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A UNIFIED FRAMEWORK FOR UTILITY MAXIMIZATION
PROBLEMS: AN ORLICZ SPACE APPROACH

BY SARA BIAGINI AND MARCO FRITTELLI

Università degli Studi di Perugia and Università degli Studi di Milano

We consider a stochastic financial incomplete market where the price
processes are described by a vector-valued semimartingale that is possibly
nonlocally bounded. We face the classical problem of utility maximization
from terminal wealth, with utility functions that are finite-valued over (a,∞),
a ∈ [−∞,∞), and satisfy weak regularity assumptions. We adopt a class of
trading strategies that allows for stochastic integrals that are not necessarily
bounded from below. The embedding of the utility maximization problem in
Orlicz spaces permits us to formulate the problem in a unified way for both
the cases a ∈ R and a = −∞. By duality methods, we prove the existence of
solutions to the primal and dual problems and show that a singular component
in the pricing functionals may also occur with utility functions finite on the
entire real line.

1. Introduction. In the most general semimartingale model for the underly-
ing process S, the problem we address takes the form

sup
H∈H

E
[
u
(
x + (H · S)T

)]
,(1)

where:

• u : R → R ∪ {−∞} is the utility function of the agent, which is assumed to be
increasing and concave on the interior (a,∞), a ∈ [−∞,∞), of its effective
domain and to satisfy limx→−∞ u(x) = −∞;

• x > a is the initial endowment of the agent and T ∈ (0,∞] is the time horizon;
• the process S is an Rd -valued càdlàg semimartingale defined on the filtered

probability space (�,F , (Ft )t∈[0,T ],P ), the filtration satisfies the usual as-
sumptions of right continuity and completeness and F0 is trivial, that is, it is
generated by the P -negligible sets in FT ; in case T = ∞, we assume that, for
every process Y considered, the limit Y∞ = limt↑+∞ Yt exists;

• H is a class of admissible Rd -valued S-integrable predictable processes, which
represents the allowed trading strategies [see (4) for the precise definition];

• H · S is the stochastic integral and (H · S)T is the terminal gain achieved by
following the strategy H .
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The “duality approach” to the resolution of this very classical problem was first
employed by [20] (see also [10] for earlier work in stochastic optimal control) and
is based on classical tools from convex analysis. As far as we know, we give the
most general formulation of the duality to date.

To formulate the dual optimization problem, we denote by � : R+ → R ∪ {∞}
the function

�(y) � sup
x∈R

{u(x) − xy},

which is the convex conjugate of the utility function u. The dual problem for the
utility maximization is typically

min
λ>0,Q∈M

λx + E

[
�

(
dQ

dP

)]
,(2)

where M is an appropriate set of measures, but, under our assumptions, it will be
a generalized form of (2). In Section 3, we will see that the dual variables are not
only probabilities, but possibly more general functionals.

We set

P� �
{
Q � P

∣∣∣ E

[
�

(
dQ

dP

)]
< ∞

}
.

The following assumptions will not be needed until Section 4, but it is worthwhile
to formulate them here so that appropriate comparison with existing literature is
possible.

(A1) The utility function u : R → R ∪ {−∞} is increasing, strictly concave and
continuously differentiable on the interior (a,∞), a ∈ [−∞,∞), of its ef-
fective domain and satisfies the Inada conditions

u′(a) � lim
x↓a

u′(x) = +∞, u′(∞) � lim
x↑∞u′(x) = 0.

(A2)

P� = P�λ,(3)

where the function �λ : R+ → R is defined by �λ(y) � �(λy), with λ > 0
fixed.

REMARK 1. The condition (3) involves not only the function u (through its
conjugate function �) but also the probability measure P . When the probability
space is finite and � is finite-valued on (0,∞), (3) is always satisfied, regardless
of the growth properties of �. In [5], Section 2.2, we showed that (3) is weaker
than the condition of reasonable asymptotic elasticity on u [RAE(u)] introduced
by Schachermayer [24]. On the relationship between RAE(u), condition (3) and
the �2-condition in Orlicz space theory, see [19], Section 6, for the case where a

is finite and [24] or [5], Section 2.2, for the case where a = −∞.



A UNIFIED FRAMEWORK FOR UTILITY MAXIMIZATION PROBLEMS 931

We now discuss the literature that considers the utility maximization problem in
the context of Rd -valued semimartingale price processes and that is not restricted
to a particular utility function. The interested reader may find exhaustive references
in [5, 19, 24].

The current literature is essentially split into two main branches.

1. First case: a ∈ R, so that the utility functions have a half-line as proper domain,
for example, u(x) = √

x − a, u(x) = ln(x − a).
Under (A1) and the assumption that the asymptotic elasticity of u at +∞ is

strictly smaller than 1 [AE+∞(u) < 1], and when S is a general semimartingale,
this subject was thoroughly analyzed in [19] and [12]. In the first paper, the
assumption AE+∞(u) < 1 was introduced and it was shown to be crucial for the
existence of the solution of problem (1). As shown in Remark 39 of Section 6.1,
when a is finite, the condition AE+∞(u) < 1 implies (A2).

In the cited references, it was also shown that the dual variables Q ∈ M
may not be true probabilities and a singular component may show up. This
is particularly evident in the approach of [12], where M ⊆ ba(�,F ,P ), the
space of finitely additive measures on F that are absolutely continuous with
respect to P . These authors also remarked that the solution of the dual problem
may not be unique, but no explicit example was given.

2. Second case: a = −∞, so that the utility functions have R as proper domain,
for example, u(x) = −e−γ x, γ > 0.

• Under assumptions (A1) and RAE(u) [stronger than (A2)], and when S is
a locally bounded semimartingale, the problem was addressed in [24]. The
set H of strategies employed here is the classical set H1 of strategies with
wealth uniformly bounded from below. The dual problem has exactly the
form (2) and the dual variables are local martingale probabilities for S.

As regards the optima, one cannot expect the solution of the primal prob-
lem to be bounded from below, so that, in general, it will not belong to H1.
However, in [24], the problem was reformulated by considering the L1(P )-
closure of the set of random variables u(G), where G ∈ L0 is dominated by
some terminal gain (H · S)T , with H ∈ H1. Under the assumption RAE(u),
it was shown in [24]—in addition to several key duality results—that the pri-
mal solution fx exists in this enlarged set and that the dual solution Qx is
unique. In addition, it was proven that fx can be represented as a stochastic
integral, as soon as Qx is equivalent to P .

• Under assumptions (A1) and (A2) and when S is a general, possibly nonlo-
cally bounded, semimartingale, the problem was analyzed in [5]. We discuss
these results in detail, since we will be adopting some of the definitions and
notation.

The work [5] is based on a careful analysis of the proper set of strategies H that
are allowed in the trading. Indeed, the traditional set of strategies H1 may reduce
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to the null strategy when S is nonlocally bounded, so the maximization problem
on this set may turn out to be trivial. This may happen if, for example, S is a
compound Poisson with unbounded jump size (see also the toy Example 4 below).

To model the situation in which the investor is willing to take more risk to really
increase his/her expected utility in a very risky market, in [5], we enlarged the set
of allowed strategies by admitting losses bounded from below by −cW , where
W ≥ 0 is a random variable, possibly unbounded from above. We defined the set
HW of W -admissible strategies by

HW = {H ∈ L(S) | (H · S)t ≥ −cW ∀t ≤ T , for some c > 0},(4)

where L(S) is the class of predictable and S-integrable processes. We showed that
the stochastic integrals associated with these strategies enjoy good mathematical
properties when the random variable W that controls the losses satisfies the condi-
tions of suitability for the market and compatibility with the preferences. Here are
the definitions.

DEFINITION 2. W ∈ L0+ is suitable (for the process S) if W ≥ 1 and, for each
i = 1, . . . , d , there exists Hi ∈ L(Si) such that

P
({ω | ∃t ≥ 0Hi

t (ω) = 0}) = 0

and

|(H i · Si)t | ≤ W for all t ∈ [0, T ],P -a.s.(5)

The set of suitable random variables is denoted by S.

DEFINITION 3. W ∈ L0+ is compatible (with the preferences of the agent) if

∀α > 0 E[u(−αW)] > −∞.(6)

Notice that HW = HαW for all W ≥ 0 and constants α > 0, so that HW does
not change if W is scaled by a multiplicative factor. Therefore, the request W ≥ 1
in the definition of suitability is only intended to guarantee that W is bounded away
from zero.

When S is locally bounded, W = 1 is automatically suitable and compatible
(see [5], Proposition 1), while, in general, there is no natural choice for W (if there
is any, see Example 4).

In Section 3.1, the role played by the suitability condition in ensuring that the
(regular) dual variables are σ -martingale measures will become evident.

Under assumptions (A1) and (A2), we then proved the subsequent results.

(a) For all loss variables W that are compatible and suitable, the optimal value
on the class HW coincides with the optimal value U�(x) of the maximization
problem over a larger domain K�. The set K� and the value U�(x) do not de-
pend on the single W , but depend on the utility function u through its conjugate
function �.
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(b) For all loss variables W that are compatible and suitable, the following
duality relation holds true:

sup
H∈HW

E
[
u
(
x + (H · S)T

)]
(7)

= min
λ>0,Q∈Mσ ∩P�

{
λx + E

[
�

(
λ
dQ

dP

)]}
:= U�(x),

where Mσ is the set of σ -martingale measures absolutely continuous with respect
to P .

(c) The primal solution fx exists in the set K�, but, in general, it does not
belong to {(H · S)T | H ∈ HW }. The dual solution Qx is unique.

(d) fx is Qx-a.s. equal to the terminal value of a stochastic integral (Hx · S)T .

The pleasing property that the dual variables are probabilities is, in fact, ensured
by the compatibility condition (6), as will be clarified in Section 6.2.

However, it is clear that (6) puts some restrictions on the jumps of S, as high-
lighted in the next toy example.

EXAMPLE 4. Consider a single period market model with S0 = 1 and triv-
ial initial σ -algebra F0. Let (�,F1,P ) = (R,B(R),ψ(x) dx), where dx is the
Lebesgue measure and ψ is a density function on R, and let S1 : R → R be the
identity map. Then, S = (S0, S1) is a semimartingale which is nonlocally bounded
as soon as the support of ψ is unbounded. Let us assume that S is nonlocally
bounded and note that, H1 = {0}, so the constant 1 is not suitable. In this model,
it is easy to see that, basically, the unique suitable W is W = 1 + |S1| and, con-
sequently, HW = R. Let us select the exponential utility u(x) = −e−x and check
the compatibility of W = 1 + |S1| in the situations below.

1. If ψ is a Gaussian density, then W satisfies the compatibility condition (6).
2. If ψ is a two-sided exponential density [e.g., ψ(x) = λ

2e−λ|x|], then W does not
verify (6), since

E[u(−αW)] = E[−eαW ] > −∞
holds true only if 0 ≤ α < λ.

3. If ψ is a Cauchy density [e.g., ψ(x) = 1
π(1+x2)

], then we have an extreme case
in which E[u(−αW)] > −∞ only if α = 0. The expected utility from nonzero
investments in S is always −∞.

Informally speaking, in this case, the exponential utility is totally incompat-
ible with the market structure.

As the extreme “incompatibility” case in item 3 above shows, a reasonable util-
ity maximization problem cannot be built without any restrictions. But, at the same
time, this example suggests that condition (6) may be relaxed to cover new, inter-
esting situations similar to that in item 2 of the toy model.

