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Genetic fine-mapping and genomic annotation 
defines causal mechanisms at type 2 diabetes 
susceptibility loci 
 

DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium1,2 
 
To advance understanding of the mechanisms through which variants at genome-wide 
association signals impact susceptibility to type 2 diabetes (T2D), we performed fine-
mapping of 39 established risk loci in 27,206 cases and 57,574 controls of European 
ancestry.  Through high-density imputation and conditional analyses, we identified a total 
of 49 distinct association signals at these loci, including five mapping in/near KCNQ1.  We 
constructed “credible sets” that capture the variants most likely to drive each distinct 
association signal, and considered their overlap with functional annotation from T2D-
relevant tissues.  We identified credible set coding alleles that are likely to be driving 
seven association signals, including non-synonymous variants in HNF1A and HNF4A.  
Outside of these signals, credible set variants mapped predominantly to non-coding 
sequence, implying that T2D association is mediated through gene regulation.  Credible 
set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation 
binding sites determined in human islet and liver cells.  FOXA2 enrichment was observed 
at 19 distinct signals, including MTNR1B, where genetic fine-mapping implicates 
rs10830963 as the variant driving the association with T2D (99.8% posterior probability).  
We confirmed that the T2D-risk allele of rs10830963 increased FOXA2-bound enhancer 
activity in both islet and liver cells.  We also observed allele-specific differences in 
NEUROD1 binding in islets, consistent with evidence that the T2D-risk allele increases islet 
MTNR1B expression.  Our study demonstrates how integration of genetic and genomic 
information can define the molecular mechanisms through which variants underlying 
genome-wide association signals exert their effects on disease risk.      
 
Type 2 diabetes (T2D) is a heritable, chronic metabolic disorder with multifactorial 
pathogenesis that is characterised by hyperglycaemia, deficient insulin secretion, and 
resistance to insulin action1.  Large-scale genome-wide association studies (GWAS) of 
common variants, defined here by minor allele frequency (MAF) of at least 5%, have been 
extremely successful in identifying loci contributing genetic effects to T2D susceptibility2-6.  
It has become standard practice to represent these GWAS loci by a single “lead” SNP, most 
often the variant with the strongest signal of association in the region.  However, the lead 
SNP may not directly impact disease susceptibility, but instead be a proxy for the causal 
variant because of linkage disequilibrium (LD).  Interpretation may be further complicated 
by the presence of more than one causal variant at a locus, acting in isolation or through the 
joint effects of alleles on the same haplotype, potentially resulting in multiple “distinct” 
association signals in the same region, which can only be delineated, statistically, through 
conditional analyses. 
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With the exception of a handful of loci, including PPARG7, KCNJ11-ABCC88, SLC30A89, 
and GCKR10, where the lead SNPs are protein altering variants, the mechanisms by which 
associated alleles influence T2D susceptibility are largely unknown.  At other loci, direct 
biological interpretation of the effect of genetic variation on disease susceptibility is more 
challenging because the association signals mostly map to non-coding sequence.  While 
recent reports have demonstrated a relationship between T2D-associated variants and 
transcriptional enhancer activity, particularly in human pancreatic islets, liver cells, adipose 
tissue and muscle11-15, the DNA-binding proteins through which these effects may be 
mediated remain obscure.  Localisation of non-coding causal variants may highlight the 
specific regulatory elements they perturb, and potentially the genes through which they 
operate, providing invaluable insight into the pathophysiological basis of T2D susceptibility 
at GWAS loci. 

To improve the localisation of causal variants for T2D association signals, and 
characterise the mechanisms through which they alter disease risk, we performed 
comprehensive fine-mapping of 39 established susceptibility loci through high-density 
imputation and meta-analysis of 27,206 cases and 57,574 controls from 23 studies of 
European ancestry, each genotyped with the Metabochip16 (Supplementary Tables 1 and 
2).  This custom array of 196,725 variants was designed to facilitate cost-effective follow-up 
of nominal associations for metabolic, cardiovascular and anthropometric phenotypes, and 
to enhance fine-mapping, through high-density SNP coverage, of established loci for these 
traits.  Within each locus, we aimed to: (i) evaluate the evidence for multiple distinct 
association signals through conditional analyses; (ii) undertake fine-mapping by defining 
credible sets of variants that account for ≥99% of the probability of driving each distinct 
association signal on the basis of statistical evidence from genetic data; and (iii) interrogate 
these credible sets for functional and regulatory annotation to provide insight into the 
mechanisms through which likely causal variants influence disease risk. 
 
 
RESULTS 
 
Coverage and imputation into Metabochip fine-mapping regions 
 
The fine-mapping content of Metabochip includes high-density SNP coverage of 257 loci 
with previous evidence of genome-wide significant association (p<5x10-8) for at least one of 
23 metabolic, cardiovascular, and anthropometric traits16.  SNPs in fine-mapping regions 
were selected from reference panels from the International HapMap Consortium17 and the 
1000 Genomes (1000G) Project Consortium pilot data18.  At design, 27 T2D susceptibility loci 
were selected for fine-mapping.   However, subsequent T2D GWAS discovery efforts have 
identified additional loci that overlap, at least partially, a further 12 fine-mapping regions on 
Metabochip that were initially selected for other traits (Supplementary Table 3).  Loci were 
ranked according to their priority for fine-mapping to determine the degree to which 
tagging was used to prune SNPs within each region to create the final design of the array16 
(Supplementary Table 3). 

A comprehensive approach to locus fine-mapping would directly interrogate all 
genetic variation throughout the region.  The phase 1 integrated reference panel (March 
2012 release) of the 1000G Project Consortium19 provides one of the most complete 
catalogues of variants with MAF≥0.5% in European ancestry populations.  However, across 
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all fine-mapping regions on Metabochip, only 47.7% and 24.6%, respectively, of common 
and low-frequency (0.5%≤MAF<5%) variants in the European ancestry haplotypes of the 
1000G reference panel are included on the array.  To enhance direct interrogation of 
variation in the fine-mapping regions, we thus undertook imputation into the Metabochip 
scaffold, in each study, up to the 1000G phase 1 integrated reference panel, including 
haplotypes from all ancestries to reduce error rates20 (Online Methods).   

