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Abstract

We present an informational view of classical propositional logic that stems from
a kind of informational semantics whereby the meaning of a logical operator is
specified solely in terms of the information that is actually possessed by an agent.
In this view the inferential power of logical agents is naturally bounded by their
limited capability of manipulating “virtual information”, namely information
that is not implicitly contained in the data. Although this informational seman-
tics cannot be expressed by any finitely-valued matrix, it can be expressed by a
non-deterministic 3-valued matrix that was first introduced by W.V.O. Quine,
but ignored by the logical community. Within the general framework presented
in [21] we provide an in-depth discussion of this informational semantics and a
detailed analysis of a specific infinite hierarchy of tractable approximations to
classical propositional logic that is based on it. This hierarchy can be used to
model the inferential power of resource-bounded agents and admits of a uniform
proof-theoretical characterization that is half-way between a classical version of
Natural Deduction and the method of semantic tableaux.
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1. The background problem

The fundamental question that we address in this paper is the following:

do we actually possess the information that the conclusion of an infer-
ence is true whenever we possess the information that its premises are
true?

(1)

The lack of a general decision procedure strongly suggests that the intuitive
answer is “no” in the domain of classical first-order logic: there is no guarantee
that we are in a position to effectively recognize the truth of a valid consequence
A of a set Γ of sentences in all informational situations in which we recognize
the truth of the sentences in Γ. Moreover, despite the existence of decision
procedures for classical propositional logic, the widely believed conjecture that
P 6= NP , makes it highly improbable that there exists a feasible one. So, again,
there is no guarantee that we are in a position to feasibly recognize that the
conclusion of a valid propositional inference is true in all informational situations
in which we recognize that its premises are true. Therefore, if we construe the
notion of “actually possessing” a piece of information as having access to it
in practice,1 and not only in principle, a positive answer to (1) sounds highly
counterintuitive even in the restricted domain of propositional logic.

In fact, standard logical systems provide adequate models of logically om-
niscient agents, a normative ideal that can only be approximated in practice.
This is a source of major difficulties in all research areas where there is an ur-
gent need for less idealized, yet theoretically principled, models of logical agents
with bounded cognitive and computational resources. From this point of view,
it makes sense to require as in [36] that a logical system should consist not only
in an algorithmic or semantic characterization of a logic L, but also in a defini-
tion of how this logic L can be approximated in practice by realistic agents, no
matter whether human or artificial.

Despite various interesting, albeit scattered and differently motivated, con-
tributions,2 logic still lacks solid general foundations for an approximation the-
ory. In this paper we elaborate on ideas and results presented in a series of
previous papers [16, 22, 17, 21, 18, 19] to make a step in this direction by
outlining an “informational view” of classical propositional logic that naturally
yields a sequence of tractable approximations. We start from the following
problem: for which subsystems of classical propositional logic does it make in-
tuitive sense to give a positive answer to (1)? As argued in [21], a rather natural
solution stems from an alternative informational semantics for the Boolean op-
erators, whereby the meaning of a logical operator is specified solely in terms
of the information that is actually possessed by an agent. This semantics leads

1This may include implicit information that can be extracted from the information explic-
itly held by an agent (whether human or artificial) via a natural feasible procedure, i.e., one
that is part of the agent’s “built-in” inferential procedures.

2 With no claim of exhaustivity, we mention [10, 47, 27, 28, 13, 43, 48, 31, 32, 34, 35, 33, 39].
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to an incremental characterization of Boolean logic as the limit of a sequence
of tractable depth-bounded subsystems of increasing inferential power (and in-
creasing computational complexity).3

While the semantic definition of this hierarchy is independent of any specific
proof-theoretical formalism, it admits of a simple characterization in terms of a
proof system that is half-way between a classical version of Natural Deduction
and the method of semantic tableaux. The basic 0-depth logic is naturally
characterized by means of a set of introduction and elimination rules. These can
be seen as natural deduction rules that are logically weaker than the standard
Gentzen-style rules, in that they involve no “discharge” of assumptions, and
are more suitable to represent the classical meaning of the logical operators.
Alternatively, they can also be seen as a kind of tableau-like rules that extend
the elimination rules of the KE system [25] via a set of introduction rules.

The increasing inferential power of each k-depth approximation (with k > 0)
depends only on a single structural rule and on the depth at which its appli-
cation is allowed. This structural rule is, in essence, a (classical) cut rule —
closely related to the Principle of Bivalence — that governs the manipulation of
“virtual information”, i.e., information that we do not actually possess, but we
temporarily assume as if we possessed it. In our approach, therefore, the answer
to (1) is a matter of degree and depends on the minimum depth at which the use
of virtual information is required to obtain the conclusion from the premises.

The main new contributions of this paper with respect to [21] are the fol-
lowing: (i) we focus on a specific hierarchy of depth-bounded approximations
to Boolean Logic belonging to one of the families abstractly discussed in [21]
and present in more detail their semantic and proof-theoretical properties, with
clarifying examples; (ii) we provide an in-depth discussion of an intuitive in-
formational semantics for the basic (0-depth) system of this hierarchy that was
anticipated back in the 1970’s by some observations of Willard V.O. Quine [46]
(with no connection with tractable inference) and can be expressed by a 3-valued
non-deterministic matrix; this semantics was subsequently and independently
re-proposed (with no apparent connection with the intuitive interpretation given
by Quine) by Crawford and Etherington [13] who claimed (without proof) that
it provides a characterization of unit resolution;4 here we support their intuition
that this semantics may become the basic foundational tool for a general the-
ory of tractable approximations to classical logic, by showing that it captures
exactly all the logical inferences that can be drawn by using only “actual infor-
mation”; we also show that its scope is much wider than what envisaged in [13],

3The hierarchy discussed in this paper originates from a long-standing research program
started in [14] and can be interestingly compared to the similar hierarchies proposed in
the contributions cited in Footnote 2. From the proof-theoretical viewpoint, it is related
to St̊almarck’s method [51, 48, 8], which has proved quite successful in the area of system
verification (see [9]); for a more detailed discussion of this relation see [21].

4This non-deterministic semantics is briefly discussed also in [21] and claimed to be equiv-
alent to the “modular” semantics thoroughly investigated in that paper.
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in that it is relevant to any logical formalism with no syntactic restrictions;5

(iii) we provide a direct proof of the completeness of classical 0-depth deduction
with respect to this 3-valued non-deterministic semantics; (iv) we provide a de-
tailed discussion of depth-bounded intelim trees — a natural proof-theoretical
characterization of the hierarchy defined via the informational semantics — and
a very simple proof of a normal form theorem that is more general and more
informative than the subformula theorem in [21].

2. An informational semantics for the Boolean operators

The classical meaning of the logical operators is usually specified by the fa-
miliar truth-tables that fix the conditions under which a sentence is true or false
in terms of the truth or falsity of its immediate constituents. The underlying
notions of truth and falsity are assumed to obey the two classical principles of
Bivalence (any sentence is either true or false independent of our holding any
information about it) and Non-Contradiction (no sentence can be at the same
time true and false). This way of fixing the meaning of a logical operator is per-
fectly in tune with the classical, information-transcendent, notions of truth and
falsity and with the traditional view of logical inference as a truth-transmission
device; but it is at odds with the equally important view of logical inference
as an information-processing device. To abide by the latter view we need a
semantics based on informational notions. Moreover, in order to define subsys-
tems of classical logic that justify a positive answer to (1), we need a semantics
based on the notion of actual information, i.e., to put it with Jaakko Hintikka,
information that “we actually possess (as distinguished from the information we
in some sense have potentially available to us) and with which we can in fact
operate” [38, p. 229].