We thus introduce a milder notion of compatibility.
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DEFINITION 5. W ∈ L0+ is weakly compatible (with the preferences of the
agent) if

∃α > 0 E[u(αW)] > −∞.(8)

We can finally list the main results of this paper (see Theorems 21 and 29).

• We simultaneously treat the cases a finite and a = −∞.
• We extend the aforementioned results of [5] by adopting condition (8) on W ,

which allows us to consider more general market models.
• We prove that a duality relation holds and show that, in general (even with ex-

ponential utility functions), the solution of the dual problem will have a singular
component, in a sense to be clarified in Section 2.2.

• Under the assumptions (A1) and (A2), we show that the primal solution fx exists
in an enlarged set KW

� and we characterize it in terms of the dual solution.
• Under the assumption of the existence of a suitable and compatible loss variable,

we prove (in Section 7) that the optimal value on the class HW for any weakly
compatible (resp. compatible) W ∈ L0+ is bounded by (resp. equal to) U�(x).
Hence, under this assumption, there is no incentive to enlarge the set of strategies
by adopting a weakly compatible W .

As shown in Example 4, the set of suitable and compatible loss variables may
be empty. In this case, the optimal level of wealth from the class HW may depend
on the selection of the particular weakly compatible W . A thorough study of this
issue is left for future research.

The occurrence of the singular component is a consequence of the poten-
tially big losses admitted in trading. In Section 4.1, we prove that under some
circumstances—when the optimal loss is well inside the tolerated margin—the
singular component is again zero.

As regards the representation of the optimal fx as terminal value of a stochastic
integral process and the supermartingale property of this integral process, we refer
to [24] for the locally bounded case and to [5, 6] when S is a general semimartin-
gale and the set of suitable and compatible loss bounds is not empty. The extension
of these results when the loss bound W can only be weakly compatible is left for
future investigation.

We think that one major novelty of the paper is the first point of the above list,
which is rather a philosophical contribution and thus more valuable.

We believe that there are no good reasons for treating the problem (1)
separately—for the two cases a = −∞ or a finite—as has been done until now.
These two apparently different situations can, in fact, be seen as particular cases
of a single, unified framework.

In this paper, the definitions of admissible trading strategies and the domains of
the primal and dual optimization problems are the same for both cases. Moreover,
the proofs of the main results are all formulated in the unified setup.
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In Section 6, we also show how the known results in [12] and [5] can be deduced
as corollaries of our theorems.

In Section 2, we will introduce the duality framework that is the key tool in our
unified presentation.

In [9], it was first shown how to use Orlicz space duality to address the utility
maximization problem in the case where a = −∞ and W satisfies condition (6).
The key point there is that the Orlicz spaces in question are naturally induced by
the utility function u.

Following the ideas in [9], in Section 2, we build a duality framework, which
also works for a finite and when W satisfies condition (8).

The basic idea behind the construction of the Orlicz duality is the following.
Given that the utility function u is concave, the wildest behavior is seen on the
left tail, that is, the losses are weighted in a more severe way than the gains. This
simply reflects the risk aversion of the agent. The left tail of u can easily be turned
into the Young function û(x) := −u(−|x|) + u(0), thus giving rise to an appropri-
ate Orlicz space. Condition (8) then just means that W (which is positive) belongs
to the Orlicz space Lû(P ), while condition (6) would mean that W belongs to a
“good” subspace of Lû(P ). By the definition of û, only the negative values of u

are taken into account and the Orlicz space Lû(P ) will only be used to control the
possible losses occurring in trading.

The rest of the article is organized as follows. After some preliminary results,
in Section 3, we introduce the set of dual variables and state the duality theorem
(Theorem 21). The existence of the solution to the primal problem and some of
its properties are proved in Section 4. In Section 5, we give some examples. In
particular, we describe a concrete example in the case a = −∞ where there are
infinite dual solutions, explicitly characterized.

2. The Orlicz spaces associated with u and �. Up to Section 4, the utility
functions u : R → R ∪ {−∞} are increasing, concave on the interior (a,∞) of the
effective domain and satisfy limx→−∞ u(x) = −∞ [it is understood that u(x) =
−∞ for all x < a, if a is finite]. Without loss of generality, we may (and do)
assume, from now on, that

a < 0

(this can always be obtained by translation if a is finite). From our results in the
case where a is negative and finite, one may easily recover the corresponding re-
sults (see Section 6.1) in the case a ≥ 0.

Under these conditions, the function � conjugate to u satisfies �(∞) = ∞ and
�(0+) = u(∞).

Two widely used utility functions that satisfy the above requirements are the
logarithm u(x) = ln(1 + x) (a = −1) and the exponential u(x) = −e−x (a =
−∞). But our class of utility functions includes functions for which limx↓−∞ u(x)

x
is finite (positive) and/or functions constant for x ≥ x0.
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In the paper, the Lp(�,F ,P ) spaces, p = 0 or p ∈ [1,∞], will simply be
denoted by Lp , unless it is necessary to specify the probability, in which case we
write Lp(P ).

In Section 2.1, we recall the generalities on Orlicz spaces and introduce the ap-
propriate Orlicz spaces Lû,L�̂, which are constructed with the same methodology
of [9], thanks to our assumption a < 0.

Section 2.2 deals with (Lû)∗, the norm dual of Lû, and its decomposition. We
pay particular attention to the singular elements of (Lû)∗ and their properties.

2.1. Generalities. A Young function � is an even, convex function � : R →
R ∪ {+∞} with the following properties:

1. �(0) = 0;
2. �(∞) = +∞;
3. � < +∞ in a neighborhood of 0.

Note that � may jump to +∞ outside of a bounded neighborhood of 0. In case
� is finite-valued, however, it is also continuous, by convexity.

The Orlicz space L�(P ), or simply L� , on (�,F ,P ) is then defined as

L� = {f ∈ L0 | ∃α > 0 E[�(αf )] < +∞}.
It is a Banach space with the Luxemburg (or gauge) norm

N�(f ) = inf
{
c > 0

∣∣∣ E

[
�

(
f

c

)]
≤ 1

}
.

With the usual pointwise lattice operations, L� is also a Banach lattice, that is, the
norm satisfies the monotonicity condition

|g| ≤ |f | ⇒ N�(g) ≤ N�(f ).

It is not difficult to prove that

L∞ ↪→ L� ↪→ L1

with linear lattice embeddings (the inclusions). In fact, these spaces are a gen-
eralization of the familiar Lp spaces. To recover Lp with 1 ≤ p < +∞, take
�p(x) = |x|p as Young function. To recover L∞, consider the Young function
�∞(x) = δC(x), where δC is the indicator function of the convex set C = {x ∈ R |
|x| ≤ 1} (δC = 0 on C and δC = +∞ on R\C).

There is an important linear subspace of L� , namely

M� ={f ∈ L0 | E[�(αf )] < +∞ ∀α > 0}.
In general, M� � L� . This can be easily seen when � = �∞ since, in this case,
M�∞ = {0}, but there are also nontrivial examples of the strict containment with
finite-valued, continuous Young functions that we will consider soon.
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However (see [23]), when � satisfies the following �2 condition (and it is
henceforth finite-valued and continuous)

�2: ∃c > 0, x0 > 0 such that ∀x ≥ x0,�(2x) ≤ c�(x) < +∞,

the two spaces M�,L� coincide and L� can be simply written as {f ∈ L0 |
E[�(f )] < +∞} = L∞�

(where the closure is taken in the Luxemburg norm).
This is the case of the Lp spaces when 1 ≤ p < +∞.

In [23], the authors also prove that when � is continuous on R, then M� =
L∞�

. So, when � is continuous, but grows too quickly, it may happen that M� =
L∞�

� L� . As a consequence, simple functions are not necessarily dense in L�

(see [23], Proposition III.4.3). This is quite a difference with classic Lp spaces
(1 ≤ p < +∞).

2.1.1. Lû and L�̂. The even function û : R → R ∪ {+∞} defined by

û(x) = −u(−|x|) + u(0)

is a Young function and the induced Orlicz space is Lû = {f ∈ L0 | ∃α > 0, s.t.
E[û(αf )] < +∞} with its Luxemburg norm Nû(f ).

REMARK 6. Note that f ∈ Lû if and only if there exists some α > 0 such that
E[u(−α|f |)] > −∞. And f ∈ Mû if and only if for all α > 0,E[u(−α|f |)] >

−∞.

As usual, the convex conjugate function �̂ of û is defined as

�̂(y) � sup
x∈R

{xy − û(x)}

and it is also a Young function. It admits a representation in terms of the convex
conjugate � of the utility function u as follows:

�̂(y) =
{

0, if |y| ≤ β,
�(|y|) − �(β), if |y| > β,

where β ≥ 0 is the right derivative of û at 0, namely β = D+û(0) = D−u(0), and
�(β) = u(0). If u is differentiable, note that β = u′(0) and that B is the unique
solution of the equation �′(y) = 0.

Let us consider the Orlicz space L�̂. It is convenient (see Section 2.2, item 2)
to endow L�̂ with the Orlicz (or dual) norm

‖f ‖�̂ = sup{E[|fg|] | g ∈ Lû :E[û(g)] ≤ 1},
which is equivalent to the Luxemburg norm. As with all Orlicz spaces, L∞ ↪→
L�̂ ↪→ L1.
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REMARK 7. Obviously, � and �̂ have the same behavior for large values, but
�̂ carries no information about the behavior of � near zero. For the comparison
between u and û, notice that û(x) carries no information on the behavior of u for
x > 0, while for x < 0, we have simply û(x) = −u(x) + u(0). This is a key point.
In fact, when formulating the utility maximization problem in the Orlicz space Lû,
we will only use this setting to control the losses of the terminal gains, that is, only
the negative part of (H · S)T , or of the solution fx , will belong to Lû.

The case a finite. When the interior of the domain of u is (a,∞) with a < 0
finite, evidently û(x) = +∞ if |x| > −a. Since u(−|x|) − u(0) ≤ 0 for all x, we
have

xy − û(x) = xy + u(−|x|) − u(0) ≤ −ay

for all y > 0 and |x| ≤ −a and therefore �̂(y) ≤ −ay. From these observations,
Lû = L∞,L�̂ = L1 as sets and, trivially,

Mû = {0}.
Moreover, the identity map gives an isomorphism of Banach lattices, as the fol-
lowing lemma shows.

LEMMA 8. The Luxemburg norm and the uniform norm on Lû = L∞ are
equivalent. Consequently, also the Orlicz norm on L�̂ = L1 is equivalent to the
L1-norm.

PROOF. Let f ∈ Lû = L∞. Then, if E[û(
f
c
)] ≤ 1, necessarily |f |

c
≤ −a, so

that

‖f ‖∞ ≤ −aNû(f ).(9)

For the converse inequality, define k to be the unique positive element of
(û)−1(min(û(−a),1)). Evidently,

E

[
û

(
k

f

‖f ‖∞

)]
≤ 1,

whence

kNû(f ) ≤ ‖f ‖∞. �

When a is finite, we recover the classical primal domain in the utility maxi-
mization problem (14): it is simply (KW − L0+) ∩ L∞ for the entire class of the
utility functions with a half-line as proper domain.

