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Abstract 
 

Pendrin is an anion exchanger transporting several monovalent anions including 

iodide, chloride and bicarbonate. It is expressed in the inner ear, thyroid and kidney and 

more recently was also detected in the airways and in a number of other tissues. Pendrin 

was first identified as the protein whose mutations leading to a reduction or loss of 

transport function are responsible for the pathology referred to as Pendred syndrome, an 

autosomal recessive disorder characterized by bilateral sensorineural hearing loss 

associated to thyroid dysfunction with or without involvement of the vestibular system. 

Pendrin mutations also lead to the development of unilateral or bilateral hearing loss with 

enlargement of the vestibular aqueduct with no involvement of other organs (non-

syndromic EVA). On the other hand, the overexpression and hyper-function of pendrin 

have been recently associated with a number of other pathologies, such as hypertension, 

bronchial asthma and chronic obstructive pulmonary disease (COPD).   

 

The high phenotypic variability among individuals carrying pendrin mutations, the 

existence of phenocopies of Pendred syndrome and the high incidence of benign 

polymorphisms in the general population require both the sequencing of the pendrin 

coding region and assessment of the possible functional impairment of the identified 

protein variants in order to confirm or exclude the role of pendrin in determining deafness. 

In this work, we performed the functional characterization of 7 pendrin variants identified in 

a cohort of 58 deaf patients by our collaborators of the University of Campinas (Sao Paolo, 

Brazil). The analysis of pendrin activity was performed measuring the iodide influx in 

pendrin transfected cells by means of a fluorometric assay based on an enhanced yellow 

fluorescence protein (EYFP) variant sensitive to the intracellular iodide concentration. 

Furthermore, the molecular defect of such mutants was analyzed, defining their subcellular 

localization and expression levels by means of confocal microscopy and western blot.  

 

Based on the results of the functional test, 4 pendrin variants (P142L, G149R, 

C282Y and Q413R) were classified as mutations with reduction of function, 2 (T193I and 

L445W) as mutations with loss of function and one (R776C) as a benign polymorphism. 

Assessing the degree of functional impairment of the analyzed pendrin variants 

contributed to the genetic diagnosis of the screened patients. Including our findings, the 

genetic diagnosis was conclusive for 6 patients (for 5 of them deafness was assessed as 
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linked to pendrin dysfunction and for one patient we were able to exclude pendrin as the 

genetic cause of deafness) while for 8 individuals, bearing monoallelic pendrin mutations, 

further investigations are needed, involving pendrin promoter and 3’-UTR, as well as 

further deafness related genes. 

 

We could observe a clear correlation between measured functional impairment, 

sub-cellular localization and expression levels of these specific variants. In particular, 

mutants with loss of function (pendrin T193I and L445W) are retained in the ER, 

completely excluded from the plasma membrane and their expression levels are greatly 

reduced with respect to the wild type, while mutants with reduction of function (pendrin 

P142L, G149R, C282Y) show at least a partial trafficking to the PM and expression levels 

reduced with respect to the wild type but significantly higher with respect to the mutants 

with loss of function.  

 

Based on the finding that expression levels of all pendrin mutants are reduced 

compared to the wild type, we hypothesized that they may be targeted for proteasomal 

degradation. Starting from this hypothesis we could show that pharmacological inhibition 

of proteasomal degradation with 10 µM MG132 was capable to recover (i) total and (ii) 

plasma membrane expression levels of pendrin variants and, most importantly, (iii) 

transport activity of specific mutants (pendrin P142L, T183I, Q413R, L445W) was 

improved upon treatment. These results allow for further development of possible 

approaches aimed to rescue pendrin transport activity as a potential treatment of 

pathologies related to pendrin malfunction. 

 

The second part of the present study focuses on the search of a specific inhibitor of 

pendrin. No specific, non-toxic and potent inhibitors of pendrin could be identified so far 

and the screening of large compound libraries failed in identifying potential ligands. We 

therefore adopted a more targeted selection of candidate ligands to be submitted to the 

functional screening. We selected compounds among (i) established inhibitors of anion 

exchangers, (ii) inhibitors of the pendrin homologue DRA, (iii) commonly used diuretics 

and antihypertensive agents, and (iv) small molecules predicted via two bioinformatic 

tools, the meta-analysis and SHED alignments. Meta-analysis is an approach aimed to the 

mathematical definition of a protein topology based on its primary aminoacidic sequence, 

with no knowledge of its three-dimensional structure. SHED profile allows for the 
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mathematical definition of small compounds according to the intra-molecular distribution of 

specific atomic features. The effect of the candidate ligands on pendrin activity was 

evaluated by means of the same fluorometric assay mentioned earlier. In the present 

study we could (i) confirm the inhibitory effect of the previously assessed active 

compounds niflumic acid and 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) and 

(ii) show for the first time the inhibitory effect of the anti-inflammatory, anti-rheumatic drug 

tenidap. In a second phase screening of further compounds suggested by the alignment of 

niflumic acid and tenidap, according to the SHED profiling, we were able to identify two 

additional active compounds, N-(2-chlorophenyl)-2-(2,4-dibromophenoxy)acetamide and 

flufenamic acid. The identification of pendrin inhibitors may represent an important step in 

the treatment of pathological conditions associated to an increased pendrin function or 

expression. 
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1.1 The anion transporter pendrin 
 

Pendrin is an electroneutral anion exchanger [1] with affinity for a number of ions 

including iodide, chloride, formate, thyocianate, hydroxide and bicarbonate. It was initially 

described to be expressed in the inner ear [2], thyroid [3] and kidney [4], but more recently 

it has also been detected in the airways [5] and in a number of other tissues [6, 7], even 

though its role in most cases is still to be elucidated.  

 

Pendrin was first cloned by Everett et al. in 1997 [8] and identified as the protein that, 

if mutated and non-functional or hypo-functional, is responsible for the pathology referred 

to as Pendred syndrome [8], an autosomal recessive disorder described for the first time in 

1896 by the English physician Vaughan Pendred [9]. Pendred syndrome is characterized 

by bilateral sensorineural hearing loss associated with thyroid dysfunction and possibly 

goiter [10]. Pendrin-related deafness can be either syndromic or non-syndromic and it is 

usually characterized by an enlargement of the vestibular aqueduct (EVA). More recently, 

the deregulation of the transporter has been associated with other pathological issues and 

in particular its over-expression and/or hyper-function have been linked to hypertension 

[11] and airway distresses such as bronchial asthma and chronic obstructive pulmonary 

disease (COPD) [12].  

 

In the inner ear (Figure 1a), pendrin is mainly expressed in the external sulcus and 

spiral prominence cells of the cochlea, in the mitochondria-rich cells of the endolymphatic 

sac and duct and in the transitional cells surrounding the sensory epithelia in the utricle, 

saccule and ampullae of the vestibular labyrinth [13]. In all the above mentioned 

compartments, pendrin is responsible for the exchange of chloride and bicarbonate [14], 

contributing to the regulation of the pH and ion composition of the endolymph, therefore 

maintaining the endocochlear potential, essential for the conversion of the acoustic signal 

in electric impulse. In case of an impaired pendrin activity, acidification of pH and alteration 

of the ion homeostasis of the endolymph are associated with EVA (Figure 1b) [15], 

degeneration of sensory cells, loss of endocochlear potential [16] and formation of calcium 

oxalate stones in the utricle and saccule [17]. Altogether these defects result in the 

development of severe to profound deafness, either syndromic or non-syndromic (i.e. 

accompanied or not with thyroid dysfunction, respectively), possibly associated in the 

worst cases with vestibular dysfunction. The role of pendrin appears to be crucial in the 
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correct maturation of the inner ear. Thanks to an inducible pendrin knock-out mouse, it has 

been shown that a loss of the transporter function between embryonic day 16.5 and 

postnatal day 2 leads to all the defects reported above and to an irreversible failure in 

developing a normal hearing phenotype [18]. 

 

 

 
 

In the thyroid (Figure 2), pendrin is abundantly expressed on the apical membrane of 

the thyrocytes [19], where, together with the Na+ iodide symporter (NIS) at the basolateral 

side, contributes to the trans-epithelial transport of iodide from the bloodstream to the 

follicular lumen of the gland [20]. Iodide is then organified on thyroglobulin as an essential 

step in thyroid hormones biosynthesis. Although the function of pendrin in the thyroid is 

controversial [21], it is widely accepted that it may act as a Cl-/I- exchanger. A lack of 

pendrin activity would lead to a reduced iodide flux into the follicular lumen and, as a 

consequence, to the partial iodide organification defect seen in Pendred syndrome, 

eventually leading to hypothyroidism and/or goiter [22, 23]. The severity of the thyroidal 

phenotype appears to be extremely variable also within families [22] and can often be 

identified only by a positive perchlorate discharge test [24]. It is commonly hypothesized 

that further genetic or environmental factors may contribute to the incidence and the 

Endolympha+c-sac-

Ampullae-

Utricle-
Saccule-

Cochlea-

 
Figure 1: a) Schematic depiction of pendrin expression pattern in the inner ear; b) pendrin 
knock-out leads to loss of ion homeostasis of the endolymph, resulting in the enlargement of 
the whole vestibular aqueduct (EVA). ES: endolymphatic sac, ED: endolymphatic duct, S: 
saccule, CO: cochlea (Choi, B.Y., et al. The Journal of clinical investigation, 2011. 121: 4516-
25). 

a)	
   b)	
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severity of the thyroid phenotype. A specific example is represented by the dietary iodide 

intake, that has been shown to strongly influence the incidence of the development of 

pendrin-related hypothyroidism and goiter in different populations [25]. 

 

 

 
In the kidney (Figure 3), pendrin has been identified on the apical membrane of β and 

non-α, non-β intercalated cells of the distal convoluted tubule, cortical collecting duct and 

connecting tubule [4, 26, 27]. Similarly to the inner ear, in the kidney pendrin is responsible 

for the exchange of Cl-/OH- or Cl-/HCO3
- [4], therefore conditioning the pH of the urine and 

contributing to the pH homeostasis of the whole organism. In addition to the HCO3
- 

secretion, together with the epithelial Na+ channel (ENaC) pendrin participates in the 

reabsorption of NaCl from the urine to the bloodstream [28], therefore contributing to the 

blood pressure regulation [29].  

Figure 2: schematic representation of transepithelial iodide transport in the thyroid follicle. 
Pendrin is expressed at the apical side of thyrocytes and, together with the Na+/I- symporter 
NIS at the baso-lateral side, allows for the transport of iodide from the bloodstream into the 
lumen of the follicle, where it is organified in the thyroid hormones T3 (Triiodothyronine) and 
T4 (Thyroxine) (modified from: Boron, W.F. Medical physiology: A Cellular and Molecular 
Approach. 2003: W.B. Saunders). 
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However, Pendred syndrome patients show no renal dysfunction, suggesting the 

presence of redundant mechanisms compensating for the lack of functional pendrin in the 

kidney under basal conditions. Interestingly, cases of metabolic alkalosis have been 

recently detected in Pendred patients, in association with pharmacological treatment with 

thiazides [30] or disturbed acid-base homeostasis due to inter-current illness [31]. The 

involvement of pendrin in pH homeostasis and salt reabsorption has also been confirmed 

in mouse models lacking pendrin expression. Recently, different groups showed an 

alteration of bicarbonate secretion in the kidney in pendrin knock-out mice, leading to 

metabolic alkalosis both in the basal state [32] and upon NaCl restriction [33]. 

Furthermore, Verlander et al. demonstrated that pendrin knock-out mice are resistant to 

aldosterone-analogs-induced hypertension, but develop metabolic alkalosis following 

aldosterone treatment [11]. 

 
 

 

 
Figure 3: schematic representation of pendrin expression in the distal section of the nephron. Pendrin is 
expressed in β and non-α non-β intercalated cells of distal convoluted tubule, cortical collecting duct and 
connecting tubule. It exerts a Cl-/HCO3

- transport contributing on one side to the regulation of pH and on 
the other side, together with ENaC in the principal cells, to the transepithelial reabsorption of NaCl. DCT: 
distal convoluted tubule, CD: Collecting duct (modified from: OpenStax College, Anatomy & Physiology. 
OpenStax College. 25 April 2013. <http://cnx.org/content/col11496/latest/>). 
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As already mentioned, the expression of pendrin has been recently identified in tissues 

other than the inner ear, thyroid and kidney, such as airways [34], mammary gland [35], 

placenta [36], testis [37], endometrium [38] and liver [39]. In most of the cases, the 

pathophysiological role of pendrin is still to be elucidated. A notable exception is the 

expression of pendrin in the airways, where the transporter has been shown to play a 

crucial role in the exacerbation of symptoms typical of airway distresses such as asthma 

and COPD. Overexpression and hyperactivity of pendrin in the upper airways have been 

shown to be associated with inflammatory states characterized by stimulation via 

inflammatory cytokines, in particular interlukin-4, -13 and -17 [12, 34, 40].  

The role of pendrin overexpression and hyperactivity in the airways will be discussed 

more in detail in later sections. 

  

1.2 Putative structure of pendrin 
 
Structural and topological definition of pendrin is still an elusive issue, as it is often 

the case of membrane proteins. Due to their high degree of flexibility and hydrophobicity, 

the experimental definition of three-dimensional structures for those proteins is still a real 

challenge, either by X-ray crystallography or nuclear magnetic resonance (NMR) [41]. 

Since its cloning in 1997 [8], a number of models have been suggested in an attempt of 

defining pendrin structure, according to different predictor approaches. At first, an 11 

transmembrane segments model with the N-terminus located on the intracellular side and 

the C-terminus located on the extracellular side was predicted with the PHDhtm algorithm 

[8]. Royaux et al. adapted this early model with an additional transmembrane segment, 

therefore bringing the C-terminus on the intracellular side [3]. The intracellular localization 

of both N-terminus and C-terminus was experimentally supported by Gillam et al. in 2004, 

demonstrating that immunostaining of a hexahistidine tag fused either to the C-terminus or 

N-terminus of pendrin is only possible after membrane permeabilization [42]. Further 

supporting the intracellular localization of the C-terminus of pendrin, is the presence of a 

sulfate transporter antisigma factor antagonist (STAS) domain. The exact function of such 

domain is still to be elucidated, but it is supposed to be involved in the regulation of the 

transport activity via binding and hydrolysis of intracellular nucleotides [43]. In a 

comprehensive review, Dossena et al. [44] suggested a further model, predicted by the 

MEMSAT algorithm and adjusted according to the simple transmembrane alignment 

method (STAM) proposed by Shafrir and Guy [45]. Such model is characterized by 15 



	
  
	
   	
  

17	
  

transmembrane segments with the N-terminus on the extracellular side and the C-terminus 

on the intracellular side (Figure 4). The 15 transmembrane segments include 2 amphipatic 

regions, whose localization may either be intracellular, extracellular or transmembrane, 

shifting therefore the number of transmembrane segments from 15 to 14 or 13. 

 

 
It is anyhow important to point out that all of the abovementioned models are only 

speculative and lack of experimental validation. In the present study, I will refer to the last 

model described, suggested by Dossena et al. in 2009. In Figure 4, this model is 

graphically represented and some notable features are marked. At the C-terminus of 

pendrin (intracellular side), the sequence corresponding to the STAS domain is 

represented in light blue. In the 3rd transmembrane segment, the sulfate transport 

consensus sequence is marked. This sequence is present in all members of the SLC26 

family of transporters, but, in the case of pendrin, it is slightly modified, consistently with 

the observation that pendrin, other than the other members of the family, is not reported to 

transport sulfate. The squared sequences correspond to the amphipatic segments, whose 

localization is ambiguous. The glycines marked in yellow have been recognized as 

Figure 4: putative model of pendrin, as suggested by Dossena et al. in 2009, based on the 
algorithm MEMSAT and STAM. Highlighted features in the figure are the amphipatic segments 
(squared), the sulfate transport consensus sequence (purple) the glycophorin-A like motifs (yellow 
Gs), the STAS domain (light blue), the glycosylation sites (orange) and the polyubiquitilation sites 
(grey) (Modified from: Dossena, S. et al. Journal of molecular endocrinology, 2009. 43:93-103). 
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Glycophorin-A like motifs (GxxxG, where G is glicine and x any bulkier amino acid), whose 

presence is supposed to determine protein dimerization interfaces. In particular, the 

repetition in tandem of three of such motifs in the 15th transmembrane segment appears 

to be crucial for pendrin dimerization (Dossena and Paulmichl, manuscript in preparation). 

Other notable features represented on the model are 4 polyubiquitination sites at the C-

terminus of the protein (highlighted in grey in Figure 4) (http://www.ubpred.org/), in 

accordance with the experimental observation that pendrin is targeted by poly-

ubiquitination enzymes [46]. Furthermore, it was shown that pendrin is glycosylated and 

that such modification influences its dependence from intracellular pH. The two 

experimentally identified glycosylation sites, asparagine 167 and asparagine 172, are 

marked in orange in Figure 4 [47]. 

 

1.3 The correlation of genotype and phenotype 
 

As previously mentioned, the main pathological issue linked to an impaired transport 

activity of pendrin is the development of deafness, either syndromic or non-syndromic, 

typically associated with an enlargement of the vestibular aqueduct detectable by 

computer tomography (CT) scan. Pendrin-related deafness is the most common form of 

syndromic hearing loss worldwide. Furthermore, pendrin is also involved in a large number 

of cases of non-syndromic deafness. It has been estimated that Pendred syndrome-

related deafness may contribute to about 7.5 % of the reported cases of hereditary 

deafness [48] but the actual incidence of pendrin-related deafness has not been 

determined, mainly due to variable symptomatology penetrance [49]. An early diagnosis of 

deafness, at best within the first 6 months of life of the newborn, together with an efficient 

planning of the intervention, are crucial for language development and future integration of 

the individual in school and society, giving him/her the same chances of success of any 

normal hearing person [50, 51]. The intervention must include professional counseling of 

the family on how to deal with the diagnosed deaf baby, as well as early enrollment in 

specific assistance programs aimed to the development of proficient communication skills 

from the early age. Together with an early diagnosis, the definition of the specific genetic 

or environmental cause of the sensory defect is an essential step in the view of a possible 

counseling and intervention plan with the patient and the family, as well as for a possible 

therapeutical intervention, where available. For this reason, it is extremely important to 

develop an efficient and standardized hearing screening program for newborns [52] or, in 
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an ideal situation, a genetic screening, in order to determine as early as possible the 

chances of developing a hearing loss phenotype in correlation with the detected genotype. 

For what concerns pendrin-related deafness, more than 200 pendrin allelic variants have 

been detected so far in the deaf population worldwide 

(www.healthcare.uiowa.edu/labs/pendredandbor/slcMutations.htm). Some of the identified 

variants have been detected both in the deaf and normal hearing population, therefore 

candidating them to the status of benign polymorphisms. The identified mutations can be 

divided in aminoacidic substitutions (missense), insertions or deletions (some of which 

determine a frameshift and premature truncation of the protein), splice-site variants. 

Mutations are widespread throughout the whole pendrin coding region and promoter, and 

no hot-spots can be identified within the protein sequence. Despite the large number of 

pendrin mutations identified, in very few cases the actual role of the specific variant 

detected in the patient is clearly defined, as no functional test is routinely performed, 

preventing any clear correlation between the observed phenotype and the identified 

genotype. Furthermore, in those cases of functionally characterized variants, the degree of 

the experimentally determined functional impairment does not always reflects the severity 

of the observed symptoms. Symptoms related to pendrin dysfunction range from mild 

unilateral hearing loss to the full spectrum of defects typical of the syndrome. Furthermore, 

the same mutation can be found both in the deaf and in the healthy population or 

associated to different degrees of severity of hearing loss in different patients, therefore 

suggesting a more complex picture in the etiology of pendrin-related hearing defects, 

rather than a simple monogenic defect. The classical paradigm elaborated in the attempt 

of correlating genotype and phenotype stated that biallelic mutations leading to complete 

loss of function of the pendrin protein are necessary and sufficient for the development of 

Pendred syndrome, whereas those mutations leading to a reduction of function but not a 

complete abrogation of the transport activity were considered to be responsible for the 

development of non-syndromic deafness with unilateral or bilateral EVA [53]. Lately 

however, with the increasing number of mutations characterized on a functional level, it 

became clear that such a simple and linear correlation is to be excluded, and more 

complex genetic and environmental factors have to be taken into account [53] in order to 

clearly explain the phenotypic diversity of pendrin-related deafness.  

 

For an exact identification of the cause of deafness, it is therefore necessary to 

consider the role played by the specific mutant together with other molecular entities (such 
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as transcription factors) and environmental factors (such as infections and traumas) often 

responsible for the aggravation of the hearing loss phenotype. 

 

  1.3.1 Functional characterization of pendrin mutations  
  found in the Brazilian deaf population 

 
The functional characterization of pendrin allelic variants identified in deaf patients in 

different populations is an essential step to define the role of pendrin in determining the 

hearing loss phenotype. Furthermore, the assessment of a correlation between genotype 

and phenotype would provide important insights in the definition of the global picture of 

pendrin-related deafness, as an index of the relevance of pendrin in determining the 

sensory defect worldwide. In this view, an efficient interplay between (i) clinical diagnosis 

of deafness, (ii) identification of the possible genetic determinants and (iii) validation of the 

role of the candidate molecular targets by means of functional and molecular tests is 

clearly necessary.  

 

Thanks to the collaboration with the Center of Molecular Biology and Genetic 

Engineering at the State University of Campinas, Sao Paolo, Brazil (Prof. Edi Lucia 

Sartorato), we could access a cohort of Brazilian patients referring for deafness (with or 

without EVA) at the general hospital of Campinas. Our collaborators recently started a 

genetic screening with the aim of assessing the prevalence of the different genetic causes 

of deafness within the Brazilian population, or at least a portion of it. For some of the 

patients of this cohort, mutations in the pendrin coding sequence were found. We then 

performed the functional and molecular characterization of pendrin allelic variants detected 

in this cohort in order to assess the specific role of pendrin in determining deafness, i.e. to 

discriminate between pathological mutations and benign polymorphisms. In Brazil, about 

18 million people, corresponding approximately to 9% of the population, are recognized 

with a degree of hearing impairment. Both genetic and environmental factors (mainly 

rubella infection, perinatal anoxia and meningitis) account for the development of deafness 

[54], with the environmental causes having a major role on the incidence of the sensory 

defect, especially in those vast areas of the country that lack an efficient health care 

system. The recent improvement of the health system throughout the country is rapidly 

increasing the impact of genetic factors with respect to the environmental ones, calling 

therefore for a greater attention in the investigation of the genetic causes of the disease. 
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However, the genetic factors determining the development of deafness are still poorly 

investigated in Brazil, and the interest in pendrin-related syndromic and non-syndromic 

deafness is almost a complete novelty. Before the present study, very little was known on 

the etiology of deafness in Brazil, especially regarding the role and incidence of pendrin 

mutations in the sensory defect [55]. For what concerns the specific role of pendrin in 

determining deafness in Brazil, only isolated cases of mutations [55, 56] in the pendrin 

coding gene (SLC26A4) have been reported in the literature so far (the truncations 96X, 

430X and 453X, the missense mutations F667C, G497S and I490L and the single 

nucleotide deletion of a thymine at the position 1197 of pendrin mRNA, resulting in a 

premature truncation of the protein) [55-57], and for none of them a functional 

characterization of the corresponding protein variants was performed. This work is 

therefore the first aiming to the functional and molecular characterization of pendrin 

variants detected in Brazilian deaf patients, and may therefore contribute to spread light on 

the genetic determinants of deafness in this population. 

 

Deafness is the most common sensory defect in developed countries, estimated to 

affect one in 500 newborns [58]. It can be either syndromic (e.g. associated with 

pathological defects outside the hearing organ) or, in most cases, non-syndromic. More 

than 50% of the reported cases of deafness worldwide are attributed to the so-called 

DFNB1 disorder, caused by mutations in the connexin-26 and connexin-30 coding genes, 

respectively the gap junction proteins B2 and B6 (GJB2 and GJB6) [59]. Altogether, more 

than 80 different genetic loci and 30 genes are expected to contribute to the development 

of some degree of hearing loss, with different prevalence in different populations. The 

genetic screening carried out by our collaborators focused on the most common deafness-

related genes, taking into account both syndromic and non-syndromic forms of deafness, 

as described in the following. The first target gene considered was the connexin-26 coding 

gene GJB2, known to be responsible for the majority of cases of non-syndromic deafness 

in the Brazilian and ethnically related (Spanish, Italian, Portuguese) populations [60]. As a 

first step, the GJB2 coding region containing the most common deafness-causing 

mutation, i.e. a deletion of a guanine at position 35 of the transcript (35delG) [61], was 

sequenced and analyzed. The presence of this particular deletion causes a frame shift in 

the open reading frame and creates a premature STOP codon, leading to the production 

of a truncated form of the protein. The truncated protein resulting from the deletion is 

unable to homo- and/or hetero-dimerize and cannot form a functional gap-junction 
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between neighboring cells, resulting in an impaired intercellular potassium flux in the 

cochlea, essential for hearing function [62]. In those cases where no 35delG mutation 

could be identified, the whole GJB2 coding sequence was sequenced and analyzed, 

looking for other possible mutations in different regions of the gene. Mutations other than 

35delG are much less frequent but may still account for a number of cases of non-

syndromic hearing loss [63]. If no mutations were found in the whole GJB2 coding 

sequence, the further step consisted in the screening of the second most common 

deafness-causing gene, GJB6, coding for a functionally related gap-junction-forming 

protein, connexin-30. The analysis of the GJB6 gene was specifically focused on the 

identification of two common genomic deletions, i.e. del(GJB6-D13S1830) and del(GJB6-

D13S1854) [64], resulting in a lack of expression of connexin-30. If neither mutations in 

GJB2 nor the two GJB6 genomic deletions were detected, the further step was the 

sequencing of the mitochondrial encoded 12S RNA, MTRNR1, with the aim of verifying the 

presence of the nucleotidic substitution A1555G, a mutation found to be related to 

aminoglycoside-induced and/or non-syndromic deafness [65]. When the molecular cause 

of deafness could not be identified in a defect of the aforementioned genes, other known 

deafness-related genes have been sequenced and analyzed, with a particular attention to 

the pendrin coding gene, SLC26A4, as one of the most common genetic causes of 

syndromic deafness. 

 

The sequencing of the 20 coding exons of SLC26A4 involved a total of 58 deaf 

patients (30 females and 28 males aged between 4 and 55 years) divided in two groups 

according to the recorded diagnosis: a first group of 26 patients diagnosed deaf with an 

enlargement of the vestibular aqueduct (EVA) observed via CT scan, while a second 

group of 32 patients identified as deaf, but without any over-the-threshold enlargement of 

the vestibular aqueduct. Sequencing and analysis of the SLC26A4 coding region of the 

patients in the abovementioned two groups lead to the identification of 14 different allelic 

variants [66], including 11 known (the missense mutations T193I, R409H, T410M, Q413R, 

L445W, V609G, R776C and V138F, the deletion del297T and the splice site mutations 

IVS15+5G>A and IVS8+1G>A) and 3 novel (P142L, G149R and C282Y) mutations (Table 

1). Some of the known allelic variants had already been functionally and/or molecularly 

characterized and have been identified as disease-causing mutations, while 6 of the 

identified mutations had not yet been characterized, neither functionally nor molecularly, 

and were included in the present study. In addition, the aminoacidic substitution R776C 



	
  
	
   	
  

23	
  

was included in the study because controversial results regarding its transport ability are 

present in the literature [67, 68] (further details on the genetic screening are given in the 

next section). In order to determine whether the uncharacterized SLC26A4 allelic variants 

identified in this screening do have a role in the development of deafness in this cohort, a 

functional characterization has been performed in our laboratory by means of the 

fluorometric method developed by Dossena et al. in 2006. This method requires the co-

transfection in human embryonic kidney (HEK) 293 Phoenix cells of the cDNA coding for 

the wild type or mutant form of pendrin and a fluorophore (a modified enhanced yellow 

fluorescent protein, EYFP) sensitive to the intracellular iodide concentration (see Methods 

for further details) [69].  

 

  1.3.2 Outcome of genetic screening of the pendrin coding  
  region in a cohort of Brazilian deaf patients 

 

As previously mentioned, the genetic screening was carried on by our collaborators 

at the State University of Campinas on a group of 58 deaf patients, 26 patients with and 32 

patients without EVA. The sequencing and analysis of the coding region of pendrin in the 

selected individuals led to the identification of 14 patients bearing mutations in the pendrin 

coding sequence (Table 1). 9 of these patients belong to the group of deaf individuals with 

EVA and 5 patients belong to the group with no EVA. The identified pendrin allelic variants 

can be divided in 11 missense mutations leading to an aminoacidic substitution (P142L, 

G149R, T193I, R409H, T410M, Q413R, L445W, V609G, R776C, V138F and C282Y), 2 

splice site mutations (IVS15+5G>A and IVS8+1G>A) and 1 single residue deletion 

(del297T), leading to a premature truncation of the protein after the first transmembrane 

segment (Table 1). Eight of the missense mutations identified (T193I, R409H, T410M, 

Q413R, V138F, L445W, V609G, R776C) have already been reported in the literature and 

in part characterized by us or others [67, 68, 70-73]; P142L and G149R were firstly 

identified in this screening and published in 2013 by de Moraes et al. [66] but in that 

particular study they were not characterized neither on a functional nor on a molecular 

level. One allelic variant, namely C282Y, is instead completely novel, neither 

communicated nor characterized previously. 6 of the identified variants (G149R, T193I, 

V609G, R776C, V138F, C282Y) were detected in heterozygosis with the wild type allele in 

9 patients, while in 4 patients (21AA, 02AA, 06AA, 23AA) pendrin variants were detected 

in compound heterozygosis (i.e. both alleles are mutated and the two mutations are 
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different from each other). Interestingly, the aminoacidic substitution V609G has been 

detected in heterozygosis with the wild type allele both in deaf patients presenting EVA 

and in deaf patients with no EVA. In patient 22AA, the R409H mutation was found in 

homozygosis (i.e. both pendrin alleles show the same mutation). In patients C26 and 

L1AA, monoallelic pendrin mutations were detected in combination with a monoallelic 

mutation (35delG) in GJB2, the connexin-26 coding gene previously sequenced. The 

question marks reported in Table 1 identify the detected allelic variants of pendrin lacking 

a functional and/or molecular characterization in the present literature and therefore 

preventing a complete genetic diagnosis of the sensory defect in that specific patient. 

Importantly, total expression levels were never investigated for pendrin variants. In Figure 

5 the distribution of the aminoacidic substitutions identified in the cohort are reported on 

the putative model of pendrin suggested by Dossena et al. in 2009. 

 

Patient 

(n=58) 

Nucleotide 

substitution 

Aminoacid 

substitution 

Patient Genotype 

(coding region) 
Goiter Function Localiz. 

 
Patients deaf with EVA (n=26) 

 
21AA 425C>T P142L P142L/del 297T No ? ? 

16AA 446G>A G149R G149R/WT No ? ? 

18AA 578C>T T193I T193I/WT No ? ? 

22AA 1226G>A R409H R409H/R409H No lost/red. 
[74] 

partially 
PM 

02AA 1229C>T T410M T410M/IVS15+5G>A      No lost [73] ER [73] 

06AA 1238A>G Q413R Q413R/V138F No ? ? 

23AA 1334T>G L445W L445W/IVS8+1G>A Yes ? ? 

L1AA 1286T>G V609G V609G/WT * No reduced 
[71] 

? 

15AA 2326C>T R776C R776C/WT No ? ? 

 Patients deaf without EVA (n=32)  
C15 412G>T V138F V138F/WT No lost [73] ER [73] 

C26 845G>A C282Y C282Y/WT * No ? ? 

C01 1286T>G V609G V609G/WT No reduced 
[71] 

? 

C04 1286T>G V609G V609G/WT No reduced 
[71] 

? 

C09 1286T>G V609G V609G/WT No reduced 
[71] 

? 

 

Table 1: Genetic analysis of pendrin coding region in 58 deaf patients performed at the hospital of 
Campinas, Sao Paolo, Brazil; *: a mono allelic mutation (35delG) in the connexin-26 gene, GJB2, was 
also found; ?: non-characterized feature. 
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1.3.3 Subcellular localization and expression levels of   

 pendrin variants 
 

The functional characterization of pendrin variants is the key for determining the 

actual degree of impairment in the transport activity of mutated forms of the protein. Such 

knowledge is necessary for discriminating between protein variants with loss or reduction 

of function (mutations, potentially disease-causing) and variants with no functional 

impairment (benign polymorphisms).  

 

In order to define the actual molecular defect resulting in the experimentally 

determined degree of functional impairment, it is necessary to analyze further the specific 

mutant forms. The next step in the analysis and definition of the potentially pathogenic 

variants of pendrin is therefore the characterization of their specific molecular defect by 

determining their (i) subcellular localization and (ii) abundance in the cell.  
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Figure 5: Putative structure of pendrin showing the distribution of the mutations identified in the 
cohort of Brazilian deaf patients (Modified from: Dossena, S. et al. Journal of molecular 
endocrinology, 2009. 43:93-103). 
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A mutant isoform may undergo different destinies, according to the type of molecular 

defect. A specific mutation may:  

 

(I) determine a misfolding of the protein, preventing its correct trafficking to the 

plasma membrane (PM) and leading to its accumulation in an immature form 

in the endoplasmic reticulum (ER) and possibly to its degradation;  

(II) impair the transport activity per se without disrupting the correct folding and 

trafficking of the protein to the PM; this is the case of mutations affecting the 

ion binding sites. 

(III) interfere with the correct insertion of the polypeptide in the PM and/or its 

proper function, disrupting its interaction with other molecular entities, such as 

chaperones, cytoskeletal elements, regulatory proteins.  

 

The definition of the subcellular localization and abundance of the different pendrin 

variants, in combination with the related functional data, can deliver precious information 

regarding the specific type of molecular defect conferred by a specific aminoacidic 

substitution. Such knowledge can then drive the effort in the difficult challenge of 

investigating a possible mechanism for rescuing the transport activity of hypo-functional or 

non-functional proteins. Those mutants that are retained in the ER, may still be capable of 

an efficient ion transport if degradation is circumvented and/or folding is assisted 

pharmacologically. On the other side, mutants that show a partial trafficking to the plasma 

membrane may instead be potentiated in order to recover part of their transport activity. In 

the next chapters the “rescuing issue” and its possible approaches will be discussed more 

in detail. 

 
  1.3.4 Rescuing of pendrin activity 
 
Retention of the mutated forms of pendrin in the intracellular compartments is 

considered the main mechanism leading to the phenotype observed in many patients 

affected by syndromic and non-syndromic pendrin-related deafness [75]. Defective 

variants of pendrin cannot properly fold in the mature form of the transporter and are 

therefore retained in the ER, preventing their correct trafficking to the PM. The degradation 

of misfolded proteins mainly takes place in the complex called proteasome, where the 

defective polypeptide chain is chopped in small pieces by multiple enzymatic subunits 



	
  
	
   	
  

27	
  

within the core of the complex [76]. An alternative pathway of degradation active in the cell 

involves the lysosomal enzymatic digestion [77]. This pathway is particularly active in 

degrading membrane proteins and phagocytized products but it also finds a role in the 

degradation of misfolded protein together with the proteasome complex. In this sense, for 

an effective modulation of the degradation/folding of mutant protein it is necessary to 

consider also this alternative pathway. 

 

The processing of newly synthesized proteins in the ER is driven through a number 

of checkpoints where the correct folding of the polypeptide is verified. Failure to pass any 

of the checkpoints leads to the arrest of the further maturation of the protein and activation 

of folding assisting mechanisms [76]. Accumulation of misfolded proteins in the ER 

induces the activation of a series of stress response mechanisms altogether termed the 

unfolded protein response (UPR), eventually leading to the activation of the ER associated 

degradation (ERAD) pathway [78]. In order to prevent excessive stress in the ER, different 

pathways can be activated. An ER-stress counteracting mechanism involves the 

expression of molecular chaperones in order to assist the correct and functional folding of 

the retained proteins [79]. The folding of a protein is assisted by a number of molecular 

chaperones along its pathway of maturation, activated according to the detected level of 

impairment. A second opportunity to reduce the ER stress is the stimulation of 

phospholipids synthesis and enlargement of the ER, necessary for the enhancement of its 

folding capacity [76, 80]. If the correct folding of the proteins accumulated in the ER is no 

more achievable or is too energy consuming, the misfolded polypeptide undergoes the 

poly-ubiquitination process, ultimately leading to the degradation in the 26S proteasome 

complex [76, 81]. Poly-ubiquitination of proteins is a three step process carried out by 

three different enzymes transferring ubiquitin molecules on specific residues on the 

polypeptide to be targeted to the proteasomal degradation. The first step of the process 

involves the activation of the ubiquitin molecule by a ubiquitin-activating-enzyme (E1) in an 

ATP-dependent fashion [82]. The activated ubiquitin molecule is then bound by a ubiquitin-

conjugating enzyme (E2) also called ubiquitin-carrier enzyme. E2 enzymes are 

responsible for transferring the ubiquitin molecule to the target protein, and finally, together 

with ubiquitin-ligase enzymes (E3), covalently bind the activated ubiquitin to a lysine of the 

polypeptide to be degraded. Many different E3 enzymes have been identified, with a high 

specificity for different target proteins, whereas much fewer different E2 enzymes and still 

fewer E1 enzymes have been identified in genome-wide analysis [83]. Ultimately, if the 
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accumulation of misfolded proteins and the correlated ER stress cannot be overcome and 

reduced by any of the mentioned mechanisms, the overproduction of reactive oxygen 

species (ROS) resulting from the ER forced hyperactivity leads to the activation of the final 

rescue mechanism, namely the apoptotic cell death, in order to prevent any further 

damage to the system [76, 84]. Defective and mutant proteins are often misfolded and 

retained in the ER lumen, triggering all of the above mentioned stress response 

mechanisms, and ultimately targeted for degradation. Ameliorating specific folding 

mechanisms and/or circumventing protein degradation may be the key for a targeted 

functional recovery of the activity of a protein of interest. 

 

The possibility to rescue the activity of pendrin hypo-functional and non-functional 

mutants has been considered and explored so far only in a small number of studies [85, 

86]. Ishihara et al. managed to rescue the trafficking to the PM and a partial ion transport 

activity of 4 pendrin mutants (P123S, M147V, S657Y and H723R) by treatment with 10 

mM salicylate [85]. The ability of salicylate to influence protein folding and maturation had 

been previously shown with regard to a paralogue of pendrin, SLC26A5 or prestin [87]. 

The same treatment was shown to be ineffective on the surface expression and activity of 

other 4 pendrin mutants (A372V, N392Y, S666F and T721M). Yoon et al. have shown the 

efficient recovery of Cl-/HCO3
- exchange activity and protein abundance at the PM of 

pendrin H723R after incubation of transfected cells at low temperature and treatment with 

the histone deacetylase inhibitor Na+-butyrate. In this study, the same approach was 

applied to another pendrin mutant variant, namely L236P, but neither functional nor 

molecular rescue could be observed [86]. Both studies clearly showed the heterogeneity in 

the processing of the different mutant forms of pendrin and their unique behavior. Such 

heterogeneity observed at the functional and molecular level reflects the high variability of 

phenotype severity observed in deaf patients displaying different mutant variants of 

pendrin. This heterogeneity may not allow for a unique approach toward a possible rescue 

of the transport activity of different pendrin mutants.  

 

In that light, the functional and molecular characterization of defective pendrin allelic 

variants identified in the deaf population is a crucial piece of information in the view of a 

possible therapeutic approach against deafness caused by absent or reduced transport 

function of pendrin. In particular, the identification of mutant variants per se functional but 

mostly retained in the ER and eventually degraded results particularly interesting in driving 
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a possible therapeutical approach toward the inhibition of the degradation pathway and the 

assistance of proper folding. 

 

  1.3.5 Other genetic and molecular determinants of   
  deafness 

 

In 7 patients from the cohort subject of the study, deafness was reported in 

association to monoallelic pendrin mutations (Table 1). In these cases, monoallelic pendrin 

mutations may or may not be enough for determining deafness and other genetic defects 

or environmental factors may be involved in the development of deafness. 

 

The hearing loss phenotype may be related to a possible double heterozygosity, a 

condition where monoallelic pendrin mutations are found in combination with monoallelic 

mutations in other genes known to be involved in the sensory defect, such as the pendrin 

transcription factor FOXI1 or the potassium channel KCNJ10 [88, 89]. In the cohort of deaf 

patients analyzed in the present study, both FOXI1 and KCNJ10 genes have been 

sequenced and have been found in the wild type form, therefore excluding their role in 

determining deafness in this particular cohort. It is as well possible that mutations within 

the pendrin promoter region, or the 3’ untranslated region may influence the expression of 

the protein and therefore contribute to the development of the diagnosed phenotype. 

 

It is common opinion that it is necessary a bi-allelic pendrin mutation in order to 

observe the full spectrum of hearing defects characteristic of Pendred syndrome. 

Nonetheless, many reported cases are characterized by a severe deafness phenotype 

associated with monoallelic pendrin mutations [53, 67]. In some cases the determining 

cause of the observed degree of deafness may be due to other genetic or environmental 

factors, as discussed in the previous section.  
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 1.4 Functional screening of pendrin ligands 
 
  1.4.1 Role of pendrin overexpression and hyper-activity  

   and the need for a specific inhibitor 
 

As mentioned in the previous sections, deregulation of pendrin activity is associated 

with different pathological states, not only in the case of a loss or reduction of the transport 

function but also in those situation characterized by an over-expression and over-function 

of the transporter. In this regard, multiple studies in the last decade have shown that an 

increased expression and/or activity of pendrin may be associated with a number of 

pathologies, ranging from hypertension [29] to airway distresses such as asthma and 

COPD [40, 90]. 

 

Even though no correlation between pendrin mutations with gain of function and 

development of a hypertensive phenotype could be determined so far, the involvement of 

pendrin in the salt reabsorption in the distal section of the nephron has been shown in a 

number of studies [4, 13, 91].  

 

In the kidney, the transporter is mainly expressed in the distal convoluted tubule 

(DCT), in the connecting tubule (CNT) and in the apical membrane of beta- and non-α-

non-β-intercalated cells of the collecting duct (CD), where it has been shown to participate 

in the Cl-/HCO3
- exchange [4]. Pendrin exchange activity contributes therefore to the 

regulation of systemic pH on one side, and to the reabsorption of Cl- on the other. Royaux 

et al. demonstrated pendrin being the major responsible for Cl- reabsorption in the distal 

section of the nephron and in particular in the CD [92]. Cl- reabsorption in the beta-

intercalated cells of the CD is coupled to the reabsorption of Na+ in the principal cells via 

ENaC, or via an alternative transporter [93], resulting in the movement of NaCl from the 

urine to the blood, followed by water, therefore regulating fluid volume and ultimately blood 

pressure [94]. The expression of pendrin in the kidney has been shown to be upregulated 

by aldosterone analogues [11] and angiotensin II [95]. Pendrin involvement in fluid volume 

homeostasis in the kidney is further supported by the observation that pendrin knock-out 

mice, even if not showing any abnormality at the basal state, submitted to NaCl restriction 

result in a severe Cl- wasting phenotype and development of hypotension [33]. 
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Furthermore, the same mice, treated with the aldosterone analogue 

deoxycocorticosterone pivalate (DOCP), developed metabolic alkalosis due to a complete 

lack of HCO3
-
 secretion and resulted protected against aldosterone analogue-induced 

hypertension. In the same study it was shown that a moderate NaCl restriction is 

associated with an increase in pendrin expression at the apical side of beta-intercalated 

cells in the CD, probably as a compensatory mechanism. Increased chloride reabsorption 

associated with an increased pendrin expression in the distal section of the nephron could 

also be directly or indirectly coupled to an increased sodium reabsorption via other 

transporters or channels [11]. Supporting this hypothesis, Kim et al. have shown that lack 

of pendrin expression is associated with a decrease in the expression level of ENaC upon 

aldosterone stimulation, possibly due to the alkalosis resulting from the absence of 

pendrin-dependent HCO3
- secretion [94], thus further supporting pendrin crucial role in 

NaCl reabsorption and blood pressure regulation. 

 

In the airways, an increased expression of pendrin at the bronchial level possibly 

contributes to the development and exacerbation of symptoms of asthma and COPD [5]. 

An abnormal Cl-/HCO3
- transport activity is associated with an increase in chloride 

reabsorption followed by water. Pendrin hyperactivity leads therefore to a reduction in 

airway surface liquid (ASL) thickness and fluidity as the consequence of the increased 

water reabsorption [96]. A separate study shows that pendrin overexpression is associated 

with an increased mucus production [90] (Figure 6). The reduction of ASL thickness and 

the increase in mucus production may in turn exacerbate the symptoms of asthma as well 

as the diffusion of the inflammatory state and bacterial infections.  

 

On the other side, pendrin has been shown to contribute to the transport of 

thiocyanate into the ASL [34]. In the presence of hydrogen peroxide (H2O2), generated by 

the dual NAPDH oxidase (DUOX), thiocyanate is then oxidize to hypothiocyanate, known 

to exert an antimicrobial action (Figure 6). The expression of pendrin in the airways is 

regulated by stimulation with pro-inflammatory cytokines, and in particular by the action of 

interleukins 4 and 13 via the STAT-6 transcription regulation pathway [12, 34, 40].  
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In addition to an increased expression, also an increased intrinsic activity may lead to 

pendrin hyper-function. Indeed, gain of function mutations (i.e. showing and enhanced ion 

transport activity) of pendrin have been recently identified [71]. The existence of such 

hyper-functional forms of the transporter may be linked to the development of the 

pathological states just described. 

 

The need for a specific inhibitor becomes therefore clear when facing such 

pathological issues linked to a hyper-function/overexpression of the transporter. Pendrin 

constitutes a potential key target for the treatment of common pathological conditions such 

as bronchial asthma and hypertension, and the identification of a specific inhibitor is 

becoming a pressing issue. Some compounds showing an inhibitory effect on pendrin 

activity have indeed been identified but none of them is specific [97, 98].  

Figure 6: Pendrin in the airways. The expression of pendrin in the airways is stimulated by the 
pro-inflammatory cytokines IL-4 and IL-13. An increase in the transport activity of pendrin 
leads to the reduction of airway surface liquid thickness and increase mucus production. On 
the other side, pendrin is also responsible for the transport of thyocianate into the ASL. 
Thyocianate is then oxidized by H2O2 produced by DUOX, to produce the anti-microbic 
hypothiacyanate (Nofziger, C. et al. Cellular Physiology and Biochemistry, 2011. 28:571-578). 
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One of the goals of my research activity is the identification and characterization of 

new inhibitors of pendrin by functional screening of different compounds, selected among 

(i) substances with known inhibitory activity on transporters evolutionarily related to 

pendrin as well as (ii) diuretics and anti-hypertensive agents and (iii) small ligand 

molecules predicted via informatics tools (described more in detail in the following section). 

Possible side effects of a pendrin inhibitor on the inner ear, which would theoretically lead 

to hearing damages similar to those observed in Pendred patients, can be excluded since 

the role of the transporter seems to be limited to the completion of organogenesis of the 

hearing system [18], while an essential function later in the development has not been 

proven. Even though these results have been shown in mice pups, it is reasonable to 

imagine a similar situation in humans.  

 
  
  1.4.2 Selection of putative pendrin ligands for the   

   functional  screening 

 
The role of pendrin in the maintenance of ionic homeostasis in different biological 

compartments and its involvement in a number of pathologies suggests that this protein 

may be regarded to as an interesting and novel pharmacological target for different 

diseases. So far, no specific pendrin inhibitor or modulator could be identified, and even a 

high throughput screening of a large library of compounds failed in identifying new ligands 

for the transporter [34]. As mentioned in the previous section, few active compounds have 

indeed been identified, but none of them is specific for pendrin, and for some of them the 

actual efficacy is matter of debate. In particular, 4,4’-Diisothiocyano-2.2’-stilbenedisulfonic 

acid (DIDS), furosemide and probenecid at the concentration of 1 mM have been shown to 

inhibit the activity of the transporter both when expressed in Xenopus laevis oocytes [99], 

and in HEK 293 cells [100]. Evidences of an inhibitory activity of 5-Nitro-2-(3-

phenylamino)benzoic acid (NPPB) and niflumic acid have been shown in Human 

Embryonic Kidney (HEK) 293 Phoenix cells [97]. 

 

The search for pendrin ligands aims to the identification of chemical compounds 

(both inhibitors and activators/enhancers) capable of modulating the activity of the 

transporter. Inhibitors of pendrin activity may be an extremely useful therapeutic approach 
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for controlling hypertension and exacerbations of asthma and other respiratory distresses. 

On the other hand, an activator of pendrin activity may help developing a therapy 

circumventing or reducing hearing loss and/or thyroid dysfunction in patients with pendrin 

mutations. 

 

The functional screening of putative pendrin ligands can be efficiently carried out with 

the fluorometric method developed by Dossena et al. in 2006 and adapted for the use with 

a 96 well plate reader [69, 71, 101] (see Methods section for further details). As already 

mentioned, high-throughput screenings of large libraries of chemicals failed in identifying 

new pendrin inhibitors [34]. Our approach is therefore a more focused one, and requires a 

preliminary careful selection of a relatively small number of candidate compounds to be 

tested for their effect on pendrin activity in vitro.   

 

The selected compounds were classified, according to the rationale driving their 

choice for the screening, into three different groups: 

 

•  a first group includes known inhibitors of anion exchangers or channels, 

including substances with a known effect on homologues of pendrin, in particular 

inhibitors of Slc26a3, also known as downregulated in adenoma (DRA); 

 

•  a second group includes more or less commonly used antihypertensive and 

diuretic agents. This choice was driven by the evidence that pendrin plays a crucial 

role in the regulation of blood pressure in the kidney;   

 

•  a third group of compounds emerges from a different rationale; candidates in 

this group have been identified by means of a bioinformatics approach called meta-

analysis (described more in detail in the following section). This bioinformatics 

approach has been set up and delivered to us by Prof. R. Konrat, from the institute 

of Biochemistry & Biophysics, Structural & Computational Biology, University of 

Vienna (Austria). 

 

In the following sections the individual groups of compounds selected for the screening are 

discussed more in detail. 
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   1.4.2.1 Inhibitors of anion exchangers and anion  
     channels 

 
The closest homologue of pendrin is a member of the same SLC26 transporter 

family, namely Slc26a3, also known as DRA. The two proteins show a 44% of identity and 

a 60% of similarity. 

 

DRA is an anion exchanger responsible for the transport of Cl- and bicarbonate, as 

well as sulfate and oxalate. It is mainly expressed in the apical side of enterocytes of the 

proximal section of the colon [102] and in the duodenum [103], where it contributes to fluid 

reabsorption by mediating Cl-/Cl- and Cl-/HCO3
- exchange [104]. A loss of transporter 

function leads to congenital chloride-losing-diarrhea (CLD), characterized by loss of a 

large amount of fluid in the stool and disruption of the intestinal mucosa adherence [105]. 

Chernova et al. characterized the pharmacological profile of DRA identifying the inhibitory 

effect, among others, of two anti-inflammatory drugs, namely niflumic acid and tenidap. 

Both drugs are known to lower the intracellular pH (lowering the intracellular pH may inhibit 

the bicarbonate secretion per se), but it could be shown, especially for what concerns 

tenidap, that the inhibitory effect is independent from the acidification of the cytosolic 

environment [106]. In a different study, Lamprecht et al. showed that the anti-diabetic drug 

glibenclamide was also effective in reducing the Cl- transport activity of DRA in Caco-2 

cells [107]. Even if the two transporters, DRA and pendrin, show a different ion selectivity, 

(DRA is capable of transporting both monovalent and divalent anions while pendrin only 

monovalent anions) their relatively high sequence similarity allows for the speculation of a 

possible common pharmacological profile.  

 

Other unselective inhibitors of anion exchangers and anion channels have been 

included in the screening, such as the anion exchanger blocker DIDS, the cystic fibrosis 

transmembrane conductance regulator (CFTR) inhibitor 172 (CFTR inh-172) and the 

chloride channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB).  

 

Some of the tested compounds have already been tested on pendrin at different 

concentration [35], but were nonetheless included in the present study. 
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   1.4.2.2 Diuretic and antihypertensive agents 
 
The role played by pendrin in salt reabsorption and blood pressure regulation in the 

kidney candidates the transporter as a possible novel target for diuretic and anti-

hypertensive therapy. Also, the observed effect of some known diuretic agents may be 

due, at least partially, to an inhibitory effect on pendrin transport activity. For instance, a 

thiazide-sensitive NaCl reabsorption is still present in Na+-Cl--cotransporter (NCC) knock-

out mice [93] and may be due to pendrin. It is therefore not to be excluded that common 

diuretic and antihypertensive agents may modulate pendrin in addition to the classical 

target. Including diuretics in the functional screening may deliver precious information 

regarding the contribution of pendrin in blood pressure regulation and add novel 

information on the mechanism of action of known diuretics. Common diuretic and 

antihypertensive agents act by blocking transepithelial ion transport in the nephron, 

reducing therefore the consequent water movement from the urine into the bloodstream. 

This results in a decrease in plasma volume and blood pressure and, on the other side, in 

an increase of urine volume (diuresis).  

 

Typical diuretic agents used in the treatment of hypertension are:  

 

i) the thiazides, acting on ion transport in the DCT;  

ii) aldosterone and vasopressin antagonists, reducing NaCl reabsorption in the 

CD;  

iii) acetazolamide, reducing NaCl reabsorption in the proximal tubule; 

iv) the so called loop diuretics (furosemide, bumetanide), acting on the ion 

transport mainly in the thick ascending limb of the loop of Henle [108, 109]. 

 

The known molecular targets of the mentioned diuretic agents are, respectively: 

 

i) the Na+-Cl--cotransporter (NCC) in the DCT;  

ii) the epithelial Na+ channel (ENaC) in the CD; 

iii) the enzyme carbonic anhydrase and, indirectly, the Na+/H+ exchanger; 

iv) the Na+-K+-2Cl- cotransporter 2 (NKCC2) in the thick ascending limb of the 

Henle loop [110]. 
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   1.4.2.3 Protein meta-structure similarity clustering 
 

 The identification of putative ligands for a target protein often makes use of 

bioinformatics approaches and in particular of alignment algorithms aimed to the definition 

of similarity clusters of proteins sharing significant sequence/structural patterns. Proteins 

showing a significant aminoacidic sequence or structural similarity are often also sharing 

affinity for common ligands and interaction partners [111]. 

 

Most classical alignment approaches are based on the primary aminoacidic 

sequence of a protein in order to identify homology with other polypeptides. The risk in 

primary sequence alignment is the loss of potentially interesting partners that do not share 

a similar aminoacidic sequence but whose three-dimensional organization may still have a 

significant homology. In this view, one of the most established trends in similarity analysis 

nowadays is focusing on protein similarities on a structural level. Based on the observation 

that structural motifs are more conserved than primary amino-acidic sequences, the 

alignment of three-dimensional structures promises to be extremely useful when looking 

for similarities between proteins, in particular concerning the issue of ligand discovery. It 

has been shown that proteins sharing a similar 3D structure or similar domains often also 

share affinity for the same ligands [111]. Such a structural approach requires the definition 

of the three-dimensional structure of the protein of interest in order to be aligned with a 

database of structurally characterized proteins. Unfortunately, in many cases an 

experimentally defined structure is not available, especially when working with membrane 

proteins as pendrin. Due to their intrinsic flexibility and instability in aqueous media, the 

most common methods for structural analysis, crystallography and nuclear magnetic 

resonance (NMR), are often inapplicable. Lacking a full-length three-dimensional structure 

of our protein of interest, it is impossible to perform a classical structural alignment in order 

to predict putative binding molecules on a structural basis. It is therefore necessary the 

elaboration of a suitable alternative approach, in order to circumvent the lack of a defined 

three-dimensional structure. A very promising alternative approach is the so-called meta-

analysis. 

 

Meta-analysis is a bioinformatic approach aimed to the definition of a protein 

topology based on its primary amino acid sequence, without any knowledge regarding the 

three-dimensional structure of the protein of interest [112]. In order to do so, the interaction 
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probability of any given pair of residues within the target protein is calculated according to 

the formula 𝜌 𝜃,𝐴,𝐵, 𝑙!" , where 𝜃 represent the shortest path length observed between 

the two residues, A and B define the characteristic of the two specific residues involved in 

the interaction and 𝑙!" is their distance on the primary aminoacidic sequence of the protein 

of interest. The probability formula is based on the analysis and extrapolation of structural 

information collected from a number of characterized protein templates, in particular it is 

derived from the observation of actual inter-residues interactions within structurally defined 

proteins from the protein data base (PDB). The collection of all the probability values 

calculated for any residue pair within the target protein results in a network of more or less 

probable intramolecular interactions. Such a collection allows for the prediction of a 

putative 3D-structure of the protein of interest. The algorithm delivers information 

regarding the compactness of domains and regions within the target protein, and the local 

organization in secondary structure elements (alpha-helices and beta-sheets). 

 

Defined compactness values vary from 0 upwards and deliver information regarding 

how exposed different portions of the polypeptide are expected to be in the global 3D 

arrangement of the protein, telling us whether they are expected to be buried within the 

core of the protein or more exposed to the surface and to the solvent. A high compactness 

value is typically associated with residues buried in the interior of the protein structure, 

whereas values close to 0 are typical of residues located in more exposed and flexible 

regions or even disordered regions of the protein (Figure 7b). A further information 

delivered by the calculated probability function is the local secondary structure 

organization of the protein. Considering only short distance interactions (lAB<5), the 

algorithm gives information regarding the local organization in alpha-helices, beta-sheets 

or disordered regions. Positive values of this function are typically associated with more 

compact structures, such as alpha helices, whereas negative values are typical for 

residues located in more relaxed and extended regions, typically beta-sheets 

conformations (Figure 7a). 

 

The meta-structure of a protein is defined as the combination of information 

regarding local secondary structure organization and residue compactness throughout the 

whole polypeptide.  
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The meta-structure is to be considered as a topological abstraction of the primary 

sequence of a protein into the most probable three dimensional organization to be 

expected for the polypeptide. Being an abstraction, and not an actual model, it is capable 

of delivering more detailed information than an actual 3D model, revealing information also 

regarding disordered regions. Such regions of a protein are often escaping the classical 

structural characterization techniques, such as crystallography and NMR, but, due to their 

intrinsic flexibility, may be essential for the characterization of a protein function. 

 

Similarly to what happens with primary sequence alignments or three-dimensional 

structure alignments, the calculated meta-structure of the protein of interest can then be 

aligned with meta-structures originating from characterized protein templates collected in a 

database. The alignment allows for the evaluation of the similarity between the target 

protein and subjects found in the database, thus creating protein clusters of similarity. As 

in the case of classical protein alignments, it is then possible to hypothesize that known 

ligands for the proteins within a similarity cluster may also display significant affinity for our 

query protein (Figure 8). 

Figure 7: meta structure and model of the PI3-kinase p85 N-terminal SH2 domain. a) diagram 
representing the calculated local secondary structure organization along the analyzed domain of 
the protein. b) compactness value calculated for each residue in the region. c) predicted model; 
blue and red fragments correspond to the predicted secondary structure according to 7a (Konrat, 
R. Cellular and molecular life science, 2009. 66:3625-39). 
	
  

a	
  

b	
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The creation of the so called protein meta-structure similarity clusters (PMSSC), 

according to the conservation of structural motifs among different proteins, does not only 

deliver precious information regarding the putative three-dimensional organization of the 

protein of interest, but it can also be exploited as a powerful tool in the systematic 

evaluation of protein-ligand interactions, when the target protein shares a ligand-binding 

motif with characterized templates, according to their calculated meta-structure. 

 

 

 
 
   1.4.2.4 Shannon Entropy Descriptor ligand sensing 
 

The identification of an active compound represents a starting point for obtaining 

other potential ligands/modulators of pendrin activity. In the classical drug discovery 

concept, a widely adopted approach is the chemical modification of an active compound in 

order to improve its properties, such as affinity for the target protein, potency or specificity. 

By means of combinatorial chemistry, it is then possible to produce a large number of new 

Figure 8: The definition of Protein Meta-Structure Similarity Clusters (PMSSC), similarly to what is 
commonly achieved with Protein Structure Similarity Clustering (PSSC), allows for the prediction 
of putative ligands of the target protein. The calculated meta structure takes the place of the 3D 
structure of a protein in case this is not available (Modified from: Konrat, R. Cellular and molecular 
life science, 2009. 66:3625-39). 
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compounds starting from the structure of the original ligand identified. In our approach we 

chose a conceptually different route, by exploiting a different bioinformatic tool in order to 

refine the search for the desired modulator of pendrin activity. The further step in the 

search for potential ligands and modulators of our protein of interest can be undertaken by 

aligning the structure of an experimentally identified ligand with a database of chemical 

compounds. To do this, it is necessary to univocally define and describe a small 

compound in a way that allows the meaningful comparison with other small molecules. 

This is made possible by a bioinformatic abstraction, as described in the following.  

 

Based on the so called Shannon Entropy Descriptor (SHED), it is possible to define 

and categorize the nature of a small compound according to the functional relationship of 

atoms within the molecule. SHED is an information science-derived chemical descriptor 

whose aim is the classification of small molecules in similarity clusters according to the 

distribution of atom-centered feature pairs [113]. This means that every atom of the 

molecule is identified and classified according to defined chemical features (e.g.: 

hydrophobic, aromatic, proton acceptor or donor, etc.). The probability that each possible 

pair of atom-centered features is found at a certain distance within the small compound is 

calculated. The result of the calculation delivers an entropy value for the specific feature 

pair within the molecule. The same calculation is performed for any given features pair. 

The collection of all the entropy values of the molecule gives the so-called SHED score or 

SHED profile of the compound [113]. SHED profiles are univocal descriptors of the specific 

small compound and, as such, they can be compared and aligned to a database in order 

to define similarities with other small molecules. Such an approach, conceptually similar to 

the abstraction delivered by meta-analysis, has been proven extremely efficient 

concerning both chemical similarity and pharmacological profiling of compounds of 

interest. In other words, it has been shown that molecules displaying similar SHED profiles 

are not only chemically similar but, more importantly, they often show similarity also in 

what concerns their pharmacological behavior. 
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2. Aims of the study 
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2.1 Functional and molecular characterization of pendrin   
  allelic variants  

 

The definition of the genetic causes of deafness is the starting point for possible 

intervention processes for the affected patient and the family. Pendrin is a major player in 

the etiology of syndromic and non-syndromic hereditary deafness. The high phenotypical 

variability of pendrin-related deafness and the high incidence of benign polymorphisms 

does not allow for a straightforward correlation of genotype and phenotype. A definition of 

the actual role of pendrin in specific cases of hearing loss is only possible after functional 

characterization of the detected allelic variants. 

 

Our first objective was the functional characterization of pendrin variants identified in 

a cohort of deaf patients at the General Hospital of Campinas, Sao Paolo, Brazil, in order 

to define the role of pendrin mutations in the diagnosed hearing loss phenotype. 

Furthermore, the present study will contribute to spread light on the incidence of pendrin-

related deafness in this specific population, so far poorly investigated. 

 

The phenotypical variability is also reflected in the difference in molecular 

processing of the mutant forms of pendrin. A further step in the characterization of the 

identified allelic variants consists in the definition of the type of molecular defect caused by 

the different mutations. For this purpose, we also analyzed the subcellular localization and 

the abundance of the different variants of pendrin, in order to discriminate between 

mutations affecting the folding and the trafficking and mutations directly affecting the 

transport activity.  

 

The information collected from the functional and molecular characterization of the 

mutations is the starting point for a possible pharmacological approach aimed to the 

rescue of their transport activity. Such a rescue may be achieved by interfering with the 

degradation of misfolded proteins and facilitating their folding and trafficking process. 

 

2.2 Functional screening of pendrin ligands  

 

Pendrin hyperactivity and/or overexpression is linked to pathological states such as 

bronchial asthma, COPD and hypertension. Blocking or modulating the activity of the 
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transporter may define a novel paradigm in the treatment of the abovementioned 

pathologies. So far no potent, specific and non-toxic inhibitors for pendrin could be 

identified and the screening of large compound libraries failed in delivering any positive 

results.  

 

Thanks to a fluorometric method developed by Dossena et al. in 2006, we were able 

to screen the effect of compounds on pendrin activity in a semi-high-throughput fashion. In 

the search of a possible ligand (inhibitor/modulator) of pendrin we used a focused 

approach, looking for possible candidate compounds among three groups of chemicals: 

 

• known inhibitors of chloride channels and transporters and inhibitors of 

transporters homolog to pendrin, such as Slc26a3 (DRA); 

• antihypertensive and diuretic agents; 

• small compounds predicted by a bioinformatic approach based on the 

abstraction of the primary aminoacidic sequence of pendrin, called meta-

analysis.  
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3. Methods 
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3.1 Functional assay for the Cl-/I- exchange activity of   
  pendrin 
 

The effect of selected compounds or mutations on the transport activity of pendrin 

has been investigated by means of a fluorometric method developed by Dossena et al. in 

2006. This assay was first set up for measurements on a single cell level with a confocal 

microscope [17, 22, 44, 69] and later modified for a higher throughput approach on a multi-

plate reader [6, 71, 101]. 

 

The functional test allows for the evaluation of pendrin activity by determining 

changes in the intracellular iodide concentration following exposure of cells to an 

extracellular milieu containing iodide. Being pendrin an iodide/chloride exchanger, in the 

presence of iodide in the extracellular solution it can lead to an iodide influx. Increases in 

the intracellular concentration of this anion are detected thanks to the specific sensitivity of 

a modified form of the enhanced yellow fluorescent protein EYFP (EYFP H148Q I152L). 

The two aminoacidic substitutions of this EYFP isoform confer an increased sensitivity to 

intracellular iodide with respect to chloride and other anions. Intracellular iodide quenches 

the fluorescence emitted by EYFP H148Q I152L [114], therefore giving an indication of 

pendrin activity. 

 

Human Embryonic Kidney (HEK) 293 Phoenix cells were seeded on black 96-well 

plates (137101, Nunclon Delta Surface, Nunc, Denmark) and transiently double-

transfected with a plasmid carrying the cDNA coding for EYFP H148Q I152L and a 

pTARGET plasmid carrying the cDNA coding for wild type or mutated pendrin or the 

pTARGET empty vector, as the control. The assay was performed 48-52 hours after 

transfection as described in the following. The cells were washed three times from the 

culture medium, bathed in 70 µl of a high chloride isotonic solution (see below for the 

composition) and the fluorescence emission of EYFP H148Q I152L was measured at a 

wavelength of 535 nm upon excitation at 485 nm (1 measurement/sec for 3 sec). 

Successively, 140 µl of a high iodide-containing isotonic solution (see below for the 

composition) were injected into the bath via an automatic liquid dispenser, increasing the 

extracellular concentration of iodide to 90 mM. Then, the fluorescence intensity was 

measured again (1 measurement/sec for 16 sec). In the presence of active pendrin, the 

extracellular iodide is exchanged with intracellular chloride, leading to an increased 



	
  
	
   	
  

47	
  

intracellular iodide concentration and quenching of the fluorescence emitted by EYFP 

H148Q I152L. As previously mentioned, the level of activity of the transporter is 

proportional to the decrease in the intracellular fluorescence recorded after the injection of 

iodide into the extracellular solution. 

 

Cell fluorescence was measured with the VICTOR™ X3 Multilabel Plate Reader 

(2030, Perkin Elmer, Finland) equipped with a liquid dispenser and the following filters: 

excitation: F485 (excitation center wavelength (CWL): 485 nm, bandwidth: 14 nm), 

emission: F535 (emission CWL: 535 nm, bandwidth: 25 nm). Experiments were performed 

at room temperature. 

 

The solutions used for the assay were prepared as follows: 

 

Isotonic High Chloride Solution: 

  135 mM NaCl, 2 mM KCl, 20 mM HEPES, 1 mM CaCl2, 1 mM 

  MgCl2, 10 mM Glucose  

  pH=7.4 

  308 mOsm/KgH2O 

 

Isotonic High Iodide Solution: 

  135 mM NaI, 2 mM KCl, 20 mM HEPES, 1 mM CaCl2, 1 mM  

  MgCl2, 10 mM Glucose 

  pH=7.4 

  308 mOsm/KgH2O 

 
3.2 Plasmids 
 

pTARGET vector containing the cDNA encoding for wild type pendrin cloned from 

normal thyroid tissue (pTARGET PDS WT) was originally provided by Prof. P. Beck 

Peccoz, University of Milan, Italy, and encodes for human pendrin with an hexahistidine 

tag at the C-terminus. Pendrin mutants were obtained by site-directed mutagenesis on the 

pTARGET PDS WT vector as described below. These vectors were used for the functional 
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test. pEYFPN1 vector encoding for EYFP was from Clontech. H148Q an I152L mutations 

were obtained by site-directed mutagenesis [71].  

 

For co-localization studies and evaluation of pendrin total and plasma membrane 

expression levels by confocal microscopy, the sequence coding for wild type pendrin was 

subcloned in frame with the EYFP coding sequence in the pEYFPN1 vector (Clontech). 

Following transfection of this construct in cells, pendrin is translated with EYFP fused to 

the C-terminus (PDS-EYFP). The pECFPN1 vector used in the evaluation of pendrin 

plasma membrane expression levels by confocal microscopy encodes for the enhanced 

cyano fluorescent protein ECFP (Clontech). 

 

For western blot analysis, the hexahistidine tag fused at the C-terminus of pendrin 

had to be removed. The corresponding vector was obtained in house by site-directed 

deletion of the hexahistidine coding sequence of the original pTARGET PDS WT vector, 

and was named pTARGETΔHIS PDS WT. Pendrin mutants were obtained by site-directed 

mutagenesis on the pTARGETΔHIS PDS WT vector as described below. 

 

All plasmids were sequenced by Microsynth AG, Switzerland, with the following 

primers, spanning the whole pendrin cDNA insert in the plasmid (Table 3): 

 

RPDS 1R 5’ – TTCCATTGCTGCTGGATACG – 3’ 

RPDS 2R 5’ – GGAAAATGATGCAGCAGCCAGC – 3’ 

RPDS 2F 5’ – TGGGATCTGTTGTTCTGAGC – 3’ 

RPDS 3R 5’ – TTGCCATAGAAAATAGGACTGG – 3’ 

RPDS 4F 5’ – GAAGCATCCCTAGCACAGATA – 3’ 

98198F 5’ – TGTTAAATCCATCCCAAG – 3’ 

 
3.3 Cell Culture and Transfection 

 

HEK 293 Phoenix [115] (originally provided by Prof. D. Di Francesco, University of 

Milan, Italy) and HeLa cells (CCL-2, Cervical Adenocarcinoma, ATCC) were grown in 

Minimum Essential Medium Eagle, supplemented with 10% fetal bovine serum, 2 mM L-

glutamine, 10000 U/ml penicillin, 10 mg/ml streptomycin and 1 mM pyruvic acid, sodium 

Table 3: sequencing primers for pendrin cDNA. 



	
  
	
   	
  

49	
  

salt. The cells were maintained in an incubator (HERAcell 150, Thermo, Germany) at 37°C 

in a 5% CO2, 95% air, 100% humidity atmosphere. The cells were kept sub-confluent and 

sub-cultured every second to third day.  

 

For the functional assay, HEK 293 Phoenix cells were seeded in black 96 well 

plates and transfected 16 hours later. A cell confluence of ~ 40% ensured optimal 

transfection yield. Transient transfection of cells was performed by calcium phosphate co-

precipitation. In this method, the negatively charged phosphates of plasmid DNA form 

complexes with the positively charged calcium ions in the transfection mix and are 

internalized by the cells. The formation of complexes masks the negative charge on the 

DNA that would otherwise prevent it from traversing the plasma membrane. 

 

The transfection mix for one row of 12 wells of a 96-well plate was prepared as 

follows: 

 

Wild type (WT) or mutant (MUT) pendrin: 

 pTARGET-PDS WT/MUT 3 µl (0.5 µg/µl) 

 pEYFP H148Q I152L 3 µl (0.5 µg/µl) 

20x CaCl2   7.5 µl 

 H2O    61.5 µl 

 2x HBS   75 µl 

 

Control: 

 pTARGET-EMPTY  3 µl (0.5 µg/µl) 

 pEYFPN1 H148Q I152L 3 µl (0.5 µg/µl) 

20x CaCl2   7.5 µl 

 H2O    61.5 µl 

 2x HBS   75 µl 

 

The transfection mix was incubated for 10 minutes at room temperature in order to 

allow for the complexes to be formed. After the incubation, 10 µl of transfection mix (i.e. 

0.1 µg of pTARGET-PDS WT/MUT plasmid and 0.1 µg pEYFP H148Q I152L plasmid) 

were carefully pipetted into each well.  
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For co-localization studies and evaluation of total pendrin expression levels by 

confocal microscopy, HeLa cells were seeded in 6 well plates and transfected for 72 h with 

1.5 µg of plasmid DNA encoding for wild type or mutant PDS-EYFP and 3 µl of 

Metafectene PRO®, following the manufacturer instructions. Media was changed 7-8 hours 

after transfection. 

 

For evaluation of plasma membrane pendrin expression levels by confocal 

microscopy, HeLa cells were seeded in 6 well plates and transfected for 72 h with 0.25 µg 

of plasmid DNA coding for ECFP (pECFPN1), 1.25 µg of plasmid DNA coding for wild type 

or mutant PDS-EYFP and 3 µl of Metafectene PRO®, following the manufacturer 

instructions. Media was changed 7-8 hours after transfection. 

 

For western blot analysis, HEK 293 Phoenix cells were seeded in 6 well plates and 

transfected for 72 hours with the calcium phosphate co-precipitation method as described 

above. Each well was transfected with 150 µl transfection mix, containing 2 µg of plasmid 

DNA coding for wild type or mutant pendrin. Media was changed 7-8 hours after 

transfection. 

 

Buffers and Solutions: 

 

  20x CaCl2Solution: 

  2.5 M 2H2OlCaCl2  

 

2x HEPES-buffered solution (HBS): 

  140 mM NaCl; 1.5 mM 2H2OlNa2HPO4, 50 mM HEPES,  

  pH=7.05  

 

 3.4 Site-directed mutagenesis 
 

The point mutations in the coding sequence of pendrin were obtained by site-

directed mutagenesis with the QuickChange® site-directed mutagenesis kit (200518, 

Stratagene, USA) according to the manufacturer’s instructions with the primer pairs 

indicated in Table 4: 
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P142L sense           5’- GTTGGACCTTTTCTAGTGGTGAGTTTAATGG -3’ 
antisense     5’- CCATTAAACTCACCACTAGAAAAGGTCCAAC -3’ 

G149R sense           5’- GAGTTTAATGGTGAGATCTGTTGTTCTGAGC -3’ 
antisense     5’- GCTCAGAACAACAGATCTCACCATTAAACTC -3’ 

T193I sense           5’- GCCAGTGCCCTGATTCTGCTGGTTGG -3’ 
antisense     5’- CCAACCAGCAGAATCAGGGCACTGGC -3’ 

C282Y sense           5’- CACCATTGTCGTCTATATGGCAGTTAAGG -3’ 
antisense     5’- CCTTAACTGCCATATAGACGACAATGGTG-3’ 

Q413R sense           5’- CCCGCACGGCCGTCCGGGAGAGCACTGGAGG -3’ 
antisense     5’- CCTCCAGTGCTCTCCCGGACGGCCGTGCGGG -3’ 

L445W sense           5’- GCTTCTGGAACCCTGGCAGAAGTCGGTCTTGGC -3’ 
antisense     5’- GCCAAGACCGACTTCTGCCAGGGTTCCAGAAGC -3’ 

R776C sense           5’- CCAGGATGAGGCTATGTGTACACTTGCATCC -3’ 
antisense     5’- GGATGCAAGTGTACACATAGCCTCATCCTGG -3’ 

E29Q sense           5’-GCCGGTCTACAGCCAGCTCGCTTTCCAG-3’ 
antisense     5’-TGGAAAGCGAGCTGGCTGTAGACCGGC-3’ 

P140H sense           5’-CAAGACATATCTCAGTTGGACATTTTCCAGTGGTGAGTTTAAT-3’ 
antisense     5’-ATTAAACTCACCACTGGAAAATGTCCAACTGAGATATGTCTTG-3’ 

Q413P sense          5’-GCACGGCCGTCCCGGAGAGCACTGG-3’ 
antisense    5’-CCAGTGCTCTCCGGGACGGCCGTGC-3’ 

G424D sense          5’-AAGACACAGGTTGCTGACATCATCTCTGCTGCG-3’ 
antisense    5’-CGCAGCAGAGATGATGTCAGCAACCTGTGTCTTTC-3’ 

T485R sense          5’-TTGATGCTGTTATCTGGGTGTTTAGGTGTATAGTGTCC-3’ 
antisense    5’-GGACACTATACACCTAAACACCCAGATAACAGCATCAATC-3’ 

Q514K sense          5’-GACTGTGGTCCTGAGAGTTAAGTTTCCTTCTTGGA-3’ 
antisense    5’-TCCAAGAAGGAAACTTAACTCTCAGGACCACAGTC-3’ 

D724G sense          5’-CATTCTTTTTGACGGTCCATGGTGCTATACTCTATCTACAGAA-3’ 
antisense    5’-TTCTGTAGATAGAGTATAGCACCATGGACCGTCAAAAAGAATG-3’ 

  

 
All oligonucleotide primers were purchased from Microsynth (Balgach, Switzerland). 

  
 3.5 Screening of pendrin ligands 
 

The substances selected for the screening were purchased either from Sigma-

Aldrich, USA, Fluka, Germany or SIA MolPort, Latvia. According to the indication of the 

vendor, each substance was resuspended in the suitable solvent (dimethyl sulfoxide 

(DMSO), absolute ethanol or polyethylene glycol 400, Table 5). For each substance, a 

Table 4: Mutagenesis primers for inserting the indicated aminoacidic substitution in pendrin sequence. 
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stock solution was prepared and stored at -20°C. The working dilution for the assay was 

100 µM in high chloride and high iodide isotonic solution for all the substances, except 

when otherwise specified. 

 

Substance CAS 
number Stock Catalog number, Vendor 

NB (5-nitro-2-(3-
Phenypropylamino)benzoic acid)  107254-86-4 300 mM in 

DMSO N4779, Sigma-Aldrich, USA 

DIDS (4,4’-diisothiocyanatostilbene-
2,2’-disulfonic acid) 207233-90-7 300 mM in 

DMSO 
D3514, Sigma-Aldrich, USA 
  

CFTR inhibitor – 172 307510-92-5 5 mM in 
DMSO C2992, Sigma-Aldrich, USA 

DNDS (4’,4’-dinitrostilbene-2,2’- 
disulfonic acid) 128-42-7 300mM in 

isotonic sol. S347523,Sigma-Aldrich,USA 

Niflumic acid 4394-00-7 300 mM in 
DMSO N0630, Sigma-Aldrich, USA 

Tenidap 120210-48-2 300 mM in 
DMSO PZ0196, Sigma-Aldrich, USA 

Glybenclamide 10238-21-8 300 mM in 
DMSO G0639, Sigma-Aldrich, USA 

Probenecid 57-66-9 300 mM in 
chloroform  P8761, Sigma-Aldrich,USA 

Eplerenone 107724-20-9 30 mM in 
DMSO E6657, Sigma-Aldrich, USA 

Acetazolamide 59-66-5 300 mM in 
DMSO A6011, Sigma-Aldrich, USA 

Bumetanide 28395-03-1 300 mM in 
DMSO B3023, Sigma-Aldrich, USA 

Furosemide 54-31-9 300 mM in 
DMSO F4381, Sigma-Aldrich, USA 

Hydrochlorothiazide 58-93-5 300 mM in 
DMSO H4759, Sigma-Aldrich, USA 

Cholesterol 57-88-5 300 mM in 
chloroform C8667, Sigma-Aldrich, USA 

Iloprost (Ilomedin® - Bayer) -- -- Bayer Schering Pharma, 
Germany 

Vasopressin 113-79-1 3 mM in 
isotonic sol. V9879, Sigma-Aldrich, USA 

Vitamin D (Dihydrotachysterol) 67-96-9 300 mM in 
DMSO D9257, FLUKA, Germany 

Vitamin E (α-Tocopherol) 10191-41-0 300 mM in 
DMSO T3251, Sigma-Aldrich, USA 

(-)Nicotine 54-11-5 300 mM in 
isotonic sol. N3876, Sigma-Aldrich,USA 

N-(2-chlorophenyl)-2-(2,4-
dibromophenoxy)acetamide  not available 300 mM in 

DMSO 002-045-764, MolPort, Latvia 

2-{[(2,3-dichlorophenyl)methyl]amino}-
1-phenylethanol not available 300 mM in 

DMSO 000-938-685, MolPort, Latvia 

Naloxone 465-65-6 300 mM in 
DMSO 143005, FLUKA, Germany 

Tolcapone 134308-13-7 300 mM in 
DMSO 

SML0150, Sigma-Aldrich, 
USA 

Topiramate 97240-79-4 300 mM in 
DMSO T0575, Sigma-Aldrich, USA 

Colchicine 64-86-8 300 mM in 
ethanol C9754, Sigma-Aldrich, USA 
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Scopolamine 6533-68-2 300 mM in 
isotonic sol. S0929, Sigma-Aldrich, USA 

6-phenylamino nicotinic acid 13426-16-9 300 mM in 
DMSO 

CSD009518, Sigma-Aldrich, 
USA 

Levamisole 16595-80-5 300 mM in 
isotonic sol. L0380000, FLUKA, Germany 

Levallorphan 71-82-9 300 mM in 
isotonic sol. L121, Sigma-Aldrich, USA 

Ticlopidine 53885-35-1 300 mM in 
isotonic sol. T6654, FLUKA, Germany 

Flufenamic acid 530-78-9 300 mM in 
DMSO F9005, FLUKA, Germany  

    

 
 

 3.6 Subcellular localization of pendrin variants 

 

  3.6.1 Co-localization with the plasma membrane  
 

The staining of the plasma membrane was performed in vivo on HeLa cells with the 

CellMask™ Deep Red Plasma Membrane Stain (5 mg/ml stock solution in DMSO, C10045, 

Molecular Probes, USA). The Plasma Membrane Stain stock solution was diluted to 1.25 

µg/ml in Hank’s Balanced Salt Solution (HBSS).  

 

HeLa cells were seeded in 6 wells plates, grown to 40% confluence and transfected 

with wild type or mutant PDS-EYFP as described above. 56 hours after transfection, cells 

were resuspended by trypsinization and transferred on 3 cm diameter microscope slides. 

72 h after transfection, cells were washed three times with ice cold HBSS and incubated 

with 1.25 µg/ml CellMask Deep Red Plasma Membrane Staining Solution for 5 minutes on 

ice. The staining solution was then removed and cells were washed again three times with 

ice cold HBSS. Imaging was performed immediately after staining in cold HBSS using a 

Leica TCS SP5 II AOBS confocal microscope (Leica Microsystems, Germany), with a 63x 

PL APO Lambda blue water immersion objective (numerical aperture 1.2), a 514 nm Argon 

laser line for exciting EYFP (λex.: 514 nm, λem.: 525-600 nm) and a 633 nm HeNe laser 

line for exciting the Plasma Membrane Stain (λex.: 633 nm, λem.: 655-750 nm). 

 

The quantitative analysis of the co-localization between PDS-EYFP and the plasma 

membrane was performed by determining the Pearson’s coefficient of correlation of the 

Table 5: list of chemicals tested on pendrin activity with the fluorometric method. For each substance, the 

Chemical Abstracts Service (CAS) registry number, concentration and solvent of the stock solution, 

catalog number and vendor are specified. 
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two signals according to the formula 𝑅 = !!!!!!!"# ! !!!!!!!"#!

!!!!!!!"#
!
! !!!!!!!"#

!
!

 where 𝑆1!  and 𝑆2! 

represent the intensity of any i pixel respectively in the emission channel 1 and 2 while 

𝑆1!"# and 𝑆2!"# represent the average intensity of all pixels respectively in the emission 

channel 1 and 2. A Pearson’s coefficient of 0 indicates a random correlation, whereas 

values close to +1 and -1 indicate co-localization and mutual exclusion of the two signals, 

respectively. Sequential acquisition and analysis of images were performed with the LAS 

AF SP5 software (Leica Microsystems, Germany). 

 
  3.6.2 Co-localization with the endoplasmic reticulum  
 

The staining of the endoplasmic reticulum was performed in vivo with ER-Tracker™ 

Red Glibenclamide BODIPY®-TR (E34251, Molecular Probes, USA). The dye was 

reconstituted in 110 µl DMSO to obtain a 1 mM stock solution and stored at -20°C. A 1 µM 

working dilution was obtained in Krebs-Henseleit Buffer (K3753, Sigma-Aldrich, USA). 

 

HeLa cells were seeded in 6 wells plates, grown to 40% confluence and transfected 

with wild type or mutant PDS-EYFP as described above. 56 hours after transfection, cells 

were resuspended by trypsinization and transferred on 3 cm diameter microscope slides. 

72 h after transfection, cells were washed three times with Krebs-Henseleit Buffer at room 

temperature and incubated with 1 µM ER-Tracker for 20 minutes at 37°C, 5% CO2. The 

staining solution was then removed and cells were washed with HBSS. Imaging was 

performed in HBSS immediately after staining using a Leica TCS SP5 II AOBS confocal 

microscope, with a 63x PL APO Lambda blue water immersion objective (numerical 

aperture 1.2), a 514 nm Argon laser line for exciting EYFP (λex.: 514 nm, λem.: 525-555 

nm) and a 561 nm DPSS laser line for exciting the ER-Tracker (λex.: 571 nm, λem.: 650 

nm). 

 

The quantitative analysis of the co-localization between the ER and PDS-EYFP 

signals was performed by determining the Pearson’s coefficient of correlation as described 

above. Sequential acquisition and analysis of images were performed with the LAS AF 

SP5 software (Leica Microsystems, Germany). 
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 3.7 Quantification of the expression levels of pendrin   
  variants 
 

Two complementary methodologies have been used in order to have a complete 

picture of the molecular fate of the different pendrin variants: imaging of EYFP-tagged 

proteins and western blot analysis of cellular protein extracts from transfected cells. 

 

   3.7.1  Fluorescence Imaging 
 

Cells for imaging experiments were transfected with the different variants of pendrin 

fused to EYFP (PDS-EYFP). Either the total or the plasma membrane expression of 

pendrin variants was evaluated by detecting the signal emitted by PDS-EYFP. 

 
   3.7.1.1 Total pendrin expression 
 

HeLa cells were seeded in 6 wells plates, grown to 40% confluence and transfected 

with WT or mutant PDS-EYFP as described above. 56 hours after transfection, cells were 

resuspended by trypsinization and transferred on 3 cm diameter microscope slides. 72 

hours after transfection, cells were washed in HBSS and fixed for 15 minutes with 4% 

paraformaldehyde. After fixation, cells were incubated for 10 minutes with 0.1 µg/ml 4’,6-

diamidino-2-phenylindole (DAPI, D9542, Sigma-Aldrich, USA) in HBSS. The nuclear 

staining with DAPI can give an indication of the number of cells in the imaged field and 

was necessary in order to normalize the PDS-EYFP signal for the cell density. Cells were 

imaged immediately after preparation with a Leica TCS SP5 II confocal microscope, 

equipped with a 63x PL APO Lambda blue water immersion objective, numerical aperture 

1.2, a 514 nm Argon laser line for exciting EYFP (λex.: 514 nm, λem.: 525-597 nm) and a 

405 nm diode laser for exciting DAPI (λex.: 405 nm, λem.: 430-470 nm). The signal 

emitted by PDS-EYFP in the whole field of imaging was expressed as averaged levels of 

grey and normalized by the signal emitted by DAPI in the same field, also expressed as 

averaged levels of grey. Imaging parameters (laser power, photomultiplier gain, pixel size 

and zoom factor) were kept rigorously constant for all the acquisitions. Subtraction of 



	
  
	
   	
  

56	
  

background fluorescence was performed for all acquisitions in both EYFP and DAPI 

emission channels. 

 

   3.7.1.2 Plasma membrane pendrin expression 
 

For this set of experiments, a different normalization approach was set up, and 

considered the transfection efficiency of the single cell. HeLa cells were co-transfected as 

previously described with wild type or mutant PDS-EYFP and ECFP as an indicator of 

transfection efficiency of the single cell. The signal of PDS-EYFP in regions of interest of 

the plasma membrane (PM) of the selected cell, expressed as averaged levels of grey, 

was normalized for the emission of ECFP in the cytosol of the same cell, also expressed 

as averaged levels of grey. In order to clearly identify the PM, especially for those pendrin 

variants lacking a PM localization, cells were stained on ice with 1.25 µg/ml CellMask 

Deep Red Plasma Membrane Stain, as previously described. Imaging was performed in 

vivo immediately after staining with a Leica TCS SP5 II confocal microscope, equipped 

with a 63x PL APO Lambda blue water immersion objective, numerical aperture 1.2, a 514 

nm Argon laser line for exciting EYFP (λex.: 514 nm, λem.: 525-580 nm), a 405 nm diode 

laser line for exciting ECFP (λex.: 405 nm, λex.: 450-490 nm) and a 633 nm HeNe laser 

line for CellMask (λex.: 633 nm, λex.: 643-750 nm). Imaging parameters, such as laser 

power, photomultiplier gain, pixel size and zoom factor, were kept constant for all the 

acquisitions. Subtraction of background fluorescence was performed for all acquisition in 

both PDS-EYFP and ECFP emission channels. 

 

  3.7.2  Western Blot  
 
HEK 293 Phoenix cells for western blot were transfected with the pTARGET vector 

carrying the cDNA for wild type or mutant pendrin by the calcium phosphate co-

precipitation method, as described above. As previously mentioned, the exahistidine tag 

originally fused to the C-terminus of pendrin was removed for this set of experiments.  

 

   3.7.2.1 Total protein extraction 
 

72 hours after transfection, the cells and their culture medium were collected and 

centrifuged at 216 xg for 15 minutes at 4°C. The collected cell pellets were washed twice 
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with ice cold phosphate buffer saline (PBS) and lysed on ice in a denaturing lysis buffer 

(see below for the composition) supplemented with Halt Protease Inhibitor Single-use 

Cocktail.  

 

Cell lysates were centrifuged for 30 minutes at 17000 xg, 4°C, in order to precipitate 

the non-lysated/non-soluble fraction. The supernatant was collected into a fresh tube and 

the total protein content of each sample was determined by the Bradford assay (500-0006, 

Biorad, Germany), following the manufacturer instructions. About 60 µg of each total 

protein extract were loaded on the gel. 

 

Samples for Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-

PAGE) were prepared by adding a denaturing loading dye containing dithiothreitol (DTT) 

as a reducing agent and boiled for 5 minutes before loading in a 7.5% polyacrylamide gel. 

As a standard, 10 µl of Page Ruler Prestained Protein Ladder (26616, Thermo Scientific, 

USA) were loaded in the gel. The gel was run at constant voltage (120 V) for 2 hours at 

room temperature. Subsequently, the separated proteins were transferred on 

polyvinylidene difluoride (PVDF) membranes (Immunoblot PVDF Membranes, BIO-RAD, 

Germany) by applying a constant voltage (75 V) for 2 hours at 4°C. The membranes were 

blocked for 1 hour at room temperature in 5% nonfat dry milk in tris buffered saline and 

Tween (TBST, 0.1% Tween) and then incubated overnight at 4°C with the primary 

antibodies in 3% nonfat dry milk in PBS. After 3 washing steps in TBST, the membranes 

were incubated for 1 hour at room temperature with the infrared dye-conjugated secondary 

antibodies diluted in 3% nonfat dry milk in PBS. Finally, the membranes were washed 3 

times in TBST. Detection of the signal of immunocomplexes was performed with the 

ODYSSEY infrared imaging system (LI-COR, USA).  

 

Blot images were densitometrically analyzed with the ImageJ 1.46r software (Wayne 

Rasband, NIH, USA). The signal intensity of the bands corresponding to pendrin, 

expressed as levels of grey, was normalized on the signal intensity of the bands 

corresponding to the housekeeping protein glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), similarly expressed as levels of grey. 
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   3.7.2.2 Extraction of total cellular membranes proteins  
 

The extraction of the total membranes fraction, including both plasma membrane 

and membranes from cellular organelles, was performed with the Plasma Membrane 

Extraction Kit (JM-K268-50, MBL, USA), according to the manufacturer instructions. 

The cells were seeded and transfected as described above. 72 hours after 

transfection, the cells were collected by centrifugation. The pellet was washed twice in ice 

cold PBS and resuspended in Homogenizing Buffer from the above mentioned kit. Lysis 

was achieved using a syringe with a small gauge needle. Complete lysis was confirmed by 

the almost total absence of intact nuclei in the sample upon observation with a phase-

contrast inverted microscope (AE31, Motic	
  GmbH, Germany). The lysate was centrifuged 

for 10 minutes at 700 xg, 4°C, in order to remove the non-lysate/non-soluble fraction but 

conserving the membranes fraction in the supernatant. The supernatant was centrifuged a 

second time at 10000 xg for 30 minutes, 4°C. The pellet from the second centrifugation 

step represents the total cellular membranes fraction, while the supernatant contains the 

soluble proteins fraction. Samples for the gel were prepared resuspending the protein 

pellet in loading dye containing DTT. Before loading on the gel, the sample were boiled for 

5 minutes. SDS-PAGE and western blotting were performed as described above. 

Detection of the signal of immunocomplexes was performed with the ODYSSEY infrared 

imaging system (LICOR, USA). 

Blot images were densitometrically analyzed with the ImageJ 1.46r software (Wayne 

Rasband, NIH, USA). The signal intensity (expressed as levels of grey) of the bands 

corresponding to pendrin was normalized on the signal intensity (expressed as levels of 

grey) of the bands corresponding to the housekeeping protein calreticulin.  

 

Buffers and Antibodies: 

 

 Denaturing Lysis Buffer (total proteins extraction) 

 50 mM Trizma base, 150 mM NaCl, 1% NP-40 alternative, 1% Halt Protease 

 Inhibitor Single-use Cocktail. 

  

 Loading dye 

 240 mM Trizma HCl pH 6.8, 40% Glycerol, 0.04% Bromophenol blue, 5% β-

 mercaptoethanol or 100 mM DTT, 8% SDS. 
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 Running Buffer 

 25 mM Trizma base, 144 mM Glycine, 1% SDS.  

 

 Transfer Buffer 

 27 mM Trizma base, 190 mM Glycine. 

 

  

 Wash Buffer 

 40 mM Trizma base, 270 mM NaCl, 0.1% Tween20. 

 pH=7.5 

 

 Primary antibodies: 

 

  Anti-PDS: rabbit anti-pendrin antibody against the C-terminal domain 

  of human pendrin (kindly provided by Prof. Dominique Eladari, Paris,  

  France).  

  Working dilution 1:10000. 

 

  Anti-GAPDH: goat anti-GAPDH antibody (A00191-100, GenScript). 

  Working dilution 1:1000.    

 

  Anti-Calreticulin: rabbit anti-Calreticulin antibody (ab4, abcam). 

  Working dilution 1:1000  

 

 Secondary antibodies: 

 

  Goat anti-Rabbit IRDye 800CW Conjugated (LI-COR). 

  Working dilution 1:20000  

 

  Donkey anti-Goat IRDye 800CW Conjugated (LI-COR). 

  Working dilution 1:20000  
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3.8 Rescuing of pendrin activity 
 
The study of a possible functional rescue of pendrin upon treatment with a 

proteasome inhibitor was performed by means of the same functional test described 

above. For this aim, HEK 293 Phoenix cells were transfected as described earlier with the 

different pendrin variants. 48 hours after transfection, cells were incubated for 6 hours in 

complete media supplemented with the proteasome inhibitor MG132, 10 µM (C2211, 

Sigma-Aldrich, USA), or its vehicle (0.1% DMSO). Before measurements, cells were 

washed three times and bathed in high chloride solution. The functional test was 

performed as described earlier. 

 

For the imaging experiments, HeLa cells were seeded in 6 wells plates, grown to 

40% confluence and transfected with wild type or mutant PDS-EYFP as described above. 

36 hours after transfection, cells were resuspended by trypsinization and transferred on 3 

cm diameter microscope slides. 60 hours after transfection, the proteasome inhibitor 

MG132, 10 µM, or its vehicle (0.1% DMSO) were added to the media and cells were 

grown overnight in the incubator. 72 hours after transfection, cells were prepared for the 

imaging according to the respective protocols for total and plasma membrane pendrin 

evaluation, as described above. 

 
3.9 Statistical analysis 

 
Statistical analyses for all data sets presented in this thesis were performed with 

GraphPad Prism version 5.0b for MAC (GraphPad Software, San Diego, California, USA).  

 

Data are expressed as mean values ± standard error of the mean (SEM). n 

corresponds to the number of independent measurements. Statistical differences between 

data sets were verified by the one-way analysis of variance (ANOVA) followed by 

Bonferroni’s multiple comparison or Dunnett’s post-tests or by the unpaired Student’s t-

test, as appropriated. Differences were considered statistically significant when the p value 

was ≤ 0.05. 
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 3.10 Salts and Reagents: 
 

All salts and reagents were of pro-analysis grade quality. 

 

Minimum Essential Medium Eagle (M5650, Sigma, Austria) 

Fetal Bovine Serum (DE14-801F, Lonza, USA) 

L-glutamine (G7513, Sigma-Aldrich, USA) 

Penicillin, Streptomycin (P0781, Sigma-Aldrich, USA)  

Pyruvic acid, sodium salt (P2256, Sigma-Aldrich, USA) 

Metafectene PRO® (T040, Biontex, Germany) 

DMSO (D2650, Sigma-Aldrich, USA) 

Ethanol absolute (1.07017.2511, Merk, Germany)  

Polyethylene glycol 400 (202398, Sigma-Aldrich, USA) 

HBSS ( H1387, Sigma-Aldrich, USA) 

NaCl (A4256, Applichem, Germany) 

KCl (P5405, Sigma-Aldrich, USA) 

HEPES (A3268, Applichem, Germany) 

CaCl2 (21114, Fluka, Germany)  

MgCl2 (A4998, Applichem, Germany) 

Glucose (49139, Sigma-Aldrich, USA) 

NaI (040196, AlfaAesar, Germany) 

2H2OlCaCl2 (172570,Merck, Germany) 

2H2OlNa2HPO4 (71649, Fluka, Germany ) 

Trizma base (T1503, Sigma-Aldrich, USA) 

NP-40 alternative (492016, Calbiochem, Germany) 

Halt Protease Inhibitor Single-use Cocktail (1860932, Thermo Scientific, USA) 

Trizma HCl pH 6.8 (T5941, Sigma-Aldrich, USA) 

Glycerol (A16205, AlfaAesar, Germany) 

Bromophenol blue (A18469, AlfaAesar, Germany) 

β-mercaptoethanol (M6250, Sigma-Aldrich, USA)  

DTT (443852A, VWR, England) 

SDS (444464T, VWR, England) 

Glycine (G8898, Sigma-Aldrich, USA) 

Tween 20 (437082Q, VWR, England) 
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4. Results 
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 4.1 Functional characterization of pendrin allelic variants  
 identified in a cohort of Brazilian deaf patients 

 

Disclaimer: the functional studies were performed in our laboratories at the Paracelsus Medical University, 

Salzburg, in collaboration with the University of Campinas, Brazil. I have participated in performing and 

analyzing all of the experiments described in this section.  

 

Seven of the pendrin allelic variants identified in the genetic screening of a cohort of 

58 deaf Brazilian patients, performed by our collaborators at the University of Campinas, 

Sao Paolo, Brazil (see Introduction, Table 1), were functionally characterized with the 

fluorometric method developed by Dossena et al. in 2006 and described in the Methods 

section. The 3 novel pendrin variants identified in this cohort (P142L, G149R [66] and 

C282Y) along with 3 known but functionally uncharacterized pendrin variants (L445W, 

Q413R and T193I) were included in the functional test. A further allelic variant (R776C) 

was also tested, even though it had already been characterized, because results were 

controversial [67, 68]. 
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Figure 9: Functional test of pendrin allelic variants identified in Brazilian deaf patients with or 
without EVA. a) novel mutations; b) mutations already reported in the literature but not yet 
characterized on a functional level, or whose characterization was ambiguous. HEK 293 Phoenix 
cells were co-transfected with wild type or mutated pendrin and EYFP H148Q I152L, or with EYFP 
H148Q I152L alone (control). Black bars indicate complete loss of function, grey bars a reduction 
of function, white bars represent the wild type and unaffected function. n was 42 in a) and 70 in b). 
n.s. not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one way ANOVA with 
Bonferroni’s post-test. 
 

a)	
   b)	
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In Figure 9, the % decrease in intracellular EYFP H148Q I152L fluorescence after 

addition of iodide to the extracellular solution is shown for all the different pendrin allelic 

variants analyzed. The decrease in intracellular fluorescence is the consequence of an 

iodide influx and is therefore indicative of the level of transport activity of wild type or 

mutated pendrin (see Methods for further details). The transport activity measured for the 

different pendrin allelic variants was statistically compared to the activity of the wild type 

and the control (cells expressing EYFP H148Q I152L only and no pendrin). 

 

The functional tests were performed in two separated groups for technical 

convenience, as it is essential that pendrin variants are tested on the same 96 well plate 

as the wild type and the control. Therefore, the two groups are here presented and 

statistically analyzed separately. It is anyway possible to draw common conclusions. The 

functional screening of the mutants can be summarized as follows: 

	
  

- 2 mutations (L445W and T193I) show a complete loss of function (the transport 

activity was not significantly different with respect to the control); 

 

- 4 mutations (P142L, G149R, C282Y and Q413R) showed a transport activity 

significantly reduced with respect to the wild type, but not completely annihilated 

(the transport activity was significantly higher with respect to the control); 

 

- the aminoacidic substitution R776C did not affect the transport of iodide with 

respect to wild type pendrin. 
 

 4.2 Subcellular localization of pendrin allelic variants 
 
Disclaimer: the subcellular localization studies were performed in our laboratories at the Paracelsus Medical 

University, Salzburg, in collaboration with the University of Campinas, Brazil. I have participated in part of the 

co-localization experiments. However, for sake of completeness, the whole co-localization results are 

presented in this section. 

 

The subcellular localization of the abovementioned pendrin allelic variants was 

determined in living HeLa cells by measuring the co-localization of the fluorescent signal 

emitted by the fusion protein pendrin-EYFP (PDS-EYFP) and two specific dyes, i.e. the 
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plasma membrane (CellMask Deep Red Plasma Membrane Stain) or the endoplasmic 

reticulum (ER-Tracker Red Glibenclamide BODIPY-TR) stains, respectively. 

In Figures 10 and 11, examples of fluorescence imaging and co-localization scatter 

plots from the experimental series are shown. In the scatter plots, the position of each 

pixel represents its fluorescence intensity in the emission channel of EYFP and in the 

emission channel of the marker of plasma membrane (Figure 10) or endoplasmic reticulum 

(Figure 11). Pixels situated along the diagonal of the plot show similar emission intensity in 

both channels and therefore represent co-localization of the two signals. In contrast, pixels 

distributed along the axes of the graph show higher emission intensity in one of the two 

channels and lower emission intensity in the other channel, therefore indicating mutual 

exclusion of the two signals. 

 

The co-localization was quantified by determining the Pearson’s correlation 

coefficient. As mentioned in the Methods section, the value of the Pearson’s coefficient 

can range between -1 and +1, where +1 represents complete co-localization, a value close 

to 0 is indicative of an absence of correlation and a value of -1 represents a complete 

mutual exclusion of the two signals within the region of interest. 

 
 

 

 

a)# b)#

Figure 10: a) Representative images of wild type pendrin (PDS-EYFP, green, top left) and the plasma 
membrane marker (magenta, top right). At the bottom left, the merge of the two images and at the bottom 
right the co-localization scatter plot are shown. White pixels in the merged image and pixels located along 
the diagonal of the scatter plot indicate co-localization between wild type pendrin and the plasma 
membrane. b) Representative mutated pendrin (L445W-EYFP, green, top left), plasma membrane 
(magenta, top right) and merge (bottom left) images and corresponding co-localization scatter plot 
(bottom right). The absence of white pixels in the merged image and pixels located along the axes of the 
scatter plot indicate exclusion between the mutated pendrin and the plasma membrane. Scale bar: 10 
µm. 
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The Pearson's correlation coefficient between PDS-EYFP and the plasma 

membrane or ER marker is calculated for every pendrin variant analyzed in the 

experimental series according to the formula reported in the methods. The calculated 

correlation values are compared to the wild type and a negative control (cells transfected 

with EYFP only). Being EYFP a water soluble protein, it is expected to show no significant 

co-localization with the plasma membrane. Accordingly, the respective Pearson’s 

correlation coefficient (black bar in Figure 12a) results significantly reduced with respect to 

wild type PDS-EYFP. The results are represented in Figure 12 and show the Pearson's 

correlation coefficients of co-localization with the plasma membrane (Figure 12a) and the 

endoplasmic reticulum (Figure 12b). Data were interpreted as follows: 

 

- pendrin variants with a Pearson’s correlation coefficient with the PM not significantly 

reduced with respect to the wild type but significantly higher with respect to the 

negative control have been considered to have PM targeting and are represented in 

white in panel a; 

- pendrin variants with a Pearson’s correlation coefficient with the PM significantly 

reduced with respect to the wild type have been considered to be excluded from the 

PM and are represented in grey in panel a; 

a)# b)#a)# b)#a)# b)#

Figure 11: a) Representative images of wild type pendrin (PDS-EYFP, green, top left) and the 
endoplasmic reticulum marker (red, top right). At the bottom left, the merge of the two images and at the 
bottom right the co-localization scatter plot are shown. The absence of yellow pixels in the merged 
image and pixels located along the axes of the scatter plot indicate an absence of co-localization 
between wild type pendrin and the endoplasmic reticulum. b) Representative mutated pendrin (Q413R-
EYFP, green, top left), endoplasmic reticulum marker (red, top right) and merge (bottom left) images and 
corresponding co-localization scatter plot (bottom right). Yellow pixels in the merged image and pixels 
located along the diagonal of the scatter plot indicate co-localization between the mutated pendrin and 
the endoplasmic reticulum. Scale bar: 10 µm. 
	