The primary notions of this semantics, therefore, are not classical truth and
falsity, but informational truth and informational falsity, namely holding the
information that a sentence is true, respectively false. Here, by saying that
an agent x holds the information that A is true (respectively false) we mean
that this is information that is practically available to x and with which x can
operate. Clearly, these notions do not satisfy the informational version of the
Principle of Bivalence: it may well be that for a given A, we neither hold the
information that A is true, nor do we hold the information that A is false. On
the other hand, in this paper we assume that they do satisfy the informational
version of the Principle of Non-Contradiction: no agent can actually possess
both the information that A is true and the information that A is false, as this

5In fact, the discussion of the 0-depth case in [13] is restricted to formulae in negation
normal form. This requires preliminary translation via the De Morgan laws. However, the
equivalence ¬(A ∧ B) ≡ ¬A ∨ ¬B is not sound under the non-deterministic semantics, and
this generates unnecessary anomalies such as the failure of modus ponens (see Example 2).
Moreover, the k-depth semantics presented in this paper is based on a classical reductio ad
absurdum that applies only to formulae in clausal form.
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would be deemed to be equivalent to possessing no definite information about
A.6

We use the values 1 and 0 to represent, respectively, informational truth
and falsity. When a sentence takes neither of these two defined values, we say
that it is informationally indeterminate. It is technically convenient to treat
informational indeterminacy as a third value that we denote by “⊥”.7 The
three values are partially ordered by the relation � such that v � w (“v is less
defined than, or equal to, w”) if, and only if, v = ⊥ or v = w for v, w ∈ {0, 1,⊥}.

Note that the old familiar truth tables for ∧,∨ and ¬ are still intuitively
sound under this informational reinterpretation of 1 and 0. For example, if we
hold the information that A is true and the information that B is true, then
we thereby hold the information that A ∧ B is true, etc. However, they are
no longer exhaustive: they do not tell us what happens when one or all of the
immediate constituents of a complex sentence take the value ⊥.

So, we need to conservatively extend the classical truth-tables with new
entries to accommodate the third value ⊥. More precisely, for every n-ary
Boolean operator ?, whose classical meaning is fixed by a truth-function f?, we
want to specify its informational meaning as given by some sort of function f̂?
satisfying:

f̂?(z1, . . . , zn) = f?(z1, . . . , zn), whenever z1, . . . , zn ∈ {0, 1}. (2)

Given our interpretation of the third value ⊥ as informational indeterminacy, a
reasonable requirement is also that our logical operators are monotonic in the
following sense:

v1 � w1 and . . . and vn � wn =⇒ f̂?(v1, . . . , vn) � f̂?(w1, . . . , wn) (3)

Let us, from now on, restrict our attention to the logical operators ∧,∨,¬.
Under the requirements (2) and (3), the tables of Kleene’s (strong) 3-valued
logic [40, §64], shown in Table 1, may appear as the most natural candidates to
represent their informational meaning. However, while the table for negation
appears perfectly in tune with our informational interpretation of the three
values, the tables for ∧ and ∨ are not, in that they do not appear to account for
some of our intuitive judgments. Typical counterevidence is presented in the
following quotations from Willard V.O. Quine taken from his book The Roots
of Reference and concerning what he there calls “the primitive meaning of the
logical operators”. This is expressed in terms of an agent’s disposition to assent
or dissent to a sentence in a given informational situation:

6Notice that this assumption does not rule out the possibility of hidden inconsistencies
in an agent’s information state, but only of inconsistencies that can be feasibly detected by
that agent. It is, however, possible to investigate paraconsistent variants of the semantics
proposed in this paper in which even this weak informational version of the Principle of Non-
Contradiction is relaxed. This will be the subject of a subsequent paper.

7This is the symbol for “undefined”, the bottom element of the information ordering, not
to be confused with the “falsum” logical constant that we shall denote by “f”.
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∧ 1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥

∨ 1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥

¬
1 0
0 1
⊥ ⊥

Table 1: Kleene’s 3-valued tables.

Conjunction has its blind spot [...] when neither component com-
mands assent or dissent. There is no direct way of mastering this
quarter. In some such cases the conjunction commands dissent and
in others it commands nothing. This sector is mastered only later,
in theory-laden ways. Where the components are “it is a mouse”
and “it is a chipmunk”, and neither is affirmed nor denied, the con-
junction will still be denied. But where the components are “it is a
mouse” and “it is in the kitchen”, and neither is affirmed nor denied,
the conjunction will perhaps be left in abeyance.
[...]
Alternation, like conjunction, has its blind quarter where neither
component commands assent or dissent. We might assent to the al-
ternation of “it is a mouse” and “it is chipmunk” or we might abstain
[46, p. 77].

In general, when we are faced with a conjunction A ∧ B in which both A and
B are informationally indeterminate, the value of the conjunction may be ei-
ther informational falsity 0, or informational indeterminacy ⊥, depending on
whether or not we hold the additional information that A and B cannot be
simultaneously true. And the value of A∨B may be either informational truth
1 or informational indeterminacy ⊥, depending on whether or not we hold the
additional information that at least one of A and B must be true.8 This dis-
cussion strongly suggests that Kleene’s 3-valued tables are not apt to capture
the informational meaning of the logical operators ∨ and ∧ and that, indeed, no
system of standard deterministic tables can do any better. Quine’s suggestion,
reported in the above quotations, leads to the following non-deterministic tables
for ∧ and ∨:

∧ 1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥, 0

∨ 1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥, 1

Here, the entries in which both arguments are ⊥ yield two alternative possi-

8As far as the operator ∨ is concerned, its informational meaning we are discussing here
clearly departs from its intuitionistic meaning, according to which a disjunction A ∨ B is
intuitionistically true (roughly speaking, provable) if and only if either A is intuitionistically
true or B is intuitionistically true. This is the so-called disjunction property of intuitionistic
logic. While this property is appropriate for (constructive) mathematics, it is quite at odds
with ordinary usage outside mathematics. On this point see [29], pp. 266–267 and 277–278.

6



ble values, meaning that the value of the compound sentence is not uniquely
determined by the values of its immediate constituents, but can be either of
the two values shown. In other words, the “function” f̂? that fixes the infor-
mational meaning of a binary operator ? is a non-deterministic truth-function.9

These non-deterministic tables where independently rediscovered by Crawford
and Etherington [13] who claimed that they provide a semantic characterization
of unit-resolution. The general theory of non-deterministic matrices has been
brought to the attention of the logical community and extensively investigated
by Arnon Avron and co-authors (see [3, 4, 1, 2, 5] among others).

A non-deterministic table for the informational meaning of the Boolean con-
ditional can be obtained in the obvious way:

→ 1 0 ⊥
1 1 0 ⊥
0 1 1 1
⊥ 1 ⊥ ⊥, 1.

Now, what inferences can be justified by the only means of the informational
meaning of the logical operators as specified by the informational 3-valued ta-
bles? Let L be a Boolean language with the four standard logical operators and
Form(L) be the set of all L-formulae.

Definition 2.1. A 3ND-valuation is a mapping V : Form(L) → {0, 1,⊥}, sat-
isfying the following conditions for all A,B ∈ Form(L):

1. V (¬A) = f̂¬(V (A))

2. V (A ◦B) ∈ f̂◦(V (A), V (B))

where (i) ◦ is ∧, ∨ or →, (ii) f̂¬ is the deterministic truth-function defined

by the informational 3-valued table for ¬, and (iii) f̂◦ is the non-deterministic
truth-function defined by the informational 3-valued table for ◦.

This approach can be extended to arbitrary Boolean operators. A general
method can be obtained from [21] by translating the modular semantics for
arbitrary Boolean operators in terms of non-deterministic truth-functions (Sec-
tion 2.9) that satisfy Conditions 2 and 3. A 3ND-valuation can be seen as
describing a minimal information state that is closed under the implicit infor-
mation that depends only on the informational meaning of the logical operators.
This is information that we actually possess and with which we can operate, in
the precise sense that we have (as will be shown in the sequel) a natural and
feasible procedure to decide, for every formula A, whether the information that
A is true, or the information that A is false, or neither of them actually belongs
to our information state.10

9This is just convenient jargon for a function V 2 → 2V \{∅}, with V the set of truth-values.
10Assuming that P 6= NP , this is clearly not the case of the implicit information that stems

from their classical meaning.
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It may be observed that: (i) agents may not be aware even of easy con-
sequences of their assumptions and there is still a difference between implicit
and explicit information,11 (ii) even implicit information that can be feasibly
extracted from the explicit one requires the consumption of resources. Both ob-
servations raise interesting questions that we do not address here. We focus on
the distinction between two kinds of implicit information: the first type is the
one that can be feasibly extracted by using only information that we actually
possess (actual information); the second is the one that essentially requires the
simulation of potential information that we do not actually possess (virtual in-
formation). It turns out that the latter can also be feasibly extracted whenever
the nested use of virtual informaiton is limited.