Given Lemma 8, the explicit computations for �̂ and û are useless, but we give
two examples for the sake of completeness.
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1. Let u be the logarithmic utility function and a = −2, that is,

u(x) =
{

ln(2 + x), if x > −2,
−∞, if x ≤ −2.

Then,

û(x) =
{− ln(2 − |x|) + ln 2, if |x| < 2,

+∞, if |x| ≥ 2,

while �(y) = − lny + 2y − 1, β = u′(0) = 1/2, �(β) = u(0) = ln 2, so that

�̂(y) = (
�(|y|) − �(β)

)
I{|y|>β} = (− ln |y| + 2|y| − 1 − ln 2)I{|y|>1/2}.

2. Suppose that u(x) = √
4 + x if x ≥ −4 and u(x) = −∞ if x < −4. Then,

û(x) =
{

2 − √
4 − |x|, if |x| ≤ 4,

+∞, if |x| > 4,

and �(y) = 1
4y

+ 4y, so that

�̂(y) =
(

1

4|y| + 4|y| − 2
)
I{|y|>1/4}.

The case a = −∞. Here, û is continuous and, consequently, the subspace Mû =
L∞û

is also a Banach space with the inherited û-norm. We give two examples, one
with the exponential utility and the other with a linear utility.

1. When u(x) = −e−x , û(x) = e|x| − 1, while �(y) = y lny − y and �̂(y) =
(|y| ln |y| − |y| + 1)I{|y|≥1}. Therefore,

Lû = {
f ∈ L0 | ∃α > 0 s.t. E

[
eα|f |] < +∞}

,

Mû = {
f ∈ L0 | ∀α > 0 E

[
eα|f |] < +∞}

and

L�̂ = {
g ∈ L0 | E[

(|g| ln |g|)I{|g|>1}
]
< +∞}

.

Due to convexity, we could remove the linear term from �̂ in the above char-
acterizations. Also, note that Mû consists of those random variables that have
all of the (absolute) exponential moments finite, while elements in Lû are only
required to have some finite exponential moments.

In situations like the present one, the introduction of the Orlicz spaces shows
its full potential.

2. Let u(x) = x. Then, û(x) = |x|, �(y) = +∞ for all y ≥ 0 and �̂(y) =
(+∞)I{|y|>1} = δ{|y|≤1}. So, Lû = L1 = Mû and L�̂ = L∞.

In general, this is what the Orlicz spaces Lû,L�̂ reduce to whenever u is
asymptotically linear for x → −∞.
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2.2. On the norm dual of Lû and Mû. From the general theory of Banach lat-
tices (see, e.g., [1]), we know that (Lû)∗, the norm dual of Lû, admits the following
decomposition:

(Lû)∗ = A ⊕ Ad,

where A is the band of order-continuous linear functionals and Ad is the band
of those singular ones which are lattice orthogonal to the functionals in A. This
means that every z ∈ (Lû)∗ can be written in a unique way as z = zr + zs ,
with zr ∈ A a regular functional, zs ∈ Ad singular and |zr | ∧ |zs | = 0 [lattice
orthogonality—we recall that the infimum z1 ∧ z2 of z1, z2 ∈ (Lû)∗ can be charac-
terized as the z ∈ (Lû)∗ such that, for all positive f ∈ Lû, z(f ) = inf0≤g≤f {z1(f −
g) + z2(g)}].

We can say more about the nature of the decomposition of (Lû)∗. According to
the specific nature of u, we distinguish between the two following cases.

1. If a is finite, then Lû = L∞ and the above decomposition reduces to the Yosida–
Hewitt one for elements of ba(�,F ,P ),

ba = (L∞)∗ = L1 ⊕ Ad,

where Ad consists of pure charges, that is, purely finitely additive measures.
2. If a = −∞, then û is continuous. For such Young functions, [3] and [21]

showed that A = (Mû)∗ and that it can be identified with L�̂, endowed with the
Orlicz (dual) norm. Ad is then the annihilator of Mû, denoted (Mû)⊥, whence

(Lû)∗ = (Mû)∗ ⊕ (Mû)⊥ = L�̂ ⊕ (Mû)⊥.

We remark that here, Mû = L∞û
and, consequently,

z ∈ Ad if and only if ∀f ∈ L∞, z(f ) = 0.

Therefore, we can identify the regular part zr ∈ A of any z ∈ (Lû)∗+ with its

density dzr
dP

∈ L�̂+ and we write its action on f ∈ Lû as

zr(f ) = Ezr [f ].

REMARK 9. Lû ⊆ L1(Q) for all probabilities Q such that dQ
dP

∈ L�̂. The

space L�̂ can be identified with the regular elements in the dual of Lû, so this is a
basic consequence of the general theory. However, we give here a simple and direct
proof, which is based on the Fenchel inequality. Let us fix f ∈ Lû and dQ

dP
∈ L�̂.

Then, E[û(αf )] = E[û(α|f |)] < ∞ and E[�̂(β dQ
dP

)] < ∞ for some positive α

and β . From the Fenchel inequality α|f |β dQ
dP

≤ û(α|f |) + �̂(β dQ
dP

), we derive
f ∈ L1(Q).
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LEMMA 10. The singular elements z ∈ Ad have the following characteriza-
tion:

z ∈ Ad ⇔ ∀f ∈ Lû ∃ measurable An ↓ ∅ such that z(|f |IAn) = z(|f |).(10)

PROOF. We may (and do) suppose that z ≥ 0 (otherwise, we may work sepa-
rately with z+, z−). The arrow (⇐) is immediate. In fact, the property z(|f |IAn) =
z(|f |) for some An ↓ ∅ implies that z ∧ μ = 0 for each regular μ:

z ∧ μ(f ) = inf
0≤g≤f

{z(f − g) + μ(g)}
≤ inf

n
{z(f − f IAn) + Eμ[f IAn]} = 0 for any f ≥ 0.

To prove (⇒), suppose that f ≥ 0 and consider separately the two cases, a finite
and a = −∞.

1. Case a finite. Here, we can find a sequence (An)n which does not depend on
the particular f . Since z ∈ Ad , we have, in fact,

0 = z ∧ P(I�) = inf
0≤h≤I�

{z(I� − h) + E[h]},
so there exists a sequence 0 ≤ hn ≤ I� such that

0 ≤ z(I� − hn) + E[hn] ≤ 1

2n
.

Call �n = {hn > 0}. Then, the above inequalities, together with an application
of the Borel–Cantelli lemma, imply that lim supn�n = ∅. So, by setting An =⋃

k≥n �k , we have An ↓ ∅ and

0 ≤ z(I� − IAn) ≤ z(I� − I�n) ≤ z(I� − hn) ≤ 1

2n
,

whence, necessarily, z(I� − IAn) = 0 for all n. This is equivalent to saying that
z is null on each Ac

n and therefore for all f ∈ Lû = L∞, z(f ) = z(f IAn).
2. Case a = −∞. Take An = {f > n} and consider the regular μn associated with

An, namely μn(k) = E[kIAn]. Since z ∈ Ad , we have

0 = z ∧ μn(f ) = inf
0≤h≤f

{z(f − h) + Eμn[h]},
so there exists a sequence 0 ≤ hm ≤ f such that

0 ≤ z(f − hm) + Eμn[hm] ≤ 1

2m
.

Therefore, for all m,

0 ≤ z(f − f IAn) ≤ z(f − hmIAn)

= z(f − hm) + z(hmIAc
n
) ≤ 1

2m
+ nz(IAc

n
) = 1

2m
,

where the last equality holds since z is null on L∞. Taking the limit over m, we
obtain z(f − f IAn) = 0. �
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The next proposition will be important in our applications, since it shows that
Ad is an abstract Lebesgue space in the sense of [17]. That is, the norm of the dual
space is additive on positive functionals in Ad . We present a much simpler proof
than that in [23], IV.3.4, based on Lemma 10.

PROPOSITION 11. If z ∈ Ad+, then

‖z‖ = sup{z(f ) | f ≥ 0, f ∈ Lû s.t. E[û(f )] < +∞}.(11)

As a consequence, if zi ∈ Ad+, then

‖z1 + z2‖ = ‖z1‖ + ‖z2‖.(12)

PROOF. Call l the supremum in (11). Since z ≥ 0, we have ‖z‖ = sup{z(f ) |
f ∈ B,f ≥ 0}, where B is the (open) unit ball of Lû. From the very definition
of B , we see that B ⊆ {f ∈ Lû s.t. E[û(f )] < +∞}, so that ‖z‖ ≤ l.

To show the opposite inequality, we use the characterization of z provided
in (10). Fix f ∈ Lû+ so that E[û(f )] < +∞. There then exists a sequence of mea-
surable sets An ↓ ∅ such that z(f IAn) = z(f ). But f IAn ∈ B if n is large enough.
In fact, û(f IAn) ↓ 0 and it is dominated by û(f ), so E[û(f IAn)] is definitely
smaller than 1. We derive

l = sup{z(f ) | f ≥ 0, f ∈ Lû s.t. E[û(f )] < +∞}
≤ sup{z(g) | g ≥ 0, g ∈ B} = ‖z‖.

Additivity of the norm now follows easily, as in [23], Theorem 4.3.5. We sketch the
proof. The only thing to show is that ‖z1 + z2‖ ≥ ‖z1‖+‖z2‖. This inequality can
be obtained by taking positive functions fi ∈ Lû, i = 1,2, such that E[û(fi)] <

+∞ and zi(fi) is close to ‖zi‖, and observing that f1 ∨ f2 ∈ Lû and E[û(f1 ∨
f2)] < +∞. �

3. The utility maximization problem. The conditions of compatibility and
weak compatibility can now be expressed in the terminology of Orlicz space the-
ory. In fact, a random variable W ∈ L0+ is:

• compatible iff W ∈ Mû;
• weakly compatible iff W ∈ Lû.

DEFINITION 12. When W ∈ Lû+, the set of terminal values from admissible
stochastic integrals is

KW = {(H · S)T | H ∈ HW },
where HW is defined in (4), and we set

UW(x) = sup
k∈KW

E[u(x + k)].(13)
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REMARK 13. Note that we do not require that W is suitable because there is
no need for this in constructing the duality. But, of course, this property is highly
desirable. When W ∈ Lû+ ∩S, the domain of maximization KW is nontrivial. What
is more, under this stronger assumption, we will provide interesting characteriza-
tions of the dual variables (Proposition 19).

REMARK 14. When a is finite, Lû = L∞, so we could take W = 1 if we
wished to recover the classical class H1 as the set of strategies with wealth
bounded from below. This observation will be used in Section 6.1 for the com-
parison with [12].

In most of the preceding works on this subject, the basic idea for addressing
the utility maximization problem (13) is to replace the domain KW with the set
(KW − L0+) ∩ L, where L is an appropriate topological vector space, for example,
L = L∞, and to develop a dual approach based on the system (L,L∗), where L∗
is the norm dual space of L.

LEMMA 15. Let L be equal to either L∞, Mû or Lû and let W �= 0,W ∈ L+.
If g ∈ L+ and k ∈ KW , then k ∧ g ∈ (KW − L0+) ∩ L. Moreover,

sup
k∈KW

E[u(x + k)] = sup
f ∈(KW −L0+)∩L

E[u(x + f )].(14)

PROOF. First, note that the hypothesis on W excludes the possibility that
L = {0}. So, either L = L∞ or, in case the utility is finite on the entire real line,
L = Lû or L = Mû. In all of these situations, L ⊇ L∞.

