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Shusaku Yamazaki,6‡ Christa Ziegler42*

Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to
advance the understanding of the formation and evolution of crust formed at mid-ocean ridges,
but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the
eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust
formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed
beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions
extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower
depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have
compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic
crust from melt lenses so far penetrated by Hole 1256D.

O
cean crust formed at mid-ocean ridges

covers more than 60% of Earth_s sur-

face, yet our understanding of its ac-

cretion atmid-ocean ridges and evolution on the

ridge flanks has been severely limited by the

extreme difficulty of direct sampling. Remote

geophysical measurements have produced

longstanding models for the structure of ocean

crust, including the size and shape of magma

chambers at mid-ocean ridges (1–3), but the

lack of direct sampling of in situ crust has

prevented testing these models. Gabbros are

coarse-grained mafic rocks commonly formed

from slow cooling of magma chambers be-

neath mid-ocean ridges. Drilling a complete

section of upper oceanic crust down to gabbro

will enable testing models for the formation

and structure of oceanic crust (4–9).

Multichannel reflection seismic (MCS) pro-

filing of active intermediate and fast-spreading

ridges commonly shows bright reflectors at

depths of 1 to 4 km that have the properties

expected for a thin (20- to 100-m) lens of partial

melt (10–14). These melt lenses extend less

than 1 km from the ridge axis and crystallize to

form gabbroic rocks. The depth to the reflectors

decreases as spreading rate increases (Fig. 1)

(15, 16); it is controlled by the rate of magma

supply from below and hydrothermal cooling

by seawater from above (7). Melt lenses are

hypothesized to play a critical role in the

formation of the lower oceanic crust. According

to the Bgabbro glacier[ model (6–8), as oceanic

crust spreads away from the ridge axis, the ac-

cumulated crystal residues in these melt lenses

subside to form the lower ocean crust, which is

the major portion of the crust. Alternative mod-

els, however, argue that the lower crust is

formed by injection of sills at various depths

(5, 17) and that the geophysically imaged melt

lens is simply the most shallow intrusion.

In addition to geophysical studies, our un-

derstanding of oceanic basement and particular-

ly the plutonic portion of the crust comes from

observations of ancient oceanic rocks exposed

on land in ophiolites, seafloor observations of

active ridges and deep-sea tectonic exposures,

and drilling. The origin of ophiolites in marginal

basins and the disruption of tectonically exposed

lower crust, however, make the relevance of

these observations to intact ocean crust ques-

tionable. Previous deep drilling in intact crust

has only once penetrated the transition from

lavas to dikes, in Ocean Drilling Program (ODP)

Hole 504B, which reached a total depth of

1836 m sub-basement (msb) (18). Unfortunately,

Hole 504B failed to penetrate the dike-gabbro

boundary because of hostile drilling conditions

in fractured dikes at high temperatures. Al-

though fault-exposed lower ocean crust has

been drilled in several places (19–23), the

geological context of such cores is often

unknown. The critical transition from dikes

to gabbros has previously never been cored.

Deep drilling into basement at Site 1256.
Recently, Integrated Ocean Drilling Program

(IODP) Expeditions 309 and 312 deepened Hole

1256D in the eastern Pacific to 1507 m below

seafloor (mbsf) (1257 msb; msb = mbsf – sedi-

ment thickness), drilling through lavas, the

underlying sheeted dike complex, and into

gabbroic rocks. This is the first penetration of

the dike-gabbro boundary in intact ocean crust

since the inception of deep sea drilling nearly 40

years ago. Hole 1256D thus provides unique

samples of the lithologic transitions in the upper

crust, from lavas to dikes and from dikes to

gabbros. The dike-gabbro boundary is key to

understanding crustal structure and the interplay

between magmatic accretion and hydrothermal

cooling.

The recognition of an interval of superfast

spreading rates, up to 220mm/year full rate (24),

on the Cocos-Pacific plate boundary between

19 and 12 million years ago (Ma) led to the

choice of ODP Site 1256 (Fig. 2) as the optimal

site for deep drilling (25). Scientific ocean

drilling mainly targets relatively soft, easily

cored sediments. In contrast, coring into the

underlying, much harder, basaltic basement

is less common and most holes are shallow

[G300 m (25)]. Deep (9500 m) basement dril-

ling requires a substantial commitment of re-

sources but yields major scientific rewards by

sampling otherwise inaccessible regions of

Earth’s interior. A deep drill hole at the fastest

possible spreading rate tests the prediction that a

melt lens reflector is more shallow at higher

spreading rates, and also minimizes the drilling

needed to sample an intact section from lavas to

gabbros, because the upper crust is thinner. This

is an important advantage considering the cost,

time, and technical challenges of deep drilling.

