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Abstract 

The dorsolateral striatum (DLS) of the basal ganglia plays a critical role in action selection 

and motor control. The DLS receives cortical and thalamic afferents, which are extensively 

modulated by monoaminergic inputs, such as dopamine and serotonin (5-HT). Dopamine 

and 5-HT act as circuit neuromodulators by activating both stimulatory (Gs) and inhibitory 

(Gi) protein-coupled receptors that regulate synaptic mechanisms of plasticity. 

On a system level, 5-HT signal has been classically associated with learning of negative 

events, acting as an opponent of dopamine regulation of rewarding processes. Recent 

evidence has challenged this view, suggesting that 5HT signaling can synergize with 

dopamine signaling to shape reward-guided behavior. However, the molecular and synaptic 

correlates of this behavioral role of 5-HT at striatal circuits remain to be established. 

To address this hypothesis, we investigated the role of serotonergic signaling in regulating 

the strength of glutamatergic synaptic connections to the Medium Spiny Neurons of the direct 

pathway (dMSNs), which mediate movement, reward and reinforcement. Specifically, we 

focused on the regulation of distinct forms of long-term synaptic plasticity that depend on 

both the relative timing of a neuron output and an input spike (Spike timing-dependent 

plasticity, STDP), and on the pattern of neuronal stimulation (high-frequency stimulation, 

HFS). Upon a STDP protocol, the chemo-genetic inhibition of 5-HT release resulted in a long 

lasting depression (STDP-LTD) of glutamatergic afferents to the dMSNs of the DLS. The 

synaptic effects of chemo-genetic inhibition of 5-HT release were recapitulated by the 

pharmacological inhibition of the Gs-coupled 5-HT4 receptor subtype (5-HT4R). 

This form of LTD was independent from presynaptic CB1 receptor (CB1R) activation, it 

showed a postsynaptic locus of expression, and it was associated with an increased dendritic 

Ca2+ signal. We obtained similar results upon HFS; antagonism of 5-HT4R resulted in a 

CB1R independent form of HFS-LTD, which was associated with enhanced dendritic Ca2+ 

levels. 
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Collectively, these data provide molecular and synaptic insights on the neuromodulatory role 

of 5-HT at striatal circuits. Dysfunctional serotonergic modulation of striatal circuits has been 

associated with repetitive behaviors in obsessive-compulsive disorders (OCD). Thus, 

elucidating how 5-HT4R manipulation affects aspects of reward-guided behavior, and how 

this is causally relevant for defined cognitive processes implicated in action control, could 

facilitate the development of new pharmacological approaches to treat OCD symptoms.  
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Introduction 

The basal ganglia consist of highly interconnected subcortical nuclei involved in the control of 

motor behaviors, mood and cognition. They associate the cortex to the neural systems 

exerting motor function, and their dysfunction leads to a wide variety of neurological and 

psychiatric conditions.  

The striatum is their primary input nucleus, and it receives strong glutamatergic input from 

cortex and thalamus. Serotonergic and dopaminergic afferents modulate intrinsic glutamate 

neurotransmission along this circuit, to optimize circuit performance for specific aspects of 

executive control over behavior. While key aspects of midbrain dopaminergic modulation of 

glutamatergic synapses have been revealed, serotonergic effects on these circuits are not 

well understood. 

In this thesis, I will report the results of the work I did during my PhD, aimed at investigating 

the function of serotonin in the neuromodulation of glutamatergic synaptic plasticity 

specifically in the lateral part of the dorsal striatum, which is involved in motor planning and 

habit formation. The purpose of this study was to provide a better understanding of the 

mechanisms by which serotonin influences striatal circuits, to shed light on its functional 

integration with the dopaminergic signaling. 
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The Basal Ganglia: organization and function 

The basal ganglia are a group of subcortical nuclei residing in the basal forebrain, connecting 

the cerebral cortex with different neural systems that affect a variety of behaviors, including 

motor planning, procedural learning related to goal-directed and habitual behavior, action 

selection and motivation state. Indeed, they provide outputs to various behavior effector 

systems, such as the thalamic nuclei projecting to frontal cortical areas, midbrain regions 

including the superior colliculus, the pedunculopontine nucleus and hypothalamic systems 

involved in autonomic functions

The first evidence of the basal ganglia involvement in motor function came from post-mortem 

studies in patients affected by brain pathologies characterized by motor impairments, such 

as Parkinson’s Disease (PD), Huntington’s Disease (HD) and hemiballismus. In all of them, 

pathological changes in basal ganglia structures were reported. In addition to these, several 

psychiatric conditions, including obsessive-complulsive disorder (OCD), schizophrenia and 

drug abuse, appear in part to be reflecting changes in basal ganglia function. 

Although a formal definition of the basal ganglia is lacking, the term today generally indicates 

the striatum and its projection targets. The basal ganglia can be thus anatomically subdivided 

in 4 interconnected nuclei: striatum (composed in primates by the caudate, putamen, and 

nucleus accumbens), subthalamic nucleus, globus pallidus (further sub-divided into an 

internal and an external tract) and substantia nigra (divided in pars compacta, pars reticulata, 

and ventral tegmental area) (Fig. 1). 
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The Striatum 

The striatum is the main input nucleus of the basal ganglia, and its principal role is integrating 

cortical and thalamic inputs with signals originating from midbrain dopaminergic neurons. It 

has the fundamental function of processing cortical information, and sending the integrated 

message back to the cortex, to allow shaping of subsequent motor and cognitive processes. 

Its main functions are represented by the regulation of motor and procedural learning, and 

reward-guided behaviors. As a consequence, striatal pathological conditions (such as PD, 

HD, OCD, schizophrenia, and aberrant dopaminergic signaling following drug abuse and L-

DOPA administration), have a profound impact on behavioral functions.  

A B

 C    

 

 

 

 

 

Figure 1. The basal ganglia. 

The human (A) and rodent (B) basal ganglia illustrated respectively on a coronal and a sagittal diagram. 

C. Coronal diagram of mouse brain shows the anatomical segregation in the medial and the lateral dorsal 

striatum, respectively corresponding to human caudate and putamen nuclei. 

DMS DLS 
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Within the striatum there are many different neuronal subtypes. The main striatal cell 

population is represented by the γ-aminobutyrric acid (GABA)-releasing medium spiny 

projection neurons (MSNs). They constitute ~95% of striatal neurons, and are so called 

because they constitute the projection system of the striatum (Kemp and Powell, 1971). The 

remaining ~5% is composed by several classes of interneurons, such as the large cholinergic 

interneurons, the GABAergic fast-spiking interneurons, the somatostatin-expressing neurons, 

and interneurons expressing the calcium-binding protein calretinin (Reiner et al., 1998). 

In the primate brain, the striatum is anatomically separated in caudate and putamen nuclei, 

and nucleus accumbens (Fig. 1 A). In rodents, the subdivision is only functional (Fig. 1 B), 

reflecting the topographical distribution of inputs from different cortical areas. In particular, 

the rodent striatum can be divided in a dorsal and a ventral part. The ventral part comprises 

the olfactory tubercle and the nucleus accumbens, which plays a pivotal role in translating 

motivational states into goal-directed behavior. The dorsal striatum roughly corresponds to 

the caudate and putamen nuclei, and its primary activity is the control of motor function and 

motivated behavior (Fig. 1 C). The dorsomedial striatum (DMS) roughly corresponds to the 

primate caudate nucleus, while the dorsolateral striatum (DLS) is the correspondent of the 

putamen (Balleine et al., 2007) (Fig. 1 C). The DMS receives projections preferentially from 

associative cortices, such as the prelimbic region of the prefrontal cortex, as well as from 

premotor cortical areas involved in processes of action monitoring and programming 

implicated in executive functions (Passingham et al., 1988; McGeorge and Faull, 1989; 

Corbit and Balleine, 2003). The posterior part of the DMS also receives inputs from the 

basolateral amygdala (Kelley et al., 1982). Data from behavioral and electrophysiological 

experiments in rodent indicate that this part of the striatum is involved in goal-directed and 

associative learning (Hilario and Costa, 2008). The DLS is preferentially innervated by the 

somatosensory and motor cortices (Goldman-Rakic and Selemon, 1986) and it is involved in 

sensorimotor processing and the acquisition of habitual behavior (Yin et al., 2004; Hilario and 

Costa, 2008; Nazzaro et al., 2012).  

In addition to cortical innervations, the striatum receives projections from: 
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 the thalamic glutamatergic neurons of the central medial complex and the 

parafascicular nucleus (Smith et al., 2004); 

 the midbrain dopaminergic neurons of the substantia nigra pars compacta (targeting 

mainly the dorsal striatum) and of the ventral tegmental area (reaching preferentially 

the ventral striatum)(Encyclopedia of Movement Disorders, Volume 1, Kompoliti and 

Verhagen Metman, 2010); 

 the serotonergic neurons residing in the dorsal raphe nucleus (Azmitia and Segal 

1978; Bobillier et al., 1976); 

 the GABA releasing neurons of globus pallidus externum (Gerfen et al., 2010, 

Handbook of basal ganglia structure and function)(Fig. 2). 

Striatal outputs target other nuclei of the basal ganglia, to ultimately reach the thalamus. 

The subthalamic nucleus  

The subthalamic nucleus (STN) is a small nucleus located caudally to the striatum and 

ventrally to the thalamus. It is an input stage of the basal ganglia, as well as the striatum, and 

similarly to that nucleus, it receives afferents from the cortex and the thalamus (Smith et al., 

1998), and it can be functionally divided in a motor (dorsolateral), an associative 

(ventromedial) and a limbic (medial) sector (Parent and Hazrati, 1995). In addition, the STN 

receives also dopaminergic afferents from substantia nigra pars compacta and GABAergic 

projections from the globus pallidus externum (GPe). 

Most STN neurons are glutamatergic, and they provide excitatory input to the GPe and to the 

two output structures of the basal ganglia, the globus pallidus internum (GPi) and the 

substantia nigra pars reticulata (SNr)(Charpier et al., 2010, Handbook of basal ganglia 

structure and function). 

Lesion of the STN results in hemiballismus, a movement disorder which is characterized by 

violent movements of the arms and legs. Also in PD and epilepsy a dysfunction of STN has 

been reported. 
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The globus pallidus 

The globus pallidus is positioned caudally to the striatum, and it is functionally separated in 

the internal (GPi) and external (GPe) tract. The GPi anatomically differs between primates 

and rodents in that in the primate brain it lays medially to the GPe forming with it a 

structurally unique nucleus, while in rodents it is separated, sited caudally from the GPe, and 

it has historically been termed the entopeduncular nucleus (Kita et al., 2010, Handbook of 

basal ganglia structure and function). 

The GPe receives major inputs from the striatum and the subthalamic nucleus (STN). Its 

GABAergic neurons send outputs to most of the basal ganglia nuclei, including the striatum, 

GPi, STN, and the SNr (Kita et al., 2010, Handbook of basal ganglia structure and function). 

The GPi receives inputs from the striatum, STN, GPe, and brainstem nuclei, including the 

peduculopontine nucleus, and send its outputs out of the basal ganglia. The GPi, with the 

SNr, represent the output nuclei of the basal ganglia, and their GABAergic neurons provide 

inhibitory input to thalamic relay neurons and brainstem targets (Parent and Hazrati, 

1995).The GPi is involved in limb and axial movements (Gerfen et al., 2010, Handbook of 

basal ganglia structure and function). 

The substantia nigra and the Ventral Tegmental Area  

The substantia nigra is divided into a dorsal, mainly dopaminergic pars compacta (SNc), and 

a ventral, mainly GABAergic pars reticulata (SNr). The ventral tegmental area (VTA) lays 

medially to the substantia nigra, and its neurons are 50-60% dopaminergic cells, while the 

others are mainly GABAergic and few glutamatergic. 

The VTA is implicated in the codification of natural- and drug reward-based signals, and the 

dopaminergic VTA neurons are the source of the so-called mesocorticolimbic dopamine 

system, which connects the nucleus accumbens, the amygdala, the hippocampus and the 

medial prefrontal cortex; these nuclei project back to the VTA, thus creating a feedback loop.  

The SNr is involved in movements of the eyes, head and neck and contains mostly 

GABAergic neurons, and some dopaminergic cells. It receives inputs from almost all nuclei of 
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the basal ganglia, and it projects to the SNc, the thalamus, the superior culliculus and the 

pedunculopontine nucleus with GABAergic afferents (Gerfen et al., 2010, Handbook of basal 

ganglia structure and function). 

The SNc contains mainly dopaminergic neurons and it is the principal source of 

monoaminergic signaling for the basal ganglia, together with the serotonergic system arising 

from dorsal raphe nucleus. Dopaminergic signaling codes for positively or negatively 

reinforcing stimuli (Schultz et al., 1997) and, in the striatum, it is thought to trigger 

phenomena of synaptic plasticity leading to reinforcement learning of action-outcome 

associations (Shultz et al., 1993; Hollerman and Shultz, 1998). While timing and magnitude 

of dopamine release are important for normal voluntary movement, the firing patterns of 

dopamine neurons are related to the perception of rewards. The idea that dopamine could be 

the brain signal for rewarding events came from evidence of in vivo electrophysiological 

recordings. Dopaminergic neurons increase their firing activity upon delivery of a reward, 

while they decrease their firing or cease it completely when a punishment occurs. 

Subsequent experiments highlighted the need of the reward to be unexpected to induce a 

strong response of dopaminergic neurons. The current vision considers dopamine as a code 

to signal a reward prediction error, acting to distinguish between subjective expected and 

actual reward (Glimcher, 2011; Steinberg et al., 2013). The role of dopamine in the reward 

system will be discussed extensively further on in this thesis. 

The SNc sends and receives projections from the striatum, GPe, STN and SNr. Furthermore, 

it receives inputs from the amygdala, cholinergic innervation from the pedunculopontine 

nucleus and various basal forebrain nuclei, and an inhibitory input from the lateral habenula.  

Nigral dopaminergic neurons receive inputs through their 3-5 dendrites, extending also in the 

SNr, and they send a single axon which runs medially and rostral to SNc and coalesces into 

a tract called the medial forebrain bundle (Tepper et al., 2010, Handbook of basal ganglia 

structure and function). As the axons course rostrally, they arborize sparsely in the STN 

(Cragg et al., 2004) and in the GP (Lindvall and Bjorklund, 1979) before reaching their 

principal target, the striatum. In the striatum the axons branch profusely, forming large and 
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dense arborizations of varicose processes that occupy an average volume of ~0.5 mm3 

(Matsuda et al., 2009). The dopaminergic innervation in the striatum is so dense, that even 

one single dopaminergic neuron can influence a very large number of striatal MSNs: it is thus 

not surprising that dopamine plays such a critical role in the modulation of motor behavior 

and learning. 

For the purpose of this thesis, I will mainly focus on the striatum, analyzing aspects of the 

serotonergic neuromodulation responsible for the regulation of the glutamatergic synaptic 

transmission in this nucleus. 
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Figure 2. Simplified diagram of basal ganglia circuitry. 

Flowchart illustrating the connections of the basal ganglia with their principal inputs and outputs. 

Connections of the Basal Ganglia

Cerebral

Cortex

Thalamus

STRIATUM

Amygdaloid body

Raphe

SNcSTN

Pallidum

SNr

Habenular

nucleus

Tectum

(superior colliculus)

PPN

(pedunculopontine nucleus)



18 Introduction 
 
 

Glutamatergic synaptic transmission in striatal MSNs 

The principal neuronal population of the striatum, the GABAergic medium spiny projection 

neurons (MSNs) is reached by glutamatergic projections of pyramidal neurons residing in 

cortical layer 2/3 and 5 (Wall et al., 2013; Kress et al., 2013), and from neurons of the 

thalamic central medial complex and the parafascicular nucleus (Smith et al., 2004). 

Cortical and thalamic glutamatergic presynaptic terminals release glutamate, which activates 

specific receptors of the postsynaptic dendritic spine of MSNs. Those cells contain mainly 3 

types of glutamate receptors: ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate 

(AMPA), N-methyl-D-aspartate (NMDA), and metabotropic glutamate (mGlu) receptors. 

AMPA receptors (AMPARs), the main responsible for fast synaptic transmission in the basal 

ganglia, are tetramers which can be composed by different combinations of 4 subunits 

(GluR1-4). They have a non-selective cation channel which allows the flux of Na+ and K+, 

and also Ca2+ in case of absence of the Ca2+-impermeable GluR2 subunit. These receptors 

have a desensitization mechanism that closes the channel quickly, terminating its 

depolarizing effect (Hammond, 2008). 

NMDA receptors (NMDARs) are heteromeric ligand-gated ion channels. Each receptor can 

be formed by 4 subunits: 2 NR1 subunits (which are critical for the formation of functional 

channels), and 2 other subunits (NR2 A/B/C/D, or NR3 A/B) (Tepper et al., 2010, Handbook 

of basal ganglia structure and function). NMDAR is a non-selective cation channel, which 

allows the flux of Na+, K+ and Ca2+. At resting membrane potential, the channel is blocked by 

Mg2+, and the putative binding of an agonist wouldn’t result in the channel opening. 

Depolarization, which usually occurs via AMPARs, relieves the Mg2+ block, allowing the 

channel opening upon ligand binding. This condition is present in MSNs during the 

alternation of “up” and “down” states, as it will be better elucidated later. If glutamate is 

released from the presynaptic terminal when a MSN is in an “up” state, Na+ influx through 

AMPARs and NMDARs causes further depolarization, keeping the NMDA channel in the 

unblocked state, and allowing a strong influx of Ca2+. This is a trigger for several synaptic 



19 Introduction 
 
 

and cellular events, such as synaptic plasticity (Hammond, 2008). NMDARs are indeed 

important for the induction of both long-term depression and potentiation at cortico-striatal 

synapses. 

For the activation of AMPARs and NMDARs, generally a single presynaptic stimulus is 

sufficient. It produces a large and brief glutamate transient in the synaptic cleft (Clements et 

al., 1992; Diamond and Jahr, 1997), which is limited by removal of the neurotransmitter by 

diffusion and glutamate transporters. When a train of stimuli reaches the synapse, instead, 

the release of much more glutamate is induced, also because of mechanisms of presynaptic 

facilitation and delayed release (Carter and Regehr, 2000). The resulting large glutamate 

levels may overwhelm clearance mechanisms, allowing an extended glutamate signal and 

even glutamate spillover to nearby sites. In this way, high affinity metabotropic glutamate 

receptors (mGluRs), which are often located at extrasynaptic sites, can be activated 

(Scanziani et al., 1997). 

mGluRs are G-protein coupled receptors, and they can be divided in different sub-families. 

Group I (mGluR1 and 5). mGluRs are coupled to the adenylyl cyclase activating Gq protein 

(Hammond, 2008), are facilitatory of neural transmission, and are expressed in MSNs 

(Tallaksen-Greene et al., 1998). Group II (mGluR2 and 3) and III (mGluR4, 6, 7 and 8) 

mGluRs are coupled to adenylyl cyclase inhibiting Gi/o protein (Hammond, 2008) inhibit 

neural transmission and are expressed on the terminals of cortico-striatal afferents (Testa et 

al., 1998). 

The activity of striatal MSNs is dependent on the pattern of incoming glutamatergic signaling, 

which causes the activation of these different glutamatergic receptors. 

MSNs are neurons with a medium cell body size (~9-17 µm), and a large and extensive 

dendritic tree. The average MSN has 20-60 dendritic branches, and each branch has 

approximately 500 input spines, so that the typical MSN integrates inputs coming from 

10000-30000 synaptic boutons. This impressive number of input stations reflects the intrinsic 

firing properties of these neurons, whose firing activity requires the coordinated activation of 

many different excitatory inputs. MSNs are normally silent, kept in a “down” state (with a 
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hyperpolarized membrane potential of ~-80 mV) by a continuous shunting current mediated 

by rapidly activating inwardly rectifying potassium (Kir) channels (Wilson and Kawaguchi, 

1996). In the “down” state, the synchronous input to few dendritic branches is insufficient to 

reach the firing threshold. Instead, when a large, synchronous release of glutamate from 

afferent terminals span most of the dendritic arbor, the shunting current collapses and the 

neuron enters a depolarized “up” state (the membrane potential reaches a voltage of ~-60--

55 mV) in which firing activity may occur (Wilson and Kawaguchi, 1996; Millers, 2010). The 

electric potential of this “up” state is just below the neuron’s firing threshold, and a much 

smaller synchronous input is required to get the MSN to fire. This state may last for tenths or 

hundreds of milliseconds, or even a few seconds.  

In the “down” state, the receptors which mediate excitatory postsynaptic potentials are mainly 

AMPARs, while during “up” states, the elimination of the Mg2+ block allows the recruitment of 

NMDARs. The recruitment of both receptor types leads to prolonged excitatory potentials, 

thus increasing the likelihood of temporal summation of incoming stimuli. Additionally, the 

activation of Ca2+-permeable NMDARs during the “up” state allows further source of Ca2+ 

entry (in addition to Ca2+ channels gated by the depolarization of the neuron, called L-type 

voltage-gated calcium channels), which has been shown to play a pivotal role in processes of 

synaptic plasticity (Carter and Sabatini, 2004). 

Thanks to the existence of these “up” and “down” states, the resulting effect is that only those 

neurons which will receive highly coordinated glutamatergic input together with permissive 

monoaminergic, cholinergic and GABAergic inputs (from midbrain dopaminergic and 

serotoninergic neurons and from striatal interneurons) will be able to signal to their 

downstream targets. 
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MSN projection pathways: the model of basal ganglia 

functioning 

MSNs integrate glutamatergic inputs with monoaminergic signals, mainly arising from 

midbrain dopaminergic neurons, and from serotonergic neurons from dorsal raphe nucleus. 

Dopamine and serotonin bind to different classes of G-protein-coupled receptors, and 

activates multiple signaling cascades. By modulating the gating and trafficking of voltage-

dependent and ligand-gated ion channels, those molecules can affect the MSN response to 

glutamatergic signals. 

MSNs can be divided into two different classes, and dopamine exerts opposite effects on 

their activity, depending on the receptor subtype expressed by the cell. In the MSNs that 

predominantly express dopamine receptors of class 1 (D1, D5) (dMSNs), dopamine signal is 

coupled to Gαs proteins and increases neuronal excitability. In MSNs mainly expressing 

dopamine receptors of class 2 (D2, D3, D4) (iMSNs), dopamine stimulates Gαi proteins and 

results in inhibition of neuronal activity. According to the classic Albin-DeLong model (Albin et 

al., 1989; DeLong 1990), dMSNs constitute the first step in the propagation of cortico-

thalamic inputs in the so-called striatonigral direct pathway, projecting to the internal segment 

of the globus pallidum (GPi) and to the substantia nigra pars reticulata (SNr). The GABAergic 

neurons in these two nuclei project to the thalamus, and they display a relatively high level of 

tonic activity, mediating a constant basal inhibition of their thalamic targets. Thus, the 

activation of the direct pathway leads to disinhibition of the target thalamic nuclei, promoting 

movement (Fig. 3). 

The so-called striatopallidal indirect pathway is proposed to ultimately inhibit the thalamus 

through the activation of GPe and SNr nuclei. The activation of striatal iMSNs causes the 

inhibtion of the external segment of the globus pallidum (GPe). This nucleus, which contains 

mainly GABAergic neurons, exerts an inhibitory activity on the subthalamic nucleus (STN). 

The STN, instead, contains glutamatergic excitatory neurons that activate the GABAergic 
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GPi and SNr. The net disinhibition of the STN by iMSNs activity produces an increase in the 

activity of basal ganglia outputs, opposing the effect of the direct pathway and inhibiting the 

thalamus (Albin et al., 1989; DeLong, 1990) (Fig. 3). 

The integration of the signals originating from the two pathways occurs in the thalamic nuclei, 

which in turn project back to the cortex, gating movement. 

Based on the Albin-DeLong model, motor dysfunctions depend on an imbalance of these two 

pathways, due to changes in the relative activity of dMSNs and iMSNs. Indeed, this 

computational model was postulated upon observation of the motor features characterizing 

PD. In this pathology, upon dopamine depletion, the output from iMSNs is enhanced while 

output from dMSNs is decreased, leading to an overall hypoactivity of the thalamus, which 

causes the hypokinesia (reduced movement) observed in patients. Indeed, the gold-standard 

treatment of PD targets these mechanisms through a dopaminergic replacement therapy with 

the dopamine precursor L-DOPA. 

The application of the Albin-DeLong model to physiological conditions originally indicated 

that movement is inhibited by indirect pathway activation, while direct pathway activity favors 

movement. This hypothesis has been recently tested with an optogenetic approach, 

activating specifically the direct or indirect pathway (Kravitz et al., 2010). The optogenetic 

strategy used, although, doesn’t simulate a physiological activation of the striatal pathways, 

in that the MSN sub-population is activated strongly and as a whole. This implies that, while 

a massive activation of each pathway confirms the Albin-DeLong prediction, the interplay 

between the two pathways may be different under physiological conditions. The model has 

been recently challenged by a study measuring Ca2+ transients, a marker of neuronal 

depolarization and activation, in identified dMSNs and iMSNs of freely moving animals upon 

action initiation (Cui et al., 2013). According to the classical model, one should predict the 

activation of dMSNs upon behavioral entrainment of the animal and the engagement of 

iMSNs in correspondence of movement cessation. What has been observed, instead, was 

the concurrent activation of MSNs belonging to both pathways just before the initiation of 

movement. Similarly, both neuronal sub-classes became relatively inactive when the 
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movement stopped. The explanation that the authors suggested was that both pathways are 

needed for fine control of motor function, with bursts of striatonigral MSNs disinhibiting 

specific thalamocortical targets promoting desired actions, while the activation of 

striatopallidal neurons would inhibit different thalamocortical targets suppressing competing 

motor programs. To reconcile these data with the previous results obtained by Kravitz and 

co-workers (Kravitz et al., 2010), they hypothesized that the simultaneous activation of the 

striatonigral or the striatopallidal pathway as a whole (as Kravitz and colleagues induced) can 

result in the activation or the inhibition, respectively, of all motor programs. In a more 

physiological context, instead, where actions depend on the environmental setting, the 

coordinated activation of clusters of neurons belonging to both pathways may be required to 

promote the selection and initiation of a precise movement, while inhibiting all the other ones. 

However, the precise cellular mechanisms shaping the coordinated activity of dMSNs and 

iMSNs have yet to be established. For this purpose, a recent study coming from our 

laboratory showed that the two pathways may be coordinated through concurrent, cell-type 

specific regulation of cortico-striatal synaptic plasticity at dMSNs and iMSNs subpopulations, 

and that the loss of this regulation disrupts motor control (Trusel et al., 2015). 

Although the Albin-DeLong model of the basal ganglia is still the prevailing model of 

computation in the basal ganglia, it is becoming clear that it is a simplification of a highly 

complex system (DeLong and Wichmann, 2009).  

A modern theory would suggest that basal ganglia play a role not in the on-line motor control, 

but rather in processes controlling motor functions such as motor learning (Bar-Gad and 

Bergman, 2001; Doyon, 2008). It has been hypothesized that, in physiological conditions, 

basal ganglia could act as a store for neuronal representations of several learned behavioral 

patterns, and cortical inputs could induce their selection and release, producing the correct 

behavior. In pathological conditions, the aberrant modulation and the subsequent lack of 

filtering of cortical information by the basal ganglia might allow the activation of uncontrolled 

motor programs. This could, in turn, lead to involuntary movements, and  interfere with 

normal cortical and thalamic activity.  
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Figure 3. The Albin-DeLong model of basal ganglia. 

A. Sagittal diagram of the rodent brain showing the main projection pathways reaching the striatum and 

the projections from the striatum to downstream nuclei. Glutamatergic input originates from pyramidal 

neurons of cortical layer 5 pyramidal neurons and from the thalamic intralaminar/parafascicular complex. 

The MSNs projection pathways segregate in the direct and indirect pathways (from Kravitz and Kreitzer, 

2012). 

B. Flowchart illustrating the striatonigral direct and striatopallidal indirect pathways. 
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Striatal interneurons 

In the striatum there are various interneurons which contact and influence MSNs (Reiner et 

al., 1998). They can provide an additional input to dopaminergic fibers from the SNc, 

serotonergic afferents from dorsal raphe nucleus and collateral contacts between MSNs to 

modify the responsiveness of MSNs to glutamatergic excitatory input. Striatal interneurons 

can be divided into four classes: 

Cholinergic interneurons 

Cholinergic interneurons represent 1-2% of total striatal neurons. They are large (>50 µm), 

aspiny neurons with dendritic branches covering a volume of 1 mm3, and an axon that 

branches densely and profusely over a large portion of the striatum (Goldberg et al., 2010, 

Handbook of basal ganglia structure and function). In vivo, they are tonically active, with a 

spiking frequency of 3-10 Hz (Bennett and Wilson, 1999) at rest, but during behaviorally 

salient stimuli they show bursting followed by a pause in firing that last for up a second 

(Aosaki et al., 1995; Ding et al., 2010). 

The spontaneous firing activity is triggered by a persistent sodium current, which allows the 

neuron to reach -50 mV threshold to fire. The resulting spike is limited by the opening of the 

big-conductance calcium- and voltage-dependent (BK) potassium current, which is activated 

by the opening of voltage-dependent calcium channels and which repolarizes the resting 

membrane potential (Bennett et al., 2000; Goldberg and Wilson, 2005). Calcium channels 

also activate small-conductance calcium-dependent potassium channels (SK), which sustain 

an after hyperpolarization (AHP) of the neurons after the action potential firing and which set 

the rhythm of discharge of these neurons (Bennett et al., 2000; Goldberg and Wilson, 2005). 

Cholinergic interneurons release acetylcholine (ACh), which plays an important role in 

modulating glutamatergic transmission, neuronal excitability, synaptic plasticity and ultimately 

action selection and decision-making. The effects of ACh signaling are due mainly to its 

action on muscarinic receptors expressed on striatal neurons (Koós and Tepper, 2002; Zhou 
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et al., 2002; Wilson, 2004). ACh can also activate nicotinic receptors expressed on the axons 

of dopaminergic neurons and on fast-spiking GABAergic interneurons (Goldberg et al., 2010, 

Handbook of basal ganglia structure and function). 

Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) 

widely expressed on axon terminals to the striatum and by striatal neurons. They can be 

divided in two distinct classes: M1-like (M1, M3, and M5) receptors are functionally linked 

with Gαq/11 proteins, activate phospholipase C and mediate a phosphoinositide-dependent 

signaling pathway. M2-like (M2 and M4) receptors are coupled to Gαi/o proteins, thus they 

lead to inhibition of adenylyl cyclase, thereby decreasing cAMP production and protein 

kinase A (PKA) activity (Peralta et al., 1988). In MSNs the main muscarinic receptors 

expressed are M1, which are found in both dMSNs and iMSNs (Bernard et al., 1992; Hersch 

et al., 1994; Yan et al., 2001), while M4 are more highly expressed in dMSNs (Hersch et al., 

1994; Ince et al., 1997; Santiago and Potter 2001). 

Fast-spiking interneurons 

Parvalbumin-immunoreactive (PV+) striatal interneurons are medium to large sized (16-18 

µm diameter) cells, and have 5–8 aspiny, often varicose, dendrites which branch relatively 

sparsely, originating a restricted dendritic arborization (200–300 µm diameter). The axon 

branches overlap and extend well beyond the limits of the dendritic field of the cell of origin, 

thus creating the densest arborization of all striatal neurons: a single interneuron can connect 

to 135-541 MSNs, allowing for bursts from single cells to significantly affect the excitability of 

numerous MSNs (Koos and Tepper, 1999; Tepper et al., 2010, Handbook of basal ganglia 

structure and function). PV+ neurons make up a very small percentage of the total striatal 

neuronal pool, accounting for the 0.7% of striatal neurons (Rymar et al., 2004), with a dorsal 

to ventral and lateral to medial gradient of expression, being more present in the dorsoltareal 

striatum (Luk and Sadikot, 2001), suggesting an important role in sensorimotor integration. 

They receive strong, multiple excitatory inputs from the cortex and differently from MSNs, 

they are contacted multiple times by each cortical fiber (Ramanathan et al., 2002). They also 
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receive dopaminergic (Kubota et al., 1987), cholinergic (Chang and Kita, 1992), pallidal 

(Bevan et al., 1998) and thalamic afferents (Kita, 1993). Their GABAergic projections 

synapse on or near the soma of dMSNs and iMSNs (Koos and Tepper, 1999; Sidibe and 

Smith, 1999; Planert et al., 2010), although a preferential connectivity with dMSNs is 

reported (Gittis et al., 2010). 

These neurons display a hyperpolarized resting membrane potential (~-80 mV), very brief 

action potentials with a rapid and large amplitude, and brief duration spike 

afterhyperpolarization. These properties allow for the fastest spiking mode among striatal 

interneurons (Koós and Tepper, 1999; Taverna et al., 2007). They co-contain GABA, 

parvalbumin (PARV), and the hexapeptide LANT6. 

Spiking activity of PV+ interneurons induces inhibitory post-synaptic potentials (IPSPs) in 

contacted MSNs: their activation is thus the primary mechanism of feed-forward inhibition, 

contributing to action selection by inhibiting MSNs in circuits with competing inappropriate 

actions (Parthasarathy and Graybiel, 1997; Gage et al., 2010). Gap-junctions connect PV+ 

interneurons to each other (Koós and Tepper, 1999), allowing the synchronization or 

desynchronization (depending on the firing mode) (Russo et al., 2013) of many interneurons, 

thus creating an inhibitory syncytium exerting a strong and synchronous inhibitory control 

over a large number of MSNs (Koos and Tepper, 1999). 

SS/NPY/NOS interneurons 

SS/NPY/NOS interneurons are, after the giant cholinergic interneurons, the largest cell 

population in the striatum, with a soma diameter of 15–25 µm. Their dendritic tree is simple 

and unbranched, extending up to 600 µm in diameter, while their axonal arborization, with 1 

or 2 main axons (Kawaguchi, 1993), is the sparsest and longest of any striatal neuron 

(Tepper et al., 2010, Handbook of basal ganglia structure and function). Although not all the 

three markers, somatostatin (SS), neuropeptide Y (NPY) and nitric oxide synthase (NOS), 

are always simultaneously expressed by these neurons, they are considered a unitary class 

(Tepper et al., 2010, Handbook of basal ganglia structure and function). 
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SS/NPY/NOS interneurons receive monosynaptic inputs from the cortex (Kawaguchi, 1993), 

as well as dopaminergic (Kubota et al., 1987; Li et al., 2002), cholinergic (Tepper et al., 2010, 

Handbook of basal ganglia structure and function), and pallidal GABAergic afferents (Bevan 

et al., 1998). Their resting membrane potential is quite depolarized (~-50--60 mV), and their 

action potential is characterized by a long duration (Kawaguchi, 1993; Kubota and 

Kawaguchi, 2000; Centonze et al., 2002). They are also referred to as low-threshold spiking 

interneurons due to their firing properties, and they constitute another feed-forward circuit in 

the striatum (Tepper et al., 2010); indeed, their firing induces inhibitory post-synaptic currents 

(IPSCs) in MSNs. A part from this, little is known of their functional importance, but their 

innervation of distal dendrites in MSNs hampers their understanding (Gittis et al., 2010). It 

has been proposed that they could be responsible for the regulation of Ach interneurons 

activity (Sullivan et al., 2008). 

Calretinin (CR)-expressing interneurons 

Calretinin (CR)-expressing interneurons are medium sized cells (12-20 µm in diameter) with 

a small number of aspiny dendrites that branch sparingly (Bennett and Bolam, 1993). They 

represent a small population of striatal neurons, accounting, in rodents, for ~0.8% of total 

neurons (Rymar et al., 2004). In primates, however, their number seems to be 3-4 fold higher 

(Wu and Parent, 2000). Not much is known about these neurons, as it is for other striatal 

interneuronal classes (e.g. tyrosine hydroxilase expressing neurons). 

Neuromodulation of striatal activity: focus on monoaminergic 

inputs to the striatum 

In the striatum, several signaling molecules, defined synaptic neuromodulators, regulate both 

glutamatergic and GABAergic inputs, and MSNs intrinsic excitability. On a cellular level, 

these molecules are able to shape synaptic strength, acting through G-protein coupled 

mechanisms, which regulate the release of neurotransmitters, modify ion channel activity and 
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affect neuronal excitability. On a system level, synaptic neuromodulators transduce salient 

environmental stimuli, and integrate animal’s internal states, into behavioral patterns. 

In pathological conditions, alteration of neuromodulatory pathways may lead to aberrant 

assignment of salience to environmental events, or to the lack of representation of internal 

states, ultimately causing symptomatic cognitive and behavioral dysfunctions. 

In the following paragraphs, I will focus on the characteristics of monoaminergic signaling 

mechanisms, which are relevant for the synaptic processes investigated in my project. 

At MSNs synapses, the main glutamatergic input arising from cortical and thalamic afferents 

is integrated with monoaminergic signals, mainly from midbrain dopaminergic neurons 

encompassed in the substantia nigra pars compacta and the ventral tegmental area, and 

from serotonergic neurons from dorsal raphe nucleus. I will first describe these two 

modulatory afferents separately; next, I will analyze their integrated function in shaping 

glutamatergic transmission. 

Dopaminergic signaling 

In the dorsal striatum the main dopaminergic signaling comes from cells residing in the SNc, 

producing tipically from 500 to 5000 dopamine inputs per MSN (Millers, 2010). Dopaminergic 

terminals often contact the spine neck of MSNs, thus modulating the glutamatergic signal 

transmitted by cortical or thalamic afferents contacting the spine head. The specificity of the 

dopaminergic signaling is not given by a spatial organization of the synapses. Dopamine 

released from a single synapse acts as a volume transmitter, affecting the synapses in a 

supposed surrounding volume of ~7 µm. The effects of dopamine signaling are limited to 

specific synapses by its coincidence with incoming glutamatergic drive (Arbuthnott and 

Wickens, 2007). As previously discussed, dopamine signaling has the behavioral 

significance of marking the salient environmental stimuli and to code unexpectancy of 

rewards (Hollerman and Schultz, 1998; Matsumoto and Hikosaka, 2009; Steinberg et al., 

2013). 
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In the resting state, dopaminergic cells display a tonic firing rate which produces a uniform 

basal concentration of ~6.5 nM dopamine in the striatum (Sam and Justice, 1996). When an 

unexpected reward occurs in response to an action, a tonic increase in firing activity of 

dopaminergic neurons may bring this concentration to ~250 nM (Garris and Wightman, 

1995). This causes a reinforcement of the behavioral sequence that led to the reward 

(Mirenowicz and Schultz, 1994; Hollerman and Schultz, 1998; Matsumoto and Hikosaka, 

2009; Steinberg et al., 2013). When instead an expected reward is omitted, dopaminergic 

neurons stop their firing activity, causing a drop in dopamine concentration. By this 

mechanism, dopamine strengthens the appropriate cortico-striatal synapses, thus 

contributing to adaptive behaviors (Mirenowicz, and Schultz, 1994; Hollerman and Schultz, 

1998; Matsumoto and Hikosaka, 2009; Steinberg et al., 2013). 

Serotonergic signaling 

After dopamine, serotonin (5-hydroxytryptamine, 5-HT), is the most abundant amine 

neurotransmitter in the basal ganglia. 5-HT projections reach the striatum from the dorsal 

raphe nucleus (DRN) (Azmitia and Segal, 1978; Bobillier et al., 1976), whose fibers project to 

all areas of the basal ganglia, including the striatum, GP, SN and STN. The 5-HT ascending 

pathway sends collaterals to each region as it travels to the frontal cortex (van der Kooy and 

Hattori, 1980). The medial raphe nuclei also send fibers to the basal ganglia, but those 

projections appear not to be 5-HT (De Deurwaerdere et al., 2013). In the striatum, 

serotonergic afferents are predominantly characterized by varicosities, and they form en 

passant synapses, whereas classical terminals are less often observed, particularly in the 

lateral striatum (Soghomonian et al., 1989); conversely, a higher proportion of proper 

synaptic terminals have been described in the SNr, SNc and VTA (Corvaja et al., 1993; 

Moukhles et al., 1997; De Deurwaerdere et al., 2013). 

5-HT receptors can be divided in different families (Hannon and Hoyer, 2008)(Fig. 4 B): 

 5-HT1 family, which comprises the 5-HT1a, 5-HT1b, 5-HT1d, 5-HT1e and 5HT1f 

receptors, which are Gi/o protein coupled receptors, negatively coupled to adenylyl 
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cyclase. In the basal ganglia, 5-HT1a receptor levels are extremely low, while all the 

other receptors of the family are expressed in this region. In particular, there is high 

density of 5-HT1b receptor sites, especially in the substantia nigra, globus pallidus, 

ventral pallidum and entopeduncular nucleus. Strong evidences support the idea that 

5-HT1b receptor has a role as both a 5-HT autoreceptor and 5-HT heteroreceptor. In 

the striatum, not only the protein, but also 5-HT1b receptor mRNA is present at high 

levels of expression in MSNs. 5-HT1d receptor sites are also present in basal 

ganglia, and 5-HT1b and d receptors can form homo or heterodimers. A functional 

role for 5-HT1b receptor in the striatum has been proposed by Mathur and 

colleagues, who demonstrated that pharmacological activation of 5-HT1b receptor 

was able to induce a form of long-term depression of cortico-striatal synaptic activity. 

This form of synaptic plasticity reciprocally occluded the classical form of striatal long-

term depression mediated by endocannabinoids (Mathur et al., 2011). 

 5-HT2 family, comprising 5-HT2a, b, and c receptors, which couple preferentially to 

Gq/11 to increase inositol phosphates and cytosolic Ca2+ concentrations via 

phospholipase C. 5-HT2b receptor expression in the brain has been controversial; 

recent data show that it seems to be restricted to a few brain regions, which do not 

include the basal ganglia. 5-HT2a receptor expression in basal ganglia is 

intermediate, but there is no evidence of striatal mRNA in man and monkey; both 

protein binding sites and mRNA expression, instead, were reported for 5-HT2c 

receptor in basal ganglia. In the striatum, 5-HT2 receptors seem to exhibit a powerful 

excitatory control on cholinergic interneurons, by suppressing the AHPs associated 

with calcium-activated potassium currents (Blomeley and Bracci, 2005). 

 5-HT3 receptors, belonging to the ligand-gated ion channel receptor superfamily. 

They trigger a rapid depolarization due to the opening of non-selective cation 

channels (Na+, Ca2+ influx, K+ efflux), and the response desensitizes and resensitises 

rapidly. 5-HT3 receptors are expressed in the striatum on MSNs, but not on 

dopaminergic nigrostriatal fibers. 
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 5-HT5 receptors. The function of these receptors is still unclear; they could be 

coupled to Gi/o or possibly Gs. Their distribution seems to be widespread in both rat 

and mouse brain. 

 5-HT receptors that preferentially couple to Gs. 5-HT4, 5-HT6 and 5-HT7 

receptors all couple preferentially to Gs and promote cAMP formation, by activation of 

different adenylate cyclases. In turn, cAMP as an intracellular messenger interacts 

with various targets, the protein kinase A (PKA), but also cyclic nucleotide-gated ion 

channels, leading to the modulation of calcium ion flux and membrane excitability and 

other cellular processes. PKA can phosphorylate cAMP responsive transcriptional 

factors, such as cAMP response element binding protein (CREB), leading to gene 

expression modifications, which can promote long term changes in cellular 

responses. cAMP can also interact with Epac (exchange proteins directly activated by 

cAMP) sensors, which mediate PKA-independent signal transduction, e.g. activation 

of Rap and Ras GTPases. 

5-HT7 receptor binding is present in different regions of the basal ganglia, but no 

mRNA transcripts were seen in those regions. Its expression seems to be higher in 

the limbic system, suggesting a role for 5-HT7 receptor in sleep, circadian rhythmic 

activity and mood. It is also important for synapse development (Ciranna and 

Catania, 2014). 

5-HT6 receptor seems to be involved in phenomena concerning learning and 

memory, and it is highly expressed in the striatum. Recent work by Eskenazi and 

colleagues showed that 5-HT6 receptors play a role in the dorsolateral and 

dorsomedial striatum in these behaviors that serve to temper goal-directed and 

habitual actions. 5HT6 receptor activated both dMSN and iMSN pathways to 

differentially impact instrumental learning and habitual responding (Eskenazi et al., 

2015). 

5HT4 receptor is also coupled with a Gs, but, in addition, a direct coupling to K+ 

channels and voltage-sensitive calcium channels has been proposed (Hannon and 
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Hoyer, 2008). The 5-HT4 receptor KO mouse is behaviorally normal in a standard 

environment, but displays very low locomotor activity accompanied with hypophagia 

in response to novelty and stress (Compan et al., 2004). Expression of the 5-HT4 

receptor in the striatum has been documented, and this receptor seems to be present 

in the somato-dendritic compartment of MSNs (Waeber et al., 1993; Waeber et al.,  

1996; Patel et al., 1995; Vilaro et al., 2005). Its functional implication on striatal 

function, however, it is still to be elucidated.  

The DRN is located in the midbrain, and it is rich in 5-HT neurons that provide the principal 

source of 5-HT innervation in the forebrain (Fig. 4 A). It is generally agreed that in vivo 5-HT 

neurons spontaneously fire broad spikes in a slow and regular firing pattern (Aghajanian et 

al., 1978; Sawyer et al., 1985; Jacobs and Fornal, 1991). In many species, significant 

numbers of DRN neurons contain 5-HT, but neurons containing GABA, dopamine, 

glutamate, Ach, or one of a variety of neuropeptides are also present, accounting for almost 

one third of all the DRN neurons (Charara and Parent, 1998; Allers and Sharp, 2003; Hioki et 

al., 2010). These non 5-HT cells are thought to contribute to the regulation of the activity of 5-

HT neurons through local circuits and/or their mediation of the effects of afferent inputs 

(Monti, 2010). Recent evidence also suggests a role for these non 5-HT DRN neurons in 

reward circuitry participation (McDevitt et al., 2014). 

The role of 5-HT signaling in the striatum is still unclear. 5-HT neurons of DRN have been 

reported to fire coincidently with the initiation and termination of selected voluntary 

movements (Fornal et al., 1996), thus suggesting a role for 5-HT in modulating motion and, 

putatively, MSNs activity. A much debated issue is whether 5-HT can control dopamine 

release from nigrostriatal projections: indeed, both an enhancement and an inhibition of 

dopamine release have been observed in different experimental conditions (Navailles and De 

Deurwaerdere, 2011). 
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Dopamine and Serotonin integration in reward related systems 

Reward and punishment play critical roles in shaping animal behavior over short and long 

timescales (Rolls, 2005; Somerville et al., 2013). On short timescales, moment-to-moment 

expectations of reward or punishment increase or decrease motivation to perform a specific 

action associated with the predicted outcome. On long timescales, repeated exposure to 

reward or punishment can induce long-lasting positive or negative emotional states, or 
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Figure 4. Simplified diagram of basal ganglia circuitry. 

A. Sagittal diagram of a rodent brain showing the main projection pathways of serotonergic 

neurons from the raphe. B. Schematic representation of the different serotonin receptors subtypes. 
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“moods”, that influence the frequency of performing reward-seeking actions (Niv et al., 2006; 

Cools et al., 2011; Somerville et al., 2013; Wang et al., 2013). A wealth of past research in 

reward primarily focused on dopamine (Berridge, 2007; Kranz et al., 2010), while the role of 

5-HT in reward processing has been largely neglected. In the last few years, increasing 

amount of work provides argument for 5-HT as a fundamental mediator of emotional, 

motivational and cognitive aspects of reward representation, which makes it possibly as 

important as dopamine for reward processing (Kranz et al., 2010). 

There are different theories concerning the role of 5-HT: the classical one proposes that 5-

HT regulates aversive learning and negative motivation in response to punishments (Daw et 

al., 2002). Accordingly, 5-HT opposes the positive reinforcement and behavioral activation 

regulated by dopamine. Whereas dopaminergic neurons signal appetitive prediction errors 

(Schultz et al., 1997), 5-HT neurons could signal punishments, adjusting future behavior to 

avoid actions previously associated with a negative outcome. Although several studies 

provide data to support this theory (Crockett et al., 2009; Shin and Ikemoto, 2010), in awake 

animals there is little evidence for 5-HT neurons to code for punishments (Montagne-Clavel 

et al., 1995; Schweimer and Ungless, 2010). 

A second theory proposes 5-HT as a signal for global reward states, such as tracking 

average reward (Daw et al., 2002) and modulating mood (Savitz et al., 2009). 5-HT in this 

view would be able to provide its targets with long-term signals regarding the value of the 

environment. This hypothesis has support from clinical (Fava and Kendler, 2000) and genetic 

(Donaldson et al., 2013) studies, but does not find any neurophysiological evidence. 

A third theory implies 5-HT in waiting for reward (Miyazaki et al., 2011; Fonseca et al., 2015): 

according to this, activation of 5-HT neurons promotes patience (Miyazaki et al., 2014), or 

slows movements that allow an animal to wait for a delayed reward. 

In light of these conflicting views on the role of 5-HT in reward behavior, a recent study 

(Cohen et al., 2015) tested whether the firing of optogenetically-identified DRN 5-HT neurons 

correlated with rewards and punishments on different timescales. The research showed that 

a large fraction of 5-HT neurons shows tonic firing modulation depending on state value on 
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long timescales (tens of seconds to minutes); punishments induces a phasic response of 5-

HT neurons (mostly by excitation), but a subset of 5-HT neurons is phasically excited by 

reward-predicting cues. Collectively, the authors propose that many single 5-HT neurons are 

activated by both reward-predictive cues and punishment, and they can use tonic as well as 

phasic firing to convey reward information. These firing patterns appear to be inconsistent 

with the idea that 5-HT neurons are just opponent to dopaminergic neurons: a possibility 

could be that 5-HT could combine with dopamine signal to form logical combinations 

postsynaptically (e.g. 5-HT AND dopamine codes for reward, whereas 5-HT AND NOT 

dopamine codes for punishment) (Cohen et al., 2015; Cohen 2015). 

According to an increasing amount of experimental evidence, we can say that dopamine and 

5-HT probably play complementary rather than simply opponent roles in the reinforcement 

and control processes that underpin choice behaviors (Cools et al., 2011; Rogers, 2011). 

In the context of basal ganglia, which are supposed to mediate reinforcement learning 

processes, computational models posit that the striatum learns reward prediction and action 

selection based on the “reward prediction error” represented by the dopaminergic input. 

Correlation of striatal activity with reward prediction error could be due to dopamine-

dependent plasticity of cortico-striatal synapses (Tanaka et al., 2004). It has been suggested 

that a possible role for 5-HT from DRN is to control the effective time scale of reward 

prediction (Tanaka et al., 2004) by differentially regulating activities within the striatum 

(Tanaka et al., 2007). 

There are increasing evidences supporting the integration between dopamine and 5-HT 

signal in mediating aspects of decision making from the viewpoint of reinforcement learning 

theory (Balasubramani et al., 2015; Carli and Invernizzi, 2014), and different tests performed 

on humans are now pointing to the complementary role of these modulators in all the aspects 

of decision making (evaluation of the action candidates depending on how much reward or 

punishment they would bring; selection of the appropriate action; learning: reevaluation of the 

action based on the reached outcome) (Tanaka et al., 2004; Tanaka et al., 2007; Kranz et 

al., 2010; Schweighofer et al., 2007; Doya, 2008; Palmintieri et al., 2012). 
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Interestingly, now key aspects of the molecular and cellular basis of dopaminergic 

modulation of striatal activity in relation to behavioral reinforcement have been revelaed. 

Hence, a recent study by Yagishita and colleagues clarified the molecular and cellular basis 

of reinforcement plasticity at the level of single dendritic spines, showing that, in striatal 

dMSNs, dopamine promoted spine enlargement only during a narrow time window (0.3 to 2 

s) after the glutamatergic inputs. The temporal contingency was detected by a rapid 

regulation of cAMP in thin distal dendrites, where PKA was activated only within the time 

window because of a high phosphodiesterase activity. Thus, dopaminergic role in 

reinforcement plasticity has now clearer molecular basis (Yagishita et al., 2014). 

This is not the case for 5-HT, because the cellular correlates of these behaviors are still 

unclear. Given the increasing evidence of the behavioral relevance of 5-HT in reward-guided 

behaviors, and the complexity of its interplay with dopamine, it is clear that it will be 

fundamental to unravel the cellular and molecular mechanisms of action of 5-HT in the 

context of the striatal neuromodulation. To shed more light on mechanisms of 

monoaminergic synaptic regulation of the striatum will possibly contribute to a better 

understanding of basal ganglia associated behaviors, as well as to open new avenues for 

intervention in pathological states. 

Synaptic plasticity in the striatum 

At the level of the dorsolateral striatum (DLS), convergent glutamatergic inputs from 

sensorimotor cortex and thalamus integrate with dopaminergic and serotonergic signals 

coding for the motivational state of the animal (Kreitzer and Malenka, 2008). This information 

processing is thought to occur by mechanisms of synaptic plasticity. Synaptic plasticity is the 

ability of functional connections between neurons to adapt over time in response to very 

transient signals. It can be observed either a persistent increase or decrease in synaptic 

strength, respectively referred to as long-term potentiation (LTP), and long-term depression 
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(LTD). Once established LTP can be reversed to control levels by an active phenomenon 

defined “synaptic depotentiation” (Picconi et al., 2005).  

Mechanisms of striatal synaptic plasticity have been widely investigated in the past two 

decades, showing that, depending on experimental protocols and conditions, cortico-striatal 

synapses can display both long- and short-term potentiation and depression and that these 

phenomena are not just present in ex vivo brain slices, but have been proven to occur also in 

awake animals in vivo (Kawagoe et al., 1998; Lauwereyns et al., 2002, Yin et al., 2009). To 

study synaptic plasticity, several different protocols have been used: high frequency 

stimulation (HFS, 100Hz) or low frequency stimulation (LFS, 1-20 Hz) of afferent fibers (with 

micro or macroelectrodes placed in the striatum, in the corpus callosum, or in deep cortical 

layers), and spike-timing dependent plasticity (STDP) (reviewed in Cerovic et al., 2013).  

In brain slice preparations, depending on the experimental conditions, application of high 

frequency stimulation (HFS) to afferent fibers has been reported to result in both LTP and 

LTD (Calabresi et al., 1992a; Calabresi et al., 1992b; Calabresi et al., 1992c). In particular, 

HFS per se results in LTD, whereas by adopting experimental conditions able to increase 

NMDAR recruitment, it is possible to unmask LTP (Calabresi et al., 1992c; Wickens et al., 

1996). The need to somehow “forcing” the experimental conditions to obtain LTP on ex vivo 

brain slices raised the question of whether striatal LTP represents the expression of a 

pathological process in which over-active NMDARs would lead to excitotoxicity and 

successively result in neurodegeneration. In 1997, Charpier and Deniau showed for the first 

time that HFS of cortical afferents in vivo causes LTP of cortico-striatal excitatory 

transmission (Charpier and Deniau, 1997). This evidence, together with data from an ex vivo 

study in which both LTP and LTD could be induced at the same synapses by applying 

different electrical stimulation protocols (Fino et al., 2005) confirmed that striatal LTP is a 

physiological form of plasticity expressed at cortico-striatal synapses. Typically, plasticity 

induction in HFS combines strong somatic depolarization with high frequency stimulation of 

the afferent fibers. In vivo, this might be accomplished by convergent synaptic input that 

triggers state transitions in dendrites, which are the site of signal integration and plasticity 
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triggering, or by the temporal convergence of synaptic input and back-propagating action 

potentials (Plotkin et al., 2011; Plotkin et al., 2013). 

Also low frequency stimulation (LFS) protocols have been reported to induce LTD (Ronesi 

and Lovinger, 2005; Lerner and Kreitzer, 2012) on ex vivo brain slices, or LTP (Charpier et 

al., 1999) if applied in vivo. 

Another established form of synaptic plasticity reported in many brain areas, including the 

striatum, is the so-called spike timing dependent plasticity (STDP). This form of plasticity is 

based on the relative timing of afferent stimulation and postsynaptic spikes. Depending on 

the exact order and time interval between the synaptic input and the postsynaptic action 

potential, this stimulation can result in either LTP or LTD. In brain structures other than the 

striatum, delivering a presynaptic stimulus just after postsynaptic spike (post-pre) within a 

critical time window resulted in LTD. LTP, instead, was induced by the inverse protocol (pre-

post) (Markram et al., 1997; Dan and Poo, 2004; Dan and Poo, 2006). In the striatum, 

contrasting evidences have been reported. Experiments conducted by Fino and colleagues 

showed that, without any drug application, post-pre pairings induced STDP-LTP, while pre-

post pairings induced STDP-LTD (Fino et al., 2005). Conversely, when GABAA transmission 

was pharmacologically blocked, LTD was induced after post-pre protocol, and LTP could be 

observed with pre-post pairings (Pawlak and Kerr, 2008; Shen et al., 2008; Fino et al., 2010; 

Nazzaro et al., 2012). 

To give a global overview of striatal synaptic plasticity, I will briefly describe the principal 

molecular players that influence the different forms of MSNs synaptic plasticity. Then, the 

putative signaling mechanisms responsible for LTP and LTD in dMSNs and iMSNs will be 

presented. 

DARPP-32 

The phosphoprotein DARPP-32 (dopamine and cyclic AMP-regulated phospho-protein, 

relative molecular mass 32,000) (Walaas et al., 1983; Svenningsson, et al., 2004) can be 
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considered a striatal regulator of neurotransmission, given its ability to influence the direction 

of plasticity of MSNs. 

In mice lacking DARPP-32, both LTD and LTP are abolished (Calabresi et al., 2000). This 

striatal-enriched protein is expressed in really high concentration (~50 µM) both in dMSNs 

and iMSNs where it has the potential to fine-tune the activity of various phosphatases and 

kinases, determining the activity of the whole cell and its response to incoming stimuli 

(Svenningsson et al., 2004). 

PKA (protein kinase A) and the multifunctional Serine/Threonine phosphatase PP-1 are two 

main targets (but also modulators) of DARPP-32 signaling. Their activity oppositely 

modulates the function of NMDA, AMPA and GABA receptors, and affects N/P-type Ca2+ 

channels and Na+/K+-ATPase. Moreover, DARPP-32 modulates regulators of gene 

expression including MAP kinase, CREB, c-Fos and ΔFosB (reviewed in Svenningsson et 

al., 2004). Each of these molecular players can have a role in the induction of synaptic 

plasticity. 

DARPP-32 can be phosphorylated at different sites, and, depending on the site of 

phosphorylation, it can promote the signaling leading to LTP (through PKA-dependent 

enhanced Thr34 phosphorylation and Thr75 dephosphorylation), or, vice versa, promote the 

LTD by the opposite balance of Thr34/Thr75 levels of phosphorylation. PKA and PP-1 

proteins, being not only targets, but also DARPP-32 modulators, take part to a feedback 

loop, potentiating the effects of DARPP-32 dependent signaling (Svenningsson et al., 2004). 

DARPP-32 influences the processes of striatal synaptic plasticity mainly through the 

phosphorylation levels of AMPARs, either triggering their insertion on the plasma membrane 

(resulting in LTP) or their recycling (producing an LTD). The activation of this pathway can be 

activated by the signaling cascades downstream from many neurotransmitters, such as 

dopamine, glutamate, GABA, adenosine and 5-HT. 

Dopamine acts on DARPP-32 pathway in a bidirectional way, depending on the receptor 

subtype. The dopaminergic D1 receptor is positively coupled to adenylyl cyclase (AC) 

through Golf protein (Herve et al., 1995). AC, through the synthesis of cAMP, causes the 
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activation of PKA. PKA phosphorylates DARPP-32 at Thr34, while activating the specific PP-

2A isoform that catalyzes the dephosphorylation of Thr75 (Nishi et al., 2000). Thr75-DARPP-

32 normally catalyzes the inhibition of PKA. Enhanced dopaminergic transmission via D1 

receptors leads then to a decreased phosphorylation of Thr75-DARPP-32, and thereby 

facilitates signaling via the PKA/Thr34-DARPP-32/PP-1 cascade. 

D2 receptor, instead, is coupled to Gαi/o protein, which inhibits AC. The decrease in 

cytoplasmatic concentration of cAMP facilitates the phosphorylation of DARPP-32 at Thr75, 

ultimately activating PP-1. In iMSNs, D2 signaling on DARPP-32 is counteracted by 

adenosine, acting on the adenosine receptor subtype A2A. As mentioned before, A2A is 

expressed specifically in iMSNs, and its activation stimulates the phosphorylation of DARPP-

32 at the Thr34 residue. In iMSNs, A2A receptor mimics the activity of D1 receptors on 

DARPP-32 in dMSNs, and opposes the effects of D2 receptor activation (Svenningsson et 

al., 2004). 

Metabotropic glutamate receptors (mGlu) of group I can favor the phosphorylation of 

DARPP32. Activation of group I mGlu5 receptors stimulates DARPP-32 Thr34 

phosphorylation through a mechanism dependent on activation of adenosine A2A receptors, 

but not of D1 receptors. Group I mGluRs regulate the phosphorylation of DARPP-32 also at 

Thr75 in a PLC- and Ca2+ dependent manner (Liu et al., 2001; Liu et al., 2002). 

Glutamate can influence DARPP-32 phosphorylation state also through NMDA/AMPA 

receptors. Their activation induces the dephosphorylation of DARPP-32 at Thr34 

(Svenningsson et al., 2004).  

GABA is reported to increase Thr34 phosphorylation and, finally, 5-HT-mediated signaling 

causes an increase in phosphorylation of DARPP-32 at Thr34 and a decreased 

phosphorylation at Thr75 (Svenningsson et al., 2004). These serotonergic dependent 

DARPP-32 modifications have been proven to occur via 5-HT4 and 5-HT6 receptor 

activation, and have been validated both in vitro and in vivo (Svenningsson et al., 2002). This 

evidence further strengthen the interplay between dopaminergic and serotonergic 
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neurotransmission, and identify DARPP-32 as a possible intracellular candidate for the 

integration of the two signals. 

Of course, DARPP-32 can influence the direction of MSNs plastic changes also through 

many other signals, which are not reported in this paragraph (see Svenningsson et al., 2004 

for extensive review). 

Endocannabinoid-mediated synaptic plasticity 

In the striatum, eCB signaling can influence glutamatergic synapses to MSNs. The first 

evidence of eCB involvement in striatal plasticity was reported in 2002 by Gerdeman and 

colleagues (Gerdeman et al., 2002); since that, a lot of work has been done to dissect the 

eCB role in regulating synaptic plasticity at MSNs connections. eCBs are small lipidic 

signaling molecules that, in the striatum, can act both presynaptically, via CB1 receptors, and 

postsynaptically, through TRPV-1. 

eCB-LTD via CB1 receptor 

The CB1 receptor (CB1R) is the receptor with the highest expression level throughout the 

brain, and it is coupled to Gi/o proteins; its activation, thus, leads to a decrease of synaptic 

transmission. In order to generate a long-lasting depression of the synapse, CB1R activation 

has to give rise to an intracellular signaling cascade, activating protein synthesis (Yin et al., 

2006) within the presynaptic terminal of glutamatergic afferents. This leads to a persistent 

decrease in the release probability of the neurotransmitter, with no need of a change in the 

postsynaptic responsiveness (Chevaleyre et al., 2006; Lovinger, 2008; Gerdeman and 

Lovinger, 2001; Hoffman and Lupica, 2001; Huang et al., 2001; Robbe et al., 2001; Nazzaro 

et al., 2012). 

To this, a strong activation of the eCB synthetic machinery is needed: indeed, to induce eCB-

LTD at glutamatergic synapses to MSNs, moderate or high frequency stimulations are 

necessary (Gerdeman et al., 2002; Robbe et al., 2002; Choi and Lovinger, 1997; Ronesi et 

al., 2004; Kreitzer and Malenka, 2005; Ronesi and Lovinger, 2005; Wang et al., 2006, 

Nazzaro et al., 2012). 
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In the striatum, eCBs production through the activation of specific enzymes occurs after a 

strong electrical activation of excitatory (cortical and thalamic) fibers, which release 

glutamate, depolarizing the MSN through AMPAR and NMDAR activation, and postsynaptic 

mGluR I activation. MSN depolarization leads to intracellular Ca2+ concentration increase 

through the activation of L-type voltage-gated calcium channels (L-VGCCs), and this 

increase, coupled to the release of Ca2+ from internal stores (Wang et al., 2006; Plotkin et al., 

2013), stimulates the eCB production. Ca2+ increase via VGCCs alone is not sufficient to 

induce eCB production and release in the striatum, but requires the additional activation of 

mGluR I (Kreitzer and Malenka, 2005). Once produced, eCBs are released from the 

postsynaptic MSN, and retrogradely travel to the presynaptic CB1R. eCB-LTD, thus, is a 

form of LTD which is induced postsynaptically, but has a presynaptic site of expression. 

Also dopamine plays an important role in striatal eCB-LTD, as Calabresi and colleagues 

demonstrated in different works (Calabresi et al., 1992a, 1997). Specifically, D2 receptor 

activation was shown to be involved in modulation of plasticity induction (Giuffrida et al., 

1999; Kreitzer and Malenka, 2005; Adermark and Lovinger, 2007).  

It is a matter of debate, however, if eCB-LTD exists both on dMSNs and iMSNs, or it is 

expressed only on D2 receptor containing iMSNs. Lovinger’s and Surmeier’s groups 

provided a model in which both dMSNs and iMSNs support eCB-LTD via a cholinergic 

interneuron D2 receptor-dependent reduction in M1 receptor tone (Wang et al., 2006). 

Furthermore, the delivery of high-frequency stimulation with a macroelectrode placed in the 

white matter overlaying the striatum has been shown to induce eCB-LTD in MSNs belonging 

to both pathways (Wang et al., 2006; Adermark and Lovinger, 2007), even if other 

investigators didn’t replicate this result (Kreitzer and Malenka, 2007). 

A complementary hypothesis proposes that D2 receptors responsible for eCB-LTD 

contribution are segregated on iMSNs. In light of these, eCB-LTD would be preferentially 

induced in iMSNs upon cortical stimulation of glutamatergic inputs with STDP (Nazzaro et al., 

2012), intrastriatal stimulation of cortical and thalamic inputs by either a HFS (Kreitzer and 

Malenka, 2007) or a STDP (Shen et al., 2008) protocol. Interestingly, D2 receptor activation 
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has been proved to facilitate eCB production via disinhibition of mGluR I signaling pathway 

via a RGS4 dependent mechanism (Lerner and Kreitzer, 2012). At dMSNs, instead, the eCB-

LTD was gated only by pharmacological inhibition of D1 receptor dependent signaling (Shen 

et al., 2008), showing an opposite modulation by dopamine of synaptic plasticity mechanisms 

on dMSNs and iMSNs depending on their dopamine receptor expression. 

Recent work from our laboratory demonstrated that stimulation of cortical afferents to the 

striatum by a HFS triggered eCB-LTD at iMSNs, but induced a previously unknown form of 

adenosine mediated LTD at dMSNs. In this cell population, eCB-LTD was observed only by 

forcing the eCB production by pharmacological activation of mGluR I receptor coupled to cell 

depolarization to recruit L-VGCCs. These data support the hypothesis that, in dMSNs, HFS-

LTD is not primarly gated by eCBs, which can, however, be released to depress cortical 

inputs in response to the direct pharmacological activation of mGluR I (Trusel et al., 2015).  

To summarize, eCB-LTD induced by high frequency stimulation of glutamatergic afferents 

requires CB1R, mGluR and D2 receptor activation, Ca2+ influx, and postsynaptic 

depolarization, suggesting that this form of plasticity occurs during MSN “up” states, when 

the MSN integrates a convergent and highly coordinated glutamatergic and dopaminergic 

input. 

eCB-LTD via TRPV1 receptor 

In the striatum, eCBs can also bind to another receptor, which is found postsynaptically on 

MSNs: the transient receptor potential vanilloid 1 (TRPV1), a Ca2+ permeable channel which 

was originally found to be sensitive to heat, opening at temperatures higher than 42ºC. 

TRPV1 was later found to be sensitive to lipid ligands, including eCBs, which are bound to 

the intracellular face of the channel (Kauer and Gibson, 2009). In the nucleus accumbens, 

LFS of afferents induced a LTD that was selectively expressed in iMSNs, and was only 

partially dependent on CB1R. The authors, indeed, found a component of this depression to 

be mediated by postsynaptic TRPV1 activation, which triggered a rise in postsynaptic Ca2+ 

that caused AMPAR endocytosis (Grueter et al., 2010). 
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eCB-SynDep 

Synaptic depotentiation (SynDep) is a form of synaptic plasticity that occurs selectively at 

previously potentiated synapses following low-frequency stimulation (2 Hz) of excitatory 

afferents (Picconi et al., 2003). 

Data obtained in our laboratory indicate that eCB signaling contributes to SynDep at 

excitatory afferents to the lateral part of the dorsal striatum (Nazzaro et al., 2012). In contrast 

to LTD, eCB modulation of SynDep does not involve VGCCs; rather, it requires the activation 

of mGluR5 (Nazzaro et al., 2012). 

In the striatum, the induction of SynDep appears to be dependent on the activation state of 

D1/PKA/DARPP-32 signaling pathway (Picconi et al., 2003), but also muscarinic ACh 

receptors seem to play a role (Picconi et al., 2006). 

In conclusion, eCB signaling, by integrating glutamatergic, cholinergic and dopaminergic 

signaling with voltage-gated Ca2+ signals, is an important player in the neuromodulation of 

plasticity, and consequently, is an attractive putative candidate for the regulation of striatal-

based behavior (Fig. 5). 

The MEK/ERK signaling pathway 

An additional cellular signaling cascade which acts as coincidence detector for 

dopaminergic, glutamatergic and Ca2+ signals is the Ras/Raf/MEK/ERK pathway. ERK is a 

kinase which gates the activation of several signaling proteins, and it is involved in several 

physiological processes. 

The main signal for ERK activation is a rise in intracellular Ca2+ concentration. Ca2+ influx can 

activate ERK through two different pathways. The most common one is dependent on the 

Ras guanine nucleotide releasing factors (RasGRFs) (Iida et al., 2001), which triggers ERK 

phosphorylation, that, in turn, can mediate the phosphorylation of cytoplasmatic targets (such 

as the ribosomal protein S6) and lead ERK translocation to the nucleus, where it activates 

downstream kinases, transcription factors (such as CREB, SRF, c-Jun, c-Fos), and proteins 
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regulating chromatin remodelling (histone H3) (Sgambato et al., 1998, Vanhoutte et al., 

1999, Soloaga et al., 2003), mediating long-term changes in cellular response to incoming 

stimuli. 

A parallel, Ca2+- and cAMP-dependent pathway, is the Rap1 and B-Raf pathway (Grewal et 

al., 2000), which triggers the phosphorylation of ERK in an independent and possibly 

alternative way to Ras signaling. 

It is possible that the interplay between Ras and Rap signaling cascades could shape ERK 

activation: indeed, they are recruited with different kinetics, and this could explain the dual 

pattern of ERK activation. Experiments conducted by Baldassa and colleagues, thus, 

showed that Ras activation was strong, transient, and rapid (2-5 min), while the Rap1 

response was reported to be weaker, slower, and more sustained (Baldassa et al., 2003). 

In the striatum, the ERK signaling pathway seems to be primarly involved in the induction -

but not in the mainteinance- of LTP and of its reversal SynDep (Picconi et al., 2003; Cerovic 

et al., 2013). Pharmacological blockade of ERK completely prevents the induction of HFS-

LTP in cortico-striatal slices, both in dMSNs and iMSNs, leaving HFS-LTD intact. In dMSNs, 

Ras-GRF1 was identified as specific trigger for ERK signaling-mediated LTP, while in iMSNs, 

LTP induction was independent from this pathway, suggesting that the ERK modulation of 

LTP might occur with different upstream mechanisms in the direct and indirect pathways 

(Cerovic et al., 2013). The importance of ERK in mediating phenomena of synaptic plasticity 

has been further investigated in our laboratory: recent experiments demonstrated that ERK 

activation can interfere with a novel form of adenosine dependent LTD specifically in the 

dMSNs (Trusel et al., 2015). 

Molecular mechanisms driving plasticity in iMSNs 

MSNs of the striatopallidal pathway, differently from striatonigral MSNs, express 

dopaminergic D2 and adenosine A2A receptor (Fink et al., 1992). D2 receptor is coupled to 

the adenylyl cyclase-inactivating G-protein Gαi/o. Conversely, A2A receptor, is positively 
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coupled to the cAMP/PKA pathway through Gs protein. The interplay between these two 

receptors strongly influences synaptic plasticity in iMSNs. 

To induce the indirect-pathway LTD, the activation of dopamine D2 receptors, but also lack 

of activation of postsynaptic adenosine A2A receptors is required (Shen et al., 2008; Lerner 

et al., 2010). Indeed, D2 receptors activation removes the RGS4-mediated inhibition of group 

I mGluR signaling pathway, favoring eCB mobilization (Lerner and Kreitzer, 2012), while A2A 

receptors activation counteracts this mechanism, activating adenylyl cyclase and then RGS4. 

On the other hand, the induction of LTP requires A2A receptor activation as well as a lack of 

activation of D2 receptors (Shen et al., 2008; Flajolet et al., 2008). The application of an 

antagonist of A2A prevented the induction of STDP-LTP in D2 MSNs, while the co-

application of an A2A agonist and a D2 antagonist it is permissive (Shen et al., 2008). 

Experimental evidences suggest that D2 and A2A receptors modulation of PKA activity could 

play an important role in their regulation of LTP (Lerner et al., 2010). Upon impairment of 

PKA signaling by application of inhibitors or by the genetic deletion of adenylyl cyclase, 

indeed, both HFS-induced LTD and LTP are prevented (Centonze et al., 2003; Kheirbek et 

al., 2009). This effect may be dependent on the role played by PKA on DARPP-32 and ERK 

signaling pathways, which are known to be involved in the induction of plasticity. Mice 

carrying a genetic deletion of DARPP-32 gene show disrupted HFS-LTD and LTP (Calabresi 

et al., 2000). DARPP-32 is crucial also for the induction of STDP-LTP, as proven by a recent 

study where it was shown that the lack of DARPP-32 prevents this form of plasticity (Bateup 

et al., 2010). Finally, DARPP-32 causes the disinhibition of the striatum-enriched 

phosphatase (STEP) (Fitzpatrick and Lombroso,  2011). When STEP is blocked, HFS 

induced LTP is disrupted, while SynDep is favored (Tashev et al., 2009). 

The supposed role of DARPP-32 in LTP induction involves the regulation of NMDA and 

AMPA receptors via PP1 activation (Greengard et al., 1999), but consistent evidence to 

support this idea is still missing.  
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Molecular mechanisms driving plasticity in dMSNs 

In dMSNs, the A2A/D2 receptors interplay typical of iMSNs is mirrored by the specific 

expression of dopaminergic D1, coupled to a Gαs, and cholinergic M4, coupled to a Gαolf,  

receptors (Kreitzer and Malenka, 2008; Herve et al., 1995). D1 and M4 receptors, thus, 

oppositely regulate cAMP-mediated signaling. Specifically, LTP induction requires D1 

receptors activation: LTP, indeed, is abolished using specific D1 antagonists, or in genetic 

models lacking D1 receptor expression (Calabresi et al., 2000; Kerr and Wickens, 2001; 

Lovinger et al., 2003). Also pharmacological dopamine depletion causes loss of LTP 

(Centonze et al., 1999). Conversely, antagonism of D1 receptors allowed the induction of 

STDP-LTD in dMSNs (Shen et al., 2008).  The role of M4 receptors in LTD has not been 

explored so far, but the coupling of this receptor to Gαolf signaling makes it an attractive 

candidate for a D2 analog in dMSNs (Lerner and Kreitzer, 2011). Moreover, our laboratory 

provided evidence that, in dMSNs, HFS-LTD in cortico-striatal slices is not dependent on 

eCB production and mobilization, but is mediated by adenosine, through the activation of 

presynaptic A1 receptor (Trusel et al., 2015). 

Similarly to iMSNs, LTP in dMSNs is NMDA-depentent (Calabresi et al., 1992c; Dang et al., 

2006; Shen et al., 2008), and the activation of the DARPP32-PP1 cascade is necessary for 

its induction (Calabresi et al., 2000). Moreover, also the Ras-ERK, through Ras-GRF1, 

pathway is reported to be necessary to induce LTP (Cerovic et al., 2013).   
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Behavioral relevance of synaptic plasticity in the striatum 

Synaptic plasticity is an activity-dependent process with the functional significance of 

adapting neuronal connections to shape brain responses to stimuli originating from the 

environment and from internal states. Impairments of striatal synaptic plasticity associate 

with behavioral deficits in motor and procedural tasks (Trusel et al., 2015; Nazzaro et al., 

2012). 

The most common behavioral test used to measure motor functions in rodents is the rotarod 

test. By measuring the animal ability to balance and walk on a rotating rod, it is possible to 

assess locomotion, motor coordination, balance and motor skill learning (Shiotsuki et al., 

 

 

Figure 5. Schematic representation of the principal components driving synaptic plasticity 

at MSNs connections. (From Calabresi et al., 2007). 
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2010; Ardayfio et al., 2008; Colebrooke et al., 2006; Kelly et al., 1998; Beeler et al., 2010; Yin 

et al., 2009). Processes of synaptic plasticity in the DLS are involved both in the early and 

late phases of training in motor skill-learning in rotarod tasks (Yin et al., 2009). 

Rotarod performance is impaired in animals showing striatal synaptic plasticity dysfunctions. 

In particular, loss of dopaminergic signaling (Blundell et al., 2008), deletion of dopaminergic 

D2 receptors (Calabresi et al., 1997) and dopamine depletion by neurotoxic lesion (Iancu et 

al., 2005; Monville et al., 2006) all lead to behavioral impairments as measured by the 

rotarod test. 

Interestingly, recent work from our laboratory has strengthened the link between synaptic 

plasticity and motor function. Experimental evidence indicated that proper regulation of 

mechanisms of synaptic plasticity in dMSNs and iMSNs is able to shape motor behavior; 

disruption of synaptic plasticity regulation in dopamine-depleted mice resulted in motor 

abnormalities (Trusel et al., 2015). 

In addition to motor behavior, the striatum is also involved in reward-guided instrumental 

learning. Specifically, the associative DMS is preferentially involved in the acquisition of 

action-outcome contingencies and the expression of goal-directed actions. The sensorimotor 

DLS, instead, is involved in the expression of stimulus-response behavior (habits) (Yin et al., 

2004, 2005). 

It is well known that dopamine and dopamine-dependent synaptic plasticity play a 

fundamental role in these mechanisms. Lesion of nigrostriatal projections causes the loss of 

habitual behavior, and favors the acquisition of goal-directed contingencies (Faure et al., 

2005). Chronic administration of dopamine-related drugs, such as amphetamine and 

cocaine, or of cannabinoid drugs (e.g. THC) also affects these processes. It is documented 

that these drugs cause the loss of different forms of striatal synaptic plasticity, dysregulating 

goal-directed behavior and leading to habitual responses (Nelson and Killcross, 2006; 

Nordquist et al., 2007; Nazzaro et al., 2012). In particular, our group showed that the chronic 

administration of the CB1R agonist THC causes the disruption of eCB-LTD in the DLS and a 

shift towards habitual behavior (Nazzaro et al., 2012). 
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The behavioral impact of serotonergic modulation of striatal synaptic plasticity and circuit 

function is less known, but it is possible that dynamic interaction of striatal serotonergic and 

dopaminergic signaling cascades could provide an additional mean to fine tune cortico-

striatal input enabling proper action selection in instrumental learning paradigms. Indeed, it is 

known that serotonergic neuronal activity correlates with repetitive or sustained behavior 

(Kane et al., 2012), and the notion of striatal 5-HT influencing action control is consistent with 

the clinical use of selective serotonin reuptake inhibitors (SSRIs) for the treatment of 

obsessive compulsive disorder (OCD) (Pizarro et al., 2014). Moreover, 5-HT, via 5-HT6 

receptor, seems to positively interact with dopamine in cocaine reinforcement (Valentini et 

al., 2013). The role of 5-HT in instrumental learning has been evaluated further by a recent 

work by Eskenazi and colleagues. They demonstrated that 5-HT6 receptors activate both 

dMSN and iMSN pathways to differentially impact instrumental learning and habitual 

responding. In the DLS, 5-HT6 signaling could facilitate behavioral flexibility by opposing the 

differential activation of the MSN output pathways by dopamine (Eskenazi et al., 2015). 

In addition to this, evidence for a role of 5-HT in modulating instrumental and habitual 

behaviors has been provided by demonstration that 5-HT DRN neurons activation positively 

reinforces behaviors and signals reward (Liu et al., 2014).  

This possible serotonergic influence on reward-based mechanisms is particularly relevant if 

we consider that common basal ganglia circuits are likely to mediate not only movement, but 

also reinforcement and reward. Specifically, it has been suggested a link between motor 

activity and hedonic feelings, with positive feelings sharing common neural circuitry with cells 

that drive movement, and negative feelings sharing common circuitry with cells which inhibit 

movement (Kravitz and Kreitzer, 2012). In this framework, movement could be mediated by 

anatomical connections between basal ganglia and motor circuitry. Reward, which refers to 

hedonic value that is assigned to a stimulus, may be mediated by relationship between brain 

states and hedonic states. Finally, reinforcement, which is the process that maintains or 

increases behavior, and can be caused by the addition of a positive stimulus or the removal 

of a negative stimulus, can be mediated by plasticity in dMSNs and iMSNs or in their afferent 
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inputs (Kravitz and Kreitzer, 2012). In particular, it has been shown that direct pathway 

activation is reinforcing, whereas indirect pathway activation is punishing, and activation of 

direct and indirect pathways may evoke primary hedonic responses, such that direct pathway 

activation is rewarding and indirect pathway activation is aversive (Kravitz et al., 2012). 

Starting from this evidence, it is possible to suggest that plasticity of the inputs onto these 

cell types would alter future motor or hedonic responses, as in reinforcement or punishment. 

Specifically, a positive reinforcement may be associated with plasticity that enhances 

synaptic efficacy onto dMSNs, whereas a positive punishment may be associated with 

plasticity that enhances synaptic efficacy onto iMSNs. Conversely, a negative reinforcement 

may be associated with plasticity that depresses synaptic efficacy onto iMSNs, whereas a 

negative punishment, such as the removal of a positive stimulus may be associated with 

plasticity that depress synaptic efficacy onto dMSNs. 

It is thus possible that differences in plasticity onto dMSNs and iMSNs can differentially 

contribute to reinforcement and punishment (Kravitz and Kreitzer, 2012). Based on the 

recent evidence of the rewarding effects of 5-HT (Cohen et al., 2015; Cohen 2015;Cools et 

al., 2011; Rogers, 2011; Tanaka at el., 2004; Tanaka et al., 2007), the possibility that 5-HT 

could exert a positive regulation of synaptic mechanisms of plasticity in the reward-related 

direct pathway is intriguing. 

The emerging scenario is that striatal synaptic plasticity, by shaping the processing of cortical 

inputs through the basal ganglia, allows a proper control of motor and operant behavior. This 

can occur through the fine neuromodulation of glutamatergic input by integrated 

dopaminergic and serotonergic signals. Dysregulation of these processes may affect striatal 

function, and possibly leading to the behavioral impairments characterizing pathological 

states such as drug addiction and OCD. 
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Aims and Relevance 

The experimental evidence described in the previous paragraphs indicates that, for a proper 

control of striatal circuit function, the coordinated and cell-type specific neuromodulation of 

striatal synaptic plasticity is crucial. 

Focusing on monoaminergic modulation of glutamatergic inputs to the striatum, it is 

increasingly clear that dopaminergic and serotonergic interplay plays a central role in the 

acquisition and expression of reward-guided behaviors. Whilst key aspects of midbrain 

dopaminergic modulation of cortico-striatal synapses have been revealed, serotonergic 

effects on these circuits are not well understood. Serotonergic innervation originates from 5-

HT neurons located in the dorsal raphe nucleus, and the striatum expresses a multitude of 5-

HT receptors coupled with both Gs and Gi protein signaling cascades. This raises the 

possibility that expression of specific receptor subtypes selectively on dMSNs or iMSNs can 

provide a pathway-specific gating mechanism for activity-dependent plasticity. 

On a system level, 5-HT signal has been classically associated with learning of negative 

events, acting as an opponent to dopamine regulation of rewarding processes. Recent 

evidence has challenged this view, suggesting that 5HT signaling can synergize with 

dopamine signaling to code reward. However, the molecular and synaptic correlates of the 

rewarding properties of 5-HT at striatal circuits remain to be established. 

The global aim of this project is to investigate the role of 5HT in the neuromodulation of 

glutamatergic synaptic plasticity specifically in the lateral part of the dorsal striatum (DLS), 

which is involved in motor planning and habit formation. This will provide a better 

understanding of the integrated function of DA and 5HT at striatal circuits. At these circuits, 

direct and indirect pathway neurons are known to exert opposing control over motor output. 

Furthermore, it is increasingly clear that dMSNs also mediate reinforcement and reward, 

while iMSNs mediate punishment and aversion, and the future motor or hedonic responses 

may be possibly altered by changes in synaptic efficacy of the inputs onto dMSNs and 

iMSNs (Kravitz and Kreitzer, 2012). 
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In dMSNs, dopamine D1 and 5-HT4 receptor (5HT4R) subtypes are both functionally 

coupled to Gs proteins. In light of this, we will test the central hypothesis that 5HT4R-

mediated signaling can act as an alternative/cooperating player to D1 receptor-mediated 

signaling to regulate activity-dependent synaptic plasticity specifically at dMSN synapses, 

which are known to be related to reward coding (Kravitz and Kreitzer, 2012).  

Providing insights on the neuromodulatory role of 5-HT at striatal circuits, and how this is 

causally relevant for defined cognitive process implicated in action control, could help to 

better clarify how dysfunctional 5-HT-mediated regulation of striatal synaptic plasticity might 

contribute to some of the behavioral alterations that characterize neuropsychiatric disorders 

such as Obsessive Compulsive Disorder (OCD). This could facilitate the development of new 

pharmacological approaches to treat symptoms of OCD. 
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Materials and Methods 

Animals 

Male C57Bl6/J mice (postnatal day 28-35 for electrophysiology) were used in this study. 

Moreover, some DREADD pharmacology experiments were conducted on transgenic 

animals gently provided by M. Pasqualetti laboratory of University of Pisa and A. Gozzi of IIT 

of Rovereto. Double transgenic hM4Di+/-/Pet1(210)-Cre+/- mice expressing the inhibitory 

receptor hM4Di selectively in the serotonergic neurons originated crossing a Pet1(210)-Cre 

transgenic mouse line with a loxPlox2722-hM4Di-mCherry mouse line.  

Moreover, some experiments were conducted on drd1a-tdTomatotg/drd2-EGFPtg double 

transgenic mice (Gong et al., 2003; Shuen et al., 2008). drd1a-tdTomatotg/drd2-EGFPtg mice 

were originally obtained by bacterial artificial chromosome (BAC) transgenesis. This 

technique involves the insertion of a transgene (the fluorescent protein EGFP or Tomato) 

upstream of the ATG start codon of the gene of interest (the D2 or D1 receptor respectively) 

on a selected BAC clone. The transfer of this BAC clone in an organism allows the insertion 

of the gene coding for the fluorescent protein downstream the promoter and regulatory 

elements for the expression of the specific dopaminergic receptor, thus differently and 

specifically labeling MSNs belonging to the striatopallidal or striatonigral pathway (Gong et 

al., 2003; Shuen et al., 2008). The two strains were then crossed to obtain a double-

fluorescent mouse line. 

Animals were housed in a temperature- and humidity-controlled room under a 12:12 h 

light/dark cycle with lights on at 07:00. 
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Substances 

Ascorbic acid, Triton X, NaN3, NaCl, KCl, NaH2PO4, MgCl2, CaCl2, NaHCO3, D-glucose, 

Choline chloride, KMeSO4, HEPES, MgCl2, Na2-ATP, Na3-GTP, Clozapine-N-Oxide were 

purchased by Sigma Aldrich.  

Gabazine (SR 95531 hydrobromide), RS39604, GR113808, AM251 were purchased by 

Tocris Bioscience.  

A2A antibody was purchased by VinciBiochem. SP antibody was purchased by Merck-

Millipore. 

Fluo-4 and Fluo-5F were purchased by Life Technologies. 

Alexa 568 was purchased by Invitrogen.  

Cell sorting of striatal medium spiny neuronal populations 

drd1a-tdTomatotg/drd2-EGFPtg double transgenic male mice (post-natal day 60-80) express 

the tdTomato and EGFP proteins under control of the drd1 (D1 receptor) and drd2 (D2 

receptor) promoters respectively, which enable fluorescent-activated cell sorting (FACS) of 

the distinct striatal drd1- and drd2-positive MSN populations. Mice were sacrificed by 

decapitation after which brains were carefully removed from the skull and placed in an ice-

cold brain matrix (Zivic Instruments, Pittsburgh, PA, USA). Coronal slices containing the DLS 

were obtained and subsequent dissection of the DLS was performed using a scalpel and an 

ice-cold petri dish. The DLS was subsequently put in 4 ml of dissociation solution (870 mM 

NaCl, 25 mM KCl, 10 mM NaH2PO4, 70 mM MgCl2, 750 mM sucrose, 24 mM NaHCO3, 10 

mM glucose and 0,5 mM ascorbic acid). To enable dissociation of the cells 2 mg/ml Pronase 

(Sigma-Aldrich, Germany) was added and the solution containing the tissue was incubated at 

37°C for 10 min, after which the cells were dissociated by serial trituration and sorted using 

the FACS AriaTM II cell sorter (BD Biosciences, San Jose, CA, USA). Sorted cells (yield for 

tdTomato-positive cells: ~15.000, EGFP-positive cells: ~10.000)  were collected in RNAlater 
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RNA stabilization reagent (Qiagen, Germany), after which total mRNA was isolated using the 

RNAeasy® Plus Micro Kit (Qiagen), according to manufacturer’s instructions.  

cDNA synthesis and PCR analyses 

Complementary DNA was synthesized on a Peltier Thermal Cycler (Bio-Rad Laboratories 

Inc., Hercules, CA, USA) using the GoTaq® 2-step RT-qPCR kit (Promega, Fitchburg, WI, 

USA), according to manufacturer’s instructions (cycle conditions: 25°C for 5 min, 42°C for 1 

h, 70°C for 10 min). Subsequent qPCR analysis was performed with a 7900HT Fast Real-

Time PCR System (Applied Biosystems Inc., Foster City, CA, USA) with 40 cycles of 45 s at 

60°C and 15 s at 95°C, followed by a melting curve from 60-95°C. The same cDNA was used 

for end-point PCR analysis (40 cycles of 15 s at 95°C, 15 s at 60°C and 72°C for 30 s) using 

GoTaq® Master Mix (Promega). The samples were loaded on a 1.5% agarose gel for 

electrophoresis and subsequent visualization. The following primers were used for drd1 

(NM_010076), drd2 (NM_010077.2) and 5-HT4R (NM_008313.4): DRD1_FW: 

AGATGACTCCGAAGGCAGCCTT, DRD1_RV: GCCATGTAGGTTTTGCCTTGTGC; 

DRD2_FW: CCTGTCCTTCACCATCTCTTGC, DRD2_RV: 

TAGACCAGCAGGGTGACGATGA; 5-HT4R_FW: AGCTGGTCCAAGACATCTGG, 5-

HT4R_RV: CTCCCAACATTAATGCGATGC. The primers were designed to span an exon-

exon boundary in order to prevent unwanted amplification of genomic DNA.  

Electrophysiology 

Slice preparation 

To prepare ex-vivo brain slices, mice were anesthetized with isofluorane, perfused with 

artificial cerebrospinal fluid (aCSF) containing 115 mM NaCl, 3.5 mM KCl, 1.2 mM NaH2PO4, 

1.3 mM MgCl2, 2 mM CaCl2, 25 mM NaHCO3, and 25 mM D-glucose and aerated with 95% 

O2 and 5% CO2. The animals were then decapitated, and their brains were transferred to ice-

cold dissecting artificial cerebrospinal fluid (aCSF) containing 110 mM choline chloride, 2.5 
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mM KCl, 1.25 mM NaH2PO4, 7 mM MgCl2, 0.5 mM CaCl2, 25 mM NaHCO3, 25 mM D-

glucose, 11.6 mM ascorbic acid, saturated with 95% O2 and 5% CO2. Coronal sections (250 

μm thick) or horizontal slices (270 μm thick)  were cut using a Vibratome 1000S slicer 

(Leica), then transferred to aCSF containing 115 mM NaCl, 3.5 mM KCl, 1.2 mM NaH2PO4, 

1.3 mM MgCl2, 2 mM CaCl2, 25 mM NaHCO3, and 25 mM D-glucose and aerated with 95% 

O2 and 5% CO2. Following 20 min of incubation at 32°C, slices were kept at 22–24 °C. 

During experiments, slices were continuously superfused with aCSF at a rate of 2 ml/min at 

28°C. 

Whole cell patch clamp recordings 

When a dissection of the neuronal network and of the electrical properties of single neurons 

is required, the most widely used technique is whole cell patch clamp. By establishing a 

physical and electrical connection between the recording electrode and the cell membrane, it 

is possible to measure the voltage and current variations in the cell upon different stimuli.  

Patch clamp recordings were made on neurons of the DLS in horizontal corticostriatal slices 

or in neurons of the DRN in coronal slices. This slice configuration was chosen on the basis 

of the work of Fino and colleagues, who showed that somatosensory cortical afferents to the 

dorsal striatum are best preserved with horizontal slices (Fino et al., 2005). Intrastriatal 

electrical stimulation was performed, observing striatal neuronal response to this local input. 

Whole-cell recordings were made under direct IR-DIC (infrared differential interference 

contrast) visualization of neurons in the DLS, which were identified as medium spiny neurons 

(MSNs) on the basis of morphological and electrical properties (Nazzaro et al., 2012). 

In patch–clamp experiments, the recording electrode (a borosilicate patch pipette, 4-6 MΩ) is 

in physical continuity with the cytoplasm of the cell. This requires the solution filling the 

electrode to mimic the cytoplasmatic ionic composition. The intracellular solution contained 

(in mM): 130 KMeSO4, 5 KCl, 5 NaCl 10 HEPES, 0.1 EGTA, 2 MgCl2, 0.05 CaCl2, 2 Na2-

ATP, 0.4 Na3-GTP (pH 7.2-7.3, 280-290 mOsm/kg). 
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Excitatory postsynaptic potentials (EPSPs) were evoked in the presence of the GABAA 

receptor antagonist gabazine (10 µM) by paired intrastriatal stimuli (130 ms interpulse 

interval) delivered with a bipolar electrode (FHC). STDP-LTD was induced by 20 bouts of 

EPSPs paired with action potentials, delivered 10 s apart. Each bout consisted of five bursts 

(120 ms apart) each composed of three action potentials at 50 Hz followed by one EPSP 

(negative timing). HFS-LTD was induced by 4 × 1-s-long 100-Hz trains repeated every 10 s. 

During train stimulation, postsynaptic cell was depolarized from -80 to -50 mv, to mimic 

cortically-induced up-states. Data were excluded when the input resistance (Rinp) changed 

>20%.  

Action potentials (APs) were generated by a series of 400-ms current pulses (25 or 50 pA 

between each current pulse). 

Data are reported without corrections for liquid junction potentials. 

Data were acquired using a Multiclamp 700B amplifier controlled by pClamp 10 software 

(Molecular Device), filtered at 10 kHz and sampled at 20 kHz (current-clamp) with a Digidata 

1322 (Molecular Device). 

To distinguish between striatopallidal and striatonigral neurons, MSNs were filled with 

Neurobiotin (0.3 mg/ml) (DBA Italia) during recordings, and subsequently processed for 

immunostaining against A2A receptor (for iMSNs) and substance P (for dMSNs).  

Data Analysis 

The occurrence and magnitude of synaptic plasticity was evaluated by comparing EPSP 

normalized amplitudes from the last 5 min of baseline recordings with the values between 

20–30 min after conditioning. 

The plasticity loci (pre- vs postsynaptic) were deduced from the change in the paired-pulse 

ratio (PPR) after the delivery of the stimulation protocol. 
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2-photon Calcium Imaging 

Ca2+ transients were imaged with 100 µM Fluo-4 (for STDP experiments) or 100 µM Fluo-5F 

(for HFS experiments) dissolved in the intracellular recording solution. Alexa 568 (10 µM) 

was used for visualization of cell bodies and dendrites. Neurons were filled with Alexa 568 

and Fluo-4 or Fluo-5F via the patch electrode for 20 min before imaging to allow dye 

equilibration in the proximal dendrites (Plotkin et al., 2013). Whole cell maximum-projection 

images of the soma and dendrites were acquired with 0.4 μm2 pixels with 15 μs pixel dwell 

time; ~120 images were taken with 0.4 μm focal steps. Drugs were bath applied for 10 min. 

Two-photon Ca2+ imaging was performed with a Leica SP5 AOBS upright DM6000 CFS 

microscope coupled with a 2P laser Chameleon Ultra Coherent and equipped with a Leica 

25x NA 0.95 water-immersion objective. For all experiments, the laser wavelength was 800 

nm. The fluorescence emission was collected with an external non-descanned 

photomultiplier detector equipped with a 525/50 emission filter.  

Green fluorescence line-scan signals were acquired at 6 ms and 256 pixels per line, with 0.1 

μm pixels and 20 μs pixel dwell time. The laser-scanned images were acquired with 800 nm 

light pulsed at 90 MHz (pulse duration: ~250 fs). The line scan was started 750 ms before the 

stimulation protocol (1-s-long 100 Hz train coupled with cell depolarization from -80 to -50 

mV) and continued for 4 s after the stimulation, in order to obtain the background 

fluorescence and to record the decay of the optical signal after stimulation.  

Images were collected with LAS AF Leica software and analyzed using ImageJ software 

(version 1.45, http://rsb.info.nih.gov/ij/) and Origin 9.1 (MicroCal software). 

For each recording, background fluorescence was determined from a cell-free area of 

comparable size to that of the line-scan image. After subtracting the averaged background 

signal, fluorescence values were recorded for 200 ms before the triggering of APs and 

averaged to give the basal fluorescence (Fbasal). The amplitude of the fluorescence transients 

at the recording sites was expressed as the fractional change in basal fluorescence, (F-

Fbasal)/Fbasal(F/F), which is approximately proportional to the changes in intracellular Ca2+. 
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Over the course of the experiment, Fbasal remained within the standard error of Fbasal 

measured under control conditions. For data analysis, transients were digitally filtered off-line 

(adjacent-averaging routine, smoothing factor n = 5; Origin 9.1).  

A2A and SP immunofluorescence 

To check the MSN subtype (dMSN or iMSN) of the cells recorded in the DLS of C57Bl6/J 

mice, MSNs were filled with Neurobiotin (0.3 mg/ml) (DBA Italia) during recording, and 

processed post-hoc by immunostaining of markers of the striatonigral and striatoplallidal 

pathways, respectively the neuropeptide substance P (SP) and the A2A adenosine receptor 

(A2A).  

After the end of the experiment, the slices were fixed with 4% paraformaldehyde in 0.1 M 

phosphate buffer 7.4 pH (PB) overnight at 4°C, and then stored in PB with 0.02% of the 

preservant sodium azide (PB-N3). The slices were subsequently rinsed 3x15 min in PB, and 

incubated 30 min in 50 mM sodium citrate pH 8.5 at 80°C for antigen retrieval. After rinsing 

3x15 min, the slices were incubated in a primary antibody cocktail (rabbit polyclonal antibody 

to A2A (1:250, Alexis Biochemicals) and rat monoclonal antibody to substance P (1:200, 

Millipore)) in PB containing 0.3% Triton X-100 and 0.02% NaN3 (PB-TX-N3) 24 h at RT, and 

48 h at 4°C. The brain sections were subsequently rinsed 3x15 min in PB, incubated 4 h at 

RT in alexa 568-streptavidin (1:5000 in PB-TX-N3, Invitrogen) to label neurobiotin-filled cells, 

rinsed again, and then incubated with Alexa 647– and Alexa 488–conjugated secondary 

antibodies (1:200 in PB-TX-N3, Invitrogen) for 48 h at 4°C. After rinsing the slices 3x15 min, 

the nuclei were stained with Hoechst solution (1:400 in PB), rinsed again, mounted on glass 

slides, and coverslipped with ProLong Gold antifade reagent (Invitrogen). 

Images (1024x1024 pixels, pixel size: 240.5 nm voxel width, dwell time 2.4 µs) were acquired 

at 100X magnification (HCX PL APO lambda blue 63.0x1.40 OIL UV) with a Leica TCS SP5 

AOBS TANDEM laser scanning confocal microscope, and the expression of the markers was 
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evaluated to identify the cells as a dMSN or a iMSN. Only cells confirmed as dMSNs were 

considered for analysis. 

Statistics 

Electrophysiological data were analyzed by One-way ANOVA for repeated measure for 

planned comparison within a group (RM1W), and by two-way repeated measure or two-way 

ANOVA for planned comparison among groups (RM2W)(GraphPad Prism 5 software). Post-

hoc analyses (Tukey and Bonferroni’s multiple comparison tests) were performed only when 

ANOVA yielded a significant main effect. Two groups were tested for statistical significance 

using an independent two-population t test (GraphPad Prism 5 software). Calcium imaging 

data were analyzed by t test (GraphPad Prism 5 software). 
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Results 

MSNs of the DLS integrate information arising from glutamatergic inputs with the 

neuromodulatory signals provided by dopamine and 5-HT. These neuromodulators regulate 

synaptic mechanisms of plasticity by activating both stimulatory (Gs) and inhibitory (Gi) 

protein coupled receptors. 

In MSNs of the direct pathway, dMSNs, dopamine D1 and 5-HT4 receptor subtypes (D1R 

and 5-HT4R) are both functionally coupled to Gs proteins. In light of this, we tested the 

central hypothesis that 5HT4R-mediated signaling can act as an alternative/cooperating 

player to D1R-mediated signaling to regulate synaptic plasticity specifically at dMSN 

synapses. To this, we assessed the impact of both chemo-genetic manipulation of 5-HT 

release in the DLS and pharmacological manipulation of 5-HT4R on specific forms of 

synaptic plasticity. We then evaluated the effect of these manipulations on intracellular Ca2+ 

dynamics. 

Results provided here aim at clarifying the role of 5HT in the neuromodulation of 

glutamatergic synaptic plasticity in the DLS. 

Learning, action planning and adaptation are thought to occur by mechanisms of synaptic 

plasticity. Thus, understanding the synaptic role of 5-HT in the DLS could be an important 

step towards the understanding of the cellular and molecular determinants of DLS dependent 

behaviors. 
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Chemo-genetic modulation of 5-HT release impacts synaptic 

plasticity at dMSNs connections 

Validation of an animal model for the selective expression of DREADD 

receptor hM4Di in serotonergic neurons 

Recently, the Roth’s laboratory developed a tool for the selective inhibition or activation of 

specific neuronal populations. It is referred to as chemo-genetics or “DREADD 

pharmacology”, where DREADD stands for designer receptors exclusively activated by 

designer drugs (Armbruster et al., 2007; Alexander et al., 2009). It is based on the directed 

molecular evolution of the muscarinic receptors, to generate a family of G-protein coupled 

receptors that are activated exclusively by a pharmacologically inert drug-like and 

bioavailable compound cloxapine-N-oxide (CNO), but not by their native ligand ACh. Those 

modified receptors are powerful tools for selectively modulating signal-transduction pathways 

in vitro and in vivo in a noninvasive way (Armbruster et al., 2007). The evolution of receptors 

coupled to Gi/o (Armbruster et al., 2007) or to Gαq (Alexander et al., 2009) and Gs (Farrell et 

al., 2013) proteins allows the precise control of the three major G-protein coupled receptor 

signaling pathways in the cells expressing the DREADD receptors (Zhu and Roth, 2014)(Fig. 

6). DREADD technology can be thus used to gain remote control over neuronal signaling, via 

DREADD expression in the cell-type of interest via either transgenic or viral technology, and 

subsequent CNO administration (Zhu and Roth, 2014). 

Expression and activation of Gq or Gs DREADDs in neurons leads to their depolarization 

and increase in firing rate (Alexander et al., 2009; Farrell et al., 2013), while Gi DREADD 

receptors induce hyperpolarization and neuronal silencing (Armbruster et al., 2007). 

The possibility to selectively express DREADD receptors in serotonergic neurons is thus an 

attractive strategy to dissect the role of 5-HT in neurotransmission and synaptic plasticity.  
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To this purpose, the laboratories of A. Gozzi (IIT of Rovereto) and M. Pasqualetti (University 

of Pisa), generated a transgenic mouse line in which the inhibitory DREADD receptor hM4Di 

was selectively expressed in Pet expressing neurons. The line was obtained by crossing a 

Pet1(210)-Cre transgenic mouse line (Pelosi et al., 2014) with a loxPlox2722-hM4Di-

mCherry line. 

Pet1 mRNA expression promotes the expression of genes defining the mature serotonergic 

phenotype such as tryptophan hydroxylase 2 (Tph2) and serotonin transporter (SERT). 

Hence, genetic tools based on Pet1 specific expression represent a valuable approach to 

study the function of the serotonergic system. In the Pet1(210)-Cre transgenic mouse line the 

Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic 

locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. 

 

Figure 6. DREADD chemo-genetic approach to modulate G-protein coupled receptor 

signaling in vivo and in vitro. 

The molecular directed evolution of the muscarinic receptors creates DREADD receptors that can 

precisely control the Gq, Gi or Gs signaling pathways (From Zhu and Roth, 2014). 
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Thus, Pet1(210)-Cre transgenic mouse line faithfully drives Cre-mediated recombination in 

all Pet1 expression domains representing a valuable tool to genetically manipulate 

serotonergic Pet1 cell lineages (Pelosi et al., 2014). 

The loxPlox2722-hM4Di-mCherry line has been generated through h4MDi knock-in. The 

hM4Di receptor is fused in frame with the vital reporter mCherry in the ROSA-26 gene locus. 

To obtain high level of expression, the CMV enhancer fused to β-actin chicken promoter has 

been added. The cDNA of the hM4Di receptor is antiparallel to the promoter, and it is flanked 

by two loxP-lox2722 sites, to obtain the DREADD receptor transcription only after Cre 

mediated somatic recombination (Giorgi et al., unpublished data)(Fig. S3). 

Hence, in the DREADD/Pet1-Cre transgenic mouse line (hM4Di+/-/Pet1(210)-Cre+/-), the 

hM4D1 receptor, which is coupled to a Gi protein, will be expressed only in serotonergic 

neurons expressing the Cre recombinase. 

To validate this mouse line, we tested the ability of CNO to silence mCherry-positive 

serotonergic neurons expressing the hM4Di receptor in the dorsal raphe nucleus. As a 

control, we analyzed the effect of CNO application on the firing activity of serotonergic 

neurons of dorsal raphe nucleus from littermate hM4Di+/-/Pet1(210)-Cre-/- mice that did not 

express the Cre recombinase (Fig. 7). 

Serotonergic neurons of the dorsal raphe nucleus (Fig. 7 A, left) were identified on the basis 

of their morphological and electrical properties (De Kock et al., 2006; Kirby et al., 2003)(Fig. 

7 B). For hM4Di+/-/Pet1(210)-Cre+/- mice, mCherry positive cells were selected (Fig. 7 A, 

right). Bath application of CNO (5 µM) had no effect on the firing frequency of neurons from 

hM4Di+/-/Pet1(210)-Cre-/- mice not expressing the hM4Di receptor (Fig. 7 C, top), while 

induced a progressive decrease of firing rate in hM4Di expressing neurons of hM4Di+/-

/Pet1(210)-Cre+/- mice (Fig. 7 C, bottom). 
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Figure 7. Validation of the animal model for DREADD (designer receptors exclusively 

activated by designer drugs) pharmacology.  

The double transgenic mice expressing the inhibitory receptor hM4Di selectively in the serotonergic 

neurons were kindly provided by A. Gozzi and M. Pasqualetti. This mouse line has been created by 

crossing the Pet1(210)-Cre transgenic mouse line with the loxPlox2722-hM4Di-mCherry mouse 

line; only Pet expressing neurons express the Cre recombinase, necessary for the recombination 

of the sequence flanked by lox sites (hM4Di
+/-

/Pet1(210)-Cre
+/-

). Only neurons expressing the 

hM4Di receptor will be sensitive to the Clozapine-N-Oxide (CNO). The hM4Di receptor is linked to 

a Gi protein, and binding with CNO will lead to cell membrane hyperpolarization and decrease in 

firing activity. A. Left, Microphotograph of a coronal brain slice (250 µm thickness) containing the 

Dorsal Raphe Nucleus (DRN), where the majority of serotonergic neurons are located. Neurons 

arising from DRN send their projections throughout the whole brain, including the dorsolateral 

striatum. (Aq=Aqueduct; DRN=Dorsal Raphe Nucleus). Right, hM4Di expressing serotonergic 

neurons of the DRN were identified on the basis of their morphology, fluorescence of the mCherry 

reporter, and on the basis of their firing properties (B). C. Acute application of CNO (5 µM) did not 

affect the firing of serotonergic neurons of loxPlox2722-hM4Di-mCherry mice negative for the 

Pet1(210)-Cre expression (hM4Di
+/-

/Pet1(210)-Cre
-/-

)(Top). Conversely, the drug led to a strong 

inhibition of firing activity in hM4Di
+/-

/Pet1(210)-Cre
+/-

 mice, positive for both Pet1(210)-Cre and 

hM4D1-mCherry gene products (Bottom). In the figure, representative traces of 8 (Top) and 5 

(Bottom) experiments are reported. 
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Chemo-genetic inhibition of 5-HT release affects synaptic plasticity at 

excitatory inputs to dMSNs  

Once validated, we used the hM4Di+/-/Pet1(210)-Cre+/- mice as a tool to analyze the synaptic 

effects of inhibiting 5-HT release at dMSNs synapses of the DLS. 

To this purpose, we recorded intrastriatally evoked excitatory post-synaptic potentials 

(EPSPs) in dMSNs, using horizontal brain slices. Recordings were performed in 

physiological K+-based intracellular conditions (high K+), allowing the activation of dendritic 

potassium currents in response to synaptic stimulation (Fig. 8 A, top; Fig. 9 A, top). 

dMSNs were identified on the basis of their negative resting membrane potentials and firing 

activity (Kreitzer and Malenka, 2007), characterized by a low excitability in response to 

depolarizing current injection (Fig. 8 B). After the recording, the identity of the cell was 

confirmed by post-hoc immunostaining to analyze the expression of specific markers: dMSNs 

selectively express substance P (SP) but not A2A receptor, which is present on iMSNs. Only 

cells showing the correct pattern of expression markers were considered for further analysis 

(Fig. 8 C). 

In horizontal brain slices, intrastriatal electrical stimulation not only triggers glutamate release 

from cortical and thalamic afferents, but also the local release of neuromodulators from 

dopaminergic and serotonergic terminals (Fig. 8 A, bottom)(Wu et al., 2015). To isolate 

excitatory input to dMSNs, recordings were performed in presence of the GABAA receptor 

antagonist gabazine (10 µM). 
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We investigated the role of 5-HT release in modulating the induction of synaptic plasticity at 

glutamatergic synaptic connections to dMSNs. We induced plasticity by pairing afferent 

stimulation with postsynaptic spikes, using a protocol which consisted of 20 bouts of EPSPs 

paired with action potentials, delivered 10 s apart, in cells depolarized from -80 mV to -70 

mV. Each bout consisted of five bursts (120 ms apart) each composed of three action 

potentials at 50 Hz followed by one EPSP (negative timing) (Fig. 9 A, bottom). At most 

synapses, this protocol induces a Hebbian form of spike-timing dependent plasticity (STDP) 

that results in LTD (Pawlak and Kerr, 2008; Fino et al., 2010). 

 

Figure 8. Electrophysiological and immunohistochemical profile of dMSNs in the DLS.  

A. Top, Infrared microphotograph of a horizontal corticostriatal slice displaying the dorsolateral 

striatum (DLS), the corpus callosum (CC) and the somatosensory cortex. The stimulating electrode 

was placed within the striatum. Whole-cell patch-clamp recordings (WC) are performed in the DLS. 

The stimulation site allows the release of glutamate from cortical and thalamic afferences, as well 

as the local release of neuromodulators such as dopamine (DA) and serotonin (5-HT) from 

dopaminergic and serotonergic terminals (Bottom). B. Representative current clamp traces 

recorded from striatonigral dMSNs. C. Confocal laser scanning microscopy images of triple 

immunofluorescence for A2A, SP (substance P) and biotin in patched-recorded neurons. (M. Trusel 

and M. Gritti). Only neurons expressing SP, selective marker for dMSNs and not expressing A2A, 

marker for iMSNs, were considered for further analysis. 
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Work from Shen and colleagues, however, demonstrated that delivery of this protocol at 

dMSNs with an intrastriatal stimulation failed to induce LTD. The absence of LTD was shown 

to be dependent on the presence of active D1 dopamine receptor, which couples with a Gs 

signaling that is normally responsible for LTP induction (Shen et al., 2008). 

The increasing body of evidence pointing at rewarding action of 5-HT signaling, led to the 

hypothesis that, similarly to dopamine, also 5-HT could prevent the induction of STDP-LTD in 

dMSNs. 

To investigate this hypothesis, we first confirmed that STDP-LTD was absent at dMSNs 

connections of naïve mice (97 ± 5% of baseline, n=8; p>0.05, Fig. 9 B). In dMSNs of 

hM4Di+/-/Pet1(210)-Cre+/- (DREADD) mice, delivery of STDP did not induce synaptic plasticity 

under control conditions (94 ± 5% of baseline, n=5; p>0.05, Fig. 9 C). In contrast, acute 

application of CNO (5 µM) during plasticity induction gated a form of STDP-LTD (74 ± 4% of 

baseline, n=8; p<0.05, Fig. 9 C) in this DREADD mouse line. Application of CNO in naïve 

animals failed to induce LTD (92 ± 6% of baseline, n=7; p>0.05, Fig. 9 D), thus excluding 

non-specific effects of CNO. 

Collectively, these results indicate that the net effect of suppressing 5-HT release by 

activating hM4Di receptor at serotonergic terminals is the depression of the excitatory inputs 

to dMSNs. 
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Figure 9. CNO induces LTD in dMSNs of hM4Di
+/-

/Pet1(210)-Cre
+/-

 (DREADD) mice. 

 A. Top, Schematic representation of a horizontal brain slice displaying the stimulation and 

recording configuration in the DLS. Bottom, Burst pairing protocol for the induction of STDP-LTD. 

The protocol consists of 20 bouts of EPSPs paired with action potentials, delivered 10 s apart. 

Each bout consists of five bursts (120 ms apart) each composed of three action potentials at 50 Hz 

followed by one EPSP (negative timing). B. In naive animals, STDP failed to induce LTD (RM1W, 

F16,7=0.9, p=0.5682). C. In hM4Di
+/-

/Pet1(210)-Cre
+/-

 (DREADD) mice, perfusion of CNO (5 µM) 

induced LTD in dMSNs, which was absent in control conditions (RM1W, F16,7=18.5, p<0.0001; 

p<0.05 Tukey; RM2W, F2,18=9.0, p<0.01; Naïve versus DREADD, p>0.05; Naïve versus DREADD 

+ CNO, p<0.05, Bonferroni). D. In naive animals, CNO (5 µM) did not induce any LTD (RM1W, 

F16,6=1.2, p=0.3; RM2W, F1,13=0.3, p=0.6; Naïve versus Naïve + CNO, p>0.05, Bonferroni). Data 

are presented as time courses (mean ± s.e.m.) of normalized EPSP amplitudes and normalized 

Rinp. STDP was delivered at the red vertical bar The EPSP time courses were obtained in 

presence of 10 µM gabazine, and in whole cell current clamp configuration. The Rinp traces show 

that input resistance was stable throughout the recording. In B., C. and D., representative traces of 

the EPSPs recorded 5-10 min before (black) and 20-25 min after (red) the STDP, are showed for 

every experimental condition. In C. and D., the black line shows the time course of plasticity in 

dMSNs of naive animals from Figure 9 B. 
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Pharmacological manipulation of 5-HT4R recapitulates the 

effect of chemo-genetic inhibition of 5-HT release 

5-HT4R antagonism gates STDP-LTD at dMSNs 

Results obtained with DREADD pharmacology support the hypothesis that 5-HT release, 

similarly to dopamine, could shift the strength of dMSNs synapses towards potentiation; 

indeed, inhibition of 5-HT release enables a form of STDP-LTD in dMSNs. 

In this MSNs subtype, the effect of dopamine on synaptic plasticity has been extensively 

studied: activation of Gs coupled D1 dopaminergic receptor strengthens corticostriatal 

dMSNs connections via NMDAR and ERK signaling activation, thus ultimately driving LTP 

(Cerovic et al., 2013). 

On the other hand, the synaptic role of 5-HT at striatal synapses is still largely unexplored. 

The striatum expresses a multitude of 5-HT receptors subtypes that couple with both Gi and 

Gq/Gs signaling cascades at both presynaptic and postsynaptic sites. It has been previously 

reported that MSNs express two Gs coupled 5-HT receptors, the 5-HT6R (Eskenazi et al., 

2015) and 5-HT4R (Waeber et al., 1993 and 1996; Patel et al., 1995; Vilaro et al., 2005). 

Whilst the behavioral role of 5-HT6 in dMSNs and iMSNs has been recently investigated 

(Eskenazi et al., 2015), little is known about the potential influence of 5-HT4R on striatal 

function. 

We first confirmed the expression of 5-HT4R transcript in dMSNs using a combined 

approach of FACS-sorting and qPCR in drd1a-tdTomatotg/drd2-EGFPtg double transgenic 

mice (Lobo et al., 2006). After fluorescent-activated cell sorting from two DLS samples, we 

performed qPCR analysis to determine the expression level of drd1 mRNA in the tdTomato-

positive population relative to EGFP-positive population (Fig. 10 A). The amount of drd1 

mRNA in the EGFP-positive population was 0.86% of the expression level of drd1 mRNA in 

the TomatoRD-positive population, confirming that the separation of the distinct drd1- and 

drd2-positive populations was successful. Next, the cDNA from the tdTomato-population was 
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used to determine the presence of 5-HT4R transcripts in this population (Fig. 10 B). 5-HT4R 

was present in both samples, suggesting that 5-HT4R is expressed in the drd1-positive 

dMSNs of the DLS.  

    

We then tested the possibility that pharmacological inhibition of 5-HT4R in naïve animals, 

which would lead to a decreased Gs-coupled signaling in dMSNs, recapitulates the effect of 

chemo-genetic 5-HT inhibition of release in hM4Di+/-/Pet1(210)-Cre+/- mice. 

Indeed, in the presence of the two structurally unrelated 5-HT4R antagonists GR113808 (5 

µM) or RS39604 (5 µM) STDP resulted in LTD of postsynaptic responses (GR113808: 80 ± 

6% of baseline, n=8; p<0.05; RS39604: 68 ± 4% of baseline, n=10; p<0.0001, Fig. 11 A). 

These results suggest that the LTD observed upon chemo-genetic inhibition of 5-HT release 

during STDP is dependent on the lack of activation of 5-HT4R. 

 

Figure 10. 5-HT4R transcript is present in the drd1-positive dMSN cell population of drd1a-

tdTomato
tg

/drd2-EGFP
tg

 double transgenic mice. 

A. Bar diagram representing the relative expression levels of drd1 mRNA in the sorted tdTomato-

positive and EGFP-positive cell populations taken from DLS of drd1a-tdTomato
tg
/drd2-EGFP

tg
 

double transgenic mice. drd1 mRNA expression was more than 100-fold higher in the tdTomato-

positive population as compared to the EGFP-positive population (mean ± sd, n=2). t test, 

*p<0.005. B. PCR-products of 196 base pairs from 5-HT4R cDNA of the TomatoRD-positive 

population (+) and from the MiliQ negative control (-)(A. Boender and M. Gritti).       
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In dMSNs, dopamine has been shown to suppress the postsynaptic biosynthesis of eCBs 

and CB1R-mediated STDP-LTD by activating the Gs-coupled D1R (Shen et al., 2008). 

This raises the possibility that also 5-HT released during STDP hinders eCBs production via 

5-HT4R activation. If this was true, the STDP-LTD occurring in the presence of 5-HT4R 

antagonists should be CB1R-mediated. Nonetheless, application of the CB1R antagonist 

AM251 (4 µM) did not abolish the STDP-LTD that occurred in the presence of RS39604 (5 

µM)(62 ± 7% of baseline, n=5; p<0.05, Fig. 11 B).  

To investigate further the mechanism of STDP-LTD induced by 5-HT4R antagonism, we 

performed a subset of experiments analyzing the synaptic responses generated by twin 

cortical stimuli delivered 50 ms apart. The rationale of delivering twin cortical stimuli is the 

evaluation of the locus of expression of the plasticity. If the paired-pulse ratio (PPR), which is 

 

Figure 11. 5HT4R antagonists gate the STDP-LTD in naive animals. 

A. Perfusion of the two structurely unrelated 5HT4R antagonists, GR113808 (5 µM) or RS39604 (5 

µM), led to STDP-LTD in naive animals, which was not present in control conditions (GR113808: 

RM1W, F16,7=8.3, p<0.0001; p<0.05 Tukey; RS39604: RM1W, F16,9=24.3, p<0.0001; p<0.001 

Tukey; RM2W, F2,23=9.9, p<0.0001; Naïve versus GR113808, p<0.05; Naïve versus RS39604, 

p<0.05, Bonferroni). B. The selective CB1 receptor antagonist AM251 (4 µM) failed to block STDP-

LTD induced by 5HT4R antagonist RS39604 (RM1W, F16,4=12.2, p<0.0001; p<0.05 Tukey; RM2W, 

F2,20=13.4, p<0.0001; Naïve versus RS39604, p<0.05; Naïve versus RS39604 + AM251, p<0.05, 

Bonferroni). In A. and B., the black line shows the time course of plasticity in dMSNs of naive 

animals from Figure 10 B. 
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the ratio between the amplitudes of the second and the first peak responses, is increased 

after STDP, this phenomenon (paired-pulse facilitation, PPF) correlates with a decreased 

probability of release of neurotransmitter, suggesting a presynaptic locus of LTD expression; 

if the PPR does not change, plasticity should occur through a postsynaptic mechanism. We 

observed no change in PPR during the STDP-LTD gated by RS39604 (5 µM)(75 ± 5% of 

baseline, n=6; p<0.05), suggesting a postsynaptic locus of depression (PPR of baseline = 

1.31 ± 0.09 versus PPR after STDP = 1.41 ± 0.10, n=6; p>0.05, Fig. 12). This is consistent 

with the evidence that this form of STDP-LTD is independent from the activation of 

presynaptic CB1R. 

Together, these observations indicate that STDP-LTD occurring upon 5-HT4R inhibition is 

not mediated by CB1R and does not show a presynaptic locus of expression. 

 

 

Figure 12. 5HT4R antagonist dependent STDP-LTD is expressed postsynaptically. 

A. Time course of the first peak (p1) and second peak (p2) amplitudes of synaptic responses 

generated by twin stimuli at a 50 ms interval. The 5-HT4R antagonist RS39604 (5 µM) induced 

STDP-LTD (RM1W, F16,5=8.8, p<0.0001; p<0.05 Tukey) without changing the PPR. The black line 

shows the time course of plasticity in dMSNs of naive animals from Figure 10 B. 

 B. Box-chart diagram indicating the paired-pulse ratios of the last 5 min of baseline (black box) 

and 20-30 min after STDP (red box). PPR was expressed as the ratio between the amplitude of the 

second and the first EPSP. t test, p>0.05. 



77 Results 
 
 

5-HT4R antagonism influences frequency dependent plasticity 

at dMSNs connections 

STDP is not the only stimulating protocol to induce synaptic plasticity in MSNs of the DLS. A 

well-established stimulating protocol relies on the high frequency stimulation (HFS) of 

excitatory afferents to the DLS. The induction protocol consists of 4 × 1-s-long 100-Hz trains 

repeated every 10 s (Trusel et al., 2015). During train stimulation, postsynaptic cell is 

depolarized from -80 to -50 mV, to mimic cortically-induced “up” states (Fig. 13 A). 

Similarly to the STDP, we found that intrastriatal HFS failed to induce LTD in dMSNs (98 ± 

5% of baseline, n=11; p>0.05, Fig. 13 B). This result is consistent with the lack of LTD at 

dMSN synapses observed in past and recent studies, which applied comparable 

experimental conditions (Kreitzer and Malenka, 2007; Wu et al., 2015). On the other hand, 

we have recently shown that HFS results in a form of LTD at cortico-dMSN synapses when 

stimulation occurs in deep cortical layers (Trusel et al., 2015), further supporting the idea that 

intrastriatal stimulation triggers dopamine/5-HT release from monoaminergic terminals, and 

the activation of signaling cascades downstream D1R (Wu et al., 2015) and 5-HT4R 

counteracting LTD. Consistent with results gained upon STDP (Fig. 11), pharmacological 

inhibition of 5-HT4R during HFS enabled a form of HFS-LTD in dMSNs (GR113808: 65 ± 6% 

of baseline, n=6; p<0.001; RS39604: 55 ± 10% of baseline, n=6; p<0.001, Fig. 13 C), which 

was not abolished by the CB1R antagonist AM251 (4 µM)(64 ± 11% of baseline, n=5; 

p<0.05, Fig. 13 D). 
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Taken together, the results obtained so far suggest that 5-HT release negatively modulate 

time-dependent and frequency-dependent postsynaptic mechanisms of plasticity at 

excitatory synapses to dMSNs of the DLS (See Fig. S1 and S2 for a summary of the results). 

  

Figure 13. 5HT4R antagonists gate the HFS-LTD in naive animals. 

A. Top, Schematic representation of the experimental configuration. Bottom, protocol for the 

induction of HFS-LTD. The protocol consists of 4 × 1-s-long 100-Hz trains repeated every 10 s. 

During train stimulation, postsynaptic cell was depolarized from -80 to -50 mV. B. In control 

conditions, HFS failed to induce LTD (RM1W, F16,10=0.25, p=1). C. Perfusion of the two structurally 

unrelated 5HT4R antagonists, GR113808 (5 µM) or RS39604 (5 µM), led to HFS-LTD (GR113808: 

RM1W, F16,5=13.3, p<0.0001; p<0.001 Tukey; RS39604: RM1W, F16,5=14.4, p<0.0001; p<0.001 

Tukey; RM2W, F2,20=16.8, p<0.0001; Naïve versus GR113808, p<0.05; Naïve versus RS39604, 

p<0.001, Bonferroni). D. AM251 (4 µM) failed to block HFS-LTD induced by RS39604 (RM1W, 

F16,4=7.3, p<0.0001; p<0.05 Tukey; RM2W, F2,19=12.8, p<0.0001; Naïve versus RS39604, p<0.001; 

Naïve versus RS39604 + AM251, p<0.05, Bonferroni). In C. and D., the black line shows the time 

course of plasticity in dMSNs from Figure 13 B; in D., the violet line shows the time course of 

plasticity in presence of RS39604 from Figure 13 C. 
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Serotonergic modulation of dendritic Ca
2+

 dynamics 

Next, to elucidate the molecular mechanisms underlying LTD gated by 5-HT4R antagonism, 

we measured Ca2+ dynamics in the proximal dendrites of dMSNs. The activity dependent 

regulation of intracellular Ca2+ concentration, which depends both on NMDARs and back 

propagating action potentials is crucial for the induction of striatal synaptic plasticity 

(Adermark and Lovinger, 2007; Kreitzer and Malenka, 2008; Shen et al., 2008; Surmeier et 

al., 2009; Lerner and Kreitzer, 2012; Plotkin et al., 2013). Hence, we investigated the effect 

of 5-HT4R antagonism on dendritic Ca2+ transients evoked by plasticity induction protocols. 

Effect of 5-HTR antagonism on dendritic Ca2+ signaling triggered by 

spike-timing and high-frequency stimulation protocols 

To study intracellular Ca2+ dynamics during STDP we combined patch-clamp techniques with 

2-photon Ca2+ imaging. Briefly, via the patch electrode, dMSNs were filled with Alexa 568, to 

allow the visualization of the cell and dendrites, and with the specific high affinity Ca2+-

sensitive fluorescent dye Fluo4 (Fig. 14 A). Ca2+ transients were evoked by one bout of the 

STDP induction protocol, and were recorded in proximal dendrites (~30-60 µm from soma) 

through a line scan acquisition. The area of the fluorescence transients at the recording site 

is approximately proportional to the changes of intracellular Ca2+ (Yasuda et al., 2004)(Fig. 