If k ∈ KW , then there exists c > 0 such that k− ≤ cW , so that k− ∈ L+. Since
L is a Banach lattice, k+ ∧ g ∈ L+. Then, k ∧ g = k+ ∧ g − k− ∈ L and it is also
in (KW − L0+) since k ∧ g = k − (k − k ∧ g) ∈ (KW − L0+). To show (14), note
that

sup
k∈KW

E[u(x + k)] = sup
k∈KW −L0+

E[u(x + k)]

≥ sup
f ∈(KW −L0+)∩Lû

E[u(x + f )]

≥ sup
f ∈(KW −L0+)∩L

E[u(x + f )].

To prove the other inequality, let k ∈ KW satisfy E[u(x + k)] > −∞. Then,
E[u(−(x + k)−)] > −∞, so for sufficiently large n, E[u(−(x + k ∧ n)−)] > −∞
and E[u(x + k ∧n)] > −∞. Hence, by monotone convergence, E[u(x + k ∧n)] ↑
E[u(x + k)]. The conclusion follows from k ∧ n ∈ (KW − L0+) ∩ L. �

The above lemma shows that the selection of the larger space L = Lû is always
consistent with the optimization over the set KW because the optimal values in (14)
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coincide. But it also ensures that whenever the behavior of the process S is not too
wild, so that not only Lû ∩ S, but also Mû ∩ S (or even L∞ ∩ S) is not empty,
one could just as well use the smaller space (KW − L0+) ∩ Mû [or (KW − L0+) ∩
L∞]. Set

CW � (KW − L0+) ∩ Lû

and define Iu :Lû → [−∞,∞) by Iu(f ) = E[u(f )] and let D be the proper do-
main of Iu, that is,

D � {f ∈ Lû | E[u(f )] > −∞}.
PROPOSITION 16. The concave functional Iu on Lû is proper and it is norm-

continuous on the interior of its proper domain, which is not empty. Moreover,
there exists a norm continuity point of Iu that belongs to CW .

PROOF. Thanks to [15], Proposition I.2.5, the thesis is equivalent to showing
that there is a nonempty open set O on which Iu is not everywhere equal to +∞
and bounded below by a constant c ∈ R. We show slightly more, that is, on the
open unit ball B of Lû, the functional Iu is (i) everywhere less than +∞ and
(ii) uniformly bounded below.

(i) If b ∈ B , then E[|b|] < +∞, so, by Jensen’s inequality, Iu(b) ≤ u(E[b]) <

+∞.
(ii) For all b ∈ B , E[û(b)] ≤ 1 and E[û(b−)] ≤ 1. Hence,

−Iu(−b−) = E[−u(−b−)] = E[û(b−)] − u(0) ≤ 1 − u(0)

and so Iu(b) ≥ Iu(−b−) ≥ u(0) − 1. Note for future use that (i) and (ii) clearly
imply that Iu is finite on the ball B .

The second statement of the proposition follows from CW ⊇ −B+. �

The next lemma is a very nice consequence of the choice of the right Orlicz
space Lû.

LEMMA 17. Let z ∈ Ad+. Then,

‖z‖ = sup
f ∈D

z(−f ).(15)

In the case a finite, z is a nonnegative pure charge and

‖z‖ = −az(�).(16)

PROOF. Since z ≥ 0, supf ∈D z(−f ) = supf ≤0,f ∈D z(−f ). But f ≤ 0,
f ∈ D if and only if g = −f is a nonnegative random variable satisfying
E[û(g)] < +∞. The thesis then follows from (11). The case a finite is then obvi-
ous: ‖z‖ = sup{f ∈Lû+,f <−a} z(f ) = −az(�). �
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3.1. Dual variables. We now describe the dual variables. In what follows,
W ∈ Lû+, and we always refer to the dual system (Lû, (Lû)∗). Consider the po-
lar cone

(CW)0 = {z ∈ (Lû)∗ | z(f ) ≤ 0 ∀f ∈ CW }
and define

MW � {Q ∈ (CW)0 | Q(I�) = 1}.(17)

Note that (CW)0 ⊆ (Lû)∗+ since (−Lû+) ⊆ CW . Therefore, the functionals of in-
terest are positive. We also remark that in the case a = −∞, the condition in (17)
amounts to saying that EQr [I�] = 1 since Qs vanishes over L∞. So, if Q ∈ MW

is regular, then dQ
dP

is a probability density. In Proposition 19 below, we completely
characterize the absolutely continuous probability measures arising in this way.

REMARK 18. Notice that the regular elements in MW can be described as

MW ∩ L�̂ =
{
Q � P

∣∣∣ dQ

dP
∈ L�̂ and EQ[f ] ≤ 0 ∀f ∈ CW

}
(18)

=
{
Q � P

∣∣∣ dQ

dP
∈ L�̂ and EQ[(H · S)T ] ≤ 0 ∀H ∈ HW

}
.(19)

Indeed, the set in (19) is clearly contained in (18). To check the opposite inclusion,
let Q ∈ MW ∩ L�̂, H ∈ HW and note that EQ[(H · S)T ] is well defined since
(H · S)T ≥ −cW and W ∈ L1(Q) for all Q ∈ L�̂ (Remark 9). Furthermore, from
Lemma 15, (H ·S)T ∧n ∈ CW for each n and, by monotone convergence, EQ[(H ·
S)T ] = limn EQ[(H · S)T ∧ n] ≤ 0.

We denote by Mσ the set of P -absolutely continuous σ -martingale probabilities
for S (see [13, 14] for more information about this concept). Recall that when S is
bounded (resp. locally bounded), we have

Mσ = {Q � P | S is a martingale (resp. local martingale) w.r.t. Q},
that is, Mσ is the set of P -a.c. martingale (resp. local martingale) probabilities.

Set

MW
sup = {Q � P | H · S is a Q-supermartingale ∀H ∈ HW },

H û = ⋃
W∈Lû,W≥1

HW .

PROPOSITION 19. The regular elements in MW have the following, interest-
ing, probabilistic properties:
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(a) if W ∈ Lû+, then

Mσ ∩ L�̂ ⊆ MW
sup ∩ L�̂;

(b)

Mσ ∩ L�̂ ⊆ {Q � P | Q ∈ L�̂ and H · S is a Q-supermartingale ∀H ∈ H û};
(c) if W ∈ Lû, W ≥ 1, then

MW
sup ∩ L�̂ = MW ∩ L�̂;

(d) if W ∈ Lû ∩ S, then

Mσ ∩ L�̂ = MW
sup ∩ L�̂ = MW ∩ L�̂;(20)

(e) if Lû ∩ S �= ∅, then

Mσ ∩ L�̂ = {Q � P | Q ∈ L�̂ and H · S is a Q-supermartingale ∀H ∈ H û}.

PROOF. (a) Let Q ∈ Mσ ∩ L�̂ and W ∈ Lû+. Since Q ∈ L�̂, W ∈ L1(Q). If
H ∈ HW , then there exists a c ≥ 0 such that (H · S)t ≥ −cW . From Q ∈ Mσ , we
can find a positive predictable scalar process ψ such that ψ−1 ·Si is a Q uniformly
integrable martingale for i = 1, . . . , d .

If we set X to be the semimartingale with ith component Xi = ψ−1 · Si , we
can write H · S = (ψH) · X. That is, H · S is a stochastic integral with respect to
the Q-martingale X and its negative part is controlled by the Q-integrable vari-
able cW . Thanks to a lemma of Ansel and Stricker [4], H · S is then a Q-local
martingale and a supermartingale. Hence, Q ∈ MW

sup.
(b) This follows from (a) and the fact that⋂

W∈Lû,W≥1

MW
sup = {Q � P | H · S is a Q-supermartingale ∀H ∈ H û}.(21)

(c) Obviously, MW
sup ∩ L�̂ ⊆ MW ∩ L�̂ and so it remains to show that MW ∩

L�̂ ⊆ MW
sup ∩L�̂. Define the stopping times (increasing to T ) Tn = inf{t ≤ T |(H ·

S)t > n} and fix s < t ≤ T and A ∈ Fs . Let W ∈ Lû and W ≥ 1. If (H ·S)t ≥ −cW ,
then also IAI]s,t∧Tn]H ∈ HW since((

IAHI]s,t∧Tn]
) · S)

u ≥ −cW − n ≥ −(c + n)W.

When Q ∈ MW ∩ L�̂, we have EQ[((IAHI]s,t∧Tn]) · S)T ] ≤ 0 so that

EQ

[
IA(H · S)t∧TnI{Tn>s}

] ≤ EQ

[
IA(H · S)sI{Tn>s}

]
.

Now, observe that |IA(H · S)sI{Tn>s}| ≤ |(H · S)s | and (H · S)s ∈ L1(Q), since
I[0,s]H ∈ HW . In addition, IA(H · S)t∧TnI{Tn>s} ≥ −cW , hence an application of
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the Lebesgue dominated convergence theorem on the RHS and of Fatou’s lemma
on the LHS leads us to the desired inequality EQ[IA(H · S)t ] ≤ EQ[IA(H · S)s].

(d) We only need to show that MW ∩L�̂ ⊆ Mσ ∩L�̂. Suppose that Q ∈ MW ∩
L�̂ ⊆ L�̂+. It is easily checked that the random variables ±(H iIAI]s,t] ·Si)T satisfy

−2W ≤ ±(
HiIAI]s,t] · Si)

T ≤ 2W

for all s < t , A ∈ Fs , where the integrands Hi are those in the definition of suitable
W , relation (5). If we let kT = (H iIAI]s,t] · Si)T , then ±kT ∈ KW ∩ Lû, so, by
definition of (CW)0, we deduce EQ[kT ] = 0. Hence, for all i = 1, . . . , d , Hi · Si

is a Q-martingale. This implies that Si is a σ -martingale with respect to Q, thanks
to the characterization provided by [14].

(e) Note that

Mσ ∩ L�̂ ⊆ ⋂
W∈Lû,W≥1

MW
sup ∩ L�̂ ⊆ ⋂

W∈Lû∩S

MW
sup ∩ L�̂ = Mσ ∩ L�̂,

where the first inclusion follows from (a) and the equality from (d). The thesis then
follows from (21). �

COROLLARY 20. If Lû ∩ S �= ∅, MW ∩ L�̂ does not depend on which W is
selected in Lû ∩ S and it coincides with Mσ ∩ L�̂.

3.2. Minimax theorem.

THEOREM 21. Let u : R → R ∪ {−∞} be increasing and concave on the
interior (a,∞), a ∈ [−∞,0), of its effective domain and with the property
limx→−∞ u(x) = −∞.

If there exists W ∈ Lû+ satisfying supk∈KW E[u(x + k)] < u(+∞) for some
x > a, then MW is not empty and

UW(x) � sup
k∈KW

E[u(x + k)] = sup
f ∈CW

E[u(x + f )](22)

= min
λ>0,Q∈MW

{
λ(x + ‖Qs‖) + E

[
�

(
λ
dQr

dP

)]}
,(23)

where Q = Qr + Qs is the decomposition of Q into regular and singular part.

PROOF. We first prove the result in the case x = 0. The concave conjugate
functional of Iu is Ju(z) = −E[�(dzr

dP
)] − supf ∈D zs(−f ) by [18], Theorem 2.6

(see Theorem 46 in the Appendix). From (15), Ju(z) = −E[�(dzr
dP

)] − ‖zs‖. By
Proposition 16, the Fenchel duality theorem can be applied (see, e.g., Brezis [11])
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to obtain

sup
f ∈CW

E[u(f )] = min
z∈(CW )0

−Ju(z)

= min
z∈(CW )0

{
E

[
�

(
dzr

dP

)]
+ ‖zs‖

}
(24)

= min
λ>0,Q∈MW

{
E

[
�

(
λ
dQr

dP

)]
+ λ‖Qs‖

}
,(25)

where the last equality follows from a reparametrization via MW . This last passage
is ensured by the assumption supk∈KW E[u(k)] < u(+∞), together with �(0) =
u(∞). From these conditions, in fact, we derive that any solution z∗ of the dual
problem in (24) has nonzero regular component, so that MW �= ∅, even when
a = −∞.

The case with arbitrary initial endowment x follows from a few consider-
ations. If we let ux(·) = u(x + ·), then ux is finite on (ax,∞), ax = a −
x < 0, Iux (f ) = E[u(x + f )] and the proper domain of Iux is Dx = D − x.
Then, we go on as in case x = 0, taking into account that the concave conju-
gate of Iux is Jux (z) = −xzr(�) − E[�(dzr

dP
)] − supf ∈Dx

zs(−f ). And, since
supf ∈Dx

zs(−f ) = supg∈D zs(−g) + xzs(�) = ‖zs‖ + xzs(�), we conclude that

Jux (z) = −xz(�) − E[�(dzr
dP

)] − ‖zs‖. �

REMARK 22. (i) Suppose that u is strictly concave so that E[�(·)] is strictly
convex. The optimal functional Q∗ is then unique only in the regular part Q∗

r .
In fact, ‖ · ‖ is additive on the nonnegative singular functionals (Proposition 11).
Therefore, the dual objective function to be minimized in (24) is not strictly convex
and the nonuniqueness of the solution can only arise from the singular part.

(ii) Even if the duality is formulated with respect to the dual system (Lû,L�̂ ⊕
Ad ), we have to keep in mind that it is the function �, the conjugate of u, that
shows up in the dual problem (25), and not �̂. This is also the reason why, in the
next section, we have to consider the smaller set N W

� instead of MW .

Until now, we have shown that there is no duality gap between the primal prob-
lem (22) and the dual problem (23) and that the dual problem is attained.

4. Dual and primal optima. In this section, we analyze the properties of the
solutions of the dual problem (23) and prove the existence of the solution to the
primal problem over a set larger than KW , which is defined in (33) below. As
should be clear from Remark 7, we may not expect that the optimal solution fx

belongs to Lû, but only that f −
x ∈ Lû. For example, think of the case a finite. Then,

Lû = L∞ and it is well known that the primal solution may not be bounded.
In this section and in the sequel, we will work under assumptions (A1) and (A2).
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The convex conjugate � is then a strictly convex differentiable function sat-
isfying �(+∞) = +∞, �(0+) = u(+∞), �′ = −(u′)−1, �′(0+) = −∞ and
�′(+∞) = −a.

Let

L� � {f ∈ L0+(P ) | E[�(f )] < ∞} ⊆ L�̂+
and note that assumption (A2) is equivalent to requiring that L� is a convex cone.

REMARK 23. While, by construction, �̂(0) = 0, �(0) = ∞ is possible. So,
in general, we have only L� ⊆ L�̂+. Of course, L� = L�̂+ whenever �(0) < ∞
[which is equivalent to u(+∞) < +∞].

REMARK 24 [Consequences of (A2)]. Assumption (A2) implies that L�̂ =
M�̂. Indeed, it implies that if f ∈ L0+(P ), then

E
[
�(f )1{f ≥β}

]
< +∞ ⇔ E

[
�(λf )1{f ≥β}

]
< +∞ ∀λ > 0,

and therefore

E[�̂(f )] < +∞ iff E[�̂(λf )] < +∞ ∀λ > 0.

Due to (A2), when E[�(λ
dQr
dP

)] < ∞, we have Qr ∈ L� ⊆ L�̂+. Therefore, the
min in (23) is reached on the convex set of functionals

N W
� � MW ∩ {Q ∈ (Lû)∗ | Qr �= 0,Qr ∈ L�}.

We will simply write N W instead of N W
� .

The first two propositions are extensions of some of the results in [5], where
only probability measures Q were allowed.

PROPOSITION 25. Suppose that N ⊆ (Lû)∗+ is a convex set and that, for
each Q = Qr + Qs ∈ N , EQr [I�] > 0. Let Nr = {Qr | Q ∈ N } and suppose
that Nr ⊆ L�. If Qλ ∈ N is optimal for

inf
{
E

[
�

(
λ
dQr

dP

)]
+ λ‖Qs‖ | Q ∈ N

}
,(26)

then, ∀Q ∈ N

EQr

[
−�′

(
λ
dQλ

r

dP

)]
− ‖Qs‖ ≤ EQλ

r

[
−�′

(
λ
dQλ

r

dP

)]
− ‖Qλ

s ‖.(27)

PROOF. First consider λ = 1. Suppose that Q1 = Q1
r + Q1

s is optimal for (26)

and let Q0 = Q0
r + Q0

s ∈ N . Set η0 = dQ0
r

dP
, η1 = dQ1

r
dP

, ηx = xη1 + (1 − x)η0,
Qx

s = xQ1
s + (1 − x)Q0

s , x ∈ [0,1]. From the convexity of �, we derive

η0�′(η1) ≤ η1�′(η1) + �(η0) − �(η1), P -a.s.(28)
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As in Lemma 2 of [5], we again exploit the convexity of �, the hypothesis Nr ⊆
L� and the cone property of L� guaranteed by (A2) to deduce from (28) the two
integrability conditions

η1�′(η1) ∈ L1(P ) and (η0�′(η1))+ ∈ L1(P ).

Set F(x) = �(ηx), x ∈ [0,1]. By convexity of F , (F(1)−F(x)
1−x

) is monotone. Since
E[F(1) − F(0)] is finite, we apply the monotone convergence theorem to obtain(

d

dx
E[�(ηx)]

∣∣∣
x=1

)
� lim

x↑1
E

[
F(x) − F(1)

x − 1

]
= E[F ′(1)] = E[�′(η1)(η1 − η0)].

From (ηx dP +Qx
s ) ∈ N , the linearity of x → ‖Qx

s ‖ and optimality of Q1, we see
that the left derivative at x = 1 is negative:

d

dx
{E[�(ηx)] + ‖Qx

s ‖}
∣∣∣∣
x=1

≤ 0.(29)

So

E[�′(η1)(η1 − η0)] + ‖Q1
s‖ − ‖Q0

s‖ ≤ 0

and we have (27).
Again due to the cone property of L�, the case with general λ > 0 follows from

the case with λ = 1, applied to the functions �λ(y) = �(λy) and λ‖ · ‖. �

PROPOSITION 26. If Q ∈ L� and 0 < Q(�) ≤ 1, then, for all c > aQ(�),
the optimal λ(c;Q) solution of

min
λ>0

{
λc + E

[
�

(
λ
dQ

dP

)]}
(30)

is the unique positive solution of the first-order condition

c + E

[
dQ

dP
�′

(
λ
dQ

dP

)]
= 0.(31)

The random variable f ∗ � −�′(λ(c;Q)dQ
dP

) ∈ {f ∈ L1(Q) | EQ[f ] = c} satisfies
u(f ∗) ∈ L1(P ) and

min
λ>0

{
λc + E

[
�

(
λ
dQ

dP

)]}
= sup{E[u(f )] | f ∈ L1(Q) and EQ[f ] ≤ c}

(32)
= E[u(f ∗)] < u(∞).

In the case where a is finite, if c ≤ aQ(�), then the min in (30) is not obtained
and the optimal value is −∞.
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PROOF. It follows, as in the proof of [5], Proposition 7, replacing x with c and
noting (see also [5], Lemma 2-c) that now, F(λ) = E[dQ

dP
�′(λdQ

dP
)] is a bijection

between (0,+∞) and (−∞,−aQ(�)). �

Under the same hypothesis and notation of Theorem 21 and Remark 24, we
know that N W �= ∅, so we may define

KW
� (x) = {f ∈ L0 | f ∈ L1(Qr),EQr [f ] ≤ x + ‖Qs‖ ∀Q ∈ N W }(33)

and

UW
� (x) = sup

f ∈KW
� (x)

E[u(f )].

LEMMA 27. Let W ∈ Lû+. If k ∈ KW and E[u(x + k)] > −∞, then x + k ∈
KW

� (x). Moreover,

UW(x) ≤ UW
� (x) ≤ inf

λ>0,Q∈N W

{
λ(x + ‖Qs‖) + E

[
�

(
λ
dQr

dP

)]}
(34)

and, under the same hypothesis of Theorem 21, the inf is attained.

PROOF. Since k ∈ KW , by Lemma 15, we have k ∧ n ∈ CW . Hence, Q(x +
k ∧ n) = Q(x) + Q(k ∧ n) ≤ x for all Q ∈ N W . From this, EQr [x + k ∧ n] ≤
x − Qs(x + k ∧ n). If n > −x, we have (x + k ∧ n)− = (x + k)−. By assumption,
−(x + k)− ∈ D so that, for sufficiently large n,

EQr [x + k ∧ n] ≤ x − Qs(x + k ∧ n) ≤ x + Qs

(
(x + k ∧ n)−

)
(35)

= x + Qs

(
(x + k)−

) ≤ x + ‖Qs‖,(36)

where the last inequality follows from (15). We then conclude that x + k ∈ KW
� (x)

and UW(x) ≤ UW
� (x). From the Fenchel inequality, we have

u(f ) ≤ λ
dQr

dP
f + �

(
λ
dQr

dP

)
∀f ∈ KW

� (x),∀Q ∈ N W,∀λ > 0.

By taking the expectations and optimizing on both sides, we obtain the second
inequality in (34). �

LEMMA 28. Let W ∈ Lû+. If N W �= ∅, then UW(x) < u(∞) for all x > a.

PROOF. If Q ∈ N W , then, from Lemma 27, we deduce

UW(x) ≤ sup
f ∈KW

� (x)

E[u(f )]
(37)

≤ sup{E[u(f )] | f ∈ L1(Qr) and EQr [f ] ≤ x + ‖Qs‖}.
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Since x > a, we have x + ‖Qs‖ > aQr(�) [in the case a = −∞, this is cer-
tainly true because Qr(�) = 1 �= 0; in the case a finite, it follows from ‖Qs‖ =
−aQs(�), as shown in (16)]. Hence, an application of Proposition 26, (32), gives
that the last term in (37) is less than u(∞). �

We are ready to state and prove the main result of this section. As we have
repeated throughout the paper, the primal solution does not generally belong to the
set KW . In [5], we showed that in the case a = −∞, this can happen, even if S is
locally bounded.

THEOREM 29. Assume that (A1) and (A2) hold. If there exists W ∈ Lû+ that
satisfies

sup
k∈KW

E[u(x + k)] < u(∞) for some x > a,(38)

then N W is not empty and, for all x > a:

1.

UW(x) = UW
� (x) = E[u(fx)]

(39)

= min
λ>0,Q∈N W

{
λ(x + ‖Qs‖) + E

[
�

(
λ
dQr

dP

)]}
;

2. there exists a unique solution to

UW
� (x) = sup{E[u(f )] | f ∈ KW

� (x)}
and it is given by

fx � −�′
(
λ∗ dQ∗

r

dP

)
∈ KW

� (x),(40)

where λ∗ (unique) and Q∗ (unique in the regular part) are solutions to the dual
problem in (39);

3.

EQ∗
r
[fx] = x + ‖Q∗

s‖.(41)

PROOF. From Theorem 21, Remark 24 and Lemma 28, N W is not empty
and UW(x) < u(∞) for all x > a. Therefore, from Theorem 21, Lemma 27 and
Remark 24,

UW(x) = UW
� (x) = min

λ>0,Q∈N W

{
λ(x + ‖Qs‖) + E

[
�

(
λ
dQr

dP

)]}

= λ∗(x + ‖Q∗
s‖) + E

[
�

(
λ∗ dQ∗

r

dP

)]
.
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As in the proof of Lemma 28, from x > a, we deduce x+‖Q∗
s‖ > aQ∗

r (�). Hence,
from Proposition 26, we obtain that λ∗ = λ∗(x +‖Q∗

s‖;Q∗
r ) is the unique solution

to

x + ‖Q∗
s‖ + E

[
dQ∗

r

dP
�′

(
λ
dQ∗

r

dP

)]
= 0

so that the r.v. fx � −�′(λ∗ dQ∗
r

dP
) satisfies EQ∗

r
[fx] = x + ‖Q∗

s‖ and E[u(fx)] =
λ∗(x + ‖Q∗

s ‖) + E[�(λ∗ dQ∗
r

dP
)]. In addition, since Q∗ is an optimal solution of

min
Q∈N W

{
E

[
�

(
λ∗ dQr

dP

)]
+ λ∗‖Qs‖

}
,

we can apply Proposition 25 to deduce

EQr

[
−�′

(
λ∗ dQ∗

r

dP

)]
− ‖Qs‖ ≤ EQ∗

r

[
−�′

(
λ∗ dQ∗

r

dP

)]
− ‖Q∗

s‖ = x,

which means that fx ∈ KW
� (x). �

4.1. Further properties and comments. Since the optimum satisfies
E[u(fx)] > −∞, it follows that f −

x ∈ Lû and, from Lemma 17, that ‖Q∗
s‖ =

supf ∈D Q∗
s (−f ) ≥ Q∗

s (f
−
x ). We now provide a sufficient condition to obtain the

equality ‖Q∗
s ‖ = Q∗

s (f
−
x ). First, we need a simple lemma.

LEMMA 30. Let f ≤ 0, f ∈ D . There then exists an ε > 0 such that (1 +
ε)f ∈ D iff f ∈ int(D).

PROOF. We prove only one implication, the other being trivial. If (1 +
ε)f ∈ D , then f + ε

1+ε
B ⊂ D , where B is the unit open ball of Lû. In fact,

if g ∈ B , then, by the proof of Proposition 16, E[u(g)] is finite and E[u(f +
ε

1+ε
g)] ≥ E[u((1+ε)f )]+εE[u(g)]

1+ε
> −∞. �

PROPOSITION 31. Suppose that the assumptions of Theorem 29 hold true. If
fx − x ∈ KW , then ‖Q∗

s‖ = Q∗
s (f

−
x ).

In addition, if −f −
x ∈ int(D) [or, equivalently, −(1 + ε)f −

x ∈ D for some
ε > 0], then

Q∗
s = 0

and, consequently, Q∗ = Q∗
r is unique.

PROOF. We know that ‖Q∗
s‖ ≥ Q∗

s (f
−
x ). Replacing k with fx − x ∈ KW ,

in (35)–(36), we obtain EQ∗
r
[fx] ≤ Q∗

s (f
−
x ) + x. By the optimal relation (41),

we necessarily have ‖Q∗
s‖ = Q∗

s (f
−
x ).
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Suppose, now, that −f −
x also belongs to int(D). Then, −(1 + ε)f −

x ∈ D for
some ε > 0 and this implies that

Q∗
s (f

−
x ) = ‖Q∗

s‖ ≥ (1 + ε)Q∗
s (f

−
x ),

whence ‖Q∗
s‖ = 0. �

This proposition provides a financial interpretation of the extra term ‖Q∗
s‖ in

(41): it is equal to the optimal singular part computed on the negative part of the
optimal claim. Also, when the optimal loss f −

x is well inside the tolerated margin,
the singular part is zero.

REMARK 32. In the case where a is finite, fx − x is always in K1, as we will
see in Theorem 40, and so, in this case, ‖Q∗

s‖ = Q∗
s (f

−
x ).

Note that in the whole of Section 4, we have never required that the loss bound
W is also suitable (i.e., W ∈ Lû ∩ S). But, of course, the suitability condition, as
given in Definition 2, is a desirable property. In fact, it guarantees that the domain
of maximization KW is nontrivial.

Moreover, we have shown in (20) that when W ∈ Lû ∩ S, the regular measures
in MW can be characterized as the set Mσ ∩ L�̂, independently of W . Since any
dual optimum Q∗ has Q∗

r ∈ L�, we deduce that, in the case W ∈ Lû ∩ S,

when the singular part is null, Q∗ is unique and it
is a σ -martingale measure with finite �-entropy.

REMARK 33 (On no arbitrage). As already remarked in [5], Lemma 1, the
hypothesis (38) in our main theorem is a totally different notion from No Free
Lunch with Vanishing Risk, as defined by [13]. It does not ensure that there are
Q ∈ Mσ which are equivalent to P and the existence of such equivalent measures
does not imply (38).

A detailed analysis of the relationship between No Arbitrage or NFLVR and
utility maximization (for a class of agents acting in the market) is provided in [16].

REMARK 34 (Random endowments). Our framework also allows for a com-
plete treatment of the situation in which a random endowment is given, namely,
one considers a maximization of the type

sup
k∈KW

E[u(e + k)],

where e is an FT measurable r.v. satisfying some integrability properties. The pa-
per [7] is entirely dedicated to the resolution of this problem.

5. Examples.

5.1. Finite period markets with suitable and compatible loss bounds W . In
a finite period market, the filtration is formed by a finite number of increasing
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σ -algebras (Ft )t , t = 0,1, . . . , T . In this case, the analysis of the existence of
suitable and weakly compatible loss bounds W is rather straightforward.

Indeed, there is such a good W ∈ Lû ∩ S �= ∅ (or W suitable and compatible,
i.e., W ∈ Mû ∩ S �= ∅) iff for each i = 1, . . . , d , there exists Hi ∈ L(Si) such that

Hi
t �= 0 a.s. for all t = 1, . . . , T

and

|(H i · Si)t | ∈ Lû (or Mû) for all t = 1, . . . , T .

Then, by setting W � 1 + ∑d
i=1(H

i · Si)∗T , we have W ∈ Lû (resp. Mû) and it
is obviously suitable [we denote with Y ∗ the maximal process (Y ∗

t )t≥0, Y ∗
t =

sups≤t |Ys |].
Clearly, if, for each i = 1, . . . , d and t = 1, . . . , T , we have |Si

t | ∈ Lû (resp.
Mû), then W � 1 + ∑d

i=1(S
i)∗T ∈ Lû ∩ S (resp. Mû ∩ S).

5.2. Exponential utility and W ∈ (Lû ∩S)\Mû. We now give some examples
of utility maximization problems that illustrate our results very well in the case
a = −∞ and in the novel situation W ∈ (Lû ∩ S) \ Mû. This is a case which was
not covered by [9] and [5]. We consider the exponential utility u(x) = −e−x and
assume that the initial endowment is zero in all of the examples.

EXAMPLE 35 [−f −
x ∈ int(D), Q∗

s = 0]. Let S be a scalar compound Pois-
son process stopped at the finite horizon T , that is, St = ∑

(Tj≤t∧T ) Yj , in which:
(i) T0 = 0 and (Tj )j≥1 is the sequence of jump times of a Poisson process N of
parameter λ; (ii) Y0 = 0 and (Yj )j≥1 is a sequence of i.i.d. random variables inde-
pendent from (Tj )j≥1 with doubly exponential distribution of parameter ν > 0 and
centered at 1 [i.e., the density is f (y) = ν

2e−ν|y−1|]. This is the same kind of model
we had in [5], the difference being that there, the Yj had a Gaussian distribution
(for more details, see also [8]).

Then, H1 is trivial, while W = 1+ supt≤T |St | ∈ Lû ∩S\Mû. Maximizing over
HW , we obtain

sup
k∈KW

E[−e−k] = max
k∈KW

�

E[−e−k]

= min
λ>0,Q∈N W

{
λEQr

[
ln

(
dQr

dP

)]
+ λ(lnλ − 1 + ‖Qs‖)

}
.

The primal and dual optima are both unique:

f0 = a∗ST ∈ KW,

Q∗ = Q∗
r ,

dQ∗

dP
= exp

(
−a∗ST − λT

(
ν2

ν2 − (a∗)2 ea∗ − 1
))

,

where a∗ = √
1 + ν2 −1. The uniqueness of Q∗ = Q∗

r follows from Proposition 31
since f0 ∈ KW and (1 + ε)f −

0 ∈ D if ε < ν−a∗
a∗ .
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In the following three examples, we consider single period market models with
F0 trivial. In this context, as soon as we exhibit a good loss bound W , then
HW = R.

EXAMPLE 36 (Q∗
s �= 0). Consider an exponential random variable Y of pa-

rameter 1 [with density f (y) = e−yI[0,+∞)(y)] and suppose that � supports a
discrete r.v. Z ∈ L∞, independent from Y , which takes values in {1,−1

2 , . . . , 1
n

−
1, . . .}. Then, define S0 = 0 and S1 = ZY . As shorthand, let p1 = P(Z = 1) > 0
and pn = P(Z = 1

n
− 1) > 0, n ≥ 2.

The investor has exponential utility so that W = 1 + Y ∈ Lû, and this is clearly
in S. We then must consider

sup
h∈R

E[−e−hS1].
It is not difficult to see that a necessary condition for the quantity to be maximized
to be finite is that −1 < h ≤ 1, which is also sufficient if we require that pn goes
to zero very quickly. For now, suppose that the convergence speed of the pn is
such that E[S1e

−hS1] is also finite for −1 < h ≤ 1. Then, if g(h) = E[−e−hS1],
the derivative is g′(h) = E[S1e

−hS1] and, in case it is positive for all −1 < h ≤ 1,
the maximum is reached when h = 1. Note that

g′(h) = ∑
n≥1

pnznE[Ye−hznY ] = p1E[Ye−hY ] + ∑
n≥2

pnznE[Ye−hznY ](42)

so that

g′(h) ≥ p1E[Ye−Y ] − ∑
n≥2

pnE[Ye−znY ]

and the right term is strictly positive when the (pn)n≥2 are sufficiently small. So,
we can assume that g′(h) > 0 for all −1 < h ≤ 1.

In such a case, the optimal claim is f0 = S1 and the unique regular part of Q∗
is dQ∗

r
dP

= e−S1

E[e−S1 ] . Since g′(1) > 0, we obtain

EQ∗
r
[S1] = E

[
S1

e−S1

E[e−S1]
]

= g′(1)

E[e−S1] > 0.

Hence, any optimal Q∗ necessarily has a nonzero singular part Q∗
s since, by Propo-

sition 31, we know that EQ∗
r
[S1] = Q∗

s (S
−
1 ) = ‖Q∗

s ‖.

EXAMPLE 37. Here, we show that the condition −f −
x ∈ int(D) is only suf-

ficient to obtain Q∗
s = 0. The setting is the same as that of the example above,

up to equation (42). The pn can be selected so that g′(h) > 0 if −1 < h < 1, but
g′(1) = 0. In fact, note that when g′ is positive, it is also monotone decreasing since
g′′(h) = −p1E[Y 2e−hY ] − ∑

n≥1 pn(zn)
2E[Y 2e−hznY ] < 0. So, we only have to

impose the condition g′(1) = 0, that is, 0 = p1E[Ye−Y ] + ∑
n≥2 pnznE[Ye−znY ].

In this way, f0 is again S1, but EQ∗
r
[S1] = 0 and, by Proposition 31, Q∗

s = 0.
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The next example is perhaps the most interesting since it is a concrete case in
which the optimal functional Q∗ is not unique, there being an infinity of singular
positive Qs ∈ Ad such that Q∗

r + Qs ∈ MW and which satisfy the optimal rela-
tion (41).

EXAMPLE 38 (An infinity of optimal functionals). Let (�,F ,P ) be the prod-
uct space of two discrete spaces,

(�a = {ωa
1 ,ωa

2, . . .},Fa,Pa) and (�b = {ωb
1,ω

b
2, . . .},Fb,Pb).

Also, suppose that Pa(ω
a
i ) = P(ω | ωa = ωa

i ) > 0 for all i and that Pb(ω
b
j ) =

P(ω | ωb = ωb
j ) = (e − 1)e−j . Now, let W be the r.v. W = ∑

j≥1 jI{ωb=wb
j }. Then,

P(W = j) = (e − 1)e−j .
If f ∈ L0(�), call fij = f (ωa

i ,ωb
j ). Define the usual one-period market model

on � (F0 trivial) as follows: S0 = 0 and S1 equal to

WI{ωa=ωa
1 } + ∑

i>1

−WI{W≤i}I{ωa=ωa
i }

[think of � as a matrix (ωa
i ,ωb

j )ij : on the first row, S1 is equal to W and on the

other rows, S1 is equal to −W up to the diagonal term (ωa
i ,ωb

i ) and then null]. We
can impose conditions on the Pa(ω

a
i ) = P(ωa = ωa

i ) > 0 in order that S1 ∈ Lû and
the resulting fx is equal to an arbitrary positive multiple of S1 (say 5S1).

Since we must again consider

sup
h∈R

E[−e−hS1],

it is sufficient, as before, to show that we can require that:

1. g(h) = E[−e−hS1] is finite iff −1 < h ≤ 5;
2. g′(h) > 0 for −1 < h ≤ 5.

We separately prove the two items above.

1. Note that g(h) = p1E[−e−hW ] + ∑
i>1 piE[−ehWI{W≤i} ] [where pi = Pa(ω

a
i )

for short] and that h > −1 is then obvious.
To obtain h ≤ 5, note that

E
[
ehWI{W≤i}] = (e − 1)

i∑
k=1

e(h−1)k + P(W > i),

so that when h > 1 is fixed, this term for large i is of the same order of mag-
nitude as e(h−1)i . If we select p1 = 1 − ∑

i>1 pi and pi ∼ 1
ir e4i with the power

r > 1 arbitrary, we derive that g(5) is finite, while g(5 + ε) = −∞.
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2. Given these asymptotics, we show that, for some r ,

g′(h) = E[S1e
−hS1]

= p1(r)E[We−hW ] + ∑
i>1

pi(r)E
[−WI{W≤i}ehWI{W≤i}] > 0.

To this end, observe that the term∑
i>1

pi(r)E
[
WI{W≤i}e5WI{W≤i}]

is infinitesimal when the power r → ∞. In fact, E[WI{W≤i}e5WI{W≤i} ] = (e −
1)

∑i
k=1 ke5ke−k ≤ (e − 1)i2e4i . So, if r > 3,∑

i>1

pi(r)E
[
WI{W≤i}e5WI{W≤i}] ≤ C1

∑
i>1

1

ire4i
i2e4i

= C1
∑
i>1

1

ir−2 = C2
1

r − 3
,

where C1,C2 are positive constants.
Hence, if r is sufficiently large, p1 = p1(r) is close to 1 and g′(h) =

E[S1e
−hS1] = p1E[We−hW ] − ε > 0. We then have ‖Q∗

s ‖ = EQ∗
r
[fx] =

E[5S1
e−5S1

E[e−5S1 ] ] > 0 and ‖Q∗
s‖ = Q∗

s (5S−
1 ).

Let us exhibit some different Q∗
s . To this end, we need the Hahn–Banach extension

theorem. Consider the function ψ defined on Lû as

ψ(f ) = lim sup
i

fii

i
.

It is then not difficult to show that ψ is finite on Lû. In fact, f ∈ Lû iff E[eα|f |] is
finite for some positive α. Then,∑

i

eα|fii |pii ≤ ∑
i,j

eα|fij |pij < +∞

and pii = P(ωa = ωa
i ,ωb = ωb

i ) = (e − 1)e−ipi ∼ 1
ir e5i . The convergence of the

series
∑

i e
α|fii | 1

ir e5i implies that the general term tends to 0, that is, limi α|fii | −
r ln i − 5i = −∞. So, definitely,

α|fii | < 5i + r ln i(43)

and ψ(f ) is finite. The function ψ is evidently positively homogeneous, subaddi-
tive, null over L∞ and such that ψ(−S1) = 1. Define T1 to be the linear functional
over span(L∞, S1) that is null on L∞ and such that T1(−S1) = 1. Since

T1(f ) = ψ(f ),



A UNIFIED FRAMEWORK FOR UTILITY MAXIMIZATION PROBLEMS 959

by the Hahn–Banach theorem, T1 can be extended to a linear functional T ≤ ψ

on Lû.
In addition, T is positive since, if f ≥ 0, then −T (f ) = T (−f ) ≤ ψ(−f ) ≤ 0.

Namioka’s theorem [2] ensures that T is continuous. However, it is very easy
to show continuity directly. We prove that T is bounded on the positive ele-
ments of the open unit ball B and henceforth continuous. In fact, b ∈ B+ im-
plies E[û(b)] ≤ 1 so that E[eb] < +∞ and, from (43), we know that definitely
bii < 5i + r ln i. Then,

‖T ‖ = sup
b∈B+

T (b) ≤ sup
b∈B+

ψ(b) ≤ 5

and it is almost immediate to show that ‖T ‖ = 5. Since T is a continuous func-
tional which is null on L∞, it is null on Mû = L∞. So, T ∈ Ad+ and if we positively
scale it as

Tψ(f ) � EQ∗
r
[S1]T (f ),

then we have that Q∗ = Q∗
r + Tψ is optimal since

Q∗(f0) = Q∗(5S1) = 0.

The same argument can be repeated on the first subdiagonal of �, j = i − 1 (or on
any other subdiagonal), that is, one can consider

ϕ(f ) = lim sup
i

fi,i−1

i

and construct the corresponding Tϕ , which gives another Q∗
s , and so on.

6. Comparison with existing literature.

6.1. The case a finite. In the case a finite, one immediately thinks of the sem-
inal paper [19]. In this article, the dual domain consists of terminal variables of
nonnegative supermartingales Y with Y0 = 1. The authors pointed out that the dual
optimum Y ∗

T ∈ L1 may not satisfy E[Y ∗
T ] = 1, but the approach in [19] does not

provide an interpretation of the lost mass.
In [12], the authors are very concerned with this problem since they admit ran-

dom endowments. In [12], the set of admissible strategies on which the maximiza-
tion is performed is exactly H1 and so C1 = (K1 −L0+)∩L∞. The dual variables
in [12] are those in the set (C1)0 ∩ {Q ∈ ba | Q(I�) = 1} ⊆ ba, which they call D
and which coincides with M1, as defined in (17). Indeed, in our setting and when a

is finite, Lû = L∞, (Lû)∗ = ba and the primal domain K1 is obtained by selecting
W = 1 ∈ Lû.

This is the reason why we prefer working out the more natural comparison
with [12] instead of [19]. We show that if we set the random endowment e = 0
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in [12], then it is rather easy to recover the known results thanks to our unifying
Theorem 29. For a comparison of the results when e �= 0, we refer to [7].

In [12] (as well as in [19]), S is a possibly nonlocally bounded semimartin-
gale, the utility function u0 : (0,+∞) → R has (0,+∞) as proper domain and the
assumptions are as follows:

(1) condition (A1) on u0;
(2) AE+∞(u0) < 1;
(3) there exists a probability Q equivalent to P such that for each H ∈ H1, the

process H · S is a local martingale under Q (NFLVR-type condition);
(4) supk∈K1 E[u0(x + k)] < ∞ for some x > 0.

(In [19], there is an irrelevant difference in the statement of (4), while in [12],
this condition is equivalently formulated as supk∈C1 E[u0(x + k)] < ∞.) We now
compare these assumptions with those adopted in this paper.

REMARK 39. Let us define

u(x) � u0(x − a) for some fixed a < 0

so that the proper domain of u is (a,+∞), as required in our paper. Then, the
convex conjugate of u0 is �0(y) = �(y) + ay.
1. The hypothesis (A1) on u0 clearly implies (A1) on u.
2. The hypothesis AE+∞(u0) < 1 implies our assumptions (A2) on �.

Indeed, from Corollary 6.1(iii) [19], we know that the condition AE+∞(u0) < 1
implies a “nice” behavior near zero of �0, and so also of �. As shown in Sec-
tion 2.1.1, in the case that a is finite, we have �(y) ≤ −ay + u(0) for large values
of y and therefore assumption (A2) on � holds true.
3. In Theorem 40 below, we will adopt the condition of NFLVR, which is equiv-

alent to the assumption (3) above, as can be easily deduced from Theorem 1.1
and Proposition 4.7 [13]. Indeed, NFLVR is equivalent to the existence of a
Q ∈ Mσ equivalent to P and this implies that, for all H ∈ H1, the process
H · S is a Q-local martingale [see Proposition 19(a), in case W = 1, for a proof
of this well-known fact]. Thus, NFLVR implies the assumption (3) above. Con-
versely, note that H · S is uniformly bounded from below if H ∈ H1. Hence,
(3) implies that there exists a probability Q equivalent to P such that, for all
H ∈ H1, H · S is a Q-supermartingale, so that EQ[(H · S)T ] ≤ 0. This also
implies that EQ[f ] ≤ 0 for all f ∈ C and hence for all f ∈ C, the L∞-closure
of C. Hence, C ∩ L∞+ = {0} and NFLVR holds true.

4. When a is finite and NFLVR holds true, the condition that appears in the next
theorem—supk∈K1 E[u0(x + k)] < ∞ for some x > 0—is equivalent to the
condition supk∈K1 E[u0(x+k)] < u0(∞) for some x > 0 (see Remark 3.7 [24])
and therefore it is also equivalent to the condition that is used in this paper,
supk∈K1 E[u(x + a + k)] < u(∞) for some x > 0.
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Then, from Theorem 29, we can derive the following, which sums up the results
in [12] for the case with no random endowment.

