On the complex H-bonding network in paravauxite, Fe$^{2+}$Al$_2$(PO$_4$)$_2$(OH)$_2$·8H$_2$O

G. D. Gatta1, P. Vignola1,2, M. Meven3,4

1Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milano, Italy
2CNR-Istituto per la Dinamica dei Processi Ambientali, Milano, Italy
3Institut für Kristallographie, RWTH Aachen, Aachen, Germany
4Jülich Centre for Neutron Science (JCNS) at MLZ, Forschungszentrum Jülich GmbH, Garching, Germany

Phosphate minerals represent the major host for transition metals and H$_2$O in pegmatitic rocks, playing an essential geochemical role in the evolution processes of pegmatites. A good knowledge of their crystal chemistry is therefore necessary to better understand the genesis of pegmatites. Paravauxite is a mineral found in hydrothermal tin veins and granite pegmatites [1,2]. Its ideal chemical formula is Fe$^{2+}$Al$_2$(PO$_4$)$_2$(OH)$_2$·8H$_2$O. Its crystal structure was solved and refined by Baur [3] in 1969 on the basis of single-crystal X-ray diffraction data. This structure model appears to be consistent. However, due to the technical limitations of X-ray diffraction, the refinement only provided the isotropic displacement parameters, and the positions of nine independent proton sites were assigned but not refined. This led to a poor description of (the expected) complex H-bonding scheme in the paravauxite structure. In light of this, the crystal structure of a natural paravauxite was re-investigated using electron microprobe analysis in wavelength dispersive mode (EPMA-WDS) and single-crystal neutron diffraction in an attempt to resolve these open questions.

Looking into a gemstone

A gemmy, pale green, single crystal of paravauxite (up to 9 mm in length and 5 mm in diameter) from the Siglo Veinte Mine, Bolivia, was used in this study. The determination of the chemical composition was performed by EPMA-WDS analysis on a polished crystal using a Jeol JXA-8200 microprobe with the following result:

Fe(Fe$^{2+}$0.916Mn$^{2+}$0.016Mg0.005Ca0.002)(10Al$^{2+}$0.998)$^{(2)}$Al0.005
P(0.998Si0.002)2(OH)$_2$·8H$_2$O.

A single-crystal neutron diffraction experiment was performed using the hot source (fast neutrons) single-crystal diffractometer HEiDi of the neutron source FRM II. The diffraction data were collected at 293 K with a wavelength of the incident beam of 1.1680(2) Å. The unit-cell parameters were refined on the basis of the 42 Bragg reflections (space group: P -1, a = 5.240(6) Å, b = 10.567(7) Å, c = 6.698(9) Å, α = 106.82(8)$^\circ$, β = 110.77(9)$^\circ$, γ = 72.23(9)$^\circ$, V = 336.4(6) Å3). A total number of 4190 reflections were collected up to $2\theta_{\text{max}}$ = 126.3$^\circ$ and $\sin(\theta)/\lambda = 0.76/\AA$, respectively. The discrepancy factor for the symmetry related reflections (based on Friedel pairs) was $R_{\text{int}} = 0.0442$. The anisotropic structure refinement was then performed using the SHELX-97 software [4], starting from the atomic coordinates of Baur [3] without H sites. The structure refinement was conducted with: a) the neutron scattering length of iron at the octahedral Fe site and the scattering length of aluminum at the octahedral Al(1) and Al(2) sites, also refining their site occupancy factors (s.o.f.); b) the scattering length of phosphorous at the tetrahedral P site, with full occupancy; c) the scattering length of oxygen at the OP(1), OP(2), OP(3), OP(4), OH(5), OW(6), OW(7), OW(8) and OW(9), with full site occupancies. Then, a structure model was implemented with nine H sites, (i.e., H(1), H(2), H(3), H(4), H(5), H(6), H(7), H(8) and H(9)) all at \sim1 Å from the respective O sites. Given such a model, convergence was rapidly achieved. However, H(4) and H(9) showed unrealistically large displacement parameters, if compared to those of the other H sites. Further refinement cycles were then conducted splitting the H(4) and H(9) sites into two mutually exclusive sub-sites (i.e., H(4A) and H(4B), H(9A) and H(9B)) only 0.4-0.6 Å apart. Their s.o.f. were not restrained. With this configuration, the refined displacement parameters had realistic values, convergence was achieved and the variance-covariance matrix showed no significant correlation among the refined parameters. No peak larger than...