Assuming thatÈ300 m of lavas flowed off axis,

the depth to gabbros was predicted to be between

1025 to 1300 msb (1275 to 1550 mbsf) at Site

1256 (26).

Drilling at Site 1256 was initiated in 2002 on

ODP Leg 206 when Hole 1256D was drilled

through 250 m of sediment and 502 m into

basement (25). Coring continued to 1255 mbsf

in 2005 by IODP Expedition 309, and recently

Expedition 312 deepened the hole to 1507.1

mbsf and into gabbros (27). Almost 5 months at

Site 1256 were required to achieve the opera-

tional and scientific objectives.

Results from drilling. Gabbros were first

intersected at 1157 msb (1407 mbsf), within the

predicted target zone (26). The uppermost crust

at Site 1256 is composed of a È100-m-thick

sequence of lava dominated by a single flow up

to 75 m thick, requiring at least this much

seafloor relief to pool the lava. On modern fast-

spreading ridges, such topography does not

normally develop until 5 to 10 km from the axis

(28). The lavas immediately below include
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sheet and massive flows, and minor pillow

flows. Subvertical, elongate, flow-top fractures

filled with quenched glass and hyaloclastite in

these lavas indicate flow lobe inflation requir-

ing eruption onto a subhorizontal surface off

axis (29). Thus, we estimate a total thickness

of off-axis lavas of 284 m, close to the as-

sumed thickness. Sheet flows and massive

lavas that erupted at the ridge axis make up

the remaining extrusive section down to 1004

mbsf, before a lithologic transition is marked

by subvertical intrusive contacts and mineral-

ized breccias. Below 1061 mbsf, subvertical

intrusive contacts are numerous, indicating

the start of a relatively thin, È350-m-thick,

sheeted dike complex that is dominated by

massive basalts. Some basalts have doleritic

textures, and many are cross-cut by subvertical

dikes with common strongly brecciated and

mineralized chilled margins. There is no evi-

dence from core or from geophysical wireline

logs for substantial tilting of the dikes. This is

consistent with seismic reflection images of

subhorizontal reflectors in the lower extrusive

rocks that are continuous for several kilome-

ters across the site (30).

There is a stepwise increase in alteration

grade downward from lavas into dikes, with

low-temperature phases (G150-C; phyllosili-

cates and iron oxyhydroxides) in the lavas

giving way to dikes partially altered to chlorite

and other greenschist minerals (at temperatures

9È250-C; Fig. 3). Within the dikes, the al-

teration intensity and grade increase down-

ward, with actinolite more abundant than

chlorite below 1300 mbsf and hornblende

present below 1350 mbsf indicating temper-

atures approaching È400-C. The dikes have

substantially lower porosity (mostly 0.5 to

2%) and higher P-wave velocities and thermal

conductivity than the lavas; porosity decreases

and P-wave velocity increases as depth in-

creases in the dikes.

In the lower È60 m of the sheeted dikes

(1348 to 1407 mbsf), basalts are partially to

completely recrystallized to distinctive grano-

blastic textures resulting from contact meta-

morphism by underlying gabbroic intrusions

(Fig. 4). Gabbro and trondhjemite dikes

intrude into sheeted dikes at 1407 mbsf,

marking the top of the plutonic complex.

Two major bodies of gabbro were penetrated

beneath this contact, with the 52-m-thick

upper gabbro separated from the 24-m-thick

lower gabbro by a 24-m screen of granoblastic

dikes (Fig. 4). The upper gabbro comprises

gabbros, oxide gabbros, quartz-rich oxide

diorites, and small trondhjemite dikelets.