In what follows we shall make use of signed formulae (S-formulae for short),
namely expressions of the form T A or F A with the intended meaning of “A is
informationally true” or “we actually possess the information that A is true”
and “A is informationally false” or “we actually possess the information that
A is false”.12 Using signed formulae allows us to express a 3ND-valuation V
as a set of S-formulae, namely the set {T A | V (A) = 1} ∪ {F A | V (A) = 0}.
We shall use “ϕ,ψ, θ, . . .”, as variables ranging over S-formulae and continue
using “A,B,C, . . .” as variables ranging over usual unsigned formulae. We shall
also use “X,Y, Z,. . . ”, as variables ranging over sets of S-formulae and continue
using “Γ,∆,Λ, . . .”, as variables ranging over sets of unsigned formulae. The
unsigned part of an S-formula is the unsigned formula that results from it by
removing the sign T or F . Given an S-formula ϕ, we denote by ϕu the unsigned
part of ϕ and by Xu the set {ϕu | ϕ ∈ X}.

Let us say that a 3ND-valuation V satisfies an S-formula T A if V (A) = 1
and an S-formula F A if V (A) = 0.

Definitions 2.2. For every set X of S-formulae and every S-formula ϕ, we say
that:

• ϕ is a 0-depth consequence of X if V satisfies ϕ for every 3ND-valuation
V such that V satisfies all the S-formulae in X.

• X is 0-depth inconsistent if there is no 3ND-valuation V such that V
satisfies all the S-formulae in X.

In the sequel, we shall use the symbol “�0” for the 0-depth consequence
relation and write “X �0 ϕ” for “ϕ is a 0-depth consequence of X”. We shall

11This issue is interestingly related to the vast literature on awareness (see, for example,
[42, 30, 41, 49]).

12In fact, in this context, the signs “T” and “F” act as propositional attitudes and, in a
multiagent setting, can be indexed by symbols “x, y, z, ...” standing for different agents. So
Tx A and Fx A mean that A is informationally true, respectively false, for agent x. In this
paper we shall omit indexes since we will not be dealing with multiagent systems. From this
point of view one could see our signs as a sort of epistemic modalities and our consequence
relations as a sort of first-degree epistemic logics in which the modalities cannot be iterated
or used within a sentence.
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also write X �0 to mean that X is 0-depth inconsistent. The notions of 0-depth
consequence and 0-depth inconsistency can be extended to unsigned formulae
as follows (writing T Γ for {T A | A ∈ Γ}):

Definitions 2.3. For every set Γ of unsigned formulae and every unsigned
formula A, we say that:

• A is a 0-depth consequence of a set Γ if T Γ �0 T A

• Γ is 0-depth inconsistent if T Γ is 0-depth inconsistent.

We shall abuse of the same relation symbol “�0” to denote 0-depth con-
sequence and inconsistency for both signed and unsigned formulae. In [21]
(Proposition 2.49) it is shown that 0-depth consequence and 0-depth inconsis-
tency cannot be characterized by any finite deterministic matrix. So, the logic
�0 is not a finite many-valued logic in the standard sense.

The 0-depth consequence relation �0 is a subsystem of classical propositional
logic obtained by replacing the notion of “possible world” with our weaker no-
tion of information state (described by a 3ND-valuation). It is not difficult to
show that the relation �0 is a Tarskian consequence relation, that is, it satisfies
reflexivity, monotonicity and cut. It is also structural, in that it satisfies substi-
tution invariance. Like Kleene’s 3-valued logic [40, §64] and Belnap’s 4-valued
logic [6, 7], this consequence relation has no tautologies.13

An important consequence of its informational characterization is that the
0-depth logic �0 is tractable, just as we should expect given that it intends to
be the logic of “actual information”, namely the information that is practically
available to an agent (as opposed to the potential information that is available
to her only in principle).14 However, this is far from being obvious if we focus
on the 3ND-table presentation, which seems to suggest an exponential blow
up as in the classical case. Indeed, the tractability of the 0-depth logic will
become apparent in Section 6, when we shall provide a natural proof-theoretical
characterization of this logic that is quite close to deductive practice.

Observe that, according to our definitions, �0 is explosive just like classical
logic: when X is 0-depth inconsistent, X �0 ϕ for every ϕ, since there is no 3ND-
valuation V that satisfies all the formulae in X. However, 0-depth inconsistency
is stricter than classical inconsistency — a set X of S-formulae may well be 0-
depth consistent but classically inconsistent — and, more importantly, can be
feasibly detected (see Proposition 6.1 below and the following comment).

13This is not so surprising if one thinks that a tautology is usually described as “a conse-
quence of the empty set of premises”. There is no way of extracting information from the
empty information state without simulating virtual extensions of it. Accordingly, tautologies
make their appearance only at depths k > 0, when the use of virtual information is allowed,
and the set of provable tautologies increases with k.

14We stress that tractability here is, so to speak, a “side effect” of an informational inter-
pretation of the logical operators that makes no direct reference to questions of computational
complexity. On this point see also footnote 26 and related text.
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3. Virtual information and depth-bounded consequence

What about the classical inferences that are not valid in the 0-depth logic?
For example, consider the classically valid inference:

A ∨B ¬A ∨B
B

This inference cannot be justified by the 3ND-tables. A counterexample is any
3ND-valuation V such that V (A) = V (B) = ⊥ and V (A∨B) = V (¬A∨B) = 1.
In order to validate the above inference, we need to restrict our attention to the
refinements of V in which the value of A is defined, namely the 3ND-valuations
V ′ such that for all B, V (B) � V ′(B) and V ′(A) 6= ⊥:

. . . V (A) = ⊥ . . .

. . . V ′1(A) = 1 . . . . . . V ′2(A) = 0 . . .

It is easy to check, using the 3ND-tables for ∨ and ¬, that V ′(B) = 1 for every
such refinement of V . The information concerning A in either of these refine-
ments is not even implicitly contained in the actual information state expressed
by V . This is what we call virtual information. So, the 0-depth logic is simply
the logic of deductive reasoning with no virtual information.

The notion of k-depth consequence depends not only on the depth at which
the use of virtual information is allowed, but also on the subset of Form(L)
on which the introduction of virtual information is allowed. In [21] this subset
was called the virtual space and, in the context of this paper, can be simply
defined as a function f of the set Γ ∪ {A} consisting of the premises Γ and of
the conclusion A of the the given inference.15

In the sequel we shall denote by “sub” the function that maps any given
set ∆ of formulae to the set of all its subformulae, and by “at” the function
that maps any given ∆ to the set of its atomic subformulae. Let F be the
set of all operations f on the finite subsets of Form(L) such that: (i) for all
∆, at(∆) ⊆ f(∆), (ii) f(∆) is closed under subformulae, that is, sub(f(∆)) =
f(∆), (iii) |f(∆)| ≤ p(|∆|) for some fixed polynomial p, where we denote by
|Λ| the number of occurrences of symbols in Λ (the size of Λ).16 Distinguished
examples of operations in F are sub and at. However, in general, f(∆) may
contain also formulae that are not in sub(∆). For example, the operation f that
maps ∆ to the set of all formulae of bounded logical complexity that can be
built out of sub(∆) or of at(∆) is also in F . The operations in F are partially

15In [21] the virtual space was defined as a function of the search space that was in turn a
function of Γ ∪ {A} (Section 3.2).

16This third requirement is essential in order to define a hierarchy of tractable approxima-
tions to Boolean logic.
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ordered by the relation E such that f1 E f2 if and only if, for every finite ∆,
f1(∆) ⊆ f2(∆).

Definition 3.1. For all X,ϕ, and for all f ∈ F ,

1. X �f0 ϕ if and only if X �0 ϕ;

2. X �fk+1 ϕ if and only if X ∪ {T A} �fk ϕ and X ∪ {F A} �fk ϕ for some
A ∈ f(Xu ∪ {ϕu}).

Notice that the above definition covers also the case of k-depth inconsistency
by assuming X �fk as equivalent to X �fk ϕ for all ϕ. So:

1. X �f0 if and only if X �0;

2. X �fk+1 if and only if X ∪ {T A} �fk and X ∪ {F A} �fk for some A ∈
f(Xu ∪ {ϕu}).

When X �fk ϕ (X �fk) we say that ϕ is a k-depth consequence of X (X is k-
depth inconsistent) over the f -bounded virtual space. Observe that, since �0 is
monotonic,

�fj ⊆�fk whenever j ≤ k. (4)

The transition from �fk to �fk+1 corresponds to an increase in the depth at which
the nested use of virtual information (restricted to formulae in the virtual space
defined by f) is allowed. Observe also that:

�f1k ⊆�
f2
k whenever f1 E f2. (5)

Then, it is not difficult to show that:

Proposition 3.2. For every f , the relation �f∞=
⋃

k∈N |=
f
k is the consequence

relation of classical propositional logic.

Proof. Suppose that Γ classically implies A and let p1, . . . , pk the atomic for-
mulae occurring in Γ ∪ {A}. Let V be an arbitrary 3ND-valuation such that
(i) V (A) = 1 for all A ∈ Γ and (ii) V (pi) 6= ⊥ for all i = 1, . . . , k. Since the
3ND-tables agree with the classical truth-tables whenever the rows consist all
of defined values, and Γ classically implies ϕ, it follows that V (A) = 1. This
implies, by definition of �atk , that Γ �atk A. Since, by definition of F , atE f for

every f ∈ F , it follows from (5) that Γ �fk A for every f .

While the 0-depth logic is Tarskian and structural, the k-depth consequence
relations are not transitive17 and may not be structural. Unbounded transitivity
is replaced by its depth-bounded version:

X �fj ϕ X,ϕ �fk ψ

X �fj+k ψ

17In the terminology of [21] these are “weak depth-bounded consequence relations”, see
Section 3.3.
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Structurality depends on the function f that defines the virtual space. For
example �atk is not structural. While ∅ �at1 p ∨ ¬p, the minimum depth k at
which ∅ �at1 σ(p∨¬p) depends on the substitution σ. On the other hand �subk is
structural. In general, structurality can be imposed by restricting the operations
in F to those such that, for every σ,∆, σf(∆) ⊆ f(σ∆), where by σΛ we mean
the result of applying σ to every formula in Λ. This is not satisfied when f = at.
However, it is satisfied when f(∆) = sub(∆) or f(∆) is the set of all formulae of
given bounded complexity that can be built out of sub(∆). As will be shown in

the next section, each �fk inherits the tractability of �0 although the complexity
of the natural decision procedure grows with k (and with the degree of the
polynomial p that bounds the size of the virtual space defined by f).

4. Classical Intelim Deduction

A natural proof-theoretical characterization of the 0-depth logic �0 is ob-
tained by means of a set of introduction and elimination rules (intelim rules)
for the logical operators that are are displayed in Tables 2 and 3. In view of
the informational interpretation of the signs T and F (see p. 8 above), as ex-
pressing the informational truth and the informational falsity of the sentence to
which they are prefixed, the intelim rules are presented in terms of S-formulae,
to highlight their correspondence with the informational semantics of the pre-
vious sections. However, a version for unsigned formulae is simply obtained by
replacing each S-formula T A with A and each S-formula F A with ¬A.

Their soundness can be immediately verified by inspection of the 3ND-tables.
For example, if an agent x actually possesses the information that A∨B is true
(the value of A∨B is 1) and x actually possesses the information that A is false,
(the value of ¬A is 0), then x actually possesses also the information that B
is true, since the other possible two values are ruled out by the table for ∨. It
turns out that the intelim rules are also complete for the 0-depth logic, as will
be shown later on.

Our intelim rules are different from the standard intelim rules of Gentzen-
style natural deduction and are better suited to represent arguments in classical
logic. In this respect, observe that the intelim rules for disjunction and conjunc-
tion are dual of each other, and that a sentence and its negation are treated in a
symmetric way. Accordingly, for each logical operator, we have intelim rules for
the truth of a sentence containing it as main operator and intelim rules for the
falsity of such a sentence.18 In these rules the sentence containing the logical
operator that is to be eliminated is called major premise and the other is called
minor premise.

18Observe that the two-premise elimination rules for true disjunctions and false conjunctions
correspond to time-honoured principles of inference: modus ponens, modus tollens, disjunctive
syllogism and its dual. The less natural rules, from the point of view of ordinary usage, namely
the introduction rules for true conditionals and the elimination rules for false conditionals, are
however faithful to the classical “truth-table” meaning of this operator. On the other hand
Gentzen’s rule for introducing the conditional is faithful to its intuitionistic meaning.
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F A
T ¬A

T¬-I T A
F ¬A

F¬-I

T A
T A ∨B

T∨-I1 T B
T A ∨B

T∨-I2

F A
F B

F A ∨B
F∨-I

F A
F A ∧B

F∧-I1 F B
F A ∧B

F∧-I2

T A
T B

T A ∧B
T∧-I

F A
T A→ B

T→-I1 T B
T A→ B

T→-I2

T A
F B

F A→ B
F→-I

Table 2: Introduction rules for the standard Boolean operators.

T ¬A
F A

T¬-E F ¬A
T A

F¬-E

T A ∨B
F A
T B

T∨-E1

T A ∨B
F B
T A

T∨-E2 F A ∨B
F A

F∨-E1 F A ∨B
F B

F∨-E2

F A ∧B
T A
F B

F∧-E1

F A ∧B
T B
F A

F∧-E2 T A ∧B
T A

T∧-E1 T A ∧B
T B

T∧-E2

T A→ B
T A
T B

T→-E1

T A→ B
F B
F A

T→-E2 F A→ B
T A

F→-E1 F A→ B
F B

F→-E2

Table 3: Elimination rules for the four standard Boolean operators
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1 T (p ∨ q)→ ¬r Assumption
2 T p Assumption
3 T (p ∧ t)→ r Assumption
4 T p ∨ q T∨-I1 (2)
5 T ¬r T →-E1 (1,4)
6 F r T¬-E (5)
7 F (p ∧ t) T →-E2 (3,6)
8 F t F∧-E1 (7,2).

1 (p ∨ q)→ ¬r Assumption
2 p Assumption
3 (p ∧ t)→ r Assumption
4 p ∨ q T∨-I1 (2)
5 ¬r T →-E1 (1,4)
6 ¬(p ∧ t) T →-E2 (3,5)
7 ¬t F∧-E1 (6,2).

Figure 1: On the left, an intelim sequence which proves the S-formula on line 8 from the
assumptions, using the rules for signed formulae. On the right, the corresponding sequence
using the rules for unsigned formulae.

The intelim rules generate intelim sequences, i.e., finite sequences ϕ1, . . . ϕn

of S-formulae such that, for every i = 0, . . . , n, either ϕi is an assumption or it
is the conclusion of the application of an intelim rule to preceding formulae. In
Figure 1 we show simple examples of intelim sequences using, respectively, the
intelim rules for signed formulae and their version for unsigned formulae. The
intelim rules are not complete for Boolean logic, but only for the 0-depth conse-
quence relation �0 (this will be shown later on in Proposition 4.7). Completeness
for full Boolean logic is obtained by adding only the following branching rule:19

T A
⌦⌦ JJ

F A

PB

1

With the addition of PB to the stock of rules, proofs and refutations are repre-
sented, as in semantic tableaux, by downward-growing intelim trees.

Each application of PB invites us to consider virtual information about the
truth or falsity of the formula A (the PB-formula) and allows us to append both
T A and F A as sibling nodes at the end of any branch of the tree, generating
two new branches. The S-formulae T A and F A are called virtual assumptions.
Notice that PB is, in essence, a classical cut rule which is not eliminable, but
whose use (as will be shown in the sequel) can be restricted so as to satisfy the
subformula property. The main conceptual advantage of this proof-theoretical
characterization of classical logic, from our informational viewpoint, consists in
the fact that it clearly separates the rules that fix the meaning of the logical
operators in terms of the information that we actually possess (the intelim
rules) from the single structural rule that introduces virtual information (the
PB rule).20 Intuitively, the more virtual information needs to be invoked via PB,
the more difficult the deductive process is both from the computational and the

19“PB” stands for “Principle of Bivalence”.
20By contrast, in Gentzen-style systems some of the intelim rules (the “discharge rules”

of natural deduction and their counterparts in the sequent calculus) make essential use of
virtual information. Since in Gentzen-style proof systems cut is eliminable, no approximation
hierarchy can be produced by controlling the application of the cut rule.
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cognitive viewpoint.21 The method of intelim trees bears some resemblance with
Smullyan-style semantic tableaux [24]. However: (i) like in Natural Deduction
there are introduction as well as elimination rules, and the method can be
used as a direct proof method as well as a refutation method, (ii) the tableau
branching rules are replaced by two-premise rules, so that all the operational
rules have a linear format, (iii) there is only one branching rule corresponding
to the Principle of Bivalence. A variant which brings out the analogy with
Gentzen-style natural deduction is described in the Appendix.

Definition 4.1. An intelim tree for X is a finite tree T of S-formulae such that,
for every S-formula ϕ occurring in T , either (i) ϕ ∈ X, or (ii) ϕ results from
an application of an intelim rule to preceding S-formulae in the same branch,
or (iii) ϕ is a virtual assumption introduced by an application of the branching
rule PB.

We say that a branch of an intelim tree is closed if it contains both T A and
F A for some formula A, otherwise it is open.

Definitions 4.2. For all X,ϕ,

1. An intelim proof of ϕ from X is an intelim tree T for X such that ϕ
occurs at the end of all open branches of T ;

2. A refutation of X is an intelim tree T for X such that every branch of T
is closed.

Notice that, according to the above definition, every refutation of X is, at
the same time, a proof of ϕ from X, for every S-formula ϕ (since there are no
open branches and the condition that ϕ occurs at the end of all open branches
is vacuously satisfied).

Definition 4.3. We say that an intelim proof of ϕ from X (an intelim refutation
of X) has the subformula property (SFP) if, for every S-formula ψ occurring
in it, ψu is a subformula of θu for some θ in X ∪ {ϕ} (in X).

In the next section we shall show that every intelim proof of ϕ from X can be
transformed into an intelim proof of ϕ from X with the SFP. The SFP is a key
property of logical systems in that it allows us to search for proofs or refutations
by analytic methods, i.e. by considering only inference steps involving formulae
that are “contained” in the assumptions (or also in the conclusion in the case

21PB is a form of non-constructive dilemma. In a recent interesting paper [39], Klassen
and colleagues propose a similar view of classical case analysis as the source of the “effort”
required by a deductive task. This idea was already present in some early contributions on
approximation methods [13, p. 286]; see also the notion of “intricacy” in [26]. In our view, the
primary source of intractability is the use of virtual information, a more general phenomenon
than reasoning by cases. Indeed, the pure implication fragment of intuitionistic logic, which
is characterized simply by the NJ intelim rules for →, is P-SPACE complete [50], but does
not appear to involve any case analysis. It does, however, make use of virtual information (in
the introduction rule for →).
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of proofs). So, no special ingenuity is required to construct such an analytic
argument and its search is amenable to algorithmic treatment. In particular, in
our classical intelim system, the SFP guarantees that we can impose a bound
on the applications of PB, which could in principle be applied to arbitrary
formulae, with no loss of deductive power. Similarly, we can impose a bound
on the sensible applications of introduction rules, which could in principle be
applied ad infinitum leading to ever more complex formulae. (On this point see
Proposition 5.10 below.)

When moving from intelim trees for S-formulae to trees for standard un-
signed formulae, the subformula property is weakened as follows:

Definition 4.4. We say that an intelim proof T of A from Γ has the weak
subformula property (WSFP) if every formula occurring in T is a weak subfor-
mula22 of some formula in Γ ∪ {A}.

Definitions 4.5. The depth of an intelim tree T is the maximum number of
virtual assumptions occurring in a branch of T . An intelim tree T is a k-depth
intelim proof of ϕ from X (a k-depth refutation of X) if T is an intelim proof
of ϕ from X (a refutation of X) and T is of depth k.

Observe also that a 0-depth intelim tree is nothing but an intelim sequence.
An example of an intelim proof of depth 2 with the SFP is given in Figure 2.
This is an intelim proof of T u from the premises marked with a “∗”. The
reader can check that each S-formula that is not a premise either is obtained
from previous S-formulae on the same branch by an application of one of the
intelim rules in Tables 2 and 3, or is one of the virtual assumptions introduced
by the branching rule PB. All the open branches end with the S-formula T u.
The rightmost branch is closed since it contains both T r and F r. Each open
branch is a 0-depth intelim proof of T u from the union of the initial premises
plus the virtual assumptions introduced by the rule PB on that branch. In Fig 3
we show three examples of intelim trees using unsigned formulae that enjoy the
WSFP. Again, the initial assumptions are the formulae marked with a “∗”.

Let us first focus on 0-depth intelim proofs and refutations.

Definition 4.6. For all X,ϕ, we say that ϕ is 0-depth deducible from X, and
write X `0 ϕ, if there is a 0-depth proof of ϕ from X. We also say that X is
0-depth refutable, and write X `0, if there is a 0-depth refutation of X.

Proposition 4.7. For every set X of S-formulae and every S-formula ϕ,

X �0 ϕ if and only if X `0 ϕ.

Proof. An indirect proof is given in [21] where the 0-depth consequence relation
�0 is characterized in terms of another semantics (called “modular semantics”)

22Recall that B is a weak subformula of A if B is a subformula of A or the negation of a
subformula of A.

16



T p ! q⇤

F ¬p ^ r⇤

T (q _ s) ! (p ! u)⇤

T ¬(r ^ s) ! (v ! u)⇤

T ¬r ! (¬v ! (p _ r))⇤

T p

T q

T q _ s

T u

◆◆ SS
F p

T ¬p

F r

F r ^ s

T ¬(r ^ s)

T v ! u

T ¬r

T ¬v ! (p _ r)

T v

T u

⌦⌦ JJ
F v

T ¬v

T p _ r

T r

⇥

1

Figure 2: An intelim proof of depth 2 using S-formulae. Each branch is an intelim sequence
for the set of S-formulae containing the initial assumptions (marked with ∗) and the virtual
assumptions introduced by the applications of PB.
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p ! ¬q⇤

q _ r⇤

¬(r ^ ¬q)⇤

p _ t⇤

(t _ u) ! ¬s⇤

¬v ! s⇤

p

¬q

r

¬¬q

q

⇥

 TT
¬p

t

t _ u

¬s

¬¬v

v

(p _ z) ! q⇤

¬(¬p ^ r⇤)

(q _ s) ! (t ! v)⇤

(q _ s) ! (¬v ! t)⇤

¬(r ^ s) ! (u ! v)⇤

¬r ! (¬u ! (p _ r))⇤

p _ z

q

q _ s

t ! ¬v

¬v ! t

t

v

 TT
¬t

¬¬v

v

,, ll
¬(p _ z)

¬p

¬r

¬(r ^ s)

u ! v

¬u ! (p _ r)

u

v

 TT
¬u

p _ r

r

⇥

p ! q⇤

¬(p ^ q)⇤

p _ ¬r⇤

(¬r _ s) ! (¬p ! r)⇤

p

q

¬q

⇥

⌦⌦ JJ
¬p⇤

¬r

¬r _ s

¬p ! r

r

⇥

1

Figure 3: Intelim trees using unsigned formulae.
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that is shown to be equivalent to the informational 3-valued semantics. Here
we provide a direct adequacy proof.

The reader can check that the intelim rules are all sound with respect to
the informational 3ND-tables. As for completeness, suppose that X 00 ϕ.
Then X is not 0-depth refutable; otherwise, by definition of 0-depth intelim
proof, it should hold that X `0 ϕ against the hypothesis. Now, consider the set
X∗ = {ψ | X `0 ψ}. Since X is not 0-depth refutable, for no formula A, T A
and F A are both in X∗. Then, it is easy to verifty that the function V defined
as follows:

V (A) =


1 if T A ∈ X∗
0 if F A ∈ X∗
⊥ otherwise

is a 3ND-valuation, i.e. it agrees with the 3-valued informational tables. Here
we just outline a typical case. Suppose V (A) = V (B) = ⊥. Then F A∨B 6∈ X∗.
Otherwise, if F A∨B ∈ X∗, then by definition of X∗ and by the rules F∨-E , F A
and F B should also be in X∗; therefore, by definition of V , V (A) = V (B) = 0
against our assumption. Hence V (A∨B) 6= 0. Moreover, T A∨B, may or may
not belong to X∗, and so V (A ∨ B) = 1 or V (A ∨ B) = ⊥. Finally, observe
that: (i) ψ ∈ X∗ for all ψ ∈ X and so, by definition of V , V satisfies all ψ ∈ X;
(ii) by the hypothesis that Γ 00 ϕ, ϕ 6∈ X∗ and so V does not satisfy ϕ. Hence
X 20 ϕ.

Corollary 4.8. For every set X of S-formulae,

X �0 if and only if X `0 .

The following definition mimics Definition 3.1:

Definition 4.9. For all X,ϕ and all f ∈ F ,

1. X `f0 ϕ if and only if X `0 ϕ;

2. X `fk+1 ϕ if and only if X ∪ {T A} `fk ϕ and X ∪ {F A} `fk ϕ for some
A ∈ f(Xu ∪ {ϕu});

As Definition 3.1, the above definition covers the case of k-depth refutability.
When X `fk ϕ (X `fk) we say that ϕ is deducible at depth k from X (X is
refutable at depth k) over the f -bounded virtual space. It follows immediately
from Definitions 4.9 and 4.5 that:

Proposition 4.10. For all X,ϕ and all f ∈ F , X `fk ϕ (X `fk) if and only if
there is a k-depth intelim proof of ϕ from X (a k-depth intelim refutation of X)
such that all its PB-formulae are in f(Xu ∪ {ϕu}).

Given Proposition 4.7 and the close correspondence between Definitions 3.1
and 4.9, it is far from surprising that:

Proposition 4.11. For all X,ϕ, X �fk ϕ if and only if X `fk ϕ.
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5. Normal intelim proofs

Consider the following intelim sequences:

1 T p→ ¬q Assumption
2 T (p→ ¬q)→ p Assumption
3 T p→ r Assumption
4 T p Assumption
5 T ¬q from 1,4
6 F q from 5
7 T p ∨ q from 4
8 T p from 4,6
9 T r from 3,7

1 T p Assumption
2 T ¬p Assumption
3 F p from 2
4 T p ∨ q from 1
5 T q from 4, 3

The first one is an intelim proof of T r from {T p→ ¬q, T (p→ ¬q)→ p, T p→
r} and the second one is the so-called “Lewis”’ proof of (an arbitrary) T q
from {T p, T ¬p}, which is often used to show the explosivity of classical logic.
Observe that both proofs are redundant.

In the lefthand proof the S-formula T p∨ q is first introduced (from premise
T p) and then eliminated (using the minor premise F q) to re-obtain the S-
formula T p which was already contained in the sequence, that is, this proof
contains circular reasoning. In the righthand proof, the S-formula T p ∨ q is
first introduced (from premise T p) and then eliminated (using F p as minor
premise); however, the sequence was already closed before the T∨-introduction
and so, by Definition 4.2.1, the closed sequence T p, T ¬p, F p was already a
proof of T q from T p and T ¬p.

The same kind of redundancy is observed whenever a formula is, at the same
time, the conclusion of an introduction and the major premise of an elimination.

Definition 5.1. We say that an occurrence of an S-formula ϕ in an intelim
tree T is a detour if ϕ is both the conclusion of an introduction and the major
premise of an elimination.

Let ϕ denote the conjugate of the S-formula ϕ, namely the S-formula T A if
ϕ is equal to F A and F A if ϕ is equal to T A.

Definition 5.2. An occurrence of an S-formula ϕ is idle in an intelim tree T
if (i) it is not the terminal node of its branch, (ii) ϕ is not used in T as premise
of some application of an intelim rule, and (iii) it is not the conjugate of some
S-formula occurring in the same branch.

Definition 5.3. Given an intelim tree T , a path in T is a finite sequence of
nodes such that the first node is the root of T and each of the subsequent nodes
is an immediate successor of the previous one. A path is closed if it contains
both ϕ and ϕ for some formula ϕ.

Observe that, according to the above definition, every branch is a maximal
path.
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Definition 5.4. Let T be an intelim proof of ϕ from Γ (an intelim refutation
of Γ). We say that T is non-redundant if it satisfies the following conditions:

1. T contains no idle occurrences of formulae;

2. no branch of T contains more than one occurrence of the same formula;

3. no branch of T properly includes a closed path.

Our argument above shows that whenever an intelim proof or refutation T
contains a detour, then either the second or the third non-redundancy condition
is violated. Thus:

Lemma 5.5. If an intelim proof or refutation T is non-redundant, then it
contains no detours.

Proof. Suppose T contains a detour, namely a formula ϕ that is at the same
time the conclusion of an introduction and the major premise of an elimination.
By inspection of the rules, either the conclusion of the elimination is equal to
one of the premises of the introduction, or the minor premise of the elimination
is the complement of one of the premises of the introduction and so the branch
was already closed before the elimination. In either case T is redundant.

We remark that turning an intelim proof or refutation T into a non-
redundant one (with no increase in the size of the proof) is computationally
easy, in that it only involves the following steps:

1. checking if there are closed paths and removing whatever follows;

2. removing any repetition of (S-)formulae in the same branch;

3. checking if there are idle occurrences of S-formulae, and

4. for each idle occurrence of an S-formula ϕ:

(a) if ϕ is the conclusion of an application of an intelim rule, just remove
ϕ from T ;

(b) if ϕ is a virtual assumption introduced by an application of PB,
remove both ϕ and the whole subtree generated by its conjugate S-
formula ϕ introduced in the same application of PB; then attach the
subtree below ϕ to the immediate predecessor of ϕ.

It is easy to verify that the result of this procedure is still an intelim proof of the
same conclusion from the same premises or an intelim refutation of the same
assumptions.

Given an intelim proof T of ϕ from X (an intelim refutation of X), and any
operation f ∈ F (see Section 3 above), we say that an application of PB in T is
f -analytic if its PB-formula is in f(Xu ∪ {ϕu}) (f(Xu)), namely in the virtual
space defined by the operation f (recall that this is, by definition, closed under
subformulae and polynomially bounded). When f = sub, that is the virtual
space consists exactly of the subformulae of Xu ∪ {ϕu} (of Xu), we just say
that the application of PB is analytic. Then, it can be shown that:
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Lemma 5.6. Given any f ∈ F , every k-depth intelim proof T of ϕ from X
(k-depth intelim refutation of X) can be transformed into a k+ j-depth intelim
proof T ′ of ϕ from X (intelim refutation T ′ of X), for some j ≥ 0, such that
every application of PB in T is f -analytic.

Proof. We use the notation T
n

to denote either an empty intelim tree or a

non-empty intelim tree such that n is one of its terminal nodes. The proof is
by lexicographic induction on 〈γ(T ), λ(T )〉, where γ(T ) is the maximum logical
complexity23 of a PB-formula in T that is not f -analytic and λ(T ) is the number
of occurrences of such non-f -analytic PB-formulae of maximal complexity.

Let γ(T ) = m > 0 and let A be a PB-formula of logical complexity m. There
are several cases depending on the logical form of A. We discuss only the case
A = B ∨ C, the other cases being similar.

If A = B ∨ C, then T has the following form:

T
n

T B _ C

T1

,, ll
F B _ C

T2

T
n

T B

T B _ C

T1

⌘⌘ QQ
F B

T C

T B _ C

T1

,, ll
F C

F B _ C

T2

1

where T1 and T2 are intelim trees such that each of their open branches contains
ϕ (or are both closed intelim trees in case T is a refutation of X). Let T ′ be
the following intelim tree:

T
n

T B _ C

T1

,, ll
F B _ C

T2

T
n

T B

T B _ C

T1

⌘⌘ QQ
F B

T C

T B _ C

T1

,, ll
F C

F B _ C

T2

1

23The logical complexity of a formula is the number of occurrences of logical operators in
it.
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Clearly T ′ is a k + 1-depth intelim proof of ϕ from X (a k + 1-depth intelim
refutation of X). Moreover, either γ(T ′) < γ(T ), or γ(T ′) = γ(T ) and λ(T ′) <
λ(T ).

In fact, the construction used in the proof of the above proposition shows
that every intelim tree can be transformed into an equivalent one in which all
the PB-formulae are atomic. So, in principle, we could reformulate the notion of
intelim tree in such a way that PB is applied only to atomic formulae without loss
of completeness. However: (i) each application of this construction increases the
depth of the tree, so that it is convenient to use it only to the extent in which it is
needed to remove applications of PB that are not f -analytic; (ii) if we insist that
the applications of PB be restricted to atomic formulae, the property of being
an intelim tree is no longer preserved under uniform substitutions of the atomic
formulae occurring in the tree with arbitrary formulae. On the other hand, if we
require that the notion of intelim tree be restricted so as to permit only analytic
applications of PB (that is, f -analytic applications with f = sub) , the property
of being an intelim tree is indeed invariant under uniform substitutions.

Definition 5.7. Given any f ∈ F , we say that an intelim proof T of ϕ from
X is f -normal if (i) T is non-redundant, (ii) every application or PB in T is
f -analytic and (iii) neither of the two conjugate S-formulae in a closed branch
is the conclusion of an introduction.

When every application of PB is analytic (i.e., with f = sub) we just say
that T is normal. We stress that f -normality is an important generalization
of normality in the context of depth-bounded approximations in that in some
cases the minimum depth of a normal proof is greater than the minimum depth
of an f -normal proof. In general, whenever f1 C f2 the minimum depth of an
f1-normal proof may be greater than that of an f2-normal proof.

Proposition 5.8. Given any f ∈ F , every intelim proof T of ϕ from X (intelim
refutation of X) can be transformed into an f -normal one.

Proof. By Lemma 5.6, T can be transformed into a intelim proof T ′ of ϕ from X
(intelim refutation of X) such that all the applications of PB are f -analytic. As
explained above, T ′ can be transformed into a non-redundant intelim proof T ′′
of ϕ from X (intelim refutation of X) with no size increase. Finally, suppose that
ψ and ψ both occur in a branch of T ′′. First, notice that they cannot be both
conclusions of introductions, for in this case one can easily verify, by inspection
of the introduction rules, that the branch would properly contain a closed path
and so T ′′ would be redundant. For example, suppose that ψ = T A ∧ B and
both T A ∧ B and F A ∧ B are conclusions of introductions. Then, both T A
and T B and at least one of F A and F B already belong to the same branch,
and so the branch would properly contain a closed path, against the hypothesis
that T ′′ is non-redundant. Suppose now that only one of them is the conclusion
of an introduction. Then, just observe that this introduction can be retracted
and replaced by an elimination without introducing a new detour. For example,
suppose that ψ = T A ∨ B and that ψ is the conclusion of an introduction.
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Then either T A or T B occurs above in the same branch. But either of F A
and F B can be appended to the branch as conclusion of an application of F∨-E
to ψ, so as to obtain a closed branch. Moreover, this move introduces no new
detour because ψ, by hypothesis, is not the conclusion of an introduction. The
argument is the same for the other possible logical forms of ψ.

The following proposition states a generalization of the SFP for intelim
proofs and refutations:24

Proposition 5.9 (Generalized SFP). For every f ∈ F , if T is an f -normal
proof of ϕ from X, or an f -normal refutation of X, then for every S-formula ψ
occurring in T ,

ψu ∈ f(Xu ∪ {ϕu}) ∪ sub(Xu ∪ {ϕu})
if T is a proof of ϕ from X, or

ψu ∈ f(Xu) ∪ sub(Xu)

if T is a refutation of X.

Proof. Let T be an f -normal intelim proof of ϕ from X (refutation of X) and
suppose that there are S-formulae ω in T such that ωu /∈ f(Xu ∪ {ϕu}) ∪
sub(Xu ∪ {ϕu}) (ωu /∈ f(Xu) ∪ sub(Xu)). Let us call such formulae spurious.
Let ψ be a spurious formula of maximal logical complexity.25 Then ψ cannot
result from the application of an elimination rule, otherwise T would contain a
more complex spurious formula, namely the major premise of this elimination.
Moreover, since T is f -normal, no spurious formula can occur in it as a virtual
assumption introduced by an application of PB, since f -normal intelim trees
contain only f -analytic applications of PB. Therefore ψ must be the conclusion
of an introduction. Since T is non-redundant, it contains no idle occurrences of
formulae, and so either (i) ψ = θ for some θ occurring in the same branch or (ii)
ψ is used as a premise of a rule application. But both alternatives are impossible.
The first alternative violates condition (iii) in the definition of an f -normal proof
(Definition 5.7). For the second alternative, first observe that ψ cannot be the
minor premise of an elimination, otherwise there would be again a more complex
spurious formula in T , namely the major premise of this elimination. Moreover,
ψ cannot be used in T as major premise of an elimination, otherwise ψ would
be a detour and, by Lemma 5.5, T would be redundant, against the hypothesis
that T is f -normal.

In the special case in which f = sub we obtain the usual SFP. Observe that,
since 0-depth intelim trees have no virtual assumptions, every normal 0-depth
proof or refutation has the SFP. The above proposition can be adapted to trees
of unsigned formulae in the obvious way and, when dealing with such tress, the
SFP is replaced, as before, by the WSFP.

24Notice that whenever ∆ ⊆ f(∆), then also sub(∆) ⊆ f(∆).
25See footnote 23 above.
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Let `fN be the unbounded deducibility relation defined as follows: X `fN ϕ

(X `fN ) if there is an f -normal intelim proof of ϕ fromX (an f -normal refutation

of X). Proposition 5.8 guarantees that `fN is complete for classical propositional
logic. This implies, among other things, that the application of the introduction
rules can be goal-oriented in the sense clarified by the following:

Proposition 5.10. Let T be an f -normal proof of ϕ from X (refutation of X)
and let ψ1, . . . , ψn be a maximal sequence of formulae occurring in a branch of
T such that, for every i = 2, . . . , n, ψi is the conclusion of an application of
an introduction rule to previous S-formulae in the sequence. Then one of the
following holds true:

1. ψn is the minor premise of an elimination
2. ψn = ϕ

Proof. First, by Clause (iii) in Definition 5.7, ψn cannot be the conjugate of
any other S-formula in the same branch. Since, by Clause (i), the intelim tree
is non-redundant, ψn cannot be idle, and so it is either the terminal node of
its branch, in which case the branch is open and ψn = ϕ, or the premise of
an application of an intelim rule. Given that the sequence of introductions is
maximal in the branch, ψn is not used as premise of an introduction. Moreover,
by Proposition 5.5, non redundant proofs contain no detours, and so ψn is not
used as major premise of an elimination. Thus either ψn = ϕ of ψ is used as
minor premise of an elimination.

By the above propositions, the search for a proof or a refutation can be gov-
erned by a procedure that is informally described by the following four general
rules for expanding an intelim tree:

1. stop expanding a branch whenever it is closed,
2. give priority to the elimination rules,
3. apply the introduction rules only to obtain either the conclusion of the

proof, or a minor premise that is needed for an elimination;
4. apply the branching rule PB to an open branch only when instructions

1–3 fail.

The choice of the PB-formula in the last instruction depends on the operation
f that defines the virtual space. When f = sub, one can always, without loss of
completeness, choose as PB-formula some subformula of the assumptions or of
the conclusion that does not already occur in the branch. This is the procedure
that has been followed in the construction of the trees in Fig. 3. If we apply
these rules mechanically, the resulting intelim proof would not contain detours
but may still be redundant in that it may contain idle formulae. Then, to obtain
a normal proof it is sufficient to remove all the idle formulae from the tree.

6. The tractability of depth-bounded deduction

The generalized SFP of intelim proofs and refutations paves the way for a
feasible decision procedure for intelim deducibility and refutability. The follow-
ing proposition is proven in [21].
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Proposition 6.1. Whether or not X `0 ϕ (X is 0-depth refutable) can be
decided in time O(n2) where n is the total number of occurrences of symbols in
X ∪ {ϕ} (in X).

Proposition 6.1 suggests that the explosivity of 0-depth consequence is far
less serious a problem then the explosivity of classical consequence. For, we can
always feasibly detect that our premises are 0-depth inconsistent and, therefore,
we may as well abstain from drawing bizarre conclusions on their basis. Unlike
hidden classical inconsistencies, that may be hard to discover even for agents
equipped with powerful (but still bounded) computational resources, 0-depth
inconsistency lies, as it were, on the surface. So, we always have a feasible
means to ensure that our premises are 0-depth consistent, in which case the
consequence relation �0 is not explosive, even if these premises are classically
inconsistent.

Given Proposition 6.1, a simple analysis shows that, for each f ∈ F and
each fixed k, `fk admits of a feasible decision procedure:

Proposition 6.2. For each f ∈ F and each k ∈ N, whether or not X `fk ϕ

(X `fk), can be decided in polynomial time.

More precisely, when f E sub, the complexity of the decision problem is
O(nk+2), where n is the total number of occurrences of symbols in X ∪ {ϕ} (in
X). In general, the complexity is O(p(n)k+2) where p is a polynomial depending
on f (recall that the virtual space is, by definition, polynomially bounded).