The quality of imputation of variants in the 1000G reference panel was variable 
across studies, and highly dependent on the scaffold sample size and MAF in the European 
ancestry haplotypes (Supplementary Table 4).  We defined a variant to be “well-imputed” if 
it attained the widely-used thresholds21 of IMPUTEv222 info≥0.4 or minimac23 r2≥0.3 in at 
least 80% of the total effective sample size (Neff≥59,122) across studies.  With this definition, 
99.4% and 89.0%, respectively, of common and low-frequency variants in European ancestry 
haplotypes in the 1000G reference panel were well imputed, and therefore retained for 
downstream association analyses.  Within studies, imputation quality is remarkably 
consistent across loci, despite the differential priority of fine-mapping regions and their 
coverage at design (Supplementary Table 5).  1000G imputation into the Metabochip 
scaffold thus provides consistent and near complete coverage of common and low-
frequency variation across the 39 T2D susceptibility loci, and can supports direct, high-
quality interrogation of the majority of potential causal variants with MAF≥0.5% in European 
ancestry populations.     
 
Identification of distinct association signals at T2D susceptibility loci 
 
The first step in fine-mapping GWAS loci is to delineate, statistically, distinct association 
signals arising from multiple causal variants in the same region through conditional 
analyses.  In the context of meta-analysis, this can most efficiently be achieved through 
approximate conditioning, implemented in GCTA24.  This approach uses a stepwise selection 
approach to ascribe “index” variants to represent each distinct association signal for which 
the corresponding p-values in an approximate joint regression model (denoted pJ) achieve a 
pre-defined significance threshold.  GCTA has the advantage that it makes use only of 
unconditional meta-analysis association summary statistics and a reference study to 
approximate LD between variants, and hence correlation in parameter estimates in the 
regression model, without the need for additional cohort-level information. 

Within each of the 39 T2D fine-mapping regions, we identified distinct association 
signals achieving “locus-wide” significance (pJ<10-5) by applying GCTA in two stages (Online 
Methods): (i) selection of index variants on the basis of fixed-effects meta-analysis across 
Metabochip studies; and (ii) in silico replication of the index variants in a validation meta-
analysis of an additional 19,662 T2D cases and 115,140 controls from 10 GWAS of European 
ancestry (Supplementary Tables 1, 2 and 6).  This locus-wide significance threshold reflects 
a conservative Bonferroni correction allowing for up to 5,000 variants in each fine-mapping 
region.  The allelic odds ratios (OR) and p-values of index variants in the GCTA joint 
regression model were robust to the choice of reference study used to approximate LD 
across the fine-mapping region (Supplementary Table 7, Supplementary Figure 1).   

Next, because GCTA is only an approximation, we confirmed the association of each 
index variant in loci with multiple distinct signals through exact conditional analysis across 
Metabochip studies (Online Methods).  Within each study, and for each distinct signal, we 
tested for T2D association with the corresponding index variant, in turn, after adjustment 
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for genotypes at all other index variants in the fine-mapping region.  We then combined 
association summary statistics across studies through fixed-effects meta-analysis, and 
compared the allelic OR and p-value from exact conditioning with that from the GCTA joint 
regression model (Supplementary Table 8).   

The most dramatic delineation of distinct association signals was observed for the 
fine-mapping region flanking KCNQ1, where five non-coding index variants attained locus-
wide significance across our European ancestry Metabochip and validation studies (Table 1).  
Distinct association signals represented by three of the index variants have been reported in 
previous GWAS of European5 and East Asian25 ancestry: rs74046911 (pJ=3.6x10-26, r2=0.98 
with East Asian lead SNP, rs2237897) and rs2237895 (pJ=2.1x10-9, r2=0.75 with one 
European lead SNP, rs163184), both of which map to a <50kb intronic recombination 
interval; and chr11:2692322:D (pJ=7.2x10-16, r2=0.59 with second European lead SNP, 
rs163184), which resides in the KCNQ1OT1 transcript that controls regional imprinting26.  
The remaining two distinct association signals at this locus are novel, and are indexed by: 
rs458069 (pJ=3.2x10-6), which maps to the same recombination interval as rs74046911 and 
rs2237895, but is in only weak LD with both (r2=0.019 and r2=0.245, respectively); and 
rs2283220 (pJ=2.2x10-7), which resides in a neighbouring intron of KCNQ1, but outside of the 
recombination interval (Supplementary Figure 2). 

At the HNF1A locus, we observed three distinct association signals (Table 1, 
Supplementary Figure 3), each represented by index variants that are in only weak LD with 
the previously reported lead GWAS SNP in this region, rs12427353.  They include two non-
synonymous variants, rs1169288 (pJ=4.4x10-14, r2=0.09, HNF1A p.I27L) and rs1800574 
(pJ=4.2x10-10, r2=0.01, HNF1A p.A98V), and one inter-genic SNP, chr12:121440833:D 
(pJ=2.9x10-10, r2=0.19).   

We also observed four loci with two distinct association signals (CDKN2A-B, DGKB, 
MC4R and GIPR), each represented by non-coding index variants (Table 1, Supplementary 
Figure 4).  The two index variants at the CDKN2A-B locus represent the known T2D 
haplotype association signal mapping to a 12kb inter-genic recombination interval, 
downstream of the non-coding CDKN2B-AS1 transcript27-29.  The index variants at DGKB and 
MC4R confirm previously reported distinct association signals at these loci, described in 
meta-analyses5 of studies that are partly overlapping with the present investigation.  
However, the association signal represented by the index variant mapping upstream of 
GIPR, rs4399645 (pJ=4.0x10-8), has not been reported in previous GWAS of T2D 
susceptibility. 

Finally, we observed a novel distinct association signal of at the HNF4A locus, 
represented by the coding index variant rs1800961 (pJ=1.4x10-9, HNF4A p.T139I, [p.T130I in 
some previous studies30]).  Unfortunately, this fine-mapping region was included on 
Metabochip because of its association with high-density lipoprotein cholesterol16,31 
(Supplementary Table 3), and does not include the previously reported lead T2D GWAS SNP 
at this locus, rs4812829, thus precluding conditional analyses in these data.  However, 
rs4812829 is not in LD with our novel index variant (r2=0.02), suggesting that there are at 
least two distinct T2D association signals at the HNF4A locus.     
 
Characteristics of index variants for T2D susceptibility association signals 
 
The “synthetic association” hypothesis posits that common lead SNPs at GWAS loci may 
reflect unobserved causal variants of lower frequency and greater effect size32.  Given the 
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near complete coverage of variation with MAF≥0.5% in Metabochip fine-mapping regions 
after 1000G imputation, we sought to investigate the support for this model by considering 
the characteristics of index variants in terms of their allelic OR and risk allele frequency 
(Supplementary Table 6, Supplementary Figure 5).  Of the distinct association signals 
achieving locus-wide significance across the fine-mapping regions, only three index variants 
are not common: rs1800574 (MAF=2.2%, OR=1.21) at the HNF1A locus; rs1800961 
(MAF=3.9%, OR=1.16) at the HNF4A locus; and rs17066842 (MAF=4.8%, OR=1.12) at the 
MC4R locus.  Further, as indicated above, the T2D associations with these three low-
frequency alleles are distinct from those for the previously described lead SNPs at these loci, 
and could not account for the reported common variant GWAS signals.  The contribution of 
even rarer variants (MAF<0.5%) to T2D susceptibility could not be directly investigated with 
these data because of the low quality imputation for such infrequent alleles.  Nevertheless, 
the substantial effect sizes that would be required for rare causal variants to drive 
association signals are inconsistent with the observed heritability of the disease at most 
GWAS loci33.   
 
