crucial for the early development of the newly fertilised 

zygote [131]. The early stages of embryogenesis are, therefore, regulated by 
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maternally inherited components stored within the oocyte. As development proceeds 

the process of early embryogenesis then becomes dependent on the expression of 

genetic information from the embryo [129]. 

 
Table 1. Maximum number of female germ cells reached in foetal ovaries at the time 

of birth or late gestation in different species [201].  

Species 
Maximum number of germ 

cells (Day of pregnacy) 

Number of germ cells 
close after birth (Day after 

birth) 

Bovine 2,700,000 (110) 68,000(13 day after birth) 

Pig 1,100,000 (50) 500,000 (at birth) 

Buffalo 23,540 (210) 20,000 (at birth) 

Rat 75,000 (18) 27,000 (2 days after birth) 

Human 6,800,000 (150) 2,000,000 (at birth) 

 

Bovine oocyte maturation involves the resumption and completion of the first 

meiotic division from germinal vesicle (GV) stage to metaphase II (MII) with 

corresponding cytoplasmic maturation. Storage of mRNA during oocyte 

maturation and its timely availability during early embryo development are 

essential for oocyte quality and developmental competence. There is 

differential expression of transcripts in in vitro matured and immature bovine 

oocytes, which underlines the tight temporal control of protein synthesis 

required for oocyte maturation in preparation for subsequent fertilisation and 

early embryo development [132]. As with mRNA, miRNA expression in mouse 

shows a dynamic change during oogenesis, where a large proportion of 

maternal genes directly or indirectly under control of miRNAs [133].  

MiRNA, siRNA and piRNA are expressed in oocytes of many species at 

different stages of development [76, 124, 134-138]. However, only siRNAs 

seem to have a critical role in oocyte maturation. This has been inferred by 

comparing the knockout phenotypes of Dicer and Dgcr8 mutant mice. Dicer 

knockout in the oocyte resulted in meiotic arrest with severe spindle and 

chromosomal segregation defects and loss of both miRNAs and endo-
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siRNAs, as they are usually processed by Dicer [139-141]. In contrast, Dgcr8 

knockout has not observable phenotype, and mRNA levels remain unchanged 

even though the oocytes are characterized by the loss of miRNAs [140]. 

These findings suggest that endo-siRNAs, and not miRNAs, underlie the 

meiotic defect of Dicer knockout oocytes. Reporter assays using Dgcr8 knock 

out mice oocytes have shown siRNA activity in mature oocytes, but little to no 

miRNA function [142]. Finally, miRNA function is suppressed in fully-grown 

oocytes although miRNA biogenesis is unaffected and miRNA targets are 

present (Figure 3). The mechanism of suppression is unknown. P-bodies 

seem to be correlated with miRNA destabilization. This hypothesis is 

supported by the loss of P-bodies in maturing oocytes followed by their 

resumption at the blastocyst stage [143-146]. PiRNAs are also expressed in 

mouse oocytes [137], but deletion of the Piwi proteins does not produce an 

observable oocyte phenotype [93, 146, 147]. Therefore, it is unclear whether 

they play a role in oogenesis. 

1.5.1.3. Implications for female fertility 

Increasing evidences on the role of miRNAs during female reproduction have 

allowed the association of these molecules to several diseases [149-150], 

which generally affect oocyte developmental competence. However, the 

underlying mechanism of developmental competence has not been yet 

identified and a crucial part of this process is certainly the latter phase of 

oocyte growth, in which developmental potential is gained. This is known in 

mice [151], humans [152] and cattle [153]. While the building process is now 

better understood, we are still far from a clear blueprint of what composes a 

competent oocyte.  

Polycystic ovarian syndrome (PCOS) 

Polycystic ovarian syndrome (PCOS) is an anovulatory disorder, which is 

characterized by the development of ovarian cysts and affects women of all 

reproductive age [154]. The underlying mechanisms resulting in PCOS are 

not understood, however, the expression of several miRNAs are characteristic 

of PCOS patients [155]. Using microarray and quantitative PCR, five (let-7i-

3p, miR-5706, miR-4463, miR-3665, miR-638) miRNAs were found to be 
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overexpressed in blood of women with PCOS compared to healthy controls, 

while four (miR-124-3p, miR-128, miR- 29a-3p, let-7c) were underexpressed 

[156]. When deep sequencing was used to profile exosomes from the 

follicular fluid of women with PCOS, miR-132 and miR-320 were found to be 

less abundant in the follicular fluid compared to controls [157]. These authors 

also demonstrate that miR-132 and miR-320 stimulated production of 

estradiol (E2) in a human granulosa-like tumor cell line, while inhibition of 

these miRNAs supressed E2 production. 

In addition to variations in serum and follicular miRNA populations associated 

with PCOS, differences are also observed miRNA in the developing embryos 

in these women, which could have an impact on oocyte developmental 

competence. Blastocysts derived from oocytes obtained from PCOS patients 

have an under-regulated subset of miRNAs, like let-7a, miR-19a, miR-19b, 

miR-24, miR-92, and miR-93 [158], which can compromise embryo 

development and, thus, fertility.  

Premature ovarian failure (POF)  

Premature ovarian failure (POF) is a disorder with multifactorial origin, which 

affects ovarian function in women under 40 years of age. The condition is 

characterized by early ovarian senescence and diminished antral follicle count 

(AFC) [159]. Several studies have identified alterations in miRNA levels of 

women with POF. Interestingly, these studies focused on circulating miRNAs 

in plasma and serum. MiR-22 plasma levels were reduced in women with 

POF compared with control women. Under-regulation of miR-22 was also 

correlated with a lower AFC [160]. Moreover, the miRNAs circulating in 

plasma, which are associated with POF, have important roles in regulating 

many signalling pathways. MiR-23a, which was abundant in the plasma of 

POF patients inhibits XIAP and caspase-3 expression, resulting in apoptosis 

in human granulosa cells [161]. These results indicate that circulating miRNAs 

can be potentially used as non-invasive biomarkers of POF. 

Interestingly, Single-nucleotide polymorphisms (SNPs) are found in genomic 

DNA coding for miRNAs, which have been associated with disease 

susceptibility. A study of miRNA polymorphisms identified an association 

between combined genotypes in the genome coding for miR-146aC>G, miR-
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196a2T>C, and miR-499A>G and POF in women. Therefore transcriptional 

changes in miR-146a and miR-196a2 induced by miRNA SNPs may be 

involved in POF development [162]. 

 
The study of miRNAs in the follicular fluid and oocyte could improve the 

missing knowledge on the role of miRNAs in the acquisition of oocyte 

developmental competence.  

 

1.5.2. Male reproduction and small RNAs 

Spermatogenesis is a process where spermatogonia differentiate into motile 

spermatozoa within the seminiferous epithelium of the testis. During the 

course of differentiation numerous mRNAs are regulated post-transcriptionally 

[104]. A repertoire of small RNAs is present in differentiating male gametes 

throughout spermatogenesis [163-166]. Among these, the miRNAs are 

abundant in male gametes at times of active gene transcription in meiotic 

stages, specifically pachytene, as well as in early spermatids prior to nuclear 

silencing. They are proposed to play roles in post-transcriptional silencing of 

genes during process of spermatogenesis (Figure 3) [167, 168]. The 

functional role of both miRNAs and endo-siRNA is demonstrated but the 

deletion of Dicer results in a loss of mature sperm [163, 169]. This could be 

attributed to the loss of either miRNAs or endo-siRNAs. However, the deletion 

of Ago2, a protein that is essential for cleavage of mRNA targets by endo-

siRNAs, has not obvious testis phenotype, suggesting that the regulation of 

spermatogenesis is miRNA based [163]. Furthermore, RNA-binding protein 

Dead end 1 (DND1), which is implicated in preventing miRNA access to cell 

cycle-related target mRNAs, has been shown to be essential for male gamete 

development during embryogenesis [170, 171]. The roles of individual 

miRNAs during spermatogenesis have also been investigated, for example, 

miR-122a regulates the expression of TNP2, which is a testis-specific gene 

involved in chromatin remodelling during spermatogenesis [164].  
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Figure 3. MicroRNA associated with different stages of spermatogenesis [125, 164, 

172-174]. 

 

PiRNAs are found at relatively high levels in spermatocytes. Their expression 

begins at the pachytene stage of meiosis and persists until after the spermatid 

stage, when they gradually disappear during spermatid differentiation [79, 

175]. In mouse, piRNAs have been separated into two classes based on the 

timing of their expression, their repetitive versus non-repetitive nature, and the 

Piwi proteins with which they are associated [76-78, 175,176]. The first class 

is highly repetitive and is expressed before meiotic pachytene. This class of 

piRNAs interacts with Mili and Miwi2 protiens [79, 177]. The second class of 

piRNAs is non-repetitive, becomes abundant during the pachytene stage and 

is also associated with Mili and Miwi proteins [79, 175, 177]. Deletion of Mili 

and Miwi2 results in early arrest of meiosis in meiosis I (at the primary 

spermatocyte stage), whereas deletion of Miwi results in arrest following 

meiosis II (the round spermatid stage) [94, 99, 146]. The functional role of 

both repetitive and non-repetitive piRNAs has to be clarified.  
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1.5.2.1. MiRNAs and motile spermatozoa: a repertoire for early 
embryonic development 

While a large number of miRNAs are found in mature spermatozoa in testes 

[178], most of the RNAs with computationally predicted 3′UTR targets are 

absent [179]. This suggests that the role of the miRNAs present in the 

spermatozoa is in the oocyte at or following fertilization. They can act as 

signals for early embryonic histone replacement [180] or affect epigenetic 

modifications, or may regulate gene expression during early embryonic 

development, either via epigenetic modifications or at the level of post-

transcriptional control. The role of miRNAs in histone modifications is 

supported by finding that more than 10% of all small RNAs are located to 

histone-enriched transcription start sites (TSS) and promoter regions [163].  

How miRNAs carried by spermatozoa impact embryogenesis can also be 

investigated at the level of individual miRNAs. For example, one of the most 

abundant miRNA carried by spermatozoa is human miR-34c [179, 181], which 

has also been identified in sperm of horses and mice [65, 66]. MiR-34c has 

been shown to be essential for the first cleavage division in mouse zygotes 

[34]. The mechanism of action and functional role in spermatogenesis and 

fertility of miR-34c remain to be fully clarified [63, 64, 66, 183]. In mouse 

testes, miR-34c expression is p53 independent [165], whereas miR-34c 

targets p53 in cancer cells [184]. This suggests an influence on growth [185, 

186]. Furthermore, miR-34c has been found in bovine spermatozoa, oocyte 

and early embryos, suggesting a paternal contribution of this miRNA [187].  

Spermatozoa also contain several intact miRNA precursors (pri-miRNAs, 100 

–150 nucleotides). Since the zygote has the capacity to process immature 

miRNAs [182], the potential role of the pri-miRNAs requires consideration, 

e.g. pri-miRNA-181c is the most abundant immature miRNA in human 

spermatozoa. 
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1.5.2.2. MiRNAs as biomarkers of male fertility 

Infertility is estimated to affect 15% of the couples worldwide and male 

infertility is expected to be responsible for 50% of this [188]. Generally, male 

infertility is accompanied by qualitative and quantitative abnormalities in 

spermatozoa [189, 190]. When the problem in fertility is associated to alteration in 

morphology of spermatozoa, such us normozoospermia, asthenozoospermia and 

oligoasthenozoospermia, it is possible to identify different miRNA profiles between 

fertile and infertile men [191]. Regulation of function can be exerted by low levels of 

specific miRNAs, such as miR-34c, which is very abundant in spermatozoa and is 

under-regulated in oligoasthenozoospermia compared to normozoospermia. 

Moreover, alterations in miRNA profiles can be demonstrated by a subset of 

miRNAs. A panel of five miRNAs, miR-34b*, miR-34b, miR-34c, miR-429, and 

miR-122, has been proposed as potential biomarkers for the diagnosis and 

assessment of male subfertility. The power to discriminate between affected 

and normal men was assessed using these five miRNAs with the support 

vector machine classification (SVM) analysis, which is method performing 

classification tasks by constructing hyperplanes in a multidimensional space. 

In this case, the panel of miRNAs was capable of discriminating between 

individual with subfertility from normal subjects with reliability of 98.7 %, 

specificity of 98.8 %, and sensitivity of 98.4 % [192]. 

Bovine spermatozoa are also rich in miRNAs, which have different expression 

levels in bulls with pronounced differences in Non-Return Rates (NRR), 

implicating these miRNAs in differences in fertility. Seven miRNAs were 

identified as differentially expressed in spermatozoa from high and moderate 

fertility bulls, which suggests that miRNAs may play important roles in 

mammalian gametogenesis and early development [64]. Information derived 

from miRNAs in spermatozoa could be considered as biomarker for male 

fertility [193]. 

 
MiRNAs in spermatozoa may influence gene expression in the embryo post 

fertilization and impact on development. Thus, it is important to focus on how 

the differences in the miRNA blueprint are associated to high and low fertility 

and the way this may affect developmental potential of early embryo.  
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1.5.3. New insights in gametes small RNAs: from fertilization to early 
embryogenesis 

A considerable number of small RNAs are present in oocytes, many of which can be 

associated to dynamic expression profiles during oogenesis and folliculogenesis. 

Indeed, expression of miRNAs generally increases during oocyte maturation 

and embryo development. Conversely, there are miRNAs, which are 

abundant in the immature oocyte and diminish throughout maturation, while 

others remain relatively stable [136]. The expression profiles of small RNAs, 

particularly miRNAs, throughout gamete maturation and early embryogenesis 

strongly implicate them in the timely regulation of embryonic gene expression. 

There is an inverse correlation between piRNAs and miRNAs, suggesting a 

different role of these small RNAs in the reproductive function (Figure 4). 

MiRNAs in spermatozoa could influence gene expression in the embryo post 

fertilization. Paternal contributions to the zygote and its developmental 

competence are increasingly recognized as important element of successful 

fertilization. Sperm are known to deliver proteins, RNAs and small RNAs, 

which are critical for embryo development [194]. Moreover, some RNAs and 

small RNAs present in spermatozoa and early embryos are absent from non-

fertilized mature oocytes (MII oocytes), suggesting a unique role for these 

RNAs in post-fertilization mechanisms [195]. 

 

 
Figure 4. Piwi-interacting RNAs (piRNAs) and microRNAs (miRNAs) are essential in 

the developing male germline, whereas endogenous small interfering RNAs (endo-

siRNAs) play their most crucial role in oocyte maturation. There is a transition from 
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endo-siRNAs or piRNAs to miRNAs during pre-implantation development. PGCs 

indicates primordial germ cells [82]. 

 

The small RNAs may be responsible for the transmission of information 

across generations. Small non-coding RNAs that, are produced in gametes 

and which may be transmitted to progeny, may be influenced by, for example, 

environment or diet [116, 196]. Exposure of adult males and females to poor 

environments may result in adverse effects in their progeny. Such effects 

have been linked to epigenetic variations in spermatozoa and oocytes [197, 

198]. This indicates that small RNAs, which are present in both spermatozoa 

and oocytes at the time of fertilization, have a critical role, not only on 

reproductive function, but also on the phenotype of the offspring [116, 196].  

To unravel the mechanisms underlying the transmission of epigenetic 

information detailed studies of small RNAs will need to be carried out in 

developing and mature gametes of individuals exposed to different 

environments, as well as early embryos and somatic tissues in the next 

generation. 

 
In conclusion, our knowledge of miRNAs with respect to reproduction and 

fertility is increasing rapidly. Further studies of miRNAs will contribute to 

understanding the molecular mechanisms important in regulating sperm and 

oocyte maturation and may identify potential biomarkers of quality for 

gametes and pre-implantation embryos. 
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AIMS OF THE THESIS 
The following aims were addressed using a deep sequencing protocol which 

was set up during the PhD program. The protocol, which is based on high-

throughput approach, facilitated the study of both the known and putative 

novel bovine sequences in a sample. These data were used to look at the 

whole gene networks regulated by miRNAs and provide insights into cellular 

metabolism and complex biological systems involved in gamete and embryo 

development. The main objectives of the PhD were: 

 

1) to use the small RNA sequencing methods and bioinformatic analysis 

pipelines exploring in vitro produced blastocysts. This increased knowledge of 

the bovine miRNAs repertoire and improved our understanding of the role of 

miRNAs in pre-implantation embryos. 

 

2) to study the influence of miRNAs derived from spermatozoa on embryo 

developmental potential. In particular, to study in vitro produced embryos 

fertilized with sperm associated to high and low blastocyst rates. 

 

3) to examine molecular mechanisms of poor cow fertility using oocytes from 

ovaries with high and low function.  
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CHAPTER 2 

Profiling of microRNAs in bovine blastocysts 
using deep sequencing 

 

2.1. Introduction 

Knowledge of the key factors regulating pluripotency and differentiation during 

pre-implantation embryo development is essential to optimize in vitro embryo 

production (IVP) protocols and evaluate the developmental competence of the 

IVP embryos. Producing good quality blastocysts is essential for Artificial 

Reproductive Rechniques (ARTs) in humans [1] and economically important 

animals including ruminants [2, 3]. The number of bovine embryos produced 

in vitro and transferred into cow recipients has increased more than 10 fold in 

the last dozen years [4], which indicates that IVP is considered a reliable and 

cost-effective technique, and is increasingly being used in cattle breeding to 

accelerate the rate of genetic gain. 

MicroRNAs (miRNA) are short non-coding RNAs of 20-25 nucleotides, that have 

been shown to be important in control of, amongst others, reproductive functions, 

such as oocyte maturation [5, 6], implantation [7] and early embryonic 

development [8, 9]. They are regulated by a paracrine or autocrine signaling 

and are produced by cells, e.g. of the embryo, endometrium, and granulosa 

cells and oocytes [10, 11]. MiRNAs are found in biofluids such as plasma or 

follicular ovarian fluid as circulating stable forms [12] or in exosomes [13, 14]. 

Extracellular miRNAs may be taken up by specific cells in tissues like 

endometria, placenta or ovarian follicles, where they bind to their target 

mRNAs, repressing their translation and modulating cellular events and and 

functions [12, 72, 73]. MiRNAs of presumed placental origin have been 

detected in the plasma of pregnant females in several mammal species [15, 

16]. However, miRNAs are present in all biofluids and this characteristic has 

prompted their study as potential non-invasive biomarkers for physiological 

and pathological processes [16, 17]. In some pathologies associated with 
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reproduction, such as polycystic ovary syndrome or male factor infertility, 

miRNA profiles are altered [7, 18]. Several study have focused on the analysis 

of miRNAs in bovine blastocyst but their role during the early stage of embryo 

development is not well understood [19-21]. Recently, the presence of 

miRNAs secreted into culture media by embryos during IVP has been 

associated with embryo quality or developmental competence [22, 23]. 

Biomarkers that have been developed to assess embryo developmental 

competence are generally based on proteins and/or variations in the 

expression of mRNA [24, 25]. 

Advances in technology for deep sequencing has made possible to analyze 

all the miRNAs present in the sample. However, the very low quantities of 

RNA present in 100-150 cells, which compose a blastocyst, make miRNA 

profiling of early embryos technically challenging. This work describes the use 

of 3 procedures, which aim to optimize a low input deep sequencing approach 

for the analysis of all miRNAs present in bovine blastocysts and investigates the 

molecular mechanisms, which characterize the early stage of embryo 

development that are regulated by miRNAs. 

 

2.2. Materials and methods 

Unless otherwise indicated, chemicals were purchased from Sigma-Aldrich 

(Milan, Italy).  

 

2.2.1. Oocyte collection and in vitro maturation 

Bovine ovaries were collected post slaughter and transported to the laboratory 

in PBS at physiological temperature (about 37°C). Cumulus oocyte 

complexes (COCs) were isolated from mid-antral follicles (2-6 mm) within 2 hr 

of collection, washed 4 times in modified PBS (supplemented with 36 µg/L 

pyruvate, gentamycin (50ug/mL), and 0.5 mg BSA/mL, sigma, fraction V, A-

9647) and once in maturation medium (TCM199 + 10 µg/mL epidermal growth 

factor (EGF) + 10 % (v/v) fetal calf serum (FCS)). COCs were matured in 

group of 50 per well for 24 hours (h) at 38.8° C with an atmosphere of 5% 

CO2 in air with maximum humidity.  
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2.2.2. In vitro fertilization (IVF) and culture (IVC) 

Following 24 h maturation, COCs were washed 4 times in PBS and once in 

the fertilization medium (TALP: 10 µg/mL heparin salt – 184 units/mg, 

Calbiochem, San Diego, CA) before being transferred individually into 

fertilization plates in 250 µl of fertilization medium. Mature COCs were 

fertilised using cryopreserved semen of the same bull, which was rountinely 

used for IVF. 

Motile spermatozoa were obtained by centrifugation of thawed spermatozoa 

through a Percoll (Pharmacia, Upsalla, Sweden) discontinuous density 

gradient (3.0 mL of 45% Percoll layered over 2.5 mL of 90%) for 10 min at 

700 g, at room temperature. Viable spermatozoa were collected at the bottom 

of the 90% Percoll fraction. The pellet was suspended in TALP and then 

centrifuged at 100 g for 5 min at room temperature, following which the 

supernatant was removed. The concentration of Spermatozoa was estimated 

using a haemocytometer, and were then diluted in the appropriate volume of 

TALP to give a concentration of 2 X 106 spermatozoa/mL; 250 µL of this 

suspension was added to each fertilization drop to obtain a final concentration 

of 1 X 106 spermatozoa/mL. Fertilization dishes were then incubated for 24 h 

in an atmosphere of 5% CO2 at 38.8°C in air with maximum humidity. At 18-

20 h post fertilization, cumulus cells were removed from presumptive zygotes 

by moderate mixing using a vortex mixer in 1-2 mL PBS for 3 min. The 

presumptive zygotes were then washed twice in modified PBS and once in 

culture media (synthetic oviduct fluid supplemented with 10% FCS) before 

being transferred into 25 µl drops of culture media under mineral oil (Sigma, 

Italy) and cultured at maximum humidity in an atmosphere of 5% CO2 and 5% 

O2 at 38.8°C [71]. The resulting blastocysts were collected at the day 7 of in 

vitro embryo development (day 0 = day of fertilization) and snap frozen in 

pools of  5, in liquid nitrogen, and stored at -80°C.  
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2.2.3 RNA extraction procedures 

Total RNA extraction was carried out using three different protocols using 

pools of 30 embryos for each sample independently of the RNA extraction 

procedure. RNA quality and quantity of each sample was assessed using 

RNA Pico Chip and 2100 Agilent Bioanalyzer.  

 

2.2.3.1. Procedure 1 : Classical Trizol – M1 

Briefly, pools of 30 embryos were lysed in 1 mL Trizol reagent (Life 

Technologies, CA, USA). Two hundred microliters of chloroform was added to 

the sample and mixed for 15 seconds using a vortex mixer, and then 

incubated at room temperature for 5 minutes. The samples were then 

centrifuged at 12000 g for 10 minutes in order to separate the aqueous phase 

from organic phase. The aqueous phase was carefully remove and 1 volume 

of isopropanol added and mixed by inversion, then centrifuged at 12000 g for 

15 minutes. The supernatant was discarded without disturbing the RNA pellet. 

The pellet was washed using 1 volume of 75 % ethanol and was centrifuged 

at 7500 g for 5 min. The ethanol was discarded and the pellet was dried for 5-

10 minutes at room temperature. The RNA was dissolved using RNAse free-

water and stored at -80°C. 

 

2.2.3.2. Procedure 2: Classical Trizol plus RNA clean and concentrator-5 
– M2 

The procedure was as described above until the final step of precipitation 

from the aqueous phase isolation. At this point, the aqueous phase was 

concentrated to 5 µl using the “RNA Clean and Concentrator” spin column 

procedure as described by the supplier (Zymo research corp, USA). The RNA 

was eluted using RNAse free water and stored at -80°C. 
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2.2.3.3. Procedure 3: Allprep DNA/RNA/miRNA and RNA clean and 
concentrator-5  – M3 

Embryos were mixed in 1 mL of lysis buffer as supplied with the AllPrep 

DNA/RNA/miRNA Universal Kit (Qiagen, USA) and lysed by repeated 

pipetting with P1000 Gilson pipette for about one minute. RNA extraction was 

carried out according to the manufacturers’ recommended procedure (Qiagen, 

UK). RNA was eluted into 50 µl of RNAse free water and was concentrated 

into 5 µl following the recommended RNA clean and concentrator procedure 

(Zymo research corp, USA). RNA samples were stored at -80°C. 

 

2.2.4. Library preparation and deep sequencing 

A small RNA library was prepared from 5 µl of the total RNA from each 

sample using the Truseq Small RNA kit (Illumina Inc., USA, Figure 1) with 

some modifications, as follows: to minimize primer dimer formation, total RNA 

was mixed with half of the TruSeq Small RNA sample reagents, followed by 

15 cycles of PCR to amplify the library. Five µl of each unique indexed library 

were pooled in 6-plex and resolved on a Pippin gel cassette 3% Agarose Dye 

free (BluPippin, Sage Science, MA, USA). Library RNA fragments in the 140-

160 base pairs size range (the length of miRNA inserts plus the 3′ and 5′ 

adaptors) size ranges were recovered in 40 µL of Pippin elution buffer and 

then purified by Qiagen MinElute PCR Purification kit (Qiagen, CA, USA). The 

indexed libraries were quantified in triplicate on a ABI9700 qPCR instrument 

using the KAPA Library Quantification Kit, according to the manufacture’s 

protocol (Kapa Biosystems, Woburn, MA, USA). Then, ten µL of the pooled 

libraries at a final concentration of 2 nM were used for sequencing on a 

Illumina HiSeq2000 using a 50bp Single-Read sequencing protocol. Finally, 

eight libraries (3 for M1, 2 for M2 and 3 for M3) were sequenced into a lane of 

Illumina Hiseq2000 flow cell. 
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Figure 1. The principal phases of library preparation procedure with Truseq Truseq 

Small RNA kit (Illumina Inc., USA) are: adapter ligation, reverse transcription, PCR 

amplification, and pooled gel purification to generate a library. The protocol takes 

advantage of the natural structure common to the most known miRNAs, which have 

a 5ʹ-phosphate and a 3ʹ-hydroxyl group as a result of the cellular pathway used to 

create them. Because of this, the Illumina adapters in the kit are directly, and 

specifically, ligated to miRNAs. 
 

2.2.5. Bioinformatic pipeline: setting up the methods for the analysis of 
sequencing data 

Raw sequences (e.g. raw reads) were obtained from Illumina Hiseq25000 as 

FASTQ files after preliminary sequence quality control procedures using 

FastQC v0.11.2. Then, raw reads were trimmed using ‘Trimmomatic software’ 

to remove adapter sequences of library [26]. The Quality Control threshold 

was set as a minimum base quality of 15 over a 4 bases sliding window and 

only sequences with length above 15 nucleotide were retained. Trimmed 

miRNA sequences (i.e. filtered or clean reads passing the threshold), which 

pass the threshold, were annotated using miRDeep2 software [27] This 

software was used for detection of novel and know miRNAs using bovine and 

homologous human sequences. In particular, the FASTA files of all matured 

bovine miRNAs, precursor bovine miRNAs and miRNAs of human were 
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downloaded from miRBase database (release 21: June 2014) 

(http://mirbase.org/ftp.shtml).  

Known bovine and human miRNAs (mature and precursors) were used as a 

reference in the discovery process. Sequence reads were mapped to bovine 

reference genome and aligned sequence reads were blasted against both 

mature and precursor miRNAs of bovine and human. All known bovine and 

human miRNAs were used to quantify the frequency of miRNA sequences in 

each sample and produce a list of miRNA IDs and the relative abundance of 

mapped reads expressed as counts.  

Novel miRNAs and their respective read counts were inferred using the same 

software (Figure 2). MiRDeep2 predicts the probability of un-annotated 

sequence being novel miRNA based on the genomic context, which 

surrounds the sequence and the capability of the sequence to fold into hairpin 

structure with low free energy [27]. Secondary structure of miRNA precursor 

was predicted using RNAfold [28] and minimum free energy algorithm [29].  

 

 
 

Figure 2. Graphic illustration of a representative predicted novel miRNA by 

miRDeep2. The primary miRNA hairpin with both mature and star miRNAs 

highlighted with red and blue colors, respectively (A). MiRDeep2 scores and 
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provisional ID are shown (B). The consensus matured miRNA sequence and other 

isomiRs and their corresponding read counts are indicated. Mismatched nucleotides 

of isomiRs with the miRNAs hairpin are written in capital letter (C) [28]. 

 

2.2.6. MiRNA target prediction and functional analysis 

Gene target prediction for the miRNAs was carried out using DIANA miRPath 

v2.0 with homologous human miRNA and gene union options. DIANA 

miRPath can use predicted miRNA targets (in CDS or 3’-UTR regions) 

provided by the DIANA-microT-CDS algorithm or experimentally validated 

miRNA interactions derived from DIANA-TarBase v6.0 [69]. A Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis 

was obtained using DIANA miRPath in order to identify significantly targetted 

canonical pathways (P<0.0001) and predict the target genes putatively 

regulated by miRNAs. The list of target genes was used for Gene ontology 

(GO) analysis to infer gene function and molecular mechanisms enriched by 

the predicted miRNA target genes. To this end, the list of target genes were 

imported to DAVID Bioinformatics systems (http://david.abcc.ncifcrf.gov/) to visualize 

the non-redundant biological terms for large clusters of genes in a functionally 

grouped clusters [30]. 

 

2.3. Results 

2.3.1. Sample quality and quantity 

At the day 7 after fertilization, blastocysts were examined under the 

stereomicrosocpe and only those embroys, which were classified as grade 1 

quality according to IETS standards, were collected for small RNAseq 

analysis. RNA was extracted from 8 pools of 30 blastocysts using the three 

different procedures (3 for M1, 2 for M2 and 3 for M3, Table 1). RNA integrity 

number (RIN) was between 8.9 and 9.7 for all the samples. However, the 

quantity of the total RNA, assayed using Agilent Bioanalyzer 2100 varied from 

3.5 to 18.0 ng, indicating that this difference was not dependent on the 

procedures of RNA extraction (table 1).  
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Table 1. RNA quantity and quality in nanograms (ng) and RNA integrity (RIN), 

respectively, for each sample (sample ID) and procedure (procedure ID). 

 

Procedure ID Sample ID
Total RNA 

quantity (ng) RIN

M1A 10.5 9.4

M1B 3.9 9.7

M1C 18.0 8.9

M2A 8.3 9.7

M2B 11.6 9.7

M3A 3.5 9.6

M3B 10.5 9.7

M3C 7.8 9.7

Procedure 1

Procedure 2

Procedure 3

 

2.3.2. Overview of sequencing data 

Sequencing produced 26M, 5M and 15M of reads for M1, M2 and M3, 

respectively. A mean of 81.2% (M1), 81.9% (M2) and 86.6% (M3) of reads 

were maintained after filtering of low quality reads. Between 5 and 12% of 

filtered reads could be mapped to known mature miRNAs in the human and 

bovine miRBase (table 2).  