$\pm 1.3 \text{ fm/Å}^3$ was present in the final difference-Fourier map of the nuclear density. The final statistical index R_1 was 0.0495 for 194 refined parameters and 1678 unique reflections with $F_o > 4\sigma(F_o)$.

Locating the hydrogen in paravauxite

This is the first study in which the crystal structure of paravauxite has been investigated on the basis of single-crystal neutron diffraction. Previous structure data available in the literature [3] are based on single-crystal X-ray diffraction. The structural refinement of this study confirms the former general structure model [3]. The structure of paravauxite is composed of chains of corner-sharing Al-octahedra, running along [001], linked by P-tetrahedra to form layers parallel to the ac-plane. These layers are connected by Fe-octahedra (Fig. 1). Two independent Al-octahedra (i.e., $\text{AlO}_4(\text{OH})_2$ and $\text{AlO}_4(\text{OH})_2(\text{OH}_2)_2$), one independent Fe-octahedron (i.e., $\text{FeO}_4(\text{OH})_2$) along with one independent PO_4-tetrahedron form the polyhedral “framework”, and at least one independent “zeolitic” H_2O lies in the cavities.

Using the neutron scattering length of iron at the Fe site, the refined occupancy factor is $s.o.f. = 0.921(7)$. This virtual partial site occupancy reflects the multi-elemental population at the Fe site, as shown by the EPMA-WDS [i.e., with minor fractions of Mg (0.064 a.p.f.u.) and Mn (0.016 a.p.f.u.)]. The Al(1) and Al(2) sites were found to be fully occupied by aluminum (with refined $s.o.f. = 1.02(2)$ and 1.05(2), respectively). The $s.o.f.$ of the subsites H(4A) and H(4B), and H(9A) and H(9B) were refined without any restraint, and the sum $[s.o.f.(H4A) + s.o.f.(H4B)] = 0.94(3)$ and $[s.o.f.(H4A) + s.o.f.(H4B)] = 1.02(2)$ suggest full site occupancies within 2σ. The structure model with the sub-sites H(4A) and H(4B), and H(9A) and H(9B) is the best fit to the observed intensity data (at 293 K), with realistic displacement parameters.

The complex H-bonding scheme in the paravauxite structure is now well defined, with twelve independent H-bonds. Some of the H-bonds appear to be stronger than others. The weaker are characterized by low O-H⋯O angular values (i.e., 123 - 146°). Some H-bonds connect the Al-octahedra with the Fe-octahedra. The zeolitic H_2O molecule (i.e., H(8)-OW(9)-H(9AB)) is connected via H-bonding to OP(1) (i.e., the bridging oxygen between the Al(1)-octahedron and the P-tetrahedron), OP(3) (i.e., the bridging oxygen between the Fe-octahedron and the P-tetrahedron) and OW(6) (i.e., belonging to the Al(2)-octahedron). Further structural details are reported in [5].

Evaluation of Beam Time Proposals: Members of the Review Panels

Dr. Tamás Belgya
Budapest Neutron Center, Budapest

Dr. Victor Bodnarchuk
Joint Institute for Nuclear Research
Frank Laboratory of Neutron Physics, Dubna

Prof. Dr. Jan Bonarski
Polish Academy of Sciences
Institute of Metallurgy and Materials Science, Kraków

Dr. Laszlo Bottyan
Hungarian Academy of Sciences
Institute for Particle and Nuclear Physics, Budapest

Prof. Roberto Brusa
Università degli Studi di Trento
Facoltà di Ingegneria, Dipartimento di Fisica, Trento

Prof. Dr. Roberto Caciuffo
Institute for Transuranium Elements
Joint Research Center, Karlsruhe

Dr. Monica Ceretti
Université de Montpellier 2
Institut Charles Gerhardt, Montpellier