14 B). 
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In the absence of pharmacological manipulations, the Ca2+ transient evoked by a single bout 

of STDP was stable over time (107 ± 8% of control at time 0, n=8; p>0.05, Fig. 15 A, B). 

Acute application of either GR113808 (5 µM) or RS39604 (5 µM) caused a slight, albeit 

significant, increase in the area under the curve of the fluorescent transient, indicating that 

5HT4R inhibition induced an increase in the evoked dendritic Ca2+ signal (GR113808: 122 ± 

6% of control, n=15; p<0.05, Fig. 16; RS39604: 131 ± 7% of control, n=14; p<0.05, Fig. 17). 

 

Figure 14. Ca
2+

 transients evoked by a single bout of STDP protocol in the proximal 

dendrites of dMSNs. 

A. Top, Maximum intensity projection image of a dMSN from the fluorescence of Alexa Fluor 568. 

Blue dotted circle lines delimit the region of proximal dendrites, 30-60 µm from the soma. Bottom, 

Example of a proximal dendrite from which the line scan is taken. B. One bout of the STDP 

conditioning protocol was used to evoke a dendritic Ca
2+

 transient, which is measured as increased 

fluorescence of the Fluo4 sensitive dye. 
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Figure 15. Ca
2+

 transients induced by intrastriatal STDP are stable over time. 

A. Top, schematic representation of one bout of STDP protocol used to evoke Ca
2+

 transients. 

Bottom, Ca
2+

 transients evoked by STDP were stable over time. B. Normalized area under the 

curve of the fluorescence transients measured at time 0 and after 10 min. t test, p>0.05. 
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Figure 16. 5-HT4R antagonist GR113808 enhances Ca
2+

 transients induced by STDP in 

dMSNs. 

A. Ca
2+

 transients (top) and corresponding relative changes in fluorescence (bottom) evoked by a 

single bout of STDP protocol, before (black line) and after the application of the 5-HT4R antagonist 

GR113808 (5µM; red line). B. Normalized area under the curve of the fluorescence transients 

before and after GR113808 application. t test, *p<0.05. 
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We obtained similar results when we analyzed the Ca2+ transients induced by a single HFS 

train. To avoid saturation of the Ca2+ fluorescence upon HFS, we used the low affinity Ca2+ 

indicator, Fluo5F, which provided stable HFS-induced Ca2+ transients over time 

 

Figure 17. 5-HT4R antagonist RS39604 enhances Ca
2+

 transients induced by STDP in 

dMSNs. 

A. Ca
2+

 transients (top) and corresponding relative changes in fluorescence (bottom) evoked by a 

single bout of STDP protocol, before (black line) and after the application of the 5-HT4R antagonist 

RS39604 (5µM; red line). B. Normalized area under the curve of the fluorescence transients before 

and after RS39604 application. t test, *p<0.05. 
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(10 min: 108 ± 6% of control at time 0, n=7; p>0.05, Fig. 18 A and B). In the presence of the 

5-HT4R antagonist GR113808 (5 µM)(Fig. 19 A), the area of the transient showed a 

significant increase compared to control (167 ± 11% of control, n=7; p<0.05, Fig. 19 A and 

B).  

 

Figure 18. Ca
2+

 transients induced by intrastriatal HFS are stable over time. 

A. Top, postsynaptic response (black trace) to the HFS pairing (red trace) in dMSNs. Bottom, Ca
2+

 

transients evoked by a single train of HFS were stable over time. B. Normalized area under the 

curve of the fluorescence transients quantified at time 0 and time 10 min. t test, p>0.05. 
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Collectively, these results indicate that 5-HT4R antagonism enhances the dendritic Ca2+ 

transients evoked by both STDP and HFS.  

  

 

Figure 19. Antagonism of 5-HT4R enhances Ca
2+

 transients induced by HFS in dMSNs. 

A. Ca
2+

 transients (top) and corresponding relative changes in fluorescence (bottom) evoked by a 

single train of HFS before (black line) and after application of the 5-HT4R antagonist GR113808 (5 

µM; red line). B. Normalized area under the curve of the fluorescence transients before and after 

GR113808 application. t test, *p<0.05. 
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Discussion 

The dorsal striatum plays the fundamental role of processing cortical information to shape 

motor and cognitive processes such as action selection, motor initiation, procedural learning 

and reward-guided behaviors. This is actuated by the coordinated activity of dMSNs and 

iMSNs (Cui et al., 2013; Trusel et al., 2015; Kravitz and Kreitzer, 2012). The direct pathway 

involved in selection of appropriate actions on the basis of previous experience, and 

mediating reinforcement and reward, and the indirect pathway aimed at suppression of all 

the other competing motor programs, and regulating punishment and aversion. 

MSNs integrate the excitatory cortical and thalamic glutamatergic inputs with monoaminergic 

signals coding for the motivational state of the animal (Kreitzer and Malenka, 2008). 

Specifically, monoamine neuromodulators such as dopamine and 5-HT transduce salient 

environmental cues and internal states at the neuronal level. Binding their receptors, these 

monoamines modulate intracellular signaling cascades that control synaptic efficacy, leading 

to the remodeling of neuronal circuits on the basis of external environment and internal 

states. 

Whilst dopamine is strictly associated with reward signaling and reward prediction error, the 

role of 5-HT has historically been related to punishment. Only recently, increasing evidence 

led to hypothesize 5-HT as a cooperating/synergizing neuromodulator to dopaminergic 

signal, making it possibly as important as dopamine in coding reward (Kranz et al., 2010). 

Indeed, there is extensive data supporting an essential modulating role of the serotonergic 

system in major aspects of reward processing, as well as a change in serotonin transmission 

accompanied by rewarding activities. Collectively, this evidence points at 5-HT as a 

fundamental mediator of emotional, motivational and cognitive aspects of reward 

representation (Kranz et al., 2010). At the level of the striatum, the link between potentiation 

of direct pathway synaptic connections with reinforcement and reward (Kravitz and Kreitzer, 

2012) makes particularly attractive the investigation of the role of 5-HT modulation 

specifically at dMSNs connections. 
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During my PhD, I’ve been investigating the role of serotonergic neuromodulation of 

glutamatergic synaptic inputs specifically to the direct pathway of the dorsolateral striatum. 

To investigate the functional role of 5-HT at dMSNs synapses, we first analyzed the effect of 

the inhibition of 5-HT release on a spike-timing dependent form of plasticity. 

Under our experimental conditions, a negative STDP protocol, in which repeated theta burst 

of postsynaptic MSN spiking precedes presynaptic stimulation, fails to induce LTD when 

applied intrastriatally. This is consistent with previous observations (Shen et al., 2008) that 

were ascribing the lack of STDP-LTD in dMSNs to the local release of dopamine upon 

intrastriatal stimulation. In this neuronal subtype, the activation of the Gs-coupled D1R 

promotes synaptic potentiation (Shen et al., 2008). In fact, D1R inhibition is sufficient to gate 

STDP-LTD (Shen et al., 2008). 

By using a chemo-genetic approach (DREADD pharmacology) to selectively inhibit 5-HT 

release during STDP induction, we were able to gate a form of STDP-LTD, unveiling a role 

for 5-HT in modulating glutamatergic synaptic transmission at dMSNs synapses. These 

results suggest that 5-HT and dopamine could share common intracellular signaling 

cascades whose activation prevent the induction of STDP-LTD. Being coupled to Gs 

signaling, the 5-HT4R subtype is ideally placed at the somato-dendritic compartment of 

dMSNs (Waeber et al., 1993; Waeber et al., 1996; Patel et al., 1995; Vilaro et al., 2005) to 

counteract the induction of STDP-LTD, similarly to D1R. Thus, a reduced 5-HT4R activation 

upon chemo-genetic inhibition of 5-HT release could be responsible for the STDP-LTD 

observed in dMSNs of DREADD mice. This hypothesis is consistent with the results obtained 

in naïve mice, in which STDP was induced in the presence of two structurally unrelated 5-

HT4R selective antagonists. Inhibition of 5-HT4R during plasticity induction gated a form of 

STDP-LTD, which was not involving the release of eCBs and the activation of CB1R. 

We obtained similar results when plasticity was triggered by high-frequency stimulation 

(HFS) of cortical afferents to dMSNs. This suggests a negative role for 5-HT, through 5-

HT4R activation, in regulating intracellular mechanisms relevant for both timing- and 

frequency-dependent forms of synaptic plasticity at excitatory dMSN synapses.  
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Both STDP-LTD and HFS-LTD obtained upon inhibition of 5-HT4R were associated with 

increased dendritic Ca2+ elevations. 

5-HT4R activation stimulates the activity of PKA, which is known to positively modulate 

dendritic Ca2+ signal (Higley and Sabatini, 2012). Thus, the evidence that 5-HT4R inhibition 

enhances dendritic Ca2+ levels is counterintuitive. One possible explanation could be that 5-

HT4R signaling affects Ca2+ levels through the negative regulation of a K+ conductance. 

Indeed, it has been previously shown that inhibition of Ca2+-activated K+ channels boosts 

dendritic Ca2+ signaling in MSN of the DLS (Nazzaro et al., 2012; Trusel et al., 2015). In 

other brain regions, 5-HT4R modulates the activity of the slow Ca2+-activated K+ current. 

Direct evidence that this modulation also occurs at striatal circuits is, however, still missing. 

5-HT4R can bind not only to Gs proteins, but also to Gα13 (Ponimaskin et al., 2002), that 

signals to CaMKII. In the hippocampus, CaMKII activation promotes the expression of the A-

type K+ channel Kv4.2 (Varga et al., 2004). Furthermore, in medial vestibular nucleus 

neurons, CaMKII inhibition reduces the activity of the BK Ca2+-activated K+ currents (Nelson 

et al., 2005). In light of this, 5-HT4R inhibition could decrease either Kv4.2 cell surface 

expression or BK current, thus potentiating Ca2+ signal. 

In the striatum, elevations in dendritic Ca2+ levels are required for the biosynthesis and 

release of eCBs from the postsynaptic MSN. eCBs, by acting at presynaptic CB1R, trigger 

STDP-LTD (Nazzaro et al., 2012; Wu et al., 2015; Shen et al., 2008). Whilst there is a 

general consensus that eCBs mediate STDP-LTD in iMSNs, this issue remains controversial 

for dMSNs (Nazzaro et al., 2012; Wu et al., 2015; Shen et al., 2008). Under our experimental 

settings, the activation of presynaptic CB1R is not required for either STDP-LTD or HFS-LTD 

gated by 5-HT4R antagonists. eCBs not only act at presynaptic CB1R, but they also activate 

the postsynaptic  TRPV1R (Transient Receptor Potential Vanilloid 1 receptor). We can 

speculate that the pharmacological inhibition of 5-HT4R, or the lack of its activation upon 

chemo-genetic inhibition of 5-HT release, may enforce the Ca2+ dependent biosynthesis of 

eCBs in dMSNs. eCBs might then act as an autocrine signal by acting on postsynaptic 

TRPV1R. Postsynaptic TRPV1R activation leads to a form of postsynaptic LTD that depends 
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on AMPARs endocytosis (Kauer and Malenka, 2007; Malenka and Bear, 2004, Grueter et al., 

2010). This raises the possibility that STDP-LTD and HFS-LTD obtained by the negative 

modulation of 5-HT4R might require the activation of TRPV1R in dMSN. We are currently 

testing this hypothesis. 

Regardless the precise molecular mechanism driving 5-HT4R dependent STDP- (or HFS-) 

LTD in dMSNs, our results indicate that 5-HT, through 5-HT4R, exerts similar function of 

dopamine, through D1R, leading to a “pro-active” dMSNs state. Recently, it has been shown 

how dopamine promotes action reinforcement by acting on a critical time window after the 

sensorimotor signal. Optogenetic induction of dopamine release resulted in spine 

enlargement and plasticity enhancement only during a critical time (0.6 s) after STDP 

protocol. These effects, which require the activation of PKA in the dendritic spines, are 

independent of Ca2+ influx triggered by back-propagating action potentials (Yagishita et al., 

2014). 

We may speculate that dopamine and 5-HT could act through different subcellular 

mechanisms, one involving spine enlargement and the other Ca2+ signaling modulation, to 

encode reward stimuli at cellular level. 

The synaptic effects of 5-HT at striatal circuits might not be exclusively mediated by the 

activation of 5-HT4R. In unidentified MSNs, it has been previously shown that the acute 

application of 5-HT on striatal brain slices results in LTD of excitatory inputs. This form of 

plasticity depends on the activation of the 5-HT1bR subtype (Mathur et al., 2011), it is 

mutually occlusive with presynaptic eCB-LTD, and does not require postsynaptic activity. 

Additionally, this pharmacological 5-HT1bR-mediated LTD has been measured under 

voltage-clamp configuration and by using a cesium-based intracellular solution containing the 

Na+ channel blocker QX-314: these experimental settings could mask the postsynaptic 

contribution of 5-HT4R regulation of synaptic plasticity, isolating only the presynaptic 5-

HT1bR contribution. Nonetheless, the chemo-genetic experiments performed in this study 

suggest that the net effect of inhibiting 5-HT release during associative synaptic plasticity is 

the depression of cortical inputs to dMSNs. 
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Cortico-striatal synaptic plasticity could be also indirectly modulated by activity of striatal 

interneurons through 5-HT-mediated signaling. Bonsi and colleagues showed that rat striatal 

cholinergic interneurons could be excited by 5-HT by activating the 5-HT2c, 6 and 7 receptor 

subtypes. This leads to a PLC/adenylyl cyclase-dependent loss of an outward K+ current, and 

to firing rate increase (Bonsi et al., 2007; Mathur and Lovinger, 2012). 5-HT2cR has been 

also reported to excite fast-spiking interneurons through the modulation of inwardly rectifying 

K+ channels (Blomeley and Bracci, 2009). 

The effect of 5-HT on fast-spiking interneurons would theoretically set a high-pass filter for 

MSN output, while the increase of cholinergic tone would possibly increase the threshold for 

eCB-LTD to occur at cortico-striatal synapses. Furthermore, It has been proposed that 5-

HT1bR-mediated LTD of cortico-striatal glutamate release might act as a high-pass filter for 

cortical information. Taking these hypotheses together with the evidence of a positive 

correlation of DRN neuron firing with activity state (Jacobs and Fornal, 1999), 5-HT release 

in the dorsal striatum could adjust the signal-to-noise ratio of the striatal network to improve 

action selection performance: a low serotonergic tone would thus decrease this signal-to-

noise ratio, resulting in either a paucity of selected actions or a global decrease in action 

selection threshold, depending on the particular state of the dorsal striatum (Mathur and 

Lovinger, 2012): in OCD, for instance, where cortico-striatal dysfunction is known to occur, 

there could be a decrease in action-selection threshold, leading to execution of compulsive 

or unwanted actions. 

In this framework, 5-HT could act on multiple levels and on multiple receptors and cell-types, 

and the integration of different signaling pathways at different loci might lead to the overall 

regulatory effect of this neuromodulator. Data presented in this thesis could provide an 

additional mechanism for 5-HT, via postsynaptic 5-HT4R, to modulate the activity of direct 

pathway dMSNs, which are associated with motor activation, reinforcement and reward. 

These results, hence, could represent a further step towards the understanding of the role of 

5-HT in the striatum, which is particularly intriguing given the diversity of 5-HT effects on 

various cognate receptors.  
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Conclusions and Perspectives 

In conclusion, these data provide evidence for the involvement of 5-HT, through 5-HT4R, in 

time- and frequency-dependent forms of synaptic plasticity at glutamatergic connections to 

dMSNs, identifying Ca2+ signaling as a putative trigger for a form of postsynaptic form of 

LTD. 

Thus, 5HT-dependent signaling cascades might provide an additional mean to fine tune 

glutamatergic input to the striatum, enabling proper action selection, and may represent a 

target for pharmacological and cognitive-behavioral approaches in a therapeutic perspective. 

To further dissect the 5-HT role in the regulation of glutamatergic transmission at dMSNs, it 

will be important to analyze if 5-HT neuromodulation can differently or selectively affect 

cortico-striatal or thalamo-striatal connections. 

Because of the pathophysiology of specific aspects of compulsive behaviors involves the 

DLS (Nazzaro et al., 2012), and serotonergic neuronal activity correlates with repetitive or 

sustained behavior typical of OCD (Kane et al., 2012), we also plan to investigate the 

behavioral impact of serotonergic modulation of striatal synaptic plasticity. 

We will pharmacologically manipulate 5HT4R of the DLS in vivo, to test the effect of 5HT on 

instrumental conditioning of nose poking for food (Nazzaro et al., 2012). After a short-training 

paradigm, mice learn the task and behavior is defined as goal-directed as it is flexible and 

sensitive to change in the contingency between the action and the outcome. We will test the 

hypothesis that injection of 5HT4R antagonists in the DLS promotes a shift towards a 

repetitive and inflexible habitual behavior. To further validate the behavioral relevance of 5HT 

in shaping instrumental learning we will test the impact of in-vivo DREADD pharmacology 

and optogenetic approaches to inhibit 5HT terminals in the DLS during behavior.  

In conclusion, providing molecular and synaptic insights on the neuromodulatory role of 5-HT 

at striatal circuits, and establishing how this is causally relevant for defined cognitive process 

implicated in action control, could facilitate the development of new pharmacological 

approaches to treat symptoms of OCD. 
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Figure S1. Summary of STDP-LTD experiments. 

Bar diagrams summarizing the ratios of post-STDP and pre-STDP synaptic responses of all the 

experimental conditions described in the Results sections. 

 

Figure S2. Summary of HFS-LTD experiments. 

Bar diagrams summarizing the ratios of post-HFS and pre-HFS synaptic responses of all the 

experimental conditions described in the Results sections. 
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Figure S3. Generation of the hM4Di
+/-

/Pet1210-Cre
+/-

 double transgenic mouse. 

The double transgenic mice expressing the inhibitory receptor hM4Di selectively in the serotonergic 

neurons originate from the match of a loxPlox2722-hM4Di-mCherryknock-in mouse line with a 

Pet1(210)-Cre transgenic mouse line; constructs of the hM4Di-mCherry transgene (A) and 

Pet1(210)-Cre transgene (B) are shown. C. Immunostaining for mCherry reporter (red) and 

serotonin (5-HT, green) in the dorsal raphe nucleus of double transgenic mice shows a 

colocalization of the two signals, confirming that those mice express the hM4Di-mCherry receptor 

selectively in serotonergic, Pet-expressing neurons. The figure was kindly provided from M. 

Pasqualetti, A. Gozzi and A. Giorgi. 
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