Comparing the three procedures, a similar number of miRNAs was identified 

in M1 and M3, for which the number of filtered reads was higher than M2. The 

procedure was characterized by a proportionately fewer miRNAs and in 

addition the number of novel miRNAs that were not present in miRBase 

differed among the procedures of RNA extraction: 62% (M1), 37% (M2) and 

40% (M3) (table 3). 
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Table 2.  Sequencing data reported by procedure and sample showing the number 

(n) of: raw reads (raw sequences or data obtained from the sequencer), trimmed 

reads (filtered sequences or data obtained by removing adapters and low quality 

sequence), percentage (%) of trimmed reads, mapped reads (n) and percentage (%) 

obtained from MiRDeep2. 

 

2436344

4573463

13061986

1936178

19376332

1594601

10.0

M3B 22348265 2476582 12.8

105116 6.6

4.0

M2B 5762574 146986 3.2

Procedure 3

M3A 14760122 1305092

M3C

Known MiRNA 
mapped reads(n)

Mapped read s(n)

Procedure 2
M2A 3188883 98444

19740535

25483222

4933294

4345780

1194270 24.2

M1C 6576100 228544 5.3

%Known  miRNA mapped 
reads

Procedure 1

M1A 37420115 1359181 5.3

M1B

Procedure ID Sample ID Filtered reads (n)

 
 
 
 
 
Table 3. The annotation and discovery of miRNAs obtained by MiRDeep2 analysis 

are reported as total miRNAs, novel miRNAs, known miRNAs and percentage (%) of 

novel miRNA. 

 

Procedure ID Sample ID Total miRNAs Novel miRNA Known miRNA % novel miRNA

M1A 797 420 377 52.7

M1B 745 328 417 44.0

M1C 494 181 313 36.6

M2A 386 144 242 37.3

M2B 432 155 277 35.9

M3A 729 307 422 42.1

M3B 780 325 455 41.7

M3C 348 117 231 33.6

Procedure 1

Procedure 2

Procedure 3

 
 

There were miRNAs which differed among the technical replicates of the 

procedures: only 432 miRNAs overlapped for the samples of M1, 316 

overlapped between M2 samples and 333 between M3 samples (Graph 1A, 

1B and 1C). Only 249 miRNAs were in common among all the RNA extraction 
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procedures (Graph 1D). This difference may be explained by the very low 

abundance of some of the miRNAs. Of the known miRNAs, 562 (M1), 1045 

(M2) and 699 (M3) miRNAs had between 0 to 10 counts; 443 (M1), 201 (M2) 

and 316 (M3) had between 100 and 1000 counts and 222 (M1), 82 (M2) and 

205 (M3) had more less than 1000 counts; only 135 (M1), 35 (M2) and 143 

(M3) had over 1000 (data not shown).  

 
 

!!!

! !

(a) (b) 

(d) (c) 

 
 
 
 
Graph 1. Venn diagrams per sample for each RNA extraction procedure, indicating 

the number of overlapping miRNAs among and within samples and proceedures M1, 

M2, M3 (1A, 1B, 1C respectively). The number of overlapping miRNAs between the 

procedures is also indicated, identifying those, which were common between 

samples (1D). 
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The most abundant length of all sequences classified as miRNA was 22 bp, 

which corresponds to the mature miRNAs length for all samples of each 

extraction procedures (Graph 2). Considering only the mature miRNA 

sequences, the enriched lengths were 22, 23 and 25 bp (Graph 3).  

 

 

 

 

 

 

! 
 

Graph 2. Mapped reads are reported as unique mature miRNAs and  length of 

distribution (length is expressed as nucleotide = nt). 
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! 
 
 
Graph 3. Mapped reads are reported as sum of all mature miRNA sequences and  
length of distribution (length is expressed as nucleotide = nt). 
 

 

 

In summary: a total of 1363 unique miRNAs were identified, following 

discovery and annotation using miRdeep software. These miRNAs differed 

quantitatively and qualitatively among the extraction procedures: M1 identified 

679 miRNA (ranging from 494 to 797) of which a mean of 420 were novel, M3 

identified 619 (±33) miRNAs of which a mean of 250 were novel and M2 

allowed to identify 409 (±236) of which 150 were novel (table 3).  

Of the most abundant miRNAs, bta-miR-148a, bta-miR-92a, bta-miR-192, bta-

miR-378 and bta-miR-10b were highly represented in all the procedures of 

RNA extraction (table 4). 
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Table 4. The top 20 most abundant miRNAs reported as miRNA ID and avarage 

read counts for samples of each procedure. 

 
Procedure 1 Procedure 2 Procedure 3

miRNA ID Avarage read counts miRNA ID Avarage read counts miRNA ID Avarage read counts

bta-miR-10b 191422 bta-miR-10b 24128 bta-miR-10b 299902

bta-miR-378 84726 bta-miR-92a 13797 bta-miR-378 163837

bta-miR-371 37424 bta-miR-378 11791 bta-miR-192 78539

bta-miR-22-3p 56652 bta-miR-148a 6893 bta-miR-22-3p 63588

bta-miR-92a 58504 bta-miR-371 5721 bta-miR-148a 68241

bta-miR-26a 39459 bta-miR-192 4235 bta-miR-92a 71244

bta-miR-192 47495 bta-miR-423-5p 3870 bta-miR-30e-5p 49358

bta-miR-148a 49916 bta-miR-22-3p 5564 bta-miR-371 46660

bta-miR-30e-5p 38521 bta-miR-21-5p 4281 bta-miR-26a 45982

bta-miR-6119-5p 25061 bta-miR-30e-5p 3884 bta-miR-6119-5p 32787

Novel:hsa-miR-4706 17008 bta-miR-26a 3683 bta-miR-21-5p 39731

bta-miR-423-5p 19791 bta-miR-6119-5p 2321 bta-miR-30d 33302

bta-miR-191 18576 bta-miR-30d 2357 bta-miR-191 18569

bta-miR-21-5p 21224 bta-miR-191 1748 bta-miR-6526 16201

bta-miR-30d 19946 bta-miR-25 1585 bta-miR-423-5p 19765

bta-miR-186 12851 bta-miR-1468 1234 bta-miR-27b 16496

bta-miR-6526 9988 bta-miR-2478 973 bta-miR-186 13654

bta-miR-151-5p 9670 bta-miR-1246 1361 Novel:hsa-miR-4706 10275

bta-miR-16b 9737 bta-miR-27b 1311 bta-miR-25 13997  

2.3.3. Target prediction and functional analysis 

The 20 most highly expressed miRNAs were compared between procedures 

(table 4). A total of 14 miRNAs were common to all 3 procedures The most 

abundant miRNAs were bta-miR-148a, bta-miR-92a, bta-miR-192, bta-miR-

378 and bta-miR-10b (Table 4). Bta-miR-6119-5p was exclusively annotated 

in miRbase for cattle. Thus, functional analysis was carried out using the 13 

miRNAs which had human homologues (hsa-miR-10b-5p, hsa-miR-378a-3p, 

hsa-miR-192-5p, hsa-miR-22-3p, hsa-miR-148a-3p, hsa-miR-92a-3p, hsa-

miR-30e-5p, hsa-miR-371a-3p, hsa-miR-26a-5p, hsa-miR-21-5p, hsa-miR-

30d-5p, hsa-miR-191-5p and hsa-miR-423-5p). KEGG pathway analysis 

identified many canonical signaling pathways which were enriched with genes 

targeted by these miRNAs (P<0.0001, table S1 – supplemental material). The 

more significant pathways were related to cancer (e.g. Pathways in cancer 

(hsa05200), Prostate cancer (hsa05215), Colorectal cancer (hsa05210), 

Bladder cancer (hsa05219) Transcriptional misregulation in cancer (hsa05202), 

Chronic myeloid leukemia (hsa05220), Endometrial cancer (hsa05213), Pancreatic 
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cancer (hsa05212)) and diseases (e.g. Prion diseases (hsa05020), HTLV-I infection 

(hsa05166), Hepatitis B (hsa05161), Fanconi anemia pathway (hsa03460)). Other 

significant canonical pathways were related to control cell growth and death (e.g. Cell 

cycle (hsa04110), p53 signaling pathway (hsa04115)) and signal transduction (e.g. 

Wnt signaling pathway (hsa04310), TGF-beta signaling pathway (hsa04350), ErbB 

signaling pathway (hsa04012)). 

Considering the most significant KEGG pathways, a total of 179 genes were 

targeted by abundantly expressed miRNAs in blastocysts. Of these genes, 5 

genes (STAT3, TGFBR1, VEGFA, HLA-G, HBEGF and TGFBR1) were 

identified as blastocyst specific in the NCBI gene database. DAVID cluster 

functional analysis grouped the genes into 124 GO clusters. The first 10 

clusters (P< 0.0001) code for proteins involved in biological processes, 

molecular function and cellular components (Table S2 – supplementary 

material). The top ten gene clusters included: (1) regulation of phosphorus 

metabolic process; (2) cell cycle; (3) components of intracellular organelles 

and nucleoplasm; (4) immune system development; (5) regulation of 

transferase activity; (6) regulation of kinase activity; (7) protein 

phosphorylation mechanisms (8) phosphatase activity; (9) regulation of 

cellular component movement; (10) regulation of macromolecule biosynthetic 

process. 

 

2.4. Discussion 

The blastocyst consists of about 100-150 cells and preparing sufficient total 

RNA to carry out the profiling of miRNAs using a deep sequencing protocol is 

difficult. Studies to date that have profiled miRNAs in low input samples, such 

as blastocysts or gametes, have used targetted approaches to detect the 

espression of known miRNAs like miRNAs expression in mouse blastocysts 

performed with an in-house designed microarray with 743 mature miRNAs on 

[31] and the analysis of 366 mature miRNAs assessing pools of 10 bovine 

blastocysts with a Taqman assay [32]. Other studies have used commercial 

miRNA chips. For example, a study of bovine gametes, immature and mature 

oocytes (MII) used a mammalian miRNA chip with 3272 miRNAs including 94 

bovine miRNAs [21]. The selected miRNAs on such chips are represented by 
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known and predicted miRNAs from diverse species, like human, mouse or 

cattle. The protocols described invariably use an amplification step before the 

analysis, which may distort apparent relative expression levels. This study 

analyzed all the miRNAs present in the bovine blastocyst and was carried out 

using three procedures for total RNA extraction and a high-throughput 

sequencing approach, adapted for low input samples, in order to reduce bias. 

Specifically amplification steps for the miRNAs before library preparation were 

avoided. The quantity of RNA obtained varied considerable among samples 

even for the same procedure. These variations in input of RNA quantity 

impacted the number of reads per sample, which was independent on the 

procedure. Libraries were prepared successfully from all the samples with a 

minimum of 10 ng as total input RNA input (data not shown).  

In total, across all three approaches, 1363 miRNAs were identified in bovine 

blastocysts among which 41.5% were novel bovine miRNAs. The annotation 

and discovery processes carried out using miRDeep was able to attribute 218 

of the novel bovine sequences to a human homologous miRNA. However, 

60% of novel bovine miRNA sequences did not have a matching human 

miRNA. This suggests that these miRNAs expressed in bovine blastocysts 

may have a restricted pattern of expression, or are expressed at very low 

levels and therefore have not been described in other studies. The number of 

novel bovine miRNAs reported here is in line with the proprtion of unknown 

bovine small RNAs identified in other studies, for example, 50-60% novel 

miRNAs were recently described in studies of bovine spermatozoa [33] and 

granulosa cells of preovulatory dominant and subordinate follicles [34] using a 

small RNAseq. Tipically, studies of human tissues like human embryonic stem 

cells [35] have a lower proportion of unknowmn miRNAs. 

The most abundant mature miRNAs identified in the present study were 

characterized with respect to their target genes and the pathways in which 

these genes were represented. This analysis showed an enrichment of target 

genes, which are mostly oncogenic factors and, thus, were associated with 

biogenesis of several cancers. Many studies have correlated the gene 

expression patterns in tumor cells with expression in gametes, embryos or 

during foetal development [36-38], suggesting that early embryonic 

development and tumor transformation have similar metabolic programs. 
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Indeed, miR-21, which was one of the most abundant miRNAs identified in the 

blastocysts is widefully described as have oncogenic activity and is up-

regulated in several cancers, including breast, colon, pancreas, lung and liver 

cancers, and leukemia [39-43]. MiRNA-21 blocks diffentation and apoptosis 

by regulating several genes involved in cell cycle, including PTEN, PDCD4, 

MYC, BCL-2, E2F2, TP53, VEGFA, TGFβ and TPM1. Some of these genes, 

particularly E2F, BCL2, MYC, VEGFA and TP53 have been shown to be 

involved in oncogenic pathways [44-46]. TP53, which has a direct inhibition of 

expression of the tumor suppressor gene LATS2 [47], is also targeted by miR-

30d, which was expressed in blastocysts in the present analysis. The target 

genes of miR-21 are also targeted by several of the other abundant miRNAs 

such as miR-26a, miR-92a, miR-378a and miR-192. In particular, miR-192 

has been shown to inhibite apoptosis of cancer cells by targeting BCL2 and 

BAX [48]. MiR-10b is involved in cancer biogenesis and has been found to be 

associated with breast cancer, in particular, through the negative regulation of 

BRCA1, which is a tumor suppressor gene [49]. MiRNA-26a has also been 

implicated in metastasis through epithelial-to-mesenchymal transition of 

cancer stem cells, where it acts in cooperation with miR-21 [50]. In the 

present study, miR-10b was predicted to target NR4A3, which is also known 

as NOR1 and is involved in trascriptional regulation [51]. MiR-191, another 

found to be abundant in blastocystsis, was overexpressed in acute myloid 

leukemia [41] and solid cancers like that of breast and lung [42]. It may also 

be involved in metastasis through regulation of the transforming growth factor 

beta (TGFβ) signaling pathway inducing the expression of genes, which 

promote cell migration [53]. MiR-92a is part of the miR-17~92a cluster, which 

includes miR-17, miR-18a, miR-19a and miR-92a-1, and which has oncogenic 

activity through the regulation of TGFBR2, SMAD2, and BMP family genes 

[54]. However, other miRNAs, which belong to this genomic cluster, were not 

found to be abundant in bovine blastocysts. Nevertheless, predicted target 

genes, including SMAD4 and TGF-beta-RII, which are important for cell 

proliferation, were among the targets of abundant miRNAs, specifically miR-

21, miR-26a, miR-371a and miR-423. These miRNAs have been suggested 

as pontential biomarkers of liver cancer in the circulation [55] although their 

mechanism of action is not fully undestood. Some miRNAs seem to have a 
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carcinogenic effect when  they are expressed at low levels, like miR-22 which 

can have an opposing effects depending on the type of cancer. Indeed, this 

miRNA was found to be down-regulated in solid cancer, such as liver [56] or 

prostate [57], and hence it may have an anti-tumor action. In other cancers, 

however, such as chronic lymphocytic leukemia (CLL), which is characterized 

by accumulation of clonal B cells arrested in G0/G1 stages, it was up-

regulated and induced phosphatase and tensin homolog down-regulation and 

the activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway [58]. This 

miRNA also targets genes involved in the cell cycle, like E2F and CDK6, 

which are targeted also by miR-21. The down-regulation of miR-148a is 

associated with cancer metastasis [59]. In the present study this miRNA was 

predicted to target HSP90B1 and CYCS, which have an apoptotic action [60] 

and are also regulated by cell cycle genes, such as BCL-2, MYC, which are 

involved by the way in the MAPK and TGFβ/SMAD signaling pathways. 

Finally, miR-30e down-regulation induces the development of cancer through 

the activation of TGF-β and NF-κB signaling pathways [61].  

In summary, there is simple evidence that the most abundant miRNAs, which 

are shown in the present study to be important for bovine blastocyst 

development, are also associated with the regulation of oncogenic pathways 

and have been described for several cancers. However, it is not clear what 

makes the difference between tumour cells, which are generally characterized 

by loss of cell cycle regulation, and embryonic cells, which are rapidly dividing 

and pluripotent, but are delicately regulated to avoid uncontrolled cell 

proliferation. Some studies focused on early embryos cell proliferation have 

recently evidenced that contact inhibition may make the difference between 

embryonic and tumor cells [62]. However, the mechanisms underlying contact 

inhibition are still unclear. 

Some of the most abundant miRNAs expressed in bovine blastocysts 

identified in this study have been described in other reproductive functions: 

bta-miR-10b has been shown to be important in ovarian function and has 

been implicated in early stage embryo development because it is highly 

abundant in oocytes during maturation although its role in early stage 

embryos is not known [63, 64]. Bta-miR-378 and bta-miR-26a were 

associated to ovarian follicle growth [34, 64] and have been identified in 
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embryonic tissues [70]. In particular, miR-378 is expressed in porcine cumulus 

cells and lack of its expression is associated with impaired oocyte maturation 

[65]. It reduces progesteron receptor expression and that of other genes such 

as ADAMTS1, CTSL1, and PPARG, which are important for follicular 

maturation and remodeling [66]. This miRNA is also involved in regulation of 

genes involved in neuronal developmental in human embryonic stem cells 

[67]. Bta-miR-21 is highly expressed during the early stages of embryo 

development, including blastocyst, and may be involved in maternal-embryo 

communication [21]. As described above, this miRNA cooperates with other 

abundant miRNAs in bovine blastocyst. Homologous human miR-191 and 

miR-192 are associated with oocytes quality and, in particular, are more 

highly expressed in blastocysts from oocytes recoved from young women 

compared with those from older ones [68]. Our analysis is consistent with this, 

in so far that miR-191 has a higher expression in blastocyst of good quality. 

However, miRNA-192  has recently been reported to be present in culture 

media of degenerated bovine embryos [22].  

MiRNAs are likley to play a active part in regulating blastocyst development, 

where they control and coordinate the  expression of a range of genes. 

Various miRNAs, which have a higher level of expression, are associated with 

good quality embryos as all the blastocysts analyzed in this study were 

classified according to IETS standards as good grade of quality. 

Understanding the roles of these miRNAs and manipulating their expression 

may help to investigate molecular mechanisms underlying correct embryo 

development.  

In conclusion, this study focused on the miRNAs present in the bovine 

blastocyst and identified several novel miRNAs. The study also identified 

genes and pathways that are potentially regulated by miRNAs in early embryo 

development. Many of these genes are involved in the cell cycle and have 

also been implicated in tumor cells. Indeed, pathway analysis inferred the 

enrichment of genes targetted by the miRNAs and being involved in cancer 

related pathways. Similarities have been in the miRNA regulation of genes 

targeted by the abundant miRNAs in bovine blastocyst with changes in gene 

regulation associated with cancer transformation. Further studies will be 

necessary to understand the true function of miRNAs in the developing cells, 
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especially to define genes, which are actually regulated, and the implications 

for the pathways in which they play a role. Moreover, the analysis of miRNA 

expression in parallel with transcritiome studies will better elucidate their 

function. Because miRNAs are released by the embryo and can be detected 

in culture media, the miRNAs identified in this study are potential biomarkers 

of blastocyst quality and developmental compentece, which may be used to 

improve the success rate for reproductive biotechnologies.  
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CHAPTER 3 

Differences in microRNAs after in vitro fertilization using 
sperm with high and low blastocyst rates 

 

3.1. Introduction 

Early embryogenesis is affected by oocyte and sperm quality, which is 

correlated with specific biomolecules, including proteins and RNAs, which are 

delivered to the zygote at fertilization [1-4]. Among these biomolecules, the 

repertoire of RNAs is important in directing the embryo during the first steps of 

division until the embryo genome is activated [5]. In cattle this occurs later 

than other mammalian species, at the 8-16 cell-stage embryo [6]. The 

parentally derived RNAs influence zygote developmental potential to the 

blastocyst stage. Generally 30-40% of the fertilized oocytes [7] reach this 

stage, therefore understanding the factors that regulate early development is 

an important step for improving reproductive efficiency.  

It is well known that the maternal contribution has a large impact on early 

embryo development. Maternally derived mRNAs present in the oocyte 

decrease rapidly following fertilisation [8]. The lack of some maternal mRNAs 

has been indeed associated with a low oocyte competence and quality [9]. 

However, the role of the sperm contribution during embryogenesis is unclear. 

For a long time, sperm have been considered to carry only the paternal 

genetic component, but now, accumulating evidence suggests that various 

sperm biomolecules actively participate in early development [10-13]. Indeed, 

during fertilization, the sperm transmits not only nuclear DNA but also other 

biomolecules, such as oocyte activation factors (OAF), which are critical for 

fertilization [14], centrosomes critical for cell division [14] and a population of 

messenger RNA (mRNA) that are critical for early development [10, 15]. 

Moreover, studies investigating epigenetic modifications in the developing 
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spermatozoa have provided new insights into paternal contribution during 

embryogenesis. Sperm epigenetic programming can have a significant 

influence on both the developing spermatozoa and embryo. In humans, 

alterations of the epigenetic programming have been related to fertilization 

potential and the early development of the embryo [16]. Epigenetic 

programming includes microRNAs (miRNA), which are regulators of gene 

expression at the mRNA level. Recently, the study of miRNAs in the oocyte 

and early embryo showed that a small set of miRNAs can influence the 

developing embryo, and mis-programming may result in early embryonic 

death [17, 18]. Oocyte miRNAs may be important during oocyte-to-zygote 

transition [19]. Spermatozoa are enriched in miRNAs, which have been 

investigated in mature bovine spermatozoa by comparing high and low fertility 

bulls [20]. However, few miRNAs were associated with differences in bull 

fertility and there is currently no information on their impact on pre-

implantation embryo. Understanding the influence of sperm miRNAs during 

early embryogenesis will broaden our knowledge on the paternal contribution 

of mature spermatozoa. Morevoer, miRNAs are also used as biomarkers for 

diseases, and are therefore potentially new biomarkers for gamete and 

embryo quality. 

This study investigated the paternal influence on the early stages of bovine 

embryo development through miRNA profiling. The experiments were carried 

out in two parts. First, I investigated whether a correlation could be establish 

between field fertility data and in vitro embryo production (IVP), considering 

two aspects: (i) the existency of genetic factors that determine semen quality 

and (ii) the effect of season on sperm quality (part 1). The results of the first 

part indicated that differences in blastocyst rates obtained after IVP depended 

on the individual bull and not on the field estimates of fertility or the season. 

Thus, in the second part of this study, miRNA profiling was carried out 

comparing high and low blastocyst rate bulls identified in part I (part II). 
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Part I. Effect of sire fertility and season on in vitro embryo 
development using Estimated Relative Conception Rate in 
high index dairy bulls  

 

3.2. Materials and Methods 

3.2.1. Bull samples and experimental design 
 
Semen from 10 holstein-fresian bulls was collected and cryopreserved by an 

Artificial Insemination (AI) center located in Northern Italy (Inseme Spa, Lodi, 

Italy) and was commercially available for AI. In particular, the bulls of this 

study were located in the tails of the Gaussian distribution of Estimated 

Relative Conception Rate (ERCR) in Italy: 5 high (H) and 5 low (L) fertility 

bulls (Table 1). ERCR is a measure of conception rate used worldwide as field 

fertility index. It is based on non-return rate at 56 days corrected for herd-

year-month of insemination, energy-corrected milk production adjusted to 

3.5% fat and 3.2% protein content, days open at first mating and parity and is 

expressed as the conception rate of a sire relative to that of other sires. ERCR 

is mainly determined from many services in a large number of herds and is 

indeed routinely used as fertility index in Italy by the Italian Breeders 

Association (AIA). The estimation of conception rate in ERCR is corrected for 

the main factors affecting fertility, therefore the biological factors controlling 

differences in index value for individual bulls are not well defined.  

Reliability for all considered bulls was higher than 85% (Reliability = 100 × [1 

– (1 – (Number of inseminations/ (Number of inseminations + 200))½) × 2.3]). 

Semen was collected from all bulls during the summer and winter (indicated 

as S and W, see table 1) in order to look at the heat effects on 

spermatogenesis, which spans approximately 61 days in cattle [21]. In 

Northern Italy, the warmest and coolest months are July/August and 

January/February, respectively.  
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Table 1. The table reports the Estimated Relative Conception Rate (ERCR) for the 

10 bulls used in the study, the sampling season (W = winter or cool month; S = 

summer or warm month) and Reliability for the high and low fertility bulls. 

 

!W!(Winter) S!(Summer)

A 2.4 4202 99 March September
B 2.0 3209 98 February September
C 4.1 2371 98 February September
D 2.0 4074 99 February September
E 2.8 16767 99 February September
F 62.9 1427 96 March September
G 61.7 1892 97 March September
H 62.4 346 85 March September
I 61.8 2929 98 February September
J 61.8 360 86 February late;August

ERCR!(value)! Reliability!(%)ID!Bull!
SAMPLING!MONTH!OF!SEMENArtificial!

inseminations!(n)

 
 

 

 

 

 

 

IVF outcomes are influenced by several variables, including the origin and 

handling of oocytes, the number of inseminations carried out at the same 

time, the ambient temperature, etc. Each replicate (i.e. “set up” or day of 

ovary collection, number of oocyte retrieved and in vitro fertilization) was 

designed to ensure that a high fertility versus a low fertility bull sampled in the 

S and W months was compared (Figure 1). 
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Figure 1. Matrix of comparison of bulls during each replicate (e.g. experiment day or 

“set up”). Each replicate allowed the comparison of a high ERCR bull versus a low 

ERCR bull using semen collected in the warm (s) and cool (w) month of the year. 

Each bull was repeated at least three times. 

 

High Low

SET UP 1 A, W and S F, W and S

SET UP 2 B, W and S G, W and S

SET UP 3 C, W and S H, W and S

SET UP 4 D, W and S I, W and S

SET UP 5 E, W and S J, W and S

SET UP 6 A, W and S G, W and S

SET UP 7 B, W and S H, W and S

SET UP 8 C, W and S I, W and S

SET UP 9 D, W and S J, W and S

SET UP 10 E, W and S F, W and S

SET UP 11 A, W and S H, W and S

SET UP 12 B, W and S I, W and S

SET UP 13 C, W and S J, W and S

SET UP 14 D, W and S F, W and S

SET UP 15 E, W and S G, W and S

Fertility Status (ERCR)Experimental 
replicate

 
 

3.2.2. In vitro embryo production 

IVP was carried out using the procedures described in chapter 2 (par. 2.2.1. 

and 2.2.2.). The resulting blastocysts were collected at the day 7 of in vitro 

embryo development and snap frozen in pools of 5-10, in liquid nitrogen and 

stored at -80°C. 
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3.2.3 Data collection and statistical analysis 

Assessment of in vitro embryo development was carried out by recording 

embryo cleavage (48 hour post insemination, hpi) and blastocyst rates at days 

6, 7, 8 and 9 following fertilization. The mean percentage and standard error 

(SEM) were calculated using at least three replicates for the same bull and 

the same season of semen collection.  

Statistical analysis was carried out using R software using a generalized 

linear mixed model (logit algorithm for a binomial distribution of data) to test 

significant differences between H and L groups in the S and W months of 

semen collection. The model was fitted using the function “glmer” of the R 

package “lme4”. This model incorporates both fixed-effects and random 

effects in a linear predictor, using maximum likelihood [51]. 

One-way ANOVA was carried out in order to compare each bull within the two 

seasons using the cleavage and Day 7 embryo development rates which are 

the parameters routinely used to assess in vitro embryo development [7]. 

 

3.3. Results 

A total of 5987 COC were fertilized in vitro, 20% of which (n=1170) developed 

to the blastocyst stage by Day 7 post fertilization. The H group bulls differed 

only for blastocyst rate for S and for both the cleavage and blastocyst rates for 

W (P<0.05). Bulls A and E had a lower value than the other bulls in S and W 

and did not differ for the cleavage rate between seasons (Table 2). The 

cleavage rate of the H group bulls was normally distributed, ranging from 

65.3% to 81.1% for S and from 63.0% to 79.1% for W. The blastocyst rate for 

the same bulls ranged from 13.5% to 27.0% for S and from 13.1% to 29.6% 

for W (Table 2).  

The cleavage rate for the L group bulls ranged from 35.9% to 78.8% for S and 

from 22.8% to 75.6% for W. Blastocyst rates of L bulls were 5.2 % to 35.9% 

for S and 1.5% to 25.5 % for W. In this case, differences were seen in 

cleavage and blastocyst rates among bulls of the L group between the 

seasons in which the semen was collected (P<0.05). Bull F, in particular, had 

a very low rate of in vitro embryo development (i.e. cleavage and blastocyst 
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rates) compared with the other low fertility bulls both in S and W. This bull 

produced only 3 blastocysts from 202 COCs when S semen was used and 8 

blastocysts from 153 COCs for W versus a mean of 16.9% for S and 20.1% 

for W for the group as a whole.  

H group did not differ for the cleavage and blastocyst rates when using semen 

collected in S and W (P>0.05, Table3). Similar results were obtained for the L 

group, which did not differ for both the same parameters when comparing the 

seasons (P>0.05, Table 3). Interestingly, cleavage rate was higher in the H 

group than the L group (Figure 1) for W (P<0.001). Blastocysts rates at 6, 7, 8 

and 9 days post insemination were similar for H and L groups and for both S 

and W (Table 3). 
 
Table 2. Cleavage and D7 blastocyst rates following in vitro fertilization of oocytes 

with sperm by bull within high and low ERCR groups. Cleavage and blastocyst rates 

were calculated as mean value ± Standard Error of Mean (SEM). The rate is 

represented as a % of cleaved oocytes.  

 

N
cleavage                                  

n (%)
D7 blastocyst rate      

n (%) N
cleavage                                  

n (%)
D7 blastocyst rate     

n (%)

A 283 194 (68.6±4.8) 42 (14.8±3.2a) 284 179 (63.1±4.9a) 49 (17.3±3.3a)

B 190 154 (81.1±2.5) 63 (33.2±4.6b) 196 155 (79.1±1.6b) 58 (29.6±5.2b)

C 318 238 (74.8±3.2) 86 (27.1±3.7ab) 313 221 (70.6±3.8ab) 53 (16.9±2.1a)

D 349 257 (73.6±4.3)  70 (20.1±3.9ab) 338 259 (76.6±2.9b) 79 (23.4±1.8ab)

E 297 194 (65.3±3.6) 40 (13.5±3.3a) 366 243 (66.4±3.9ab) 48 (13.1±3.1a)

F 153 55 (35.9±8.3c) 8 (5.2±2.2b) 202 46 (22.8±3.4b) 3 (1.5±0.9b)

G 379 238 (62.8±2.8b) 51 (13.5±2.8b) 397 233 (58.7±5.8a) 67 (16.9±4.1b)

H 295 224 (75.9±3.4a) 106 (35.9±3.7ac) 291 220 (75.6±1.2a) 66 (22.7±4.1ab)

I 251 192 (76.5±1.5a) 67 (26.7±2.5a) 243 170 (69.9±4.1a) 62 (25.5±3.5ab)

J 481 379 (78.8±3.2a) 86 (17.9±4.9ab) 361 244 (67.6±7.4a) 66 (18.3±6.1b)

High ERCR

Warm month (S) Cool month (W)

Low ERCR

Fertility status Bull ID

 
A,b,cValues with different superscripts differ significantly (P<0.0001). 
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Table 3. Cleavage and blastocyst rates (from day 6 to day 9 of in vitro embryo 

development, day = D) following in vitro fertilization of oocytes with sperm from high 

and low ERCR bulls. Cleavage and blastocyst rates were calculated as mean value ± 

Standard Error of Mean (SEM). The rate is represented as a % of cleaved oocytes.  

 

D6 D7 D8 D9

High*ERCR*bulls* 71.2±3.1a 9.9±1.6 19.8±2.9 23.3±2.4 23.6±2.7

Low*ERCR*bulls 58.9±9.4b 9.1±3.1 16.9±4.2 19.9±4.7 20.2±4.7

High*ERCR*bulls* 72.7±2.71 8.8±1.5 21.7±3.7 26.2±3.8 26.8±3.9

Low*ERCR*bulls 65.9±8.1 8.9±0.8 20.1±0.5 23.8±0.5 24.3±0.6

Blastocyst*rate
Cleavage*rateFertillity*status

Season*temperature*
of*semen*collection

Cool

Warm

	  
a,bValues with different superscripts differ significantly (P<0.0001). 

 

3.4. Discussion 

Field fertility is normally assessed using 56-90 day non-return rates (NNR) 

[22-27], or Estimated Relative Conception Rate estimated (ERCR), the latter 

is corrected using factors influencing bull fertility [28-31]. This study examined 

the relationship between the estimated field fertility, measured as ERCR of 

the sire, and in vitro embryo production (IVP), and also tested the effect of 

heat stress.    

The cleavage rate following IVF has been usually associated with NRR 

[22,23, 31-33] but a weak correlation has been found between blastocyst rate 

and NRR [24, 35-37]. In the present study, large differences between bulls 

were observed for in vitro embryo development, following IVF success, 

however, this was not dependent on ERCR. There were bulls, which were 

outliers with respect to the cleavage and blastocyst rates in both high and low 

fertility groups, i.e. high ERCR bulls with a low cleavage and blastocyst rates 

and low ERCR bulls with a high cleavage and blastocyst rates. These values 

influenced the means of both the H and L group, but, nevertheless, 

differences between the H and L groups were observed for cleavage rates for 

semen collected in the cool month. However, no differences between high 

and low fertility bulls were seen for in vitro blastocyst rate at 6 to 9 days of in 

vitro embryo development. These results are similar to those obtained for 
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NRR [22-24, 31-37]. This suggested that using a fertility index based such as 

ERCR, which estimates overall fertility and includes traits such as the milk 

production, may be not appropriate for predicting in vitro fertilization efficiency 

and early embryo development. Low fertility bulls may be associated with 

lower pregnancy rate for several reasons, e.g. through early embryonic loss, 

which is not routinely detected by breeders. Embryonic loss mostly occurs 

during the pre-implantation period of embryonic growth, between days 8 and 

16 and is considered to be the main factor influencing the reproductive 

success in cattle [39, 40]. However, the reasons of embryo mortality are not 

fully understood, and may be associated with errors in molecular 

programming, which can affect viability of developing embryos [41, 42]. The 

association between bull field fertility, which was assessed in a way similar to 

ERCR, and IVF success was recently associated DNA fragmentation in 

spermatozoa [43]: low fertility bulls have a relatively high number of DNA-

nicks. In these cases fertility can be addressed by increasing sperm 

concentration during IVF. In the present study, sperm was diluted as normally 

practiced for IVF. Using a large number of in vitro matured oocytes, 

differences were observed between H and L groups for cleavage rate 

following IVF. Bull fertility, estimated as ERCR, is poorley correlated with IVF 

success. Fertility may be affected by other factors, which were not considered 

in the present study and should be further investigated.  

Male fertility is affected by ambient temperature [44, 45], therefore the IVF 

rate of semen from the same bulls collected following the warmest and 

coolest months in Italy was compared to test for an effect of temperature 

stress on in vitro embryo development. Most species show seasonal 

variations in fertility, including ovulation frequency, spermatogenic activity, 

gamete quality, and also sexual behaviour [46]. Although highly selected 

breeds of cattle do not show significant reproduction seasonality [47, 48], they 

can be affected by heat stress, which may impact negatively on 

spermatogenesis [49, 50]. Summer temperatures may reach ~40°C and fall to 

0°C in winter in the Mediterranean area. The results presented here, however, 

indicate that in vitro fertilization and developmental competence of embryos is 

not affected by season of semen collection, and cleavage and blastocyst rates 

were similar for both high and low ERCR bulls in S and W. 
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In conclusion, the results indicate that semen of low fertility bulls, measured 

as ERCR, is as capable of fertilizing oocytes in vitro and to produce pre-

implantation blastocysts with the same quality and quantity as high fertility 

bulls. Indeed, the in vitro produced blastocysts were morphologically of good 

quality for both high and low fertility bulls (data not reported). Therefore, an 

alternative approach was explored to assess high vs low fertility.  

 

Part II. Profiling of blastocyst microRNAs from high and low 
blastocyst rate bulls using deep sequencing 

 

3.5. Material and Methods 

As the correlation between field fertility and in vitro embryo development was 

not found, the experimental design was changed and bulls were classified 

based on number of blastocysts produced in vitro using semen collected 

during the same period, in order to exclude the effect of season, to give the 

“Blastocyst rate”.  

 

3.5.1. RNA extraction 

Total RNA extraction was carried out using pool of 30 blastocysts for each 

sample using Allprep DNA/RNA/miRNA and RNA clean and concentrator-5 

procedures (described in chapter 2 par. 2.2.3.3. – procedure 3). Then, the 

RNA quality and quantity of each sample was assessed using RNA Pico Chip 

and a 2100 Agilent Bioanalyzer.  
 

3.5.2. Small RNA sequencing 

Library preparation and deep sequencing were carried out using the 

procedure set up in Chapter 2 (par 2.2.4.).  
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3.5.3. Bioinformatic and functional analysis 

Filtering of raw sequences, annotation and discovery of miRNAs were carried 

out according to the pipeline described in Chapter 2 (par 2.2.5.). 

Gene expression analysis was perfomed using the R package ‘EdgeR’ 

(http://bioconductor.org/packages/release/bioc/html/edgeR.html) in order to identify 

differentially expressed miRNAs. MiRNAs with log2 fold change differences ≥ 1, 

P-value ≤ 0.05 and False Discovery Rate (FDR) ≤ 0.1 were considered as 

significantly differentially expressed. The interaction between differentially 

expressed miRNAs and their target mRNAs was predicted using miRWalk 

2.0; a widely used web-based database to predict animal miRNA-target 

mRNA interactions [52]. A total of 6 prediction programs were combined into a 

pipeline for the analysis as follows: miRanda-rel2010 [53], PicTar2 [54], PITA 

[55], RNA22v2 [56], RNAhybrid2.1 [57] and Targetscan6.2 [58]. The lists of 

predicted target genes of individual miRNAs were imported to DAVID Bioinformatics 

systems; a freely available bioinformatic tool (http://david.abcc.ncifcrf.gov/). Gene 

ontology (GO) analysis was carried out using this tool to identify the most 

important enriched biological and cellular processes. The DAVID web-tool 

facilitated also the identification of the canonical signaling pathways 

significantly enriched with the predicted target genes of each miRNAs, which 

were then analyzed using Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) database [59]. To improve the functional meaning of the results, 

KEGG pathway analysis was also performed using DIANA miRPath v2.0 with 

homologous human miRNA and gene union options. DIANA miRPath uses 

predicted miRNA targets (in CDS or 3’-UTR regions) provided by the DIANA-

microT-CDS algorithm, or experimentally validated miRNA interactions 

derived from DIANA-TarBase v6.0 [60]. 

 

3.6. Results 

The distribution of bulls was based on their Day 7 blastocyst rate (graph 4). 

Two main categories were created depending on the blastocyst rate: high (≥ 
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25.1 %) and low (≤15.1 %) groups (figure 1). The high group (H group) 

differed significantly from low group (L group) (32.1 ± 4.5 vs 10.7 ± 4.8, 

P<0.01). The 3 extreme bulls of each category were chosen for small RNA 

sequencing and are indicated in the rest of the thesis as follows: bull 1 (H), 

bull 2 (B), bull 3 (C), as high blastocyst rate and bull 4 (A), bull 5 (E) and bull 6 

(G) as Low. 
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Figure 2. Distribution was carried out using Day 7 blastocyst rate of each bull. Mean 

value and standard error of mean (SEM, error bars) are depicted. 

 

3.6.1. Characterization of miRNA deep sequencing data 

To investigate the involvement of miRNAs in bovine sperm associated with a 

diverse blastocyst rate, 3 miRNA libraries of H and L blastocyst groups, 

respectively, were generated using total RNA from Day 7 IVP blastocysts. 

These were sequenced using the Illumina HiSeq2500 small RNA deep 

sequencing technology with 50 bases long sequence reads, i.e. raw reads, 

generated for bull1, bull2, bull3 (H group) and bull5, bull6 (L group). Bull 4 

sequencing failed and was excluded from data analysis. Accordingly, 24.6 

and 12.9 million reads, i.e. clean reads, were obtained after filtering of low 
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quality reads from libraries of the H and L group, respectively (table 4). Quality 

filtered sequence reads were used to identify known annotated and prediction 

of novel miRNAs. From all reads which passed the quality control criteria, 

18.2M reads in H group and 8.7M in L group were mapped to the bovine 

reference genome, comprising 74.1 % and 66.8 % of the total quality reads 

obtained, respectively. Furthermore, 549,090 reads in H group and 218,537 in 

L group were found to be similar to known bovine and human miRNAs 

reported in miRBase release 21.  

 

Table 4. Summary of sequence reads alignment to bovine reference genome and 

known miRNAs annotated in miRBase. 

 
Mapped reads (n)#

29298950

11992592

13412562

9506437

7850467

2.8

Bull 6 11468277 68.5 168995 2.2

Low blastocyst rate

Bull 5 14440423 65.8 268079

16085421 74.6 352711 2.9

Bull 3 18961284 70.7 381012 2.8

%know miRNA 
mapped reads

High blastocyst rate

Bull 1 38843847 75.4 913546 3.1

Bull 2

Bull group Sample ID* Filtered reads (n) % Mapped reads Known MiRNA 
mapped reads (n)§

 
*: Bull1, Bull2, Bull3 denote for biological triplicates of high blastocyst rate 
bulls and Bull5, Bull6 denote for biological triplicates of low blastocyst rate 
bulls. 
#: Number of quality filtered reads aligned to bovine reference genome 
(assembly UMD3.1).  
§ Proportion of mapped sequence reads aligned to known annotated miRNAs 
in miRBase release 21 
 

 

3.6.2. MiRNAs expressed in Day 7 embryos of H and L blastocyst rate 
bulls 

MiRNAs with at least 1 read count in at least two of the three biological 

replicates were considered as detected. Among the short RNAs that could be 

mapped to known bovine and human miRNA precursors, the most abundant 
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length was 22 nucleotides (nt) for both the H and L group, which corresponds 

with the expected miRNA size (Figure 3). 
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Figure 3. Length distribution (nucleotide = nt) of miRNA populations in low (a) and 

high (b) blastocyst rate bulls. 

 
 
A total of 692 and 377 known bovine and homologous human miRNAs were 

detected in H and L group, respectively, of which 283 miRNAs were in 

common between groups. However, 409 miRNAs including homologous 
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human hsa-miR-4755-5p and has-miR-548-3p were found to be specific to H 

group. While, 94 miRNAs were unique to L group (Graph 1). 

Many of the detected miRNAs were found in both the H and L groups. Among 

the top 10 abundantly expressed miRNAs in each group, 8 miRNAs (bta-miR-

10b, bta-miR-423, bta-miR-92a, bta-miR-191, bta-miR-378a, bta-miR-148a, 

bta-miR-192, bta-miR-22) were expressed in common in both H and L groups 

(table 5). Among these, bta-miR-10b and bta-miR-423 were the two most 

abundantly expressed miRNAs with a read count of 129,517 and 36,460 in H 

group and 47,775 and 21,813 in L group and accounting for 48.3 and 15.9% 

of the sequence reads aligned to known miRNAs, respectively. Nevertheless, 

the overwhelming majority of the detected miRNAs in both libraries had fewer 

than 50 read counts (data not shown). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graph 1. Comparison of known miRNAs, which were expressed in the blastocysts of 

H and L groups and were annotated in MiRBASE for human and cattle (Venn 

diagram; H group = high blastocyst rate bulls, B group = low blastocyst rate bulls). 

The Venn diagram was built using mean average read count of biological replicates. 

 

!
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Table 5. List of top 10 highly abundantly expressed miRNAs in high and low 

blastocyst rate bulls. 

High blastocyst rate bulls Low blastocyst rate bulls

miRNA ID Avarage read counts* miRNA ID Avarage read counts*

bta-miR-10b 129517 bta-miR-10b 47775

bta-miR-423-5p 36460 bta-miR-423-5p 21813

bta-miR-92a 51670 bta-miR-92a 25310

bta-miR-191 29438 bta-miR-191 11804

bta-miR-378 47152 bta-miR-378 16875

bta-miR-148a 23568 bta-mR-148a 7253

bta-miR-192 18989 bta-miR-22 5686

bta-miR-22 18735 bta-miR-192 5600

bta-miR-30d 11657 bta-miR-16b 4844

bta-miR-30e 11029 bta-miR-92b 4680  

 

 

 

 

3.6.3. MiRNAs gene expression and functional analysis 

Differential expression analysis revealed that 3 miRNAs were significantly 

differentially expressed between H and L blastocyst rate bulls. The expression 

level of these miRNAs, which were annotated for human in miRBase release 

21, was significantly reduced in the L group with respect to H group, e.g. Log2 

Fold Change (table 3). Moreover, 2 of these miRNAs (hsa-miR-4755-5p and 

hsa-miR-548d-3p) were expressed only in the blastocysts of H group. While, 

hsa-miR-1225-3p was expressed in the blastocysts of both groups. 
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Table 6. List of miRNAs down-regulated in Day 7 blastocysts of L group (miRNA ID, 

Fold change = Log2 Fold Change, P-value and FDR = False Discovery Rate).  

 

miRNA ID Fold Change p-value FDR

Novel:hsa-miR-4755-5p -10,5 <0.0001 0.0045

Novel:hsa-miR-548d-3p -10,1 0.0002 0.0372

Novel:hsa-miR-1225-3p -6,0 0.0002 0.0372
 

 

To understand the functional involvement of these miRNAs in bovine early 

embryo development, target genes of each differentially expressed miRNAs 

were predicted and used to determine the most significantly enriched GO 

biological functions and KEGG signaling pathways using DAVID. In addition, 

KEGG pathway analysis was also performed using miRPath v 2.0. 

First, gene ontology (GO) analysis on predicted target genes revealed that biological 

processes associated with transcription regulation, cellular biosynthetic processes, 

including nucleic acid metabolism, and cell and embryonic morphogenesis, were 

among the highly enriched GO terms (Table S3 – supplementary material). KEGG 

pathway analysis, which was performed using DAVID web-tool, identified 56 enriched 

canonical signaling pathways (Table S4 – supplementary material). These canonical 

pathways were grouped into classes based on functions and biological processes 

using the KEGG pathway database (http://www.genome.jp/kegg/pathway.html). 

Many of the pathways were associated with oncogenesis. The most enriched 

pathway was indeed that of cancer but there were tumor-specific enriched 

pathways including colorectal, melanoma and chronic myeloid leukemia, and 

general cancers including reproductive tissues and prostate cancers. The other 

enriched classes were linked to: 1) cellular processes, where the most 
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enriched pathways were those associated with cell adhesion (Regulation of 
actin cytoskeleton, Tight Junction and cell adhesion molecules (CAMs)) 
cell proliferation (MAPK signaling pathway) and cell survival and growth, 

(TGF-beta, apoptosis and neurotrophin pathways); 2) Cell communication 

(Endocytosis and calcium pathways); 3) cell metabolism (Insulin and 
phosphatidylinositol pathways). Finally, DIANA MirPath analysis was 

carried out using hsa-miR-4755-5p and hsa-miR-548d-3p simultaneously 

(table 7) and hsa-miR-1225-5p alone (table 8). 

 

 

 

Table 7. Kegg pathways from DIANA miRPath v 2.0, which were enriched by 

target genes of hsa-miR-4755-5p and hsa-miR-548d-3p. 

KEGG pathway p-value Target genes MiRNAs

ErbB signaling pathway (hsa04012) 0.0001389508
CAMK2D, ERBB2, 

SHC1, BTC hsa-miR-4755-5p, hsa-miR-548d-3p

Transcriptional misregulation in 
cancer (hsa05202) 0.001395331

HMGA2, CCND2, 
NCOR1, DDX5, 
PPARG, MEIS1

hsa-miR-4755-5p

African trypanosomiasis (hsa05143) 0.002354351 SELE, APOL1 hsa-miR-4755-5p

Ubiquitin mediated proteolysis (hsa04120) 0.005949636
RFWD2, UBA6, 
PARK2, BIRC2 hsa-miR-4755-5p

Apoptosis (hsa04210) 0.009663038
CSF2RB, IRAK1, 

BIRBC2 hsa-miR-4755-5p

Huntington's disease (hsa05016) 0.01833565
CREB5, AP2A2, 
PPARG, CNAQ, 

PPARGC1A, SDHD
hsa-miR-4755-5p

Ubiquinone and other terpenoid-quinone 
biosynthesis (hsa00130) 0.04608754 NQO1 hsa-miR-4755-5p
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Table 8. Kegg pathways from DIANA miRPath v 2.0, which were enriched by target 

genes of hsa-miR-1225-5p. 

KEGG pathway p-value Target genes MiRNAs

Protein processing in endoplasmic 
reticulum(hsa04141) 0.003416487 SSR1, DERL1, ERO1LB hsa-miR-1225-3p

Proteasome (hsa03050) 0.007827826 PSME4, IFNG hsa-miR-1225-3p

Amphetamine addiction (hsa05031) 0.009343598 CAMK4, GRIA4 hsa-miR-1225-3p

Biosynthesis of unsaturated fatty 
acids (hsa01040) 0.0284081 ELOVL2 hsa-miR-1225-3p

Type I diabetes mellitus (hsa04940) 0.0284081 IFNG hsa-miR-1225-3p

Protein digestion and absorption (hsa04974) 0.0284081 ATP1A4, DPP4 hsa-miR-1225-3p

Lysine degradation (hsa00310) 0.03504665 KMY2C hsa-miR-1225-3p

Graft-versus-host disease (hsa05332) 0.04021567 IFNG hsa-miR-1225-3p
 

 

 

 

 

 

 

 

 

Figure 4. ErbBB signaling pathway and predicted target genes of miR-4755-5p and 

miR-548d-3p. Target genes of miRNAs are indicated in yellow. 

!
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Figure 5. Protein processing in endoplasmatic reticulum pathway and predicted 

target genes of miR-1225-3p. Target genes of miRNAs are indicated in yellow. 

 

 

 

Figure 6. Gene network representation of interaction between the three differentially 

expressed miRNAs and their predicted target genes, which are important in 

blastocyst formation and differentiation processes. Three different hubs can be seen: 

5 genes (VASP, TGFBR1, FN1, LEP, RAD51B) are common target of miR-4755-5p 

and miR-1225-3p, while one gene (HAND1) is a common target between miR-4755-

5p and miR-548d-3p. 

!!
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3.7. Discussion 

In total, the three miRNAs which were the most significantly reduced in the 

group of bulls with low competent sperm associated with a lower in vitro 

blastocyst rate, have not been annotated in cattle and are novel homologous 

human. Moreover, they have not been previously described in regard to early 

embryogenesis. The results presented here suggest their involvement in 

bovine blastocyst development. Using miRPath v2.0 the most significant 

KEGG pathways associated with miR-4755-5p and miR-548d-3p (-10.1 and -

10.1 log2 Fold Change lower expression in low compared with high group), 

which were identified only in the blastocysts of high competent sperm, were 

predicted to regulate, the expression of genes involved in the ErbBB signaling 

pathway. This result is in agreement with findings in mice embryos where 

overxpression of ErBB signaling genes is associated to placental 

abnormalities and embryonic lethality [61]. An important gene involved in this 

molecular mechanism is ErBB1, expression of which is increased when 

placenta hyperplasia occurs [62]. Expression of this gene is strictly correlated 

to ErBB2 (figure 4), which is a predicted target of miR-548d. Furthermore, 

SHC1 activity, which is dependent on ErBB2, is a predicted target of miR-

4755-5p. The expression of this gene is used to assess blastocyst quality in 

cattle [63, 64]. As these miRNAs have higher expression in the high 

blastocyst competent sperm embryos, those of low competent sperm may 

have an higher expression of this gene, which is not what would be expected. 

Blastocysts obtained after fertilization using low competent sperm may have 

compromised expression of ErBB signalling, which may be associated to 

altered fetal developmental programming and overal survival.  

Expression of miR-1225-5p is reduced in blastocysts obtained from low 

competent sperm. This miRNA may reduce the expression of genes involved 

in protein degradation processes in the endoplasmic reticulum (ER, figure 5). 

Protein degradation, which is also reflected by an enrichment of byosinthetic 

processes in GO terms involving genes targeted by this miRNA, may be 

higher in embryos produced using low competent sperm. Alterations in ER 

protein processing have been recently associated with a higher sensitivity of 

early embryo to exogenous factors, which impact on epigenetic modifications, 
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including miRNAs levels and embryo survival [65]. Thus, the lower sperm 

competence may be associated with increased sensitivity of the embry to 

environmental factors. 

To improve the functional interpretation of the results, target prediction 

analysis was performed using miRWalk, which allows the combination of 

several gene prediction tools. This approach identified many other canonical 

pathways, which are known to be important in early embryo development, and 

which may be affected as a result of differences in miRNAs levels in the 

blastocysts. These pathways included: regulation of actin cytoskeleton, tight 

Junction and cell adhesion molecules (CAMs), MAPK, TGF-beta, apoptosis, 

neurotrophin, endocytosis, calcium, GnRH, insulin and phosphatidylinositol 

signaling pathway. All these are intracellular gene networks and are linked to 

cellular processes, which may affect embryonic development and 

differentiation. The Actin cytoskeleton pathway is reported to be essential for 

regulation of actin dynamics, which occur during processes of maturation and 

development in early embryogenesis [66]. Tight junction and cell adhesion 

molecules (CAMs) signaling pathways control cell interactions and are 

involved in blastocyst compaction, which is important for blastocele formation 

and consequent implantation [67, 68]. MAPK signals are involved in embryo 

development and reported to be important in pluripotency [69]. The inhibition 

of MAPK genes during early bovine embryogenesis is associated with 

incresed expression of NANOG, SOX2 and POU5F1 [70]. TGF-beta, 

apoptosis and neurotrophin signaling pathways are also important in 

controlling cell proliferation. Among these, TGF-beta signals have been 

reported to be critical for bovine embryo development. Increased expression 

of these genes is associated with degeneration of embryos [71]. In the results 

presented here blastocyts associated to a lower sperm competence may have 

overexpression of apoptotic signals. Endocytosis signals are reported to be 

important in pre-attachment development of bovine embryos. Indeed, 

induction of autophagic activity during early embryogenesis increases the 

blastocyst developmental rate [72]. Furthermore, autophagy is a negative 

regulator of ER stress in early embryos. This is in agreement with the results 

obtained here, where ER signals, which are associated to protein 

degradation, may be overexpressed in blastocysts obtained from low 
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competent sperm. Hence the embryos may be more sensible to stress fators. 

Calcium signals are important in several reproductive processes e.g. oocyte 

activation during fertilization in mouse [73], and interacts with other canonical 

pathways, including MAPK and apopotosis pathways, which are important as 

indicators of embryo quality. Calcium signalling may have a role during 

embryo development and blastocyst competence. Insulin and 

phosphatidylinositol signaling pathways are both important in cell metabolism. 

Loss of insulin repectors, such as IGFR1, which is a predicted target of miR-

548d, may have affect imprinted genes [74]. Finally, phosphatidylinositol 

signaling pathway, which has diverse effects on cell processes, may have a 

potential role in growth and survival of bovine blastocysts [75, 76]. 

Among all the predicted target genes of the differentially expressed  miRNAs, 

there were 22 genes,  which are known to be involved in blastocyst formation 

and developmental processes. Among these, 5 genes (VASP, TGFBR1, FN1, 

LEP, RAD51B) are predicted targets of miR-1225-3p and miR-4755-5p. While 

HAND1 is targetted by miR-4755-5p and miR-458d-3p (Figure 6). VASP is 

involved in conceptus elongation [77] and trophoblast invasion during 

implantation [78]. TGFBR1 may be important during gastrulation as is 

abundant in human epiblastic cells [79]. Fibronectin 1 (FN1) is also a 

candidate for gastrulation and implantation in bovine embryo [80]. LEP is an 

important autocrine signal for trophoblastic growth [81]. While, RAD51B plays 

a role in cell proliferation and early embryonic development [82]. Finally, 

HAND1 is associated with trophoblastic cell differentation also in cattle [83]. 

All these genes are implicated in embryo development and implantion 

processes, and some play a role in placenta development. Thus, changing the 

timing or levels of their expression may affect tardiver processes including 

implantation and placenta formation in the embryos. 

In conclusion, the results presented here identified miRNAs that are likely to 

be involved in the regulation of bovine embryo development through various 

gene targets and signaling pathways. Three of all the expressed miRNAs 

were differentially expressed between blastocysts produced using high and 

low competent sperms. These results suggest a paternal influence during 

early embryogenesis, which may impact on the developmental potential of the 

early embryos. Further studies will be necessary to confirm these data. A 
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focused study of the expression of miRNAs and together with their predicted 

target genes in early stages up to blastocyst from spermatozoa of different 

developmental potential will reveal the role of these small RNAs at fertilization 

through to zygote and morula. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	   86	  

3.8. References 

1. Sakkas D, Urner F, Bizzaro D, Manicardi G, Bianchi PG, Shoukir Y, 
Campana A. Sperm nuclear DNA damage and altered chromatin 
structure: effect on fertilization and embryo development. Hum Reprod. 
1998 Dec;13 Suppl 4:11-9. 

2. Braga DP, Setti AS, Figueira Rde C, Machado RB, Iaconelli A Jr, Borges 
E Jr. Influence of oocyte dysmorphisms on blastocyst formation and 
quality. Fertil Steril. 2013 Sep;100(3):748-54.  

3. Braga DP, Setti AS, Figueira RC, Iaconelli A Jr, Borges E Jr. The 
negative influence of sperm cryopreservation on the quality and 
development of the embryo depends on the morphology of the oocyte. 
Andrology. 2015 Jul;3(4):723-8.  

4. Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, Hotaling J, 
Carrell DT. Paternal influence of sperm DNA integrity on early embryonic 
development. Hum Reprod. 2014 Nov;29(11):2402-12.  

5. Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. 
Genome activation in bovine embryos: review of the literature and new 
insights from RNA sequencing experiments. Anim Reprod Sci. 2014 
Sep;149(1-2):46-58.  

6. Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. 
Genome activation in bovine embryos: review of the literature and new 
insights from RNA sequencing experiments. Anim Reprod Sci. 2014 
Sep;149(1-2):46-58. 

7. Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of 
bovine oocyte maturation, fertilization or early embryo development in 
vitro versus in vivo: implications for blastocyst yield and blastocyst 
quality. Mol Reprod Dev. 2002 Feb;61(2):234-48. 

8. Milazzotto MP, Feitosa WB, Paula-Lopes FF, Buratini J Jr, Visintin JA, 
Assumpção ME. The mechanism of oocyte activation influences the cell 
cycle-related genes expression during bovine preimplantation 
development. Cell Reprogram. 2012 Oct;14(5):418-24. 

9. Labrecque R, Sirard MA.  The study of mammalian oocyte competence 
by transcriptome analysis: progress and challenges. Mol Hum Reprod. 
2014 Feb;20(2):103-16.  

10. Krawetz SA. Paternal contribution: new insights and future challenges. 
Nat Rev Genet. 2005;6(8):633-42.   

11. Carrell DT. Contributions of spermatozoa to embryogenesis: assays to 
evaluate their genetic and epigenetic fitness. Reprod Biomed Online. 
2008;16(4):474-84.  

12. Matzuk MM, Lamb DJ. The biology of infertility: research advances and 
clinical challenges. Nat Med. 2008;14(11):1197-213.  

13. Barroso G, Valdespin C, Vega E, Kershenovich R, Avila R, Avendano C, 
et al. Developmental sperm contributions: fertilization and beyond. Fertil 
Steril. 2009;92(3):835-48.  

14. Sutovsky P, Schatten G. Paternal contributions to the mammalian 
zygote: fertilization after sperm-egg fusion. Int Rev Cytol. 2000;195:1-65. 
  



	   87	  

15. Ostermeier GC, Goodrich RJ, Moldenhauer JS, Diamond MP, Krawetz 
SA. A suite of novel human spermatozoal RNAs. J Androl. 
2005;26(1):70-4. 

16. Jenkins TG, Carrell DT. The paternal epigenome and embryogenesis: 
poising mechanisms for development. Asian J Androl. 2011;13(1):76-80. 
  

17. Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, Shi H, Xu Y, Qu R, Chai R, 
Shao R, Jin L, He L, Sun X, Wang L.nMiRNA-320 in the human follicular 
fluid is associated with embryo quality in vivo and affects mouse 
embryonic development in vitro. Sci Rep. 2015 Mar 3;5:8689.  

18. Goossens K, Mestdagh P, Lefever S, Van Poucke M, Van Zeveren A, 
Van Soom A, Vandesompele J, Peelman L. Regulatory microRNA 
network identification in bovine blastocyst development. Stem Cells Dev. 
2013 Jul 1;22(13):1907-20.  

19. Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, 
Schultz RM. MicroRNA activity is suppressed in mouse oocytes. Curr 
Biol. 2010 Feb 9;20(3):265-70.  

20. Fagerlind M, Stålhammar H, Olsson B, Klinga-Levan K. Expression of 
miRNAs in Bull Spermatozoa Correlates with Fertility Rates. Reprod 
Domest Anim. 2015 Aug;50(4):587-94.  

21. Gwazdauskas FC. Effects of climate on reproduction in cattle. J Dairy 
Sci. 1985 Jun;68(6):1568-78. 

22. Zhang BR, Larsson B, Lundeheim N, Rodriguez-Martinez H. 1997. 
Relationship between embryo development in vitro and 56-day 
nonreturn rates of cows inseminated with frozen-thawed semen from 
dairy bulls. Theriogenology 48:221±231.  

23. Zhang BR, Larsson B, Lundeheim N, Haard MGH, Rodriguez- Martinez 
H. Prediction of bull fertility by combined in vitro assessments of frozen-
thawed semen from young dairy bulls entering an AI programme. Int J 
Androl1999;22:253–60.  

24. Ward F, Rizos D, Corridan D, Quinn K, Boland M, Lonergan P. Paternal 
influence on the time of first embryonic cleavage post insemination and 
the implications for subsequent bovine em- bryo development in vitro 
and fertility in vivo. Mol Reprod Dev 2001;60:47–55. 

25. Phillips NJ, Mcgowan MR, Johnston SD, Mayer DG. Relationship 
between thirty post-thaw spermatozoal characteristics and the field 
fertility of 11 high-use Australian dairy AI sires. Anim Reprod Sci 
2004;81:47–61.  

26. Puglisi R, Pozzi A, Foglio L, Spanò M, Eleuteri P, Grollino MG, Bongioni 
G, Galli A. The usefulness of combining traditional sperm assessments 
with in vitro heterospermic insemination to identify bulls of low fertility as 
estimated in vivo. Anim Reprod Sci. 2012 May;132(1-2):17-28.  

27. Sellem E, Broekhuijse ML, Chevrier L, Camugli S, Schmitt E, Schibler L, 
Koenen EP. Use of combinations of in vitro quality assessments to 
predict fertility of bovine semen. Theriogenology. 2015 Jul 30.  

28. Clay, J. S., and B. T. McDaniel. 2001. Computing mating bull fertility 
from DHI non-return data. J. Dairy Sci. 84:1238–1245. 

29. Cornwell JM, McGilliard ML, Kasimanickam R, Nebel RL. Effect of sire 
fertility and timing of artificial insemination in a Presynch + Ovsynch 



	   88	  

protocol on first-service pregnancy rates. J Dairy Sci. 2006 
Jul;89(7):2473-8. 

30. Khatib H, Monson RL, Huang W, Khatib R, Schutzkus V, Khateeb H, 
Parrish JJ. Short communication: Validation of in vitro fertility genes in a 
Holstein bull population. J Dairy Sci. 2010 May;93(5):2244-9.  

31. Lonergan P. 1994. The application of in vitro fertilization techniques to 
the prediction of bull fertility. Reprod Dom Anim 29:12±21.  

32. Ward F, Rizos D, Boland MP, Lonergan P. Effect of reducing sperm 
concentration during IVF on the ability to distinguish between bulls of 
high and low field fertility: Work in progress. Theriogenology 
2003;59:1575– 84.  

33. Puglisi R, Krvavac L, Bonacina C, Galli A. In vitro competitive binding 
index using fluorochrome-labelled spermatozoa for predicting bull 
fertility. Zygote. 2010 Nov;18(4):281-91. 

34. Schneider CS, Ellington JE, Wright RW Jr. Relationship between bull 
field fertility and in vitro embryo production using sperm preparation 
methods with and without somatic cell co-culture. Theriogenology. 1999 
Apr 15;51(6):1085-98. 

35. Papadopoulos S, Hanrahan JP, Donovan A, Duffy P, Boland MP, 
Lonergan P.In vitro fertilization as a predictor of fertility from cervical 
insemination of sheep. Theriogenology. 2005 Jan 1;63(1):150-9. 

36. Vandaele L, Mateusen B, Maes D, de Kruif A, Van Soom A. Is apoptosis 
in bovine in vitro produced embryos related to early developmental 
kinetics and in vivo bull fertility? Theriogenology. 2006 Jun;65(9):1691-
703.  

37. Machatkova M, Horakova J, Hulinska P, Reckova Z, Hanzalova K. Early 
oocyte penetration can predict the efficiency of bovine embryo 
production in vitro. Zygote. 2008 Aug;16(3):203-9.  

38. Al Naib A, Hanrahan JP, Lonergan P, Fair S. In vitro assessment of 
sperm from bulls of high and low field fertility. Theriogenology. 2011 Jul 
1;76(1):161-7.  

39. Roche JF, Bolandl MP, McGeady TA. Reproductive wastage following 
artificial insemination of heifers. Vet Rec. 1981 Oct 31;109(18):401-4. 

40. Dunne LD, Diskin MG, Sreenan JM.Embryo and foetal loss in beef 
heifers between day 14 of gestation and full term.Anim Reprod Sci. 2000 
Feb 28;58(1-2):39-44. 

41. Kovac JR, Pastuszak AW, Lamb DJ.The use of genomics, proteomics, 
and metabolomics in identifying biomarkers of male infertility. Fertil 
Steril. 2013 Mar 15;99(4):998-1007. 

42. Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R. 
Basic concepts of epigenetics. Fertil Steril. 2013 Mar 1;99(3):607-15. 
2013 Jan 26.  

43. Erickson L, Kroetsch T, Anzar M. Relationship between sperm apoptosis 
and bull fertility: in vivo and in vitro studies. Reprod Fertil Dev. 2015 Mar 
13. 

44. Argov N, Sklan D, Zeron Y, Roth Z. Association between seasonal 
changes in fatty-acid composition, expression of VLDL receptor and 
bovine sperm quality. Theriogenology. 2007 Mar 1; 67(4):878-85. 

45. Maya-Soriano MJ, Taberner, Sabés-Alsina M, Ramon J, Rafel O, Tusell 
L, Piles M, López-Béjar M. Daily exposure to summer temperatures 



	   89	  

affects the motile subpopulation structure of epididymal sperm cells but 
not male fertility in an in vivo rabbit model. Theriogenology. 2015 
Aug;84(3):384-9. 

46. Chemineau P, Guillaume D, Migaud M, Thiéry JC, Pellicer-Rubio MT, 
Malpaux B. Seasonality of reproduction in mammals: intimate regulatory 
mechanisms and practical implications. Reprod Domest Anim. 2008 
Jul;43 Suppl 2:40-7.  

47. Oseni S, Misztal I, Tsuruta S, Rekaya R. Seasonality of days open in US 
Holsteins. J Dairy Sci. 2003 Nov;86(11):3718-25 

48. Drost M. Bubaline versus bovine reproduction. Theriogenology. 2007 
Aug;68(3):447-9.  

49. Pennarossa G, Maffei S, Rahman MM, Berruti G, Brevini TA, Gandolfi F. 
Characterization of the constitutive pig ovary heat shock chaperone 
machinery and its response to acute thermal stress or to seasonal 
variations. Biol Reprod. 2012 Nov 16;87(5):119.  

50. Purandhar K, Jena PK, Prajapati B, Rajput P, Seshadri S. 
Understanding the role of heat shock protein isoforms in male fertility, 
aging and apoptosis. World J Mens Health. 2014 Dec;32(3):123-32. 

51. R Development Core Team 2009 R: A Language and Environment for 
Statistical Computing. R Foundation for Statistical Computing, Vienna, 
Austria. 

52. Dweep, H., Sticht, C., Pandey, P. & Gretz, N. miRWalk--database: 
prediction of possible miRNA binding sites by "walking" the genes of 
three genomes. J Biomed Inform 44, 839-47 (2011). 

53. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive 
modeling of microRNA targets predicts functional non-conserved and 
non-canonical sites. Genome Biol 11, R90 (2010). 

54.  Anders, G. et al. doRiNA: a database of RNA interactions in post-
transcriptional regulation. Nucleic Acids Res 40, D180-6 (2012). 

55.  Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of 
site accessibility in microRNA target recognition. Nat Genet 39, 1278-84 
(2007). 

56. Loher, P. & Rigoutsos, I. Interactive exploration of RNA22 microRNA 
target predictions. Bioinformatics 28, 3322-3 (2012). 

57.  Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and 
effective prediction of microRNA/target duplexes. RNA 10, 1507-17 
(2004). 

58. Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian 
mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105 
(2009). 

59. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. KEGG: Kyoto 
Encyclopedia of Genes and Ge- nomes. Nucleic Acids Res. 1999; 27: 
29–34.  

60. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, 
Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, 
Hatzigeorgiou AG. DIANA miRPath v.2.0: investigating the combinatorial 
effect of microRNAs in pathways. Nucleic Acids Res. 2012 Jul;40(Web 
Server issue):W498-504. 



	   90	  

61. Dackor J, Li M, Threadgill DW. Placental overgrowth and fertility defects 
in mice with a hypermorphic allele of epidermal growth factor receptor. 
Mamm Genome. 2009 Jun;20(6):339-49. 

62. Dackor J, Strunk KE, Wehmeyer MM, Threadgill DW. Altered trophoblast 
proliferation is insufficient to account for placental dysfunction in Egfr null 
embryos. Placenta. 2007 Nov-Dec;28(11-12):1211-8.  

63. Goovaerts IG, Leroy JL, Rizos D, Bermejo-Alvarez P, Gutierrez-Adan A, 
Jorssen EP, Bols PE. Single in vitro bovine embryo production: coculture 
with autologous cumulus cells, developmental competence, embryo 
quality and gene expression profiles.  Theriogenology. 2011 Oct 
15;76(7):1293-303.  

64. Arias-Alvarez M, García-García RM, Rebollar PG, Gutiérrez-Adán A, 
López-Béjar M, Lorenzo PL. Ovarian response and embryo gene 
expression patterns after nonsuperovulatory gonadotropin stimulation in 
primiparous rabbits does. Theriogenology. 2013 Jan 15;79(2):323-30.  

65. Mtango NR, Latham KE, Sutovsky P. Deubiquitinating enzymes in 
oocyte maturation, fertilization and preimplantation embryo 
development. Adv Exp Med Biol. 2014;759:89-110.  

66. Rawe VY, Payne C, Schatten G. Profilin and actin-related proteins 
regulate microfilament dynamics during early mammalian 
embryogenesis. Hum Reprod. 2006 May;21(5):1143-53. 

67. Miller DJ, Eckert JJ, Lazzari G, Duranthon-Richoux V, Sreenan J, Morris 
D, Galli C, Renard JP, Fleming TP. Tight junction messenger RNA 
expression levels in bovine embryos are dependent upon the ability to 
compact and in vitro culture methods. Biol Reprod. 2003 Apr;68(4):1394-
402. 

68. Bai R, Bai H, Kuse M, Ideta A, Aoyagi Y, Fujiwara H, Okuda K, Imakawa 
K, Sakurai T. Involvement of VCAM1 in the bovine conceptus adhesion 
to the uterine endometrium. Reproduction. 2014 Aug;148(2):119-27.  

69. Harris D, Huang B, Oback B. Inhibition of MAP2K and GSK3 signaling 
promotes bovine blastocyst development and epiblast-associated 
expression of pluripotency factors. Biol Reprod. 2013 Mar 28;88(3):74.  

70. Brinkhof B, van Tol HT, Groot Koerkamp MJ, Riemers FM, IJzer SG, 
Mashayekhi K6, Haagsman HP, Roelen BA. A mRNA landscape of 
bovine embryos after standard and MAPK-inhibited culture conditions: a 
comparative analysis. BMC Genomics. 2015 Apr 10;16:277.  

71. Li G, Khateeb K, Schaeffer E, Zhang B, Khatib H. Genes of the 
transforming growth factor-beta signalling pathway are associated with 
pre-implantation embryonic development in cattle. J Dairy Res. 2012 
Aug;79(3):310-7.  

72. Song BS, Yoon SB, Kim JS, Sim BW, Kim YH, Cha JJ, Choi SA, Min 
HK, Lee Y, Huh JW, Lee SR, Kim SH, Koo DB, Choo YK, Kim HM, Kim 
SU, Chang KT. Induction of autophagy promotes preattachment 
development of bovine embryos by reducing endoplasmic reticulum 
stress. Biol Reprod. 2012 Jul 1;87(1):8, 1-11.  

73. Gonzalez-Garcia JR, Bradley J, Nomikos M, Paul L, Machaty Z, Lai FA, 
Swann K. The dynamics of MAPK inactivation at fertilization in mouse 
eggs. J Cell Sci. 2014 Jun 15;127(Pt 12):2749-60. 

74. Boucher J, Charalambous M, Zarse K, Mori MA, Kleinridders A, Ristow 
M, Ferguson Smith AC, Kahn CR. Insulin and insulin-like growth factor 1 



	   91	  

receptors are required for normal expression of imprinted genes. Proc 
Natl Acad Sci U S A. 2014 Oct 7;111(40):14512-7.  

75. O'Neill C, Li , Jin XL Survival signalling in the preimplantation embryo. 
Adv Exp Med Biol. 2015;843:129-49.  

76. Quinlan LR. Phosphoinositides, inositol phosphates, and phospholipase 
C in embryonic stem cells. Methods Mol Biol. 2006;329:127-49. 

77. Disanza A, Bisi S, Winterhoff M, Milanesi F, Ushakov DS, Kast D, 
Marighetti P, Romet-Lemonne G, Müller HM, Nickel W, Linkner J, 
Waterschoot D, Ampè C, Cortellino S, Palamidessi A, Dominguez R, 
Carlier MF, Faix J, Scita G. CDC42 switches IRSp53 from inhibition of 
actin growth to elongation by clustering of VASP. EMBO J. 2013 Oct 
16;32(20):2735-50.  

78. Kayisli UA, Selam B, Demir R, Arici A. Expression of vasodilator-
stimulated phosphoprotein in human placenta: possible implications in 
trophoblast invasion. Mol Hum Reprod. 2002 Jan;8(1):88-94. 

79. Blakeley P, Fogarty NM, Del Valle I, Wamaitha SE, Hu TX, Elder K, 
Snell P, Christie L, Robson P, Niakan KK. Defining the three cell 
lineages of the human blastocyst by single-cell RNA-seq. Development. 
2015 Sep 15;142(18):3151-65.  

80. Goossens K, Van Soom A, Van Zeveren A, Favoreel H, Peelman LJ. 
Quantification of fibronectin 1 (FN1) splice variants, including two novel 
ones, and analysis of integrins as candidate FN1 receptors in bovine 
preimplantation embryos. BMC Dev Biol. 2009 Jan 6;9:1.  

81. Pérez-Pérez A, Gambino Y, Maymó J, Goberna R, Fabiani F, Varone C, 
Sánchez-Margalet V. MAPK and PI3K activities are required for leptin 
stimulation of protein synthesis in human trophoblastic cells. Biochem 
Biophys Res Commun. 2010 Jun 11;396(4):956-60.  

82. Shu Z, Smith S, Wang L, Rice MC, Kmiec EB. Disruption of 
muREC2/RAD51L1 in mice results in early embryonic lethality which can 
Be partially rescued in a p53(-/-) background. Mol Cell Biol. 1999 
Dec;19(12):8686-93. 

83. Huang X, Han X, Uyunbilig B, Zhang M, Duo S, Zuo Y, Zhao Y, Yun T, 
Tai D, Wang C, Li J, Li X, Li R. Establishment of bovine trophoblast 
stem-like cells from in vitro-produced blastocyst-stage embryos using 
two inhibitors. Stem Cells Dev. 2014 Jul 1;23(13):1501-14.  

 
	  

	  

	  

	  

	  

	  

	  

	  



	   92	  

CHAPTER 4 

Identification of microRNAs as biomarkers of 
competent oocytes  

4.1. Introduction 
Cows with a low antral follicle count (AFC) have reduced fertility, a poor 

response to superovulation, low circulating concentrations of progesterone [1] 

and poor pregnancy rate [2]. Indeed, the number of mid-antral follicles of 2-6 

mm in diameter, which is used to assess AFC, is negatively correlated with 

several ovarian traits [3]. Low AFC ovaries are small, have poor 

vascularization [4] and few healthy follicles. However, follicular fluids from low 

AFC ovaries have high levels of ovarian hormones, including Growth 

Hormone (GH) and Progesterone (P4) [5]. These factors result in low ovarian 

function and poor quality oocytes, which have low developmental [6,7].  

Previous studies indicate that reduced oocyte developmental competence 

may be the consequence of vascular defects and reduced nitric oxide (NO) 

availability. NO elicits a wide spectrum of intracellular effects and can be 

stimulatory or inhibitory during oocyte maturation depending on the 

concentration [4]. The poor quality oocytes from low AFC ovaries have a high 

frequency of chormosomal mutations, which have been associated with 

alterations in the localization of Progesterone Receptor Membrane 

Component 1 and Aurora Kinase B [8]. The molecular mechanisms affecting 

the developmental competence oocytes are unknown, however, in humans 

[9], mice [10] and cattle [11], it has been shown that it is the final period of 

oocyte growth where developmental potential is gained [30]. MicroRNAs 

(miRNAs), which are involved in ovarian function, are found in the diverse 

compartments of ovarian follicles, including granulosa cells [12, 13], theca 

cells [14], follicular fluid and oocyte itself [15]. The role of miRNAs during 

follicle development has been studied in humans [16-18], mice [19, 20], cattle 

[21-23], pigs [24, 25] and horses [26]. These studies suggest that the miRNAs 

may regulate cellular differentiation processes, which occur during follicular 
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development in a defined spatio-temporal manner. In cattle, follicular fluid 

miRNAs were found to change during folliculogenesis [27]. Moreover, they 

were found both free and associated with exosomes, the latter may facilitate 

transport of specific miRNAs into follicular cells [21].  

Dynamic changes in miRNA expression have been described during oocyte 

maturation, where a large proportion of maternal genes are directly or 

indirectly under the control of miRNAs [28]. However, in normal condition, 

miRNA activity seems to be reduced in fully grown oocytes, although their 

biogenesis is unaffected and their mRNA targets are present [29]. Therefore, 

reducing miRNA activity may be associated with acquisition of developmental 

competence, and miRNAs may not be required until the zygotic genome 

activation is completed and the pluripotency program, which also controls 

miRNA expression [67], is established. 

The goal of the present study was to unravel some of the molecular pathways 

regulated by miRNAs, which are associated with oocyte developmental 

competence.  

 

4.2. Materials and methods 
4.2.1. Follicular fluid and oocyte collection 
Ovaries were obtained from a local abattoir and were transported to the 

laboratory in warmed (27-30°C) Dulbecco Phospate Buffered Saline (PBS). 

Ovaries with more than 10 follicles of 2-6 mm in diameter and a dominat 

follicles (>8 mm) were assigned to high Antral Follicle Count group (H group), 

while those with less than 10 follicles of 2-6 mm were classified as low AFC 

group (L group). The classification did not take into account corpus luteum as 

suggested in previous studies [3, 6].  

Follicles were aspirated using a 19-gauge needle and both follicular fluids and 

cumulus-oocyte complexes (COC) were pooled according to the classification 

into 50 mL Falcon tubes, which were warmed at 38.8°C. Blood cells and 

debris were removed from the follicular fluids by centrifugation at 10 minutes 

at 1500 g and were then stored at -80° C. 
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Cumulus-oocyte complexes (COCs), which had sedimented to the bottom of 

tube, were identified using a stereomicroscope and COCs that were medium 

brown in color with five or more complete layers of cumulus cells were 

collected [31]. Oocyte denuding was carried out by incubating COCs in 

modified PBS (supplemented with 36 µg/L pyruvate and 50 µg/mL 

gentamycin), and 0.5 mg/mL BSA (Sigma Aldrich, fraction V, A-9647, USA) 

with 100 UI/mL hyaluronidase (Sigma Aldrich, H3757, USA) for 3 minutes and 

then mechanically pipetting. Pools of 10 denuded oocytes were stored at -80° 

C. 

 

4.2.2. Progesterone (P4) quantification 

 
Progesterone (P4) in follicular fluids was determined in undiluted samples 

using a competitive enzyme immunoassay. An in-house produced anti-P4 

monoclonal antibody was used as capture antibody and progesterone-11-HS-

HRP (Fitzgerald Industries International, Concord, MA) as labeled hormone. 

The procedure was carried out as described by Borromeo and colleagues [32] 

and was determined in 5 biological replicates of folicular fluid from good and 

poor AFC sampled on different slaughter days, concomitantly with follicular 

fluid and oocyte collection. Statistical analysis was performed by T-student 

test. P-values less than 0.05 were considered to be statistically significant.  

 

4.2.3. Determination of oocyte mithocondrial activity	  

Mitochondrial activity was determined by staining oocytes with two mitotracker 

probes (Invitrogen by Life Technologies, Carlsbad, CA, USA): MitoTracker FM 

Green (MTG), which allows the analysis of relative mitochondrial activity 

because it stains all mitochondria without distinguishing them according to the 

membrane potential (Δψ), and MitoTracker Orange CMTMRos (MTO), which 

stains only active mitochondria. 

Briefly, denuded oocytes, which were obtained as indicated above (par. 

4.2.1.), were incubated in 0.4 % PBS/BSA (Sigma Aldrich, fraction V, A-9647, 

USA) to which 280 nM MTG, 200 nM MTO and 5 µg/µl Hoechst 33452 were 
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added and they were then incubated for 30 minutes at 38.8°C with 5% CO2 in 

air and maximum humidity. The oocytes were then washed three times in 

PBS/polyvinylpyrrolidone (PVP), mounted on slides and were observed using 

an epifluorence microscope (Axio scope A1, ZEISS) at specific wavelengths 

for MTG (488 nm), MTO (546 nm) and Hoechst (380 nm) dyes.  

Mitochondrial activity was estimated as the MTO/MTG Ratio using digital 

images of both mitotracker probes obtained at the same exposure time. 

Quantification of fluorescence was carried out using ImageJ. All experiments 

were repeated 5 times on different slaughter days. Statistical differences were 

analyzed using a T-student test. P-values less than 0.05 were considered to 

be statistically significant.  

 

4.2.4. Small RNA extraction from follicular fluids 

MiRNAs were extracted from three pools of 300µl of follicular fluid from H and 

L groups using Nucleospin MiRNA plasma (MACHEREY-NAGEL GmbH & 

Co. KG,  Germany), which is specific for biofluid small RNA extraction, 

following the manufacturer’s instructions. The high AFC group samples are 

indicated in the rest of the chapter as: FF1, FF2 and FF3 and the low group 

samples as FF4, FF5 and FF6. 

 

4.2.5. Total RNA extraction from oocytes 

Total RNA extraction was performed from three pools of 30 oocytes from H 

and L groups and processing procedure 2 (see Chapter 2, par. 2.2.3.1.). RNA 

quality and quantity of each sample was assessed using a RNA Pico Chip 

and a 2100 Agilent Bioanalyzer. The samples are indicated as: Ovo1, Ovo2 

and Ovo3 for the H group and Ovo4, Ovo5 and Ovo6 for the L group. 

 

4.2.6. Small RNA sequencing	  

Library preparation and deep sequencing were carried out for both follicular 

fluid and oocyte RNA samples using the procedure described in Chapter 2 

(par 2.2.4.). Libraries from follicular fluids and oocytes were sequenced into 
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two lanes of an Illumina HiSeq2500 using a 50 bases long sequence read 

module.  

 

4.3.7. Bioinformatic and functional analysis	  

Filtering of raw sequences, annotation and discovery of miRNAs were carried 

out according to the pipeline described in Chapter 2 (Chapter 2, par. 2.2.5.). 

Gene expression analysis was perfomed using the R package ‘EdgeR’ 

(http://bioconductor.org/packages/release/bioc/html/edgeR.html) to identify differentially 

expressed miRNAs. MiRNAs with log2 fold change differences ≥ 1, P-value ≤ 

0.05 and False Discovery Rate (FDR) ≤ 0.1 were considered as statistically 

differentially expressed. The interaction between differentially expressed 

miRNAs and their target mRNAs was predicted using two procedures:  

 

1) miRWalk 2.0; a widely used web-based database to predict animal miRNA-

target mRNA interactions [33]. In total 6 prediction programs were combined 

into a pipeline for the analysis as follows: miRanda-rel2010 [34], PicTar2 [35], 

PITA [36], RNA22v2 [37], RNAhybrid2.1 [38] and Targetscan6.2 [39]. The lists 

of predicted target genes of individual miRNAs were imported to DAVID Bioinformatics 

systems; a freely available bioinformatic tool (http://david.abcc.ncifcrf.gov/). Gene 

ontology (GO) analysis was carried out using this tool to identify most 

important enriched biological and cellular processes. The DAVID web-tool 

facilitated the identification of the canonical signaling pathways significantly 

enriched with the predicted target genes of each miRNAs, which were then 

analyzed using Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

database [40].  

 

2) DIANA miRPath v2.0 using homologous human miRNA and gene union 

options. DIANA miRPath predicts miRNA targets (in CDS or 3’-UTR regions) 

provided by the DIANA-microT-CDS algorithm, or experimentally validated 

miRNA interactions derived from DIANA-TarBase v6.0 [41]. This information 

is used by DIANA miRPath for KEGG pathway analysis. Only the canonical 

pathways with P-value <0.01 were chosen and the predicted target genes of 

miRNAs from these pathways were taken into account for GO analysis and 
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gene interactions, which were performed using ClueGo plugin into Cytoscape 

V 3.2.1 [42].	  

	  
	  
	  
	  
	  
	  
	  

4.3. Results 
4.3.1. Mithocondrial activity and P4 quantification 	  

To assess the overall mitochondria activity, 26 Germinal vesicle (GV) oocytes 

of L group and 29 of H group were immunostained and the MTO/MTG Ratio 

was calculated in order to evaluate overall activity of mithocondria (Table 1b 

and figure 2). In particular, all the GV oocytes were similar in their 

developmental stage as they had a GV2-GV3 chromatin configuration of 

nucleus (Figure 2) [43, 44]. But, the GV oocytes of L group seem to have a 

lower activity of mithocondria. Indeed, these oocytes had a lower MTO/MTG 

ratio than those of H group (Table 1(b): 1.0 ± 0.1 versus 1.4 ± 0.1, 

respectively, P<0.05). Furthermore, Follicular fluids, which were collected 

from L group, had higher P4 concentration (ng/mL) than those of H group 

(Table 1(a): 85.1 ± 28.5 versus 51.7 ± 21.9, respectively, P<0.05).  
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Table 1. (a) P4 quantification of follicular fluids from L and H Antral Follicle Count 

ovaries. Data are represented as mean value ± Standard Error of Mean (SEM); (b) 

MTO/MTG ratio between H and L group oocytes. Data are represented as mean 

value ± Standard Error of Mean (SEM). 
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Figure 2. Images of an L (a) and H (b) group oocyte after MTO, MTG and 

HOECHST 33452 staining. 1) real image of the oocyte 2) mitotracker Orange image 

which, was acquired at 546 nm length ; 3) mitotracker green image, which was 

acquired at 488 nm length; 4) Hoechst 33452 image, which was acquired at 380 nm.  

MTO and MTG probes bind to the mitochondria and allow the evaluation of 

mitochondria activity. Hoechst 33452 binds DNA and allows the determination of 

developmental stage of the oocyte associated with the nuclear chromatin 

configuration [43, 44]. 

	  
	  

4.3.2. Characterization of miRNA deep sequencing data	  

To investigate the miRNAs associated with oocyte developmental 

competence, 3 miRNA libraries of L and H groups were generated using RNA 

from follicular fluids and oocytes. After filtering of low quality reads 13.7M 

(95.8 %) and 15.2M (95.7 %) reads were mapped to the bovine reference 

genome from follicular fluid libraries of the L and H groups, respectively (Table 

2a) and 71.3M (94.8 %) and 47.1M (91.9 %) reads from oocyte libraries of L 

and H group, respectively (Table 2b). Quality filtered sequence reads were 

used to identify annotated human and bovine miRNAs present in miRBase 

release 21. For all reads which passed the quality control criteria from the 

follicular fluid libraries, 6.0M and 3.9M from L and H groups, respectively, 
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were found to be similar to known bovine or human miRNAs, comprising 

45.8% and 25.5% of the total quality reads obtained. For oocyte libraries 2.3M 

(3.2%) and 1.1M (2.4%) of L and H groups, respectively, were mapped to 

known bovine or human miRNAs. 

 

 

Table 2. Summary of sequence reads aligned to bovine reference genome and 

known miRNAs annotated in miRBase for follicular fluid (a) and oocyte (b) samples. 

	  

95.9

3600075

515234

37.9FF6

Low group

3500296 9078429 95.6

47.4

FF5 3500296 3337883 1100184 31.4

FF4 28014477 26861734

95.4

17896115 95.9 3593507 19.2

FF3 18668263 19745922 95.9

13280007

27.6

%know miRNA 
mapped reads

High group

FF1 10456471 9968593 95.3 2932009 28.0

FF2 18668263

Antral Follicle count group Sample 
ID*

Filtered 
reads (n)

Mapped 
reads (n)#

% 
Mapped 

reads

Known MiRNA 
mapped reads 

(n)§

2321895 2.7

3.0

OVO5 51264984 48621998 94.8 1914506 3.7Low group

OVO4 89670665 84988590 94.8 2681559

OVO6 84609787 80227468 94.8

OVO3 58196435 54283950 93.3 1673109 2.9

729050 1.8

OVO2 55537666 50589909 91.1 1024431 1.8

Antral Follicle count group Sample 
ID*

Filtered 
reads (n)

Mapped 
reads (n)#

% 
Mapped 

reads

Known MiRNA 
mapped reads 

(n)§

%know miRNA 
mapped reads

High group

OVO1 40099509 36547022 91.1

(a) 

(b) 

	  
*: FF1, FF2, FF3, OVO1, OVO2 and OVO3 denote for biological triplicates of 
Follicular fluid and oocyte from high group and FF4, FF5, FF6, OVO4, OVO5, OVO6 
denote for biological triplicates of follicular fluid and oocyte from low group. 
#: Number of quality filtered reads aligned to bovine reference genome (assembly 
UMD3.1).  
§ Proportion of mapped sequence reads aligned to known annotated miRNAs in 
miRBase release 21 
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4.3.3. MiRNAs expressed in follicular fluids and oocytes 	  

MiRNAs with as least 1 read in at least two of the three biological replicates 

were considered as detected. Among the short RNAs that could be mapped to 

known bovine and human miRNA precursors, the most abundant length was 

23 nucleotides (nt) for both follicular fluid (a) and oocyte miRNAs (b) of L and 

H group, which corresponds with mature miRNA size (Figure 3). 
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Figure 3. Length distribution (nucleotide = nt) of miRNA populations in follicular fluid 

(a) and oocyte (b) miRNAs from L and H groups, respectively. 

 
 
Annotation of miRNA sequences with miRDeep identified 1236 known 

miRNAs, across follicular fluid and oocyte samples (Graph 3). The mean 

number of follicular fluid miRNAs was similar between L and H groups, which 

were on average 497 ± 85 in L and 520 ± 22 in H (P>0.05), of which 203 were 



	   102	  

in common. The mean number of miRNA expressed in oocytes was higher in 

the L group with respect to the H group: 373 ± 12 vs 285 ± 36 (P<0.05), 

respectively, of these 301 were in common between the groups. Moreover, 

follicular fluids and oocytes of H group (P<0.0001) had a different mean 

number of expressed miRNAs, which was not different between follicular 

fluids and oocytes of L group (P>0.05).  

The miRNAs bta-miR-10b, bta-miR-27b, bta-miR-143 and bta-miR-22 were 

the abundantly expressed in follicular fluids of both L and H groups; of these 

miRNA bta-miR-10b had the highest level of expression with a read count of 

3.0M in L and 1.5M in H groups; accounting for 50.1% and 39.2% of the 

sequence reads aligned to known miRNAs, respectively. The miRNAs bta-

miR-10b, bta-miR-92a and a miRNA with the human homologue hsa-miR-

6509-3p had the highest level of expression in the oocytes of L and H groups. 

Bta-miR-10b was the most abundant with a read count of 1.7 M in L and 

758,461 in H group, which represented the 32.3% and 66.4% of the mapped 

reads to known miRNAs, respectively. Moreover, hsa-miR-6509-3p and hsa-

miR-513c-5p, which were only annotated for human, were abundantly 

expressed in the oocytes of both H and L groups. In particular, the reads of 

hsa-miR-6509-3p accounted the 8.5% and 9.7% in L and H groups, 

respectively, while those of hsa-miR-513c-5p were represented by 1.0 % in L 

and 1.2 % in H group. 

Apart from these highly expressed miRNAs, tthe majority of annotated 

miRNAs had fewer than 50 reads (data not shown). Among the top 10 

abundantly expressed miRNAs in each group, 4 miRNAs (bta-miR-10b, bta-

miR-423, bta-miR-22 and bta-miR-148) were expressed in both follicular fluids 

and oocytes of L and H groups (Table 3 and 4). 
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Graph 3. Venn diagram. Comparison of common known and homologous human 

miRNAs between High (H) group and Low (L) group of both follicular fluid and oocyte 

samples. 

 

 

 

Table 3. List of Top 10 highly abundantly expressed miRNAs in follicular fluids of L 

and H groups. 

Follicular fluid miRNAs in L group Follicular fluid miRNAs in H group

miRNA ID Avarage read counts* miRNA ID Avarage read counts*

bta-miR-10b 3007349 bta-miR-10b 1519637

bta-miR-27b 519897 bta-miR-27b 399262

bta-miR-143 389404 bta-miR-22 248940

bta-miR-22 324146 bta-miR-143 223850

bta-miR-423 124454 bta-miR-30a 101416

bta-miR-148a 118611 bta-miR-25 96767

bta-miR-21 97675 bta-miR-30e 83203

bta-miR-30a 79320 bta-miR-186 70867

bta-miR-25 71122 bta-miR-148a 66214

bta-miR-378 62790 bta-miR-423 53478  
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Table 4. List of Top 10 highly abundantly expressed miRNAs in oocytes of L and H 

groups. 

Oocyte miRNAs in L group Oocyte miRNAs in H group

miRNA ID Avarage read counts* miRNA ID Avarage read counts*

bta-miR-92a 1693243 bta-miR-10b 758461

bta-miR-10b 1497538 Novel:hsa-miR-6509-3p 110264

Novel:hsa-miR-6509-3p 195705 bta-miR-92a 44550

bta-miR-26a 106697 bta-miR-423 20994

bta-miR-22 57394 bta-miR-148a 17476

bta-miR-423 49303 bta-miR-22 17175

bta-miR-148a 45677 Novel:hsa-miR-513c-5p 14042

bta-miR-27b 23421 bta-miR-16b 10557

Novel:hsa-miR-513c-5p 23310 bta-miR-92b 9352

bta-miR-30d 14527 Novel:hsa-miR-4446-5p 9315  
 

 

 

4.3.4. Differential expression of follicular fluid miRNAs in L and H group	  

Comparison of the expression level of miRNAs between L and H groups in the 

follicular fluids identified 66 differentially expressed miRNAs. The majority of 

the annotated miRNAs were expressed in follicular fluids of both L and H 

groups (data not shown; P≤0.05 and FDR≤ 0.1). Among the differentially 

expressed miRNAs, there were 50 with a reduced and 16 with increased level 

of expression in the group of low antral follicle count ovaries with respect to 

those with an high antral follicle count (Table S5 – supplementary material). 

Some of these miRNAs were clusters located in the same chomosomal region 

and may be co-regulated; these included: miR-450a and miR-450b, miR-99a 

and let-7c, miR-24-3p and miR-195, miR30c and miR-30a, miR-18a and miR-

92a. The Log2 fold change values in L group ranged from -2.71 (bta-miR-885) 

up to -4.11 (bta-miR-150).  
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4.3.5. Differential expression of oocyte miRNAs in L and H group	  

Analysis of H and L group oocytes identified 6 miRNAs which were 

differentially expressed (P ≤0.05 and FDR ≤ 0.1). Among these miRNAs, five 

had higher expression in the L group (bta-mir-145, bta-mir-150, bta-mir-342, 

bta-mir-450b and bta-mir-380) and one (bta-miR-10a) had lower expression 

with respect to H group. Interestingly, three of differentially expressed 

miRNAs (bta-miR-10a, bta-miR-150 and bta-miR-450b) in the oocytes were 

also differentially expressed between follicular fluids of H and L groups, but 

with inverse expression, i.e. the miRNA, with increased expression in the 

oocyte of L group, was reduced in the L group follicular fluid and viceversa. 

The Log2 fold change values in L group ranged from -1.62 (bta-miR-10a) up to 

9.51 (bta-miR-145). 

 

4.3.6. Prediction of novel bovine miRNAs in follicular fluids and oocytes	  

The small RNA sequences were used to identify known annotated miRNAs 

present in the oocytes and follicular fluids and also to identify novel miRNA 

sequences. Potential novel miRNAs were identified using miRDeep2 software 

and, only when the sequences were identified into two of the three biological 

replicates of L and H groups of both follicular fluids and oocytes with at least 1 

read count, they were considered to be a putative novel miRNAs. There were 

708 putative novel miRNAs identified. These sequences were searched 

against miRBase release 21 to identify homologous known annotated 

matured miRNAs, and BLASTN tool (www.ensembl.org) was used to identify 

the genomic location. Only one sequence (novel_2_53382) had some 

similarity to the bta-miR-2285 family, even though this sequence was not 

annotated in miRBase release 21 (Figure 4), in addition it aligned with a 

different chromosomal region from mir-2285 family (Table 5). Thus, indicating 

that it may be a novel miRNA which may belong to that miRNA family. 

Genomic context analysis of these predicted novel miRNAs revealed that 5 

novel miRNAs were transcribed from intergenic region, 3 from intronic region 

of transcripts (BCAT2, COPG2 and GART) and one other from exonic region 

of the ZNF358 gene (Table 5). Of the novel miRNAs identified, 7 were 

differentially expressed in follicular fluids and 2 in oocytes. 
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Table 5. Putative novel miRNAs expressed in follicular fluids and oocytes of L and H antral follicle count ovaries.  

 

Sample type

Provisional 
Matured miRNA 

miRNA ID 
Sequence 

Mature miRNA sequence genomic coordinates and 
strand of miRNA precursors 

Average 
read count 
in L group

Average 
read 

count in H 
group

Genomic region of 
novel miRNAs and 

overlapping 
transcript 

Novel:19_46128 UUCCCGCCGGCGUAUGCUGCUGU 19:43830014-43830039[Forward] 3.7 28 intergenic
Novel:18_44358 UUCUCAGCCCCAGGGGUUCCU 18: 55872705-55872727[Reverse] 1.3 15.8 intronic, BCAT2
Novel:4_87488 ACUUUUGCCCCUAGUAACGGACU 4:95112096-95112121[Forward] 46.7 132 intronic, COPG2
Novel:X_110269 UGAGCACACCUGCCUGAGCAGA X:30280443-30280467[Forward] 2.7 24.3 intergenic
Novel:2_53382 AAAACCUCAACGAACUCUUUGG 2:115554887-115554911[Reverse] 21.7 4.3 intergenic
Novel:7_99116 AUGAAGAUCUGGAGCCUGUCUCC 7:17610270-17610295[Forward] 5 13 exonic, ZNF358

Novel:1_108989 UCCUAAAGGAGAUCAGUCCUGGGUG 1:1268082-1291083[Forward] 194 87.3 intronic, GART
Novel:20_55299 UCCUUUCUGAGCCACCAGGGA 20:19697855-19697877[Reverse] 123.3 691.3 intergenic
Novel:1_3066 UUCCUGCAAACUUAUCCUAUG 1:89855043-89855065[Reverse] 3154 540 intergenic

Follicular fluid

Oocyte
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Figure 4. Alignment of the novel_2_53382 sequence using miRBase release 21. 

 
 

4.3.7. Target gene prediction, Gene ontology and pathways enriched by 
differentially expressed miRNAs in follicular fluids	  

Analysis of miRNA expression in follicular fluids identified 66 miRNAs that 

were differentially expressed between L and H groups with significance of 

P<0.005, increasing the stringency, using a threshold of P<0.001, 25 

remained significant and these differentially expressed miRNAs were used in 

the functional analysis (Table S5 – supplementary material). DIANA miRPath 

identified 53 KEGG pathways which were enriched by these miRNAs (Table 

S6 – supplementary material). Among the most enriched KEGG pathways, 

there were several canonical pathways which were associated with cellular 

processes, in particular: cell adhesion (Focal adhesion signaling pathway), 

cell proliferation (Cell cycle, MAPK, RNA transport, Wnt, mTOR, PI3K-Akt 

and ErbB signaling pathways), cell surival and growth (Neurotrophin 

signaling pathway, Oocyte meiosis, TGF-beta signaling pathway) and cell 

metabolism (Insulin signaling pathway). 

Among the 10 most significant KEGG pathways, there were 161 predicted 

target genes of miRNAs. Of these, only five (BCL2, FOXO3, KIT, TP53, 

VEGFA) are known to be involved in ovarian follicle development. GO 

analysis showed that these genes are predominantly involved in biological 

processes including cell cycle regulation, cell proliferation, apoptosis, post-
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traslational modifications, macromolecule biosynthesis and cell migration 

(Table S7 – supplementary material).  

 

 

 

4.3.8. Target gene prediction, Gene ontology and pathways enriched by 
differentially expressed miRNAs in oocytes	  

Functional analysis of predicted target genes of miRNAs identified the 

biological functions that were putatively differentially regulated between the L 

and H group oocytes. The target genes for the abundant expressed miRNAs 

and, thus, were likely to have lower expression in L group, influenced GO 

terms such us cell proliferation, RNA transport and localization, catabolic 

modification of macromolecules and response to hormone stimulus (Table 

S8 – supplementary material). While, GO terms enriched with genes targeted 

by miRNAs with lower expression in the L vs H groups were mainly 

associated with mechanisms involving RNA transcription (Table S9 – 

supplementary material). KEGG pathway analysis indicated that 36 canonical 

pathways were enriched with target genes of miRNAs with higher expression 

in the L vs H group oocytes and 18 were associated with target genes of 

reduced miRNAs. Moreover, 10 of the KEGG pathways were found to be 

commonly enriched by both abundant and reduced miRNAs in the L vs H 

group oocytes (Graph 4). The miRNAs highly expressed in the L group 

oocytes targeted genes involved in signaling pathways that are relevant for 

oocyte quality including PI3K-Akt, Jak-STAT, mTOR and ErbB. Other 

signaling pathways identified are important in controlling oocyte maturation, 

including meiosis, progesterone-mediated oocyte maturation and apopotosis; 

these had higher expression of miRNAs in L group with respect to H group. 
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�Wnt signaling pathway 
�Pathways in cancer 
�Endocytosis 

�GnRH signaling pathway 
�MAPK signaling pathway 
�Calcium signaling pathway 

Pathways enriched by both up and 
down regulated miRNAs Pathways enriched only by down 

regulated miRNA 
Pathways enriched only by up regulated 

miRNAs 

�Apoptosis 
�Neurotrophin signaling pathway 
�Hedgehog signaling pathway 

�Progesterone-mediated oocyte maturation 
�Insulin signaling pathway 

�Cytokine-cytokine receptor interaction 
�Oocyte meiosis 

�PI3K-Akt signaling pathway 
�Focal adhesion 

�Ubiquitin mediated proteolysis 
�RNA transport 
�Axon guidance 

�Jak-STAT signaling pathway 
�ErbB signaling pathway 
�mRNA surveillance pathway 
�mTOR signaling pathway 	  

Graph 4. Venn diagram comparing the up- and down-regulated canonical signaling 

pathways. 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Figure 5. Representation of gene interactions between FOXO3, TP53, BCL2, 

VEGFA and KIT and their miRNA regulation. 
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Figure 6. Representation of gene interactions between BCL2, VEGFA, EGF and 

PABPC1L and their miRNA regulation. 

	  

4.4. Discussion 
This study used a model based on low and high antral follicle count ovaries, 

which is known to be associated with oocyte developmental potential [6]. 

Follicular fluids and immature oocytes from mid-antral follicles of 2-6 mm in 

diameter were collected and studied. The number of these follicles is 

representative of the ovarian reserve and is a practical way to measure 

ovarian function, which has been used in several species including humans 

[45] and cattle [5].  

The results identified several biological processes, which are critical for 

oocyte developmental potential and may be compromised in the follicles and 

oocytes of low quality ovaries because of a miRNA mis-regulation. Several 

miRNAs identified have been described in previous studies of normal ovarian 

physiology focusing on follicular fluid and cells which form the ovarian 

follicles, i.e. oocytes, theca and granulosa cells during correct follicle 

development of cattle [21-23, 27, 46-48] and human [16-18, 49, 50]. Among 

these, miR-769, miR-1343, miR-450a, miR-204, miR-100, miR-99a, miR-

1271 and miR-451 were abundantly expressed in granulosa cells during 

development of follicles from subordinate to dominant preovulatory [48]. In 

the present study, these miRNAs had lower levels of expression in low 

quality ovaries. Similarly, miR-190b, which has been found to increase in 

theca cells of dominant with respect to subordinate follicles [27], was reduced 
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in follicular fluids of the poor quality ovaries. The small RNAs let-7c and miR-

451 have been shown to be present at a higher level in exomes in the 

follicular fluid of follicles from growing oocytes compared with fully-grown 

oocytes [21]. In the present study exomes were not separated from 

circulating miRNAs, however, these miRNAs were reduced in follicular fluids 

of mid-antral follicles in low quality ovaries.  

All these miRNAs in follicular fluid are likely to affect granulosa and theca 

cells, however, there are miRNAs such as miR-320, which was reduced in 

follicular fluids of low quality ovaries, and which may have an effect directly 

on the oocyte. Indeed, this miRNA is reduced in follicular fluids of women 

with polycystic ovarian syndrome and the reduction of this miRNA impacts on 

oocyte quality in mouse during early embryogenesis affecting embryo 

developmental potential [49].  

The present study identified 1236 miRNAs, some of which were differentially 

expressed in follicular fluids and oocytes from high and low AFC ovaries. To 

assess the gene networks, which may be involved in the alteration of 

biological processes during follicle development in low quality ovaries, KEGG 

pathway analysis was performed. Many canonical signaling pathways in the 

follicles of low quality ovaries were targeted by miRNAs with reduced levels 

of expression. As miRNAs usually repress gene expression, target pathways 

of these miRNAs may have an increased expression. Among the canonical 

pathways, the most enriched for differentially expressed miRNA gene targets 

was the PI3K-Akt signaling pathway. This pathway is known to control follicle 

growth, differentiation and survival [51, 52], and includes the genes BCL2, 

FOXO3, TP53, VEGFA and KIT, which were predicted targets of miR-204-

5p, miR-197-3p, miR-146b-5p, miR-30d-5p and miR-383. The reduction of 

these miRNAs in follicular fluids of low quality ovaries may be associated 

with abnormal expression of cell proliferation signals, which may in turn affect 

the development of follicles. It has been reported that inhibition of VEGFA 

increases apoptosis in granulosa cells through an imbalance among the 

BCL2 family members in mouse [53]. This study showed that FOXO3 

expression may be reduced via miR-197 resulting in the repression of 

VEFGA and consequent misregulation of BCL2 (figure 5). These molecular 
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processes may increase apoptosis and lead to premature atresia of follicles 

and corresponding oocytes in the low AFC ovaries. 

Among the predicted target genes of the differentaly expressed miRNAs, four 

genes PABPC1L [64], VEGFA [65], BCL2 [66] and EGF [68], are known to 

be important in oocyte biological processes and interact with each other 

(Figure 6). Among these genes, BCL2, as discussed above, has been shown 

to have an aberrant level of expression in poor quality porcine oocytes, and 

is correlated with a low mitochondrial activity [66]. These results indicate that 

the overall lower mitochondrial activity of the low quality oocytes may result 

from inhibition of BCL2 expression mediated by miR-342 and miR-150.  

The negative impact of miRNAs in the follicles of low quality ovaries may also 

be exercised through other signaling pathways such as Neurotrophin, Oocyte 

meiosis and TGF-beta signaling. Neurotrophins are known to regulate follicle 

formation and development [54]. TGF-Beta ︎  signaling plays an important role 

in controlling the production of peptide hormones by the ovary, including 

Antimüllerian hormone (AMH) [55], and is associated with the differential 

expression of TGF-β/BMP genes in human ovary from the primordial to the 

late secondary stage follicles [56]. Several of the differentially expressed 

miRNAs predicted to target genes involved in this pathway such as SMAD4, 

SMAD7, TGFBR1 and TGFBR2. These genes, if not correctly regulated, may 

induce an earlier atresia of follicles. Pertubation of TGF-beta signals may 

explain the higher concentration of Progesterone found in follicular fluids of 

low quality ovaries. Previous studies have reported that the lower 

concentration of AMH is associated to the higher concentration of 

progesterone [3]. It is known that high concentration of Progesterone impact 

negatively on the oocyte quality in cattle [57] and humans [58]. 

The poor follicular environment is likely to impact on the oocyte maturation 

and quality. The immature oocytes collected from follicles of high and low 

quality ovaries, had 8 miRNAs, which were differentially expressed. KEGG 

pathway and Gene Ontology analysis indicated that several molecular 

mechanisms and biological processes may have been affected in these 

oocytes. Among the differentially expressed miRNAs, miR-150 is described 

to be abundant in immature bovine oocytes and diminishes at the time of 
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embryo genomic activation [59]. In the present study miR-150 was more 

abundant in low than high quality oocytes, although this miRNA was among 

the most expressed miRNA in oocyte of both groups. The level of expression 

of miR-150 is likely to be important and hence the elevated expression in low 

quality oocyte may have an adverse effect on the target pathways.  

Among the other differentially expressed miRNAs between high an low AFC 

ovaries, miR-145 affects the TGF-beta signaling pathway and is important in 

the development of primordial follicle in mouse: inhibition decreases the 

proportion of primordial follicle and increases that of growing follicles [60]. 

MiR-150 is abundant in low quality oocytes demonstrating that the oocyte 

maturation may be affected by TGF-beta signalling. In particular, initiation of 

primordial follicle development and primordial follicle quiescence may be 

seriously compromised in low quality ovaries. 

Functional analysis of differentially expressed miRNAs in the oocytes 

identified that the principal biological processes, which are targetted in 

oocytes from low AFC ovaries, are RNA synthesis and translation. These 

molecular processes are required for the accumulation of maternal RNAs 

and to build proteins in the oocyte, which is associated with acquiring 

developmental competence [30]. The expression of oocyte miRNAs may 

follow maternal RNA accumulation [59, 61, 62] and, thus, oocyte miRNAs 

may be silent during oocyte maturation. It is likely that there are miRNAs, 

which are actively involved in coordinating maternal RNA accumulation 

during oocyte maturation. Indeed, KEGG pathway analysis showed that the 

target genes of the abundant miRNAs expressed in the oocyte include RNA 

transport, ubiquitin mediated proteolysis and mRNA surveillance signaling 

pathways. These results indicate that there are gene networks in the low 

quality oocytes which may regulate the accumulation of maternal RNA that 

are misregulated through variations in miRNA levels. Other canonical 

pathways may be compromised. Canonical pathways in which target genes 

of the miRNAs with increased expression in the L group include: Focal 

Adhesion, Jack-stat, ERBB and mTOR signaling patways. Among these, 

focal adhesion pathway regulates the communication between oocyte and its 

cumulus cell [63] and may be down-regulated. The canonical pathways, 
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which may have an increased expression, are: apoptosis, progesterone-

mediated oocyte maturation and oocyte meiosis. Increased expression of 

apoptosis signals is likely to be harmful for oocyte quality. Oocyte meiosis 

signals are mediated in part by progesterone, which is important in 

stimulating the resumption of the two meiotic division cycles required in the 

maturation of the oocyte, and if excessive may be associated with low quality 

oocytes leading to earlier atresia.  

Interestingly, miR-450b, miR-150 and miR-10a were found to be differentially 

expressed in both follicular fluids and oocytes. MiR-450b and miR-150 were 

abundant in low quality oocytes but were reduced in the follicular fluid, while 

miR-10a, which was reduced in the oocytes, was abundant in the follicular 

fluid. These differences may be due to the secretion of these miRNAs by the 

cells of the follicle, such us theca or granulosa cells, and stored in follicular 

fluid, then contribute to the development of the different cell types during the 

follicle maturation process. Indeed, among these miRNAs, miR450b was 

found to be abundant in granulosa cells of dominant follicles in cows [48].  

In conclusion, the results of the present study indicate that miRNAs may be 

important for oocyte maturation and the acquisition of developmental 

competence, which may be influenced by several biological processes 

regulated by miRNAs and important for follicle health. Moreover, the oocyte 

quality may be associated with the pattern of miRNAs present in both 

follicular fluids and oocytes. Thus, follicular fluid derived miRNAs may be 

real-time markers of oocyte quality, which could be used to improve 

Reproductive Biotechnologies. Further studies will be necessary to determine 

if the miRNAs shown to be differentially expressed between high and low 

AFC ovaries in this study regulate the predicted target genes. The study 

should then be extended to explore the regulation of gene expression as the 

oocyte matures and gains competence to be ready for the fertilization. This 

knowledge of the biological processes and gene networks involved during 

folliculogenesis and oogenesis is important for improving fertility in livestock 

and humans. 
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CONCLUSIONS 
 
The PhD program created new knowledge on the paternal and maternal 

contribution on early embryo development to help decipher early 

reproductive physiology. All the experiments were focused on profiling 

miRNA expression, which was carried out using high-throughput sequencing. 

These methodologies potentially identify all the miRNAs present in a sample 

and can provide a global vision of the gene networks and molecular 

mechanisms relevant, in this case, to blastocysts, oocytes and follicular 

fluids. The data produced has improved knowledge of miRNAs in bovine 

oocytes and embryos. Both known and novel bovine miRNAs, were used for 

prediction, including the identification of bovine miRNAs which were 

homologous to human ones. The data confirmed the evolutionary 

conservation of miRNAs among species. 

 

The study of paternal influences on early embryogenesis identified the sperm 

contribution of a small set of miRNAs to blastocyst developmental 

competence. These results indicate that miRNAs are actively involved in 

regulating embryogenesis through the control of important gene networks 

relevant for embryo development. Further study will be necessary to confirm 

these data and, in particular, it may be useful to look at the expression of 

both differentially expressed miRNAs and predicted target genes in 

spermatozoa and early embryo stages, from zygote, through 2-16 cell stage 

embryos to morula. This will enable the assessment of the role of parental 

mRNA during the process from fertilization to the pre-implantation embryo. 

These extended studies may identify miRNAs that can be used as 

biomarkers of blastocyst quality.  

 

The miRNA data for follicular fluids and oocytes from ovaries of different 

functionality identified a miRNA expression blueprints associated with the 

high and low quality of oocytes, which may alter the expression of a number 

of genes relevant for both folliculogenesis and oogenesis. These results 
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contribute to our understanding of molecular mechanisms involved in oocyte 

maturation and acquisition of competence.  

Further experiments should be performed to confirm these findings both  in 

vitro and in vivo. Gene expression analysis of both miRNAs and relevant 

target genes associated to oocyte competence should be further investigated 

to confirm the regulatory targets for the miRNAs. In addition, miRNA and 

mRNA expression should be examined in immature and in vitro matured 

oocytes. RNA interference experiments could also be carried out to examine 

the effects of miRNAs on other cells which constitute to the ovarian follicle, 

specifically theca and granulosa cells. Moreover, in vivo studies will be 

necessary to determine whether follicular fluid miRNAs can act outside the 

ovary and if their level in the bloodstream can be detected thereby providing 

non-invasive, real-time markers to determine oocyte quality in living animals. 

 

In conclusion, knowledge derived from this 3-year PhD study has provided 

background information for new tools to improve in vitro embryo production 

(IVP) for advanced reproductive biotechnologies. 
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SUPPLEMENTARY MATERIAL 

 
CHAPTER 2 
PROFILING OF microRNAs IN BOVINE BLASTOCYSTS USING DEEP SEQUENCING 
 
Table S1. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways obtained using DIANA miRPath v2.0 are reported up to P-value 

<0.0001. The target genes and homologous human miRNAs are reported for each KEGG pathways. 

 

KEGG pathways P-value TARGET GENES miRNAs 

Cell cycle (hsa04110) 7.59e-11 

ESPL1, CDC6, GSK3B, RBL2, 
E2F1, SMC1A, E2F2, CDC14A, CDC25,MC
M6, CCND2, ORC1, CDKN1B, STAG2, CD
KN2A, CDK6, TP53, ANAPC10, SMAD, 
CCNE2, E2F5, SKP2, MYC, TTK, RB1, CD
C7, CDC20, BUB1B, MAD2L1, TGFB2, CC
NE1, CDKN1A, CDKN2D, RAD21, MCM3, 
CDC25A 

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-148a-3p, 
hsa-miR-92a-3p, hsa-miR-26a-5p, hsa-miR-21-5p, 
hsa-miR-30d-5p, hsa-miR-423-5p, hsa-miR-192-5p 

Prion 
diseases (hsa05020) 2.98e-08 EGR1, PRKACA, PRNP, IL1A hsa-miR-22-3p, hsa-miR-148a-3p, hsa-miR-191-5p, hsa-

miR-423-5p, hsa-miR-192-5p 
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Pathways in 
cancer (hsa05200) 2.01e-06 

FZD7, FOS, GSK3B, STAT3, E2F1, 
TGFBR1, ERBB2, E2F2, BID, TCF4, APC, 
CRK, WNT1, RAD51, WNT5A, BCL2, 
CDKN1B, PLD1, WNT3, BRCA2, IGF1R 
,EGFR, CDKN2A, APPL1, RET, CDK6, 
PML, TP53, PTK2, ITGAV, FZD4, MMP2, 
MAPK9, SMAD4, MSH6, CCNE2, SKP2, 
MYC, MMP9, MSH2, PIK3R1, RB1, SOS1, 
HSP90B1, FGF2, FZD1, FAS, TGFB2, 
PPARG, NKX3-1, CCNE1, CDKN1A, 
CYCS, SUFU, TCF7, VEGFA, PTEN, TGFB
R2, TFG 

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-148a-3p, 
hsa-miR-92a-3p, hsa-miR-371a-3p, hsa-miR-26a-5p, 
hsa-miR-21-5p, hsa-miR-30d-5p, hsa-miR-423-5p, 
hsa-miR-192-5p 

Prostate 
cancer (hsa05215) 5.86e-05 

GSK3B, E2F1, ERBB2, E2F2, TCF4, BCL2,
 CDKN1B, INSRR, IGF1R, EGFR, TP53, C
CNE2, PIK3R1, RB1, SOS1, HSP90B1, NK
X3-
1, CREB3L2, CCNE1, PDGFD, CDKN1A, T
CF7, PTEN 

hsa-miR-22-3p, hsa-miR-148a-3p, hsa-miR-371a-3p, 
hsa-miR-26a-5p,hsa-miR-21-5p hsa-miR-30d-5p, hsa-
miR-423-5p, hsa-miR-192-5p 

Colorectal 
cancer (hsa05210) 1.19e-04 

FOS, GSK3B, TGFBR1, TCF4, APC, BCL2,
 APPL1, TP53, MAPK9, SMAD4, MSH6, M
YC, MSH2, PIK3R1, TGFB2, CYCS, TCF7, 
TGFBR2 

hsa-miR-378a-3p, hsa-miR-148a-3p, hsa-miR-92a-3p, 
hsa-miR-371a-3p, hsa-miR-26a-5p, hsa-miR-21-5p, 
hsa-miR-30d-5p, hsa-miR-423-5p, hsa-miR-192-5p 

Bladder 
cancer (hsa05219) 1.47e-04 

E2F1, ERBB2, E2F2, THBS1, EGFR, CDK
N2A, RPS6KA5, TP53, MMP2, MYC, MMP9
, RB1, CDKN1A, VEGFA 

hsa-miR-378a-3p,  hsa-miR-22-3p, hsa-miR-148a-3p, 
hsa-miR-92a-3p, hsa-miR-26a-5p, hsa-miR-21-5p, 
hsa-miR-30d-5p, hsa-miR-423-5p, hsa-miR-192-5p 

HTLV-I 
infection (hsa05166) 1.47e-04 

FZD7, EGR1, FOS, GSK3B, E2F1, TGFBR
1, MYB, RANBP1, IL1R1, E2F2, APC, WNT
1, WNT5A, CCND2, ZFP36, HLA-
C, WNT3, MRAS, MAP3K1, XBP1, HLA-
DOA, CDKN2A, TP53, NFATC4, RANBP3, I
L15, CRTC2, FZD4, NFAT5, MAPK9, 
ANAPC10, SMAD4, MYC, HLA-

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-148a-3p, 
hsa-miR-92a-3p, hsa-miR-371a-3p, hsa-miR-26a-5p, 
hsa-miR-21-5p, hsa-miR-30d-5p, hsa-miR-423-5p,hsa-
miR-192-5p 
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DPA1, PRKACA, PIK3R1, RB1, ATF1, CDC
20, BUB1B, MAD2L1, FZD1, HLA-
G, KAT2B, TGFB2, CDKN1A, XPO1, TGFB
R2 

Hepatitis B (hsa05161) 7.61e-04 

FOS, STAT3, E2F1, TGFBR1, E2F2, IFNB1
, BCL2, CDKN1B, MAP3K1, TLR4, CDK6,D
DX3X, TP53, NFATC4, APAF1, LAMTOR5, 
NFAT5, MAPK9, SMAD4, CCNE2, MYC, M
MP9, PIK3R1, RB1, FAS, TGFB2, CREB3L
2, CCNE1, CDKN1A, CYCS, PTEN 

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-148a-3p, 
hsa-miR-92a-3p,hsa-miR-26a-5p, hsa-miR-21-5p, hsa-
miR-30d-5p, hsa-miR-423-5p, hsa-miR-192-5p 

Wnt signaling 
pathway (hsa04310) 1.75e-03 

FZD7, CTNNBIP1, GSK3B, TBL1X, TCF4, 
APC, VANGL1, WNT1, WNT5A, CCND2, R
OCK2, WNT3, TP53, NFATC4, FRAT2, PRI
CKLE1, NLK, 
PLCB1, FZD4, NFAT5, MAPK9, GPC4, SM
AD4, CSNK1A1, MYC, PRKACA, FZD1, PR
ICKLE2,TCF7, DAAM1, TBL1XR1 

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-92a-3p, 
hsa-miR-371a-3p, hsa-miR-26a-5p, hsa-miR-21-5p, 
hsa-miR-30d-5p, hsa-miR-423-5p, hsa-miR-192-5p 

p53 signaling 
pathway (hsa04115) 2.75e-03 

CCNG1, ZMAT3, BID, THBS1, CCND2, PE
RP, CDKN2A, CDK6, TP53, APAF1, CCNE
2 , 
SESN1, MDM4, FAS, SERPINB5, CCNE1, 
CDKN1A, CYCS, PTEN 

hsa-miR-22-3p, hsa-miR-148a-3p, hsa-miR-92a-3p, 
hsa-miR-26a-5p, hsa-miR-21-5p, hsa-miR-30d-5p, 
hsa-miR-423-5p, hsa-miR-192-5p 

Transcriptional 
misregulation in 

cancer (hsa05202) 
4.79e-02 

CCNT2, NFKBIZ, ID2, HMGA2, CCND2, H
OXA9, PBX1, CDKN1B, IGF1R, RUNX2, P
ML, SUPT3H, TP53, SS18, PTK2, HIST1H3
I, MYC, NR4A3, MMP9, BMP2K, CDK14, T
F1, SP1, PPARG, WHSC1, H3F3B, CDKN1
A, SSX2B, SIX4, PLAU, SMAD1, TGFBR2, 
NGFR, MEIS1 

hsa-miR-10b-5p, hsa-miR-378a-3p, hsa-miR-22-3p, 
hsa-miR-92a-3p, hsa-miR-371a-3p, hsa-miR-26a-5p, 
hsa-miR-21-5p, hsa-miR-30d-5p, hsa-miR-423-5p, 
hsa-miR-192-5p 
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Chronic myeloid 
leukemia (hsa05220) 6.39e-02 

E2F1, TGFBR1, E2F2, CRK, CDKN1B, CD
KN2A, CDK6, TP53, SMAD4, MYC, PIK3R1
, 
RB1, SOS1, TGFB2, GAB2, CDKN1A, TGF
BR2 

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-92a-3p, 
hsa-miR-371a-3p, hsa-miR-26a-5p, hsa-miR-21-5p, 
hsa-miR-30d-5p, hsa-miR-423-5p, hsa-miR-192-5p 

TGF-beta signaling 
pathway (hsa04350) 1.35e-01 

TGFBR1, ID2, THBS1, ROCK2, ID4, ACVR
2B, ZFYVE16, SMAD4, E2F5, MYC, ID1, C
VR2A, SP1, TGFB2, BMP7, SMAD1, TGFB
R2, BMPR2, RPS6KB1 

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-92a-3p, 
hsa-miR-371a-3p, hsa-miR-26a-5p, hsa-miR-21-5p, 
hsa-miR-192-5p 

Pancreatic 
cancer (hsa05212) 1.71e-01 

STAT3, E2F1, TGFBR1, ERBB2, E2F2, RA
D51, PLD1, BRCA2, EGFR, CDKN2A, CDK
6, TP53, MAPK9, SMAD4, PIK3R1, RB1, T
GFB2, VEGFA, TGFBR2 

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-92a-3p, 
hsa-miR-371a-3p, hsa-miR-26a-5p, hsa-miR-21-5p, 
hsa-miR-30d-5p, hsa-miR-192-5p 

Fanconi anemia 
pathway (hsa03460) 7.26e+00 

BLM, RMI1, RAD51, USP1, REV1, EME1, B
RCA2, BRCA1, FANCM, ERCC4, REV3L, P
OLQ, FANCI 

hsa-miR-21-5p, hsa-miR-192-5p 

Small cell lung 
cancer (hsa05222) 4.48e+01 

E2F1, E2F2, BCL2, CDKN1B, CDK6, TP53,
 APAF1, PTK2, ITGAV, CCNE2, SKP2, MY
C, PIK3R1, RB1, CCNE1, CYCS, PTEN 

hsa-miR-378a-3p, hsa-miR-22-3p, hsa-miR-148a-3p, 
hsa-miR-26a-5p, hsa-miR-21-5p, hsa-miR-30d-5p, 
hsa-miR-192-5p 

ErbB signaling 
pathway (hsa04012) 6.15e+01 

GSK3B, HBEGF, ERBB2, NRG4, CRK, CD
KN1B, EGFR, PTK2, MAPK9,MYC, PIK3R1
, SOS1, PAK6, BTC, CDKN1A, RPS6KB 

hsa-miR-378a-3p, hsa-miR-371a-3p, hsa-miR-26a-5p, 
hsa-miR-21-5p, hsa-miR-423-5p, hsa-miR-192-5p 

Endometrial 
cancer (hsa05213) 6.15e+01 GSK3B, ERBB2, TCF4, APC, EGFR, TP53,

 MYC, PIK3R1, SOS1, TCF7 

hsa-miR-378a-3p, hsa-miR-192-5p, hsa-miR-371a-3p, 
hsa-miR-26a-5p, hsa-miR-21-5p, hsa-miR-30d-5p, 
hsa-miR-423-5p 
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Table S2. Annotation cluster analysis carried out using DAVID web-tool is reported for the first 10 gene clusters identified. Each cluster is 

described by enrichment score, which is based on an EASE scores (an alternative name of Fisher Exact Statistics in DAVID system, 

referring to one-tail Fisher Exact Probability Value used for gene-enrichment analysis) of each term members; the higher value represents 

the more enriched cluster. Moreover, GO category and term, genes associated in the cluster according to their function are reported. P-

value and False Discovery Rate (FDR) were less than 0.0001 (data not shown).  

 
Annotation 

Cluster 
Enrichment 

Score GO Term Genes 

1 
 
 

15.76 
 

GO:0042325~regulati
on of phosphorylation 

CCNT2, BLM, ERBB2, BMPR2, TTK, TLR4, CCNG1, PTEN, TGFB2, CCNE2, 
CDKN2A, CDKN2D, MAP3K1, BCL2, ILK, PRKACA, PDGFD, THBS1, FGF2, APC, 
EGFR, CDC6, RBL2, TGFBR1, TGFBR2, SMAD4, RB1, CDC25A, CDC25B, 
ACVR2A, ACVR2B, CDKN1A, CDKN1B, CCND2, BMP7 

GO:0051174~regulati
on of phosphorus 
metabolic process 

CCNT2, BLM, ERBB2, BMPR2, TTK, TLR4, CCNG1, PTEN, TGFB2, CCNE2, 
CDKN2A, CDKN2D, MAP3K1, BCL2, ILK, PRKACA, PDGFD, THBS1, FGF2, APC, 
EGFR, CDC6, RBL2, TGFBR1, TGFBR2, SMAD4, RB1, CDC25A, CDC25B, 
ACVR2A, ACVR2B, CDKN1A, CDKN1B, CCND2, BMP7 

GO:0019220~regulati
on of phosphate 

metabolic process 

CCNT2, BLM, ERBB2, BMPR2, TTK, TLR4, CCNG1, PTEN, TGFB2, CCNE2, 
CDKN2A, CDKN2D, MAP3K1, BCL2, ILK, PRKACA, PDGFD, THBS1, FGF2, APC, 
EGFR, CDC6, RBL2, TGFBR1, TGFBR2, SMAD4, RB1, CDC25A, CDC25B, 
ACVR2A, ACVR2B, CDKN1A, CDKN1B, CCND2, BMP7 

2 
 
 

14.31 
 

GO:0043067~regulati
on of programmed cell 

death 

BID, MMP9, ZMAT3, ERBB2, BTC, PML, TLR4, PTEN, TGFB2, IGF1R, CDKN2A, 
CDKN2D, SOS1, MAP3K1, BCL2, ILK, FAS, THBS1, MYC, FGF2, IL1A, APC, EGFR, 
MSH6, MSH2, TGFBR1, CYCS, SKP2, TP53, BRCA2, BRCA1, HSP90B1, CDKN1A, 
CDKN1B, IFNB1, GSK3B, VEGFA, MAPK9, APAF1, NGFR, PRNP, PERP, BMP7 

GO:0010941~regulati
on of cell death 

BID, MMP9, ZMAT3, ERBB2, BTC, PML, TLR4, PTEN, TGFB2, IGF1R, CDKN2A, 
CDKN2D, SOS1, MAP3K1, BCL2, ILK, FAS, THBS1, MYC, FGF2, IL1A, APC, EGFR, 
MSH6, MSH2, TGFBR1, CYCS, SKP2, TP53, BRCA2, BRCA1, HSP90B1, CDKN1A, 
CDKN1B, IFNB1, GSK3B, VEGFA, MAPK9, APAF1, NGFR, PRNP, PERP, BMP7 
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GO:0042981~regulati
on of apoptosis 

BID, MMP9, ZMAT3, ERBB2, BTC, PML, TLR4, PTEN, TGFB2, IGF1R, CDKN2A, 
CDKN2D, SOS1, MAP3K1, BCL2, ILK, FAS, THBS1, MYC, IL1A, APC, EGFR, MSH6, 
MSH2, TGFBR1, CYCS, SKP2, TP53, BRCA2, BRCA1, HSP90B1, CDKN1A, 
CDKN1B, IFNB1, GSK3B, VEGFA, MAPK9, APAF1, NGFR, PRNP, PERP, BMP7 

3 
 
 
 
 

14.08 

GO:0005654~nucleop
lasm 

CCNT2, E2F1, E2F2, SUPT3H, XPO1, BLM, E2F5, PML, ANAPC10, ATF1, CCNE2, 
CCNE1, FOS, CDKN2A, DDX3X, FANCI, HOXA9, TCF4, POLQ, RUNX2, MYC, 
ERCC4, CDC7, TBL1XR1, CDC6, KAT2B, RBL2, USP1, TP53, SMAD4, BRCA2, 
CDC20, RB1, SMAD1, APPL1, MCM3, BRCA1, CDC25A, CDC25B, RAD51, MCM6, 
RPS6KA5, CDKN1A, PBX1, NGFR, TBL1X 

GO:0031981~nuclear 
lumen 

E2F1, CCNT2, E2F2, XPO1, E2F5, ZMAT3, CCNE2, FOS, CCNE1, CDKN2A, FANCI, 
MYB, MYC, CDC7, CDC6, TBL1XR1, RBL2, USP1, TP53, RB1, MCM3, RAD51, 
MCM6, NGFR, SUPT3H, BLM, PML, ANAPC10, SUFU, ATF1, DDX3X, HOXA9, 
POLQ, TCF4, RUNX2, ERCC4, KAT2B, NLK, EME1, SMAD4, BRCA2, CDC20, 
SMAD1, APPL1, BRCA1, CDC25A, STAT3, CDC25B, RPS6KA5, CDKN1A, SP1, 
PBX1, TBL1X 

GO:0043233~organell
e lumen 

E2F1, CCNT2, E2F2, XPO1, E2F5, ZMAT3, TGFB2, CCNE2, FOS, CCNE1, 
CDKN2A, FANCI, MYB, MYC, CDC7, CDC6, TBL1XR1, RBL2, USP1, CYCS, TP53, 
RB1, MCM3, RAD51, MCM6, VEGFA, NGFR, SUPT3H, BLM, PML, ANAPC10, 
SUFU, ATF1, DDX3X, HOXA9, POLQ, TCF4, THBS1, RUNX2, ERCC4, KAT2B, NLK, 
EME1, SMAD4, BRCA2, CDC20, SMAD1, APPL1, STAT3, CDC25A, BRCA1, 
CDC25B, RPS6KA5, HSP90B1, CDKN1A, SP1, PBX1, TBL1X 

GO:0031974~membr
ane-enclosed lumen 

E2F1, CCNT2, E2F2, XPO1, E2F5, ZMAT3, TGFB2, CCNE2, FOS, CCNE1, 
CDKN2A, FANCI, MYB, MYC, CDC7, CDC6, TBL1XR1, RBL2, USP1, CYCS, TP53, 
RB1, MCM3, RAD51, MCM6, VEGFA, NGFR, SUPT3H, BLM, PML, ANAPC10, 
SUFU, ATF1, DDX3X, HOXA9, POLQ, TCF4, THBS1, RUNX2, ERCC4, KAT2B, NLK, 
EME1, SMAD4, BRCA2, CDC20, SMAD1, APPL1, STAT3, CDC25A, BRCA1, 
CDC25B, RPS6KA5, HSP90B1, CDKN1A, SP1, PBX1, TBL1X 

GO:0070013~intracell
ular organelle lumen 

E2F1, CCNT2, E2F2, XPO1, E2F5, ZMAT3, CCNE2, FOS, CCNE1, CDKN2A, FANCI, 
MYB, MYC, CDC7, CDC6, TBL1XR1, RBL2, USP1, CYCS, TP53, RB1, MCM3, 
RAD51, MCM6, NGFR, SUPT3H, BLM, PML, ANAPC10, SUFU, ATF1, DDX3X, 
HOXA9, POLQ, TCF4, RUNX2, ERCC4, KAT2B, NLK, EME1, SMAD4, BRCA2, 
CDC20, SMAD1, APPL1, STAT3, BRCA1, CDC25A, CDC25B, RPS6KA5, HSP90B1, 
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CDKN1A, SP1, PBX1, TBL1X 

4 
 
 

12.40 
 

GO:0002520~immune 
system development 

BLM, MMP9, PPARG, PML, IL15, TGFB2, BCL2, HOXA9, FAS, PIK3R1, APC, EGR1, 
MSH6, MSH2, TGFBR1, TGFBR2, TP53, BRCA2, CDK6, RB1, SIX4, ID2, SP1, 
VEGFA, PBX1 

GO:0048534~hemopo
ietic or lymphoid 

organ development 

EGR1, BLM, MSH2, MMP9, TGFBR1, PPARG, TGFBR2, TP53, PML, BRCA2, CDK6, 
RB1, IL15, SIX4, TGFB2, SP1, ID2, BCL2, VEGFA, HOXA9, PBX1, FAS, PIK3R1, 
APC 

GO:0030097~hemopo
iesis 

EGR1, BLM, MSH2, MMP9, PPARG, TGFBR2, TP53, PML, BRCA2, CDK6, RB1, 
IL15, TGFB2, ID2, SP1, BCL2, VEGFA, HOXA9, PBX1, FAS, PIK3R1, APC 

5 
 
 

12.21 
 

GO:0051338~regulati
on of transferase 

activity 

CCNT2, BLM, ERBB2, PPARG, CCNG1, PTEN, TGFB2, CCNE2, CDKN2A, MAP3K1, 
CDKN2D, ILK, PRKACA, THBS1, FGF2, APC, EGFR, CDC6, RBL2, TGFBR1, 
TGFBR2, RB1, CDC25A, CDC25B, ACVR2B, CDKN1A, CDKN1B, CCND2 

GO:0043549~regulati
on of kinase activity 

CCNT2, BLM, ERBB2, CCNG1, PTEN, TGFB2, CCNE2, CDKN2A, MAP3K1, 
CDKN2D, ILK, PRKACA, THBS1, FGF2, APC, EGFR, CDC6, RBL2, TGFBR1, 
TGFBR2, RB1, CDC25A, CDC25B, ACVR2B, CDKN1A, CDKN1B, CCND2 

GO:0045859~regulati
on of protein kinase 

activity 

CCNT2, BLM, ERBB2, CCNG1, PTEN, TGFB2, CCNE2, CDKN2A, MAP3K1, 
CDKN2D, ILK, PRKACA, THBS1, FGF2, APC, EGFR, CDC6, TGFBR1, TGFBR2, 
RB1, CDC25A, CDC25B, ACVR2B, CDKN1A, CDKN1B, CCND2 

6 
 
 
 
 
 
 
 

11.19 
 

kinase 

ERBB2, BMPR2, TFG, TTK, RPS6KB1, INSRR, PAK6, IGF1R, PTK2, CDKN2A, 
MAP3K1, ILK, PRKACA, CDK14, CDC7, EGFR, CSNK1A1, RET, ROCK2, NLK, 
TGFBR1, TGFBR2, CDK6, RPS6KA5, ACVR2A, ACVR2B, CDKN1A, CDKN1B, 
GSK3B, BMP2K, BUB1B, MAPK9, PLAU 

binding site:ATP 
ERBB2, BMPR2, TTK, RPS6KB1, INSRR, PAK6, IGF1R, PTK2, MAP3K1, ILK, 
PRKACA, CDK14, EGFR, CSNK1A1, CDC7, RET, ROCK2, TGFBR1, NLK, TGFBR2, 
CDK6, RPS6KA5, ACVR2A, ACVR2B, HSP90B1, GSK3B, BMP2K, BUB1B, MAPK9 

domain:Protein kinase 
ERBB2, BMPR2, TTK, RPS6KB1, INSRR, PAK6, IGF1R, PTK2, MAP3K1, ILK, 
PRKACA, CDK14, EGFR, CSNK1A1, CDC7, RET, ROCK2, TGFBR1, NLK, TGFBR2, 
CDK6, ACVR2A, ACVR2B, GSK3B, BMP2K, BUB1B, MAPK9 

IPR017441:Protein 
kinase, ATP binding 

site 

ERBB2, BMPR2, TFG, TTK, RPS6KB1, INSRR, PAK6, IGF1R, PTK2, MAP3K1, ILK, 
PRKACA, CDK14, EGFR, CSNK1A1, CDC7, RET, ROCK2, TGFBR1, NLK, CDK6, 
RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, BUB1B, MAPK9 
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IPR000719:Protein 
kinase, core 

ERBB2, BMPR2, TFG, TTK, RPS6KB1, INSRR, PAK6, IGF1R, PTK2, MAP3K1, ILK, 
PRKACA, CDK14, EGFR, CSNK1A1, CDC7, RET, ROCK2, TGFBR1, NLK, TGFBR2, 
CDK6, RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, MAPK9 

GO:0004672~protein 
kinase activity 

ERBB2, BMPR2, TFG, TTK, RPS6KB1, TGFB2, INSRR, PAK6, IGF1R, PTK2, 
MAP3K1, ILK, PRKACA, CDK14, CDC7, EGFR, CSNK1A1, RET, ROCK2, TGFBR1, 
NLK, TGFBR2, CDK6, RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, BUB1B, 
MAPK9 

active site:Proton 
acceptor 

ERBB2, BMPR2, TTK, RPS6KB1, INSRR, PAK6, IGF1R, PTK2, MAP3K1, PRKACA, 
CDK14, EGFR, CSNK1A1, CDC7, RET, ROCK2, TGFBR1, NLK, TGFBR2, CDK6, 
RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, BUB1B, MAPK9 

transferase 

ERBB2, BMPR2, TFG, TTK, RPS6KB1, INSRR, PAK6, IGF1R, PTK2, MAP3K1, ILK, 
PRKACA, CDK14, CDC7, EGFR, CSNK1A1, RET, KAT2B, REV1, ROCK2, NLK, 
TGFBR1, TGFBR2, CDK6, WHSC1, RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, 
BUB1B, MAPK9, REV3L 

7 
 
 
 
 
 

10.47 

IPR000719:Protein 
kinase, core 

ERBB2, BMPR2, TFG, TTK, RPS6KB1, INSRR, PAK6, IGF1R, PTK2, MAP3K1, ILK, 
PRKACA, CDK14, EGFR, CSNK1A1, CDC7, RET, ROCK2, TGFBR1, NLK, TGFBR2, 
CDK6, RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, MAPK9 

GO:0006468~protein 
amino acid 

phosphorylation 

ERBB2, BMPR2, PML, TFG, TTK, RPS6KB1, INSRR, TGFB2, PAK6, IGF1R, PTK2, 
MAP3K1, BCL2, ILK, PRKACA, THBS1, FGF2, CDK14, CDC7, CSNK1A1, EGFR, 
RET, ROCK2, NLK, TGFBR1, TGFBR2, CDK6, RPS6KA5, ACVR2A, ACVR2B, 
GSK3B, BMP2K, MAPK9, BMP7 

GO:0006796~phosph
ate metabolic process 

CDC14A, ERBB2, PML, BMPR2, TTK, TFG, RPS6KB1, PTEN, INSRR, TGFB2, 
PAK6, IGF1R, PTK2, MAP3K1, BCL2, ILK, PRKACA, THBS1, FGF2, CDK14, 
PIK3R1, CDC7, CSNK1A1, EGFR, RET, ROCK2, MSH2, NLK, TGFBR1, TGFBR2, 
CDK6, CDC25A, CDC25B, RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, MAPK9, 
BMP7 

GO:0006793~phosph
orus metabolic 

process 

CDC14A, ERBB2, PML, BMPR2, TTK, TFG, RPS6KB1, PTEN, INSRR, TGFB2, 
PAK6, IGF1R, PTK2, MAP3K1, BCL2, ILK, PRKACA, THBS1, FGF2, CDK14, 
PIK3R1, CDC7, CSNK1A1, EGFR, RET, ROCK2, MSH2, NLK, TGFBR1, TGFBR2, 
CDK6, CDC25A, CDC25B, RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, MAPK9, 
BMP7 
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GO:0016310~phosph
orylation 

ERBB2, BMPR2, PML, TTK, TFG, RPS6KB1, INSRR, TGFB2, PAK6, IGF1R, PTK2, 
MAP3K1, BCL2, ILK, PRKACA, THBS1, FGF2, CDK14, PIK3R1, CDC7, CSNK1A1, 
EGFR, RET, MSH2, ROCK2, NLK, TGFBR1, TGFBR2, CDK6, RPS6KA5, ACVR2A, 
ACVR2B, GSK3B, BMP2K, MAPK9, BMP7 

GO:0004672~protein 
kinase activity 

ERBB2, BMPR2, TFG, TTK, RPS6KB1, TGFB2, INSRR, PAK6, IGF1R, PTK2, 
MAP3K1, ILK, PRKACA, CDK14, CDC7, EGFR, CSNK1A1, RET, ROCK2, TGFBR1, 
NLK, TGFBR2, CDK6, RPS6KA5, ACVR2A, ACVR2B, GSK3B, BMP2K, BUB1B, 
MAPK9 

8 
 
 

10.35 
 

GO:0043065~positive 
regulation of 

apoptosis 

BID, MMP9, ZMAT3, PML, TLR4, PTEN, TGFB2, CDKN2A, MAP3K1, BCL2, SOS1, 
FAS, MYC, APC, MSH6, TGFBR1, TP53, SKP2, BRCA2, BRCA1, CDKN1A, 
CDKN1B, IFNB1, MAPK9, NGFR, BMP7, PERP 

GO:0043068~positive 
regulation of 

programmed cell 
death 

BID, MMP9, ZMAT3, PML, TLR4, PTEN, TGFB2, CDKN2A, MAP3K1, BCL2, SOS1, 
FAS, MYC, APC, MSH6, TGFBR1, TP53, SKP2, BRCA2, BRCA1, CDKN1A, 
CDKN1B, IFNB1, MAPK9, NGFR, BMP7, PERP 

GO:0010942~positive 
regulation of cell 

death 

BID, MMP9, ZMAT3, PML, TLR4, PTEN, TGFB2, CDKN2A, MAP3K1, BCL2, SOS1, 
FAS, MYC, APC, MSH6, TGFBR1, TP53, SKP2, BRCA2, BRCA1, CDKN1A, 
CDKN1B, IFNB1, MAPK9, NGFR, BMP7, PERP 

9 
 
 
 
 
 

9.40 

GO:0051272~positive 
regulation of cell 

motion 

EGFR, PLD1, MMP9, TGFBR1, RPS6KB1, TGFB2, IGF1R, BCL2, ILK, VEGFA, 
HBEGF, THBS1, FGF2, PIK3R1, APC 

GO:0030335~positive 
regulation of cell 

migration 

EGFR, PLD1, MMP9, RPS6KB1, TGFB2, IGF1R, BCL2, VEGFA, ILK, HBEGF, 
THBS1, FGF2, PIK3R1, APC 

GO:0040017~positive 
regulation of 
locomotion 

EGFR, PLD1, MMP9, RPS6KB1, TGFB2, IGF1R, BCL2, VEGFA, ILK, HBEGF, 
THBS1, FGF2, PIK3R1, APC 

GO:0051270~regulati
on of cell motion 

EGFR, PLD1, MMP9, TGFBR1, RPS6KB1, PTEN, TGFB2, IGF1R, CDKN1B, BCL2, 
MAP3K1, ILK, VEGFA, HBEGF, THBS1, FGF2, PIK3R1, APC 
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GO:0040012~regulati
on of locomotion 

EGFR, PLD1, MMP9, RPS6KB1, PTEN, TGFB2, IGF1R, IFNB1, BCL2, MAP3K1, ILK, 
VEGFA, HBEGF, THBS1, FGF2, PIK3R1, APC 

GO:0030334~regulati
on of cell migration 

EGFR, PLD1, MMP9, RPS6KB1, PTEN, TGFB2, IGF1R, BCL2, MAP3K1, ILK, 
VEGFA, HBEGF, THBS1, FGF2, PIK3R1, APC 

10 
 
 
 
 
 
 
 
 
 

9.13 
 

GO:0010557~positive 
regulation of 

macromolecule 
biosynthetic process 

E2F1, BLM, PPARG, TLR4, TGFB2, CCNE1, FOS, WNT1, IGF1R, MAP3K1, NFAT5, 
TCF4, THBS1, FGF2, MYC, RUNX2, IL1A, EGR1, TBL1XR1, TGFBR1, SMAD4, 
TP53, RB1, SMAD1, NR4A3, SIX4, BRCA1, STAT3, SP1, VEGFA, PBX1, BMP7, 
TBL1X 

GO:0009891~positive 
regulation of 

biosynthetic process 

E2F1, BLM, PPARG, TLR4, TGFB2, CCNE1, FOS, WNT1, IGF1R, MAP3K1, NFAT5, 
TCF4, THBS1, FGF2, MYC, RUNX2, IL1A, EGR1, EGFR, TBL1XR1, TGFBR1, 
SMAD4, TP53, RB1, SMAD1, NR4A3, SIX4, BRCA1, STAT3, SP1, VEGFA, PBX1, 
BMP7, TBL1X 

GO:0031328~positive 
regulation of cellular 
biosynthetic process 

E2F1, BLM, PPARG, TLR4, CCNE1, FOS, WNT1, IGF1R, MAP3K1, NFAT5, TCF4, 
THBS1, FGF2, MYC, RUNX2, IL1A, EGFR, EGR1, TBL1XR1, TGFBR1, SMAD4, 
TP53, RB1, SMAD1, NR4A3, SIX4, BRCA1, STAT3, SP1, VEGFA, PBX1, BMP7, 
TBL1X 

GO:0051173~positive 
regulation of nitrogen 
compound metabolic 

process 

E2F1, BLM, PPARG, CCNE1, FOS, WNT1, IGF1R, MAP3K1, NFAT5, TCF4, FGF2, 
MYC, RUNX2, EGFR, EGR1, TBL1XR1, TGFBR1, SMAD4, TP53, RB1, SMAD1, 
NR4A3, SIX4, BRCA1, STAT3, RAD51, SP1, VEGFA, PBX1, BMP7, TBL1X 

GO:0010628~positive 
regulation of gene 

expression 

E2F1, BLM, PPARG, CCNE1, FOS, WNT1, MAP3K1, NFAT5, TCF4, FGF2, MYC, 
RUNX2, EGR1, TBL1XR1, TGFBR1, SMAD4, TP53, RB1, SMAD1, NR4A3, SIX4, 
STAT3, BRCA1, SP1, VEGFA, MAPK9, PBX1, BMP7, TBL1X 

GO:0045935~positive 
regulation of 
nucleobase, 

nucleoside, nucleotide 
and nucleic acid 

metabolic process 

E2F1, BLM, PPARG, CCNE1, FOS, WNT1, IGF1R, MAP3K1, NFAT5, TCF4, FGF2, 
MYC, RUNX2, EGR1, TBL1XR1, TGFBR1, SMAD4, TP53, RB1, SMAD1, NR4A3, 
SIX4, BRCA1, STAT3, RAD51, SP1, VEGFA, PBX1, BMP7, TBL1X 
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GO:0045893~positive 
regulation of 

transcription, DNA-
dependent 

E2F1, PPARG, FOS, WNT1, CCNE1, MAP3K1, NFAT5, TCF4, FGF2, MYC, RUNX2, 
EGR1, TBL1XR1, SMAD4, TP53, RB1, SMAD1, NR4A3, SIX4, STAT3, BRCA1, SP1, 
VEGFA, PBX1, BMP7, TBL1X 

GO:0051254~positive 
regulation of RNA 
metabolic process 

E2F1, PPARG, FOS, WNT1, CCNE1, MAP3K1, NFAT5, TCF4, FGF2, MYC, RUNX2, 
EGR1, TBL1XR1, SMAD4, TP53, RB1, SMAD1, NR4A3, SIX4, STAT3, BRCA1, SP1, 
VEGFA, PBX1, BMP7, TBL1X 

GO:0045941~positive 
regulation of 
transcription 

E2F1, BLM, PPARG, FOS, WNT1, CCNE1, MAP3K1, NFAT5, TCF4, FGF2, MYC, 
RUNX2, EGR1, TBL1XR1, TGFBR1, SMAD4, TP53, RB1, SMAD1, NR4A3, SIX4, 
STAT3, BRCA1, SP1, VEGFA, PBX1, BMP7, TBL1X 

GO:0045944~positive 
regulation of 

transcription from 
RNA polymerase II 

promoter 

E2F1, EGR1, TBL1XR1, PPARG, TP53, SMAD4, RB1, NR4A3, SMAD1, SIX4, 
STAT3, FOS, SP1, MAP3K1, VEGFA, NFAT5, PBX1, BMP7, TBL1X, FGF2, RUNX2, 
MYC 
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CHAPTER 3 
 
Differences in miRNAs after in vitro fertilization using sperm with high and low blastocyst developmental potential 
 
Table S3. Gene Ontology (GO) analysis was performed using the list of predicted target genes of differentially expressed miRNAs. GO 

terms for biological function, gene count, which indicates how much the GO term is enriched of predicted genes, P-value and False 

Discovery Rate (FDR) are reported.  

GO Term Gene count P-Value FDR 
GO:0006350~transcription 623 9.41e+13 1.79e+06 
GO:0045449~regulation of transcription 750 1.02e+13 1.94e+06 
GO:0006357~regulation of transcription from RNA polymerase II 
promoter 251 1.37e+14 2.61e+07 
GO:0010557~positive regulation of macromolecule biosynthetic process 227 1.02e+14 1.93e+07 
GO:0009891~positive regulation of biosynthetic process 238 1.43e+14 2.72e+07 
GO:0031328~positive regulation of cellular biosynthetic process 235 1.58e+14 3.00e+07 
GO:0010604~positive regulation of macromolecule metabolic process 282 2.42e+13 4.61e+07 
GO:0045935~positive regulation of nucleobase, nucleoside, nucleotide 
and nucleic acid metabolic process 217 2.49e+14 4.74e+08 
GO:0051173~positive regulation of nitrogen compound metabolic 
process 222 3.73e+14 7.10e+07 
GO:0010628~positive regulation of gene expression 203 7.40e+14 1.41e+08 
GO:0045941~positive regulation of transcription 198 8.10e+13 1.54e+09 
GO:0031175~neuron projection development 105 2.91e+14 5.54e+08 
GO:0045893~positive regulation of transcription, DNA-dependent 171 2.92e+14 5.56e+08 
GO:0051254~positive regulation of RNA metabolic process 172 3.22e+14 6.13e+08 
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GO:0007167~enzyme linked receptor protein signaling pathway 131 3.64e+13 6.94e+08 
GO:0048666~neuron development 130 3.92e+14 7.47e+08 
GO:0051252~regulation of RNA metabolic process 526 6.40e+14 1.22e+09 
GO:0007242~intracellular signaling cascade 380 1.42e+14 2.71e+10 
GO:0006355~regulation of transcription, DNA-dependent 512 2.42e+14 4.61e+09 
GO:0030030~cell projection organization 136 2.53e+14 4.82e+10 
GO:0007169~transmembrane receptor protein tyrosine kinase signaling 
pathway 92 3.74e+14 7.13e+09 
GO:0006468~protein amino acid phosphorylation 220 3.92e+14 7.46e+09 
GO:0045944~positive regulation of transcription from RNA polymerase 
II promoter 136 4.60e+14 8.76e+09 
GO:0048812~neuron projection morphogenesis 87 1.41e+14 2.68e+11 
GO:0030182~neuron differentiation 153 2.01e+14 3.84e+11 
GO:0006793~phosphorus metabolic process 297 4.62e+13 8.81e+09 
GO:0006796~phosphate metabolic process 297 4.62e+13 8.81e+09 
GO:0048858~cell projection morphogenesis 95 5.92e+14 1.13e+12 
GO:0048667~cell morphogenesis involved in neuron differentiation 84 6.02e+14 1.15e+12 
GO:0007409~axonogenesis 79 6.24e+14 1.19e+12 
GO:0007267~cell-cell signaling 196 6.79e+14 1.29e+11 
GO:0032990~cell part morphogenesis 98 7.45e+14 1.42e+12 
GO:0000902~cell morphogenesis 126 1.76e+14 3.35e+11 
GO:0016192~vesicle-mediated transport 186 3.71e+13 7.07e+10 
GO:0048598~embryonic morphogenesis 110 5.75e+13 0.001 
GO:0032989~cellular component morphogenesis 135 8.21e+14 0.002 
GO:0000904~cell morphogenesis involved in differentiation 91 8.62e+14 0.002 
GO:0033674~positive regulation of kinase activity 86 1.93e+14 0.004 
GO:0045184~establishment of protein localization 233 2.87e+14 0.005 
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GO:0045860~positive regulation of protein kinase activity 83 3.00e+14 0.006 
GO:0015031~protein transport 231 3.03e+14 0.006 
GO:0016310~phosphorylation 238 9.43e+14 0.018 
GO:0008104~protein localization 259 1.06e+14 0.020 
GO:0051347~positive regulation of transferase activity 86 1.09e+14 0.021 
GO:0019220~regulation of phosphate metabolic process 153 1.80e+14 0.034 
GO:0051174~regulation of phosphorus metabolic process 153 1.80e+14 0.034 
GO:0010629~negative regulation of gene expression 158 1.90e+14 0.036 
GO:0000122~negative regulation of transcription from RNA polymerase 
II promoter 92 2.58e+14 0.049 
GO:0016481~negative regulation of transcription 145 2.81e+14 0.053 
GO:0048729~tissue morphogenesis 67 2.96e+14 0.056 
GO:0044057~regulation of system process 103 4.59e+14 0.087 
GO:0046578~regulation of Ras protein signal transduction 75 4.77e+14 0.091 
GO:0046907~intracellular transport 196 5.25e+14 0.100 
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Table S4. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. which was performed using DAVID web-tool and 

predicted target genes of differentially expressed miRNAs. KEGG pathways, gene count, which indicates how much the KEGG pathway is 

enriched of predicted genes, and P-value are reported.  

 

KEGG pathway Gene count P-Value 
hsa04310:Wnt signaling pathway 69 1.57e+07 

hsa04010:MAPK signaling pathway 92 2.11e+11 
hsa04020:Calcium signaling pathway 65 4.11e+11 

hsa04012:ErbB signaling pathway 37 1.08e+12 
hsa04920:Adipocytokine signaling pathway 30 1.96e+12 

hsa04370:VEGF signaling pathway 30 0.002 
hsa04720:Long-term potentiation 27 0.004 

hsa04514:Cell adhesion molecules (CAMs) 45 0.005 
hsa04340:Hedgehog signaling pathway 23 0.005 

hsa04960:Aldosterone-regulated sodium reabsorption 17 0.017 
hsa04350:TGF-beta signaling pathway 30 0.019 

hsa04540:Gap junction 30 0.026 
hsa04730:Long-term depression 24 0.035 

hsa04630:Jak-STAT signaling pathway 47 0.035 
hsa05210:Colorectal cancer 45 4.57e+05 

hsa05200:Pathways in cancer 113 2.02e+10 
hsa05214:Glioma 32 5.08e+09 

hsa05213:Endometrial cancer 28 5.70e+09 
hsa05215:Prostate cancer 39 3.04e+11 

hsa05223:Non-small cell lung cancer 27 4.74e+10 
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hsa05220:Chronic myeloid leukemia 34 4.86e+11 
hsa05217:Basal cell carcinoma 26 2.12e+11 

hsa05212:Pancreatic cancer 31 3.44e+11 
hsa04912:GnRH signaling pathway 39 3.49e+11 

hsa04270:Vascular smooth muscle contraction 43 4.05e+12 
hsa04150:mTOR signaling pathway 24 6.10e+11 

hsa05218:Melanoma 30 6.39e+11 
hsa05211:Renal cell carcinoma 27 0.006 

hsa05014:Amyotrophic lateral sclerosis (ALS) 21 0.011 
hsa05221:Acute myeloid leukemia 22 0.017 
hsa05222:Small cell lung cancer 29 0.021 

hsa05216:Thyroid cancer 13 0.022 
hsa04520:Adherens junction 39 3.98e+08 

hsa04144:Endocytosis 65 1.87e+11 
hsa04510:Focal adhesion 68 5.33e+11 

hsa04210:Apoptosis 35 5.96e+11 
hsa04914:Progesterone-mediated oocyte maturation 33 0.002 

hsa04810:Regulation of actin cytoskeleton 69 0.002 
hsa04530:Tight junction 46 0.004 

hsa04114:Oocyte meiosis 38 0.008 
hsa04910:Insulin signaling pathway 58 5.11e+08 

hsa04916:Melanogenesis 43 1.42e+11 
hsa04722:Neurotrophin signaling pathway 50 2.85e+11 

hsa04360:Axon guidance 50 9.44e+10 
hsa04660:T cell receptor signaling pathway 41 7.37e+11 

hsa04062:Chemokine signaling pathway 62 0.002 
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hsa04666:Fc gamma R-mediated phagocytosis 36 0.002 
hsa04664:Fc epsilon RI signaling pathway 30 0.004 

hsa04670:Leukocyte transendothelial migration 41 0.005 
hsa04662:B cell receptor signaling pathway 26 0.028 

hsa00310:Lysine degradation 20 0.003 
hsa04070:Phosphatidylinositol signaling system 27 0.013 

hsa05414:Dilated cardiomyopathy 32 0.013 
hsa04930:Type II diabetes mellitus 19 0.014 

hsa04130:SNARE interactions in vesicular transport 16 0.018 
hsa04120:Ubiquitin mediated proteolysis 42 0.039 
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CHAPTER 4 
 
Differences in miRNAs after in vitro fertilization using sperm with high and low blastocyst developmental potential 
 
Table S5. List of differentially expressed miRNAs between follicular fluids of high and low antral follicle count ovaries. MiRNA ID, Log Fold 

Change (LogFC), P-value and False Discovery Rate (FDR) are reported.  

 

MiRNA ID LogFC P-Value FDR 
bta-miR-769 -2.524 7.92E-09 4.22E-06 
bta-miR-1343 -2.924 2.24E-08 5.96E-06 
bta-miR-450a -2.915 6.06E-08 8.79E-06 
bta-miR-30d -2.170 9.62E-08 1.03E-05 
bta-miR-204 -4.025 1.34E-07 1.19E-05 
bta-miR-100 1.897 3.94E-07 3.00E-05 
bta-miR-99a 1.748 2.70E-06 0.000 
Novel:hsa-miR-320a 2.071 2.53E-05 0.001 
bta-miR-197 -2.884 3.38E-05 0.002 
bta-miR-151 -1.551 3.69E-05 0.002 
bta-miR-146b -1.660 3.70E-05 0.002 
bta-miR-24-3p 1.434 5.45E-05 0.002 
bta-miR-374b -2.647 0.000 0.004 
bta-miR-1271 -2.656 0.000 0.004 
bta-miR-98 -2.087 0.000 0.005 
Novel:hsa-miR-4640-5p -2.857 0.000 0.006 
bta-miR-10a 1.522 0.000 0.006 
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bta-miR-190b -1.901 0.000 0.006 
bta-let-7c -1.748 0.000 0.006 
bta-miR-451 -2.578 0.000 0.006 
bta-miR-31 -1.927 0.000 0.007 
bta-miR-4286 -2.308 0.001 0.011 
bta-miR-3613 -3.772 0.001 0.013 
bta-miR-30c -1.500 0.001 0.013 
Novel:hsa-miR-4707-5p -3.653 0.001 0.013 
bta-miR-450b -1.308 0.001 0.017 
Novel:hsa-miR-6878-5p -2.058 0.001 0.017 
bta-miR-449a -1.723 0.001 0.020 
bta-miR-301a -1.524 0.001 0.020 
bta-miR-150 -4.112 0.002 0.022 
bta-miR-383 -1.957 0.002 0.024 
bta-miR-18a -2.447 0.002 0.027 
bta-miR-149 -1.422 0.002 0.027 
bta-miR-16b -1.276 0.002 0.028 
bta-miR-92a -1.084 0.002 0.028 
bta-miR-362 1.351 0.002 0.030 
bta-miR-30f -1.474 0.003 0.033 
bta-miR-324 -1.856 0.004 0.042 
bta-miR-93 -1.143 0.004 0.046 
bta-miR-148b -1.359 0.004 0.046 
bta-miR-885 2.715 0.004 0.046 
bta-miR-16a -1.472 0.005 0.054 
bta-miR-628 -1.798 0.006 0.058 
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bta-miR-33b -1.674 0.006 0.059 
bta-miR-874 1.043 0.006 0.059 
bta-miR-504 1.526 0.006 0.061 
bta-miR-320a 1.051 0.006 0.061 
bta-miR-127 0.968 0.007 0.063 
bta-miR-2399 2.549 0.007 0.064 
bta-let-7b -1.053 0.007 0.064 
bta-miR-374a -1.609 0.008 0.071 
bta-miR-29d 1.441 0.009 0.073 
Novel:hsa-miR-4722-5p 2.073 0.010 0.077 
bta-miR-27a 0.919 0.010 0.081 
bta-miR-195 -1.419 0.010 0.081 
bta-miR-1247 1.475 0.011 0.083 
Novel:hsa-miR-665 1.380 0.012 0.087 
bta-miR-223 -2.890 0.012 0.087 
bta-miR-328 -1.240 0.012 0.090 
bta-miR-30e -1.033 0.012 0.090 
bta-miR-30a -0.841 0.013 0.093 
Novel:hsa-miR-3960 -1.286 0.013 0.093 
bta-miR-2313 -1.581 0.013 0.093 
bta-miR-194 -1.229 0.014 0.093 
bta-miR-3431 -0.945 0.014 0.095 
bta-miR-365-3p -1.470 0.015 0.099 
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Table S6. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, P-value, count of predicted target genes (#genes) and 

differentially expressed miRNAs (#miRNAs), which were obtained using DIANA miRPath v2.0, are reported. 

 

KEGG pathway  P-value #genes #miRNAs 
Pathways in cancer 1.054e-11 62 17 

Chronic myeloid leukemia 6.655e-11 21 10 
Focal adhesion 8.588e-11 43 13 

Viral carcinogenesis 1.576e-10 45 14 
Bladder cancer 3.949e-10 15 10 

PI3K-Akt signaling pathway 1.907e-08 59 18 
ErbB signaling pathway 3.958e-08 21 8 

Neurotrophin signaling pathway 4.724e-08 27 13 
TGF-beta signaling pathway 1.588e-07 21 11 

Prostate cancer 2.544e-07 20 13 
Hepatitis B 1.185e-06 29 14 

Colorectal cancer 2.149e-06 15 11 
HIF-1 signaling pathway 1.855e-05 23 8 
MAPK signaling pathway 5.036e-05 43 14 

Non-small cell lung cancer 0.000 13 8 
Small cell lung cancer 0.000 17 8 

Pancreatic cancer 0.000 17 12 
NF-kappa B signaling pathway 0.000 18 8 

Endometrial cancer 0.000 12 9 
Insulin signaling pathway 0.001 24 10 

Transcriptional misregulation in cancer 0.001 31 10 
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Fc gamma R-mediated phagocytosis 0.001 18 7 
HTLV-I infection 0.001 40 14 

Amoebiasis 0.001 19 6 
mTOR signaling pathway 0.001 13 8 
Acute myeloid leukemia 0.001 12 7 

Melanoma 0.001 13 8 
Glioma 0.001 15 9 

NOD-like receptor signaling pathway 0.002 13 4 
Endocytosis 0.002 32 12 

Long-term depression 0.003 15 5 
African trypanosomiasis 0.003 8 4 
GnRH signaling pathway 0.003 16 6 

Alcoholism 0.003 30 8 
Vascular smooth muscle contraction 0.004 20 7 

Wnt signaling pathway 0.005 25 11 
Osteoclast differentiation 0.005 22 8 
Long-term potentiation 0.005 13 6 

Cell cycle 0.006 24 11 
Chemokine signaling pathway 0.010 28 10 

Epstein-Barr virus infection 0.011 31 10 
Thyroid cancer 0.014 7 7 
Melanogenesis 0.019 16 8 

Basal cell carcinoma 0.024 10 7 
Lysine degradation 0.028 10 7 

Regulation of actin cytoskeleton 0.029 32 11 
Measles 0.030 22 10 
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Chagas disease (American trypanosomiasis) 0.036 16 6 
Shigellosis 0.044 11 7 

p53 signaling pathway 0.044 12 7 
Oocyte meiosis 0.048 19 9 
RNA transport 0.048 22 6 

Cytokine-cytokine receptor interaction 0.049 34 9 

 

 
Table S7. Gene Ontology (GO) analysis was performed using the list of predicted target genes of differentially expressed miRNAs 

between folliclular fluids of high and low antral follicle count ovaries. GO terms for biological function, predicted targe genes of 

differentially expressed miRNAs, P-value and False Discovery Rate (FDR) are reported. Data are reported only for FDR less than 0.01. 

 

GO Term Genes P-Value FDR 

GO:0006468~protein amino acid 

phosphorylation 

FGFR3, ERBB3, STK11, ERBB2, STK36, RPS6KB2, RPS6KB1, KIT, IGF1R, 

PTK2, BCL2, MAP3K1, CAMK2D, PRKAA2, THBS1, FRS2, PDK1, IRAK1, 

CTBP1, RET, FLT1, ROCK1, SMAD7, MYLK3, TGFBR1, TGFBR2, MYLK4, 

RAF1, MYLK2, CDK6, CDK4, PRKCB, DAPK1, NTRK3, MAPK1, ACVR2A, 

RPS6KA3, CCND1, CAMK4, GSK3B, RIPK2, RELN, MAPK8, MTOR, ABL2, 

MYLK, ACVR1, F2R 

4.70e-11 8.13e-07 

GO:0042127~regulation of cell proliferation FGFR3, OSMR, ERBB3, STK11, ERBB2, MITF, EGLN3, FOXO1, FGF10, 

RPS6KB1, KIT, GLI2, IGF1R, CUL2, CDKN2B, BCL2, CAMK2D, THBS1, MYC, 

CCNA2, APC, CEBPA, CTBP1, IL6, IL2RA, FLT1, TGFBR1, NODAL, TGFBR2, 

6.90e-09 1.19e-03 
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TP53, SMAD4, CDK6, IL6R, CDK4, BRCA1, MAPK1, NRAS, CDKN1A, CCND1, 

CDKN1B, HDAC1, ID2, ETS1, VEGFA, HBEGF, RIPK2, MTOR, LAMC1, F2R 

GO:0043067~regulation of programmed 

cell death 

TRAF1, MCL1, ERBB3, BCAR1, ERBB2, MITF, FOXO1, NFKB1, PMAIP1, 

FOXO3, KIT, CUL2, IGF1R, COMP, MAP3K1, BCL2, RHOA, FAS, THBS1, 

TRAF6, MYC, ARHGDIA, APC, IRAK1, IL6, IL2RA, VAV3, ROCK1, TGFBR1, 

TP53, BIRC5, IL6R, BIRC3, YWHAE, BRCA1, TP73, DAPK1, MAPK1, NRAS, 

CDKN1A, CDKN1B, HDAC1, ETS1, GSK3B, VEGFA, RIPK2, MAPK8, ACVR1, 

F2R 

2.63e-06 4.55e-04 

GO:0010941~regulation of cell death TRAF1, MCL1, ERBB3, BCAR1, ERBB2, MITF, FOXO1, NFKB1, PMAIP1, 

FOXO3, KIT, CUL2, IGF1R, COMP, MAP3K1, BCL2, RHOA, FAS, THBS1, 

TRAF6, MYC, ARHGDIA, APC, IRAK1, IL6, IL2RA, VAV3, ROCK1, TGFBR1, 

TP53, BIRC5, IL6R, BIRC3, YWHAE, BRCA1, TP73, DAPK1, MAPK1, NRAS, 

CDKN1A, CDKN1B, HDAC1, ETS1, GSK3B, VEGFA, RIPK2, MAPK8, ACVR1, 

F2R 

3.08e-08 5.33e-04 

GO:0043069~negative regulation of 

programmed cell death 

MCL1, ERBB3, ERBB2, MITF, FOXO1, NFKB1, KIT, IGF1R, BCL2, COMP, 

RHOA, FAS, THBS1, TRAF6, MYC, ARHGDIA, APC, IRAK1, IL6, ROCK1, 

TGFBR1, TP53, BIRC5, BIRC3, TP73, DAPK1, NRAS, CDKN1A, HDAC1, GSK3B, 

VEGFA, RIPK2, MAPK8, ACVR1, F2R 

4.43e-07 7.67e-04 

GO:0060548~negative regulation of cell 

death 

MCL1, ERBB3, ERBB2, MITF, FOXO1, NFKB1, KIT, IGF1R, BCL2, COMP, 

RHOA, FAS, THBS1, TRAF6, MYC, ARHGDIA, APC, IRAK1, IL6, ROCK1, 

TGFBR1, TP53, BIRC5, BIRC3, TP73, DAPK1, NRAS, CDKN1A, HDAC1, GSK3B, 

4.85e-07 8.39e-04 
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VEGFA, RIPK2, MAPK8, ACVR1, F2R 

GO:0016310~phosphorylation FGFR3, ERBB3, STK11, ERBB2, STK36, RPS6KB2, RPS6KB1, KIT, IGF1R, 

PTK2, BCL2, MAP3K1, CAMK2D, PRKAA2, THBS1, FRS2, PDK1, IRAK1, 

CTBP1, RET, FLT1, ROCK1, SMAD7, MYLK3, TGFBR1, TGFBR2, MYLK4, 

RAF1, MYLK2, CDK6, CDK4, PRKCB, DAPK1, NTRK3, MAPK1, ACVR2A, 

RPS6KA3, CCND1, CAMK4, GSK3B, RIPK2, RELN, MAPK8, MTOR, ABL2, 

MYLK, ACVR1, F2R 

1.05e-06 1.81e-02 

GO:0042981~regulation of apoptosis TRAF1, MCL1, ERBB3, ERBB2, BCAR1, MITF, FOXO1, NFKB1, PMAIP1, 

FOXO3, IGF1R, CUL2, BCL2, MAP3K1, COMP, RHOA, FAS, TRAF6, THBS1, 

MYC, ARHGDIA, APC, IRAK1, IL6, IL2RA, VAV3, ROCK1, TGFBR1, TP53, BIRC5, 

IL6R, BIRC3, YWHAE, BRCA1, TP73, DAPK1, MAPK1, NRAS, CDKN1A, 

CDKN1B, HDAC1, ETS1, GSK3B, VEGFA, RIPK2, MAPK8, ACVR1, F2R 

1.29e-06 2.23e-02 

GO:0043066~negative regulation of 

apoptosis 

MCL1, ERBB3, ERBB2, MITF, FOXO1, NFKB1, IGF1R, BCL2, COMP, RHOA, 

FAS, THBS1, TRAF6, MYC, ARHGDIA, APC, IRAK1, IL6, ROCK1, TGFBR1, 

TP53, BIRC5, BIRC3, TP73, DAPK1, NRAS, CDKN1A, HDAC1, GSK3B, VEGFA, 

RIPK2, MAPK8, ACVR1, F2R 

3.21e-05 5.56e-04 

GO:0006796~phosphate metabolic process FGFR3, STK11, ERBB3, ERBB2, STK36, RPS6KB2, RPS6KB1, KIT, IGF1R, 

PTK2, MAP3K1, BCL2, CAMK2D, PRKAA2, THBS1, FRS2, PDK1, IRAK1, RET, 

CTBP1, FLT1, ROCK1, SMAD7, MYLK3, TGFBR1, MYLK4, TGFBR2, RAF1, 

MYLK2, CDK6, CDK4, DAPK1, PRKCB, NTRK3, MAPK1, ACVR2A, RPS6KA3, 

CCND1, PPP1CA, CAMK4, GSK3B, RIPK2, MAPK8, RELN, MTOR, ABL2, MYLK, 

8.16e-05 1.41e-01 
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PPP2R2A, ACVR1, F2R 

GO:0006793~phosphorus metabolic 

process 

FGFR3, STK11, ERBB3, ERBB2, STK36, RPS6KB2, RPS6KB1, KIT, IGF1R, 

PTK2, MAP3K1, BCL2, CAMK2D, PRKAA2, THBS1, FRS2, PDK1, IRAK1, RET, 

CTBP1, FLT1, ROCK1, SMAD7, MYLK3, TGFBR1, MYLK4, TGFBR2, RAF1, 

MYLK2, CDK6, CDK4, DAPK1, PRKCB, NTRK3, MAPK1, ACVR2A, RPS6KA3, 

CCND1, PPP1CA, CAMK4, GSK3B, RIPK2, MAPK8, RELN, MTOR, ABL2, MYLK, 

PPP2R2A, ACVR1, F2R 

8.16e-05 1.41e-01 

GO:0008284~positive regulation of cell 

proliferation 

FGFR3, OSMR, ERBB2, FGF10, RPS6KB1, KIT, GLI2, IGF1R, BCL2, CAMK2D, 

MYC, CCNA2, IL6, IL2RA, FLT1, TGFBR1, NODAL, TGFBR2, CDK6, IL6R, CDK4, 

MAPK1, NRAS, CDKN1A, CCND1, CDKN1B, ID2, HDAC1, VEGFA, RIPK2, 

HBEGF, MTOR, LAMC1, F2R 

4.07e-03 7.04e-01 

GO:0010604~positive regulation of 

macromolecule metabolic process 

E2F1, MITF, FOXO1, NFKB1, FOXO3, KIT, GLI2, SRF, IGF1R, REL, MAP3K1, 

BCL2, TCF4, THBS1, TRAF6, MYC, CCNA2, APC, CEBPA, IRAK1, IL6, AR, 

EGR2, SMAD7, TGFBR1, NODAL, TP53, SMAD4, CREB5, IL6R, CDK4, BRCA1, 

TP73, RAD51, MAPK1, ACVR2A, CCND1, HDAC1, ETS1, VEGFA, MTOR, 

ACVR1, F2R 

1.82e-01 3.89e+02 

GO:0051272~positive regulation of cell 

motion 

PLD1, IL6, FLT1, BCAR1, TGFBR1, MYLK2, RPS6KB1, IL6R, KIT, MAPK1, IGF1R, 

ETS1, BCL2, VEGFA, HBEGF, THBS1, F2R, APC 
7.31e-01 1.34e+04 

GO:0012501~programmed cell death TRAF1, PHLPP1, E2F1, E2F2, MCL1, ERBB3, EGLN3, NFKB1, PMAIP1, FOXO3, 

KIT, GSN, MAP3K1, BCL2, FAS, THBS1, TRAF6, MYC, IL6, IL2RA, LTBR, VAV3, 

ROCK1, TP53, RAF1, BIRC5, BIRC3, YWHAE, BRCA1, TP73, DAPK1, NRAS, 

1.05e+01 1.73e+04 
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CDKN1B, RIPK2, MAPK8, F2R 

GO:0051270~regulation of cell motion PLD1, IL6, FLT1, SMAD7, BCAR1, TGFBR1, MYLK2, RPS6KB1, IL6R, KIT, 

MAPK1, IGF1R, CDKN1B, ETS1, BCL2, MAP3K1, VEGFA, HBEGF, THBS1, 

CHRD, F2R, APC 

4.53e+00 7.87e+02 

GO:0007167~enzyme linked receptor 

protein signaling pathway 

IRAK1, RET, FGFR3, FLT1, ERBB3, SMAD7, TGFBR1, BCAR1, ERBB2, 

TGFBR2, SMAD4, RAF1, FOXO1, FGF10, KIT, FLNA, NTRK3, IGF1R, ACVR2A, 

PTK2, ID1, MAP3K1, VEGFA, HBEGF, CHRD, FRS2, ACVR1 

1.23e+02 2.13e+05 

GO:0007242~intracellular signaling 

cascade 

FGFR3, ERBB3, ERBB2, RPS6KB2, RPS6KB1, KIT, HIST2H4A, HIST2H4B, 

IGF1R, GSN, MAP3K1, RHOA, TRAF6, THBS1, GNG5, FRS2, CCNA2, 

ARHGDIA, SHC4, HIST1H4H, PDK1, IRAK1, AR, RET, PLD1, FLT1, VAV3, 

ROCK1, SMAD7, TGFBR1, TP53, RAF1, YWHAE, BRCA1, FLNA, TP73, PRKCB, 

IFNAR1, DAPK1, MAPK1, NRAS, IFNAR2, CCND1, RPS6KA3, CRKL, GSK3B, 

MAPK8, RAP1B, MTOR, CRK, F2R 

1.56e+01 2.71e+04 

GO:0008219~cell death TRAF1, PHLPP1, E2F1, E2F2, MCL1, ERBB3, EGLN3, NFKB1, PMAIP1, FOXO3, 

KIT, GSN, MAP3K1, BCL2, FAS, THBS1, TRAF6, MYC, IL6, AR, IL2RA, LTBR, 

VAV3, ROCK1, TP53, RAF1, BIRC5, BIRC3, YWHAE, BRCA1, TP73, DAPK1, 

NRAS, CDKN1B, RIPK2, MAPK8, F2R 

2.55e+02 4.42e+04 

GO:0010033~response to organic 

substance 

MCL1, OSMR, ERBB3, ERBB2, BCAR1, FOXO1, RPS6KB1, PMAIP1, SRF, 

IGF1R, CDKN2B, GSN, BCL2, ATF6B, FAS, THBS1, MYC, CCNA2, GNG5, 

IRAK1, IL6, AR, PLD1, EGR2, TGFBR1, TGFBR2, IL6R, BRCA1, MAPK1, 

CDKN1A, CCND1, ID2, ID1, RIPK2, MTOR, PPP2R2A, F2R 

2.78e+02 4.80e+04 
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GO:0006915~apoptosis TRAF1, PHLPP1, E2F1, E2F2, MCL1, ERBB3, EGLN3, NFKB1, PMAIP1, FOXO3, 

GSN, MAP3K1, BCL2, FAS, THBS1, TRAF6, MYC, IL6, IL2RA, LTBR, VAV3, 

ROCK1, TP53, RAF1, BIRC5, BIRC3, YWHAE, BRCA1, TP73, DAPK1, NRAS, 

RIPK2, MAPK8, F2R 

2.94e+02 5.09e+04 

GO:0016265~death TRAF1, PHLPP1, E2F1, E2F2, MCL1, ERBB3, EGLN3, NFKB1, PMAIP1, FOXO3, 

KIT, GSN, MAP3K1, BCL2, FAS, THBS1, TRAF6, MYC, IL6, AR, IL2RA, LTBR, 

VAV3, ROCK1, TP53, RAF1, BIRC5, BIRC3, YWHAE, BRCA1, TP73, DAPK1, 

NRAS, CDKN1B, RIPK2, MAPK8, F2R 

3.15e+02 5.46e+04 

GO:0010557~positive regulation of 

macromolecule biosynthetic process 

E2F1, MITF, FOXO1, NFKB1, FOXO3, GLI2, SRF, IGF1R, REL, MAP3K1, TCF4, 

THBS1, TRAF6, CCNA2, MYC, CEBPA, IRAK1, AR, IL6, EGR2, TGFBR1, 

NODAL, SMAD4, TP53, CREB5, CDK4, BRCA1, TP73, MAPK1, HDAC1, ETS1, 

VEGFA, MTOR, ACVR1, F2R 

5.22e+01 9.03e+04 

GO:0031328~positive regulation of cellular 

biosynthetic process 

E2F1, MITF, FOXO1, NFKB1, FOXO3, GLI2, SRF, IGF1R, REL, MAP3K1, TCF4, 

THBS1, TRAF6, CCNA2, MYC, CEBPA, IRAK1, AR, IL6, EGR2, TGFBR1, 

NODAL, SMAD4, TP53, CREB5, CDK4, BRCA1, TP73, MAPK1, HDAC1, ETS1, 

VEGFA, MTOR, ACVR1, F2R 

1.98e+03 3.43e+06 

GO:0009967~positive regulation of signal 

transduction 

IL6, LTBR, FLT1, ERBB3, ERBB2, TGFBR1, SMAD4, FGF10, IL6R, KIT, FLNA, 

NRAS, ACVR2A, CDKN2B, REL, ITGA8, VEGFA, RHOA, RIPK2, RELN, MTOR, 

TRAF6, THBS1, F2R 

2.83e+03 4.89e+05 

GO:0040017~positive regulation of 

locomotion 

IL6, PLD1, FLT1, BCAR1, FGF10, RPS6KB1, IL6R, KIT, IGF1R, MAPK1, BCL2, 

VEGFA, HBEGF, THBS1, F2R, APC 
2.84e+03 4.92e+05 
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GO:0009891~positive regulation of 

biosynthetic process 

E2F1, MITF, FOXO1, NFKB1, FOXO3, GLI2, SRF, IGF1R, REL, MAP3K1, TCF4, 

THBS1, TRAF6, CCNA2, MYC, CEBPA, IRAK1, AR, IL6, EGR2, TGFBR1, 

NODAL, SMAD4, TP53, CREB5, CDK4, BRCA1, TP73, MAPK1, HDAC1, ETS1, 

VEGFA, MTOR, ACVR1, F2R 

3.00e+02 5.18e+05 

GO:0010647~positive regulation of cell 

communication 

COL4A4, IL6, LTBR, FLT1, ERBB3, TGFBR1, ERBB2, SMAD4, FGF10, IL6R, KIT, 

FLNA, NRAS, ACVR2A, CDKN2B, REL, ITGA8, VEGFA, RHOA, RIPK2, RELN, 

MTOR, TRAF6, THBS1, F2R 

3.51e+02 6.07e+05 

GO:0006928~cell motion ERBB2, BCAR1, RPS6KB1, KIT, GLI2, SRF, PTK2, THBS1, ARHGDIA, APC, 

RET, IL6, FLT1, VAV3, EGR2, ROCK1, NODAL, TGFBR1, IL6R, YWHAE, 

COL5A1, ID1, ITGA5, ETS1, HBEGF, RELN, MAPK8, LAMC1, ACVR1 

6.05e+02 1.05e+07 

GO:0016477~cell migration RET, IL6, VAV3, FLT1, ROCK1, NODAL, BCAR1, TGFBR1, RPS6KB1, IL6R, KIT, 

SRF, YWHAE, COL5A1, PTK2, ID1, ITGA5, HBEGF, RELN, LAMC1, THBS1, 

ACVR1, APC 

6.23e+02 1.08e+07 

GO:0051674~localization of cell RET, IL6, VAV3, FLT1, ROCK1, NODAL, BCAR1, TGFBR1, RPS6KB1, IL6R, KIT, 

SRF, YWHAE, COL5A1, PTK2, ID1, ITGA5, ETS1, HBEGF, RELN, LAMC1, 

THBS1, ACVR1, APC 

6.54e+00 1.13e+07 

GO:0048870~cell motility RET, IL6, VAV3, FLT1, ROCK1, NODAL, BCAR1, TGFBR1, RPS6KB1, IL6R, KIT, 

SRF, YWHAE, COL5A1, PTK2, ID1, ITGA5, ETS1, HBEGF, RELN, LAMC1, 

THBS1, ACVR1, APC 

6.54e+00 1.13e+07 

GO:0051094~positive regulation of 

developmental process 

IL6, IL2RA, TGFBR2, SMAD4, RPS6KB1, NFKB1, IL6R, KIT, FOXO3, GLI2, SRF, 

NTRK3, ACVR2A, CDKN2B, ID2, ETS1, IL4R, BCL2, RHOA, THBS1, ARHGDIA, 
7.21e+02 1.25e+07 
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ACVR1, APC 

GO:0030335~positive regulation of cell 

migration 

IL6, PLD1, FLT1, BCAR1, RPS6KB1, IL6R, KIT, IGF1R, MAPK1, BCL2, VEGFA, 

HBEGF, THBS1, F2R, APC 
1.24e+04 2.14e+06 

GO:0045597~positive regulation of cell 

differentiation 

IL6, IL2RA, TGFBR2, SMAD4, NFKB1, IL6R, KIT, FOXO3, GLI2, SRF, NTRK3, 

ACVR2A, CDKN2B, ID2, ETS1, IL4R, BCL2, RHOA, ARHGDIA, APC, ACVR1 
1.40e+03 2.42e+07 

GO:0006916~anti-apoptosis IRAK1, MCL1, TGFBR1, FOXO1, BIRC5, NFKB1, BIRC3, DAPK1, IGF1R, 

HDAC1, GSK3B, COMP, BCL2, VEGFA, RIPK2, FAS, TRAF6, THBS1, MYC, 

ARHGDIA 

2.00e+04 3.46e+07 

GO:0010628~positive regulation of gene 

expression 

E2F1, MITF, FOXO1, NFKB1, FOXO3, KIT, GLI2, SRF, REL, MAP3K1, TCF4, 

CCNA2, MYC, CEBPA, IRAK1, AR, IL6, EGR2, NODAL, TGFBR1, SMAD4, TP53, 

CREB5, BRCA1, TP73, MAPK1, HDAC1, ETS1, VEGFA, ACVR1, F2R 

2.43e+04 4.21e+06 

GO:0045935~positive regulation of 

nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 

E2F1, MITF, FOXO1, NFKB1, FOXO3, GLI2, SRF, IGF1R, REL, MAP3K1, TCF4, 

CCNA2, MYC, CEBPA, IRAK1, AR, IL6, EGR2, TGFBR1, NODAL, SMAD4, TP53, 

CREB5, BRCA1, TP73, RAD51, MAPK1, HDAC1, ETS1, VEGFA, ACVR1, F2R 

2.70e+04 4.68e+06 

GO:0040012~regulation of locomotion PLD1, IL6, FLT1, SMAD7, BCAR1, FGF10, RPS6KB1, IL6R, KIT, MAPK1, IGF1R, 

BCL2, MAP3K1, VEGFA, HBEGF, THBS1, CHRD, F2R, APC 
6.01e+03 1.04e+08 

GO:0051173~positive regulation of nitrogen 

compound metabolic process 

E2F1, MITF, FOXO1, NFKB1, FOXO3, GLI2, SRF, IGF1R, REL, MAP3K1, TCF4, 

CCNA2, MYC, CEBPA, IRAK1, AR, IL6, EGR2, TGFBR1, NODAL, SMAD4, TP53, 

CREB5, BRCA1, TP73, RAD51, MAPK1, HDAC1, ETS1, VEGFA, ACVR1, F2R 

6.13e+03 1.06e+08 

GO:0045941~positive regulation of 

transcription 

E2F1, MITF, FOXO1, NFKB1, FOXO3, GLI2, SRF, REL, MAP3K1, TCF4, CCNA2, 

MYC, CEBPA, IRAK1, AR, IL6, EGR2, NODAL, TGFBR1, SMAD4, TP53, CREB5, 
6.63e+04 1.15e+08 
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BRCA1, TP73, MAPK1, HDAC1, ETS1, VEGFA, F2R, ACVR1 

GO:0030334~regulation of cell migration PLD1, IL6, FLT1, SMAD7, BCAR1, RPS6KB1, IL6R, KIT, MAPK1, IGF1R, BCL2, 

MAP3K1, VEGFA, HBEGF, THBS1, CHRD, F2R, APC 
7.72e+03 1.34e+08 

GO:0009725~response to hormone 

stimulus 

PLD1, AR, IL6, EGR2, ERBB3, BCAR1, ERBB2, TGFBR1, TGFBR2, FOXO1, 

RPS6KB1, IL6R, SRF, BRCA1, MAPK1, IGF1R, CCND1, CDKN1A, BCL2, MTOR, 

FAS, THBS1, CCNA2, GNG5 

2.59e+04 4.47e+07 

GO:0051174~regulation of phosphorus 

metabolic process 

IRAK1, IL6, VAV3, FLT1, SMAD7, TGFBR1, ERBB2, TGFBR2, SMAD4, IL6R, KIT, 

YWHAE, TP73, ACVR2A, CCND1, CDKN1A, CDKN1B, CDKN2B, BCL2, 

MAP3K1, RELN, MTOR, TRAF6, THBS1, FRS2, APC, F2R 

3.78e+04 6.53e+07 

GO:0019220~regulation of phosphate 

metabolic process 

IRAK1, IL6, VAV3, FLT1, SMAD7, TGFBR1, ERBB2, TGFBR2, SMAD4, IL6R, KIT, 

YWHAE, TP73, ACVR2A, CCND1, CDKN1A, CDKN1B, CDKN2B, BCL2, 

MAP3K1, RELN, MTOR, TRAF6, THBS1, FRS2, APC, F2R 

3.78e+04 6.53e+07 

GO:0042325~regulation of phosphorylation IRAK1, IL6, VAV3, FLT1, SMAD7, TGFBR1, ERBB2, TGFBR2, SMAD4, IL6R, KIT, 

TP73, ACVR2A, CCND1, CDKN1A, CDKN1B, CDKN2B, BCL2, MAP3K1, RELN, 

MTOR, TRAF6, THBS1, FRS2, APC, F2R 

9.26e+04 1.60e+09 

GO:0009719~response to endogenous 

stimulus 

PLD1, AR, IL6, EGR2, ERBB3, BCAR1, ERBB2, TGFBR1, TGFBR2, FOXO1, 

RPS6KB1, IL6R, SRF, BRCA1, MAPK1, IGF1R, CCND1, CDKN1A, BCL2, MTOR, 

FAS, THBS1, CCNA2, GNG5 

1.86e+05 3.21e+09 

GO:0007243~protein kinase cascade IRAK1, RET, FGFR3, FLT1, ERBB3, ERBB2, TGFBR1, RPS6KB2, RPS6KB1, KIT, 

DAPK1, IFNAR1, MAPK1, IFNAR2, IGF1R, RPS6KA3, CRKL, MAP3K1, MAPK8, 

TRAF6, THBS1, FRS2, F2R 

2.01e+05 3.47e+08 
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GO:0045596~negative regulation of cell 

differentiation 

SMAD7, NODAL, TGFBR1, TP53, FGF10, CDK6, KIT, GLI2, HIST2H4A, 

HIST2H4B, MAPK1, PTK2, CCND1, HDAC1, IL4R, RHOA, CHRD, ARHGDIA, 

HIST1H4H, APC 

3.82e+05 6.61e+08 

GO:0045893~positive regulation of 

transcription, DNA-dependent 

E2F1, CEBPA, AR, IL6, EGR2, NODAL, MITF, TP53, SMAD4, FOXO1, CREB5, 

NFKB1, FOXO3, GLI2, SRF, BRCA1, TP73, REL, HDAC1, ETS1, MAP3K1, 

VEGFA, TCF4, MYC, F2R 

8.42e+05 1.46e+10 

GO:0051254~positive regulation of RNA 

metabolic process 

E2F1, CEBPA, AR, IL6, EGR2, NODAL, MITF, TP53, SMAD4, FOXO1, CREB5, 

NFKB1, FOXO3, GLI2, SRF, BRCA1, TP73, REL, HDAC1, ETS1, MAP3K1, 

VEGFA, TCF4, MYC, F2R 

9.95e+05 1.72e+10 

GO:0051726~regulation of cell cycle E2F1, E2F2, TP53, MYLK2, CDK6, BIRC5, CDK4, BRCA1, CCND1, CDKN1A, 

CDKN1B, CDKN2B, HDAC1, PRDM4, ID2, ETS1, BCL2, CAMK2D, CCNA2, 

MYC, APC 

1.09e+07 1.88e+10 

GO:0007166~cell surface receptor linked 

signal transduction 

OSMR, BCAR1, MITF, FOXO1, FGF10, GLI2, HHIP, FRS2, GNG5, IRAK1, 

WNT10B, RET, FLNA, IFNAR1, MAPK1, IFNAR2, ACVR2A, CCND1, VEGFA, 

RIPK2, ACVR1, FGFR3, ERBB3, C3, ERBB2, ITGA10, KIT, IGF1R, PTK2, 

MAP3K1, TRAF6, APC, FZD8, FLT1, VAV3, IL2RA, SMAD7, TGFBR1, TGFBR2, 

SMAD4, RAF1, BIRC3, NTRK3, FZD10, ITGA5, ID1, GSK3B, ITGA8, HBEGF, 

CHRD, F2R 

1.78e+07 3.08e+09 

GO:0006357~regulation of transcription 

from RNA polymerase II promoter 

E2F1, MITF, FOXO1, NFKB1, FOXO3, GLI2, SRF, MAP3K1, RHOA, TCF4, MYC, 

CHD4, CEBPA, IL6, CTBP1, AR, EGR2, SMAD7, NODAL, SMAD4, TP53, BRCA1, 

IFNAR2, ID2, HDAC1, ID1, ETS1, VEGFA, CRK, HDAC8 

2.69e+07 4.66e+10 
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GO:0043065~positive regulation of 

apoptosis 

IL2RA, VAV3, TGFBR1, TP53, PMAIP1, FOXO3, YWHAE, BRCA1, TP73, DAPK1, 

MAPK1, CUL2, CDKN1A, CDKN1B, ETS1, MAP3K1, BCL2, RIPK2, MAPK8, FAS, 

TRAF6, MYC, APC 

3.37e+06 5.84e+09 

GO:0043068~positive regulation of 

programmed cell death 

IL2RA, VAV3, TGFBR1, TP53, PMAIP1, FOXO3, YWHAE, BRCA1, TP73, DAPK1, 

MAPK1, CUL2, CDKN1A, CDKN1B, ETS1, MAP3K1, BCL2, RIPK2, MAPK8, FAS, 

TRAF6, MYC, APC 

3.84e+06 6.64e+09 

GO:0010942~positive regulation of cell 

death 

IL2RA, VAV3, TGFBR1, TP53, PMAIP1, FOXO3, YWHAE, BRCA1, TP73, DAPK1, 

MAPK1, CUL2, CDKN1A, CDKN1B, ETS1, MAP3K1, BCL2, RIPK2, MAPK8, FAS, 

TRAF6, MYC, APC 

4.17e+06 7.22e+10 

GO:0007169~transmembrane receptor 

protein tyrosine kinase signaling pathway 

RET, FGFR3, FLT1, ERBB3, BCAR1, ERBB2, FGF10, FOXO1, RAF1, KIT, FLNA, 

NTRK3, IGF1R, PTK2, VEGFA, HBEGF, FRS2 
5.29e+06 9.16e+08 

GO:0007389~pattern specification process EGR2, FLT1, NODAL, TGFBR1, TGFBR2, SMAD4, FGF10, GLI2, ACVR2A, 

CRKL, VEGFA, RELN, HHIP, FRS2, CHRD, PITX2, ACVR1, APC 
9.71e+06 1.68e+10 

GO:0035239~tube morphogenesis RET, FLT1, NODAL, TGFBR2, SMAD4, FGF10, GLI2, SRF, PPP1CA, BCL2, 

VEGFA, TRAF6, ACVR1 
2.15e+07 3.72e+10 

GO:0043549~regulation of kinase activity IRAK1, VAV3, FLT1, ERBB2, TGFBR1, TGFBR2, KIT, TP73, CCND1, CDKN1A, 

CDKN1B, CDKN2B, MAP3K1, RELN, MTOR, TRAF6, THBS1, FRS2, F2R, APC 
2.32e+07 4.01e+10 

GO:0051329~interphase of mitotic cell 

cycle 

E2F1, CUL2, CDKN1A, CCND1, CDKN1B, CDKN2B, BCL2, CAMK2D, CDK6, 

BIRC5, CDK4, ACVR1 
2.36e+08 4.08e+10 

GO:0010627~regulation of protein kinase 

cascade 

IL6, LTBR, ERBB3, ERBB2, TGFBR1, MYLK2, IL6R, TP73, FLNA, REL, MAP3K1, 

RHOA, RIPK2, MTOR, TRAF6, F2R, APC 
2.39e+08 4.13e+11 
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GO:0008285~negative regulation of cell 

proliferation 

CEBPA, IL6, CTBP1, IL2RA, STK11, ERBB2, TGFBR2, TP53, SMAD4, FGF10, 

CDK6, CUL2, CDKN1A, CDKN1B, CDKN2B, ETS1, BCL2, THBS1, F2R, APC 
2.77e+08 4.80e+10 

GO:0035295~tube development CEBPA, RET, FLT1, NODAL, TGFBR1, TGFBR2, SMAD4, FGF10, GLI2, SRF, 

PPP1CA, BCL2, VEGFA, HHIP, TRAF6, ACVR1 
3.05e+07 5.28e+11 

GO:0051325~interphase E2F1, CUL2, CDKN1A, CCND1, CDKN1B, CDKN2B, BCL2, CAMK2D, CDK6, 

BIRC5, CDK4, ACVR1 
3.19e+08 5.52e+10 

GO:0051338~regulation of transferase 

activity 

IRAK1, VAV3, FLT1, ERBB2, TGFBR1, TGFBR2, KIT, TP73, CCND1, CDKN1A, 

CDKN1B, CDKN2B, MAP3K1, RELN, MTOR, TRAF6, THBS1, FRS2, F2R, APC 
4.47e+06 7.74e+10 

GO:0044087~regulation of cellular 

component biogenesis 

COL4A4, TGFBR1, KIT, SRF, PTK2, CDKN1B, GSN, MAP3K1, GSK3B, RHOA, 

MTOR, THBS1, APC 
7.51e+07 1.30e+12 

GO:0045859~regulation of protein kinase 

activity 

IRAK1, FLT1, ERBB2, TGFBR1, TGFBR2, KIT, TP73, CCND1, CDKN1A, 

CDKN1B, CDKN2B, MAP3K1, RELN, MTOR, TRAF6, THBS1, FRS2, F2R, APC 
7.55e+07 1.31e+11 

GO:0032535~regulation of cellular 

component size 

HPN, AR, FGFR3, TGFBR1, TP53, SMAD4, CDK4, TP73, NTRK3, CDKN1A, 

CDKN1B, PRDM4, GSN, BCL2, MAP3K1, HBEGF, MTOR 
7.78e+06 1.35e+11 

GO:0008361~regulation of cell size HPN, AR, FGFR3, TGFBR1, TP53, SMAD4, CDK4, TP73, NTRK3, CDKN1A, 

CDKN1B, PRDM4, BCL2, HBEGF, MTOR 
9.38e+07 1.62e+11 

GO:0008283~cell proliferation E2F1, AR, IL2RA, OSMR, BCAR1, ERBB2, TP53, RAF1, FGF10, KIT, GLI2, 

IFNAR2, ACVR2A, PRDM4, BCL2, VEGFA, RIPK2, RAP1B, HHIP, FRS2, MYC 
1.13e+09 1.95e+12 

GO:0065003~macromolecular complex 

assembly 

TRAF1, E2F2, HIST2H4A, HIST2H4B, HIST1H2BO, IGF1R, PTK2, HIST1H2BN, 

HIST1H2BK, HIST1H2BL, GSN, MAP3K1, HIST1H2BI, FAS, PRKAA2, MYC, 

APC, HIST1H4H, IRAK1, HIST1H2BC, HIST1H2BD, HIST1H2BF, HIST1H2BG, 

1.24e+09 2.14e+12 
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HIST1H2BH, SMAD4, TP53, BIRC3, FLNA, RAD51, HIST2H2BF, LAMC1 

GO:0006917~induction of apoptosis VAV3, TGFBR1, TP53, FOXO3, PMAIP1, YWHAE, BRCA1, TP73, DAPK1, 

MAPK1, CUL2, CDKN1A, CDKN1B, ETS1, MAPK8, FAS, TRAF6, MYC 
1.38e+09 2.38e+12 

GO:0012502~induction of programmed cell 

death 

VAV3, TGFBR1, TP53, FOXO3, PMAIP1, YWHAE, BRCA1, TP73, DAPK1, 

MAPK1, CUL2, CDKN1A, CDKN1B, ETS1, MAPK8, FAS, TRAF6, MYC 
1.44e+08 2.49e+12 

GO:0051130~positive regulation of cellular 

component organization 

C3, TGFBR1, SMAD4, FGF10, KIT, SRF, NTRK3, CDKN1B, MAP3K1, GSK3B, 

RHOA, MTOR, ARHGDIA, APC 
1.45e+09 2.50e+12 

GO:0045944~positive regulation of 

transcription from RNA polymerase II 

promoter 

E2F1, CEBPA, AR, IL6, EGR2, NODAL, MITF, TP53, SMAD4, FOXO1, NFKB1, 

FOXO3, GLI2, SRF, HDAC1, ETS1, MAP3K1, VEGFA, MYC 2.24e+09 3.88e+11 

GO:0048545~response to steroid hormone 

stimulus 

IL6, ERBB2, TGFBR1, TGFBR2, RPS6KB1, IL6R, BRCA1, MAPK1, CCND1, 

CDKN1A, BCL2, FAS, THBS1, CCNA2 
2.88e+08 4.98e+11 

GO:0043933~macromolecular complex 

subunit organization 

TRAF1, E2F2, HIST2H4A, HIST2H4B, HIST1H2BO, IGF1R, PTK2, HIST1H2BN, 

HIST1H2BK, HIST1H2BL, GSN, MAP3K1, HIST1H2BI, FAS, PRKAA2, MYC, 

APC, HIST1H4H, IRAK1, HIST1H2BC, HIST1H2BD, HIST1H2BF, HIST1H2BG, 

HIST1H2BH, SMAD4, TP53, BIRC3, FLNA, RAD51, HIST2H2BF, LAMC1 

4.26e+08 7.36e+11 

GO:0010740~positive regulation of protein 

kinase cascade 

IL6, LTBR, ERBB3, TGFBR1, ERBB2, IL6R, FLNA, REL, RHOA, RIPK2, MTOR, 

TRAF6, F2R 
4.43e+08 7.66e+11 

GO:0046777~protein amino acid 

autophosphorylation 

NTRK3, IGF1R, IRAK1, PTK2, MAP3K1, ERBB2, TGFBR1, CAMK2D, MTOR, KIT 
5.00e+08 8.66e+10 

GO:0009611~response to wounding IL6, IL2RA, ERBB3, C3, ERBB2, TGFBR2, FGF10, RPS6KB1, NFKB1, IL6R, SRF, 6.06e+08 0.001 
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COL5A1, TP73, ITGA5, GSN, BCL2, MAP3K1, RIPK2, HBEGF, THBS1, F2R, 

ACVR1 

GO:0048754~branching morphogenesis of 

a tube 

PPP1CA, FLT1, BCL2, VEGFA, TGFBR2, SMAD4, FGF10, GLI2, ACVR1 
6.85e+08 0.001 

GO:0001944~vasculature development FLT1, SMAD7, NODAL, TGFBR1, TGFBR2, FOXO1, FGF10, SRF, COL5A1, 

PTK2, CRKL, ID1, VEGFA, THBS1, ACVR1 
1.04e+10 0.002 

GO:0007507~heart development CRKL, ID2, ID1, ERBB3, SMAD7, ERBB2, NODAL, TGFBR1, TGFBR2, MYLK2, 

GLI2, SRF, COL5A1, ACVR1 
1.05e+10 0.002 

GO:0048661~positive regulation of smooth 

muscle cell proliferation 

IL6, FLT1, VEGFA, TGFBR2, HBEGF, RPS6KB1, IL6R 
1.15e+10 0.002 

GO:0045637~regulation of myeloid cell 

differentiation 

ACVR2A, ID2, ETS1, MITF, CDK6, FAS, FOXO3, HIST2H4A, APC, HIST1H4H, 

HIST2H4B 
1.22e+09 0.002 

GO:0043434~response to peptide hormone 

stimulus 

IGF1R, PLD1, AR, EGR2, ERBB3, BCL2, BCAR1, FOXO1, RPS6KB1, IL6R, 

MTOR, CCNA2 
1.45e+10 0.003 

GO:0048534~hemopoietic or lymphoid 

organ development 

CEBPA, CRKL, ID2, TGFBR1, BCL2, VEGFA, TGFBR2, TP53, FGF10, CDK6, 

KIT, FAS, NFKB2, TRAF6, APC 
1.59e+09 0.003 

GO:0022402~cell cycle process E2F1, STK11, TP53, CDK6, BIRC5, CDK4, BRCA1, TP73, RAD51, CUL2, CCND1, 

CDKN1A, CDKN1B, CDKN2B, GSK3B, BCL2, CAMK2D, THBS1, CCNA2, MYC, 

APC, ACVR1 

1.70e+09 0.003 

GO:0006333~chromatin assembly or 

disassembly 

HIST1H2BC, HIST1H2BD, HIST1H2BF, HIST1H2BG, HIST1H2BH, HIST2H4A, 

HIST2H4B, HIST1H2BO, HIST1H2BN, HIST1H2BK, HIST1H2BL, HIST1H2BI, 
1.82e+10 0.003 
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HIST2H2BF, HDAC8, CHD4, HIST1H4H 

GO:0001763~morphogenesis of a 

branching structure 

PPP1CA, FLT1, BCL2, VEGFA, TGFBR2, SMAD4, FGF10, GLI2, ACVR1 
1.88e+10 0.003 

GO:0032101~regulation of response to 

external stimulus 

NTRK3, IL6, IL2RA, C3, OSMR, VEGFA, TGFBR2, FGF10, IL6R, MTOR, THBS1, 

F2R 
1.98e+10 0.003 

GO:0007423~sensory organ development ERBB3, ERBB2, MITF, FGF10, COL5A2, COL5A1, CDKN1B, BCL2, ITGA8, 

MAP3K1, VEGFA, FRS2, MYC, APC 
2.12e+10 0.004 

GO:0033674~positive regulation of kinase 

activity 

IRAK1, VAV3, FLT1, ERBB2, TGFBR1, TGFBR2, KIT, CCND1, MAP3K1, RELN, 

TRAF6, THBS1, FRS2, F2R 
2.34e+09 0.004 

GO:0007178~transmembrane receptor 

protein serine/threonine kinase signaling 

pathway 

ACVR2A, IRAK1, ID1, SMAD7, MAP3K1, TGFBR1, TGFBR2, SMAD4, CHRD, 

ACVR1 2.56e+10 0.004 

GO:0007050~cell cycle arrest CUL2, CDKN1A, CDKN1B, CDKN2B, STK11, TP53, THBS1, MYC, TP73, APC 2.56e+10 0.004 

GO:0030278~regulation of ossification ACVR2A, IL6, EGR2, BCL2, CDK6, IL6R, CHRD, ACVR1, APC 2.81e+09 0.005 

GO:0048584~positive regulation of 

response to stimulus 

IRAK1, IL6, C3, OSMR, BCAR1, FGF10, IL6R, BRCA1, NTRK3, MAPK1, VEGFA, 

RIPK2, TRAF6, THBS1 
2.96e+10 0.005 

GO:0000082~G1/S transition of mitotic cell 

cycle 

CUL2, CDKN1A, CCND1, CDKN1B, BCL2, CAMK2D, CDK4, ACVR1 
3.14e+10 0.005 

GO:0001702~gastrulation with mouth 

forming second 

ACVR2A, NODAL, SMAD4, FRS2, CHRD, ACVR1 
3.15e+08 0.005 

GO:0002520~immune system development CEBPA, CRKL, ID2, TGFBR1, BCL2, VEGFA, TGFBR2, TP53, FGF10, CDK6, 3.20e+10 0.006 
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KIT, FAS, NFKB2, TRAF6, APC 

GO:0002684~positive regulation of immune 

system process 

IRAK1, IL6, IL2RA, C3, BCAR1, TGFBR2, IL6R, MAPK1, CDKN1A, IL4R, VEGFA, 

RIPK2, TRAF6, THBS1 
3.25e+10 0.006 

GO:0051347~positive regulation of 

transferase activity 

IRAK1, VAV3, FLT1, ERBB2, TGFBR1, TGFBR2, KIT, CCND1, MAP3K1, RELN, 

TRAF6, THBS1, FRS2, F2R 
3.56e+09 0.006 

GO:0030155~regulation of cell adhesion VAV3, ERBB3, GSN, SMAD7, BCL2, ERBB2, CDK6, THBS1, CHRD, ARHGDIA, 

APC 
3.63e+10 0.006 

GO:0045786~negative regulation of cell 

cycle 

CDKN1A, CDKN1B, PRDM4, HDAC1, ETS1, BCL2, TP53, CDK6, APC 
3.74e+09 0.006 

GO:0051247~positive regulation of protein 

metabolic process 

IL6, SMAD7, TGFBR1, SMAD4, IL6R, CDK4, BRCA1, ACVR2A, MAPK1, CCND1, 

BCL2, MTOR, THBS1, APC 
4.08e+09 0.007 

GO:0001568~blood vessel development FLT1, SMAD7, TGFBR1, TGFBR2, FOXO1, FGF10, SRF, COL5A1, PTK2, CRKL, 

ID1, VEGFA, THBS1, ACVR1 
4.47e+09 0.008 

GO:0006334~nucleosome assembly HIST1H2BC, HIST1H2BD, HIST1H2BF, HIST1H2BG, HIST1H2BH, HIST2H4A, 

HIST2H4B, HIST1H2BO, HIST1H2BN, HIST1H2BK, HIST1H2BL, HIST1H2BI, 

HIST2H2BF, HIST1H4H 

4.93e+09 0.009 

GO:0032844~regulation of homeostatic 

process 

ACVR2A, IL2RA, ETS1, SMAD7, BCL2, VEGFA, CDK6, FOXO3, MYC, F2R 
5.95e+09 0.010 
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Table S8. Gene Ontology (GO) analysis was performed using the list of predicted target genes of differentially miRNAs, which were 

significantly abundant in the immature oocytes of low antral follicle count ovaries. GO terms for biological function and count of the genes. 

which indicates how much the GO term is enriched of predicted genes, P-value and False Discovery Rate (FDR) are reported. Data are 

reported only for FDR less than 0.1. 

 

GO Term Gene count P-Value FDR 

GO:0042127~regulation of cell proliferation 32 2.77e+06 4.63e+08 

GO:0008284~positive regulation of cell proliferation 23 6.76e+05 1.13e+10 

GO:0051236~establishment of RNA localization 11 9.47e+07 1.58e+11 

GO:0050658~RNA transport 11 9.47e+07 1.58e+11 

GO:0050657~nucleic acid transport 11 9.47e+07 1.58e+11 

GO:0006403~RNA localization 11 1.27e+08 2.12e+11 

GO:0006913~nucleocytoplasmic transport 13 1.27e+09 2.12e+12 

GO:0051169~nuclear transport 13 1.45e+09 2.43e+12 

GO:0043632~modification-dependent macromolecule catabolic process 23 2.45e+09 4.10e+12 

GO:0019941~modification-dependent protein catabolic process 23 2.45e+09 4.10e+12 

GO:0044265~cellular macromolecule catabolic process 26 2.52e+09 4.22e+11 

GO:0009719~response to endogenous stimulus 19 4.03e+08 6.74e+11 

GO:0015931~nucleobase, nucleoside, nucleotide and nucleic acid transport 11 4.03e+08 6.75e+11 

GO:0051028~mRNA transport 10 4.12e+08 6.90e+11 

GO:0009725~response to hormone stimulus 18 4.88e+08 8.16e+11 
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GO:0051603~proteolysis involved in cellular protein catabolic process 23 5.21e+08 8.71e+11 

GO:0044257~cellular protein catabolic process 23 5.66e+08 9.48e+11 

GO:0030163~protein catabolic process 23 9.53e+08 0.002 

GO:0009057~macromolecule catabolic process 26 1.00e+10 0.002 

GO:0045935~positive regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 

23 1.01e+09 0.002 

GO:0043066~negative regulation of apoptosis 17 1.49e+09 0.002 

GO:0010604~positive regulation of macromolecule metabolic process 27 1.62e+09 0.003 

GO:0051173~positive regulation of nitrogen compound metabolic process 23 1.70e+10 0.003 

GO:0051329~interphase of mitotic cell cycle 10 1.74e+10 0.003 

GO:0043069~negative regulation of programmed cell death 17 1.79e+10 0.003 

GO:0060548~negative regulation of cell death 17 1.86e+10 0.003 

GO:0010557~positive regulation of macromolecule biosynthetic process 23 2.18e+10 0.004 

GO:0051325~interphase 10 2.22e+09 0.004 

GO:0010033~response to organic substance 24 3.06e+10 0.005 

GO:0007049~cell cycle 25 3.11e+09 0.005 

GO:0051726~regulation of cell cycle 16 3.14e+10 0.005 

GO:0051168~nuclear export 8 3.70e+09 0.006 

GO:0031328~positive regulation of cellular biosynthetic process 23 4.63e+09 0.008 

GO:0009891~positive regulation of biosynthetic process 23 5.83e+09 0.010 

GO:0051272~positive regulation of cell motion 9 1.11e+11 0.020 
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GO:0042325~regulation of phosphorylation 18 1.23e+11 0.021 

GO:0006916~anti-apoptosis 12 1.52e+11 0.025 

GO:0045893~positive regulation of transcription, DNA-dependent 18 1.66e+11 0.028 

GO:0010628~positive regulation of gene expression 20 1.72e+10 0.029 

GO:0042981~regulation of apoptosis 24 1.82e+10 0.030 

GO:0051254~positive regulation of RNA metabolic process 18 1.84e+11 0.031 

GO:0019220~regulation of phosphate metabolic process 18 2.05e+10 0.034 

GO:0051174~regulation of phosphorus metabolic process 18 2.05e+10 0.034 

GO:0043067~regulation of programmed cell death 24 2.13e+10 0.036 

GO:0010941~regulation of cell death 24 2.26e+11 0.038 

GO:0045859~regulation of protein kinase activity 15 2.36e+11 0.039 

GO:0000082~G1/S transition of mitotic cell cycle 7 3.08e+11 0.051 

GO:0043549~regulation of kinase activity 15 3.43e+10 0.057 

GO:0045941~positive regulation of transcription 19 4.01e+11 0.067 

GO:0001501~skeletal system development 14 4.47e+10 0.075 

GO:0051338~regulation of transferase activity 15 5.37e+10 0.090 
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Table S9. Gene Ontology (GO) analysis was performed using the list of predicted target genes of bta-miR-10a, which was significantly 

reduced in the immature oocytes of low antral follicle count ovaries. GO terms for biological function and count of the genes. which 

indicates how much the GO term is enriched of predicted genes, P-value and false discovery rate are reported. Data are reported only for 

FDR less than 0.1. 

 

GO Term Gene count P- Value FDR 

GO:0045449~regulation of transcription 217 1.04e+09 1.88e+11 

GO:0006357~regulation of transcription from RNA polymerase II promoter 80 1.82e+09 3.29e+11 

GO:0006350~transcription 181 2.22e+09 4.01e+11 

GO:0051252~regulation of RNA metabolic process 157 1.39e+10 0.003 

GO:0006355~regulation of transcription, DNA-dependent 152 4.02e+09 0.007 

GO:0030182~neuron differentiation 50 2.00e+09 0.036 

GO:0010557~positive regulation of macromolecule biosynthetic process 66 4.24e+10 0.077 
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