Dr. Niels Bech Christensen
Technical University of Denmark
Institute of Physics, Roskilde

Dr. Pascale Deen
European Spallation Source (ESS AB), Lund

Dr. Sabrina Disch
University of Cologne,
Department of Chemistry, Cologne

Prof. Dr. Stefan Egelhaaf
Heinrich-Heine-Universität Düsseldorf
Lehrstuhl für Physik der weichen Materie, Düsseldorf

Prof. Dr. Helmut Ehrenberg
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Materialien, Karlsruhe

Dr. Tom Fennell
Paul Scherrer Institute
Laboratories for Solid State Physics
Neutron Scattering

Dr. Marie Thérèse Fernandez-Diaz
Institut Laue-Langevin (ILL), Grenoble

Dr. Peter Fouquet
Institut Laue-Langevin (ILL), Grenoble

Dr. Victoria Garcia-Sakai
STFC Rutherford Appleton Laboratory, Didcot

Prof. Giacomo Diego Gatta
Università degli Studi di Milano
Dip. Scienze della Terra „Ardito Desio“, Milano

Prof. Dr. Rupert Gebhard
Archäologische Staatssammlung München,
Abt. Vorgeschichte, München
Prof. Dr. Tommy Nylander
Lund University, Physical Chemistry, Lund

Prof. Dr. Luigi Paduano
University of Naples “Federico II”, Chemistry Department, Naples

Prof. Dr. Catherine Pappas
Delft University of Technology, Delft

Prof. Dr. Oskar Paris
Montanuniversität Leoben, Leoben

Prof. Dr. Wolfgang Paul
Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, Halle

Dr. Simon Redfern University of Cambridge, Department of Earth Sciences, Cambridge

Prof. Dr. Günther Redhammer Universität Salzburg, Materialforschung und Physik, Salzburg

Dr. Matthias Rossbach
Forschungszentrum Jülich GmbH, Jülich

Dr. Margarita Russina
Helmholtz-Zentrum Berlin GmbH, Institut Weiche Materie und Funktionale Materialien, Berlin

Prof. Dr. Michael Sattler
Technische Universität München, Department Chemie, München

Dr. Harald Schmidt
Technische Universität Clausthal, Institut für Metallurgie, Clausthal

Prof. Dr. Andreas Schönhals
Bundesanstalt für Materialforschung und -prüfung, Berlin

Prof. Dr. Peter Schurtenberger University of Lund, Physical Chemistry 1, Lund

Dr. Torsten Soldner
Institut Laue-Langevin (ILL), Grenoble

Prof. Dr. Wolfgang Sprengel
Technische Universität Graz, Institut für Materialphysik, Graz

Dr. Jochen Stahn
ETH Zürich and Paul Scherrer Institute, Villigen

Dr. Peter Staron
Helmholtz-Zentrum Geesthacht GmbH Institute of Materials Research, Geesthacht

Dr. Paul Steffens
Institut Laue-Langevin (ILL), Grenoble

Dr. Oliver Stockert
Max-Planck-Institut für Chemische Physik fester Stoffe Dresden, Dresden

Dr. Susana Teixeira
Institut Laue-Langevin (ILL), Grenoble

Prof. Kristiaan Temst
Katholieke Universiteit Leuven, Nuclear & Radiation Physics Section, Leuven
Prof. Dr. Katharina Theis-Broehl
Hochschule Bremenhaven, Bremenhaven

Prof. Dr. Thomas Thurn-Albrecht
Martin-Luther-Universität Halle-Wittenberg,
Experimentelle Polymerphysik, Halle

Prof. Dr. Tobias Unruh
Universität Erlangen-Nürnberg,
Kristallographie und Strukturphysik, Erlangen

Dr. Lambert van Eijck
Delft University of Technology,
Department of Radiation, Radionuclides and Reactors, Delft

Prof. Dr. Regine von Klitzing
Technische Universität Berlin,
Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Berlin

Dr. Martin Weik
Institut de Biologie Structurale, Grenoble

Dr. Andrew Wildes
Institut Laue-Langevin (ILL), Grenoble

Dr. Robert Wimpory
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin