
UNIVERSITA’ DEGLI STUDI DI MILANO
FACOLTÀ DI SCIENZE E TECNOLOGIE

SCUOLA DI DOTTORATO IN INFORMATICA
DIPARTIMENTO DI INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA, XXVII CICLO

NON-BLIND SOURCE SEPARATION AND FEATURE
EXTRACTION:

THEORY, APPROACH AND CASE STUDIES IN
CARDIAC SIGNALS

INF/01

Doctoral dissertation of:
Massimo Walter Rivolta

Supervisor:
Roberto Sassi

Doctorate school’s director:
Prof. Ernesto Damiani

XXVII Doctorate cycle, 2011− 2014





A C K N O W L E D G M E N T S

First of all, I would like to thank Prof. Roberto Sassi, head of the Biomedical image
and Signal Processing Laboratory (BiSP Lab) who has supervised me for more than
three years. He helped me as a friend in several situations regarding both work and
life. Having a good mentor makes the difference.

Second, I thank all the referees for their useful suggestions to improve the quality of
this manuscript. They are Luca Mainardi, Jean-Philippe Couderc and Francisco Sales
Castells-Ramòn. In particular, Luca as a very expert co-author in many publications,
and Jean-Philippe who has taught me to valorize and present my works.

Third, I express my gratitude to Mr. Md Aktaruzzaman, Mr. Matteo Migliorini and
Dr. Valentina Corino, unique fellows who have shared their lives during my PhD. I
would also like to thank all my other collegues as Mr. Ebadollah Kheirati Roonizi, Dr.
Angelo Genovese, Dr. Ruggero Donida from the Universitá degli Studi di Milano.

Finally, I need to thank my family for the encouragements they have always given
to me.

III





A B S T R A C T

Source separation (SS) and feature extraction (FE) are tools employed in digital signal
processing. The former permits to estimate the values of some sources that have been
mixed, and the latter extracts features from a set of measurements.

SS and FE are widely applied on biomedical signals such as electrocardiogram (ECG),
electroencephalogram, arterial blood pressure, etc., because these signals are collected
in noisy environments. For instance, ECG recordings show the electrical activity gen-
erated by the whole heart at once. Yet, there are cardiac pathologies or arrhythmias re-
lated to only the atrial or ventricular chambers and thus, tools capable to separate them
become fundamental for the diagnosis, prognosis and prediction of life-threatening
events. Therefore, the quality of treatments depends on the reliability of the features
extracted from the signals and then, the reduction of possible interferences becomes
very relevant in this context.

The study and the development of new SS technique play an important role in those
application in which the components of a measurement cannot be splitted using clas-
sical temporal or frequency analysis. In addition, non-blind SS aims to employ further
information and to develop mathematical and statistical model to make the estimates
more reliable.

Features extraction is fundamental for the classification task. In biomedical signals,
features are used to characterize the status of the subjects in either healthy or patholog-
ical condition. For example, features to predict the risk of developing cardiac arrhyth-
mias are continuously encouraged by regulatory agencies as the US Food and Drug
Administration.

The study of reliability and feasibility of features requires an extensive use of tests.
These tests are necessary to evaluate some properties, e.g., the capability of the feature
to be resilient to noise, variability of the estimate, classification power, etc.

The aim of this thesis is to study, develop, validate and test new SS techniques
and features applicable to different kind of signals. The new algorithms and features
are extensively studied to characterize their properties from a methodological point
of view. In addition, simulated and real data are considered as a test bench. Cardiac
signals will be the specific field of application.

First, a new algorithm for non-blind SS will be presented and discussed. In particular,
this new methodology is an extension of a well-known algorithm, i.e., template, match-
ing and subtraction (TMS), normally used to estimate transient sources, i.e., sources
that are located only somewhere in the signals, in stationary conditions. TMS estimates
the values of the source by averaging a set of measurements in which it is known to
be constant over time. However, there are situations in which this assumption does not
hold and the results obtained are not “good” estimates. In order to track changes over
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time, we proposed a method based on a multi-goal optimization problem to modulate
the estimate provided by the classic TMS.

The multi-goal optimization problem has been defined as a weighted sum of three
subgoals measuring: i) difference in the power of the residue and that of the signal
when the transient source is not present; ii) difference in the power of the first deriva-
tive of the residue and that of the signal when the transient source is not present; and
iii) difference between the estimate provided by the classic TMS and its modulated
version.

A multi-particle swarm optimization algorithm was used to find the solution of a
non-linear problem in a very high dimensional space (a vector ∈ <100). This technique
employs a set of particles that moves in the search space with an heuristic rule and it
has been shown to be highly robust to local optima.

The algorithm was tested on synthetic and real data. First, a synthetic dataset was
generated and the mean square error between the real source and the estimated one
was determined. Second, a dataset collected from subjects undergoing ablation for the
treatment of atrial fibrillation (AF) was employed. These signals contain both atrial
and ventricular activity, but only the atrial one can be used by clinicians to perform
the ablation. We tried to separate the atrial activity from the ventricular one. Two
features, i.e., the amplitude reduction of the ventricular peak (VDR) and the percentage
of residues in which their power was outside the 95th percentile of the atrial one (PP),
were computed as measure of goodness of the separation.

In both tests, the modulated TMS provided better performance than the classic TMS
(p < 0.001), suggesting that a power-based modulation could be suitable to keep track-
ing the morphology of the ventricular activity.

Second, three features have been study and tested. These three features can deter-
mine: i) the variability of times of occurrence of transient sources (V-index); ii) the
organization of the propagation of wavefronts (OD); and iii) the average acceleration
(AC) and deceleration capacities (DC) of a system.

Briefly, the V-index is particularly suitable to be applied on signals in which: i) mul-
tiple measurements are available; ii) transient sources are linearly mixed; iii) the shape
of each realization of the transient sources are similar between each other; and iv) the
variability of the times of occurrence is relatively small. It is based on two models, a
linear equivalent surface model and a statistical model, respectively. When applied on
the T-wave of the ECG, it can provide an estimate of the spatial heterogeneity of the
ventricular repolarization, measured as the standard deviation of the repolarization
times of the myocytes. This index was tested on three scenario: i) before and after ad-
ministration of sotalol; ii) before and after administration of moxifloxacin; and iii) on
subjects affected by Chagas disease. In all the three cases, the V-index was sensitive to
the known effects of the drugs on the ventricular repolarization as well as symptoms
of the Chagas disease (p < 0.05).

The second feature combines morphological, temporal and organization information
to build a new index more suitable for the characterization of wave propagation. In
several situations, sensors are not sensitive to the direction of the wave propagation
because they can measure only scalar quantities: this is typical for electrodes. The use
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of multiple sensors permits to quantify/estimate the direction of the wave propagation.
We proposed a new index, the organization degree (OD), to measure the degree of
organization of a series of symbolic words. Each symbolic word is built labelling the
electrical activity and the time of arrival of an electrical wave detected by a set of
electrodes using a symbol for each signal. A sequence of words is then built for each
wave detected and the Shannon entropy was used to determine the organization.

OD was tested on a real dataset collected on subjects suffering from atrial fibrillation
in four different situations: i) before and after the onset of AF; and ii) before and after
the onset of AF after infusion of isoproterenol (ISO). Such drug stimulates the activa-
tion of the sympathetic branch of the autonomous nervous system and it is supposed
to decrease the organization of the atrial activity (making it more “random”). OD was
able to discriminate between all the cases (p < 0.05) and in particular between AF and
AF+ISO, in which only the morphology was not.

The last feature is related to the evaluation of the acceleration and deceleration ca-
pacities of a system. Both quantities have been introduced by Bauer et al. and depend
on three free parameters, i.e., L, T and s. This index is built determining a list of anchor
points that satisfy a specific rule (acceleration or deceleration rule) depending on the T
value. Then, all the portions of signals of length 2L centered on each anchor point are
aligned and then averaged. This series is called phase-rectified signal averaging (PRSA).
Both capacities are computed subtracting the sum of s samples from the right side of
the PRSA from the sum of s samples from the left one (divided by a normalization
factor).

In this study, we investigated the role of each parameter to better understand their
significance when applied on stochastic signals, specifically on inter-time beat series
(RR). These tests were performed on simulated data employing different strategies.
All the parameters are somehow frequency related. s, more than T , plays a role of
frequency band selector in which both AC and DC are maximally sensitive. While T ,
acting only on the anchor point list, less affects the value of the capacities. Since it acts
as a lowpass filter, T equispaced zeros are placed in the frequency domain. Finally, L
permits to select the lowest oscillation detectable.

AC and DC were tested on an in-vivo model composed by 7 near-term pregnant
sheep. The umbilical cord was occluded with three different level of strength. The
main goal of this study was to determine whether AC and DC were sensitive to change
in the autonomic regulation of the heart rate during lack of oxygen and if they were
correlated with biomarkers such as pH, level of lactates and base deficit. Both capacities
were maximally correlated with the biomarkers when using s = T within [2− 5]. The
range of s was coherent with the frequency band related to the autonomic regulation
of the fetal RR series when a lack of oxygen occurs for a little period of time.
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1
I N T R O D U C T I O N O N S O U R C E S E PA R AT I O N A N D

F E AT U R E E X T R A C T I O N

1.1 general introduction and aim of the thesis

Source separation (SS) and feature extraction (FE) are tools employed in digital signal
processing; the former estimates the values of sources that have been mixed together,
and the latter extracts features from a set of measurements.

SS and FE are widely applied on biomedical signals such as electrocardiogram (ECG),
electroencephalogram, arterial blood pressure, etc., because these signals are collected
in noisy environment. For instance, ECG recordings show the electrical activity gener-
ated by the whole heart at once. Yet, there are cardiac pathologies or arrhythmias re-
lated to only the atrial or ventricular chambers and thus, tools capable to separate them
become fundamental for the diagnosis, prognosis and prediction of life-threatening
events. Therefore, the quality of treatments depends on the reliability of the features
extracted from the signals and then, the reduction of possible interferences becomes
very relevant in this context.

The study and the development of new SS technique play an important role in those
application in which the components of a measurement cannot be splitted using classi-
cal temporal or frequency analysis. In addition, non-blind SS uses additional informa-
tion to develop mathematical and statistical model to make the estimates more reliable.

Features extraction is fundamental for the classification task. In biomedical signals,
features are used to characterize the status of the subjects in either healthy or patholog-
ical condition. For example, features to predict the risk of developing cardiac arrhyth-
mias are continuously encouraged by regulatory agencies as the US Food and Drug
Administration (FDA).

The study of the reliability and feasibility of features requires an extensive use of
tests. These tests are necessary to evaluate some properties, e.g., the capability of the
feature to be resilient to noise, variability of the estimate, classification power, etc.
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2 introduction on source separation and feature extraction

In conclusion, the aim of this thesis is to study, develop, validate and test new SS
techniques and features applicable to different kind of signals. The new algorithms and
features are extensively studied to characterize their properties from a methodological
point of view. In addition, simulated and real data are considered as a test bench.
Cardiac signals will be the specific field of application.

In this chapter, a wide overview on non-blind source separation and feature extrac-
tion is presented.

1.2 introduction on source separation

During signal acquisition, data is always corrupted by noisy sources in some extent.
Those noisy sources that cannot be avoided, or reduced, during the acquisition, will
be carried through the next steps of the processing. Source separation (SS) represents a
set of mathematical/probabilistic techniques able to separate sources that have been
mixed.

In order to determine an estimate of the source value before the mixing, multiple as-
sumptions on the nature of the phenomenon that has merged the measurements need
to be defined. For instance, knowledges about mixing rules, statistical dependence or
independence between sources and constraints on their values are important informa-
tion to address the problem.

SS techniques can be distinguished in two main areas. The first one, called blind
source separation (BSS) employs no information about the sources. This property means
that the problem is highly undetermined and usually, the statistical uncorrelation or
independence has to be employed for reducing this uncertainty. Typical techniques for
solving BSS problems are principal component analysis (PCA) and independent component
analysis (ICA), with all their variants.

The second category of techniques, called non-blind source separation (NBSS) is rep-
resented by those methodologies that exploit information on the sources for complet-
ing the separation task. Techniques such as Kalman Filter (KF), extendend Kalman Filter
(EKF), Bayesian Filter (BF) and Template, Matching and Subtracion (TMS), are normally
employed for this purpose [1].

1.2.1 non-blind source separation

Since NBSS methodologies can be applied on signals collected in different environ-
ments, we will present a discussion on those techniques applied on electrocardiogram
(ECG) signals (see chap. 6).

Most of the commercial electrocardiographic devices measures the ECG with a sam-
ple frequency fs between 200 Hz and 1000 Hz. This information has to be taken into
account in the development of any kind of SS technique.

Typically, ECG signals are contaminated by broad band noise, muscular artifact,
powerline interference and respiration (that leads to baseline wandering). Moreover,
all such noisy sources have frequency bands overlapped to that of the ECG, limiting
the performance of classical numerical filters for a complete separation.
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Let’s take a look on a bunch of methods employed for the separation of those noisy
sources. First of all, low and high frequency components are reduced using classical
numerical filters. Cut-off frequencies are normally set from 0.5 to 3 Hz and from 25 to
250 Hz, depending on the application. This procedure reduces drastically the baseline
wandering and both muscular and broad band noise. However, the slow waves of the
ECG, as the T-wave, have low frequency components partly overlapped on that of
the respiration. In this context, the baseline wander has to be removed without using
classical numerical filters.

Modifications of classic adaptive filters are commonly employed for this task. For
example, information about the time of occurrence of the beats can be exploited to
track changes in the wandering of the baseline [2, 3]. These frameworks can be easily
recast to address different problems.

Other techniques based on spline interpolation have provided interesting results in
the estimation of the baseline. Such methods require to define points on the ECG in
which a spline, typically cubic, is interpolated. However, the definition of these points
is challenging and highly influenced by the noise. An interesting algorithm has been
proposed by Brown and Arunachalam [4] in which anchor points have been selected on
the T-P segment between each beat. However, if a beat is not detected, the interpolation
could add artifacts.

Recently, a new method for reducing the baseline wandering has been introduced
by Fasano and Villani [5, 6, 7]. This method is based on the minimization of a figure-
of-merit, i.e., the quadratic variation, for which it has been proven that the solution is
unique. The quadratic variation measures the energy of the derivative of the signal and
its minimization leads to reduce the baseline wander. Moreover, the algorithm has a
complexity proportional to the number of samples of the signal to be filtered, making
this technique one of the fastest available, currently.

Another important noisy source to remove is the powerline interference character-
ized by a fundamental frequency at 50 or 60 Hz and high order harmonics. In many
application, a notch filter, typically an IIR filter, is considered a good solution when the
frequency is known and not time varying. However, even when the frequency is fixed
and known, the presence of steep changes in the signal, such as the QRS complexes,
can lead to add undesired ringing artifacts on the ST segment of the ECG. This problem
has been addressed in different ways. For example, employing a time-varying Q factor
of the notch filter [8, 9] or using tracking algorithm as Kalman filter and recurrent least
square estimation [10, 11, 12].

The methodologies described so far are part of the typical preprocessing steps of
ECG signals; they are clear examples of non-blind SS because they use information
about the sources involved in the ECG, such as temporal location of beats or frequency
bands. However, such techniques are not robust enough to provide reliable estimates in
more complex applications like detecting fetal ECG from abdominal ECG recordings
(fig. 1.1) or detecting atrial activity from electrograms during atrial fibrillation (see
sec. 6). In this context, adding further information such as the characterization of the
statistical properties of the sources can play an important role in the separation task.
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Figure 1.1: Examples of 2-lead abdominal ECG. Circles and triangles indicate the mother and
the fetal beat locations respectively.

One of the most challenging application involving ECG recordings is the separation
of the fetal ECG from the maternal ECG in non-invasive abdominal ECG recordings.
The extraction of the fetal ECG is important for the evaluation of the hear rate variabil-
ity of the fetus, i.e., an important factor to diagnose its wellbeing [13, 14, 15, 16].

Such measurements contain both the maternal and fetal ECG, and all the noisy
sources described above (fig. 1.1). Also, the signal-to-noise ratio is commonly low due
to muscular contraction of the mother, movement of the fetus and the small amplitude
of the fetal QRS complex.

BSS technique are not a suitable tool for the separation of sources because of the
low number of leads normally employed in clinical practice. Information about beat
correlation and noise uncorrelation between leads, temporal location of beats and ac-
celerometer signals (for muscular contraction) are typically used to perform the sepa-
ration.

In this regard, different algorithms have been proposed to separate the maternal
ECG from the fetal ECG. Of note, Kalman filters employing the state model proposed
by Mc Sharry et al. [17] are becoming popular because of their good performance
[18, 19, 20]. Such state model describes the ECG waves using a dynamical model and
a composition of Gaussian functions. This model requires the location of the maternal
beats and the performances are highly influenced by misdetected beats. Recently, this
framework was also used for ECG denoising [21, 22].

Another important fetal and maternal ECG separation framework was proposed
by Martens el al. [23]. Their algorithm uses a combination of blind and non-blind SS
techniques for a multi lead-based detection of the fetal beats. In particular, after prepro-
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cessing of each recordings, the maternal activity is detected using PCA that exploits
the large inter-channel correlation of the ECG components and the small inter-channel
correlation of the noise. This information is subsequently used to reduce the maternal
activity by means of the template-matching-substraction method (see sec. 1.2.3).

Non-blind SS methods have brought significant results even in the separation of
the ventricular and atrial activity on signals collected during episodes of atrial fibril-
lation (AF). Indeed, standard ECG recordings or electrograms, i.e., signals collected
directly within the atria chambers, are typically employed to determine atria-related
features (see sec. 1.3) for the risk stratification of subjects affected by AF. However,
such recordings are corrupted by the ventricular activity that can alter significantly
the interpretation of the features extracted. The separation of the two sources is more
challenging in this situation because, during AF, the morphology of the ventricular
activity changes quickly over time. When these changes are not tracked well enough,
high power residues of ventricular activity are left on the signal [24, 25].

In this context, one of the most effective techniques for estimating the ventricular
activity is the template matching and subtraction (see sec. 1.2.3). Such method builds
an estimate of the source by averaging a set of ventricular activities. It requires the sta-
tionarity of the morphology of the source, a criterion which is not met when analyzing
signals collected in AF.

1.2.2 source modeling

Mathematical modeling permits to describe complex systems employing mathematical
language and concepts. In particular, source modeling defines each sources mathemat-
ically and/or probabilistically. When they are dependent on specific parameters, they
are called parametric models. Such parametric source models reduce the dimensional-
ity of the problem, i.e., number of samples vs a few parameters, and, depending on the
application, can aid to infer new knowledge about the analyzed phenomenon.

Excluding high controlled experimental protocols and environments, real measure-
ments normally contain more than one source. For instance, the electrical activity mea-
sured on the skin is the expression of million of cells that have been filtered by the
human tissue and the recording instruments. The mixing rule is thus a part of the
modeling procedure and it must be chosen carefully.

Furthermore, the use of models in NBSS task permits to increase the reliability of the
estimate and to provide measures of similarity, i.e., how distant the estimate is from
the model.

In this section, the models employed in this thesis will be briefly discussed.

1.2.2.1 sources linearly merged

The most used mixing rule is the linear one. Such rule permits to model several biolog-
ical signals because, normally, they are the results of a series of chemical phenomena
that generate measurable electrical activities in which the assumption of superposition
holds.
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Let’s start with linear dynamical models. The general form of linear dynamical
model is

zk =

pAR∑
i=1

Aizk−i +
pX∑
i=0

Biuk−i +
pMA∑
i=0

Ck−iwk−i (1.1)

Previous eq. (1.1) establishes a relationship between three components; they are called:
i) the autoregressive (AR) part; ii) the exogenous (X) part; and iii) the moving average (MA)
part.

Another important class of mixing rule is composed by a linear combination of two
kind of sources: i) transient sources; and ii) continuous sources. The mixed output
could be as follow

z = Atst + Acsc + w (1.2)

where z is the mixed multidimensional vector (∈ <Nm), st models the transient sources
(∈ <Nt), sc models the continuous sources (∈ <Nc), At and Ac mix the sources and
they are Nm ×Nt and Nm ×Nc matrices, respectively. The model uncertainty is mod-
eled by w.

The difference between a transient source and a continuous one is that, the former
lasts just for a relative small period of time whereas the latter is always present. For
instance, the voice in a phone call is the transient source whereas the background
noise, always present, is the continuous one. Such classification permits, when possible,
to handle separately the sources because it is known when those transients are not
occurring.

An important subclass of source models in eq. (1.2) is when just a single mixed
output is available, i.e., Nm=1, and At and Ac are unitary matrices; that is expressed
as following

zk =

Nt∑
j=1

stj,k +

Nc∑
i=1

si,k +wk (1.3)

where zk is the single output, stj,k is the transient source j, si,k is the continuous source
i, k is the time, and wk has the same meaning of eq. (1.2). Such subclass of source
models covers a wide range of situations within biomedical applications. Indeed, most
of the measurements collected on a human body refers to electrical potentials. Here,
the assumption about the superposition of the electrical potentials holds.

1.2.3 template , matching and subtraction

One of the most used and robust methodology in non-blind source separation when:
i) a single mixed signal is available; ii) transient sources are statistically independent
between each others; and iii) sources are stationary over time; is called template, match-
ing and subtraction (TMS).
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This method builds a template by means of an average of realizations of transient
sources, producing an improvement of the signal-to-noise ratio (SNR) equal to the
square root of the number of averaged signals. In order to take into account temporal
changes of the sources, a template is built for each realization employing the average of
the closest ones. Typically, an average on 20 realizations is considered reliable enough
in biomedical application involving cardiac signals.

In this thesis a recursive estimate of the source has been employed.

tb+1k = tbk + γ(z
b+1
k − tbk), (1.4)

where b is the realization index, k is the time, tbk the value of the template at realization
b, zb+1k is the value of the single mixed signal at realization b+ 1 and γ is a constant.
The value of γ is set in function of the equivalent number of realizations considered in
the average procedure (γ = 0.1 corresponds to about 20 realizations). This implemen-
tation permits to have a much more compact code and to consider only the current
realization, however, it requires the first template t0k, normally estimated as the aver-
age of few realizations (for instance the first 20 realizations). The computational cost
of this filter is not different from the averaging procedure.

It is worth noting that the expected value of tbk, following the definition of eq. (1.4),
is equivalent to that of zb(n) and so, the expected value of the residue

rbk = zbk − t
b
k (1.5)

is equal to zero. This result means that a baseline misalignment could lead to add an
offset in the estimate of the source. In order to reduce the effects of such jumps on the
boundaries of the window considered, each realization zbk is multiplied by a smooth
function with compact support, such as a trapezoidal window.

In biomedical signal processing, TMS is broadly applied in source separation even
when more than one signal is available. Indeed, techniques like PCA or ICA cannot be
applied when the number of channels is too small to ensure robustness in the source
estimate.

1.3 introduction on feature extraction

Feature extraction (FE) is a part of the data processing and analysis related to the study
and the research of parameters that are able to concentrate information. Therefore, FE
permits to reduce the dimensionality of the problem from an high value, typically the
number of samples of the measurements, to a lower one composed by a few and most
representative parameters.

Such features are normally categorized depending on the domain where they are cal-
culated. The three principal kind of features typically used in biomedical applications
are: time, frequency and complexity.

Once a possible feature is proposed, a set of statistical analysis is performed to de-
termine its properties. Typical analysis are: i) robustness to noise; ii) dependency on
the number of samples; and iii) possible correlation with other parameters. In addi-
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tion, in biomedical applications, it is also necessary to study the intra/inter-subject
variability, the discriminative power between control group and pathological one and
the predictive power.

In conclusion, FE represents a way to describe and characterize the main properties
of a phenomenon employing a small number of parameters.

In this chapter, the main features collected on signals related with the heart, e.g.,
electrograms, electrocardiograms, inter-time beat series, etc., will be described.

1.3.1 time-based features

Time-based features are extracted in the time domain.
Typical time-based features are average, standard deviation, mean power, mean

square error (MSE), root mean square (RMS) and rates (or slopes) of increasing and
decreasing trends.

The most important time-based features extracted from the ECG are time intervals
[26]. Indeed, time intervals have proven to determine whether a subject has some car-
diac disorders or does not. Typical time intervals computed on single beats are PR
interval, QRS and QT interval, and RR or NN intervals on series of beats.

PR interval reflects the amount of time to have the atria completely depolarized and
the conduction delay of the atrioventricular node (see chap. 6). It is computed as the
time distance between the onset of the P wave and the onset of the QRS complex. QRS
is the time for the depolarization of the ventricles and it is determined as the time
interval between Q and S. Finally, the QT interval, i.e., the amount of time between Q
and the end of the T-wave, is linked with the duration of the repolarization phase of
the ventricles.

The RR interval measures the time distance between two consecutive beats. Such
quantity can be computed beat-to-beat and it has proven to be related with the func-
tionality of the autonomic nervous system. The NN interval is the same of RR but
considering only beats labeled as normal, i.e., triggered by the sinus node and follow-
ing normal conduction paths.

1.3.1.1 time-based features determined on beats

In a normal ECG beat, the P wave represents the depolarization phase of the atria
(see sec. 6.2). However, the electrical activity measured on the thorax is relative little
(in amplitude) compared with that of the ventricles. Therefore, an average P wave is
usually computed for increasing the signal-to-noise ratio. Typically, algorithms based
on cross-correlation (CC) identifies those P waves that share similar shapes (e.g., CC >
0.90 or CC > 0.95) and builds an average P wave for each lead. Once the average P wave
is computed for each lead, features like average and standard deviation of quantities
as amplitude, power and duration of P waves are normally computed as biomarkers
related with the risk of developing an episode of AF [27, 28, 29, 30]. For example, a
larger P wave duration was found in subjects with history of AF with respect to that
in healthy individuals.
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However, the computation of these features on the average P wave still presents
numerous challenges. Indeed, the P wave can have different shapes, e.g., monophasic,
biphasic, double notched, etc., depending on the lead considered and the pathological
status of the subject. Censi et al. [31] have addressed such issue modeling the P wave
as a sum of Gaussian functions and computing the features directly on the model.

The repolarization phase of the ventricles is encoded on the ECG by the T-wave.
In particular, such wave arises because of different transmembrane action potentials
(TMP) among the myocytes of the ventricles: the so-called spatial heterogeneity of the
ventricular repolarization (SHVR). Since lethal arrhythmias are mainly associated with
a high SHVR, biomarkers able to capture the degree of heterogeneity have proven to
be fundamental in risk stratification. QT intervals is one of the most powerful time-
based features able to characterize the heterogeneity of the repolarization phase of the
ventricles directly from the ECG (see sec. 6.3). However, a correct definition of the QT
interval is difficult to achieve, it depends on the specific algorithm implementation
and it often requires the inspection of an expert clinician [32]. It is worth noting that
10 ms (a very little quantity) of increase in the QT interval is retained to be enough for
developing ventricular arrhythmias [33].

In addition, QT intervals depend both on the heart rate, i.e., intra-subject variability,
and on the basal level of the subject, i.e., inter-subject variability. Therefore, in order
to reduce the dependence of the QT interval on the heart rate, correction formulas are
typically employed [34, 35, 36, 37]. Such formulas try to make the QT interval linearly
uncorrelated with the heart rate but they can interfere with the clinical interpretation
[38].

Another important biomarker related to the heterogeneity of repolarization, is the T
peak-to-end interval (TpTe) [39]. It is measured as the difference between the end of
the T-wave and its maximum peak. This measure reflects differences in the time for
completion of repolarization at different regions in the ventricle. However, a reliable
detection of both peak and end of the T-wave is still difficult to achieve. Even in this
case, Gaussian models can be employed for modeling the T-wave and estimating such
points [40].

These features are dependent on the definition of specific points on the ECG that are
highly influenced by noise. The problem has been addressed proposing features less
dependent on the position of such points. Biomarkers such as T-wave amplitude vari-
ability (TAV) [41], i.e., a measure of the average maximum variability of the amplitude
of the T-wave, and power percentage of the PCA [42] are related with the power of the
T-wave. Being the end of the T-wave located on the isoelectric line, little changes in its
location does not lead to a significant change in the computation of the power.

Even if all the biomarkers discussed so far are related with the physiology, they
are just “measures” on the ECG. A physiological interpretation is difficult to achieve
because a link between the measure and real physiological quantities misses. In such
context, a new measure of the heterogeneity has been recently introduced by Sassi and
Mainardi [43]: the V-index. This new biomarker is based on two models. The first one
links the TMP of the cardiac cells with the ECG [44] and the second one provides a
way to model the time instant of repolarization for those cells. V-index is still being
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validated; however, it has already proven to be sensitive as much as the QT interval to
several pathological conditions (see chap. 4).

1.3.1.2 time-based features determined on rr series

The RR series contains the intervals between successive beats. In brief, it shows the
variability of the cardiac cycle over time.

During AF, measures as mean and standard deviation (SDNN) are normally com-
puted on sliding windows. Since the heart rate is higher, a low average and a high
standard deviation of the RR series are typically observed. In addition, drug-induced
alterations can modify the regulation of the ANS and thus, the spectral components of
the RR series change [45].

Other measures are root mean square of successive differences (RMSSD), standard devi-
ation of successive differences (SDSD) and proportion of pairs of adjacent RR (or NN)
intervals that differ more than a prefixed time threshold (pNNXX where XX is the
time). Such measures are capable to assess the variability of the cardiac cycle [46, 47].

A new time-based feature computable on RR series is called Phase-Rectified Signal
Averaging (PRSA) [48]. PRSA is a methodology capable of extracting quasi-periodic
oscillations out of noisy and non-stationary signals. It provides two measures that
quantify the average cardiac acceleration (AC) and deceleration (DC) capacity. AC and
DC are linked to the asymmetries between the rates of growth and decrease and they
are capable of discriminating between different pathological conditions [49, 50, 51, 52]
(see chap. 5 for further details).

1.3.2 frequency-based features

Frequency-based features are determined in the frequency domain. Typically, after Fourier
Transform (FT), features like frequency peak and power in specific frequency bands are
determined from the spectrum. Moreover, other characteristics as coupling, causality
and bispectrum are computed in the frequency domain [53, 54, 55].

Many application have been developed exploiting frequency-based features to char-
acterize cardiac signals. The two main ones are related to the risk assessment of atrial
fibrillation [56, 57, 58, 59] and the evaluation of the sympathovagal balance [60, 61, 62].

Atrial fibrillation is characterized by repetitive and disorganized waves propagation
through the atrial tissue. However, this propagation has got a an important character-
istic: it has a quasi-periodic rhythm typically from 3 to 15 Hz. The frequency peak
is called dominant frequency and it varies from region to region along the atrial sur-
face. This feature is widely employed to determine the best location for the ablation
treatment (see chap. 6.2).

The interaction of the ANS on the regulation of the heart rate, that leads to the
so-called heart rate variability, is typically assessed by analyzing the RR series in its
spectral components. Indeed, such interactions are delimited in different frequency
bands of the RR series. Spectral analysis can thus provide useful information on the
autonomic regulation evaluating the proportion of the signal power in such frequency
bands.
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1.3.3 complexity-based features

Complexity features measure the level of complexity or organization on a series of values.
However, the definition of complexity as well as of organization is arbitrary.

A large number of possible definitions has been given during the last decades. The
most important ones applied to biomedical signals are Shannon Entropy (SE), Con-
ditional Entropy (CE), Approximate Entropy (ApEn) and Sample Entropy (SampEn).
Many other definitions are present in the literature.

These features have proven to be highly sensitive to different pathological conditions,
when applied on RR series. For instance, atrial fibrillation episodes can be detected
analyzing the complexity of the RR series. Indeed, prior the onset of the fibrillation,
the complexity (measured by using different definitions) increases [63, 64, 65].

Other examples are coronary disease [66, 67, 68] and myocardial infarction [69, 70,
71, 72]





2
S O U R C E S E PA R AT I O N B Y M O D U L AT E D T E M P L AT E ,

M AT C H I N G A N D S U B T R A C T I O N

This chapter describes the formalization of a new methodology for source separation
employing the non-blind paradigm. The modeling of sources, algorithm, synthetic val-
idation, real cases and experimental results will be presented. Since the new method is
based on mathematical optimization, a brief section about the optimization algorithm
exploited has been included.

2.1 particle swarm optimization

Particle swarm optimization (PSO) is an iterative algorithm able to solve optimization
problem. Originally developed for the study of social behaviors of swarms by means
of numerical simulations, it was subsequently employed in the field of mathematical
optimization. Nowadays it is one of the most used algorithm for optimization tasks in
high dimensional spaces and with noisy functions (hereafter called fitness function).

The main advantage of PSO/MPSO is that it does not require the computation of
the gradient of the function to optimize. This property means that problems in which
the gradient cannot be easily estimated, for example because of its high computational
cost or when the function is not differentiable, can be solved by this algorithm.

PSO uses a set of Np possible candidate solutions, called particles, that move in
the space of the parameters in accord with the function to optimize. It is classified
as a cooperative algorithm. Indeed, each particle shares information about its current
and best position achieved, i.e., solutions of the problem, with the other ones. Such
information are employed to build an heuristic rule of movement.

Formally, each particle xi is an n-dimensional vector, i.e., xi ∈ <n, and represents a
possible solution of the problem. The movement of each particle is performed employ-

13
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ing three different terms: i) inertia; ii) own best solution; and iii) global best solution.
Specifically, movement rule is defined as

xi(k+ 1) = xi(k) + vi(k) (2.1)

where i is the particle index, k is the iteration (called “epoch”) and vi(k) is the “veloc-
ity”. Such velocity vi(k) is defined as

vi(k+ 1) = λ1vi(k) + λ2(Gi(k) − xi(k)) + λ3(Gall(k) − xi(k)) (2.2)

in which λ1, λ2 and λ3 are parameters of the algorithm to be set in advance. In partic-
ular, λ1 is the inertia parameter whereas λ2 and λ3 are respectively the coefficient of
own best solution and global best solution terms, Gi(k) is the best solution achieved by
the particle i and Gall(k) represents the best solution of the whole swarm. The values
of Gi(k) and Gall(k) are updated when the solution improves.

Because PSO is based on such heuristic rule and its final solution depends on the
initial particle position, its convergence is not guaranteed.

In order to reduce these issues, a multi-initialization procedure based on Nsw con-
current swarms is normally employed [73, 74, 75]. In this work an extension of PSO
termed Multi-swarm Particle Swarm Optimization (MPSO) [76] has been employed. In
MPSO, the search space is further enlarged by exchanging particles between swarms
after a fixed number of iterations (the worst solutions are traded for the best ones of
another swarm). The topology of the set of swarms, the number of particle exchanged
across them and the number of iterations before swaps of particles play a fundamental
role for the convergence time and they depend on the problem to resolve. In general,
if the exchange is done too early, the convergence time increases and on the contrary,
if done after too many iterations, the risk of falling into local sub-optimum increases.

Summarizing, at each epoch, the function is evaluated for each particle and optimal
values Gi and Gall are updated whenever solutions are improved. Then, particles are
moved employing eq. (2.1) and eq. (2.2). After a predefined number of iterations a
few particles among the worst ones of a swarm are exchanged with those of the next
one, according to the topology. Initialization of swarms is made either randomly in
the space or using some prior knowledge about the specific problem to solve. The
algorithm stops either the maximum number of epoch or the minimum tolerance is
reached.

2.2 sources modeling

In this section, we limited our methodology to signals that can be considered as a sum
of multiple sources. Therefore, sources have been linearly merged as explained into
sec. 1.2.2.1 and modeled as stationary processes.
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First, the continuous sources were modeled as colored Gaussian noises in order
to capture temporal relationships. The well-known autoregressive (AR) model is em-
ployed as follows

si(k) =

p∑
j=1

ajsi(k− j) + εi(k) (2.3)

where i is the ith source, p is the order of the model, aj are the coefficients of the model
and εi(k) is a white Gaussian noise.

Second, transient sources were modeled with the following statistical properties

E[sti(k)] = s̄
t
i(k) (2.4)

E[(sti(k) − s̄
t
i(k))

2] = σ2sti
(k) (2.5)

E[(sti(k) − s̄
t
i(k))× (stj(k) − s̄

t
j(k))] = 0 (2.6)

E[(sti(k) − s̄
t
i(k))× (sti(j) − s̄

t
i(j))] = 0 (2.7)

Equation (2.7) defines the expected value s̄ti(k) of the source sti at each time k, its
variability σ2

sti
(k), the statistical independence between sources and between difference

time lags.
Finally, the error w(k) was modeled as a white zero-mean Gaussian noise; statistical

properties were

E[w(k)] = 0 (2.8)

E[w(k)w(j)] = σ2wδ(k− j) (2.9)

where δ is the Kronecker delta function.

2.3 modulated template , matching and subtraction : a novel al-
gorithm

A new algorithm suitable to separate transient sources from a single mixed signal is
presented. The main idea is to treat one transient source at a time and to separate it
from the remaining part, i.e., background, employing the prior information provided
in sec. 2.2.

Considering the transient source sti and given the time position of each realization of
the transient source p(b) (b represents the index of the source realization), a template
is built by classical TMS approach. Hence, for each realization, a template TMSbi (k)
(column vector of Nw samples) is modulated by a weighting matrix W. The modulated
template is then

mTMSbi (k) = WTMSbi (k) (2.10)

where W is a Nw ×Nw diagonal matrix; the notation is the same of sec. 2.2.
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The modulation is performed in such a way to have the mean power and mean
power of the derivative of the residue,

r(k) = z(k) − mTMSbi (k), (2.11)

similar to those of the background (in which the source sti(k) is not present).
The weighting matrix W is obtained by maximizing, via MPSO, the fitness function

J(W) = αJ1(W) +βJ2(W) + δJ3(W) (2.12)

where α, β and δ are the weight of each goal (see sec. 2.5 for determining them).
The first term in the fitness function of eq. (2.12)

J1 = j(ρ1), ρ1 = Pr/Pbkg (2.13)

quantifies the similarity between the power of the residual signal and the power of
the background. Pr and Pbkg are the mean power of the residue and the background,
respectively. The function j(ρ) is defined as

j(ρ) =

{
1, ρ 6 1

−(ρ− 1)3, ρ > 1.
(2.14)

The third power of the polynomial in eq. (2.14) permits to improve each goal in bal-
anced way (see 2.5). The mean power of the discrete signal x = [x(1), ..., x(N)] is as
follow

Px =
1

N

N∑
k=1

x(k)2 (2.15)

where N = Nw is the number of samples.
The second term J2 quantifies the discrepancy in the derivatives of the residue r(k)

and that of the background. Similarly to eq. (2.13), it is defined as

J2 = j(ρ2), ρ2 = PDr/PDbkg (2.16)

where Dr and Dbkg are the derivative of the residue and the background, respectively,
and PDr and PDbkg their powers. The first derivative of a discrete signal x was approx-
imated by

Dx(k) = x(k+ 1) − x(k) (2.17)

where k = [1, . . . ,N− 1].
Finally, J3 is used to constrain mTMSbi (k) to remain similar to the original template

TMSbi (k):

J3 = j(ρ3) − 1, ρ3 = d(mTMSbi (k), TMSbi (k))/θ (2.18)
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The metric

d(x,y) =
1

π
arccos

(
xTy

‖x‖‖y‖

)
(2.19)

measures the distance between the two discrete signals x and y. d(x,y) is minimum
when x and y are parallel. An alternative metric could have been the mean square error
of the difference signal, but the definition in eq. (2.19) was preferred as it leads to a
bounded quantity. The threshold θ defines the maximum acceptable distance between
TMSbi (k) and mTMSbi (k).

It is worth noting that the quantity J of eq. (2.12) is superiorly bounded to α+β.

2.4 synthetic atrial electrogram generator

Since several applications could exploit such algorithm, we concentrated our efforts on
signals recorded on the surface of the atria chambers, i.e., atrial electrograms (AEGs). In
order to evaluate the performance of the method, we proposed a set of equations [77]
to model AEGs in different conditions, e.g., sinus rhythm (SR), atrial flutter (AFL) and
AF. The performance of the new algorithm was tested in the most difficult situation,
i.e., AF [24, 78].

2.4.1 atrial electrogram source model

Let’s start defining an atrial electrogram (AEG) as following

AEG(t) = AA(t) + VA(t) (2.20)

where AA(t) is the electrical activity generated only by the atrial cells and VA(t) is the
ventricular activity that interferes with the measurements.

The atrial activity AA can be rewritten using two subcomponents

AA(t) = AAfar(t) + AAnear(t) (2.21)

where AAfar(t) and AAnear(t) represent the far field and near field effects. Such activi-
ties correspond to electrical waves that travel far and near to the electrodes, respectively.
Although a clear distinction between far and near field effects does not exist, this has
been previously used as a reasonable approximation [79].

2.4.2 atrial activity model

2.4.2.1 far field effect and measuring noise

During sinus rhythm, atrial flutter and AF, measurement noise can be modeled as a
colored noise. Moreover, during AF, the far field effects become much more powerful
but still remaining quite stationary, in the statistical sense, over time and making the
measurement noise neglectable. Indeed, the high number of far sources produces a
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noisy effect added to the near field activity. The autoregressive model (AR) is suitable
for representing these electrical sources.

AAfar is modeled by means of an autoregressive model

AAfar(t) =

p∑
k=1

ckAAfar(t− k) +w(t) (2.22)

The model parameters (ck and p) can be derived by fitting a set of real AEG signals
to the AR model. To do that, we consider segments of AEG between two atrial de-
polarizations, i.e., the AAfar. Each segment is fitted by an AR model of order p, with
p ranging from 1 to 40. A common model is determined by averaging the ck coeffi-
cients among all the models fitted. The model order p is selected using the Akaike
information criterion (AIC).

2.4.2.2 morphology of near field activity

The near field effect AAnear is modeled using the formula of the electrical dipole mov-
ing along a line (not necessarily straight) [80]. The potential generated by this dipole
in a uniform infinite medium is

φ(t) =
p · ud

4πσ||r(t)||2
(2.23)

where p is the dipole moment, ud is the unit vector directed from the source point to
the field point, σ is the electrical conductivity and r(t) is the vector directed from the
source point to the field point vector, pointing the evaluation point.

Furthermore, multiple near field sources can be approximated by a summation of N
dipoles moving nearby the measurement point. The near field effect AAnear becomes

AAnear(t) =

N∑
k=1

φk(t) (2.24)

where φk(t) is the electrical potential generated by the k−th dipole that travels along
a specific direction and N is the total number of dipoles.

2.4.2.3 position of near field activity

In normal SR, the time location of the near field atrial activity always precedes the
ventricular one. Therefore atrial and ventricular rate are the same. In such situation,
we first set the time location of the ventricular activity, being more models available
for this case, and then, the near field activity was shifted backward of 150 ms (see sec.
2.4.3.2).

Due to the lack of relevant models of AF, the position of the near field activity
was considered temporally uncorrelated. The position of AAnear was selected assum-
ing that atrial depolarizations’ front arrives to the electrodes according to a gamma
distribution AAnear ∼ Γ(k, θ), whose probability density function approximates the
exponential one (for small values of k) or the normal distribution (for high values of
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k). Depending on the rhythm to simulate, different values were used, keeping in mind
that kθ is the mean inter-time beat interval.

2.4.3 ventricular activity model

2.4.3.1 morphology of ventricular activity

The ventricular activity (VA) is generated by the current dipole described in eq. 2.23.
Local variations in VA amplitude and time width are modeled on a beat-to-beat basis.
Since the ventricular activity is a far field effect, the electrical potential can be modeled
by a single dipole.

2.4.3.2 position of ventricular activity

Different models exist to generate sequences of RR intervals.
In normal SR, an AR model is adequate to model the RR series [81].
In AF, a realistic sequence of RR intervals can be generated using an atrioventricular

node model as described by Lian et al. [82] or Corino et al. [83]. The latter is used
in this work and is characterized by parameters to describe the arrival rate of atrial
impulses, the probability of an impulse choosing either one of the two atrioventricular
nodal pathways, the refractory periods of these pathways, and the prolongation of the
refractory periods. The parameters of the model are chosen to generate RR series with
different mean heart rate (HR) (90, 120 and 150 bpm). In particular, the mean arrival
rate of AF impulses is varied in the range 5− 8 Hz, the refractory period of the slow
and fast pathways in the range 0.1− 0.4 s and 0.2− 0.7 s respectively, with a maximal
prolongation of 0.2 s. The probability of an impulse choosing either one of the two
paths ranges between 0.2− 1.

2.4.4 validation of the generator

In this section, different rhythms are simulated: i) SR; ii) AFL; iii) AF. Figure 2.1 shows
the AEGs for the different simulated rhythms. It is worth noting that in all examples
the amplitude of the ventricular activity is much smaller than that of the atrial one.
However, this ratio can be changed and the ventricular activity can be bigger, for ex-
ample when simulating signals recorded closer to the ventricles.

2.4.4.1 sinus rhythm

During SR, the internal surface of the atrium chambers is crossed by a wave that can
be approximated by a plane wave. We simulated this situations using a set of parallel
dipoles (equispaced) that, fixed the direction, traveled along a straight line. The simu-
lation could be optimized taking into account the symmetric properties of the dipole
potential, in fact, the electrical component transversal to the direction becomes null.
Figure 2.1a shows the simulated AEG during SR.
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Figure 2.1: Examples of AEG during SR, 3 : 1 AFL and type-II AF. The circles represent the
ventricular activity position. It is worth noting that in AF the ventricular activity
cannot be visually identified, as it can during SR and AFL.

2.4.4.2 atrial flutter

After model identification of the position of the ventricular activity, we defined the
flutter rate as the mean heart rate multiplied by 2, 3 and 4. Figure 2.1b shows the
simulated AEG during AFL.

2.4.4.3 atrial fibrillation

In order to mimic different degrees of atrial organization according to the three Wells’
classes, the standard deviation of the white Gaussian noise in input to AAfar was
varied in the range 0.05− 0.4 a.u. The position of AAnear was selected assuming that
atrial depolarizations’ front reaches to the electrodes according to a gamma distribu-
tion AAnear ∼ Γ(k, θ). Thus, Wells’ type-I was simulated using k = 255 and θ = 0.56,
Wells’ type-II k = 100 and θ = 1.43, and Wells’ type-III k = 20 and θ = 7.14, corre-
sponding to an AF rate of 7 Hz. To have a certain variability in the shape of AAnear
waves, their morphology was randomly chosen among a set of possible shapes for
atrial potentials (see sec. 2.4.5).

2.4.5 synthetic validation of the atrial electrogram generator

To qualitatively assess the proposed generator, a small database of AEGs during AF
was built.

In order to build AAnear and VA, a bipolar electrode was placed in the origin of
the cartesian axes (2-mm electrodes distance) and two points on a circle around it were
considered as the starting and the ending point of the traveling dipole. We discretized
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Table 2.1: Mean ± standard deviation of the spectral concentration (SC) and wave-morphology
similarity (WMS) for the three AF Wells’ classes with 7 Hz dominant frequency.

SC WMS

type-I 0.67 ± 0.02 0.78 ± 0.02

type-II 0.48 ± 0.02 0.34 ± 0.02

type-III 0.17 ± 0.01 0.11 ± 0.01

the circle in 30 equispaced points, for a total of 870 possible shapes. In function of the
desired Wells’ class, we chose the shapes in a subset of the possible ones.

A spectral and morphology analysis was performed to evaluate both the dominant
frequency and the regularity of the signal. We computed the spectral concentration
[84] and the wave-morphology similarity [85]. In particular, 50 AEGs for each of the
Wells’ class and dominant frequency were simulated. The recordings had a dominant
frequency of 5 Hz, 7 Hz and 9 Hz. The results of each Wells’ class and 7 Hz dominant
frequency are shown in tab. 2.1.

2.5 optimization problem for tuning parameters of the modu-
lated tms

The topology of the set of swarms, the number of particle exchanged across them and
the number of iterations before swaps of particles play a fundamental role on the con-
vergence time. If the exchange is done too early, the convergence time increases. How-
ever, if done after too many iterations, the risk of falling into local maxima increases.
In this work, we tried to balance between these two issues. We selected a ring topol-
ogy with 10 swarms of 12 particles each. Swarms were initialized into a hypersphere
of center equal to 1. Every 10 iterations, 5 particles were exchanged from a swarm to
another.

The stopping criterion was either reaching the maximum number of iterations (1000)
or reaching 99.9% of the maximum value of the fitness function, i.e., α + β, see eq.
(2.12).

Regarding the selection of the fitness function used in this work, it was build in eq.
(2.12) as a linear combination of sub-functions J(x) =

∑N
i=1 λiJi(x) to solve a multi-

goal optimization problem. To avoid having one Ji(x) predominant over the others, we
built each of them as in eq. (2.14) with a function that increase more rapidly when the
solution is distant from the optimum. In this way the swarms compete and cooperate
to reach the optimal solution, i.e., when the values of λi are balanced and coherent
with the objective of the optimization.

The values of λi could be chosen empirically. In this work we preferred to study their
influence on the final result before taking a choice. Several values of the parameters
α, δ and θ (β was set to 1 in advance with no lack of generality) were tested with
the mTMS method on two sets of simulated signals with 60 ventricular activities each.
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They were generated as in sec. 2.4 with different organization and HR. For each set of
parameters we computed the metric

I(α, δ, θ) = (C− 1)2 + NMSE2, (2.25)

which takes into account both the normalized mean square error and the linear cor-
relation C. A large value of C means that the shape of the modulated template is
preserved in mTMS, whereas a small value of NMSE forces a larger departure from
the TMS template.

To further guide our selection, we also employed a second MPSO algorithm to min-
imize the metric I, but this time having as variables the parameters α, δ and θ. Their
final value jointly minimizes the NMSE and maximizes the linear correlation C. The
results obtained were α = 6.97, δ = 0.99 and θ = 0.43 which prompted our final choice:
α = 7, δ = 1 and θ = 0.4.

2.6 synthetic validation of the modulate tms

The synthetic generator of AEG described in sec. 2.4 has been employed for validating
and comparing the modulated TMS with the classical one.

In particular, a set of synthetic signals was built for reproducing the three Wells
classes with three different heart rates (70, 90 and 120 bpm). Wells’ type-I was simu-
lated using k = 20 and θ = 10, Wells’ type-II k = 10 and θ = 14, and Wells’ type-III
k = 1 and θ = 111, corresponding to an AF rate of 5, 7, and 9 Hz, respectively.

To quantitatively compare the performances of the algorithms, three indexes were
employed.

The first one measures the degree of similarity between the AEG and the residue by
means of the normalized mean squared error, defined for each beat as

NMSEj =
P
j
s−r

Ps
(2.26)

where j indicates the j-th beat, thus Pjs−r is the mean square error between the signal
and the residue in a 100 ms window centered in the VA, and Ps is the power of the
whole signal s (P is defined as in eq. (2.15)). Obviously, being the actual AA unknown in
real data, this index can be used to evaluate the cancellation performance on simulated
data only.

The second one evaluates the beat-by-beat amplitude reduction of the peak of VA
(VDR) and is defined as

VDR = 10 log10

(∣∣∣∣∣RjsRjr
∣∣∣∣∣
)

(2.27)

where j indicates the j-th beat, Rjs is the j-th peak amplitude of the original AEG in a
100 ms window centered in the VA, and Rjr is the j-th peak amplitude of the residue
(i.e., the amplitude of the residue signal at the same position of the peak on the original
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Figure 2.2: Example of cancellation of VA from a simulated AEG. Original AEG (a), where
occurrences of VA are identified by black dots. Cancellation obtained by TMS (b) or
mTMS (c). Original atrial signal (d). A = amplitude.

AEG). High positive values of VDR will indicate good performance of the algorithm.
Values close to zero are associated with poor performance and negative values indicate
reduction errors because the peak is larger than before. This index is introduced in [25]
and therefore computed here for comparison. However, its value is limited. In fact,
it must be noted that if the segment containing VA is set to a value close to zero, the
VDR would be very high and thus the performance considered optimal. Luckily, in our
approach, J3 (eq. (2.18)) avoids this extreme possibility. This index can be computed
on simulated data as well as on real recordings.

The third index (PP) evaluates whether the power of the residue is inside the stan-
dard range of the atrial power range (AP95), evaluated non parametrically, i.e., it is
within the 2.5 and 97.5 percentiles of the distribution of the values of AA measured
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Figure 2.3: Histogram of NMSE obtained after removal of VA from simulated signals, using
TMS (grey area) or mTMS (black thick line). The signals were Wells’ type-III and
heart rate of 120 bpm. PDF = probability density function.

on the same data. PP is computed as the percentage of segments with residual power
outside the standard range AP95.

First, the segments containing AA only are divided into 100-ms segments (a new
signal segment is defined every ms, and thus, segments overlap), the mean power for
each segment computed and the standard range AP95 for the specific signal obtained.
Then, the power of the residue is computed on the segments containing VA and the PP
index is determined. It should be noted that this index can be used for real data too.
Obviously, the quality of the estimates for the residual power is limited by the length
of the AEGs at disposal.

2.7 real data validation of the modulated tms

The proposed algorithm was also tested using 11 electrocardiographic bipolar record-
ings collected in the electrophysiology laboratory of San Paolo Hospital at the Univer-
sity of Milan, from 3 patients undergoing radiofrequency ablation of the pulmonary
veins for treatment of AF.

The signals were stored during a standardized electrophysiological procedure, ex-
ported and anonymized for subsequent analysis. Bipolar electrograms were recorded
for 2 min (sample frequency of 1000 Hz).

This investigation was designed as an observational study and it conforms to the
principles outlined in the Declaration of Helsinki; the Research Ethics Board of the
San Paolo Hospital of the University of Milan, Italy approved the study protocol. All
patients were informed about the procedure and gave their written consent.
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Figure 2.4: Boxplots of the indexes assessing performance using TMS (black) and mTMS
(grey). Each row shows results for a different Wells’ type, whereas each column
shows a different index. Each subplot presents results with increasing HR. It can
be noted that NMSE and PP are significantly lower for mTMS and VDR higher.
‡p < 0.05, †p < 0.01,∗ p < 0.001

2.8 results

2.8.1 simulated data

Figure 2.2 shows the cancellation of VA from a simulated AEG. A clear residual of
VA cancellation is still present when TMS is employed (see ellipses in fig. 2.2(b)). Con-
versely, using mTMS (Fig. 2.2(c)), a lower remainder of VA is observed.

Figure 2.3 shows the histogram of NMSE values obtained on simulated signals from
Wells’ type-III and HR of 150 bpm. The values of NMSE obtained with mTMS are
generally smaller (the histogram is left-shifted in fig. 2.3) and, on average, lower errors
are obtained.

These results are confirmed on all the sets. Figure 2.4 shows the results for the Wells’
types and HR. In particular, the values of NMSE are always significantly lower, when
using mTMS implying that the residual signals are closer to the original ones, leading
to more reliable results. The VDR is higher using mTMS, implying a better cancellation.
The PP, i.e., the percentage of segments whose residual power is outside the standard
range of atrial power AP95, is always lower for mTMS, implying that there are fewer
high-power residual segments.
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Figure 2.5: Example of VA cancellation of a real endocardial signal recorded in the coronary si-
nus: (a) original AEG with QRS position (black dots) from the surface ECG, residue
obtained after (b) TMS and (c) mTMS cancellation. See text for details.

2.8.2 real data

Figure 2.5 shows an example of ventricular cancellation on real signals, recorded from
the coronary sinus. It can be noted that a high residual is still present when TMS
is employed (see ellipses in fig. 2.5(b)), conversely, using mTMS, a lower remainder
of VA is observed. The three VA being different from each other (see fig. 2.5(a)), the
TMS algorithm fails to completely cancel them, because the actual template is highly
dependent on the previous one. On the contrary, the higher flexibility in building the
template in the mTMS algorithm provides a better cancellation.

A comparison of VDR computed for TMS and mTMS is shown in tab. 2.2. In all
recording sites (CS1-CS5), VDR is significantly higher for the mTMS algorithm. In ad-
dition, moving away from the ventricles (from CS1 to CS5) VDR decreases, probably
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Table 2.2: Median (25% − 75% percentiles) of VDR and PP computed on real AEGs (‡p <
0.05, †p < 0.01,∗ p < 0.001)

TMS mTMS

VDR CS1 6.71(3.24− 9.88) 8.15(4.91− 11.52)∗

CS2 5.48(2.01− 9.56) 6.82(3.42− 10.84)∗

CS3 1.44(0.13− 6.08) 2.73(0.29− 7.52)∗

CS4 0.77(−0.90− 3.65) 1.60(−0.45− 5.36)∗

CS5 2.34(0.51− 4.88) 3.39(1.02− 6.34)∗

PP CS1 2.44(0.38− 3.55) 0.38(0.00− 0.97)∗

CS2 1.65(1.17− 2.72) 0.46(0.00− 0.78)∗

CS3 1.95(1.15− 3.55) 0.46(0.00− 0.78)∗

CS4 2.20(1.43− 2.96) 0.48(0.00− 0.99)∗

CS5 2.54(1.56− 2.86) 0.80(0− 1.18)∗

because of the larger distance from the ventricles which implicitly reduces the ampli-
tude of the ventricular complexes and their relevance on the AA. In fact, the amplitude
of the VA on the original AEGs (normalized to the background noise) decreases mov-
ing from CS1 to CS5 from 3± 1 in CS1 to 1.8± 0.5 in CS5.

Table 2.2 also shows the atrial power values for TMS and mTMS. A statistically
significant reduction in PP can be noted in all recording sites, in particular in CS1
which is the closest to the ventricles.

Value for the NMSE can not be computed on real data, being the true AA unknown.

2.9 conclusion

In this chapter, a new methodology to iteratively separate transient sources has been
proposed, discussed and then validated on both synthetic and real data. Also, a gener-
ator of synthetic AEGs has been proposed for the first time.

Autoregressive models were used for simulating VA locations in SR and AFL, a spe-
cific model for the atrioventricular conduction during AF, a Γ distribution for AAnear
locations and the dipole equation for generating the wave forms. Tuning the model
parameters allowed the generation of synthetic AEGs with properties similar to the
real ones.

All the synthetic AEGs were created using a single equivalent dipole. In SR, a pla-
nar wave was simulated by placing a set of parallel dipoles along a straight line and
employing eq. (2.24). This was reasonable for SR, AFL and type-I AF. For higher dis-
organized class of AF, it has been shown [79] that localized activity is given by the
summation of both near and mid-field effect. In fact, in real data, simple wave forms
are not present for Wells’ type-II, type-III and type-IV. It is worth noting that we con-
sidered only Wells’ type-I, type-II and type-III because type-IV is highly disorganized
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and the dipole model is not suitable. In such case, the AR model can describe the atrial
electrical activity.

Unfortunately, a realistic model of the inter-times among consecutive close-field ef-
fects during AF is not available yet. We proposed to use a Γ distribution for simulating
them.

The proposed unified approach for simulating AEGs provided reasonable results.
Indeed, the SC and WMS increased in function of the Wells’ classification, in particular,
the values of the latter were in the range of those showed in [85].

In order to test the performance of the new algorithm, a specific application was
considered. The separation of VA in AEG is the most important preliminary step for
almost all the subsequent analysis of AEG. The beat-to-beat variability in the morphol-
ogy of the QRS complex might induce the classic TMS method to leave residuals of
cancellation with large localized power. To overcome this problem, while constraining
the shape of the template not to vary too much from what suggested by TMS, we
modulated its shape, via an optimization procedure, so that the power of each AEG
interval after separation is constrained to have power levels similar to the nearby atrial
activity.

The main findings of this study are: i) the modulation of the TMS template improves
the separation during noisy scenario; ii) the separation of VA from AEG during AF has
been improved; iii) the performance of the proposed method is largely independent
(at least in the range tested) of ventricular rate or AEG organization.

We showed using both synthetic signals and AEGs recorded during routine ablation
procedures that the proposed approach is superior to TMS alone. When compared
with the results of a previous study addressing the same issue [25], we note that: i)
VDR was on average comparable to the values previously reported; ii) mTMS did not
alter AEG signal outside the ventricular segment; and iii) mTMS was firstly tested on
simulated data which permitted a limited but objective performance evaluation.

This work expands the concept we have recently proposed in [78], i.e., to modulate
the TMS template to obtain better VA cancellation. While in [78] a preliminary attempt
to solve the problem of TMS poor cancellation has been anticipated, this work formal-
izes the solution. In particular, we showed that the new proposed strategy to modulate
the template and keep the residual power in the range of the expected atrial one, pro-
vides good results. We quantified the improvement using NMSE, VDR and PP for the
simulated data, and VDR and PP for the real data. A limitation of the study is to rely
only on data collected from three patients. However, the extensive analysis made on
synthetic signals offered a severe methodological workbench.

Another limit of our approach is that temporal relations among samples are lost.
In fact, the element of the diagonal matrix W are selected independently from each
other by MPSO. The problem might become relevant when the residual signal con-
tains localized atrial activity. In fact, in these situations, part of such activity might
be inadvertently canceled along with the ventricular one. However, the results of our
simulations showed that this problem is of limited importance with the parameters
selected in the fitness function.
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Finally, in this work we employed MPSO for the selection of the coefficients. Other
algorithms could have been used, however the large number of members that compose
the particle swarm makes MPSO impressively resilient to the problem of local maxima,
in comparison to other global maximization strategies such as simulated annealing
[76].





3
M O D E L - B A S E D F E AT U R E E X T R A C T I O N :

C H A R A C T E R I Z AT I O N O F T H E WAV E P R O PA G AT I O N

This chapter describes the formalization of a new index of organization for transient
phenomena or wave propagation based on symbolic analysis. It employes both mor-
phological, temporal and organization features to produce an unified parameter to
represent the local status of a system.

3.1 sources modeling

Sources are modeled as in eq. (1.2). A set of measurements Nm is available over time
in which both transient and continuous sources are mixed linearly.

3.2 organization degree for wave propagation : a novel metric

The new parameter aims to characterize the degree of organization of the wave propa-
gation merging the information collected by a set of sensors. Let’s give a simple exam-
ple to introduce the main idea.

Consider a classical problem of weather forecasting in which the air flux in a partic-
ular geographic region is employed to determine the probability of raining. Pressure
sensors are normally used to convert the velocity of the wind in pressure. However,
the pressure is a scalar quantity and so, it does not carry information regarding the
direction of the air flux. When employing more than a single pressure sensor, other
information as direction of propagation, curvature of the wavefront, etc. becomes avail-
able. Such fact permits to conclude that the level of pressure and the order of arrival
of the wavefront on a set of sensors can describe the local status of that region, with an
accuracy dependent on the number of sensors employed.

Moreover, the evaluation of the randomness of patterns, i.e., pressure, direction, cur-
vature, etc., aids to characterize the phenomenon over time.

31
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In such context, a novel feature, the organization degree (OD), based on morphol-
ogy, time and regularity/complexity has been proposed for characterizing traveling
phenomena [86]. Figure 3.1 shows the scheme for the composition of the feature to
study.

Figure 3.1: Structure of the algorithm for the composition of the new organization index.

First, the morphology of the waves measured by a set of sensors is classified consid-
ering a predefined set of classes. To do that, a clustering procedure can be considered
to characterize the morphology. Figure 3.2 shows a schema of two possible signals.

Second, the time or the order of arrival of the wave on the sensors plays an important
role in the definition of the direction of propagation. A practical way to define such
time instant could be the barycenter of the signal when the wave goes through the
sensors.

Third, a different symbol is assigned to each morphology and each order of arrival.
This step builds a sequence of symbolic words.

Finally, the word sequence can be used to determine the organization or complex-
ity degree. It is worth noting that every symbolic-based parameter from Information
Theory can be applied (e.g., Shannon Entropy, Conditional Entropy, etc.).

3.3 application of the organization degree

In this section, the OD will be implemented, discussed and applied on AEGs during
normal sinus rhythm or atrial fibrillation.

AEGs contain wavefronts, i.e., localized atrial activity (LAA), travelling on the atrial
surface. The electrodes are capable to measure such local electrical potential.

For this specific application, the new parameter, considering also the order of arrival
of the wave on the electrodes, could aid to characterize the organization of the atrial
activity and possibly helping physicians to locate the most suitable sites to perform
the ablation (see sec. 6.2).
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Figure 3.2: Two signals with only transient waves (located in dashed circles).

3.3.1 definition of event

In order to build the symbolic word, it was necessary to detect the atrial activity on each
electrode (see sec. 3.4.3). Such activity was associated with the triggering of an event
(see fig. 3.3). The concept was to consider the atrial activities detected on different
electrodes as part of same event. Consequently, when no wavefronts were detected,
no events were triggered. All the wavefronts whose their barycenter were within a
maximum time τE after the first detection, were considered belonging to the same
event. In here, τE was set to 50 ms. The barycenter of wavefront was called activation
time (AT) [85].

3.3.2 morphological feature : clustering procedure

For each event we defined a window of 90 ms centered on the AT and we built an
input matrix containing the waves coming from all the leads. (Thus the size of the
input matrix was 90×N being N the number of detected waves).

Principal component analysis was applied to reduce the dimensionality of the input
matrix. We selected a number of principal components (PCs) that covered at least
the 90% of the total power. The number of PCs can be either kept fixed or selected
independently for each set of electrodes. Here, PCs were selected independently.

We used K-means, an unsupervised learning method [87], for automatically detect-
ing clusters because this algorithm is usually robust and able to generalize quite well.
Also, it is not necessary to select a threshold on distances between clusters.

Since the initialization of the centroids was random, we reinforced the procedure re-
peating the training 10 times and taking into account only the solution that maximized
the variance between centroids. The number of clusters was set to 4.
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Figure 3.3: Events detected in SR (a) and AF (b). The position of LAA waves is marked with a
triangle, while the thick black line is the mean template of the cluster. Each event is
bracketed by a 50 ms window (sketched lines).

Figure 3.4 shows the result of the clustering procedure for a subject in AF. It is
interesting to notice that the shapes of the waves are grouped in well defined clusters
even when using only the first two PCs.

3.3.3 word composition

Every event was coded by words of 6 symbols; the first three denoted the order of
arrival of the wavefront on the electrodes, while the others coded the shape of the
cluster. In the case of no activations, in one or two electrodes, they were encoded using
a special value (zero).

The words were composed as (t1,t2,t3,l1,l2,l3) where ty was the number of the
activated electrode linked to the corresponding shape, lx represented the cluster of the
electrode x. For example (2, 1, 0, 3, 4, 0) means that an event on two electrodes has
been found and the first activated electrode has been the second with a cluster equals
to 4. The second activated electrode has been the first with a cluster equals to 3.

3.3.4 computation of the od

The organization degree (OD) was calculated using the Shannon Entropy (SE) of a
series of words by

OD =
H0 −H

H0
(3.1)

where H was the SE of the series of words and H0 was the maximum SE obtainable
from uniform distribution composed by 492 different symbols, i.e., the total amount of
possible words having the definition described in sec. 3.3.3. OD was bounded between
0 and 1. When series were not long enough to provide a sufficient convergency of the
entropy’s estimate, we calculated the value of H0 by Montecarlo simulations.
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Figure 3.4: LAA waves during AF described by the first two PCs of the input matrix. Triangles
mark the centroids as found by K-means.

3.4 real data validation

3.4.1 dataset

The dataset was the same used in [88]. Briefly, it contained 10 subjects (8 males, 1
females, 1 not categorized; mean age 60± 6 years) suffering from either paroxysmal or
persistent AF. This dataset was generated in a study designed to evaluate the effect of
the pro-arrhythmic role of the autonomous nervous system, using isoproterenol (ISO).
Four different sets of bipolar AEGs were measured and named using the experimental
protocol phase (PP).

The protocol was divided into 4 phases:

1. Measurements in SR

2. Measurements in SR after infusion of ISO (SRISO)

3. Measurements in AF

4. Measurements in AF after infusion of ISO (AFISO)

Each sets contained the 12 standard leads for the surface ECG and 5 bipolar AEGs
recordings collected using a coronary sinus (CS) catheter (the electrodes were spaced
about 2 mm from each other and were linearly located along the catheter).
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3.4.2 preprocessing

A passband filter was applied to AEG to reduce the baseline wandering and the high
frequency noise (0.5-250 Hz).

The ventricular activity was present on the AEGs. Since the use of numerical filtering
was not helpful in this case (see chap. 2), the classic template matching and substraction
(TMS) [25] was used. Here, we decided to apply the classic TMS because the power of
the ventricular activity was relatively small.

3.4.3 activation time (at) detection

In order to estimate the position of the localized atrial activity (LAA), a set of numerical
filters was applied to the AEG as in [85]. An adaptive threshold was used to detect
peaks, and a blank period was selected (50 ms) to avoid double detections of the same
wave.

LAAs displaying a cross-correlation larger than 0.9 were used to build a template,
and these were aligned on the template (±4 ms); the process was repeated until con-
vergence was reached. The alignment increased the quality of the clustering procedure
described in the next section.

3.4.4 result

We applied the method on 7 subjects (3 subjects were discarded for the low quality
of the recordings). For every set of recordings, three spatially close bipolar electrodes
were analyzed: [CS1, CS2, CS3], [CS2, CS3, CS4], [CS3, CS4, CS5]. For each of them,
the OD was calculated and the median value was taken into account to describe the
organization of a subject during that specific protocol phase. The OD values obtained
in the different phases were compared by means of a paired t-test (p < 0.05).

The organization degree was also computed by using only words composed of three
symbols (instead of 6). When we considered the times of arrival, we termed the index
ODAT, and when the shapes were taken into account, we labeled ODS. The last one, i.e.,
ODS, was used to mimic and to compare OD with an index recently proposed by Faes
et al. [85] that was based on the evaluation of the similarity between morphologies of
LAAs.

Table 3.1: Organization degrees in AF. Mean(interquartile range); * p < 0.05

AF AFISO

OD 0.35(0.32− 0.36) 0.32(0.27− 0.35) *
ODAT 0.11(0.05− 0.11) 0.12(0.07− 0.15)
ODS 0.32(0.28− 0.35) 0.29(0.24− 0.34)
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The average heart rate in each protocol phase was: i) 72.77± 13.44 bpm in SR; ii)
91.51± 16.41 bpm in SRISO; iii) 114.82± 30.83 bpm in AF; and iv) 141.73± 30.64 bpm
in AFISO.

In all series, the mean value of the OD of SR was not significantly different to the
SRISO’s one. The results regarding the OD are summarized into tab. 3.1.

3.5 conclusion

The method proposed in this work was capable to distinguish different atrial activity
organizations. It supported the idea that considering both the shapes and the times of
arrival of the wavefronts could permit a more complete description of atrial organiza-
tion.

We compared the mean values of ODs between different phases of a clinical proto-
col which included administration of isoproterenol in SR and AF. During SR, the mean
values of ODSR and ODSRISO were not significantly different. This is reasonable be-
cause the adrenergic drug increases the heart rate while the wavefronts still come from
the same physical direction. In AF, the average OD values were significantly different
because of the increased complexity of the fibrillatory status induced by the drug, as
recently shown in [88] using linear and non-linear metrics applied on the inter-time
interval between LAAs.

We also built the organization index using only the times of arrival: if the same
pattern persists in time the organization degree is higher. However we preferred to
consider both the information provided by the shapes of the waves and their times
of arrival for a more thorough description of the biological phenomena. The results
confirmed our initial hypothesis. Also, we estimated the organization degree by using
only the information contained in the shapes of the wavefronts (ODS) or in the times
of arrival (ODAT). Both of them were not able to detect the changes in the organization
forced by the drug.

The method requires the selection of the number of bipolar electrodes used to con-
struct the codewords. Here, it was set to three. This was a compromise between a fine
symbolic description of the fibrillatory status, and the necessity to keep the number
of possible words limited (as it has a clear effect on the convergence and reliability
of SE estimates). However, the dependence of OD on the number of words should be
quantitatively addressed in the future.

Furthermore, future research should tackle the effects on the symbolic series of pre-
processing, ATs detection, length of the series and clustering. In particular, related to
the latter, PCA and K-means produced a reduction of the dimensionality of the prob-
lem (as in [89]), which was necessary to render reliable the entropy’s estimate. However,
using a small number of clusters (4), information might get lost as slightly different
dipoles could have been forced to stay in the same cluster.

In conclusion, the work presented highlights how the direction of wave propagation,
encoded in a symbolic word, can aid to describe the degree of organization of the fib-
rillatory status. However, the study is preliminary and requires further investigations.





4
M O D E L - B A S E D F E AT U R E E X T R A C T I O N :

A VA L I D AT I O N S T U D Y O F V - I N D E X

This chapter describes the validation of a new model-based feature, the V-index, using
real data. Such index has been proposed by Sassi and Mainardi [43] recently.

The V-index is capable to estimate the dispersion of the time of occurance of the
transient sources. When applied on ECG, it can quantify the spatial dispersion of the
ventricular repolarization providing an estimate of the standard deviation of the repo-
larization times of the myocytes across the whole heart.

This parameters is extracted on real data in three different dataset, including subjects:
i) under sotalol administration [90]; ii) under moxifloxacin administration [91]; and iii)
affected by Chagas disease [92, 93].

4.1 source model

The V-index is based on two models: i) an equivalent linear surface model; and ii) a
repolarization time model.

4.1.1 equivalent linear surface model

Sources are mixed linearly and a set of measurements is available over time according
to the model

ψ(t) = A


D1(t− ρ1)

D2(t− ρ2)

· · ·
DM(t− ρM)

 (4.1)
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where ψ is L×N measurement matrix (L is the number of leads and N is the number
of samples), A is the L×M transfer matrix and Di(t− ρi) is the ith transient source
that occurs at time ρi (M is the number of transient sources).

Defining

ρm = ρ̄+∆ρm (4.2)

where ρ̄ is the mean occurance time across transient sources and ∆ρm is repolarization
delay of the mth transient source, it is possible to derive the second order approxima-
tion of the equation (4.1) centered in ρ̄ as

D(t− ρm) = D(t− ρ̄) −∆ρm
dD(τ)

dτ
|τ=t−ρ̄ + · · ·

· · ·+ ∆ρ
2
m

2

d2D(τ)

dτ2
|τ=ρ−ρ̄ + o(∆ρ

3
m)

(4.3)

Naming Td =
dD(τ)
dτ |τ=t−ρ̄, lead factor w1 = −A∆ρ and lead factor w2 = A

∆ρ2m
2 , the

measurement matrix can be approximated by

ψ(t) ' w1Td +w2Ṫd +C (4.4)

The source model of eq. 4.1, proposed van Oosterom [44], is able to link the trans-
membrane action potential of the myocites with the surface ECG. Indeed, the surface
of the ventricle can be divided in M nodes (or cells) and the measured ECG ψ(t) is
given by a weighted summation of the action potential of every cell. The quantity −Td
is called dominant T-wave (DTW) by van Oosterom. Moreover, due to the properties
of the matrix A (each row sums to 0), the constant term C in eq. (4.3) is 0. This fact
reflects that constant electrical potential across the ventricles, at a given time, does not
produce any variation on the measurements. Finally, it is worth noting that in eq. 4.4,
the action potential of each myocites is approximated with a single AP function whose
derivative is the dominant T-wave.

4.1.2 repolarization time model and V -index

In 2011, Sassi and Mainardi [43] proposed a statistical model for the repolarization
times of the ventricular cells; their model was

∆ρm = θm + ϕ(k) (4.5)

where θm represented the fixed time of the repolarization of the m-node (a constant
property of the m-node), while ϕ(k) modeled the small random variations across
beats (a normal distribution with zero mean and variance depending on the heart
rate).
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Figure 4.1: Drawing of APs across the heart with the distribution of RTs.

Using eq. (4.4) and eq. (4.5), they developed a formula to estimate the dispersion of
the repolarization times by means of

Vl =
std(w2(l))

std(w1(l))
' sθ (4.6)

where l was the lead and the standard deviation was computed across beats.
The metric produces a vector of L estimates of the dispersion of the repolarization

times even if the value sθ is constant across leads. A lead-dependent part is added to
the metric and so, Sassi and Mainardi suggested to compute either the mean or the
median value of all those values to reinforce the final estimate. Figure 4.1 shows a
drawing explaining what the V-index measures.

This concept can be easily generalized to any other problems in which the followings
conditions are satisfied: i) the source model is composed by a linear combination of
transient sources (eq. 4.1); ii) the morphologies of the transient sources do not differ
too much (Di(t) ≈ D(t) for each i); and iii) the second order approximation holds, i.e.,
the dispersion of the repolarization times (∆ρm) is “small” enough.

4.2 V -index estimation algorithm

An iterative algorithm structure is proposed to estimate the lead factors and the dom-
inant T-wave, i.e., fitting of the model in eq. 4.4 on a T-wave. After the initialization of
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a first estimate of Td (using the first right-singular vector of the SVD of ψ, as proposed
by van Oosterom), the lead factors are determined by solving a linear system (being
ψ linearly dependent on w1 and w2 when Td is kept constant; see eq. 4.4). A new
dominant T-wave, i.e., a refined one, is determined minimizing the Frobenius norm of
the error between the measured ψ and the model in eq. 4.4, when considering the lead
factors previously calculated. Such technique is named operation splitting. Scheme in
fig. 4.2 shows the structure of the algorithm.

Figure 4.2: Scheme of the iterative algorithm for estimating the lead factors and the dominant
T-wave Td .

Four different algorithms for refining the dominant T-wave have been proposed
[43, 94]. The first one involved only numerical calculus in the determination of Td
and its first derivate. Indeed, the function Td can be calculated by means of the Eulero-
Lagrange equation. The first derivate was computed using the centered differentiating
formula. However, a 2th order approximation model (eq. 4.4) might not be appropri-
ate when ∆ρm is large. For such reason, higher order approximation models have
been studied employing numerical simulations, to provide a better approximation er-
ror and a lesser bias between the true sθ and the estimated V-index. Yet, numerical
differentiation becomes unstable due to noise present on real measurements. In order
to address such issue, three parametric forms were used for approximating the dom-
inant T-wave (using Levenberg-Marquardt fitting algorithm). The advantage of using
parametric forms was that they were differentiable analytically but, on the other hand,
the computational cost was higher, due to the non-linear fitting procedure.
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Parametric forms did not provide significant differences with respect to the numer-
ical algorithm for justifying an increase of the computational cost [94]. Hence, the nu-
merical algorithm was used for the estimation of the V-index in the studies described
in the following sections.

4.3 real data validation

In this section, three different studies on real data are carried out to validate the V-
index, and to verify whether it is sensitive to physiological changes in the dispersion
of the ventricular repolarization. The first two studies involve subjects under admin-
istration of two different drugs, i.e., sotalol and moxifloxacin, and in the last one, a
dataset of patients affected by Chagas disease is analyzed (see sec. 6.3.1).

Sotalol, moxifloxacin and Chagas disease are known to increase the heterogeneity of
the ventricular repolarization [95, 33, 96]. While sotalol is considered pro-arrhythmic,
increasing significantly the QT interval, moxifloxacin produces a prolongation of a few
milliseconds (around 10 ms). On the other hand, Chagas disease frequently causes
a progressive deterioration of the heart and it might affect the anatomy of the my-
ocardium (myocarditis, cardiomegaly). For such reason, it is hypothesized that the
abnormal enlargement of the myocardium could also alter the spatial distribution of
repolarization times across the heart.

In conclusion, the aim of the study is to test the capability of the V-index to estimate
the dispersion of the ventricular repolarization. The QT interval is reported as well (see
1.3 for its description).

4.3.1 datasets and protocol of the studies

4.3.1.1 sotalol

The study population was composed by 39 healthy subjects in which 12-leads 24-hour
digital Holter recordings were collected in three consecutive days (sampling frequency:
180 Hz; LSB: 2.50 µV). During the first day no drugs were administrated, and we used
the data collected in this day as reference baseline values. A 160 mg dose of sotalol was
injected the second day and a double dose was given the third one. In the third day,
only 22 subjects were involved in the study. This dataset was the same used in [97].

Sotalol was given at 8:00 a.m., while plasma concentrations were measured at 16
predefined subsequent time instants, which in the following will be referred to as
“time-points”. For protocol details, please refer to [95].

QT intervals, heart rate corrected according to the Bazzet formula (QTB), were pro-
vided with the dataset, and then used for comparison with the V-index.

4.3.1.2 moxifloxacin

The E-HOL-12-0140-008 dataset from the Telemetric and Holter ECG Warehouse (THEW)
was retrospectively analyzed. It contained 24-hour digital Holter recordings (12 stan-
dard leads, sampling frequency: 1 kHz, LSB: 3.75 µV) collected from 68 healthy subjects.
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For each participant, two registrations were available when either a placebo or moxi-
floxacin (a 400mg dose) were administrated. Drug’s serum concentration was assessed
at 11 time-points during the entire day.

QT intervals were determined using the algorithm described in 4.3.2 and then cor-
rected using the Fridericia formula (QTF) for a direct comparison with the Bloomfield’s
results [33]. They were determined as an average of QT values for beats with similar
preceding RR values, then corrected with the average of these RR interval lengths.

4.3.1.3 chagas disease

Data were collected at the Chagas Disease Outpatient Reference Center of the Univer-
sidade Federal de Minas Gerais, Brazil. The study was designed as an observational
cohort study and previously described in [98, 99]. Briefly, 113 patients aged 21 − 67

(mean: 42.5) were enrolled between 1998 and 1999 and completed a 10-year follow-up
period. The patients had a definite serological status showing a positive reaction to
Trypanosoma cruzi and were followed until death or the end of the follow up in 2008.
Death cases were not categorized, so no distinction was made between sudden, cardiac
and non-cardiac death. 14 out of 113 subjects died during a 10-year follow-up period.

Several laboratory analysis and ambulatory tests were collected at enrollment, among
which a 10minutes 3 lead Holter recording, at rest in controlled conditions. The record-
ings were performed with a Burdick (Altair) digital Holter recorder with 1000 Hz sam-
pling frequency and 10- or 16-bit resolution.

Two main analysis were performed. First, the average V-index was tested between
subjects who survived and who did not. Second, a multivariate survival analysis was
performed to assess the hypothesis that the V-index might be an independent prognos-
tic factor. The multivariate model included also prolonged QRS duration (> 133 ms),
left ventricular ejection fraction (LVEF, measured using the Simpson’s method) below
50%, ventricular tachycardia at either Holter monitoring or stress testing and median
T-wave amplitude variability (TWV) > 30 µV. For a definition of TWV please see [100].

The modeling strategy was enforced to reduce the risk of over-fitting because of
the small sample size. The “optimism” of the model (to be limited) was evaluated
according to Harrell [101]. Adjusted (“shrunk”) regression coefficients were calculated
using the linear shrinkage method [102].

4.3.2 preprocessing and fiducial point detection

ECG recordings were preprocessed using a bandpass Butterworth filter (3th-order, pass-
band: 0.5− 40 Hz) to reduce powerline interference, baseline wandering and high fre-
quency noise. After filtering, the baseline of all signals was adjusted: for each channel,
the mode of the ECG’s samples distribution (computed using a bin size of 75 µV) was
identified. Then, ECG samples belonging to the modal bin were linearly fitted, and the
obtained regression line subtracted from the signal.

Beat locations were provided for the moxifloxacin dataset, and detected for the so-
talol and Chagas data using a multilead detector based on a modified version of OSEA
(EP Limited, MA, USA, 2003). Then, the T-waves were segmented; in particular, the



4.3 real data validation 45

end was determined using the Surawicz method [103]. This procedure does not need
to be accurate because the V-index has proven to be robust to displacement of fiducial
points [104].

The quality of the leads was determined as the average crosscorrelation between a
mean QRS complex and each ones. A lead was considered good when such average
was higher than 0.9.

4.3.3 data analysis and parameter computation

For the sotalol and moxifloxacin dataset, three consecutive windows, 10 minutes each,
were analyzed at every time-point. The values of QT or V-index obtained in the three
windows were then averaged. For the Chagas data, only a 10-minute window was
available.

The computation of both QT and V-index required a heart rate to be approximately
“stationary”. Therefore, beats were selected using a criterion similar to the “binning”
procedure proposed by [105]. A beat was considered “stable”, and included into the
computation, if the two preceding RR values were within±25 and ±50ms, respectively,
with respect to a constant R̂R value. Considering the beats in a given ECG segment,
R̂R was selected such to maximize the number of beats (typically it corresponded to
the median value, but not necessarily). This approach was used for the sotalol and
moxifloxacin data while for the Chagas data, a different procedure was used to select
beats. Briefly, beats were selected only if their RR intervals were close enough to the
mean RR. The threshold was adjusted to be as small as possible and to contain at least
60 beats, for a direct comparison with [98].

The V-index was estimated using the algorithm described in sec. 4.2. A value of
V-index was obtained for each leads. We employed their average as overall estimate
of the V-index. The V-index was determined only when, at least 3 good-quality leads
were available (see 4.3.2), and 64 stable beats for the sotalol and moxifloxacin data, and
60 for the Chagas dataset were selected.

4.3.4 results

4.3.4.1 sotalol

The plasma concentrations of sotalol is shown in 4.3. The maximum values were mea-
sured after around 3 hours from administration. The time evolution of V-index and
QTB is shown in 4.4.

After each sotalol’s dose administration, both V-index and QTB were statistically
larger than the time-matched values at baseline (day 1 vs day 2 and day 2 vs day 3),
for the majority of the time-points (p < 0.05, after Bonferroni’s correction for repeated
comparisons). An estimate of V-index was not available for each subject at every time-
point, due to poor signal quality or to a small number of stable beats (the average
percent of subjects for which a V-index value was available in a time-point was 75.3%).
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Figure 4.3: Mean and standard deviation of the serum concentration of sotalol (a) and moxi-
floxacin (b) over time. Dashed lines are the 25th and 75th percentiles, respectively.
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Figure 4.4: Mean ± standard deviation of V-index (a) and QTB (b) values during day 1 (no
drug), day 2 (single dose of sotalol) and day 3 (double dose of sotalol). ∗: time-
instants at a which statistically significant differences were obtained (paired single-
tail Wilcoxon test, p < 0.05); 4: significance was retained after Bonferroni’s correc-
tion. The standard deviation was estimated as 1.4826×MAD, where MAD is the
median absolute deviation, to reduce the possible impact of outliers. For clarity,
only a selected number of time-points was included in the figure.

The maximum value of V-index occurred on average after 5.64 hours after adminis-
tration, on day 2, and after 2.71 hours, on day 3. QTB peaked about 4.27 hours from
administration, at day 2, and after 2.05 hours, at day 3. Both indexes’ maximum values
were statistically different (paired single-tail Wilcoxon test p < 0.05) from baseline, at
day 2 (V-index baseline: 27.79 ms ± 4.89 ms vs peak: 60.13 ms ± 18.52 ms; QTB base-
line: 387.07 ms ± 19.84 vs peak: 437.76 ms ± 32.05 ms) and at day 3 (V-index baseline:
30.32 ms ± 4.46 ms vs peak: 79.79 ms ± 27.60 ms; QTB baseline: 379.36 ms ± 15.26 ms
vs peak: 447.97 ms ± 20.39 ms).

The relative percent variation of V-index at peak was statistically higher than that of
QTB in both day 2 and day 3 (day 2: V-index% peak: 114.77% ± 33.15% vs QTB% peak:
12.13% ± 2.85%, p = 1.911× 10−7; day 3: V-index% peak: 188.75% ± 53.58% vs QTB%
peak: 18.47% ± 2.85%; paired single-tail Wilcoxon test p < 0.05).
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Figure 4.5: Mean ± standard deviation of V-index (a) and QTF (b) values over time, after
placebo and moxifloxacin administration. ∗: time-instants at which statistical sig-
nificant differences were obtained (paired single-tail Wilcoxon test, p < 0.05); 4:
significance was retained after Bonferroni’s correction. To reduce the possible im-
pact of outliers, the standard deviation was estimated as 1.4826×MAD, where MAD
is the median absolute deviation. For clarity, only a selected number of time-points
was included in the figure. In panel (b), the difference in QTF after moxifloxacin
administration was significantly larger than 10 ms, confirming that the statistical
sensitivity of our setup was coherent with what expected in [33, 32].

4.3.4.2 moxifloxacin

The plasma concentrations of moxifloxacin is shown in 4.3. As for the sotalol, the
maximum values were measured after around 3 hours from administration.

The time evolution of V-index and QTF is shown in 4.5. On average, in each time-
point, V-index values were available for 94.28% of the subjects). As shown, at several
time-points, V-index and QTF values were significantly different from the correspond-
ing values in the placebo arm.

Maximum values were reached, on average, after 5.01 hours for V-index and after
4.37 hours for QTF. Peak values were statistically larger than those during baseline
(moxifloxacin arm, V-index baseline: 30.70 ± 8.32 ms vs peak: 40.48 ± 7.61 ms and
QT baseline: 404.29 ± 29.05 ms vs peak: 426.77 ± 36.67 ms; paired single-tail Wilcoxon
test p < 0.05). The relative percent variation of V-index at peak was statistically higher
than that of QTF (V-index: 34.56% ± 24.60% vs QTF: 5.56% ± 2.98%; paired single-tail
Wilcoxon test p = 3.640× 10−11).

4.3.4.3 chagas disease

The V-index was determined on each recording but on three cases. Those values larger
than 100ms were excluded from the analysis because estimated on poor quality signals
and/or with small number of stable beats. After excluding the bad estimates, the V-
index was computed on an average of 76± 19 beats.

The survivors had an average V-index and QTB value smaller than those of non-
survivor (V-index S: 31.2± 13.3ms vs NS: 41.2± 18.6ms, p = 0.029; QTB S: 420.0± 30.2
vs NS: 443.2± 36.6, p = 0.022; single-tail Wilcoxon rank sum test). Boxplots of V-index
and QTB are given in fig. 4.6 for both S and NS.
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Figure 4.6: Boxplot of the V-index (a) and QTB (b) values for the surviving (S) and non-
surviving (NS) subjects.
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Figure 4.7: ROC curve (a) and Kaplan-Mayer curves (b) of V-index in the survival analysis.

The V-index was dichotomized at the cut-off value 36.3 ms determined as the value
which maximized positive and negative predictability in the ROC curve (the point at
which sensitivity and specificity were equivalent and equal to 71.4%). The area under
the curve was small for both V-index (0.672) and QTB (0.704). Figure 4.7 shows the
ROC curves for V-index and QTB, and the Kaplan-Mayer curves for V-index.

A V-index larger than 36.3 ms was related to an elevated risk of death in a univariate
Cox proportional hazards analysis (hazard ratio, HR = 5.34, p = 0.0046) and the log-
rank χ2 test (p = 0.0022) suggests a significant distinction on mortality across the
two populations. Figure 4.6 shows the Kaplan-Meier curves when the V-index was
dichotomized.

Finally, once dichotomized at 36.3 ms, the V-index retained its prognostic value in
a Cox proportional-hazards analysis, after adjustment for the other four variables con-
sidered: prolonged QRS duration (> 133 ms), left ventricular ejection fraction (LVEF,
measured using the Simpson’s method) below 50%, ventricular tachycardia (VT) at ei-
ther Holter monitoring or stress testing and median TWV > 30 µV. These thresholds
values were determined in [99]. The significance was preserved for any of the five fac-
tors, even when the shrinkage method was used to protect against over-fitting on small
sample size.

Table 4.1 contains the results of the analysis. The shrinkage factor was s = 0.918
(likelihood ratio χ2 = 56.71, degrees of freedom: 5).
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Table 4.1: Multivariate Cox Proportional-Hazards Analysis of risk of death in Chagas disease
patients.

β coefficient Shrunk β coefficient SE Hazard ratio 95% CI

LVEF < 50% 1.80 1.65 0.71 5.19 1.30− 20.73
VT 2.24 2.05 0.82 7.74 1.56− 38.38
QRS > 133 ms 2.14 1.95 0.82 7.05 1.42− 35.01
TWV > 30µV 2.44 2.22 0.85 9.24 1.75− 48.66
V-index > 36.3 ms 1.52 1.39 0.66 4.00 1.09− 14.66

4.4 conclusion

In this chapter, a preliminar validation of a new index of dispersion, i.e., the V-index,
has been described. When applied to ECG, such index estimates the heterogeneity of
the ventricular repolarization as a measure of the standard deviation of the repolariza-
tion times of the myocites.

In particular, the V-index is found to be associated with an increase in the ventric-
ular heterogeneity when sotalol is administrated. Indeed, sotalol is known to be a
potassium channel-blocker and a β-blocker [95], and it is normally used for the sup-
pression of cardiac arrhythmias. However, an important side effect is to significantly
prolong the action potential of the midcells [106]. Such block is related with a high risk
of genesis of lethal arrhythmias as Torsade de Pointes. Therfore, a high heterogeneity
of the ventricular repolarization as well as a prolongation of the QT are expected when
sotalol is administrated. In this context, the V-index was highly correlated with the QT
interval in response to the plasma concentration of the drug for both single and double
dose.

Similar results are obtained with the administration of moxifloxacin. Such drug pro-
duces a small increase of the QT interval (≈ 10 ms; [33]) but it is not considered pro-
arrhythmic (in fact it is typically used for drug safety evaluations such as in “thorough
QT study”). In this regard, the V-index is associated with an increase of the spatial het-
erogeneity at the peak plasma concentration (> 20% with respect to baseline) and also,
it was correlated with a prolongation of the QT interval. Our results are in agreement
with those of Chen et al. [107] on dogs where, at different moxifloxacin concentrations,
they noticed that the prolongation of the action potentials duration was more promi-
nent in the endocardial region than in the epicardial one.

In addition, a structural remodelling of the heart, such as hypertrophy or destruction
of autonomic innervations, typically produced by Chagas disease effects, is supposed
to produce a high spatial heterogeneity of the ventricular repolarization. It has been
shown that an increase of the spatial dispersion of the ventricular heterogeneity [93],
measured by V-index, as well as an increase of the temporal dispersion [99], measured
by TWV [100], are both independent predictors of death.

Technically speaking, the computation of the V-index requires: i) to fit a model (see
eq. 4.4) on each T-wave; and ii) similarity between TMPs during repolarization. While
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the former is just related on the fitting algorithm itself, the latter is more challenging.
Indeed, to ensure the similarity, the ion currents crossing the cell membrane have to
be as stable as possible over time. To mitigate such issue, beats can be selected close
in time and with a stable heart rate because the same autonomic regulation is acting
on the ion influx. In this context, a proper selection of beats can result in more robust
estimates of the spatial heterogeneity.

The fitting algorithm is based on operation splitting and such can lead to a subopti-
mal solution. The problem, in fact, is not convex and the iterative procedure can result
in a solution that is a local optimum. Moreover, the implementation used estimates
a different dominant T-wave for each selected beat. Further investigations are needed
in this regard, for example, using different optimization solvers or mathematical ap-
proaches.

On the other hand, the computation of the V-index does not require a perfect posi-
tioning of the FPs [43]. Therefore, the temporal window for the fitting procedure can
be located on the T-wave in a rough way.

In conclusion, a new parameter, i.e., the V-index, able to estimate the temporal dis-
persion of transient sources has been discussed and tested on a few scenarios. Further-
more, when employed on the T-waves of ECG recordings, it is related to the spatial
heterogeneity of the ventricular repolarization. This parameter has proven to be sensi-
tive to either changes of ventricular heterogeneity induced by drug’s infusion such as
sotalol and moxifloxacin, or anatomical restructuring produced by the Chagas disease.

The V-index is still being validated. In particular, we are designing new experiments
on both synthetic and real data. The former can provide insights on the reliability of
either the estimate or the fitting algorithm with respect to the noise, while the latter
will be useful to clarify the clinical applicability of this index.
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N O N M O D E L - B A S E D F E AT U R E E X T R A C T I O N :

A C C E L E R AT I O N A N D D E C E L E R AT I O N C A PA C I T I E S

This chapter describes the study and the validation of two new features, the average
acceleration (AC) and deceleration (DC) capacity, recently introduced by Bauer et al.
[51]. This technique can be applied on any kind of signals to determine an average rate
of acceleration or deceleration.

An extensive set of simulations has been designed to provide insights into: i) the
relationships between AC/DC and classical spectral features; and ii) a proper selection
of the parameters on which both AC and DC depend on.

Afterwards, a validation study of AC/DC has been performed on real data involv-
ing an in-vivo near-term pregnant sheep model. This work was the first validation
of the PRSA method in a fetal animal model. The aim of the study was to determine
changes in AC and DC in response to fetal hypoxia and acidemia imposed by umbilical
cord occlusions (UCOs), and to evaluate their correlation with acid-base biomarkers.
Moreover, we investigated which ranges of the PRSA’s parameters led to have maximal
correlation with the acid-base biomarkers.

5.1 introduction on phase-rectified signal analysis and accel-
eration/deceleration capacities

Phase-Rectified Signal Averaging (PRSA) is a methodology capable of extracting quasi-
periodic oscillations out of noisy and non-stationary signals. A quasi-periodic behavior
is defined as a patch of periodic signals built by external interferences, typically the
control system. The aim of such technique is to compress the signal into a much shorter
sequence, i.e., PRSA, in which only the relevant quasi-periodicities of the original series
are present [48].

51
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When applied on heartbeat interval time series (RR), it provides two measures to
quantify the average cardiac acceleration (AC) and deceleration (DC) capacity of the
heart rate.

When applied on heart beat interval time series (RR), AC and DC have proven to
be predictors of risk in several clinical scenario [108, 50, 49, 109]. Of note, Bauer et
al. [51] showed that DC was a better predictor of risk of death than left-ventricular
ejection fraction (LVEF) and standard deviation of normal-to-normal intervals (SDNN)
in myocardial infarction.

The computation of AC/DC is made into two steps. First, a list of anchor points is
determine using the following rule

T∑
k=0

RR(i+ k) >
T−1∑
k=1

RR(i− k) (5.1)

where T is a parameter of the PRSA and i is a possible candidate. The value of i will
be inserted in the anchor point list only if the previous relation holds. Equation 5.1
determines the anchor point list for the deceleration capacity because it searches in
the RR series all the segments in which an average deceleration of the heart rate, as
function of the T value, occurs. The anchor point list for the acceleration capacity can
be determined inverting the inequality sign in eq. 5.1 (the equality sign is avoided in
both capacities). It is worth noting that such framework can be applied on signals from
different domains.

Second, the PRSA is obtained aligning and averaging all the windows of length 2L
centered on their anchor points.

Third, the capacity is determined

DC/AC =

s∑
k=0

PRSA(i+ k)

2s
−

s−1∑
k=1

PRSA(i− k)

2s
(5.2)

where s selects the number of points involved in the computation of the capacity.
Summarizing, the calculation of AC and DC depends on three parameters: T , L and

s. In particular, T plays a role in the selection of the anchor points, L defines the half
of the length of the PRSA and s determines the number of samples to consider for the
computation of both capacities. (Refer to [110] for their complete description).

Despite the proven capability of AC/DC on several clinical scenarios, what they
can really capture on an RR series, and what roles the parameters play, are still mat-
ter of investigation. To give an example, it is unclear to what extent AC and DC are
correlated with sympathovagal modulation of the autonomous nervous system (ANS).
Indeed, it is speculated that AC and DC could be related with the sympatho and vagal
modulation respectively [109].

Furthermore, the values of the parameters on which AC/DC are dependent have
been typically set to those that provided the best classification rate for the specific
application.
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Figure 5.1: Example of UCOs with different growing and decreasing rates during umbilical
cord occlusion.

5.2 role of the parameter L , T and s by means of numerical sim-
ulations

An extensive set of numerical simulations was performed to provide insights about
the meaning of AC/DC and for a more appropriate selection of the parameters [111].
In particular, the aims of the study were to: i) further clarify the influence of these
parameters on AC/DC values; ii) evaluate the correlation between AC and DC; and iii)
explore the relation between AC/DC and traditional spectral parameters. The simula-
tions were designed considering both physiological and non-physiological models.

5.2.1 simulation design

Three different sets of numerical simulations were prepared. L = 40 was consistently
used in all of them.

First, the changes induced by different power spectra on AC/DC were evaluated
varying the phase of the poles of a 2nd order autoregressive (AR) model, between 0
and π (step 0.01), while normalizing the variance of the signals at 1 (the PRSA signal
depends linearly on the variance of the series). Average measures were determined on
30 realizations of 3000 samples each. The hypothetical sample frequency was set to 2.5
Hz. Such analysis was repeated for s between 1 to 20 and T = s or T = 1.

However, synthetic signals obtained from 2
nd order AR models, contained only a

single periodic component. To have more realistic series (in adult human heart rate
at least 3 components are present, typically labelled VLF, LF and HF), 93 AR models
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Figure 5.2: Example of location of poles of the 2nd order AR model (a) and its power spectrum
(b). Sample frequency fs = 2.5 Hz.

were fitted on 300 samples-long artifacts-free RR series, one for each subject in the
Physionet’s nsr2db (healthy) and chf2db (congestive heart failure) databases. Models’
orders were significantly larger than 2 (minimum model order was 8, fulfilling Akaike’s
information criterion and Anderson’s whiteness test). For each AR model, average AC
and DC values were determined on 30 synthetic series, varying s = T from 1 to 20. The
power of the signals was normalized to 1.

Sawtooth-like heart rate trends1 (e.g., fig. 5.1) were employed for the third set of sim-
ulations, to assess the impact of time-reversal symmetry (or lack-of, as in asymmetric
trends, i.e., displaying different time-constants for the growing and decreasing traits)
on AC/DC. Trends y were generated solving the ordinary differential equation:

ẏ = −τ−12 y−
(
τ−11 − τ−12

)
uy+ u, (5.3)

where u is the external input (u = 1 determines the presence of the trend), and τ1 and
τ2 are the time-constants of the growing and decreasing traits, respectively. For the
simulations, τ1 was varied from 5 to 50 and τ2 from 1 to 10. Finally, white Gaussian
noise was added to y (signal-to-noise ratio: 25 db). Average values of AC/DC were
obtained from 30 realizations, using s = T .

5.2.2 simulation results

5.2.2.1 varying location of ar models’ poles

First, the mean value of AC (or DC), for a given phase of the poles of the 2
nd order AR

models (fig. 5.2), was more affected by s than T (fig. 5.3d-f). Hence s played a major role
on selecting the frequency of the oscillations which most influenced AC/DC. Chang-
ing T surely modified the PRSA series by limiting its frequency content. However, if
PRSA is subsequently used to assess AC/DC, the band-pass filtering effects imposed

1 Sawtooth-like RR series are common, for example, in sport medicine, e.g., intervals training, or in fetal
animal models, e.g., umbilical cord occlusions. Within the context of UCO, the term u in equation 5.3
models the pressure signal occluding the umbilical cord and the series y varies from 400 to 800 ms, which
is typical for a sheep fetus.
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Figure 5.3: Bunch of examples of -AC and DC computed on a 2nd order AR model, when
varying T and s. The black circle indicates the zeros of the high pass filter
Hs(z) = 1

2s

∑s−1
i=0 z

−i − 1
2s

∑s−1
i=0 z

−i−s. The black square points the zeros of the
low-pass filter HT (z) = 1

T

∑T−1
i=0 z

−i (FIR filter of order T − 1). The sign × marks
the frequency to which AC/DC should be more sensitive, as predicted theoretically
by 0.371fs/s Hz (please note that in [110] the formula was derived for s = T ).
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Figure 5.4: Values of -AC and DC for sawtooth-like signals for T = s, when varying the time-
constants τ1 and τ2. For display purposes, values were rescaled in the interval 0
(black) to 1 (white).

by eq. (5.2) are predominant (fig. 5.3f) and changing T only affects frequencies in the
neighborhoods of the zeros of the low-pass filter applied on both side of eq. (5.1). Sec-
ond, no relevant differences were detected between -AC and DC for any values of s
and T (fig. 5.3d and 5.3e). The latter findings were quantitatively confirmed on higher
order models, where the mean values of -AC and DC were not statistically different
within the same AR model (t-test, p < 0.05). However, AC (and DC) differed between
models for a large range of s = T values (see fig. 5.5 for an example).

5.2.2.2 sawtooth-like heart rate trend

Notwithstanding AC and DC resulted practically identical on AR models in sec. 5.2.2.1,
-AC and DC clearly differed when using sawtooth-like signals (fig. 5.4) with asymmet-
ric trends. Indeed, both capacities varied independently, and DC was modulated by
τ1, which determines the growing trends (the “decelerating” part of the series) and,
on the opposite, AC by τ2 (the time-constant which dictates the “accelerations” in the
sequence).

However, when employing small values of T , while DC was largely independent
from τ2 (fig. 5.4d and 5.4e), AC was also slightly dependent on τ1 (fig. 5.4a and 5.4b).
This is due to the fact that for τ1 � T , simply due to short erratic fluctuations, AC
anchor points were selected also on the growing trends. On the other hand, for larger
values of T , the number of points in the decaying trends was comparable to T , reducing
the number of DC anchor points close to the transitions (and viceversa, increasing the
number of AC anchor points). This resulted in an increased dependence of DC on τ2
(fig. 5.4f).
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Figure 5.5: The influence of the ANS on AC/DC (T = s) is shown. First, the squared frequency
responses of the AR model fitted on a healthy and heart failure subjects are shown
in panel a). Second, the mean and the standard deviation of -AC/DC values com-
puted on such AR models (black=healthy and grey=heart failure) are plotted on
panel b). No statistical significant differences between -AC and DC were found for
both AR models.

5.2.3 conclusion of the synthetic simulations

The value of s, more than T , determines the frequency band (centered around f =

0.371fs/s) of the oscillations which lead to larger AC/DC values, at a fixed signal’s
power. On the other hand, the value of T plays a major role in the selection of the
anchor points, and having a low pass effect on the time series, it should be smaller
than the average time-constant of the trends of interest (e.g., τ1 and τ2 in fig. 5.4).

Moreover, a difference between the values of -AC and DC does not depend on the
shape of the power spectrum, which is unchanged after time-reversal of the series (the
anchor points of AC become those of DC). In fact, -AC and DC did not differ in AR
models with largely different spectral content.

A difference between the two capacities was found only when asymmetries in time-
constants of growing and decaying trends were present. Hence, AC and DC do not
simply reflect the change in power of selected frequency bands contained in the series.
On the contrary, they are strictly related to asymmetries present in the time series, and
so they might quantify different underlying regulatory mechanisms. Indeed, Bauer et
al. [51] showed that the predictive value of DC was higher than that of AC in the
stratification of risk of death in post-MI patients.

Of minor relevance, the simulations also confirmed that L should be larger than
the length of the period of the slowest oscillation of interest, and AC/DC are linearly
dependent on the power of the signal.

One limitation of the study was that we only used simulated series to study the ef-
fects of T and s on AC/DC. In the Bauer’s study [51], the optimal results was obtained
for s = T + 1. Therefore, from an application point of view, it is not clear if the selection
of s and T should be separated, and preliminary tests might be of help in each specific
application.



58 non model-based feature extraction : acceleration and deceleration capacities

5.3 real data validation

In this section, we applied the PRSA technique for the calculation of the acceleration
and deceleration capacities on the inter-time beat series (RR) collected from an in-vivo
near-term pregnant sheep model. Briefly, each sheep fetus has been led to hypoxia and
acidemia by means of umbilical cord occlusion. Indeed, the occlusions produce a lack
of oxygen and an autonomic response. The hypothesis of this work was that AC/DC
can be sensitive to different levels of hypoxia and acidemia. This work was the first
validation of AC/DC on an in-vivo animal model [90, 112, 113, 114].

5.3.1 clinical introduction

The labor exposes the fetus to repetitive transient hypoxic stress, i.e., lack of oxygen,
that can result in neurological permanent damages and death. Monitoring of the fetal
wellbeing or distress are thus of crucial importance to timely identify hypoxia and to
avoid acidemia.

Fetal heart rate (fHR) analysis by cardiotocogram (CTG) is widely used in clinical
practice for fetal surveillance during labor. However, it is characterized by high sensi-
tivity but low specificity; in fact, its role in decreasing perinatal mortality or cerebral
palsy, despite increase in the rate of deliveries, is still matter of investigation [115].
Other screening techniques have been proven to be effective in reducing the fetal dis-
tress. The analysis of ST-waveforms on fetal electrocardiograms (fECG) reduces the
number of instrumental vaginal deliveries for fetal complications [116]. Nevertheless,
they do not solve the issue of fetal acidemia detection [117].

Another way to assess the fetal wellbeing is the direct measurement of pH or lactate
concentration during partum by fetal scalp sampling. This procedure is not univer-
sally accepted as a standard of care, and, occasionally, may lead to complications [118].
Hence, further advances in fetal monitoring are needed to timely identify fetal hypoxia
and acidemia.

Power spectral analysis has been extensively used as a method to quantify HR
variability. When applied to fetal HR (fHR) series, several studies have proven that
changes in the power spectrum are related to fetal hypoxia and/or acidemia during
labor [13, 14, 16]. The variability of the fetal heart rate is strongly influenced by per-
turbations carried by the ANS regulation and the mother-fetus interaction. Moreover,
the phase desynchronizations due to maternal uterine contractions, ventricular ectopic
beats, miss-detected beats and signal losses determines a quasi-periodic behavior that
limits the application of spectral analysis [119]. In this context, PRSA and AC/DC
could be a reliable tool for a more robust estimate of the sympatho/vagal modulation
of the ANS.

The aim of the study was to determine changes in AC and DC in response to fetal
hypoxia and acidemia, and to evaluate their correlation with acid-base biomarkers.
An in-vivo near-term pregnant sheep model was used for the assessment. For PRSA
analysis, either the whole fRR signal was considered or the segments free of FHR
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decelerations imposed by UCOs. Moreover, we investigated on which ranges of the
PRSA’s parameters were maximally correlated with the acid-base biomarkers.

5.3.2 animal model

Nine near term pregnant sheep were employed as in-vivo model. Animal care followed
the guidelines of the Canadian Council on Animal Care and was approved by the
University of Western Ontario Council on Animal Care. The dataset was previously
described and analyzed [120, 121].

Briefly, after a period of rest (BASELINE), a 1-minute periodical mechanical compres-
sion of the ovine fetus’ umbilical cord was continuously alternated with a 1.5 minutes
of recovery. Three levels of occlusion strength, from partial to complete, were designed:
mild (MILD, 60minutes), moderate (MODERATE, 60minutes) and complete (SEVERE,
2 hours or until pH < 7.00 was reached). Results on these and additional animal mod-
els are reported in [120, 121, 122, 123].

Electrodes implanted into the left supra-scapular muscles, in the muscles of the right
shoulder, and in the cartilage of the sternum of the fetus were used to measure the
ECG which was sampled at 1000 Hz. Fetal blood samples were collected every 20
minutes to quantify the values of pH, lactate and base deficit (hereafter referred to as
“biomarkers”). The severe phase of UCOs was stopped when the pH dropped below 7.
Then, a recovery phase (RECOVERY) concluded the protocol.

fECGs were automatically analyzed to obtain the sequence of fetal RR intervals (fRR).
Due to the long time span over which the data were collected, heart beat misdetections
were common, especially during the umbilical compression. We considered suitable
for further analysis only those sheep (7 out of 9) which had more than 90% of correctly
located beats during MODERATE and SEVERE phases (gaps in the series were less
than 10% of the total time).

5.3.3 preprocessing

Fetal RR intervals greater than 1500 ms (40 bpm) were labeled as artifacts and sub-
stituted with an equivalent number of beats (calculated dividing the length of each
artifact by the median of the 20 nearby fRR samples). These reconstructed samples
were not used as anchor points in the PRSA analysis; however they contributed to the
selection of nearby anchor points. Furthermore, each fRR interval that exceeded the
preceding one by more than 20% was excluded from the anchor points’ lists.

5.3.4 protocol of the study

We analyzed fRR series obtained during the last 30 minutes of each UCO phase. The
rationale for this choice was that the hypoxic levels induced by UCOs were maximal
within the last part of each stimulation. Consequently, time-matched biomarkers’ val-
ues were those measured from the last blood sample in each UCO phase.
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Figure 5.6: Example of fRR series and umbilical cord occlusions pressure signal (bottom bold
line). Dashed boxes emphasize stable fRR intervals (without artifacts and UCO-
induced decelerations). Black stars mark artifacts or reconstructed fRR samples,
excluded from being anchor points in the PRSA analysis.
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Figure 5.7: Example of fRR changes during cord occlusion and subsequent recovery. Panel (a):
fRR during mechanical cord occlusion. The data belongs to the fetus of sheep #3
(tab. 5.1). Panel (b): fRR during recovery after UCO for the same case. Boxplots
summarize the values of fRR at a given time distance from the occlusion (or its
release). The model prediction is reported with a bold line. The vertical lines delimit
the “whiskers” and the + mark the outliers.

AC and DC were determined independently for each of the UCO phases by PRSA
analysis. We checked that more than 150 anchor points were available in each UCO
phase. The computation was performed for values of T in the range 1− 50with L = 100.
The correlation between AC/DC and biomarkers’ values was assessed by Spearman’s
correlation coefficient (p < 0.05 was considered significant).

UCO alters significantly the fHR series (fig. 5.6), and the influence of fHR on AC/DC
is still matter of investigation. For this reason, a second PRSA analysis was performed
after excluding fHR decelerations due to UCOs (hereafter referred as macro oscilla-
tions). “Stable” fHR intervals employed were located using the pressure signal applied
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Table 5.1: Median values and interquartile ranges (IR) of pH, lactate and base deficit in each
protocol phase.

Sheep τstim τrec

#1 9.63 6.46
#2 46.17 5.22
#3 34.56 4.30
#4 14.22 3.38
#5 34.65 7.88
#6 12.46 4.36
#7 11.76 5.61

Mean 23.35 5.32
Median 14.22 5.22
IR 12.11− 34.61 4.33− 6.03
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Figure 5.8: PRSA curve (DC) for a single case during BASELINE (bold line) and SEVERE UCO
(PRSA’s mean value was removed). The analysis was performed on stable fRR in-
tervals. The dashed box emphasizes the samples used for computing DC (T = 5).
Vertical dotted bars depict DC in the two cases considered.

on the umbilical cord during occlusion (fig. 5.6). At the beginning of each occlusion,
fRR decreased progressively to quickly recover when pressure was released. The time
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constants of the fRR during SEVERE cord occlusion (“stim”) and recovery (“rec”) were
estimated, for each sheep, by fitting the exponential model:

RRstim(t) = A(1− e
− t
τstim ) +B

RRrec(t) = Ce−
t
τrec +D

(5.4)

where τstim and τrec are two time constants (A, B, C and D are scalars necessary for
the fitting but not further considered in this study). Levenberg-Marquardt least-square
algorithm was used to estimate the parameters of the model for each sheep (median
R2 > 0.9). An example is reported in fig. 5.7 while tab. 5.1 lists the values of τstim and
τrec. The two sets of time constants were largely different (p < 0.05, paired Wilcoxon
signed rank test) suggesting that the recovery of the HR is far quicker than the onset
of the deceleration.

Table 5.2: Median values of pH, lactate and base deficit according to protocol phases. Interquar-
tile ranges are reported within brackets.

BASELINE MILD MODERATE SEVERE

pH 7.34(7.34, 7.37) 7.33(7.31, 7.34) 7.28(7.24, 7.30) 6.98(6.96, 7.07)
Lactate 1.60(1.33, 1.85) 1.65(1.40, 2.05) 3.80(2.68, 4.60) 11.40(5.20, 12.43)
Base deficit 1.08(0.31, 3.28) 0.29(−2.10, 1.06) −2.46(−3.85,−1.17) −14.07(−15.34,−12.64)

We considered stable (free from fHR decelerations) those intervals spanning 30 s af-
ter the end of each occlusion and ending at the beginning of the next one. The value of
30 s was selected to be larger than 3 times the longest recovery time, i.e., τrec = 8 s, so
that fRR is substantially back to the baseline value. By definition, stable baseline inter-
vals between decelerations were short (at most 1 minute each once removed artifacts):
they were concatenated to explore larger value of T .

In conclusion, for each UCO phase two sets of AC/DC values were obtained: 1)
from the entire fRR series (entire fRR); and 2) from stable baseline and free of FHR
decelerations fRR intervals extracted from the fRR series and then concatenated (stable
fRR). Two examples of PRSA curves are shown in fig. 5.8.

A paired Wilcoxon signed rank test was used to compare AC/DC values between:
BASELINE and MILD; MILD and MODERATE; MODERATE and SEVERE. A Bon-
ferroni correction for multiple comparisons was applied. A non-parametric test was
preferred because of the small number of samples.

5.3.5 results

Table 5.2 contains the values of the biomarkers (pH, lactate and base deficit) for each
protocol phase. As expected from the protocol’s design, there was a trend from BASE-
LINE to SEVERE UCOs.
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Figure 5.9: Relationship between AC and DC with pH for T = 4 (entire fRR series). The regres-
sion lines are also shown.

5.3.5.1 ac and dc change during protocol phases

Values of AC and DC followed a similar growing trend from BASELINE to SEVERE
UCOs. Table 5.3 reports median AC and DC values for each protocol phase and for
a few T values (PRSA was computed on the entire fRR signal). Differences between
phases varied according to the value of T used. The list of T values for which a statisti-
cally significant difference was found between successive phases (p < 0.05) is contained
in tab. 5.4. Summarizing, as the hypoxic-acidemia progressed, DC (for T = 2 to 5) and
AC (for T = 1 to 3) were different between MILD and MODERATE and then between
MODERATE and SEVERE. However, MILD phase was not distinguishable from BASE-
LINE. Parameters computed with higher values of T were different between MILD and
MODERATE only.

When repeated on stable fRR intervals, the results were confirmed but weaker, as
reported in tab. 5.5 and tab. 5.6. Specifically, while SEVERE was distinguishable from
MODERATE for T in the range 3 to 5, MILD and MODERATE were significantly differ-
ent only for large values of T . However, for T > 25, anchor points were selected using
fRR samples coming from two consecutive recovery periods, and, thus, the results were
less reliable.

Furthermore, AC/DC values, computed on a window of 5 minutes immediately
after the end of the SEVERE phase, were not statistically different from those during
the BASELINE phase (p > 0.05).
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Table 5.3: AC and DC absolute median values (in ms) when considering the entire signal (in-
cluding UCO-induced fHR decelerations). Interquartile ranges are reported within
brackets. Any AC or DC value (for MILD, MODERATE and SEVERE) is statistically
different from the corresponding one in tab 5.5 (p < 0.05).

AC BASELINE MILD MODERATE SEVERE

T = 2 2.30(1.55, 2.51) 1.92(1.56, 2.26) 4.32(3.40, 6.14) 6.57(4.21, 8.18)
T = 4 2.77(2.35, 3.56) 2.56(2.25, 3.91) 5.33(4.85, 7.12) 7.01(5.19, 8.71)
T = 6 3.27(2.99, 3.93) 3.14 (2.78, 4.45) 6.13(5.89, 7.77) 6.84(6.30, 8.45)
T = 10 4.07(3.60, 4.24) 4.06(3.59, 4.82) 8.09(7.07, 8.82) 6.40(5.82, 9.02)
T = 20 4.58(4.12, 4.66) 5.04(4.75, 5.50) 10.92(8.96, 11.21) 7.81(7.02, 10.60)

DC BASELINE MILD MODERATE SEVERE

T = 2 2.78(1.93, 3.79) 2.26(2.05, 3.19) 4.91(3.72, 5.85) 7.21(4.36, 7.55)
T = 4 3.00(2.47, 4.06) 2.86(2.65, 4.20) 6.19(4.93, 7.48) 8.92(5.89, 9.61)
T = 6 3.29(2.98, 4.42) 3.49(3.26, 4.60) 6.62(6.07, 8.45) 9.55(7.56, 10.14)
T = 10 3.74(3.46, 4.79) 4.44(4.19, 5.18) 7.69(7.37, 9.86) 10.40(9.30, 10.82)
T = 20 4.21(3.74, 4.96) 5.61(5.48, 5.88) 9.45(8.87, 10.22) 12.24(9.65, 14.66)

Table 5.4: Ranges of T in which a significant difference between two phases was found
(Wilcoxon signed rank test, p < 0.05). PRSA was performed on the entire signal
(including UCO-induced FHR decelerations).

BASELINE MILD MODERATE SEVERE

BASELINE - none - -
MILD - - any -
MODERATE - - - T 6 3(AC);

2 6 T 6 5(DC)

Finally, during UCO the values of AC/DC computed on the entire signals (tab. 5.3)
were significantly different from those obtained on stable series (tab. 5.5), and this was
true for each value of T (p < 0.05).

Comparing the values in tab. 5.2 with those in tab. 5.3, although the decelerations
imposed by UCOs are low frequency variations of the fHR, it is clear that the PRSA is
still influenced by them. In fact, for any value of T (even the smaller ones) AC (or DC)
computed on the entire fRR series and on stable fRR intervals were different (p < 0.05).

5.3.5.2 correlations with acid base balance

A significant Spearman’s correlation coefficient between AC/DC (computed on the
entire fRR series) and each biomarker of acid base balance was found for a large range
of T values (fig. 5.9 and fig. 5.10). However, maximal correlation (0.40 < ‖ρ‖ < 0.90;
p < 0.05) was for T in the interval 2 to 6, and was stronger for DC. Both AC and DC
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Table 5.5: AC and DC absolute median values (in ms) when considering stable (concatenated
baseline segments free of FHR decelerations) fRR intervals. Interquartile ranges are
reported within brackets. Any AC or DC value (for MILD, MODERATE and SE-
VERE) is statistically different from the corresponding one in tab. 5.3 (p < 0.05).

AC BASELINE MILD MODERATE SEVERE

T = 2 2.31(1.55, 2.53) 1.61(1.17, 2.11) 2.18(1.75, 2.85) 3.99(2.10, 4.34)
T = 4 2.77(2.36, 3.52) 2.14(1.68, 2.67) 2.79(2.47, 3.58) 4.45(3.10, 5.29)
T = 6 3.26(3.00, 3.87) 2.49(2.12, 2.96) 3.41(2.95, 4.20) 4.81(3.49, 5.22)
T = 10 4.07(3.61, 4.24) 3.01(2.46, 3.48) 4.31(3.31, 5.46) 3.99(3.84, 5.26)
T = 20 4.53(4.13, 4.68) 3.34(2.73, 4.41) 5.43(3.92, 6.25) 5.36(4.42, 5.94)

DC BASELINE MILD MODERATE SEVERE

T = 2 2.79(1.95, 3.78) 2.00(1.54, 2.95) 2.68(2.28, 3.13) 4.18(2.82, 4.44)
T = 4 2.99(2.50, 4.03) 2.37(1.85, 2.96) 3.11(2.89, 4.10) 4.87(3.57, 5.25)
T = 6 3.27(3.01, 4.36) 2.79(2.37, 3.26) 3.61(3.28, 5.13) 4.81(3.63, 6.11)
T = 10 3.73(3.49, 4.70) 3.22(2.81, 4.11) 4.60(3.67, 6.48) 4.83(4.49, 6.29)
T = 20 4.20(3.77, 4.86) 3.82(3.55, 5.10) 5.55(4.53, 7.59) 6.35(4.99, 7.45)

0 10 20 30 40 50
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

T

A
C

(a)

 

 
vs pH
vs −lactate
vs base deficit

0 10 20 30 40 50
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

T

D
C

(b)

 

 
vs pH
vs −lactate
vs base deficit

Figure 5.10: Spearman’s correlation coefficients between AC (a) and DC (b) and each acid-base
balance biomarker. PRSA was performed on the entire fRR series. Stars refer to
significant p values (p < 0.05). Lactate values were multiplied by −1.

correlated stronger to pH and base deficit, than to lactate concentration. For instance,
considering T = 4, we found a negative correlation among AC (its absolute value) and
pH (ρ = −0.85; p < 0.05), base deficit (ρ = −0.70; p < 0.05), and a positive correlation
with lactate (ρ = 0.53; p < 0.05).

Similarly, we found a negative correlation among DC and pH (ρ = −0.87; p < 0.05),
base deficit (ρ = −0.74; p < 0.05), and a positive correlation with lactate (ρ = 0.52;
p < 0.05).

When excluding decelerations imposed by UCOs, a significant correlation was found
for a narrower range of T values (fig. 5.11), the range was wider for DC than AC). How-
ever, these values matched those for which the correlation coefficients were maximal
in the previous analysis.
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Table 5.6: Ranges of T in which a significant difference between two phases was found
(Wilcoxon signed rank test, p < 0.05). PRSA was performed on stable (concatenated
baseline segments and free of FHR decelerations) fRR intervals.

BASELINE MILD MODERATE SEVERE

BASELINE - none - -
MILD - - T = 50 (AC); T > 45 (DC) -
MODERATE - - - 3 6 T 6 5 (AC);

4 6 T 6 5 (DC)
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Figure 5.11: Spearman’s correlation coefficients between AC (a) and DC (b) and each acid-base
balance biomarker. PRSA was performed on stable fRR intervals. Stars refer to
significant p values (p < 0.05). Lactate values were multiplied by −1.

5.3.6 discussion

The principal findings of the study are: 1) AC and DC increase with worsening of
acidemia; 2) AC and DC correlate to acid base balance observed at different phases
of hypoxic-acidemia; 3) PRSA computed with T = 2 to 5 best enhances differences
among protocol phases (this is particularly true for SEVERE cord occlusions), resulting
in the highest correlation between AC or DC with biomarkers; and 4) considering only
stable fRR segments or the entire fRR series led to different results (AC/DC values
obtained on stable fRR segments were smaller on average). Hence, fHR decelerations,
even if composed by low frequency components, induce changes in the PRSA series
and, consequently, in AC and DC.

5.3.6.1 ac and dc increase with worsening of acidemia

AC and DC identify different behavior of the fHR during acceleration and decelera-
tion, respectively. Nevertheless, it would be too simplistic to consider AC only as an
expression of sympathetic modulation and DC as an expression of parasympathetic
modulation. Rather, both AC and DC result from the interaction of parasympathetic
and sympathetic component, and represent an integration of several input signals such
as chemoreceptor, baroreceptor and others. The two components of the autonomic ner-
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vous system (ANS) operate at different frequency scales: sympathetic component in
low frequency domain, while parasympathetic both in low and high frequency do-
main, respectively. In PRSA computation, the s = T parameter determines an upper
frequency limit for the periodicities that mostly influence AC and DC [48]. For T = 1

high frequencies dominate the computation. At contrary, increasing values of T will
progressively also emphasize the contribution of low frequency components.

When looking at the absolute values of AC and DC we observed a clear increasing
trend with worsening acidemia. Indeed, during SEVERE UCOs (i.e., severe acidemia),
the AC and DC were maximal with respect to BASELINE. This trend was present
when analyzing the whole fRR series and for a large range of T values suggesting the
activation of both sympathetic and parasympathetic component during progressive
acidemia.

However, only a smaller range of T (2 6 T 6 5) was able to differentiate MOD-
ERATE vs SEVERE phase. The same was true for 3 6 T 6 5 when excluding fHR
decelerations. This would suggest that, for higher degree of acidemia, the frequencies
dominated by parasympathetic component become predominant. These findings are
in agreement with other reports that evaluated ANS response to hypoxia, but with dif-
ferent methodologies: 1) Frasch et al., in the same population of 7 near-term pregnant
sheep employed for this work, reported that the root mean square of successive dif-
ferences (RMSSD, a time-domain index mainly influenced by the vagal activity [124])
has the most pronounced changes during acidemia [122]; 2) Siira et al. found that in an
acute phase of hypoxia, without acidemia, there is an activation of sympathetic system,
while, when acidemia occurs, the vagal influence increases [13].

The activation of ANS by initial and acute hypoxia most likely constitutes a first line
adaptive response, and results in a more pronounced fHR modulation and a larger
cardio-vascular response. Indeed, in experiments on fetal lambs, acute fetal hypoxia
led to increased fHR variability representing a sign of adequate fetal compensatory
response [125]. Moreover, the predominant involvement of vagal tone has been asso-
ciated to a more efficient modulation of ANS [126]. In fact, in the presence of acute
hypoxia, the reduction in fHR (i.e., deceleration) is thought to be protective for the
fetus, because it reduces myocardial work and oxygen consumption [127], and is me-
diated by the chemoreceptors via the parasympathetic branch. Nevertheless, if there
is a prolonged hypoxic insult and overwhelming acidemia, parasympathetic activity
decreases [13], causing reduced fHR variability [128]. In fact, when the vagal regula-
tion becomes inadequate, some of the adaptive mechanisms (such as chemoreceptor-
mediated circulatory adaptation) might fail causing fetal brain damage, and ultimately
fetal death.

Interestingly, our data did not show the final fall in parasympathetic activity before
the pH reached the predefined threshold, most likely due to the acute nature of the
insult. This was confirmed by the rapid recovery (tab. 5.1 and fig. 5.7) that each animal
showed both for acid-base balance and PRSA parameters [120].
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5.3.6.2 ac and dc correlate with acid base balance

We found that AC and DC correlate to the biomarkers of acidemia, and this corre-
lation is significant both for fRR series that include and exclude FHR decelerations.
Interestingly, the correlation was stronger for pH and base deficit, and to a lesser ex-
tent for lactate concentration. This finding can be explained by the fact that both pH
and base deficit are strong stimulators of chemoreceptors which are highly sensitive to
the presence of hypoxemia, and, consequently, influence FHR modulation [129].

Moreover, we found that the correlation with acidemia was maximal for low values
of T . This would suggest that, in the presence of acute hypoxic insult, the low fre-
quencies dominated by parasympathetic branch are more responsive to the changes
of acid base balance. Several studies evaluated the correlation between fHR variability
assessed by spectral analysis and acid base balance, either during labor [13], or at birth
[14, 15]. Although, all studies confirmed that hypoxia and acidemia have a direct effect
on fHR variability, and thus on ANS, it is difficult to derive a common mechanism
for all studies because of profound methodological differences [16]. Nevertheless, our
findings are in agreement with those by Siira et al., who found a correlation between
high frequency bands at power spectral analysis of fHR variability and pH obtained
by fetal scalp blood sampling during labor [13].

5.3.6.3 changes in ac and dc varying the parameter T

The significance of the parameter T has been explored in adult cardiology, and a T of
1 − 2 has been found as the best value [49] (when T = 1, s = 2 might be preferred [51]).
Although some studies applied PRSA to fHR [50, 108, 109], the impact of changing
T when PRSA is applied to FHR has not been reported. We found that T value in
interval 2 − 5 best enhances the differences between progressive cord occlusion phases
(worsening acidemia).

Similarly, when evaluating the correlation with acid-base biomarkers, the best cor-
relation was observed for T value in the range 2 to 6. Very recent analysis in cardiac
patients also showed that application of a larger T makes PRSA more robust to arti-
facts and noise [130]. Thus, we suggest this time scale for an effective computation of
PRSA analysis, when detecting hypoxic-acidemic events in laboring fetuses. However,
the small sample size used requires a validation in a larger study.

5.3.6.4 excluding fhr decelerations in prsa computation

We wanted to evaluate if there were significant differences between stable intervals
of fRR series and the entire fRR series. The rationale was the fact that abrupt per-
turbations, such as uterine contractions, or in this case UCOs, may lead to a phase
de-synchronization in the fRR series. Interestingly, we found significant differences be-
tween AC and DC computed on the entire signal or on stable fRR signal. This was
true even for small values of T , hence, for high order frequencies. When interpreting
these findings it has to be taken into account that: 1) the frequency content of macro
oscillations is very limited (compared with those of other components of the fRR), and,
therefore, should be filtered out from the series when calculating PRSA; and 2) ca-



5.3 real data validation 69

pacity estimates should be independent from fHR decelerations when ANS regulation
does not change (at least for small values of T < 20). However, our results showed the
contrary. There could be two possible explanations. First, during UCOs, not only the
mean trend of the series changes but also the beat-to-beat relationships regulated by
ANS. Second, PRSA’s amplitude depends on the power of the oscillatory components
of the signal, and AC and DC may be influenced by severe fHR decelerations that
determine changes in total spectral power.

The analysis on the stable fRR segments seems to strengthen the first explanation.
Moreover, in order to address the issue of total power of the signal we computed
the standard deviation of normal-to-normal intervals (SDNN, [125]), a fHR variability
measure capturing all cyclic components responsible for the variability in the period of
recording and strictly related to the total power of the sequence. SDNN was statistically
indistinguishable between any two consecutive phases of the stable segments of fRR
intervals (paired Wilcoxon signed rank test, p > 0.05; data not shown). Therefore, the
total power cannot explain the difference in AC and DC between phases.

To summarize, we found differences in AC/DC between entire and stable fRR series,
that in our data series cannot be explained by the change in total power suggesting a
higher order influence of ANS on fRR series during decelerations. Which one of the
two phases (i.e., entire or stable fRR series) could be more valuable in a clinical scenario
remains to be evaluated.

5.3.7 conclusion on real data

In conclusion, our study has shown that PRSA-based analysis of fHR variability was a
sensitive tool for detecting hypoxia-induced autonomic activations. Overall, we found
the evidence of ANS activation in sheep fetus exposed to acute hypoxic-acidemic insult.
Such activation was more prominent at mid/high frequencies (which mostly influence
PRSA in the range 3 6 T 6 5), that correspond to a more relevant activation of the
parasympathetic branch). Moreover, the PRSA-based measures, AC and DC, were sig-
nificantly correlated with measures of acidemia with strongest correlation in a range
of high frequencies. We evaluated the impact of the parameter T and we offered sug-
gestions for its choice.

5.3.7.1 limitations and strengths of the study

This is the first validation, in an in-vivo pregnant sheep model, of PRSA analysis of
fHR to detect different acid-base states during worsening hypoxic-acidemia. Studies
performed on in-vivo models (usually pregnant sheep) permit to simulate near-term
pregnancies, and repetitive UCOs to mimic uterine contractions. Moreover, the data
such as fRR series, pH, base deficit and lactate concentration were obtained directly
from the fetus during the entire course of the experiment.

A limitation of the study was the small sample size. However, it was adequately
powered to detect differences of DC and AC at different hypoxic phases.
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5.4 conclusion

In this chapter, we described our work, i.e., a set of extensive numerical simulations
and a preliminary validation of the acceleration and deceleration capacities, computed
by PRSA.

The use of numerical simulations has provided insights into the meaning of AC/DC.
Although, the computation of the PRSA contains a non-linear step, i.e., the selection of
anchor points, it is clear that T and s play an important role as frequency band selectors.
The parameter s, more than T , acts as a high pass filter and it is primarily involved in
the computation of AC and DC from the PRSA and then, AC/DC are more sensitive to
it. On the other hand, the value of T imposes T − 1 equispaced zeros in the frequency
domain making some frequency bands more relevant than others. It is worth noting
that the highest sensitivity of AC/DC can be predicted using the formula 0.371fs/s Hz
(excluding T = 1 that is a particular case). Therefore, a proper combination of T and
s permits to maximize the sensitivity of AC/DC in specific frequency bands. These
results are preliminary confirmed by several clinical studies. For example, in the study
of Bauer et al., the PRSA analysis was applied to RR series of subjects after myocardial
infarction [51]. The myocardial infarction is characterized to a reduced SDNN and an
altered sympathovagal regulation [131, 132]. This means that the frequency band to
select must be in the range influenced by the autonomic nervous system. Bauer et al.
used a value of s = 2 and T = 1 that corresponded to a maximum sensitivity around
0.23 Hz at 75 bpm [111].

The validation study on data coming from an in-vivo near term pregnant sheep
model has shown that PRSA analysis of fHR variability was a sensitive tool for detect-
ing hypoxia-induced autonomic activations. We found the evidence of ANS activation
in sheep fetus exposed to acute hypoxic-acidemic insult.
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P H Y S I O L O G I C A L B A C K G R O U N D

This chapter has been thought for making more understandable some algorithmical
choices presented in the thesis. The real world applications considered for validating
the methodologies developed are in the biomedical field and, in particular, they are
related to the heart and to the analysis of electrocardiogram recordings. When not
specified elsehow, information about the physiology of the heart are referred to the
work of Podrid and Kowey [26].

A general and raw description on the functionality of the heart, its electrical conduc-
tion system and a few knowledges about arrhythmias will be given in this chapter.

6.1 the heart

6.1.1 the pumps

The heart is the main organ of the cardiovascular system whose primary function is to
pump blood throughout the body by means of the blood vessels.

It is composed by two different pumps. The first pump is responsible to push the
oxygen-rich blood from the heart to every other tissue of the body by means of arteries,
such circuit is called systemic circulation. The second pump receives the blood from the
body, i.e., blood without oxygen and nutrients, by the veins and leads it to the lungs
through the pulmonary circulation, where it is enriched by oxygen again.

The heart is divided into four chambers, two atria and two ventricles. The left atrium
and the left ventricle form the left pump responsible for the systemic circulation. The
right ones belong to the pulmonary circulation.

Pumps do not communicate between each other, i.e, there is no direct exchange of
blood. Only atrium and ventricle of the same pump exchange blood and, in addition,
in just one direction: from the atrium to the ventricle. The direction of blood flow is
controlled by four valves, the atrioventricular valves, located between the atria and the
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Figure 6.1: Sketch of the heart and both systemic and pulmonary circulations.

ventricles, and the pulmonary and aortic valves, located between the ventricles and the
arteries. In such a way, blood cannot flow back in the ventricles. Figure 6.1 shows both
the systemic and the pulmonary circulation as well as the four chambers and valves.

The blood without oxygen arrives through two big veins, the superior and the in-
ferior vena cava respectively, to the right atrium. The atrium pushes such blood to
the right ventricle. The right ventricle pumps the blood to the lungs through the pul-
monary arteries. The typology of a blood vessel depends on the tissue on which it is
composed and not on which kind of blood it carries.

The left atrium receives the oxygen-rich blood from the pulmonary veins. This blood
is pushed into the left ventricle. The left ventricle, the stronger among the four cham-
bers, pumps the blood to the rest of the circulation. To do that, it produces a high level
of pressure.

Blood is pushed by means of a mechanical contraction of the heart. The alternation
of contraction and resting condition, i.e., systole and diastole respectively, is called
cardiac cycle.

6.1.2 the cardiac tissue and the electrical excitable cells

The heart is located in a sac called pericardium whose main duty is to anchor it to
other structures while ensuring anatomical changes due to contraction. In addition, the
heart is composed of three layers of cells: the epicardium, the mid-myocardium and
the endocardium. Both epicardium and endocardium serve to protect the myocardium.
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In particular, the former lubricates the heart and to prevent friction, while the latter
excludes the direct contact with the blood that needs to be pushed. The myocardium,
in fact, is the contractile muscle responsible of the pushing. Each part of the heart is
composed by different cells with different chemical and physical properties.

The contractile force produced by the myocardium is generated by electrical im-
pulses. Indeed, the cells of the myocardium are electrically excitable. They can produce
a mechanical force when an electrical impulse goes through them. Such phenomenon
demonstrates that the heart tissue has a well structured electrical conduction system
in which an electrical impulse propagates easily.

The electrical current responsible of the propagating impulse is generated by the
flows of ions, either positive or negative charged, through the cell membrane of a car-
diac cell. The cell membrane is a structured phospholipid double layer whose permit
to separate ions inside the intracellular domain from those in the extracellular one.
Moreover, this membrane has multiple ion channels. Ion channels are selective to a
specific ion, e.g. Na+, Cl−, Ca2+, K+, etc.

Because of this selectivity, the concentration gradient, i.e., spatial difference of ion
concentration, and the electrical gradient, i.e, spatial difference in the amount of charge,
equilibrate each other blocking every flow of ions and forming a constant transmem-
brane potential (TMP) between the intracellular domain and the extracellular one. Such
electrical potential is called resting potential of the cells and it has a value about −80mV
for a cardiac cell. Figure 4.1 shows the TMP of the cardiac cells across the heart.

Once an electrical impulse stimulates a cell in resting condition, a sodium current
(Na+) flows from the extracellular domain into the cell, increasing the electrical poten-
tial up to +20mV . This rapid phenomenon is called “depolarization phase”.

Afterwards, a potassium current (K+) starts to flow outside the membrane trying to
re-establish the resting condition. At the same time, the ion current related to Ca2+

starts to go inside the cell producing a steady-state TMP called “plateau phase”.
Finally, the calcium current (Ca2+) influx stops while the potassium one still goes

out, leading back to the resting condition of TMP. This phase is called “repolarization
phase”.

During depolarization and plateau phases no other electrical impulses can produce
a change in the TMP. That is due to the capability of the ion channels to either modify
or stop the ion flux depending on the value of the TMP. Such time interval is called
absolute refractory period. However, during repolarization, a second electrical impulse,
stronger than the first one, could force a new depolarization (relative refractory period).
Because of the absolute refractory period, the electrical impulse travels in just one
direction.

The electrical excitability of the cells combined with the electrical properties of the
extracellular domain permit to create ion currents outside the cell. Such currents are
able to depolarize neighbor cells and so, the electrical impulse moves.

Finally, it is worth noting that systole and diastole are respectively linked with the
depolarization and repolarization phase of the myocardium cells. Indeed, during depo-
larization, the electrical impulse which travels through the cells, produces a mechanical
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contraction, i.e., systole. During repolarization, the cells return back to the resting state
with a progressive relaxing of the blood pressure, i.e., diastole.

6.1.3 pathway of the electrical conduction system

In order to produce an optimal pumping function, the heart follows a precise and
organized sequence of electrical events.

The cardiac cycle starts in a mass of pacemaker cells generating spontaneously elec-
trical impulses: they periodically depolarize themselves producing the so-called heart
rate (HR). These cells are located in a zone of the upper part of the right atrium called
sinoatrial node (SA).

Such electrical impulse spreads on the heart through the conduction system. In par-
ticular, the impulse reaches the atrio-ventricular node (AV), then goes through the bundle
of His and finally, with the help of the Purkinje fibers, it depolarizes the right and the
left ventricles. Such electrical circuits are a part of the electrical conduction system of
the heart, with specific chemical and physical properties suitable for the transmission
of electrical impulses.

Figure 6.2 shows the electrical conduction system of the heart and how the electrical
impulse spreads through the whole organ.

6.1.4 the electrocardiogram

The electrocardiogram (ECG) represents and describes the electrical activity of the
heart recorded by electrodes placed on the body surface.

The depolarization of the right and left atria is represented by the P wave, whereas
the atrial repolarization cannot be visualized from the ECG since it is completly over-
lapped by the depolarization of the ventricles, i.e., the QRS complex. Finally, the re-
polarization of the ventricles is represented by the T-wave. Figure 4.1 shows a sketch
of an heart beat, including P wave, QRS complex and T-wave measured by a single
electrode.

The amplitude and the shape of the heart beat depends on the position of the elec-
trodes. In addition, they also change when considering unipolar or bipolar lead system.

In clinical routine, the standard 12 lead ECG is used for general screening. It is
composed by 3 bipolar leads called limb leads (lead I, II and III), 3 unipolar leads called
augmented leads (aVL, aVR and aVF) and other 6 unipolar leads called precordial leads
(V1, V2, V3, V4, V5 and V6).

In particular, lead I is defined as the difference between the activity measured by the
electrode on the left arm (LA) and the one on the right (RA). Lead II is defined as left
leg (LL) minus the LA and lead III as LL minus RA. Because of their composition, only
2 leads are independent. Figure 6.3 shows a sketch of the positioning of the standard
12 leads.

The unipolar augmented leads are computed as the electrical potential of one limb
minus the average of the remaining two. Therefore, the augmented leads are linear
dependent on the limb leads.
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Figure 6.2: Sketch of the electrical conduction system of the heart.

The precordial leads (from V1 to V6) are placed on the chest. They are referred to the
Wilson’s central terminal (VW), i.e., the average of the potential measured on the limb
leads.

In conclusion, all these leads permit to “visualize” the electrical activity of the heart
from different point of view. Moreover, only 8 leads are independent views. The other
ones can be reconstructed by means a linear combination.

6.2 atrial fibrillation

Atrial fibrillation (AF) is the most common cardiac arrhythmia in elderly people and it
has a large economical cost for health systems [133, 134].

AF is the result of alterations of the electrical properties of the conduction system of
the atrial surface. Indeed, heart failure, hypertension or dysfunction of the sinus node
can alter the electrical propagation, generating extra-foci on the atrial surface capable
to discharge electrical impulses independently from the sinus node. The combination
of such non-normal impulses may lead to have some regions electrically self-sustained,
i.e., atrial chambers do not stop to be activated.

AF is clinically classified into three classes named I, II, or III Well class, in function
of the degree of organization of the electrical propagation. Furthermore, AF can be
paroxysmal or persistent.
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Figure 6.3: Sketch of the position of the electrodes in the standard 12 lead ECG. LA = left arm,
RA = right arm, LL = left leg and RL = right leg. The precordial leads are those
from V1 to V6.

When pharmacological or electrical cardioversion treatments [135] do not work, a
surgical procedure called ablation is performed [134]. This technique attempts to isolate
electrically those regions that are responsible for the fibrillation. Typically, when the
four pulmonary veins of the left atrium are electrically isolated, the AF stops. However,
in many cases, there are other sites responsible for AF.

A standard ablation treatment is performed by inserting a catheter into either the
femoral or the jugular vein, up to reach the right atrium chamber. Then, the wall
between the two atrium chambers is holed to reach the left one. Now, the surgeon
performs a series of measurements of the electrical potential on the internal surface,
i.e., endocardium, in order to select the best suitable sites to be electrically isolated.

These measurements contain the atrial electrical activity (AEG), both near and far
field from the electrode, and the ventricular one [79].

6.3 ventricular fibrillation

Ventricular fibrillation (VF) is a dangerous cardiac arrhythmia, and it represents a car-
diac event in which an uncoordinated contraction of the cardiac muscle, results in a
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low blood pumping function. If it is not treated suddenly, it leads to death in a few
minutes: the so-called sudden cardiac death.

Many reasons are known to be associated with the genesis of the ventricular fib-
rillation. Most of them are linked with alterations of the electrical properties of the
ventricular tissue during repolarization. For example, a high dispersion of the ven-
tricular repolarization or large number of early after depolarizations are correlated
with the risk. Moreover, some genetic mutations, as in the long QT sindrome, produce
a dysfunction of the normal behavior of the ion channels of the myocytes, typically
increasing the dispersion of the ventricular repolarization and prolonging the QT in-
terval.

Other mechanisms are induced by the deformation of the ventricular tissue due to
scars, infarction and enlargement of the muscular mass. The last one can be even due
to parasitic infection as in Chagas disease (see sec. 6.3.1).

6.3.1 chagas disease

American trypanosomiasis, also called Chagas disease, is a parasitic infection widely
present in central and South America.

Due to migration of infected persons from endemic areas to developed countries,
ill patients now can be found also in Europe and the United States. It is induced by
Trypanosoma cruzi, a protozoa that elects as its preferential sites of multiplication the
myocardial and nervous fibers. As a consequence, in the chronic phase of the disease, it
frequently causes a progressive deterioration of the heart muscle [136]. Chagas disease
is still one of the main causes of sudden death in Latin America [137, 96].

Chagas disease might affect the anatomy of the myocardium (e.g., myocarditis, car-
diomegaly), the electrophysiology of the heart and its autonomic innervations. Hence,
abnormalities such as sinus block, atrioventricular block, inter-ventricular block and
premature ventricular contractions are typically observed. Moreover, the autonomic
neuropathy that characterizes most patients with Chagas disease may also contribute
to the development of heart failure or the occurrence of syncope, bradyarrhythmia or
tachyarrhythmia [138].
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C O N C L U S I O N

In this thesis, new methodologies related to source separation and feature extraction
have been proposed, studied, developed and discussed. We tested these methods on
cardiac signals. Tests were performed on both synthetic and real data. Regarding syn-
thetic simulations, we also proposed some methodologies to generate such signals.

The main novelties of this work were: i) a new algorithm for non-blind source separa-
tion; and ii) the characterization of the properties of three new features. We employed
specific tests to assess the quality of the new algorithms and features.

In particular, we proposed a new non-blind source separation algorithm, i.e., the
modulated TMS, to track changes of the source over time. The main idea of this ap-
proach was to modulate the TMS template, i.e., the source estimate, to keep the resid-
ual power in a specific range. Indeed, the main disadvantage of the classic TMS is the
assumption of stationarity of the source. This assumption does not hold in many ap-
plication, resulting in a limited performance of the separation and adding high power
artifacts on the residue.

The modulation was performed solving an optimization problem in which the mod-
ulation parameters were refined comparing the power of the residue and the power
of its first derivative with reference powers. Such reference powers were estimated
considering traces of signals where it was known that the source was not present. Fur-
thermore, since the problem had many possible solutions, we kept the modulate TMS
close to the template built by the classic TMS.

The technique was tested first on synthetic data and then on real atrial electrograms
to separate the atrial activity from the ventricular one. The synthetic validation was per-
formed using signals generated by a set of equations specifically meant and proposed
to model AEGs. This generator was able to mimic different types of heart rhythm, from
SR to AF. The modulated TMS was tested on the most complex case, i.e., AF, obtaining
better performance with respect to the classic TMS. Afterwards, real AEGs of three
different subjects collected during ablation procedures were employed as a real case.
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In this case, the performance was evaluated counting the amount of segments in which
the residual power was outside the 95th percentile of the atrial power. The modulated
TMS performed better even in such case.

In conclusion, this algorithm is suitable in those application in which a single mea-
surement is available and transient sources need to be separated.

As second area of research, we studied and tested three new features. They measure
the variability of the time of occurrence of transient sources (V-index), the organization
degree of wave propagation (OD), and the acceleration and deceleration capacities (AC
and DC) of a system.

First, V-index is a model-based feature requiring similar shapes for the transient
sources and a relatively small variability in their times of occurrence. These assump-
tions are necessary to use the approximate model of the equivalent linear surface model
proposed by Van Oosterom for the real T-wave.

We tested the V-index in three different situations: i) under administration of sotalol;
ii) under administration of moxifloxacin; and iii) on subjects affected by Chagas dis-
ease. Our findings suggested that the V-index was sensitive to changes of the spatial
heterogeneity of the ventricular repolarization, as result from the administration of
both drugs or anatomical alterations induced by Chagas disease.

We addressed the issue of similarities among sources selecting beats with a stable
heart rate. Indeed, when the heart rate is stable, the interaction of the autonomous
nervous system on the ion currents can be considered stationary and thus, the action
potentials as well.

Second, the OD was meant to measure the regularity of wave propagation using
data collected by a set of sensors and symbolic analysis. This parameter is associated
with the direction of wave propagation when the electrical activity is generated by a
single wave. Indeed, when the organization of the wave propagation is relatively high,
there is a high correlation between the direction of the wave and the symbol used to
describe it. On the other hand, this correlation decreases when the electrical potential is
generated by multiple waves. In this situation, the value of the symbols just represents
the local electrical status of the atrial activity.

We tested OD on real AEGs measured on 7 subjectes during SR and AF, and during
administration of isoproterenol. The atrial waves were detected and a symbolic word
was used to describe the morphology and the order of arrival on a set of three elec-
trodes. In this way, a sequence of words was built and the Shannon entropy computed.

OD was able to distinguish between the organization of atrial electrical propagation
during AF from that in AF with administration of isoproterenol. Isoproterenol forced
an increase of the heart rate, then made the electrical propagation more disorganized.
However, in sinus rhythm, there were no differences when the isoproterenol was given
because wavefronts still came from the same physiological direction.

Finally, the acceleration and deceleration capacities, i.e., two metrics recently intro-
duced by Bauer et al., were tested to infer some information about the meaning of the
parameters on which they depend. We tested AC and DC using a set of synthetic simu-
lations involving AR models. These parameters, i.e., L, T and s, affect the value of both
capacities. In particular, the value of s played a fundamental role as frequency band
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selector while T , playing on the selection of the anchor points, acts as a low pass filter.
However, being this parameter built using non-linear operations, i.e., the rule for the
construction of the anchor point list, the linear superposition does not hold.

We also tested AC and DC on an in-vivo near term pregnant sheep model in which
the umbilical cord was periodically occluded to mimic a lack of oxygen. We computed
both capacities to assess a possible correlation with several parameters, i.e., pH, lactates
and base deficit, indicating the amount of lack of oxygen. Both capacities resulted in
high correlation when using s = T within the range [3− 5]. Such values correspond to
the frequency band of the RR series known to be correlated with hypoxia and acidemia.
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