For unbounded k, the method of intelim trees is a proof system for full
classical propositional logic that enjoys the SFP. However, this presentation
of classical logic allows also for representing proofs that do not have the SFP
simply by permitting applications of PB to formulae that are not subformulae
either of the premises or of the conclusion. On the connection between the rule
PB and the cut rule of Gentzen’s sequent calculus, as well as on the advantages
of such a cut-based formalization of classical logic, see [14, 15]. Moreover, for
unbounded k, the introduction rules become redundant, since they can be easily
derived from the elimination rules with the help of PB. The system consisting
only of the elimination rules plus PB (with no depth bound) is a complete
refutation system for classical propositional logic that enjoys the SFP, since
the applications of PB can be restricted to subformulae and the elimination
rules obviously preserve the SFP. This system, known as KE, was originally
proposed as a more efficent alternative to Smullyan’s semantic tableaux. It
was shown that KE has an exponential speed-up on semantic tableaux and on
Gentzen’s cut-free sequent calculus even if we consider its “analytic restriction”
that yields only refutations with the SFP [14, 25, 15]. The unbounded method
of intelim trees can be seen as an extension of KE, obtained by adding suitable
introduction rules for the logical operators. So, intended as a method for full
classical propositional logic, intelim trees still have an exponential speed-up
on Smullyan’s semantic tableaux and on cut-free sequent proofs even when we
consider only normal intelim proofs and refutations.
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7. Conclusions and further work

The relations �k and `k provide an infinite sequence of tractable depth-
bounded approximations to classical propositional logic. Observe that in our
approach, the tractability of each approximation results from a notion of depth
that applies to single proofs and refutations. This measure is not based on
computational complexity, but on the distinction between actual and virtual
information, the tractability of k-depth consequence being derivative. Thus,
depth-bounded deduction offers a solution to the problem of logical omniscience
that appears to overcome the main objection of [44] against complexity-based
approaches.26

The method of intelim trees combines features of Natural Deduction (it is
based on introduction and elimination rules that satisfy a form of the inversion
principle [16]) and of Smullyan’s Semantic Tableaux (it is a tree method with
no discharge rules that can be used as a refutation system as well as proof
system), but is essentially more efficient than both. It appears to be heuristically
interesting for further developments in a variety of areas. Possible extensions
of the work presented here, that may be of interest for researchers in computer
science and artificial intelligence, include:

• providing alternative characterizations of classes of inferences whose va-
lidity can (or cannot) be shown at a given depth k;

• extending the notions of depth-bounded consequence and depth-bounded
inconsistency to non-classical logics by relativizing the primary semantic
notions of informational truth and informational falsity to points of some
structured space (e.g., possible worlds, information states, etc., equipped
with an accessibility relation);27

• investigating depth-bounded approximations for the logics of formal in-
consistency [12] and, more in general, for paraconsistent logics [45].

Appendix

In this appendix we describe a variant of the method of intelim trees that highlights
its analogies and dissimilarities with Gentzen style natural deduction.

26 “The issue of computational complexity can only make sense for an infinite family of
questions, whose answers may be undecidable or at least not in polytime. But for individual
questions whose answers we do not know, the appeal to computational complexity misses the
issue.”[44, p. 462].

27From the proof-theoretical point of view, this involves shifting from intelim trees of S-
formulae to intelim trees of labelled S-formulae. For example, depth-bounded systems for
intuitionistic or substructural logics could possibly be developed by adding suitable intro-
duction rules to the KE-like systems discussed in [23] and bounding the applications of the
generalized rule of bivalence. A similar generalized rule of bivalence has been also fruitfully
used in the context of many-valued logics; see for example [37, 11].
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INTRODUCTION RULES

A B
∧I

A ∧B
¬A

¬∧ I1
¬(A ∧B)

¬B
¬∧ I2

¬(A ∧B)

¬A ¬B
¬∨ I

¬(A ∨B)

A
∨I1

A ∨B
B

∨I2
A ∨B

A ¬B
¬→ I

¬(A→ B)

¬A
→ I1

A→ B

B
→ I2

A→ B

A
¬¬I

¬¬A
A ¬A

f I
f

ELIMINATION RULES

A ∨B ¬A
∨E1

B

A ∨B ¬B
∨E2

A

¬(A ∨B)
¬∨ E1

¬A
¬(A ∨B)

¬∨ E2
¬B

¬(A ∧B) A
¬∧ E1

¬B
¬(A ∧B) B

¬∧ E2
¬A

A ∧B
∧E1

A

A ∧B
∧E2

B

A→ B A
→ E1

B

A→ B ¬B
→ E2

¬A
¬(A→ B)

¬→ E1
A

¬(A→ B)
¬→ E2

¬B

¬¬A
¬¬E

A

f
f E

A

Table 4: The classical intelim rules.

We deal with unsigned formulae and assume that the propositional language con-
tains also the logical constant f, denoting “the falsum”, intended as an absurd proposi-
tion. Unlike the intelim rules of standard natural deduction, our intelim rules contain
no discharge rules. As a result they are not complete for full Boolean logic, but only
for the 0-depth logic discussed in Section 2.

To obtain a complete set of rules it is sufficient to add a single discharge rule that
corresponds to PB: if we have a deduction Π1 of B from assumptions Γ ∪ {A} and a
deduction Π2 of B from assumptions ∆ ∪ {¬A}, we thereby have a deduction of B
from Γ ∪ ∆. Schematically:

Γ, [A]
Π1

B

∆, [¬A]
Π2

B
RB

B

where the conclusion B does not depend on the “discharged” assumptions A and ¬A
that are enclosed in square brackets and represent virtual assumptions. We leave it
to the reader to show that Gentzen’s rules can be simulated by means of the rules in
Table 4 and RB.

If we allow unbounded applications of RB, a classical intelim deduction of A from
Γ is simply a tree of formulae built in accordance with the intelim rules and RB, such
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[p] p→ ¬q
¬q q ∨ r

r ¬(r ∧ ¬q)
¬¬q
q

[p] p→ ¬q
¬q

f

v

¬v → s

t ∨ u→ ¬s

[¬p] p ∨ t
t

t ∨ u
¬s

¬¬v
v

v

Figure 4: Classical intelim deduction

that A occurs in the root and all the undischarged formulae occurring in the leaves
belong to Γ. The tree in Fig. 4 is a classical intelim deduction of v from

{p → ¬q, q ∨ r,¬(r ∧ ¬q), p ∨ t, (t ∨ u) → ¬s,¬v → s}.

Notice that the last step is an occurrence of RB that discharges the temporary assump-
tions p (which occurs twice among the leaves of the left subtree) and ¬p (which occurs
once among the leaves of the right subtree). This format of intelim trees, with the
conclusion as root and the assumptions as leaves, is more perspicuous, since it allows
us to visualize immediately the inner structure of the proof. However, it involves a
good deal of redundancy in the representation of arguments. This is apparent from the
proof tree in Figure 4, where the derivation of ¬q from the assumptions p and p → ¬q
is repeated twice because the conclusion ¬q is used twice as premise of distinct infer-
ence steps. Moreover, the format of the rule of bivalence is not particularly convenient
for the transformation of proofs and for the implementation of efficient proof-search
algorithms. The format presented in Section 4 provides a more concise representation
of arguments and is better suited to algorithmic treatment.
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[2] A. Avron. A non-deterministic view of non-classical negation. Studia Logica,
80(2/3), 2005.

[3] A. Avron and I. Lev. Canonical propositional Gentzen-type systems. In R. Gore,
A. Leitsch, and T. Nipkov, editors, Automated Reasoning: First Joint Interna-
tional Conference (IJCAR), Lecture Notes in Artificial Intelligence, 2083, pages
529–544. Springer, 2001.

[4] A. Avron and I. Lev. Non-deterministic multiple-valued structures. Journal of
Logic and Computation, 15:241–261, 2005.

[5] A. Avron and A. Zamansky. Non-deterministic semantics for logical systems.
In D.M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic,
volume 16 of vol., pages 227–304. Springer Verlag, 2nd edition, 2011.

[6] N. D. Belnap Jr. How a computer should think. In G. Ryle, editor, Contemporary
Aspects of Philosophy, pages 30–55. Oriel Press, 1976.

[7] N. D. Belnap Jr. A useful four-valued logic. In J. M. Dunn and G. Epstein, editors,
Modern uses of multiple-valued logics, pages 8–37. Reidel, Dordrecht, 1977.

[8] M. Björk. St̊almarkc’s method for automated theorem proving in first order logic.
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