Localisation of variants driving T2D susceptibility association signals 
 
High-density imputation and conditional analyses have identified a total of 49 distinct T2D 
association signals across the 39 established loci represented on Metabochip: five at KCNQ1, 
three at HNF1A, two each at CDKN2A-B, DGKB, MC4R and GIPR, and one each in the 
remainder (the previously reported lead SNP at HNF4A maps outside of the fine-mapping 
region).  To fine-map these loci, we used statistical evidence of association from the meta-
analysis of Metabochip studies to construct a “credible set” of variants29 that is most likely 
to drive each distinct signal (Online Methods, Supplementary Table 9, Supplementary 
Figure 6).  Assuming that the variant driving the association signal is reported in the meta-
analysis, there is 99% probability that it will be contained within the 99% credible set.  
Smaller credible sets, in terms of the number of variants they contain, or the genomic 
interval they span, correspond to fine-mapping at higher resolution.   

The 99% credible set included no more than ten variants for ten distinct association 
signals mapping to nine loci (Table 2).  The greatest refinement was observed at the 
MTNR1B locus, where the credible set included only the index variant, rs10830963, 
accounting for more than 99.8% of the posterior probability (πC) of driving the association 
signal.  Small credible sets were also observed for distinct association signals at TCF7L2 
(three variants, indexed by rs7903146, mapping to 4.3kb), and KCNQ1 (three variants, 
indexed by rs74046911, mapping to 200bp of the intronic recombination interval).  The 99% 
credible sets for both distinct association signals at CDKN2A-B together include just 11 
variants mapping to less than 2kb. 

We performed functional annotation of credible set variants to search for evidence 
that association signals are driven by coding alleles that have not previously been 
interrogated by the most recent GWAS of T2D susceptibility2-6.  In addition to previously 
reported non-synonymous T2D-risk alleles at PPARG7, KCNJ11-ABCC88,34,35, SLC30A89,36, and 
GCKR10,37, we identified three additional credible set coding variants that attained 
substantive posterior probability of driving distinct association signals at loci represented on 
Metabochip (Supplementary Table 10).  These include the index variants for the novel 
association signals mapping to HNF4A (p.T139I, rs1800961, πC=97.4%) and HNF1A (p.I27L, 
rs1169288, πC=75.5%; p.A98V, rs1800574, πC=34.0%) reported above.  These results provide 
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compelling evidence that these three coding variants are likely to be driving distinct 
association signals at these loci.  Our findings are supported by earlier studies, which not 
only reported evidence for association with T2D and defects in insulin secretion in vivo, but 
also demonstrated reduced transcriptional activity in a variety of in vitro assays30,38.  These 
data provide strong evidence that HNF4A and HNF1A are effector transcripts for T2D 
susceptibility at these loci, a view further supported by the known impact of rare, loss of 
function mutations in these genes on maturity onset diabetes of the young39,40. 

Outside of these seven distinct association signals (including two at HNF1A), where 
genetic fine-mapping and previous functional data have highlighted the likely causal 
protein-altering alleles and transcripts, no further coding variants attained posterior 
probability of more than 1%.  Given the near complete coverage of common and low-
frequency variants in Metabochip fine-mapping regions after 1000G imputation, it is 
improbable that any additional distinct association signals mapping to established T2D 
susceptibility loci represented on the array are driven by coding variation with MAF≥0.5%.  
These data thus confirm previous genome-wide reports that these association signals are 
most likely to be mediated, instead, through gene regulation11,14,15,41.       
 
Investigation of regulatory mechanisms through which non-coding credible variants 
influence T2D susceptibility at GWAS loci 
 
Given the evidence from recent studies that T2D-associated variants are preferentially 
located in enhancer elements14,15, we next sought to gain insight into the specific 
transcription factors they perturb.  To do this, we began by intersecting the 99% credible 
sets for each distinct association signal with experimental chromatin immunoprecipitation 
sequence (ChIP-seq) data marking binding sites for 165 proteins from ENCODE11 and other 
resources15 (Online Methods, Supplementary Table 11).  We applied an enrichment 
procedure that compares the mean posterior probability of driving the association signal for 
credible set variants directly overlapping ChIP-seq sites, for each protein, with a null 
distribution obtained from randomly shifted site locations within a 1Mb window. 

We first applied this procedure to credible set variants for all 49 distinct association 
signals, simultaneously, across the 39 established T2D susceptibility loci represented on 
Metabochip (Figure 1a).  Variants in FOXA2 ChIP-seq binding sites, assayed in human 
hepatocellular carcinoma (HepG2)11 and primary human pancreatic islet15 cells, had a 
significantly higher posterior probability of driving the association signal (p<0.00030, 
Bonferroni correction for 165 proteins) than expected under the null distribution (9.2-fold 
enrichment, p=0.00025).  We also observed nominally significant enrichment for variants in 
FOXA1 (5.7-fold, p=0.00054) and NKX2.2 (7.0-fold, p=0.0012) sites.  The over-representation 
of FOXA2 ChIP-seq sites was: (i) exclusive to those shared with at least one other factor (9.6-
fold, p=0.00017) compared to those that were unique (0.13-fold enrichment, p=0.38); and 
(ii) stronger for those in pancreatic islets (12.6-fold, p=0.00019) than in HepG2 (6.0-fold, 
p=0.0071) (Figure 1b).  Given the previously reported preponderance of T2D-associated 
variants for islet enhancers, we tested to what extent FOXA2 enrichment is driven by co-
localisation with islet enhancer sites15.  Variants in FOXA2-bound sites remained enriched, at 
nominal significance (p<0.05), for the posterior probability of driving the association after 
removing enhancer sites (4.5-fold, p=0.018), implying that they capture additional signal 
outside of these regions (Figure 1b).  These results suggest that FOXA2 binding assayed by 
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ChIP-seq, often at locations shared by other proteins, is a genomic marker of variants with a 
high posterior probability of driving association signals for T2D from genetic fine-mapping.    

Having demonstrated global over-representation for FOXA2 ChIP-seq binding sites by 
considering all loci simultaneously, we applied the same procedure to the 99% credible set 
for each distinct association signal separately, to identify those with the strongest evidence 
for local enrichment (Figure 1c).  We observed over-representation of credible set variants 
for FOXA2 binding (i.e. fold-enrichment > 1) for 19 association signals, 12 of which attained 
nominal significance (p<0.05).  A total of 94 credible set variants at these 19 distinct 
association signals overlap a FOXA2 ChIP-seq site, and thus were posited to be most likely to 
be causal for T2D susceptibility.  Of these, 18 variants (mapping to nine distinct association 
signals) were predicted to disrupt de novo recognition motifs enriched in FOXA2-bound 
sequence (Supplementary Table 12).  Furthermore, these 18 variants had a mean posterior 
probability of driving the association signal of πC=15.6% on the basis of genetic fine-
mapping, which was more than seven times greater than for those in FOXA2 ChIP-seq sites 
that were not predicted to be motif-disrupting at the same signals (mean πC=2.2%, 
p=0.00091) (Figure 1d).  They include two variants with experimentally-validated differences 
in regulatory activity, rs7903146 (πC=77.6%) at TCF7L242 and rs11257655 (πC=21.1%) at 
CDC12343.  They also include rs10830963, the index variant at the MTNR1B locus, which 
accounts for 99.8% of the posterior probability of driving the association signal on the basis 
of genetic fine-mapping.  These results suggest that FOXA2 binding patterns can be used to 
identify specific variants that are potentially causal for T2D susceptibility through altered 
regulatory binding. 
 
Altered regulatory activity of the credible variant at the MTNR1B locus 
 
To demonstrate how local enrichment of FOXA2 binding can be used to highlight regulatory 
mechanisms through which credible variants might impact T2D susceptibility, we focussed 
on the MTNR1B locus.  Variants mapping to this region have amongst the strongest known 
effects on both T2D risk5 and regulation of fasting plasma glucose concentration44, and 
physiological data suggests an impact of MTNR1B on both insulin secretion and insulin 
action45.  The credible variant, rs10830963, overlaps a FOXA2 ChIP-seq binding site, and the 
risk allele, G, is predicted to create a recognition motif that matches the known consensus 
sequence of NEUROD1, in addition to several other factors (Figure 2a, Supplementary Table 
13).  We tested in silico predictions of protein binding at rs10830963 via electrophoretic 
mobility shift assay (EMSA) with 25bp probe fragments surrounding each allele in human 
pancreatic islet beta-cell (EndoC-βH1)46 or HepG2 cell extracts.  We observed allele-specific 
binding with extracts from both cell lines (Figure 2b, Supplementary Figure 7).  To 
determine the specific protein bound, we then repeated the EMSA in the presence of 
antibodies, initially against NEUROD1, but then also  FOXA2 and three other factors (TAL1, 
PTF1A and YY1), whose known sequence motifs also resemble the recognition motif (Online 
Methods).  We observed a shifted risk allele band using the NEUROD1 antibody in EndoC-
βH1 extracts, and an excess of the unlabelled NEUROD1 consensus sequence probe 
competed away the signal (Figure 2b).  None of the tested antibodies shifted the risk allele 
band in HepG2 cell extracts (Supplementary Figure 7).  This suggests that the risk allele of 
rs10830963 binds NEUROD1 in islets, but binds a protein that could not be identified from 
known recognition motifs in liver.   
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To relate allelic differences in protein binding to genomic activity at this site, we 
cloned the 224bp FOXA2 site surrounding rs10830963 into luciferase reporter vectors 
containing a minimal promoter, and transfected these constructs into EndoC-βH1 and 
HepG2 cell lines.  Consistent with EMSA results and in silico predictions, we observed a 
significant increase in luciferase expression on risk allele compared to the protective allele 
constructs in both cell lines (p<0.05) (Figure 2b,c).  Furthermore, RNA-seq data reported 
from human islets link the risk allele of rs10830963 to increased expression of MTNR1B47.  
These, and other data48, indicate that T2D risk reflects increased MTNR1B expression, rather 
than loss of function49.  Taken together, these results suggest that the G allele of 
rs10830963 increases T2D risk through increased FOXA2-bound enhancer activity, and in 
human islets, preferential binding of NEURDO1, which leads to higher expression of 
MTNR1B. 
 
Identification of candidate effector genes for FOXA2 enriched association signals   
 
Finally, we attempted to relate FOXA2 binding at the 19 enriched association signals to 
target effector genes.  We hypothesized that the locus-specific effects of Foxa2 knockouts in 
mice would serve as a proxy for identifying causal genes at human T2D association signals 
with local enrichment of FOXA2 binding.  We obtained previously reported pancreatic islet 
gene expression profiles from wild-type and Foxa1/2-null mice50, and mapped murine genes 
to human orthologs at each locus (Online Methods).  Genes mapping within 500kb of the 
interval covered by the credible set at the 19 FOXA2-enriched signals were significantly 
down-regulated (0.47x decrease) in Foxa1/2 knockout mice (Supplementary Figure 8) 
compared to those genome-wide (0.21x increase, p=0.00064), whilst those mapping within 
500kb of other T2D association signals were not (0.26x increase, p=0.35).  We observed a 
consistent down-regulation (0.73x decrease) when considering only those genes mapping 
closest to each FOXA2-enriched signal, compared to those genome-wide (0.21x increase, 
p=0.031) (Supplementary Figure 8).  These results implicate candidate effector genes at 
enriched association signals that are affected by altered FOXA2 activity (Supplementary 
Table 14), such as REG4 (at the NOTCH2 locus, 15.2x decreased expression), HHEX (at the 
HHEX-IDE locus, 1.82x decrease), and CAMK1D (at the CDC123 locus, 1.81x decrease).  These 
data suggest that loss of Foxa1/2 leads to preferential down-regulation of genes at FOXA2-
enriched association signals at T2D susceptibility loci. 
 
 
DISCUSSION 
 
We have undertaken comprehensive fine-mapping of 39 established T2D susceptibility loci 
represented on Metabochip to localise potential causal variants for association signals in 
27,206 cases and 57,574 controls of European ancestry.  Through 1000G imputation, we 
achieve near complete coverage of genetic variation with MAF≥0.5% in fine-mapping 
regions.  Conditional analyses have demonstrated that multiple distinct association signals 
are widespread at established loci for the disease, including five mapping to/near KCNQ1.  
These distinct association signals may reflect multiple causal variants acting in isolation or in 
tandem through their joint effects, in cis, on a haplotype, although further work would be 
required to distinguish between these possibilities, from both statistical and functional 
perspectives. 
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Credible set variants, which together account for 99% of the posterior probability of 
driving each distinct association signal, are predominantly common.  Although we cannot 
evaluate the impact of rare variation (MAF<0.5%) in established T2D susceptibility loci 
without large-scale re-sequencing, our data strongly argue against a role for low-frequency 
variants of large effect on disease risk via synthetic association31.  Through functional 
annotation of credible sets, we have demonstrated that seven distinct association signals, 
mapping to six established T2D susceptibility loci (amongst 39 represented on Metabochip), 
are likely to be driven by coding variation, including novel index variants mapping to HNF1A 
and HNF4A.  Outside of these regions, our fine-mapping confirms previous genome-wide 
reports that T2D association signals are primarily driven by non-coding alleles, with effects 
that are mediated through gene regulation11,14,15,41.   