  

a)	
  a)	
   b)	
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- pendrin variants with a Pearson’s correlation coefficient with the ER not significantly 

higher with respect to the wild type have been considered not to be retained in the 

ER and are represented in white in panel b; 

- pendrin variants with a Pearson’s correlation coefficient with the ER significantly 

higher with respect to the wild type have been considered to be retained in the ER 

and are represented in grey in panel b. 

 

To summarize, white bars in Figure 12 correspond to pendrin allelic variants with 

PM targeting and grey bars represents those variants that are instead significantly retained 

in the ER. The co-localization of the different pendrin variants with the plasma membrane 

is highly consistent with the co-localization with the endoplasmic reticulum, with those 

mutants showing a good co-localization with the PM being mostly excluded from the ER 

and viceversa. The only exception to this observation is the mutant G149R, showing a 

plasma membrane co-localization value comparable to the wild type in panel 12a but at 

the same time a significant co-localization with the endoplasmic reticulum as well, as 

shown in panel 12b. 

 

 

 
 

 

Figure 12: Pearson’s correlation coefficients of wild type pendrin-EYFP and different pendrin variants 
with the plasma membrane (a) and the endoplasmic reticulum (b). For the control, cells were transfected 
with a vector bearing the EYFP sequence alone. EYFP is homogeneously distributed in the cytosol, 
therefore does not show preferential localization neither with the PM, nor with the ER. ***p<0.001, 
**p<0.01 versus wild type (PDS WT-EYFP), one way ANOVA with Bonferroni’s post-test, n≥6. 
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 4.3 Evaluation of expression levels of pendrin allelic variants 
 
In association with different subcellular localization patterns, possible differences in 

the degree of expression of the different pendrin variants were also investigated and 

evaluated both at the whole cell, total membranes and plasma membrane level. The 

protein expression levels of wild type and mutant pendrin have been analyzed via two 

different experimental approaches: confocal imaging of pendrin-EYFP fusion proteins and 

western blotting on protein extracts from transfected cells. 

 

 4.3.1 Confocal imaging 

 
Two sets of experiments have been set up in order to quantify the amount of protein 

in the whole cell and plasma membrane region, with two different normalization methods.  

 

  4.3.1.1 Total pendrin expression 

 

To evaluate total pendrin expression, cells for imaging experiments were 

transfected with a plasmid bearing the cDNA coding for wild type or mutant pendrin with 

EYFP fused to the C-teminus (PDS-EYFP). Before imaging, the cells were fixed with 4% 

paraformaldehyde and stained with DAPI.	
  
	
  

In the panels of figure 13, representative acquisition fields for the different pendrin 

variants analyzed are shown. For each mutant and the wild type, the acquisition in the 

emission channel of EYFP is shown beside the corresponding acquisition in the emission 

channel of DAPI. The intensity of the signal in both channels was expressed as averaged 

levels of grey. The mean signal intensity emitted by the fusion protein PDS-EYFP in the 

whole acquisition field was normalized for the cell density in the same field, represented by 

the signal emitted by the nuclear staining with DAPI (Figure 13).	
   The results could be 

statistically analyzed in order to compare the expression levels of the different pendrin 

variants to the wild type (Figure 14). 	
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Figure 13: confocal imaging of fixed HeLa cells transfected with the fusion protein pendrin-EYFP (wild 
type or mutated, yellow, right panels). The normalization of the signal was performed according to the 
cell density in the field, given by the nuclear staining with DAPI (blue, left panels). Scale bar: 50 µM.	
  
	
  

Figure 14: normalized total expression levels of pendrin-EYFP (wild type or mutated), expressed as ratio 
between pendrin-EYFP and DAPI emission intensities in the acquisition field. Pendrin variants that show 
a reduction of function according to the functional tests illustrated previously are marked in grey. The 
black bars identify those pendrin variants displaying a complete loss of function, while variants whose 
the function was not affected and the wild type are indicated by white bars. **p<0.01, *p<0.05 versus 
wild type, one way ANOVA with Bonferroni’s post-test, n=16.	
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All the analyzed pendrin variants show a reduced overall expression, with the only 

exception of the variant R776C, whose expression levels are not statistically different from 

the wild type. The mutants with complete loss of function (T193I and L445W) show the 

lower expression levels. Surprisingly, also the mutant Q413R shows an extremely low 

expression level, comparable to the two loss of function mutations, even though it retains a 

residual transport activity.  

 

  4.3.1.2 Pendrin expression at the plasma membrane region 
 

For the analysis of pendrin abundance at the plasma membrane level, cells have 

been co-transfected with a plasmid bearing the cDNA coding for wild type or mutated 

pendrin, with EYFP fused at the C-terminus (PDS-EYFP), and a plasmid carrying the 

cDNA for ECFP alone, as an indicator of the transfection efficacy of the single cell (Figure 

15).  

 

As for the previous set of experiments, the intensity of the signal emitted in EYFP 

and ECFP channels was expressed as averaged levels of grey.  

 

In this case, the intensity of the signal emitted by PDS-EYFP in the plasma 

membrane region of a single cell has been normalized for the signal emitted by ECFP in 

the cytosol of the same cell (Figure 15). Furthermore, in order to efficiently identify the 

plasma membrane region, especially for those mutants previously shown to display a 

complete retention in the ER, cells have been treated with the same specific PM stain 

(CellMask Deep Red Plasma Membrane Stain) used in the co-localization experiments. 

 

The results were statistically analyzed in order to compare the expression levels of 

the different pendrin variants to the wild type (Figure 16).  
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Figure 15: confocal imaging of living HeLa cells co-transfected with the fusion protein pendrin-EYFP (wild 
type or mutated, green, middle panels) and ECFP (blue, left panels) as a marker of the transfection 
efficiency of the single cell. The signal emitted by pendrin-EYFP in the plasma membrane region was 
normalized for the emission of ECFP in the cytosol of the same cell. In order to efficiently identify the plasma 
membrane of cells, a fluorescent dye specific for the plasma membrane was used (magenta, right panels) 
Scale bar: 20 µM.	
  
	
  

Figure 16: normalized plasma membrane expression levels of pendrin-EYFP (wild type or mutated) 
expressed as ratio between the signal emitted by pendrin-EYFP in the plasma membrane region and 
ECFP (expressed as averaged levels of grey) in individual cells. Pendrin variants that show a reduction 
of function according to the functional tests illustrated previously are marked in grey. Fully functional 
variants and the wild type are indicated by white bars. The black bars identify those pendrin variants 
displaying a complete loss of function. *p<0.05, **p<0.01 versus wild type, one way ANOVA with 
Bonferroni’s post-test, n=16.	
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All the analyzed pendrin variants show a plasma membrane expression significantly 

reduced with respect to the wild type, with the only exception of R776C. A clear correlation 

between total and plasma membrane abundance can be observed for all the analyzed 

pendrin variants. Furthermore, expression levels of the different pendrin variants appear to 

be consistent with the level of transport activity determined previously via functional test 

(Figure 9). This important evidence will be better discussed in the next section. 

  
  4.3.2 Western Blot analysis 
 

The results of imaging experiments on the expression levels of pendrin were 

obtained with a fusion protein (PDS-EYFP) and refer to the total (intracellular plus plasma 

membrane) and plasma membrane pendrin abundance. Theoretically, the presence of a 

relatively big tag (the EYFP protein) fused to the C-terminus of pendrin may alter its folding 

and trafficking. In order to verify this last hypothesis, expression levels were also 

determined by western blot analysis following transfection of untagged wild type and 

mutated pendrin. 

 

Western blot analysis have been performed on protein extracts from HEK 293 

Phoenix cells transfected with wild type or mutant pendrin. In two separate sets of 

experiments, the expression of pendrin in total proteins and total membranes proteins 

fractions were analyzed.  
  
   4.3.2.1 Expression levels of pendrin in total cellular  

     proteins extracts 

 
HEK 293 Phoenix cells were transfected with pTARGET vectors bearing the cDNA 

of wild type or mutant pendrin. In this case the pTARGET vectors were mutated in order 

not to express the hexahistidine tag at the C-terminus of pendrin, since it was observed in 

an independent set of experiments that its presence prevents the binding of the anti-

pendrin antibody (data not shown). The negative control is a protein extract from mock 

transfected HEK 293 Phoenix cells. 
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In Figure 17, a representative blot is reported, showing multiple bands 

corresponding to pendrin between 90 and 120 kDa and a single band corresponding to the 

housekeeping protein GAPDH between 35 and 40 kDa. Multiple bands around 90-120 kDa 

are to be ascribed to the multiple glycosylation states of the protein, as suggested by the 

findings of Azroyan et al. in 2010 [116] and confirmed by Cirello et al. in 2012 [117]. The 

bands corresponding to pendrin are clearly visible in the wild type and P142L lanes, 

whereas they are relatively faint in all the other lanes. However, it was possible to analyze 

the blot densitometrically (Figure 18). The complete lack of signal relative to pendrin in the 

lane corresponding to the mutant R776C is likely to be attributed to a conformational 

disruption of the epitope recognized by the anti-pendrin antibody due to the presence of 

the mutation in position 776. Accordingly, this antibody is known to target the C-terminus 

of pendrin [118]. It is to be noticed the higher intensity of the signal corresponding to the 

mutant P142L if compared to the wild type. This may be due to an accumulation of this 

particular protein form, circumventing the degradation process. 

 

 

 
The intensity of the bands corresponding to wild type and mutated pendrin was 

densitometrically determined and normalized to the intensity of the corresponding GAPDH 

band. Results show that the abundance of all pendrin variants in total protein extracts is 

strongly reduced compared to wild type, with the only exception of the mutant P142L that, 

unexpectedly, shows an expression level comparable to the wild type (Figure 18). 
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Figure 17: representative western blot from total protein extractions. The multiple bands between 90 and 
120 kDa correspond to the different glycosylation forms of pendrin. The single band right above 35 kDa 
corresponds to GAPDH (expected molecular weight: 36 kDa). Curiously, the variant P142L appears to 
show a stronger signal than the wild type. The lack of signal in the R776C lane may be due to the 
disruption of the epitope recognized by the antibody.	
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   4.3.2.2 Expression levels of pendrin in total membranes  

     extracts 

 
For the analysis of pendrin expression in the total membranes fraction, a different 

protocol was followed. As for the previous set of experiments, HEK 293 Phoenix cells were 

transfected with pTARGET vectors coding for untagged wild type or mutant pendrin. The 

extraction of the total membranes fraction (including the plasma membrane as well as 

organelles membranes) was achieved with the Plasma Membrane extraction Kit. The 

whole pellet obtained was directly loaded on the gel after resuspension and denaturation 

in the Loading dye (see Methods). 

 

In Figure 19, a representative blot is displayed, showing multiple bands 

corresponding to pendrin between 90 and 120 kDa and the band corresponding to the 

housekeeping protein calreticulin right above 55 kDa (expected molecular weight: 62 kDa). 

Bands corresponding to mutated pendrin are now significantly more distinguishable 

compared to the blot represented in Figure 17. As in the previous western blots on total 

proteins extracts, no signal could be detected in the lane corresponding to R776C. 

Interestingly, the bands corresponding to P142L are now slightly less intense than the wild 

type, in contrast to what seen in the total proteins blot (Figure 17). 
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Figure 18: Densitometrical analysis of western blots on total protein extracts. Pendrin signal was 
normalized for the signal of the housekeeping protein GAPDH. The color of bars indicates the transport 
activity of the corresponding pendrin variant. n.s.: not statistically significant, *p<0.05, one way ANOVA 
with Dunnett’s post-test versus PDS WT, n=4. 	
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The intensity of the bands corresponding to pendrin variants were densitometrically 

quantified and normalized according to the intensity of the corresponding calreticulin band 

(Figure 20). 
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Figure 19: representative western blot on total membranes proteins extractions. The bands between 90 
and 120 kDa correspond to the different glycosylation states of pendrin. The single band at ~60 kDa 
corresponds to calreticulin. The lack of signal in the R776C lane may be due to the disruption of the 
epitope recognized by the antibody.	
  
	
  
	
  

Figure 20: Densitometrical analysis of western blots on total membranes proteins extracts. Pendrin 
signal was normalized for the signal of the housekeeping protein calreticulin. The color of bars indicates 
the transport activity of the corresponding pendrin variant. n.s.: not statistically significant, ***p<0.005, 
**p<0.01, *<0.05, one way ANOVA with Dunnett’s post-test versus PDS WT; #p<0.05, one way ANOVA 
with Dunnett’s post-test versus control, n=3. 	
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Figure 20 includes the statistical analysis of western blot densitometry on total 

membranes proteins. All pendrin variants show membrane expression levels significantly 

reduced in relation to the wild type. Their expression level is statistically undistinguishable 

from the negative control, exception made for P142L.  

 

These results correlate very well with those of the imaging experiments described in 

the previous sections (Figures 14 and 16), thus supporting the evidence that expression 

levels of pendrin variants with function reduced or annihilated are significantly lower 

compared to wild type.  

 

  4.4 Rescue of pendrin activity 
 

All the functionally impaired pendrin variants analyzed in this work show reduced 

cellular expression levels with respect to the wild type and many of them are at least 

partially retained in the ER. Such evidence points to a role of the protein degradation 

machinery in the determination of the expression levels – and possibly, of the functional 

impairment – of pendrin mutants. 

 

The most common protein degradation pathway active in the cell involves the 

proteasome complex machinery. Proteins destined to degradation are driven to the 

proteasome by polyubiquitination signals. Within the proteasome complex, a series of 

proteolysis steps degrade the proteins to single aminoacids. Under this light, a possible 

rescuing approach of pendrin transport activity may start from the inhibition or modulation 

of such a degradation process.  

 

In order to test the effect of such a treatment, two sets of experiments were set up, 

in order to:  

 

(i) determine the effect of the inhibition of proteasomal degradation on the 

transport activity of pendrin mutants by means of the fluorometric 

functional test described in the previous sections; 
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(ii) determine the effect of the inhibition of proteasomal degradation on 

pendrin protein abundance by confocal imaging. As described in the 

previous sections, both the total and the plasma membrane pendrin 

abundance were analyzed. 

 

 4.4.1 Function of pendrin variants following inhibition of the ubiquitin 
   proteasome pathway 

 
HEK 293 Phoenix cells for the functional tests were co-transfected with the different 

pendrin variants and the fluorescent intracellular iodide sensor EYFP H148Q I152L. The 

cells were incubated for 6 hours in complete culture medium supplemented with the 

proteasome inhibitor MG132 (10 µM), or its vehicle (0.1% DMSO).  

 

The transport activity measured for the different pendrin variants in cells treated 

with MG132 was compared to the activity of the same variants in cells treated with the 

vehicle. This way it was possible to determine the efficacy of the proteasome inhibition on 

pendrin transport activity. In Figure 21, the results of the functional experiments are 

presented.  
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Figure 21: functional test on pendrin variants in cells treated with the proteasome inhibitor MG132 (10 
µM, dashed bars) or its vehicle (DMSO, open bars). The statistical difference between MG132 and 
vehicle-treated cells was tested for each pendrin variant analyzed. *p<0.05, **p<0.01, ***p<0.005, two-
tailed, unpaired Student’s t-test versus vehicle-treated cells, n=12.  	
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From the functional tests, a significant effect of the treatment in 4 cases out of 9 (4 

out of 6 functionally impaired variants) emerges. Specifically, the transport activity of the 

functionally impaired pendrin variants P142L, T193I, Q413R and L445W significantly 

improved upon treatment of cells with MG132 with respect to the vehicle. MG132 

treatment was ineffective on cells transfected with the functionally impaired pendrin 

variants G149R and C282Y. In addition, the activity of wild type pendrin and the functional 

variant R776C were not modified. Importantly, the endogenous transport activity of control 

cells was not affected.  

 
 4.4.2 Expression levels of pendrin variants following inhibition of the 

   ubiquitin proteasome pathway 
 
 
In order to verify if the increased function of the above mentioned pendrin variants 

following inhibition of proteasomal degradation is the consequence of an increase in their 

expression levels, the protein abundance of pendrin variants was measured by 

fluorescence imaging upon treatment with MG132 or its vehicle (DMSO). 

 

Two sets of experiments were set up, as previously described. In the first set of 

experiments, the total pendrin abundance was evaluated, while in the second set of 

experiments, only pendrin abundance in the plasma membrane region was considered. 

 

   4.4.2.1 Total pendrin expression 
 
HeLa cells were transfected with the different variants of pendrin fused to EYFP 

(PDS-EYFP). 72 hours after transfection, the cells were incubated overnight at 37°C with 

complete media supplemented with 10 µM MG132 or its vehicle (0.1% DMSO). Before 

imaging, the cells were fixed with 4% paraformaldehyde and stained with DAPI. 
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The signal emitted by pendrin-EYFP in the whole acquisition field, expressed as 

averaged levels of grey, was normalized for the cell density in the same field according to 

the signal emitted by DAPI, also expressed as averaged levels of grey. The treatment with 

MG132 (Figure 22) induced a significant increase in the total expression levels of all 

pendrin variants, except for C282Y (in this case, only a not statistically significant tendency 

was observed). A strong effect was also recorded for wild type pendrin and for the 

Figure 22: fluorescence imaging of fixed HeLa cells transfected with pendrin variants and treated with 10 
µM MG132 or its vehicle. a) the effect of the proteasome inhibitor on the total expression levels of wild 
type and two representative pendrin variants (P142L, T193I) is shown in the picture. In the left ends 
panels, the acquisition in the emission channel of DAPI (blue) is shown. In the right ends panels, the 
emission of pendrin-EYFP (yellow) is shown. DAPI gives an indication of the cell density in the field, and 
was used to normalize the EYFP signal. Scale bar: 50 µm. b) Normalized expression levels determined 
for each pendrin variant and the control (EYFP). **p<0.01, ***p<0.005, two-tailed, unpaired Student’s t-
test versus vehicle-treated cells, n=12. 	
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functional variant R776C. In all cases, upon treatment with MG132, the protein expression 

of the different hypofunctional variants reached at least the level of expression of wild type 

pendrin in vehicle-treated cells (dashed line in Figure 22). MG132 was ineffective in 

increasing the expression levels of EYFP protein in control cells. 

 
    4.4.2.2 Pendrin expression at the plasma membrane 
      region 
 

The same approach was used to determine pendrin expression in the plasma 

membrane region. In this series of experiments, as described in the previous sections, the 

signal emitted by pendrin-EYFP in regions of interest of the plasma membrane was 

normalized on the emission of ECFP in the cytosol of the same cell, as an indication of 

transfection efficacy of the single cell. 

 

As for the previous series of experiments, HeLa cells were transfected with the 

different mutant forms of pendrin fused to EYFP. 72 hours after transfection, the cells were 

incubated overnight at 37°C with 10 µM MG132 or its vehicle (DMSO). Right before 

imaging, living cells were stained with a specific PM dye (CellMask Deep Red Plasma 

Membrane Stain) as described in the methods. This staining was particularly necessary to 

identify the plasma membrane in cells transfected with those pendrin variants completely 

lacking a PM localization. 

 

In Figure 23a, a representative example of evaluation of plasma membrane 

abundance of a pendrin variant following MG132 treatment is shown. On the left end 

panels the emission of ECFP is presented, while in the right end panels the emission of 

pendrin P142L-EYFP is displayed. Top panels refer to cells treated with the vehicle, lower 

panels refer to cells treated with MG132. The emission of P142L in cells treated with the 

vehicle (top right) is to be compared to the emission of the same pendrin variant in cells 

treated with MG132 (bottom right). The increased expression in the plasma membrane 

region upon treatment with the proteasome inhibitor is clearly visible. The graph in Figure 

23b shows the expression levels of the different pendrin variants in the plasma membrane 

region normalized for the transfection efficacy of the single cell. For each variant, the 

plasma membrane expression levels with and without treatment with MG132 were 

compared. 
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A significant increase in plasma membrane expression upon treatment with MG132 

was observed for each hypofunctional variant analyzed, including C282Y. This last variant 

appeared to be irresponsive to MG132 in the previous set of experiments, when total 

pendrin expression was evaluated. No increase in the plasma membrane expression 

levels could be determined for wild type pendrin and for the functional variant R776C 

following MG132 treatment.  

Figure 23: a) representative picture of living HeLa cells for the quantification of pendrin expression in the 
PM region. The variant P142L is here represented. On the top right, the emission of pendrin P142L in 
cells treated with the vehicle is shown, to be compared with the emission of the same variant in cells 
treated with the proteasome inhibitor MG132 (10 µM, overnight, bottom right). In the left end panels, the 
signal emitted by ECFP in vehicle and MG132-treated cells is shown and was used to normalize the 
pendrin P142L-EYFP signal for the transfection efficacy of the single cell. Scale bar: 10 µm. b) 
normalized expression levels of pendrin-EYFP variants. **p<0.01, *p<0.05, two-tailed, unpaired 
Student’s t-test versus vehicle-treated cells, n=10.	
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 4.5 Functional screening of pendrin ligands 
 

In the following sections the results of the functional screening of putative pendrin 

ligands are reported. The tested compounds are presented according to the rationales 

described in the introduction:  

 

• known inhibitors of chloride channels and transporters and inhibitors of 

transporters homolog to pendrin, such as Slc26a3 (DRA); 
 

• antihypertensive and diuretic agents; 
 

• small compounds predicted by a bioinformatic approach based on the 

abstraction of the primary aminoacidic sequence of pendrin, called meta-

analysis; 
 

• small compounds predicted by SHED alignment with established pendrin 

inhibitors. 

 

HEK 293 Phoenix cells were co-transfected with the pEYFP H148Q I152L and 

pTARGET PDS WT vectors or with the pEYFP H148Q I152L and pTARGET empty vectors 

as a negative control (empty). The substances or their vehicles were added to the 

extracellular high chloride and high iodide solutions. As described in detail in the methods 

section, an intracellular EYFP H148Q I152L-dependent fluorescence decrease indicates 

an influx of iodide in pendrin-transfected (PDS) or control (empty) cells. The decrease in 

intracellular fluorescence measured after iodide injection in the extracellular solution of 

cells over-expressing pendrin and treated with the test compound was compared to the 

decrease measured in vehicle-treated cells. At the same time, an eventual effect of the 

treatment on control cells was analyzed, in order to discriminate possible effects on 

endogenous transports, therefore not directly related to pendrin activity.  

For every reported substance, concentration and solvent are indicated. A brief 

description of the substance and its eventual use in the praxis are mentioned, as well as 

the rational driving the choice of the specific compound. The graphs show the results of the 

functional tests and the possible effect on pendrin-dependent or endogenous transport 

activity. The statistical analysis for all the presented results was performed by means of 

one-way ANOVA with Bonferroni’s post-test. 
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 4.5.1 Chloride channels and transporters blockers 
 
NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid)	
   

 

 NPPB (Figure 24a) was included in the screening as it is a well known inhibitor of 

anion channels and was shown in previous experiments to inhibit pendrin-driven chloride 

uptake in HEK 293 Phoenix cells [1]. The final concentration of NPPB was 100 µM, the 

vehicle was 0.1% DMSO. 

 
 

  
 

 

A 32% inhibition (p<0.005) of iodide intake in pendrin-transfected cells (PDS) was 

determined upon treatment with NPPB with respect to the vehicle. No effect on control 

cells (empty) was measurable (Figure 24b). 

	
  
 
DIDS (4,4’-diisothiocyanatostilbene-2,2’-disulfonic acid) 
 

DIDS (Figure 25a) was included in the screening as it is widely recognized as an 

anion exchanger and anion channels inhibitor [119]. The final concentration of DIDS was 

100 µM in 0.1% DMSO.   

a) 
b) 

Figure 24. a) Structural formula of NPPB. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM NPPB or its vehicle (0.1% DMSO). n=24, one-way ANOVA with Bonferroni’s 
post-test. ***p<0.005, n.s.: not significant. 
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with DIDS with respect to the vehicle-treated cells (Figure 25b).  

	
  
 
CFTR inhibitor-172 
 

 CFTR inhibitor-172 (Figure 26a) was included in the screening as it is a blocker of 

the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel [120]. 

The final concentration of CFTR inhibitor-172 was 1.6 µM [121] in 0.1% DMSO.   

 

 
	
  

	
  

	
  

 

a) 

b) 

a) 
b) 

Figure 25. a) Structural formula of DIDS. b) Functional test on HEK 293 Phoenix cells transfected with 
pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM DIDS or its vehicle (0.1% DMSO). n=48, one-way ANOVA with Bonferroni's 
post-test. ***p<0.005, n.s.: not significant. 
 
 

Figure 26. a) Structural formula of CFTR inhibitor-172. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 1.6 µM CFTR inhibitor-172 or its vehicle (0.1% DMSO). n=24, one-
way ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with CFTR inhibitor-172 with respect to the vehicle-treated cells (Figure 

26b).  

 
 
DNDS (4',4'-dinitrostilbene-2,2'-disulfonic  acid) 
 

DNDS (Figure 27a) was included in the screening as a widely recognized anion 

channels and transporters inhibitor [122]. The final concentration of DNDS was 100 µM in 

isotonic solution.   

 
 

 

 

 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with DNDS with respect to the vehicle-treated cells (Figure 27b).  

   
 
  4.5.2 Inhibitors of DRA and previously assessed inhibitors of  
  pendrin 
 
Niflumic acid 

 

 The anti-inflammatory drug niflumic acid (Figure 28a) was included in the screening 

as it was recognized to inhibit the pendrin analog DRA [123]. The final concentration of 

niflumic acid was 100 µM in 0.1% DMSO. 

a) 

b) 

pds +
 D

NDS

em
pty 

+ D
NDS

pds +
 ve

hicl
e

em
pty 

+ v
eh

icl
e

-80

-60

-40

-20

0 *** ***

n.s.

n.s.

Fl
uo

re
sc

en
ce

 %
 v

ar
ia

ti
on

n=12

a)#

Figure 27. a) Structural formula of DNDS. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM DNDS or its vehicle (isotonic solution). n=12, one-way ANOVA with 
Bonferroni's post-test. ***p<0.005, n.s.: not significant. 
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A 28% inhibition (p<0.005) of iodide intake in pendrin transfected cells was 

determined upon treatment with niflumic acid with respect to the vehicle-treated cells. No 

effect on control cells was measurable (Figure 28b). In some experiments though, an 

intracellular acidification was observed (see discussion).  

 
 
Tenidap 

 

 The anti inflammatory drug tenidap (Figure 29a) was included in the screening as 

inhibitor of Cl-/HCO3
- exchange [124] and inhibitor of pendrin analog DRA [107]. The final 

concentration of tenidap was 100 µM in 0.1% DMSO.   

 

 

a) 
b) 

a) 
b) 

Figure 28. a) Structural formula of niflumic acid. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM niflumic acid or its vehicle (0.1% DMSO). n=12, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, *p<0.05, n.s.: not significant.  
 

Figure 29. a) Structural formula of tenidap. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM tenidap or its vehicle (0.1% DMSO). n=18, one-way ANOVA with Bonferroni's 
post-test. ***p<0.005, **p<0.01, n.s.: not significant.  
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An 85% inhibition (p<0.01) of iodide intake in pendrin transfected cells was 

determined upon treatment with tenidap with respect to the vehicle-treated cells. No effect 

on control cells was measurable (Figure 29b).  

 
 

Glybenclamide 

 

 Glybenclamide (Figure 30a) was included in the screening as inhibitor of the 

pendrin analog, DRA [107]. The final concentration of glybenclamide was 100 µM in 0.1% 

DMSO.   

 
 
 
 
 
 

No inhibition of iodide intake in pendrin transfected cells was determined upon 

treatment with glybenclamide with respect to the vehicle-treated cells (Figure 30b). A slight 

effect on control cells was observed, possibly due to an effect of glybenclamide on 

endogenous transports.  
 
 

Probenecid 

 

 Probenecid (Figure 31a) is an uricosuric drug used for treatment of gout and 

hyperuricemia. An inhibitory effect on pendrin has been shown by Scott et al. in 1999 [99]. 

The final concentration of probenecid was 100 µM in 0.1% chloroform.   

 

a) 
b) 

Figure 30. a) Structural formula of glybenclamide. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM glybenclamide or its vehicle (0.1% DMSO). n=24, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, *p<0.05, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with probenecid with respect to the vehicle-treated cells (Figure 31b).  

 
   
  4.5.3 Diuretics and antihypertensive agents 
 
Eplerenone 

 

 Eplerenone (Figure 32a) is an aldosterone antagonist exerting a diuretic effect. The 

final concentration of eplerenone was 10 µM in 0.1% DMSO, due to its poor solubility.   
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Figure 31. a) Structural formula of probenecid. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM probenecid or its vehicle (0.1% chloroform). n=30, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant. 
 

Figure 32. a) Structural formula of eplerenone. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 10 µM eplerenone or its vehicle (0.1% DMSO). n=36, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
 



	
  
	
   	
  

89	
  

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with eplerenone with respect to the vehicle-treated cells (Figure 32b).  

 
 

Acetazolamide 

 

 Acetazolamide (Figure 33a) is a carbonic anhydrase inhibitor with a diuretic effect. 

The final concentration of acetazolamide was 100 µM in 0.1% DMSO.   

 
 

 

 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with acetazolamide with respect to the vehicle-treated cells (Figure 33b).  

 
 
Bumetanide 

 

 Bumetanide (Figure 34a) is a blocker of chloride reabsorption in the ascending loop 

of Henle [125]. The final concentration of bumetanide was 100 µM in 0.1% DMSO. 

 
 

 

a) 

b) 

a) 

b) 

Figure 33. a) Structural formula of acetazolamide. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM acetazolamide or its vehicle (0.1% DMSO). n=30, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
 

Figure 34. a) Structural formula of bumetanide. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM bumetanide or its vehicle (0.1% DMSO). n=24, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with bumetanide with respect to the vehicle-treated cells (Figure 34b).  

 
 
Furosemide 

 

 Furosemide (Figure 35a) is a blocker of the Na+-K+-2Cl- cotransporter in the 

ascending loop of Henle. Its final concentration was 100 µM in 0.1% DMSO.  

 
 

 

 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with furosemide with respect to the vehicle-treated cells (Figure 35b).  

 
 
Amiloride 

 

 Amiloride (Figure 36a) is a blocker of the epithelial Na+ channel (ENaC) in the distal 

nephron. The final concentration of amiloride was 100 µM in 0.1% DMSO.   

 
 
 
 
 

a) 
b) 

a) 

b) 

Figure 36. a) Structural formula of amiloride. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM amiloride or its vehicle (0.1% DMSO). n=12, one-way ANOVA with Bonferroni's 
post-test. ***p<0.005, n.s.: not significant.  
 

Figure 35. a) Structural formula of furosemide. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty  vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM furosemide or its vehicle (0.1% DMSO). n=24, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with amiloride with respect to the vehicle-treated cells (Figure 36b).  

 
 

Hydrochlorothiazide 

 

 Hydrochlorothiazide (HCTZ, Figure 37a) is a blocker of the Na+-Cl- cotransporter 

(NCC). The final concentration of hydrochlorothiazide was 100 µM in 0.1% DMSO. 

  

 

 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with hydrochlorothiazide with respect to the vehicle-treated cells (Figure 

37b).  

 

The following  common diuretic and anti-hypertensive agents have also been tested 

for their potential effect on pendrin activity: 100 µM Methazolamide, 100 µM Triamterene, 

100 µM Torsemide, 100 µM Hydroflumethiazide, 100 µM Indapamide, 100 µM 

Chlorothiazide, 100 µM Spironolactone. No inhibition of iodide intake in pendrin 

transfected or control cells was determined upon  treatment with any of the mentioned 

substances. 

 

   
 

a) 
b) 

Figure 37. a) Structural formula of hydrochlorothiazide. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM hydrochlorothiazide or its vehicle (0.1% DMSO). n=12, one-
way ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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  4.5.4 Meta-analysis  
 

Meta analysis prediction and further SHED alignments were performed by Prof. R. 

Konrat at the institute of Biochemistry & Biophysics, Structural & Computational Biology, 

University of Vienna (Austria) and the results were delivered to us in form of a list of 

reference numbers corresponding to entries in the drugbank reference database 

(www.drugbank.ca).  

 

A selection of the compounds was then subjected to the functional test and results 

are presented in the following. 

 
 
Cholesterol 
 

Cholesterol (Figure 38a) was used to a final concentration of 100 µM in 0.1% 

chloroform.   

 
No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with cholesterol with respect to the vehicle (Figure 38b).  

 
 
 
 

a) 

b) 

Figure 38. a) Structural formula of cholesterol. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM cholesterol or its vehicle (0.1% chloroform). n=6, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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Iloprost (Ilomedin® - Bayer) 

 

Iloprost (Figure 39a) is the active ingredient of Ilomedin®, a drug used to treat 

pulmonary arterial hypertension. Two different concentrations of Iloprost were tested: the 

therapeutic concentration (130 nM) and the 66 µM concentrated formulation.  

 
 

 
 
 

No inhibition of iodide intake in pendrin transfected cells was determined upon 

treatment with Iloprost with respect to the vehicle-treated cells (Figure 39b-c). An effect on 

control cells may hint to disturbance of endogenous transports. 

 
 
Vasopressin 

 

The concentration of Vasopressin (Figure 40a) used was 1 µM in isotonic solution. 

The concentration was chosen to mimic the physiological circulating hormone levels.   

 
 
 
 
 
 

a) 
b) c) 

a) 
b) 

Figure 39. a) Structural formula of Iloprost. Functional test on HEK 293 Phoenix cells transfected with 
pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 13 nM (b) or 66 µM (c) Iloprost or its vehicle (isotonic solution). n=12, one-way ANOVA 
with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
 

Figure 40. a) Structural formula of vasopressin. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM vasopressin or its vehicle (high chloride solution). n=6, one-
way ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with vasopressin with respect to the vehicle-treated cells (Figure 40b).  

	
  
	
  
Vitamin D4 (Dihydrotachysterol) 

 

The concentration of vitamin D4 (Figure 41a) tested was 100 µM in 0.1% DMSO.  

 
 
 

 

 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with vitamin D4 with respect to the vehicle-treated cells (Figure 41b).  

	
  
	
  
Vitamin E (α-Tocopherol) 

 

The concentration of vitamin E (Figure 42a) used was 100 µM in 0.1% chloroform.  

 
 

 
 
 

a) 
b) 

a) 
b) 

Figure 41. a) Structural formula of vitamin D4. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM Vitamin D4 or its vehicle (0.1% DMSO). n=24, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant. 
 

Figure 42. a) Structural formula of vitamin E. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM Vitamin E or its vehicle (0.1% DMSO). n=24, one-way ANOVA with 
Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with vitamin E with respect to the vehicle-treated cells (figure 42b).  

 
 
(-)Nicotine  

 

Nicotine (Figure 43a) was used to a final concentration of 100 µM in isotonic high 

chloride solution.  

 
 

 
 
 
 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with (-)Nicotine with respect to the vehicle-treated cells (Figure 43b) 
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Figure 43. a) Structural formula of (-)Nicotine. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM (-)Nicotine or its vehicle (high chloride solution). n=6, one-
way ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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 4.5.5 SHED alignment	
   
 

The identification of active compounds from the preliminary screenings allows for 

further refinement of the search of candidate ligands for pendrin. An alignment according 

to the SHED profile has been therefore performed for the two most promising compounds 

identified so far: the anti-inflammatory drugs tenidap and niflumic acid. 

 

In the following section the compounds resulting from such alignment are 

presented, first those derived from tenidap alignment and then those predicted from 

niflumic acid alignment. 

 
 

N-(2-chlorophenyl)-2-(2,4-dibromophenoxy)acetamide  
 

A possible effect of N-(2-chlorophenyl)-2-(2,4-dibromophenoxy)acetamide (Figure 

44a) was predicted by the SHED alignment of tenidap. N-(2-chlorophenyl)-2-(2,4-

dibromophenoxy)acetamide was used to a final concentration of 100 µM in 0.1% DMSO 

solution.  

 

 
 
 
 
 

 

 

A slight, but significant (14%, p<0.005), effect on iodide intake in pendrin 

transfected cells upon treatment with N-(2-chlorophenyl)-2-(2,4-

dibromophenoxy)acetamide was measured with respect to the vehicle-treated cells. An 

effect of the treatment can also be observed on control cells (Figure 44b). 
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Figure 44. a) Structural formula of N-(2-chlorophenyl)-2-(2,4-dibromophenoxy)acetamide. b) 
Functional test on HEK 293 Phoenix cells transfected with pendrin or with an empty vector as a 
control. A fluorescence decrease (negative fluorescence % variation) indicates an influx of iodide in 
pendrin-transfected (PDS) or control cells (empty) following treatment with 100 µM N-(2-chlorophenyl)-
2-(2,4-dibromophenoxy)acetamide (treatment) or its vehicle (0.1% DMSO). n=6, one-way ANOVA with 
Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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2-{[(2,3-dichlorophenyl)methyl]amino}-1-phenylethanol 
 

A possible effect of 2-{[(2,3-dichlorophenyl)methyl]amino}-1-phenylethanol (Figure 

45a) was predicted by the SHED alignment of tenidap. The compound was used to a final 

concentration of 100 µM in 0.1% DMSO solution.  

 
 
 
 
 
 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with 2-{[(2,3-dichlorophenyl)methyl]amino}-1-phenylethanol with respect to 

the vehicle-treated cells (Figure 45b). 

 
 
Naloxone 
 

A possible effect of the opioid antagonist naloxone (Figure 46a) was predicted by 

the SHED alignment of tenidap. Naloxone was used to a final concentration of 100 µM in 

0.1% DMSO solution.  
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Figure 45. a) Structural formula of 2-{[(2,3-dichlorophenyl)methyl]amino}-1-phenylethanol. b) 
Functional test on HEK 293 Phoenix cells transfected with pendrin or with an empty vector as a 
control. A fluorescence decrease (negative fluorescence % variation) indicates an influx of iodide in 
pendrin-transfected (PDS) or control cells (empty) following treatment with 100 µM 2-{[(2,3-
dichlorophenyl)methyl]amino}-1-phenylethanol (treatment) or its vehicle (0.1% DMSO). n=12, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
 

Figure 46. a) Structural formula of naloxone. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM naloxone or its vehicle (0.1% DMSO). n=12, one-way ANOVA with Bonferroni's 
post-test. ***p<0.005, n.s.: not significant. 
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with naloxone with respect to the vehicle-treated cells (Figure 46b). 

 
 

Tolcapone 
 

A possible effect of tolcapone (Figure 47a) was predicted by the SHED alignment of 

tenidap. Tolcapone was used to a final concentration of 100 µM in 0.1% DMSO solution.  

 
 

 
 

 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with tolcapone with respect to the vehicle (Figure 47b). 

 
 
Topiramate 
 

A possible effect of the anticonvulsant and antiepileptic drug topiramate (Figure 

48a) was predicted by the SHED alignment of tenidap. Topiramate was used to a final 

concentration of 100 µM in 0.1% DMSO solution.  
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Figure 47. a) Structural formula of tolcapone. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM tolcapone or its vehicle (0.1%DMSO). n=24, one-way ANOVA with Bonferroni's 
post-test. ***p<0.005, n.s.: not significant.  
 

Figure 48. a) Structural formula of topiramate. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM topiramate or its vehicle (0.1% DMSO). n=12, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with topiramate with respect to the vehicle (Figure 48b). 

 

Colchicine 
 

A possible effect of colchicine (Figure 49a) was predicted by the SHED alignment of 

tenidap. Colchicine was used to a final concentration of 100 µM in 0.1% ethanol solution.  

 
  

 

 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with colchicine with respect to the vehicle (Figure 49b). 

 
 
Scopolamine 
 

A possible effect of scopolamine (Figure 50a) was predicted by SHED alignment of 

tenidap. Scopolamine was used to a final concentration of 100 µM in isotonic high chloride 

solution.  
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Figure 49. a) Structural formula of colchicine. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM colchicine or its vehicle (0.1% ethanol). n=18, one-way ANOVA with 
Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
 

Figure 50. a) Structural formula of scopolamine. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM scopolamine or its vehicle (high chloride solution). n=12, one-
way ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with scopolamine with respect to the vehicle (Figure 50b). 

 
 
Levamisol ((S)-(−)-6-Phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole hydrochloride) 
 

A possible effect of the anthelmintic and immunomodulator drug levamisol (Figure 

51a) was predicted by the SHED alignment of niflumic acid. Levamisol was used to a final 

concentration of 100 µM in isotonic high chloride solution.  

 
  

 
 
 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with levamisol with respect to the vehicle (Figure 51b). 

 
 
6-phenylamino nicotinic acid 
 

A possible effect of 6-phenylamino nicotinic acid (Figure 52a) was predicted by the 

SHED alignment of niflumic acid. 6-phenylamino nicotinic acid was used to a final 

concentration of 100 µM in 0.1% DMSO solution.  
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Figure 51. a) Structural formula of levamisol. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM levamisol or its vehicle (high chloride solution). n=12, one-way ANOVA with 
Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
 
 

Figure 52. a) Structural formula of 6-phenylamino nicotinic acid. b) Functional test on HEK 293 
Phoenix cells transfected with pendrin or with an empty vector as a control. A fluorescence decrease 
(negative fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control 
cells (empty) following treatment with 100 µM 6-phenylamino nicotinic acid or its vehicle (0.1% 
DMSO). n=18, one-way ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with 6-phenylamino nicotinic acid with respect to the vehicle (Figure 52b). 

 
 
Levallorphan 
 

A possible effect of levallorphan (Figure 53a) was predicted by the SHED alignment 

of niflumic acid. Levallorphan was used to a final concentration of 100 µM in isotonic high 

chloride solution.  

 
   

 
 
 

No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with levallorphan with respect to the vehicle (Figure 53b). 

 
 

Ticlopidine 
 

A possible effect of the antiplatelet drug ticlopidine (Figure 54a) was predicted by 

the SHED alignment of niflumic acid. Ticlopidine was used to a final concentration of 100 

µM in isotonic high chloride solution.  
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Figure 53. a) Structural formula of levallorphan. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM levallorphan or its vehicle (high chloride solution). n=12, one-
way ANOVA with Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
 

Figure 54. a) Structural formula of ticlopidine. b) Functional test on HEK 293 Phoenix cells transfected 
with pendrin or with an empty vector as a control. A fluorescence decrease (negative fluorescence % 
variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells (empty) following 
treatment with 100 µM ticlopidine or its vehicle (high chloride solution). n=12, one-way ANOVA with 
Bonferroni's post-test. ***p<0.005, n.s.: not significant.  
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No inhibition of iodide intake in pendrin transfected or control cells was determined 

upon treatment with ticlopidine with respect to the vehicle (Figure 54b). 

 
 
Flufenamic acid 
 

A possible effect of flufenamic acid (Figure 55a) was predicted by the SHED 

alignment of niflumic acid. Flufenamic acid was used to a final concentration of 100 µM in 

a 0.1% DMSO solution.  

 
   

 
 
 
 

A 15% inhibition (p<0.01) of iodide intake in pendrin transfected cells was 

determined upon treatment with flufenamic acid with respect to the vehicle-treated cells 

(Figure 55b). As seen with the close analog of flufenamic acid, niflumic acid, an 

acidification of the intracellular pH was measured in some experiments (see discussion). 
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Figure 55. a) Structural formula of flufenamic acid. b) Functional test on HEK 293 Phoenix cells 
transfected with pendrin or with an empty vector as a control. A fluorescence decrease (negative 
fluorescence % variation) indicates an influx of iodide in pendrin-transfected (PDS) or control cells 
(empty) following treatment with 100 µM flufenamic acid or its vehicle (0.1% DMSO). n=24, one-way 
ANOVA with Bonferroni's post-test. ***p<0.005, **p<0.01, n.s.: not significant.  
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All the above reported results are summarize in table 6. The tested compounds are 

again classified according to the rationale described above. In the last section of the table, 

the compounds derived from the SHED profile alignment of niflumic acid and tenidap are 

listed. 

 

 
Compound Concentration Vehicle Effect 

1. Chloride channels and transporters blockers 

NPPB 100 µM DMSO 0.1% 32% inhib. 

DIDS 100 µM DMSO 0.1% No 

CFTR-inhibitor 172 1.6 µM DMSO 0.1% No 

DNDS 100 µM Isotonic solution No 

2. Previously identified inhibitors of SLC26A3 (DRA) or SLC26A4 (pendrin) 

Niflumic acid 100 µM DMSO 0.1% 28% inhib. (1) 

Tenidap 100 µM DMSO 0.1% 85% inhib. 

Glybenclamide 100 µM DMSO 0.1% No 

Probenecid 100 µM Chloroform 0.1% No 

Hydroxycinnamate 100 µM DMSO 0.1% No 

 3. Diuretics and antihypertensive agents 

Eplerenone 10 µM DMSO 0.1% No 

Acetazolamide 100 µM DMSO 0.1% No 

Bumetanide 100 µM DMSO 0.1% No 

Furosemide 100 µM DMSO 0.1% No 

Amiloride 100 µM DMSO 0.1% No 

Hydrochlorothiazide 100 µM DMSO 0.1% No 

Methazolamide 100 µM Isotonic solution No 

Triamterene 100 µM PEG400 5% No 

Torsemide 100 µM EtOH 0.1% No 

Hydroflumethiazide 100 µM DMSO 0.1% No 

Indapamide 100 µM EtOH 0.1% No 

Chlorothiazide 100 µM DMSO 0.1% No 

Spironolactone 100 µM EtOH 0.1% No 

4a. Meta-analysis 

Cholesterol 100 µM Chloroform 0.1% No 
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Iloprost® 
66 µM -- No* 

130 nM Isotonic solution No* 

Vasopressin 1 µM Isotonic solution No 

Vitamin D 100 µM DMSO 0.1% No 

Vitamin E 100 µM Chloroform 0.3% No 

Nicotine 100 µM Isotonic solution No 

4b. Niflumic acid and Tenidap SHED alignment 
N-(2-chlorophenyl)-2-(2,4-
dibromophenoxy)acetamide  100 µM DMSO 0.1% 14% inhib.* 

2-{[(2,3-dichlorophenyl)methyl] 
amino}-1-phenylethanol 100 µM DMSO 0.1% No 

Scopolamine 100 µM Isotonic solution No	
  

Colchicine 100 µM EtOH 0.1% No	
  

Topiramate 100 µM DMSO 0.1% No	
  

Tolcapone 100 µM DMSO 0.1% No	
  

Naloxone 100 µM DMSO 0.05% No	
  

Levamisole 100 µM Isotonic solution No	
  

6-phenylamino nicotinic acid 100 µM DMSO 0.1% No	
  

Levallorphan 100 µM Isotonic solution No	
  

Ticlopidine 100 µM Isotonic solution No	
  

Flufenamic acid 100 µM DMSO 0.1% 15% inhib. (1)	
  
 

 
 
 
 
 
 

 
 
 
 
 

Table 6. Summary of the functional screening of pendrin ligands. *: effect on control cells, probably 
due to an effect of the treatment on endogenous transports. (1) acidification of intracellular pH was 
measured. Acidic pH may influence the measurement by quenching the fluorescence of EYFP. 
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5. Discussion 
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 5.1 Functional and molecular characterization of pendrin   
  variants 
 

The genetic screening of a cohort of 58 deaf patients performed by our 

collaborators at the hospital of Campinas, Sao Paolo, Brazil, identified 14 patients with 

mutations in the pendrin coding region. The patients were all diagnosed with severe to 

profound deafness with or without EVA. 9 out of 14 patients display a heterozygous 

phenotype with one wild type and one mutated pendrin allele, two of which are double 

heterozygous with a monoallelic pendrin mutation and the monoallelic 35delG mutation in 

the GJB6 gene. Due to the high phenotypic variability observed among individuals with 

pendrin mutations and the high incidence of benign polymorphisms [74], it is not possible 

to establish if a specific pendrin variant is the genetic determinant of deafness in a given 

patient without a functional characterization. Only 5 of the 14 allelic variants identified in 

the screening had already been characterized previously (R409H, T410M, V138F, V609G, 

R776C), one variant (R776C) showing discordant results in the literature [63, 72-74]. For 

all the other variants no functional characterization is available in the literature. 

 

In the present study, the functional and molecular characterization of the 

uncharacterized pendrin variants identified in the abovementioned genetic screening have 

been performed, in order to define a genetic diagnosis for the observed deafness 

phenotype of the patients. The functional characterization, performed by means of the 

fluorometric assay described in the methods, delivers important information regarding the 

possible etiology of deafness in the patients examined (Table 7, boldface). The definition 

of a correct genetic diagnosis of the disease is important in order to exclude other genetic 

or environmental causes of deafness for which a specific treatment may exist. 

Furthermore, with a defined genetic diagnosis it is possible to provide the patient and the 

family with the more efficient counseling, both regarding an eventual progression of the 

disease with involvement of other organs (such as the thyroid) and the possibility of 

genetic transmission to the offsprings [6]. 

 

For what concerns this specific study, we can conclude that the functional 

impairment of pendrin is most likely the factor determining deafness in at least 5 patients 

out of 14 of this cohort (21AA, 06AA, 23AA, 22AA and 02AA, Table 7) as discussed in the 

following.  
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Patient 21AA has been diagnosed deaf with an enlarged vestibular aqueduct. The 

sequencing of pendrin coding region revealed the deletion 297T on one allele, leading to a 

truncated form of the protein. The variant P142L is encoded by the other allele. By means 

of our functional test, the variant P142L was defined as a mutation with reduction of 

function. It has previously been assessed that all pendrin truncations identified so far are 

non-functional [5], we can therefore conclude that the diagnosed deafness phenotype in 

patient 21AA is due to pendrin dysfunction, with no need of further investigations. The 

same conclusion can be drawn for patient 06AA, also diagnosed deaf with EVA. In this 

patient, the Q413R variant is encoded by one allele and the V138F variant by the second 

allele. The latter was previously characterized as a complete loss of function mutation [40], 

while the former has been characterized as a hypofunctional mutation in the present study. 

Patient 23AA bears a mutation affecting the splicing of pendrin messenger RNA on one 

allele, leading to a premature truncation of the protein. The second pendrin allele encodes 

for the L445W variant. L445W has been characterized in the present study as a complete 

loss of function mutation. Therefore, also in this case it is possible to identify pendrin 

dysfunction as the determinant factor for the development of deafness. Furthermore, this 

is the only patient in the cohort for which overt goiter was identified. Deafness associated 

to pendrin mutations and goiter are clear hallmarks of Pendred syndrome. The situation of 

patients 22AA and 02AA appear clear as well, as they both carry non-functional or 

hypofunctional pendrin variants characterized in previous studies (R409H in homozygosity 

and T410M and the splicing site mutation IVS15+5G>A, respectively [40,44]). Different is 

the case of patient C26. This patient was diagnosed deaf but with no abnormally enlarged 

vestibular aqueduct. From the genetic screening, a 35delG mutation on the connexin-26 

coding gene, GJB6, was identified, in association with a mutated form of pendrin carrying 

the aminoacidic substitution C282Y. 35delG mutation of the connexin-26 has been 

assessed in a number of studies as the most common genetic cause of deafness [60]. The 

pendrin variant C282Y has been characterized as hypofunctional mutation in the present 

study. We can therefore hypothesize that a monoallelic connexin-26 mutation combined 

with a monoallelic pendrin mutation (i.e. a condition of double heterozygosity) may be the 

genetic determinant of deafness for this patient. Patients 16AA and 18AA both present a 

mutant form of the transporter in heterozygosity with the wild type. The former carries the 

G149R variant, characterized here as reduction of function mutation, the latter displays the 

T193I variant, characterized as well in this study as a complete loss of function mutation. 

In both cases it is possible to hypothesize that either these patients are examples of 
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nonsyndromic-EVA due to monoallelic pendrin mutations [53, 67] or that further genetic or 

environmental factors may contribute to the development of the symptoms. The first 

candidates to be considered for further genetic investigations are the transcription factor 

FOXI1 and the potassium channel KCNJ10 [88, 89], both known to be involved in 

deafness with EVA. In this study, both genes have been sequenced and were found wild 

type, therefore excluding their role in the observed deafness phenotype. Further genetic 

aspects to be considered are possible mutations in the promoter and in the 3' untranslated 

region of pendrin gene, possibly affecting the transcription of the gene and expression 

levels of mRNA. In the case of patient 15AA, the R776C variant is encoded by one pendrin 

allele. From the functional tests presented in this study, such aminoacidic substitution 

does not affect the transport activity of pendrin and the corresponding pendrin variant has 

to be considered as a benign polymorphism. The presence of this particular allelic variant 

in association with the wild type allele excludes a role of pendrin in the development of 

deafness in this specific case. 

 

A particularly controversial situations is the one regarding the variant V609G in 

heterozygosis with the wild type allele. This aminoacidic substitution has been previously 

assessed as a mutation leading to a reduction of function [68]. In the present study it has 

been detected in heterozygosis with the wild type both in the group of patients with EVA 

(patient L1AA) and in the group with no EVA (patients C01, C04 and C09). In the case of 

patient L1AA, this pendrin mutation is associated with a monoallelic del35G mutation of 

the connexin-26 coding gene (GJB6), therefore we may hypothesize that this genetic 

configuration (double heterozygosis with the wild type) may be the actual determinant for 

the observed EVA and deafness. In this view, the V609G mutation alone would not be 

sufficient to determine EVA, and for patients C01, C04 and C09 other genetic or 

environmental causes of deafness should be taken into account. On the other hand, a 

similar genetic situation is present in the patient C26, where a reduction of function 

pendrin mutation (C282Y) is associated with the same monoallelic del35G mutation on 

GJB6. In this case no EVA could be observed. C282Y has been shown in the present 

study to be localized at the plasma membrane, therefore its molecular defect may be mild 

enough to allow for a sufficient transport activity and prevent EVA and deafness in patient 

C26, even in the presence of a defective connexin-26. 
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Patient 
(n=58) 

Aminoacidic 
substitution 

Patient Genotype 
(coding region) Goiter Function Localization 

Pendrin 
related 

defaness? 

 
 Patients deaf with EVA (n=26) 

 
21AA P142L P142L/del 297T No reduced PM YES 
16AA G149R G149R/WT No reduced PM/ER ? 
18AA T193I T193I/WT No lost ER ? 
22AA R409H R409H/R409H No lost/red. Partially PM YES 

02AA T410M T410M/IVS15+5G>A No lost ER YES 

06AA Q413R Q413R/V138F No reduced ER YES 
23AA L445W L445W/IVS8+1G>A Yes lost ER YES 
L1AA V609G V609G/WT * No reduced ? ? 

15AA R776C R776C/WT No unaffected PM NO 

 
 Patients deaf without EVA (n=32) 

 
C15 V138F V138F/WT No lost ER ? 

C26 C282Y C282Y/WT * No reduced PM ? 
C01 V609G V609G/WT No reduced ? ?	
  
C04 V609G V609G/WT No reduced ? ?	
  
C09 V609G V609G/WT No reduced ? ?	
  

 

 
 

Further investigations were conducted in the present study, in order to determine 

the molecular defect leading to the measured functional impairment. The knowledge of the 

fate the different mutant forms undergo is the key for a possible pharmacological rescue of 

the transport activity. For this purpose, two molecular aspects have been investigated: the 

subcellular localization of the different variants and their abundance in the cell and in the 

plasma membrane region. 

 

Concerning the subcellular localization of the characterized mutants, the results 

obtained from the co-localization experiments with the plasma membrane or with the 

endoplasmic reticulum show a high variability in the distribution. The observed sub-cellular 

distributions range from a complete retention in the ER to a trafficking to the PM 

comparable to the wild type.  

Table 7: updated from Table 1. The results obtained in the present study are reported in boldface. 
*: mono allelic mutation (35delG) in the connexin-26 gene, GJB2, was also found. 
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The determined subcellular localization correlates quite well with the measured 

functional state of the different variants. The mutants showing the most severe functional 

impairment (the loss of function mutants T193I and L445W, Figure 9) are retained in the 

ER and completely excluded from the PM (Figure 12). Accordingly, hypofunctional forms 

of the transporters maintaining significant transport activity (P142L, G149R, C282Y, Figure 

9) are still able to reach the plasma membrane, at least partially (Figure 12). Such an 

observation may be an indication that specific aminoacidic substitutions, such as P412L 

and C282Y do not impair the folding and/or trafficking of the protein but may instead lie in 

a domain important for the binding of transported ions or regulatory factors, therefore 

directly affecting the transport activity. The mutant G149R is the only one showing a mixed 

subcellular localization profile, displaying significant co-localization with the plasma 

membrane but also with the endoplasmic reticulum (Figure 12). In this case, the folding 

defect may not be as severe as for other mutants and may still allow for a partial trafficking 

to the plasma membrane. The residual function measured in the functional tests for this 

particular mutant may be due to this partial trafficking to the plasma membrane. Other 

mutants (T193I, Q413R and L445W, Figure 12) are clearly retained in the endoplasmic 

reticulum. These specific mutations may therefore reside in a domain of the protein critical 

for its correct processing and folding. The fully functional variant R776C results mainly 

localized at the plasma membrane, with a behavior indistinguishable from the wild type 

(Figure 12), therefore confirming its nature of benign polymorphism. 

 

In summary, it seems that a severe loss of function correlates with a complete 

retention in the ER, while a residual transport activity is associated to a good trafficking to 

the plasma membrane. The mutant Q413R appears to represent an exception to this rule. 

This particular mutant showed a very strong co-localization with the endoplasmic reticulum 

and a complete exclusion from the plasma membrane, but in the functional tests it showed 

a reduction of function, with some residual transport activity. It is still possible that a small 

amount of this mutant, even if generally misfolded, is still capable of reaching the plasma 

membrane, accounting for the residual activity recorded. Considering that only an 

undetectable amount of protein can reach the plasma membrane, the fact that its activity 

was not completely abolished is surprising, and it may even be possible to hypothesize 

that the intrinsic transport ability of this particular mutant could be higher than the wild type 

itself, compensating for the impaired trafficking. 
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The fact that some pendrin mutants show a retention in the ER can point to the 

failure in the processing and folding of the protein. Misfolded proteins are targeted for 

degradation via the ER associated degradation (ERAD) system. Proteins targeted for 

degradation in the ER are specifically polyubiquitinated and transferred to the proteasome 

complex for degradation and recycling of the aminoacidic subunits. There are evidences 

that pendrin-GFP co-localizes with ubiquitin in the cell, suggesting therefore a role of 

polyubiquitination in pendrin degradation [126]. Furthermore, Lee et al. demonstrated the 

role of a specific ER-resident E3 ubiquitine ligase, namely Rma1, in the degradation of 

pendrin, both wild type and mutated. In the same article it was also shown the possibility to 

favor the glycosylation and subsequent trafficking of the protein to the plasma membrane 

by facilitating its maturation and folding. It is therefore feasible to hypothesize that also 

those pendrin variants investigated in the present study, displaying a folding defect, are 

targeted by polyubiquitination and delivered to the proteasome for degradation.  

 

In order to support this hypothesis, the protein abundance of the different pendrin 

variants was investigated and quantified both by fluorescent imaging of the fusion protein 

pendrin-EYFP and western blotting of the untagged protein. The results of quantification 

experiments show significant differences in the level of expression of the different pendrin 

variants, correlating quite well with the observed subcellular localization. Mutants that 

showed and impairment in trafficking and where retained in the ER (T193I, L445W) also 

showed the lower expression levels both in the imaging (Figure 14-16) and in western blot 

experiments (Figure 18-20). On the other hand, mutant variants showing a more efficient 

trafficking to the plasma membrane (P142L, C282Y) showed a level of expression 

significantly higher with respect to the most severely impaired mutants (T193I and 

L445W), even though reduced if compared to the wild type. 

 

The imaging quantification experiments have been performed both on total (Figure 

13-14) and plasma membrane (Figure 15-16) pendrin. As observed in the subcellular 

localization experiments, the mutant Q413R shows an unexpected behavior, displaying 

levels of expression comparable to the two loss of function mutants, T193I and L445W, 

while retaining significant function. Such result is anyway consistent with the co-

localization data, where the same mutant was shown being mostly retained in the ER. 

It is therefore to be concluded that pendrin mutants with a reduction or loss of 

function invariably show expression levels reduced with respect to the wild type, with the 
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most severe reduction in expression correlating with a retention in the ER. The expression 

levels of the fully functional variant R776C, as expected, were not reduced with respect to 

the wild type. 

 

These results were confirmed by the western blot experiments on total cellular 

extract and extracts of the total membranes fractions (Figure 19-20). Again, the 

functionally impaired mutants showed a very low level of expression. The pendrin variant 

P142L instead, showed an expression level significantly higher with respect to the most 

severely impaired mutants (T193I and L445W). In the western blots on total proteins 

(Figure 17-18), an anomalous phenomenon could be observed: the mutant P142L showed 

a level of expression comparable to the wild type or even higher in some individual 

experiments. Such unexpected result may be due to the accumulation of this particular 

mutant in form of inclusion bodies in the cytosol, circumventing degradation by the 

proteasome complex. Accordingly, this phenomenon is no more visible in the total 

membranes blots, where the expression level of P142L is significantly lower with respect 

to the wild type. Another anomaly of the western blot experiments is the total absence of 

signal in correspondence of the polymorphism R776C. This particular variants did not 

show any difference with respect to the wild type, neither in the functional tests, nor in the 

co-localization and imaging quantification experiments. An absence of signal is therefore 

only to be explained by an impaired antibody recognition due to the disruption of the 

epitope. The aminoacidic substitution R776C actually lies within the epitope recognized by 

the anti-pendrin antibody used in these experiments. 

 

It is important to underline that the western blot experiments where performed on 

cells overexpressing the untagged form of the protein, whereas imaging experiments 

where performed on fusion proteins. The correlation of the results from the two methods 

reinforce not only the particular piece of data, but also the validity of the two 

complementary experimental approaches. Specifically, the presence of the relatively bulky 

EYFP protein fused to the C-terminus does not seem to affect pendrin trafficking. 

Therefore we can conclude that the use of fusion proteins constitutes a valid approach for 

determining the subcellular localization of wild type pendrin and its variants. 

 

In Table 8, a summary of the functional and molecular characterization performed 

on the selected allelic variants is reported in order to underline the correlation between 
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determined functional impairment and molecular defect observed by co-localization and 

expression levels analysis experiments. 

 

 

 
 

The evaluation of expression levels leads to the assumption that hypo-functional or 

non-functional pendrin forms are targeted to the protein degradation pathways. 

Identification of the specific molecular defect is a precious information for the development 

of a therapeutic approach aiming to a functional rescue of the mutant forms, either by 

facilitating their folding or potentiating their activity, possibly after inhibiting their 

degradation. 

 

The efficacy of such an approach on hypofunctional and non functional forms of 

pendrin was also investigated in the present study.  

Func%on' Localiza%on' Expression'
levels'

P142L& reduced& Plasma&
Membrane&

G149R& reduced& Plasma&
Membrane/ER&

C282Y& reduced' Plasma&
Membrane& &&&&&&

T193I& lost& ER&

Q413R& reduced& ER&

L445W& lost& ER&

R776C& unaffected& Plasma&
Membrane& &&&&&&&*&

Table 8: summary of the functional and molecular characterization of the analyzed pendrin 
variants. Expression levels reported here correspond to the results from imaging on plasma 
membrane pendrin and compare each pendrin variant to the wild type. Dashed arrows in the 
fourth column indicate a mildly reduced level of expression. Boldface arrows indicate a more 
severely reduced level of expression. Double boldface arrows indicate an even more severely 
reduced level of expression. The dash indicates no difference in the expression level. One Way 
ANOVA with Bonferroni’s post-test. (*) not possible to confirm the result by western blotting. 
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Cells overexpressing wild type or mutated pendrin were treated with a potent 

proteasome inhibitor (MG132) in order to reduce the proteasomal degradation and its 

effect on transport activity and protein expression was analyzed. Pendrin expression levels 

upon treatment with MG132 or its vehicle were evaluated by fluorescence imaging of 

pendrin-EYFP. The analysis showed a dramatic increase in total pendrin expression 

(except for C282Y, Figure 22), with a massive accumulation of all pendrin variants in the 

ER, including the wild type and the polymorphism R776C. A similar effect was seen at the 

level of the plasma membrane (Figure 23), whereas in this latter case, the wild type and 

the polymorphism R776C were not affected. A general increase in the expression levels 

upon treatment with the proteasome inhibitor MG132 is confirming once more the 

hypothesis that pendrin mutants, as the wild type, undergo degradation via the ubiquitin 

proteasome pathway.  

 

The functional tests performed on cells treated with the same proteasome inhibitor 

further confirmed the efficacy of the treatment (Figure 21). A significant increase in 

transport function upon treatment with MG132 was observed for 4 mutants (P142L, T193I, 

Q413R, L445W) out of 8 pendrin variants analyzed (including the wild type). These 4 are 

the mutants with the most severely impaired transport function. In particular, one of the 

mutants (Q413R) shows and increase in transport activity of about one third following 

treatment with MG132 with respect to the vehicle. Interestingly, this is the same mutant 

showing an almost complete exclusion from the PM but retaining a significant transport 

activity, as mentioned earlier. This result reinforces once more the hypothesis that this 

particular mutation may on one side interfere with the correct maturation of the protein but 

on the other side confer an intrinsic activity advantage to the transporter.  

 

These results are highly promising for a possible development of the rescuing 

approach, showing that inhibition of proteasomal degradation does not only lead to a 

general increase in protein abundance, but, more importantly, that such a treatment leads 

to a protein increase at the level of PM and is also effective on restoring, at least partially, 

the function of the transporter.  
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5.2 Functional screening of pendrin ligands 
 

 
As mentioned in the introduction, pendrin overexpression and/or hyperactivity is 

linked to pathological states such as asthma, COPD and hypertension [12, 29, 90]. The 

transporter constitutes therefore a novel target for possible therapeutical approaches in 

such pathologies. So far, no specific and potent pendrin inhibitor could be identified, not 

even from the screening of large compounds libraries [34]. In the present study we tested 

41 compounds on pendrin chloride/iodide exchange activity in order to identify potential 

inhibitors/modulators of the transporter. The compounds included in the screening were 

selected among (i) known inhibitors of chloride channels and transporters and inhibitors of 

DRA, (ii) diuretics and antihypertensive agents and (iii) small compounds predicted by the 

bioinformatics approach called meta-analysis. The eventual identification of active 

compounds within these 3 groups was then exploited for a second phase selection by 

means of a similarity search based on the so-called SHED profiling of small compounds. 

The screening was performed by means of the fluorometric method developed by 

Dossena et al. in 2006 [69] and adapted for a semi-high-throughput approach as 

described in the methods. 

 

The results of the functional screening performed on potential pendrin ligands are 

summarized in Table 6. From the presented outcome, a peculiar pharmacological profile of 

pendrin can be identified, as discussed in the following.  

 

The first observation is that, surprisingly, the well known anion exchanger inhibitor 

DIDS was unable to affect pendrin iodide transport activity at the concentration of 100 µM 

(Figure 25), confirming the results obtained by Dossena et al. in 2006 with a different 

technique (radiolabelled chloride uptake) [97]. In a study from 1999, Scott et al. [99] did 

show an inhibitory effect of 1 mM DIDS on pendrin expressed in Xenopus oocytes and 

Soleimani et al. in 2001 showed a similar effect of 0.5 mM DIDS on pendrin transfected 

HEK 293 cells. Their findings are clearly in contrast with the result shown in the present 

study, where no inhibitory effect could be measured in HEK 293 Phoenix cells upon 

treatment with the same substance. Though, the contrasting results may be due to the 

different experimental set up and cellular system used for the evaluation of pendrin 

activity, but it is also to be underlined that the concentration used in the experiments of 

Scott et al. was 10 fold higher and in Soleimani et al. 5 fold higher than the concentration 
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used in the present study. In the same study, Scott et al. also showed an inhibitory effect 

of the diuretics probenecid and furosemide (1 mM), whereas in the present study we could 

not replicate the same results (Figure 31 and 35). Again, such difference may be due to 

the different experimental set ups and concentration tested. Another noteworthy result has 

been observed upon treatment with 100 µM NPPB. NPPB is a known inhibitor of chloride 

channels but it is not expected to inhibit anion exchangers [127]. We could show that 

treatment of pendrin transfected cells with NPPB was effective in reducing iodide influx 

with respect to vehicle treated cells (Figure 24), confirming the results shown by Dossena 

et al. in 2006 with a different technique [97]. In the same study, Dossena et al. could show 

the inhibitory effect of the DRA inhibitor niflumic acid.  

 

Niflumic acid is known to exert its anti-inflammatory action via cyclooxygenase 

inhibition [128], but it is also involved in the modulation of chloride channels, such as CLC-

Ka and ClC-Kb [129]. DRA, also known as SLC26A3, is the closest analogue of pendrin, 

the two proteins showing 44% of identity and a 60% of similarity. A few inhibitors of DRA 

have been assessed so far, none of them anyway specific, but they may represent a 

useful source of potential pendrin ligands. In the present study we tested known inhibitors 

of DRA, namely the anti-inflammatory drug niflumic acid, the anti-rheumatic drug tenidap 

and the anti-diabetic drug glibenclamide. The latter failed in reducing pendrin iodide 

transport activity at a concentration of 100 µM (Figure 30), but treatment with niflumic acid 

at the same concentration was successful in reducing iodide influx in pendrin transfected 

cells (Figure 28). As mentioned earlier, these data confirm the results previously obtained 

with a different technique [97], thus proving once more the validity of the fast-fluorometric 

method [69] exploited in the present study. Nilfumic acid was also the only compound 

showing an inhibitory effect on pendrin identified in a screening of a 5,000 compounds 

library by Pedemonte et al. in 2007 [34]. In some cases, a reduction of EYFP fluorescence 

following exposure to niflumic acid, independent from the iodide influx and possibly due to 

an intracellular acidification [130], has been observed. An excessive reduction in EYFP 

fluorescence may impair an exact evaluation of the effect of the drug itself on the iodide 

influx. 

 

The most interesting and original result from the present study has been obtained 

upon treatment with the third DRA inhibitor mentioned earlier, tenidap [106]. Tenidap is an 

anti-rheumatic, anti-inflammatory drug effective against rheumatic arthritis [131]. Its action 
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is related to cyclooxygenases 1 and 2 and lipooygenase 5 inhibition, but it is known to 

modulate also a number of membrane transporters and channels including the rat kidney 

Na+/HCO3
- cotransporter (rkNBC) [132] and the inwardly rectifying K+ channel Kir2.3 [133]. 

Treatment of pendrin transfected cells with 100 µM tenidap showed a very strong (85%) 

inhibitory effect on iodide transport activity in comparison to cells treated with the vehicle, 

which represents the most potent inhibitory effect on pendrin activity observed so far 

(Figure 29). This work provides therefore the first evidence of a strong inhibitory effect of 

tenidap on pendrin iodide transport activity. Even if tenidap cannot be considered a 

specific pendrin inhibitor, the finding still constitutes a precious source of information for 

further prediction of putative pendrin ligands. 

 

The identification of the abovementioned active compounds has been exploited as 

a starting point for further refinement of the list of screening targets. Such refinement was 

achieved by aligning the molecule of interest against a small compounds database 

(www.drugbank.ca), by means of the so-called SHED profile of the molecules. A similarity 

analysis has been therefore performed using both tenidap and niflumic acid as templates. 

Both alignments delivered a new list of compounds with a high SHED profile similarity 

score with the respective templates of origin. Despite the great variety of chemical and 

pharmacological classes of the predicted compounds, according to the similarity of their 

SHED profiles, they are expected to have a similar pharmacological profile and therefore 

show a similar effect on pendrin. A number of compounds have been identified this way as 

potential pendrin ligands to be functionally screened. The results of this second phase of 

the screening are reported in Table 6, section 4b.  

 

Two of the compounds resulting from the SHED alignment of tenidap and niflumic 

acid actually showed an effect on iodide influx in pendrin transfected cells during the 

functional tests.  

 

N-(2-chlorophenyl)-2-(2,4-dibromophenoxy)acetamide, derived from the SHED 

alignment of tenidap, showed a 14% pendrin activity inhibition with respect to the vehicle 

(Figure 44). At the same time though, an alteration of fluorescence decrease in control 

(not expressing pendrin) cells was measured upon treatment with the same compound 

with respect to the vehicle treated cells. An effect on control cells would hint to a 
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disturbance of endogenous transports interfering therefore with an exact evaluation of the 

effect on pendrin.  

 

The second active compound emerged from the SHED alignment of niflumic acid, 

and it is the non-steroidal anti-inflammatory drug flufenamic acid. Treatment of pendrin 

transfected cells with flufenamic acid resulted in a 15% pendrin activity inhibition with 

respect to vehicle treated cells (Figure 55). As observed upon treatment with niflumic acid 

though, a reduction of EYFP fluorescence following exposure to flufenamic acid, 

independent from the iodide influx, has been observed, possibly due to intracellular 

acidification [130]. As it is the case of niflumic acid therefore, a reduction in EYFP 

fluorescence may impair an exact evaluation of the effect of the drug itself on the iodide 

influx. 

 

Despite the unspecificity of the active compounds resulting from the screening, their 

identification is again a precious source of information for further refinement of the search 

for more specific and potent pendrin ligands. From the analysis of the identified 

compounds it is possible to isolate molecular or chemical features that may be important 

for the affinity with the target protein. This peculiar feature can in turn drive the further 

research of active compounds. In the present study we confirmed the alignment of small 

compounds according to the SHED profiling as a successful bioinformatics approach for 

identifying potential ligands of a protein of interest.   
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6. Conclusions 
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Functional and molecular characterization and rescue of pendrin 
variants 
 

In this study we performed the functional characterization of 7 uncharacterized 

pendrin variants identified in the genetic screening of a cohort of 58 deaf patients with or 

without EVA, performed at the Hospital of Campinas, Sao Paolo, Brazil. Based on the 

results of the functional test, 4 pendrin variants (P142L, G149R, C282Y and Q413R) were 

classified as mutations with reduction of function, 2 (T193I and L445W) as mutations with 

complete loss of function and one (R776C) as a benign polymorphism. These results 

contributed to define the genetic diagnosis of deafness for 4 patients out of 14 presenting 

pendrin mutations. For 3 of these patients deafness was assessed as linked to pendrin 

dysfunction, while for one patient we were able to exclude pendrin as the genetic cause of 

deafness. Including our findings, the genetic diagnosis was conclusive for 6 patients, while 

for 8 individuals, bearing monoallelic pendrin mutations, further investigations are needed, 

as it is possible that other genetic or environmental factors are determining the phenotype. 

Further investigation must include the sequencing and characterization of pendrin 

promoter and 3’ untranslated region, which may play a role in regulating the expression of 

the transporter.  

 

For what concerns the subcellular localization of the analyzed pendrin variants, we 

could identify forms ranging from a complete retention in the ER (T193I, Q413R and 

L445W), to a mixed behavior (G149R) or trafficking to the plasma membrane 

undistinguishable from the wild type (P142L, C282Y, R776C). The localization of the 

different forms correlates well with the respective functional impairment, with the loss of 

function mutants being retained in the ER (T193I, L445W) and the variants with residual or 

unaffected function being localized to the PM (P142L, G149R, C282Y, R776C). The only 

exception is the mutant Q413R, showing a near to complete retention in the ER but also a 

residual transport activity, for which an intrinsic gain of function could be hypothesized. 

 

Expression levels of the different pendrin variants, analyzed both via imaging and 

western blot, are reduced for all functionally impaired variants. The lower expression levels 

were observed for those mutants retained in the ER, while for variants capable of reaching 

the PM the reduction of expression levels was milder. The picture obtained in this study 
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confirms that functionally impaired pendrin forms are largely, but not exclusively, retained 

in the ER and degraded, possibly via ER associated degradation (ERAD).  

 

The definition of the specific molecular defect allows for the investigation of a 

possible rescuing approach. In this sense we could show that by inhibiting the 

proteasomal degradation it was possible not only to increase the global expression levels 

of the mutants, but also their expression at the PM. Importantly, also the transport activity 

was significantly recovered in 4 out of 6 characterized mutants, upon treatment with 

MG132. 

 

The evidence of a recovery of the transport activity of pendrin hypo-functional forms 

opens the way to a number of possible therapeutical approaches. It is therefore possible to 

hypothesize that a targeted approach aimed to the modulation of the degradation and/or 

folding assistance of defective pendrin forms may be the key for a future treatment of 

pendrin related deafness and Pendred syndrome. 

 

 

Ligands screening 
 

Screening of large compound libraries failed in delivering any specific ligand for 

pendrin. By means of a more targeted approach, we were able to identify a number of 

putative pendrin ligands to be confirmed by functional testing. The functional screening 

could be performed in a semi-high-throughput fashion thanks to the same fluorometric test 

used for the functional characterization of pendrin variants. 

 

The screening of the candidate ligands led to the confirmation of the effect of 

previously identified inhibitors (NPPB and niflumic acid, showing 32 and 28% inhibition, 

respectively), therefore reinforcing once more the validity of the technical approach. 

Furthermore, we were able to identify previously unknown pendrin modulators. In 

particular, the first of the newly identified pendrin inhibitors was the anti-inflammatory drug 

tenidap. Short term treatment with 100 µM tenidap showed a strong inhibition (85%) of the 

iodide influx in pendrin transfected cells with respect to the vehicle treated cells. Even if 

this particular compound cannot be regarded to as specific for pendrin inhibition, its 

structure is a precious piece of information for further refinement of the ligand search. 
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From the active compounds identified (niflumic acid and tenidap), structure 

alignments according to the SHED profile principle have been performed, in order to 

identify further candidate compounds to be screened. N-(2-chlorophenyl)-2-(2,4-

dibromophenoxy)acetamide, predicted by tenidap alignment, did show a slight (14% 

inhibition) effect on iodide influx in pendrin transfected cells. A further active compound 

identified, flufenamic acid, was predicted by the SHED alignment of niflumic acid, and did 

show a 15% inhibition of pendrin-dependent iodide transport.  

 

To conclude, we were able to identify active compounds capable of inhibiting 

pendrin transport activity and exploit this information to further refine the selection of 

putative ligands by means of the bioinformatic approach defined as SHED alignment. The 

identification of pendrin inhibitors may represent an important step in the treatment of 

pathological conditions associated to an increased pendrin function or expression, such as 

bronchial asthma, COPD and hypertension.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  
	
   	
  

123	
  

 
 

7. Acknowledgements 
 
 

I would like to expresses my deepest  thank to all those who made this doctoral 

work possible, starting from my main supervisor and head of the Institute of Pharmacology 

and Toxicology of the Paracelsus Medical University, Prof. Paulmichl, together with all the 

lab members, the post docs Dr. Charity Nofziger, PD Selma Soyal Patsch, Prof. Wolfgang 

Patsch, Dr. Davide Civello and the present and former students, Giada Scantamburlo, 

Greta Zara, Roberta Costa, Simone Vanoni, among others, for their advice, support and 

friendship.  

 

A special thank goes to my first co-supervisor Prof Brandstetter, who provided 

precious feedbacks during our meetings, Prof. Konrat from the institute of Biochemistry & 

Biophysics, Structural & Computational Biology, University of Vienna (Austria) who 

provided the essential bioinfromatic support and last but definitely not least my second co-

supervisor, PD Silvia Dossena, who generously guided me the whole way through my 

work, and whose expertise and professionalism will always accompany me anywhere the 

future may take me. 

 

Of course nothing would have been possible without the love and support of my 

dearest, Laura, sunshine always at my side, my mum, strong and lovely as only a mother 

can be and my father, always believing in me and now looking down at me from up there. 

 

I would also like to thank the Land Salzburg for the funding of the Dual-degree 

program between the University of Milan and the University of Salzburg, in which I was 

enrolled during my doctoral work. 

 
 

 
 
 
 



	
  
	
   	
  

124	
  

 
 
 
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 

 
 
 

 
 

8. Bibliography 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  
	
   	
  

125	
  

 
1. Dossena, S., et al., The expression of wild-type pendrin ( SLC26A4 ) in human embryonic kidney ( 

HEK 293 Phoenix ) cells leads to the activation of cationic currents. European Journal of 
Endocrinology, 2005: p. 693-699. 

2. Royaux, I.E., et al., Localization and functional studies of pendrin in the mouse inner ear provide 
insight about the etiology of deafness in pendred syndrome. Journal of the Association for Research 
in Otolaryngology, 2003. 4: p. 394-404. 

3. Royaux, I.E., et al., Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical 
porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology, 2000. 
141: p. 839-45. 

4. Royaux, I.E., et al., Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of 
renal intercalated cells and mediates bicarbonate secretion. Proceedings of the National Academy of 
Sciences of the United States of America, 2001. 98: p. 4221-6. 

5. Kuperman, D.A., et al., Dissecting asthma using focused transgenic modeling and functional 
genomics. The Journal of allergy and clinical immunology, 2005. 116: p. 305-11. 

6. Dossena, S., et al., Molecular and Functional Characterization of Human Pendrin and its Allelic 
Variants. Cellular Physiology and Biochemistry, 2011. 28: p. 451-466. 

7. Dossena, S., et al., Synopsis of the 48 Annual Meeting of the Lake Cumberland Biological Transport 
Group and the Second Biannual Meeting of the Pendrin Consortium. Cellular physiology and 
biochemistry, 2013. 32: p. 1-13. 

8. Everett, L.A., et al., Pendred Syndrome is caused by mutations on a putative sulphate transporter 
gene (PDS). Nature genetics, 1997. 17: p. 411-422. 

9. Pendred, V., DEAF-MUTISM AND GOITRE. The Lancet, 1896. 148: p. 532. 

10. Morgans, M.E. and W.R. Trotter, Association of congenital deafness with goitre; the nature of the 
thyroid defect. Lancet, 1958. 1: p. 607-9. 

11. Verlander, J.W., et al., Deoxycorticosterone Upregulates PDS (Slc26a4) in Mouse Kidney: Role of 
Pendrin in Mineralocorticoid-Induced Hypertension. Hypertension, 2003. 42: p. 356-362. 

12. Nofziger, C., et al., Pendrin Function in Airway Epithelia. Cellular Physiology and Biochemistry, 
2011: p. 571-578. 

13. Everett, L.A., New insights into the role of pendrin (SLC26A4) in inner ear fluid homeostasis. 
Novartis Foundation symposium, 2006. 273: p. 213-25; discussion 225-30, 261-4. 

14. Wangemann, P., et al., Loss of cochlear HCO3- secretion causes deafness via endolymphatic 
acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. American 
journal of physiology. Renal physiology, 2008. 292: p. F1345-F1353. 

15. Cremers, F.P., Genetic causes of hearing loss. Current opinion in neurology, 1998. 11: p. 11-6. 

16. Wangemann, P., et al., Loss of KCNJ10 protein expression abolishes endocochlear potential and 
causes deafness in Pendred syndrome mouse model. BMC medicine, 2004. 2: p. 30. 

17. Dror, A.a., et al., Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. 
The Journal of biological chemistry, 2010. 285: p. 21724-35. 

18. Choi, B.Y., et al., Mouse model of enlarged vestibular aqueducts defines temporal requirement of 
Slc26a4 expression for hearing acquisition. The Journal of clinical investigation, 2011. 121: p. 4516-
25. 



	
  
	
   	
  

126	
  

19. Porra, V., et al., Characterization and semiquantitative analyses of pendrin expressed in normal and 
tumoral human thyroid tissues. The Journal of clinical endocrinology and metabolism, 2002. 87: p. 
1700-7. 

20. Bidart, J.-m.M., et al., Expression of pendrin and the Pendred syndrome (PDS) gene in human 
thyroid tissues. The Journal of clinical endocrinology and metabolism, 2000. 85: p. 2028-2033. 

21. Twyffels, L., et al., Pendrin: The thyrocyte apical membrane iodide transporter? Cellular Physiology 
and Biochemistry, 2011. 28: p. 491-496. 

22. Fugazzola, L., et al., High phenotypic intrafamilial variability in patients with Pendred syndrome and 
a novel duplication in the SLC26A4 gene: clinical characterization and functional studies of the 
mutated SLC26A4 protein. European journal of endocrinology / European Federation of Endocrine 
Societies, 2007. 157: p. 331-8. 

23. Kopp, P., L. Pesce, and J.C. Solis-S, Pendred syndrome and iodide transport in the thyroid. Trends 
in endocrinology and metabolism: TEM, 2008. 19: p. 260-8. 

24. Reardon, W., et al., Pendred syndrome — 100 years of underascertainment ? QJM : monthly journal 
of the Association of Physicians, 1997. 90: p. 443-447. 

25. Ladsous, M., et al., Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and 
nonsyndromic enlargement of the vestibular aqueduct. Thyroid : official journal of the American 
Thyroid Association, 2014. 24: p. 639-48. 

26. Kim, Y.-H., et al., Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and 
mouse kidney. American journal of physiology. Renal physiology, 2002. 283: p. F744-54. 

27. Wall, S.M., et al., Localization of pendrin in mouse kidney. American journal of physiology. Renal 
physiology, 2003. 284: p. F229-41. 

28. Wall, S.M. and V. Pech, The interaction of pendrin and the epithelial sodium channel in blood 
pressure regulation. Current opinion in nephrology and hypertension, 2008. 17: p. 18-24. 

29. Eladari, D., et al., Pendrin as a regulator of ECF and blood pressure. Current opinion in nephrology 
and hypertension, 2009. 18: p. 356-62. 

30. Pela, I., M. Bigozzi, and B. Bianchi, Profound hypokalemia and hypochloremic metabolic alkalosis 
during thiazide therapy in a child with Pendred syndrome. Clinical nephrology, 2008. 69: p. 450-3. 

31. Kandasamy, N., et al., Life-threatening metabolic alkalosis in Pendred syndrome. European journal 
of endocrinology / European Federation of Endocrine Societies, 2011. 165: p. 167-70. 

32. Amlal, H., et al., Deletion of the anion exchanger Slc26a4 (pendrin) decreases apical Cl-/HCO- 
exchanger activity and impairs bicarbonate secretion in kidney collecting duct. 2010. 4: p. 33-41. 

33. Wall, S.M., et al., NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role 
in Cl- conservation. Hypertension, 2004. 44: p. 982-7. 

34. Pedemonte, N., et al., Thiocyanate transport in resting and IL-4-stimulated human bronchial 
epithelial cells: role of pendrin and anion channels. Journal of immunology (Baltimore, Md. : 1950), 
2007. 178: p. 5144-53. 

35. Rillema, J.A., M.A. Hill, and M.E.A.H. Ill, Pendrin Transporter Carries Out Iodide Uptake into MCF-7 
Human Mammary Cancer Cells. Experimental Biology and Medicine, 2003: p. 1078-1082. 

36. Bidart, J.M., et al., Expression of Na+/I- symporter and Pendred syndrome genes in trophoblast 
cells. The Journal of clinical endocrinology and metabolism, 2000. 85: p. 4367-72. 



	
  
	
   	
  

127	
  

37. Lacroix, L., et al., Na(+)/I(-) symporter and Pendred syndrome gene and protein expressions in 
human extra-thyroidal tissues. European Journal of Endocrinology, 2001. 144: p. 297-302. 

38. Suzuki, K., et al., Expression of PDS/Pds, the Pendred Syndrome Gene, in Endometrium. The 
Journal of Clinical Endocrinology & Metabolism, 2002. 87: p. 938. 

39. Alesutan, I., et al., Impact of Bicarbonate, Ammonium Chloride, and Acetazolamide on Hepatic and 
Renal SLC26A4 Expression. Cellular Physiology and Biochemistry, 2011. 28: p. 553-558. 

40. Nofziger, C., et al., STAT6 links IL-4/IL-13 stimulation with pendrin expression in asthma and chronic 
obstructive pulmonary disease. Clinical pharmacology and therapeutics, 2011. 90: p. 399-405. 

41. Carpenter, E.P., et al., Overcoming the challenges of membrane protein crystallography. Curr Opin 
Struct Biol, 2008. 18(5): p. 581-6. 

42. Gillam, M.P., et al., Functional characterization of pendrin in a polarized cell system. Evidence for 
pendrin-mediated apical iodide efflux. J Biol Chem, 2004. 279(13): p. 13004-10. 

43. Aravind, L. and E.V. Koonin, The STAS domain - a link between anion transporters and antisigma-
factor antagonists. Curr Biol, 2000. 10(2): p. R53-5. 

44. Dossena, S., et al., Functional characterization of wild-type and mutated pendrin (SLC26A4), the 
anion transporter involved in Pendred syndrome. Journal of molecular endocrinology, 2009. 43: p. 
93-103. 

45. Shafrir, Y. and H.R. Guy, STAM: simple transmembrane alignment method. Bioinformatics, 2004. 
20(5): p. 758-69. 

46. Lee, K., T.-J. Hong, and J.-S. Hahn, Roles of 17-AAG-induced molecular chaperones and Rma1 E3 
ubiquitin ligase in folding and degradation of Pendrin. FEBS letters, 2012. 586: p. 2535-41. 

47. Azroyan, A., et al., Regulation of pendrin by pH: depence on glycosylation. Biochemical Journal, 
2011. 

48. Fraser, G.R., Association of congenital deafness with goitre (Pendred's syndrome): A study of 207 
families. Annals of Human Genetics, 1964. 28: p. 201-250. 

49. Blons, H., et al., Screening of SLC26A4 (PDS) gene in Pendred's syndrome: a large spectrum of 
mutations in France and phenotypic heterogeneity. Clinical Genetics, 2004. 66: p. 333-340. 

50. Yoshinaga-itano, C., et al., Language of early- and later-identified children with hearing loss. 
Pediatrics, 1998. 102: p. 1161-1171. 

51. White, K.R., et al., The evolution of early hearing detection and intervention programs in the United 
States. Seminars in perinatology, 2010. 34: p. 170-9. 

52. Force, U.P.S.T., Universal screening for hearing loss in newborns: US Preventive Services Task 
Force recommendation statement. Pediatrics, 2008. 122: p. 143-8. 

53. Pryor, S.P., et al., SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement 
of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are 
distinct clinical and genetic entities. Journal of medical genetics, 2005. 42: p. 159-65. 

54. Nivoloni, K.D.a.B., et al., Newborn hearing screening and genetic testing in 8974 Brazilian neonates. 
International journal of pediatric otorhinolaryngology, 2010. 74: p. 926-9. 

55. Ramos, P.Z., et al., Etiologic and diagnostic evaluation: Algorithm for severe to profound 
sensorineural hearing loss in Brazil. International journal of audiology, 2013. 52: p. 746-52. 



	
  
	
   	
  

128	
  

56. Kopp, P., et al., Phenocopies for Deafness and Goiter Development in a Large Inbred Brazilian 
Kindred with Pendred ’ s Syndrome Associated with a Novel Mutation in the PDS gene. Journal of 
Clinical Endocrinology and Metabolism, 1999. 84: p. 336-341. 

57. Camargo, R., et al., Aggressive Metastatic Follicular Thyroid Carcinoma with Anaplastic 
Transformation Arising from a Long-Standing Goiter in a Patient with Pendred's Syndrome. Thyroid, 
2001. 11: p. 981-988. 

58. Hilgert, N., R.J.H. Smith, and G. Van Camp, Forty-six genes causing nonsyndromic hearing 
impairment: which ones should be analyzed in DNA diagnostics? Mutation research, 2009. 681: p. 
189-96. 

59. Lang, F., et al., Functional significance of channels and transporters expressed in the inner ear and 
kidney. American journal of physiology. Cell physiology, 2007. 293: p. C1187-208. 

60. Kelsell, D.P., et al., Connexin 26 mutations in hereditary nono-syndromic sensorineural deafness. 
Nature, 1997. 387: p. 80-83. 

61. Gasparini, P., et al., High carrier frequency of the 35delG deafness mutation in European 
populations. 2000. 8: p. 19-23. 

62. Kikuchi, T., et al., Gap Junction Systems in the Rat Vestibular Labyrinth: Immunohistochemical and 
Ultrastructural Analysis. 2009. 

63. Dai, P., et al., Molecular etiology of hearing impairment in Inner Mongolia: mutations in SLC26A4 
gene and relevant phenotype analysis. Journal of translational medicine, 2008. 6: p. 74. 

64. Del Castillo, I., et al., Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in 
the DFNB1 locus in hearing-impaired subjects: a multicenter study. American journal of human 
genetics, 2003. 73: p. 1452-8. 

65. Torroni, a., et al., The A1555G mutation in the 12S rRNA gene of human mtDNA: recurrent origins 
and founder events in families affected by sensorineural deafness. American journal of human 
genetics, 1999. 65: p. 1349-58. 

66. de Moraes, V.C.S., et al., Molecular analysis of SLC26A4 gene in patients with nonsyndromic 
hearing loss and EVA: identification of two novel mutations in Brazilian patients. International journal 
of pediatric otorhinolaryngology, 2013. 77: p. 410-3. 

67. Choi, B.Y., et al., Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and 
enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental 
polymorphisms? Human mutation, 2009. 30: p. 599-608. 

68. Pfarr, N., et al., Goitrous congenital hypothyroidism and hearing impairment associated with 
mutations in the TPO and SLC26A4/PDS genes. The Journal of clinical endocrinology and 
metabolism, 2006. 91: p. 2678-81. 

69. Dossena, S., et al., Fast Fluorometric method for measuring pendrin (SLC26A4) Cl-/I- transport 
activity. Cellular Physiology and Biochemistry, 2006: p. 67-74. 

70. Adato, a., et al., Deafness heterogeneity in a Druze isolate from the Middle East: novel OTOF and 
PDS mutations, low prevalence of GJB2 35delG mutation and indication for a new DFNB locus. 
European journal of human genetics : EJHG, 2000. 8: p. 437-42. 

71. Dossena, S., et al., Identification of allelic variants of pendrin (SLC26A4) with loss and gain of 
function. Cellular physiology and biochemistry 2011. 28: p. 467-76. 

72. Gillam, M.P., et al., Molecular analysis of the PDS gene in a nonconsanguineous Sicilian family with 
Pendred's syndrome. Thyroid : official journal of the American Thyroid Association, 2005. 15: p. 734-
741. 



	
  
	
   	
  

129	
  

73. Taylor, J.P., et al., Mutations of the PDS gene, encoding pendrin, are associated with protein 
mislocalization and loss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome. 
The Journal of clinical endocrinology and metabolism, 2002. 87: p. 1778-84. 

74. Pera, A., et al., Functional assessment of allelic variants in the SLC26A4 gene involved in Pendred 
syndrome and nonsyndromic EVA. Proceedings of the National Academy of Sciences of the United 
States of America, 2008. 105: p. 18608-13. 

75. Rotman-pikielny, P., et al., Retention of pendrin in the endoplasmic reticulum is a major mechanism 
for Pendred syndrome. Human molecular genetics, 2002. 11: p. 2625-33. 

76. Schröder, M. and R.J. Kaufman, The mammalian unfolded protein response. Annual review of 
biochemistry, 2005. 74: p. 739-89. 

77. Qin, H., et al., Lysosomal and proteasomal degradation play distinct roles in the life cycle of Cx43 in 
gap junctional intercellular communication-deficient and -competent breast tumor cells. The Journal 
of biological chemistry, 2003. 278: p. 30005-14. 

78. Travers, K.J., et al., Functional and Genomic Analyses Reveal an Essential Coordination between 
the Unfolded Protein Response and ER-Associated Degradation. Cell, 2000. 101: p. 249-258. 

79. Kim, Y.E., et al., Molecular Chaperone Functions in Protein Folding and Proteostasis. Annual 
Review of Biochemistry, 2013. 82: p. 323-355. 

80. Masuda, A., M. Kuwano, and T. Shimada, Ultrastructural Changes during the Enhancement of 
Cellular 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A Reductase in a Chinese Hamster Cell Mutant 
Resistant to Compactin (ML 236B). Cell Structure and Function, 1983. 8: p. 309-312. 

81. Lecker, S.H., A.L. Goldberg, and W.E. Mitch, Protein degradation by the ubiquitin-proteasome 
pathway in normal and disease states. Journal of the American Society of Nephrology : JASN, 2006. 
17: p. 1807-19. 

82. Schulman, B.A. and J.W. Harper, Ubiquitin-like protein activation by E1 enzymes: the apex for 
downstream signalling pathways. Nature reviews. Molecular cell biology, 2009. 10: p. 319-331. 

83. Semple, C.A.M., R.G.E.R. Group, and G.S.L. Members, The Comparative Proteomics of 
Ubiquitination in Mouse. Genome research, 2003(13): p. 1389-1394. 

84. Walter, P. and D. Ron, The unfolded protein response: from stress pathway to homeostatic 
regulation. Science (New York, N.Y.), 2011. 334: p. 1081-6. 

85. Ishihara, K., et al., Salicylate restores transport function and anion exchanger activity of missense 
pendrin mutations. Hearing research, 2010. 270: p. 110-8. 

86. Yoon, J.S.S., et al., Heterogeneity in the processing defect of SLC26A4 mutants. Journal of medical 
genetics, 2008. 45: p. 411-9. 

87. Mount, D.B. and M.F. Romero, The SLC26 gene family of multifunctional anion exchangers. Pflügers 
Archiv : European journal of physiology, 2004. 447: p. 710-21. 

88. Yang, T., et al., Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic 
nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. American 
journal of human genetics, 2009. 84: p. 651-7. 

89. Yang, T., et al., Transcriptional control of SLC26A4 is involved in Pendred syndrome and 
nonsyndromic enlargement of vestibular aqueduct (DFNB4). American journal of human genetics, 
2007. 80: p. 1055-63. 

90. Nakao, I., et al., Identification of pendrin as a common mediator for mucus production in bronchial 
asthma and chronic obstructive pulmonary disease. Journal of immunology, 2008. 180: p. 6262-9. 



	
  
	
   	
  

130	
  

91. Xu, J., et al., Double Knockout of Carbonic Anhydrase II (CAII) and Na-Cl(-) Cotransporter (NCC) 
Causes Salt Wasting and Volume Depletion. Cellular physiology and biochemistry, 2013. 32: p. 173-
83. 

92. Kim, Y.H., et al., Role of pendrin in iodide balance: going with the flow. Am J Physiol Renal Physiol, 
2009. 297(4): p. F1069-79. 

93. Leviel, F., et al., The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an 
electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. Journal of 
Clinical Investigation, 2010. 120: p. 1627-1635. 

94. Kim, Y.H., et al., Reduced ENaC protein abundance contributes to the lower blood pressure 
observed in pendrin-null mice. American journal of physiology. Renal physiology, 2007. 293: p. 
F1314-24. 

95. Pech, V., et al., Angiotensin II increases chloride absorption in the cortical collecting duct in mice 
through a pendrin-dependent mechanism. American journal of physiology. Renal physiology, 2007. 
292: p. F914-20. 

96. Nakagami, Y., et al., The epithelial anion transporter pendrin is induced by allergy and rhinovirus 
infection, regulates airway surface liquid, and increases airway reactivity and inflammation in an 
asthma model. Journal of immunology (Baltimore, Md. : 1950), 2008. 181: p. 2203-10. 

97. Dossena, S., et al., Functional Characterization of Wild-Type and a Mutated Form of SLC26A4 
Identified in a Patient with Pendred Syndrome. Cellular Physiology and Biochemistry, 2006: p. 245-
256. 

98. Quentin, F., et al., The Cl-/HCO3- exchanger pendrin in the rat kidney is regulated in response to 
chronic alterations in chloride balance. American journal of physiology. Renal physiology, 2004. 287: 
p. F1179-88. 

99. Scott, D.A., et al., The Pendred syndrome gene encodes a chloride-iodide transport protein. Nature 
genetics, 1999. 21: p. 440-3. 

100. Soleimani, M., et al., Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex. American 
journal of physiology. Renal physiology, 2001. 280: p. F356-64. 

101. Dossena, S., et al., Functional Characterization of Pendrin Mutations Found in the Israeli and 
Palestinian Populations. Cellular Physiology and Biochemistry, 2011: p. 477-484. 

102. Byeon, M.K., et al., The down-regulated in adenoma (DRA) gene encodes an intestine-specific 
membrane glycoprotein. Oncogene, 1996. 12: p. 387-396. 

103. Jacob, P., et al., Down-regulated in adenoma mediates apical Cl−/HCO3− exchange in rabbit, rat, 
and human duodenum. Gastroenterology, 2002. 122: p. 709-724. 

104. Melvin, J.E., et al., Mouse Down-regulated in Adenoma ( DRA ) Is an Intestinal 3 Exchanger and Is 
Up-regulated in Colon of Mice Lacking the NHE3 Na ! / H ! Exchanger *. 1999. 274: p. 22855-
22861. 

105. Xiao, F., et al., Slc26a3 deficiency is associated with loss of colonic HCO3 (-) secretion, absence of 
a firm mucus layer and barrier impairment in mice. Acta physiologica (Oxford, England), 2014. 211: 
p. 161-75. 

106. Chernova, M.N., et al., Acute regulation of the SLC26A3 congenital chloride diarrhoea anion 
exchanger (DRA) expressed in Xenopus oocytes. The Journal of physiology, 2003. 549: p. 3-19. 

107. Lamprecht, G., et al., Transport properties of the human intestinal anion exchanger DRA (down-
regulated in adenoma) in transfected HEK293 cells. Pflügers Archiv : European journal of 
physiology, 2005. 449: p. 479-90. 



	
  
	
   	
  

131	
  

108. Brater, D.C., Diuretic Therapy. New England Journal of Medicine, 1998. 339: p. 387-395. 

109. Ernst, M.E. and M. Moser, Use of Diuretics in Patients with Hypertension. New England Journal of 
Medicine, 2009. 361: p. 2153-2164. 

110. Denton, J.S., A.C. Pao, and M. Maduke, Novel diuretic targets. American journal of physiology. 
Renal physiology, 2013. 305: p. F931-42. 

111. Frye, S.V., Structure-activity relationship homology (SARAH): a conceptual framework for drug 
discovery in the genomic era. Chemistry & biology, 1999. 6: p. R3-7. 

112. Konrat, R., The protein meta-structure: a novel concept for chemical and molecular biology. Cellular 
and molecular life sciences : CMLS, 2009. 66: p. 3625-39. 

113. Gregori-Puigjané, E. and J. Mestres, SHED: Shannon entropy descriptors from topological feature 
distributions. Journal of chemical information and modeling, 2006. 46: p. 1615-22. 

114. Galietta, L.J., P.M. Haggie, and A.S. Verkman, Green fluorescent protein-based halide indicators 
with improved chloride and iodide affinities. FEBS letters, 2001. 499: p. 220-4. 

115. DiCiommo, D.P., et al., Retinoblastoma protein purification and transduction of retina and 
retinoblastoma cells using improved alphavirus vectors. Invest Ophthalmol Vis Sci, 2004. 45(9): p. 
3320-9. 

116. Azroyan, A., et al., Regulation of pendrin by pH: dependece on gycosilation. Biochemical Journal, 
2011. 434(1): p. 61-72. 

117. Cirello, V., et al., Molecular and functional studies of 4 candidate loci in Pendred syndrome and 
nonsyndromic hearing loss. Molecular and cellular endocrinology, 2012: p. 1-9. 

118. Knauf, F., et al., Identification of a chloride-formate exchanger expressed on the brush border 
membrane of renal proximal tubule cells. Proc Natl Acad Sci U S A, 2001. 98(16): p. 9425-30. 

119. Hoffmann, E.K., Anion Exchange and Anion-Cation Co-Transport Systems in Mammalian Cells. Vol. 
299. 1982. 519-535. 

120. Sonawane, N.D., et al., In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR 
inhibitor in rodents. J Pharm Sci, 2005. 94(1): p. 134-43. 

121. Taddei, A., et al., Altered channel gating mechanism for CFTR inhibition by a high-affinity 
thiazolidinone blocker. FEBS letters, 2004. 558: p. 52-6. 

122. Barzilay, M. and Z.I. Cabantchik, Anion transport in red blood cells. II. Kinetics of reversible inhibition 
by nitroaromatic sulfonic acids. Membr Biochem, 1979. 2(2): p. 255-81. 

123. Stewart, A.K., et al., Molecular characterization of Slc26a3 and Slc26a6 anion transporters in guinea 
pig pancreatic duct. The journal of medical investigation : JMI, 2009. 56 Suppl: p. 329-31. 

124. Mcniff, P., R.P. Robinsont, and C.A. Gabel, Reduction of intracellular pH by Tenidap - Involvement 
of cellular anion transporters in the pH change. Biochemical Pharmacology, 1995. 50: p. 1421-1432. 

125. Friedman, P.A., Bumetanide inhibition of [CO2 + HCO3]-dependent and -independent equivalent 
electrical flux in renal cortical thick ascending limbs. The Journal of pharmacology and experimental 
therapeutics, 1986. 238: p. 407-14. 

126. Shepshelovich, J., et al., Protein synthesis inhibitors and the chemical chaperone TMAO reverse 
endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin. J 
Cell Sci, 2005. 118(Pt 8): p. 1577-86. 



	
  
	
   	
  

132	
  

127. Myssina, S., et al., Cl- channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte 
'apoptosis'. Cell Physiol Biochem, 2004. 14(4-6): p. 241-8. 

128. Kim, B.M., et al., Combined treatment with the Cox-2 inhibitor niflumic acid and PPARγ ligand 
ciglitazone induces ER stress/caspase-8-mediated apoptosis in human lung cancer cells. Cancer 
Letters, 2011. 300(2): p. 134-144. 

129. Picollo, A., et al., Mechanism of interaction of niflumic acid with heterologously expressed kidney 
CLC-K chloride channels. J Membr Biol, 2007. 216(2-3): p. 73-82. 

130. Brown, C.D. and A.J. Dudley, Chloride channel blockers decrease intracellular pH in cultured renal 
epithelial LLC-PK1 cells. British Journal of Pharmacology, 1996. 118(3): p. 443-444. 

131. Breedveld, F., Tenidap: a novel cytokine-modulating antirheumatic drug for the treatment of 
rheumatoid arthritis. Scand J Rheumatol Suppl, 1994. 100: p. 31-44. 

132. Ducoudret, O., et al., The renal Na-HCO3-cotransporter expressed in Xenopus laevis oocytes: 
inhibition by tenidap and benzamil and effect of temperature on transport rate and stoichiometry. 
Pflugers Arch, 2001. 442(5): p. 709-17. 

133. Liu, Y., et al., Tenidap, a novel anti-inflammatory agent, is an opener of the inwardly rectifying K+ 
channel hKir2.3. European Journal of Pharmacology, 2002. 435(2–3): p. 153-160. 

 