THEOREM 40. Suppose that NFLVR holds true. If u0 satisfies (A1),
AE+∞(u0) < 1 and supk∈K1 E[u0(x + k)] < ∞ for some x > 0, then, for all
x > 0,

sup
k∈K1

E[u0(x + k)] = min
λ>0,Q∈M1

λx + E

[
�0

(
λ
dQr

dP

)]
(44)

and the solutions are related as

X̂ = −x − (�0)′
(
λ∗ dQ∗

r

dP

)
,

where X̂ ∈ K1 is the primal solution (so that X̂ is replicable with a strategy Ĥ ∈
H1) and λ∗ (unique) and Q∗ (unique in the regular part) are the dual solutions.
In addition, X̂ satisfies

EQr [x + X̂] ≤ x ∀Q ∈ M1,(45)

EQ∗
r
[x + X̂] = x for the optimal Q∗.(46)

PROOF. As explained in the above remark, we may apply Theorems 21 and 29
to the utility function u defined by u(x) � u0(x − a) for some fixed a < 0.

From Theorem 21 and by (16),

sup
k∈K1

E[u0(x + k)] = sup
k∈K1

E[u(x + a + k)]

= min
λ>0,Q∈M1

{
λ(x + a) + E

[
�

(
λ
dQr

dP

)]
− aλQs(�)

}
.

To obtain (44), simply substitute in the above relation �(λdQr

dP
) = �0(λdQr

dP
) −

aλdQr

dP
and Q(�) = E[dQr

dP
] + Qs(�) = 1. From Theorem 29, we also know that

the optimal Q∗ is unique in the regular part and that the link between primal and
dual optima is

f(x+a) = −�′
(
λ∗ dQ∗

r

dP

)
= −(�0)′

(
λ∗ dQ∗

r

dP

)
+ a.

Note that fx+a > a. From (40), fx+a ∈ K1
�(x + a), whence

EQr [fx+a] ≤ x + a + ‖Qs‖
= (x + a) − aQs(�) = x + aEQr [I�] ∀Q ∈ N 1,

EQ∗
r
[fx+a] = x + a + ‖Q∗

s‖ = (x + a) − aQ∗
s (�) = x + aEQ∗

r
[I�]
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for the optimal Q∗. By definition, fx+a = (x+a)+X̂. Therefore, the two relations
above can be rewritten as

EQr [x + X̂] ≤ x ∀Q ∈ N 1,

EQ∗
r
[x + X̂] = x for the optimal Q∗,

from which we derive (46) and (45) for the set N 1, but not yet for the larger
set M1 = D . But an easy approximation argument based on convexity, as in
[12], Lemma 4.4, ensures that the above inequality holds for all Q ∈ M1. Fi-
nally, we show that X̂ ∈ K1. The NFLVR assumption implies, in particular, that
M1 ∩ L1 �= ∅. Since fx+a > a, X̂ is also bounded from below, by −x, and
X̂ ∧ n ∈ L∞. From (45),

EQ[X̂ ∧ n] ≤ 0 ∀Q ∈ M1 ∩ L1.(47)

Again by NFLVR, the convex cone C1 is σ(L∞,L1)-closed (see [13]). So, the
relation (47), together with an application of the bipolar theorem, ensures that
X̂ ∧ n (which is bounded from below by −x) belongs to C1 for all n.

In [13], it was proven that the set

Z = {g ∈ L0 | ∃k ∈ K1, k ≥ −x and g ≤ k}
is closed in probability. Since Z ⊇ C1, X̂ ∧ n ∈ Z for all n and

X̂ ∧ n ↑n X̂,

we derive that X̂ ∈ Z, so X̂ ≤ k̂ for some k̂ ∈ K1 and, by optimality, X̂ = k̂ =
(Ĥ · S)T a.s. �

6.2. The case a = −∞ and W ∈ Mû. The natural term of comparison is now
[5] and we show that Theorem 29 permits the recovery of the results obtained there
under the stronger hypothesis W ∈ Mû ∩ S.

Note that the condition W ∈ Mû ∩ S already implies that a = −∞ since, other-
wise, Mû = {0}.

Recall that in the case a = −∞, if Q ∈ N W , then Q(I�) = EQr [I�] = 1 so
that the regular parts of the elements in N W are probability measures and, conse-
quently,

KW
� (x) = x + KW

� (0).

LEMMA 41. Let W ∈ Mû+. If z ∈ (CW)0, then z(t) � zr + tzs ∈ (CW)0 for all
0 ≤ t ≤ 1.

PROOF. Each f ∈ CW can be written as f = k ∧g −h, with g,h ∈ Lû+ [select
k ∈ KW so that f ≤ k, then f = k ∧ f + − (k ∧ f + − f )]. Given this decomposi-
tion,

zr(f ) ≤ zr(k ∧ g) ≤ zr(k ∧ g) + zs

(
(k ∧ g)+

) = z(k ∧ g) ≤ 0

for all f ∈ CW,z ∈ (CW)0
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since W ∈ Mû implies (k ∧ g)− ∈ Mû (see Lemma 15) and, consequently, zs((k ∧
g)−) = 0. Therefore, zr ∈ (CW)0. The result for z(t) follows from the convexity
of the polar. �

If W ∈ Mû+ and Q ∈ N W , then its regular part Qr is already in N W , that is,

N W ∩ L�̂ = {Qr | Q ∈ N W }.
If, in addition, W ∈ Mû ∩ S, then, by (20) and the very definition of N W , the
regular elements in N W are Mσ ∩ P�, independently of W . Therefore, we have
the following corollary.

COROLLARY 42. If W ∈ Mû ∩ S, then

KW
� (0) =

{
f ∈ ⋂

Q∈N W

L1(Qr) | EQr [f ] ≤ ‖Qs‖ for all Q ∈ N W

}

=
{
f ∈ ⋂

Q∈Mσ ∩P�

L1(Q) | EQ[f ] ≤ 0 for all Q ∈ Mσ ∩ P�

}
� K�,

where K� is the domain used in [5], Theorem 1, and

min
λ>0,Q∈N W

λx + E

[
�

(
dQr

dP

)]
+ λ‖Qs‖

= min
λ>0,Q∈Mσ ∩P�

λx + E

[
�

(
dQ

dP

)]
= U�(x).

Note that the domain of the primal problem ceases to depend on the particular
W selected as soon as W ∈ Mû ∩ S. Also, the dual problem reaches its minimal
value on the set of probabilities Mσ ∩ P�. Therefore, the dual can be reformulated
so that no singular parts appear and the content of Theorem 29 coincides with the
following result.

THEOREM 43 ([5], Theorem 1). Suppose that assumptions (A1) and (A2)
hold true and there exist W ∈ Mû ∩ S and x ∈ R such that UW(x) < u(∞). Then:

(a) Mσ ∩ P� �= ∅;
(b) for all W ∈ Mû ∩ S and all x ∈ R, the optimal value UW(x) is less than

u(∞)—it does not depend on the particular W ∈ Mû ∩ S and

UW(x) = UW
� (x) = min

λ>0,Q∈Mσ ∩P�

{
λx + E

[
�

(
λ
dQ

dP

)]}
= U�(x);

(c) For all x ∈ R, there exists the optimal solution fx = −x − �′(λx ×
dQx

dP
) ∈ K�,

max{E[u(x + f )] | f ∈ K�} = E[u(x + fx)] = U�(x) < u(∞),

where λx,Qx are the optimal solution of the dual problem in item (b).



964 S. BIAGINI AND M. FRITTELLI

7. Which W? Under the same assumptions as Theorem 43, we show, in the
next proposition, that the optimal level of wealth that an investor may achieve by
investing in W -admissible trading strategies, for any W ∈ Lû+, is exactly U�(x).

Of course, for a fixed W ≥ 1 not necessarily suitable, UW(x) could be strictly
less than U�(x), as in Example 4 when W = 1.

We then derive that once an element W1 ∈ Mû ∩ S is identified, there is no
incentive to invest in trading strategies H ∈ HW with W ∈ Lû and W ≥ W1.

Recall that H û = ⋃
W≥1,W∈Lû HW .

PROPOSITION 44. Suppose that assumptions (A1) and (A2) hold true and
that there exist W1 ∈ Mû ∩ S and x ∈ R such that UW1(x) < u(∞). Then:

1. for all W ∈ Lû+
UW(x) ≤ U�(x);(48)

2.

sup
H∈H û

E
[
u
(
x + (H · S)T

)]
(49)

= min
λ>0,Q∈Mσ ∩P�

{
λx + E

[
�

(
λ
dQ

dP

)]}
= U�(x);

3. if W ∈ Lû is greater than some W ∈ Mû ∩ S, then

UW(x) = UW(x) = U�(x)

and there is no incentive to invest in the strategies in HW .

PROOF. From Remark 23 and Proposition 19(b), we have

Mσ ∩ P� ⊆ {Q � P | Q ∈ L�̂ and H · S is a Q-supermartingale ∀H ∈ H û}.
Let W ∈ Lû+. We then deduce (48) from the inequalities

UW(x) = sup
k∈KW

E[u(x + k)] ≤ sup
k∈K(W+1)

E[u(x + k)]

≤ sup
H∈H û

E
[
u
(
x + (H · S)T

)]
≤ inf

λ>0,Q∈Mσ ∩P�

{
λx + E

[
�

(
λ
dQ

dP

)]}
= U�(x),

where the last inequality comes from the Fenchel inequality

u
(
x + (H · S)T

) ≤ λ
dQ

dP

(
x + (H · S)T

) + �

(
λ
dQ

dP

)
and from EQ[(H · S)T ] ≤ 0.
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To show (49), let W1 ∈ Mû ∩ S. We may apply Theorem 43 so that Mσ ∩ P� is
not empty and, trivially,

sup
H∈H û

E
[
u
(
x + (H · S)T

)] ≥ sup
k∈KW1

E[u(x + k)] = U�(x).

Equality must then hold due to the opposite inequality given by (48).
Finally, if W ∈ Lû and W ≥ W for some W ∈ Mû ∩ S, then KW ⊇ KW and

UW(x) = sup
k∈KW

E[u(x + k)] ≥ sup
k∈KW

E[u(x + k)] = U�(x)

so that UW(x) = UW(x). �

REMARK 45. When Mû ∩ S �= ∅, we may directly state the primal optimiza-
tion problem over the domain (KW − L0+) ∩ Mû (see Lemma 15). The dual vari-

ables then live in the space (Mû)∗ = L�̂ so that no singular component appears
and the results in Theorem 43 can be recovered by applying the duality between
Mû and L�̂. This is exactly the approach adopted in [9].

APPENDIX

The representation of the conjugate of a convex integral functional on Orlicz
spaces is provided by [18], Theorem 2.6 and is based on the similar representation
on the space L∞, proven by [22]. In our notation, this theorem can be restated as
follows.

THEOREM 46. Suppose that F : R → (−∞,+∞] and F ∗ : R → (−∞,+∞]
are convex l.s.c. functions (not identically equal to +∞) conjugate to each other
and that there exists f ∈ Lû such that IF (f ) � E[F(f )] < ∞. If IF ∗(g) < ∞ for
some g ∈ L�̂, then the convex conjugate I ∗

F : (Lû)∗ → (−∞,+∞] of the convex
integral functional IF is given by

I ∗
F (z) = IF ∗

(
dzr

dP

)
+ sup{zs(f ) | f ∈ dom(IF )},

where dom(IF ) is the proper domain of IF .
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