We have demonstrated, by genomic annotation and in vitro assay, that FOXA2 
binding assayed by ChIP-seq can be used to pinpoint candidate causal regulatory elements, 
providing routes to understanding the biology of specific T2D susceptibility loci, and 
highlight the variants and effector transcripts through which association signals are 
mediated.  For example, at the MTNR1B locus, the risk allele of the credible variant, 
rs10830963, which drives the T2D association signal, increases FOXA2-bound enhancer 
activity in human islet and liver cell lines.  These data are entirely consistent with previous 
reports correlating the risk allele with higher MTNR1B expression47,48.  FOXA2 is a pioneer 
factor that binds native chromatin and bookmarks genomic regions for transcriptional 
activity51, and is involved in pancreatic and hepatic development52,53.  Foxa2 null mice have 
impaired insulin secretion50, and common variants at the FOXA2 locus are associated with 
fasting plasma glucose concentrations44.  Our findings are thus consistent with the 
involvement of FOXA2 in maintaining normal glucose homeostasis.  Common variants in 
FOXA2 have also been nominally associated with T2D susceptibility in North Indians54, but 
do not achieve genome-wide significance in the largest GWAS for the disease from multiple 
ancestry groups2-6.   

In conclusion, we have identified likely effector transcripts for distinct T2D 
association signals that mediate the effects of credible set variants by altering protein 
function or gene regulation.  We have highlighted that FOXA2 binding patterns can be used 
to inform future hypothesis-driven investigation of the variants, genes and molecular 
mechanisms underlying T2D association signals mapping to non-coding sequence.  Finally, 
our study demonstrates the utility of fine-mapping through integration of genetic and 
genomic information from relevant tissues and cellular models to elucidate the 
pathophysiology of complex human diseases, thus offering a promising avenue for 
translation of GWAS findings for clinical utility. 
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ONLINE METHODS 
 
Metabochip imputation and association analysis.  We considered a total of 27,206 T2D 
cases and 57,574 controls from 23 studies from populations of European ancestry 
(Supplementary Table 1), all genotyped with the Metabochip.  Sample and variant quality 
control was performed within each study (Supplementary Table 2).  To improve the quality 
of the genotype scaffold in each study, variants were subsequently removed if: (i) allele 
frequencies differed from those for European ancestry haplotypes from the 1000 Genomes 
Project Consortium19 phase 1 integrated reference panel (March 2012 release) by more than 
20%; AT/GC variants had MAF>40% because of potential undetected errors in strand 
alignment; or (iii) MAF<1% because of difficulties in calling rare variants.  Each scaffold was 
then imputed up to up to the phase 1 integrated reference panel (all ancestries, March 2012 
release) from the 1000 Genomes Project Consortium19, using IMPUTEv222 or minimac23.  
Within each study, well-imputed variants (IMPUTEv222 info>0.4 or minimac23 r2>0.3) were 
tested for T2D association under an additive model after adjustment for study-specific 
covariates (Supplementary Table 2), including principal components to adjust for 
population structure.  Association summary statistics for each variant for each study were 
corrected for residual population structure using the genomic control inflation factor55 
obtained from 3,598 independent (r2<0.05) QT-interval variants, which were not expected 
to be associated with T2D5 (Supplementary Table 2).  We then combined association 
summary statistics for each variant across studies via fixed-effects inverse-variance 
weighted meta-analysis.  The results of the meta-analysis were subsequently corrected by a 
second round of QT-interval genomic control (λQT=1.18) to account for structure between 
studies.  Variants were excluded from downstream analyses if they were reported in less 
than 80% of the total effective sample size, defined as Neff = 4xNcasesxNcontrols/(Ncases+Ncontrols), 
thus removing those that were not well imputed in the majority of studies. 
 
Identification of distinct association signals in established GWAS loci.  We used GCTA24 to 
select index variants in each of the 39 established loci represented on Metabochip with 
nominal evidence of association (pJ<0.001) in the approximate joint regression model on the 
basis of: (i) summary statistics from the fixed-effects meta-analysis Metabochip studies; and 
(ii) genotype data for 3,298 T2D cases and 3,708 controls of UK ancestry from GoDARTS as a 
reference for LD across each fine-mapping region.  For comparison, we also obtained 
association summary statistics for the selected index variants from the GCTA joint 
regression model on the basis of genotype data from an alternative reference consisting of 
4,435 T2D cases and 5,757 controls of Scandinavian ancestry from FUSION (Supplementary 
Table 7, Supplementary Figure 1).  Selected index variants were then carried forward for in 
silico follow-up in validation meta-analysis. 

The validation meta-analysis consisted of 19,662 T2D cases and 115,140 controls 
from 10 GWAS from populations of European ancestry, genotyped with a range of genome-
wide arrays (Supplementary Table 1).  Sample and variant quality control was performed 
within each study (Supplementary Table 2).  Each scaffold was then imputed up to up to the 
phase 1 integrated reference panel (all ancestries, March 2012 release) from the 1000 
Genomes Project Consortium19, using IMPUTEv222 or minimac23.  Within each study, well-
imputed variants (IMPUTEv222 info≥0.4 or minimac23 r2≥0.3) were tested for T2D association 
under an additive model after adjustment for study-specific covariates (Supplementary 
Table 2), including principal components to adjust for population structure.  Association 
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summary statistics for each variant for each study were corrected for residual population 
structure using the genomic control inflation factor55 (Supplementary Table 2).  We then 
combined association summary statistics for each variant across studies via fixed-effects 
inverse-variance weighted meta-analysis.   

Association summary statistics for the selected index variants from the Metabochip 
and validation meta-analyses were next combined via fixed-effects inverse-variance 
weighted meta-analysis.  In each of the 39 established loci represented on Metabochip, we 
used GCTA24 was used to select index variants with locus-wide evidence of association 
(pJ<10-5) in the approximate joint regression model on the basis of: (i) summary statistics 
from the combined meta-analysis; and (ii) genotype data for 3,298 T2D cases and 3,708 
controls from GoDARTS as a reference for LD across each fine-mapping region. 

For established loci with multiple index variants selected at locus-wide significance 
from the GCTA approximate joint regression model in combined meta-analysis, we 
performed exact conditioning within each Metabochip study (Supplementary Table 8).  To 
obtain the association signal attributed to a specific index variant, high-quality variants 
(IMPUTEv222 info>0.4 or minimac23 r2>0.3) were tested for T2D association under an 
additive model after adjustment for study-specific covariates (Supplementary Table 2) and 
genotypes at other selected index variants in the fine-mapping region.  Association 
summary statistics for each study were corrected for residual population structure using the 
QT interval genomic control inflation factor obtained in the Metabochip meta-analysis.  For 
each association signal, summary statistics for each variant were then combined across 
discovery studies via fixed-effects inverse-variance meta-analysis, and subsequently 
corrected by a second round of QT-interval genomic control (λQT=1.18). 

 
Credible set construction.  We calculated the posterior probability that the jth variant, πCj, is 
driving a distinct association signal by 
 

𝜋C𝑗 =
𝛬𝑗

∑ 𝛬𝑘𝑘
, 

 
where the summation is over all variants in the fine-mapping region.  In this expression, Λj is 
the approximate Bayes’ factor56 for the jth variant, given by 
 

𝛬𝑗 = [√
𝑉𝑗

𝑉𝑗+𝜔
] exp [

𝜔𝛽𝑗
2

2𝑉𝑗(𝑉𝑗+𝜔)
], 

 
where βj and Vj denote the allelic effect (log-OR) and corresponding variance from the meta-
analysis for the association signal across Metabochip studies.  In loci with multiple distinct 
signals of association, results are presented from exact conditional meta-analysis after 
adjusting for all other index variants in the fine-mapping region.  In loci with a single 
association signal, results are presented from unconditional meta-analysis.  The parameter 
ω denotes the prior variance in allelic effects, taken here to be 0.0456.  A 99% credible set30 
was then constructed by: (i) ranking all variants according to their Bayes’ factor, Λj; and (ii) 
including ranked variants until their cumulative posterior probability exceeds 0.99. 
 
Transcription factor binding data and enrichment analyses.  We obtained genomic 
annotation data for genomic sites of protein binding (TFBS) assayed through ChIP 
experiments from multiple sources.  We used data from the ENCODE Project Consortium9 
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for 161 proteins available from the UCSC human genome browser.  We also obtained raw 
ChIP sequence data for additional factors assayed in primary pancreatic islets15.  We then 
processed these additional factors using similar protocols to those employed by the 
ENCODE Project Consortium11.  First, sequence reads were aligned to the human genome 
(hg19) using BWA57 with sex-specific references, and were then converted to BAM files 
using SAMtools58.  Binding sites were called from reads of each replicate, as well as reads 
pooled across all replicates, using MACS259 with a p-value of 0.01.  Sites from each replicate 
of a protein were compared using an irreproducible discovery rate (IDR) threshold of 0.01.  
The resulting number of sites passing this IDR threshold was then used to filter the pooled 
sites of a protein.  The set of sites were further filtered for artefacts using a blacklist of 
genomic regions from the ENCODE Project Consortium.  Sites from all sources for each 
protein, including ENCODE, were then merged.  The complete set of 165 proteins employed 
in these analyses is presented in Supplementary Table 11.   

For each factor, we tested for overall enrichment of the posterior probability that 
overlapping variants in 99% credible sets are driving distinct association signals.  We first 
calculated the mean posterior probability of all variants overlapping a factor binding site.  
We then generated a null distribution of the mean posterior probability by: (i) shifting the 
genomic locations of binding sites a random distance within 500kb in either direction; (ii) 
recalculating the mean posterior probability for variants overlapping shifted sites; and (iii) 
repeating this procedure 100,000 times.  We estimated the fold-enrichment of each overlap 
by calculating the expected null posterior probability, and dividing the observed probability 
by the expected probability.  We calculated a p-value for the enrichment by the proportion 
of permutations for which the expected posterior probability of driving the association 
signal was greater than or equal to that observed.  We consider factors significantly 
enriched if the p-value was less than 0.05/165 = 0.00030 (Bonferroni correction for 165 
factors).  We next partitioned binding sites into those that are “shared” with another factor 
(i.e. genomic co-ordinates intersect a site for at least one other factor), and those that are 
“unique”.  We also partitioned binding sites based on overlap with islet active enhancer (G3) 
elements15.  For each factor with significant enrichment across all credible sets (FOXA2), we 
applied the same enrichment analysis, but restricted to credible set variants for each 
distinct association signal, separately. 
 
Motif analysis.  We conducted recognition motif enhancement analyses for the set of 
FOXA2 ChIP-seq binding sites.  First, we obtained repeat-masked genomic sequence 
underlying each site using the UCSC human genome browser.  We scanned sequences for 
enrichment in these motifs using MEME-ChIP60.  This resulted in 192 enriched motifs with E-
value (expected number of hits) less than 0.05 (Supplementary Table 13).  We compared 
each motif to those known from JASPAR61, ENCODE11 and Homer62 using Tomtom63. 

We then identified variants in FOXA2 ChIP-seq sites predicted to disrupt an enriched 
recognition motif by: (i) scanning a 25bp of sequence flanking each variant allele using 
FIMO64 (p<0.0001); and (ii) retaining variants in highly conserved positions (entropy less 
than 0.05).  For the 18 variants at FOXA2-enriched association signals disrupting at least one 
recognition motif (Supplementary Table 12), we compared their posterior probabilities of 
causality with non-disrupting variants in FOXA2 ChIP-seq sites at the same signals using a 
two-sided t-test. 
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Electrophoretic mobility shift assays.  EMSA was performed using nuclear extracts from 
human HepG2 and EndoC-BH147 cells.  Nuclear extracts were treated with 32P gamma-ATP 
end-labeled double-stranded DNA probes (PerkinElmer, MA).  The forward strand probe 
sequences used were: 
  
rs10830963-C  TTCACACCATCTCCTATCCAGAACC 
rs10830963-G  TTCACACCATCTGCTATCCAGAACC 
NEUROD1  AAATCTGGCCAGCTGCTGATCCAAA 
 
For each lane of the EMSA, 5ug of nuclear extract was incubated with 100 fmol labeled 
probes in a 10ul binding reaction containing 10mM Tris-HCl pH7.5, 4% glycerol, 1mM MgCl2, 
0.5mM EDTA, 0.5mM DTT, 50mM NaCl and 1ug poly(dI-dC).  For competition assays 
unlabeled probe at 100-fold excess was added to the binding reaction before addition of 
labeled probes.  For super-shift assays the nuclear extract was pre-incubated with 1ug 
antibody for 30 minutes on ice before the probe was added.  The following antibodies were 
used: anti-NEUROD1 (sc-1084X, Santa Cruz Biotechnology, Texas), anti-PTF1A (sc-98612X, 
Santa Cruz Biotechnology, Texas), anti-HNF3B (FOXA2) (sc-6554X, Santa Cruz Biotechnology, 
Texas), anti-YY1 (sc281X, Santa Cruz Biotechnology, Texas), anti-TAL1 (sc12984X, Santa Cruz 
Biotechnology, Texas), normal rabbit Ig (sc-2027, Santa Cruz Biotechnology, Texas), normal 
goat Ig (sc-2028, Santa Cruz Biotechnology, Texas). 
 
Luciferase activity.  We synthesised 224bp nucleotide sequences containing either the risk 
or protective allele of the MTNR1B enhancer sequence rs10830963 in either the forward or 
reverse orientation by GeneArt (Life Technologies).  Complementary single-stranded oligos 
were then annealed and sub-cloned into the minimal promoter-driven luciferase vector 
pGL4.23 (Promega) using Nhel and Xhol.  Isolated clones were verified by sequencing. 

For luciferase assays, human liver HepG2 and human beta-cell EndoC-βH147 cells 
were counted and seeded into 24 well trays (Corning) at 1.5x105 (HepG2) or 1.4x105 (EndoC-
βH1) cells/well.  Transfections were performed in triplicate with either Lipofectamine 2000 
(HepG2) or Fugene 6 (EndoC-βH1) as per manufacturer’s instructions.  Cells were 
transfected with 700ng pGL4.23 DNA containing the protective or risk MTNR1B enhancer 
sequence in either the forward or reverse orientation, or an equivalent amount of empty 
vector DNA, plus 10ng pRL-SV40 DNA (Promega) as a transfection control, per well.  Cells 
were lysed 48 hours post-transfection and analysed for Firefly and Renilla luciferase 
activities using the Dual Luciferase Assay System (Promega) as per manufacturer's 
instructions, in half-volume 96 well tray format on an Enspire Multimode Plate Reader 
(Perkin Elmer).  Firefly luciferase activity was normalised to Renilla luciferase activity for 
each well, and the results expressed as a mean normalised activity relative to empty vector-
transfected cells.  All experiments were performed three times in triplicate.  A two-sided 
unpaired t-test was used to compare luciferase activity between alleles. 
 
Mouse gene expression analysis.  We obtained fold-changes in pancreatic islet gene 
expression in wild type compared to Foxa1/Foxa2-null mice50.  We used ENSEMBL to map 
mouse genes to human orthologs.  We filtered for human genes annotated as protein 
coding in GENCODE.  This filtering resulted in 4,786 human protein coding genes for 
analysis.   
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First, we calculated the genomic interval spanned by the variants in each credible 
set.  We expanded this interval for 500kb on either side, and identified the set of genes 
overlapping this region using BEDtools65.  Second, for each distinct association signal, we 
identified the closest gene to the index variant using BEDtools65.  We then partitioned 
distinct association signals into those with evidence for enriched FOXA2 binding (fold-
enrichment > 1) and those without.  For each analysis, we compared the fold-change in 
expression using a one-sided t-test between genes in each partition and all 4,786 protein 
coding genes. 
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FIGURE LEGENDS 
 
Figure 1.  FOX2A bound sites are a genomic marker of T2D risk variants.  (A) Variants in 
ChIP-seq binding sites for 165 proteins were tested for enrichment of posterior 
probabilities compared to variants in shifted sites.  Variants in FOXA2 ChIP-seq sites were 
significantly enriched (p<0.00030).  (B) FOXA2 ChIP-seq sites were partitioned based on 
overlap with other genomic features.  Sites overlapping a ChIP-seq site from at least one 
other factor showed stronger enrichment compared to unique sites.  There was at least 
nominal evidence for enrichment among sites identified in islets or HepG2 cells, and sites 
overlapping islet enhancers or not (**p<0.00030; *p<0.05).  (C) Variants at each signal 
were tested for FOXA2 enrichment.  Nineteen signals had greater enrichment than 
expected compared to shifted sites, and at twelve signals this estimate was nominally-
significant (p<0.05).  (D) FOXA2-bound variants disrupting recognition motifs have an 
increased probability of being causal. 
 
Figure 2.  Credible variant at MTNR1B affects FOXA2-bound enhancer activity.  (A) The 
intronic variant, rs10830963, has a 99.8% probability of driving the association signal at 
the MTRN1B locus.  This variant overlaps a FOXA2 binding site, and the risk allele G is 
predicted to create a binding site for a de novo recognition motif, which closely matches 
the NEUROD1 consensus. (B)  Electrophoretic mobility shift assay of a 25bp fragment 
surrounding both alleles in EndoC-BH1 cell extracts.  Proteins were bound to both alleles.  
In the presence of an antibody against NEUROD1, the risk allele bands shifted, and in the 
presence of a cold NEUROD1 consensus probe, the signal was competed away.  (C, D)  The 
224bp sequence surrounding each allele was cloned into a reporter construct containing a 
minimal promoter and tested for luciferase activity in (C) EndoC-BH1 and (D) HepG2  cells.  
The risk allele had significantly increased enhancer activity over the non-risk allele in both 
orientations in both cell types. 
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Table 1.  Established T2D susceptibility loci with multiple distinct signals of association at locus-wide significance in the GCTA joint 
regression model (pJ<10-5). 
  

Locus Index variant Chr 
Position 

(b37) 
Risk 

allele 
Other  
allele 

Metabochip GCTA joint model 
27,206 cases and 57,574 controls 

Validation GCTA joint model 
19,662 cases and 115,140 controls 

Combined GCTA joint model 
46,868 cases and 172,714 controls 

RAF OR (95% CI) pJ RAF OR (95% CI) pJ OR (95% CI) pJ 

DGKB 
rs10276674 7 14,922,007 C T 0.183 1.08 (1.04-1.11) 4.5x10-6 0.216 1.09 (1.05-1.12) 1.3x10-6 1.08 (1.06-1.11) 2.8x10-11 

rs1974620 7 15,065,467 T C 0.519 1.06 (1.04-1.09) 1.6x10-6 0.515 1.05 (1.03-1.08) 0.00014 1.06 (1.04-1.08) 1.0x10-9 

CDKN2B 
rs10811660 9 22,134,068 G A 0.830 1.32 (1.27-1.38) 2.4x10-44 0.817 1.21 (1.17-1.26) 2.6x10-21 1.27 (1.23-1.30) 1.1x10-61 

rs10757283 9 22,134,172 T C 0.437 1.14 (1.10-1.17) 7.4x10-18 0.436 1.11 (1.07-1.14) 1.3x10-10 1.12 (1.10-1.14) 3.6x10-26 

KCNQ1 

chr11:2692322:D 11 2,692,322 D R 0.374 1.08 (1.05-1.10) 3.5x10-8 0.413 1.09 (1.06-1.12) 1.2x10-8 1.08 (1.06-1.10) 2.3x10-15 

rs2283220 11 2,755,548 A G 0.661 1.06 (1.03-1.09) 0.000016 0.710 1.05 (1.02-1.08) 0.0031 1.06 (1.03-1.08) 2.4x10-7 

rs2237895 11 2,857,194 C A 0.428 1.08 (1.05-1.11) 6.6x10-7 0.433 1.07 (1.03-1.10) 2.8x10-4 1.07 (1.05-1.10) 5.3x10-10 

rs74046911 11 2,858,636 C T 0.951 1.32 (1.24-1.40) 1.7x10-17 0.943 1.25 (1.17-1.34) 4.8x10-10 1.29 (1.23-1.35) 9.6x10-26 

rs458069 11 2,858,800 G C 0.707 1.06 (1.03-1.10) 0.00026 0.707 1.07 (1.03-1.11) 0.00085 1.06 (1.04-1.09) 1.0x10-6 

HNF1A 

rs1169288 12 121,416,650 C A 0.334 1.10 (1.07-1.13) 5.4x10-10 0.316 1.08 (1.05-1.12) 2.8x10-6 1.09 (1.07-1.12) 8.1x10-15 

rs1800574 12 121,416,864 T C 0.027 1.21 (1.11-1.31) 5.2x10-6 0.020 1.23 (1.12-1.35) 0.000026 1.22 (1.14-1.29) 5.1x10-10 

chr12:121440833:D 12 121,440,833 R D 0.416 1.06 (1.03-1.09) 0.000028 0.382 1.08 (1.04-1.11) 2.5x10-6 1.07 (1.05-1.09) 2.9x10-10 

MC4R 
chr18:57739289:D 18 57,739,289 D R 0.234 1.05 (1.02-1.09) 0.00079 0.254 1.07 (1.03-1.10) 0.000059 1.06 (1.04-1.08) 1.9x10-7 

rs17066842 18 58,040,624 G A 0.961 1.13 (1.06-1.21) 0.00033 0.948 1.11 (1.04-1.19) 0.0012 1.12 (1.07-1.17) 1.4x10-6 

GIPR 
rs4399645 19 46,166,073 T C 0.395 1.07 (1.04-1.10) 4.4x10-7 0.441 1.05 (1.01-1.08) 0.0046 1.06 (1.04-1.08) 1.4x10-8 

rs2238689 19 46,178,661 C T 0.425 1.09 (1.07-1.12) 9.7x10-12 0.424 1.07 (1.04-1.10) 9.0x10-6 1.08 (1.06-1.11) 8.3x10-16 

HNF4Aa rs1800961 20 43,042,364 T C 0.034 1.16 (1.09-1.24) 0.000011 0.041 1.16 (1.08-1.25) 0.000051 1.16 (1.10-1.22) 2.3x10-9 

 
Each distinct association signal was represented by an index variant in the GCTA joint regression model on the basis of: (i) summary statistics from a 
combined meta-analysis of 46,868 cases and 172,714 controls of European ancestry; and (ii) reference genotype data from GoDARTS (3,298 cases and 3,708 
controls of European ancestry from the UK) to approximate LD across fine-mapping regions.   
Chr: chromosome.  RAF: risk allele frequency.  OR: odds-ratio for risk allele.  CI: confidence interval. 
aThe previously reported T2D GWAS SNP at the HNF4A locus (rs4812829) is not included in the fine-mapping region.  However, the reported index variant, 
rs1800961, is independent of the GWAS SNP, and thus represents a novel distinct association signal at this locus. 
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Table 2.  Distinct association signals at established T2D susceptibility for which the 99% credible set contains no more than ten variants. 
 

Locus Index variant Chr 
Position 

(b37) 
Risk 

allele 
Other 
allele 

RAF p-value OR (95% CI) 

99% credible set 

SNPs 
Interval 

(bp) 
Interval 

start (bp) 
Interval 

stop (bp) 

MTNR1B rs10830963 11 92,708,710 G C 0.283 2.9x10
-12

 1.10 (1.07-1.13) 1 1 92,708,710 92,708,710 

TCF7L2 rs7903146 10 114,758,349 T C 0.260 5.8x10
-120

 1.39 (1.35-1.43) 3 4,279 114,754,071 114,758,349 

KCNQ1 rs74046911 11 2,858,636 C T 0.951 5.9x10
-18

 1.33 (1.25-1.42) 3 197 2,858,440 2,858,636 

ZBED3 rs7732130 5 76,435,004 G A 0.278 6.4x10
-10

 1.09 (1.06-1.12) 5 10,056 76,424,949 76,435,004 

CDKN2A-B rs10757283 9 22,134,172 T C 0.437 2.8x10
-19

 1.14 (1.11-1.18) 5 1,007 22,133,645 22,134,651 

SLC30A8 rs13266634 8 118,184,783 C T 0.676 1.3x10
-18

 1.13 (1.10-1.16) 6 33,133 118,184,783 118,217,915 

CDKN2A-B rs10811660 9 22,134,068 G A 0.830 7.0x10
-43

 1.32 (1.27-1.37) 6 1,397 22,132,698 22,134,094 

HNF1B rs4430796 17 36,098,040 G A 0.455 6.3x10
-12

 1.09 (1.07-1.12) 7 5,791 36,097,775 36,103,565 

CDKAL1 rs35261542 6 20,675,792 A C 0.280 9.6x10
-23

 1.15 (1.12-1.18) 8 30,073 20,673,880 20,703,952 

GLIS3 chr9:4294707:I 9 4,294,707 I R 0.360 6.5x10
-8

 1.07 (1.05-1.10) 10 15,453 4,283,137 4,298,589 

 
Association summary statistics and credible set construction are based on the meta-analysis of Metabochip studies in 27,206 cases and 57,574 controls of 
European ancestry.  In loci with multiple distinct signals of association, results are presented from exact conditional analysis after adjusting for all other 
index variants in the fine-mapping region.  In loci with a single signal of association, results are presented from unconditional analysis. 
Chr: chromosome.  RAF: risk allele frequency.  OR: odds-ratio for risk allele.  CI: confidence interval. 

     
  

 