These rocks are moderately to highly altered

by hydrothermal fluids to actinolitic horn-

blende, secondary plagioclase, epidote, chlo-

rite, prehnite, and laumontite. The relative

ferocity of hydrothermal alteration increases

with grain size and proximity to intrusive

boundaries. The lower gabbro comprises gabbro,

oxide gabbro, and subordinate orthopyroxene-

bearing gabbro and trondhjemite that are

similarly altered, and has clear intrusive con-

tacts with the overlying granoblastic dike

screen. Partially resorbed, stoped dike clasts

are entrained within both the upper and lower

margins of the lower gabbro (Fig. 4G). The

lowermost rock recovered from Hole 1256D

is a highly altered actinolite-bearing basaltic

dike that lacks granoblastic textures, and

hence is interpreted to be a late dike that

postdates the intrusion of the lower gabbro.

Contrary to expectation, porosity increases and

P-wave velocities decrease stepwise down-

Fig. 1. Depth to axial melt-lens reflector plotted
against spreading rate. Depth versus spreading
rate predictions from twomodels of Phipps Morgan
and Chen (7) are shown, extrapolated subjectively
to 200 mm/year (dashed lines). Penetration to
date in Holes 504B and 1256D is shown by solid
vertical lines, with the depth at which gabbros
were intersected indicated in red. According to
core descriptions, a thickness of È300 m of off-
axis lavas is shown for Hole 1256D and assumed
for Hole 504B. JdF, Juan de Fuca Ridge; Lau, Valu
Fa Ridge in Lau Basin; CRR, Costa Rica Rift.
[Image modified from (15, 16)]
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Fig. 2. Age map of the Cocos plate and EPR with
isochrons at 5-Ma intervals, converted from
magnetic anomaly identifications according to
the time scale of Cande and Kent (49). The wide
spacing of 10- to 20-Ma isochrons to the south
reflects the extremely fast (200 to 220 mm/year)
full spreading rate. The locations of deep drill
holes into the oceanic crust at Sites 1256 and
504 are shown.
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ward from the lowermost dikes into the

uppermost gabbro at Hole 1256D. This results

from the contact metamorphism of the grano-

blastic dikes and the strong hydrothermal

alteration of the uppermost gabbros (Fig. 3).

Porosity and velocity then increase downhole

in the gabbro but are still G6.5 km/s.

Flows and dikes from Hole 1256D show a

wide range of magmatic fractionation, from

fairly primitive to evolved (Figs. 3 and 5).

Shallower than 600 mbsf, magma composi-

tions are bimodal, with relatively evolved

thick flows and more primitive thin flows.

Primitive and evolved compositions are

closely juxtaposed within the dikes, as would

be expected for vertically intruded magmas.

For most major elements and many trace

elements, the range of concentrations in flows

and dikes is similar to that observed for the

northern East Pacific Rise (EPR) (Fig. 5). A

few incompatible elements, including Na and

Zr, have lower concentrations than observed

for modern EPR lavas, but the substantial

overlap of compositions indicates similar

processes operated at the superfast-spreading

ridge that formed Site 1256 and the modern

EPR.

The gabbro compositions span a range sim-

ilar to the flows and dikes but are on average

more primitive. Although less fractionated, the

average gabbro composition is evolved relative

to candidates for primary magma in equilibrium

with mantle olivine. Therefore, the residue

removed from primary magma to produce the

observed gabbro and basalt compositions must

be deeper than the uppermost gabbros penetrated

in Hole 1256D.

Discussion. Marine seismologists have long

been subdividing the ocean crust into seismic

layers: Layer 1 has low velocity and is agreed to

be sediments; layer 2 has low velocity and high

velocity gradient; layer 3 has high velocity (gen-

erally at least 6.7 km/s) and low gradient. There

is a widespread perception that layer 3 is equiv-

alent to gabbro, even though Hole 504B pene-

trated layer 3 but not gabbro (4, 18). From

regional seismic refraction data the transition

from seismic layer 2 to layer 3 at Site 1256

occurs between 1450 to 1750 mbsf (1200 to

1500 msb) (25) (Fig. 3). Shipboard determi-

nations of seismic velocities of discrete samples

are in close agreement with in situ mea-

surements by wireline tools, and the gabbro

velocities are G6.5 km/s. Downhole velocity

measurements end at the top of gabbro, but we

interpret the gabbro intervals as within layer 2

because a smoothed extrapolation of the

downhole velocities will either have velocities

G6.5 km/s, still characteristic of layer 2, or will

have an exceptionally high gradient to higher

velocities, also characteristic of layer 2. En-

countering gabbro at a depth clearly within

layer 2 reinforces previous suggestions that

factors including porosity and alteration are

more important than rock type or grain size on

controlling the location of the boundary be-

tween layers 2 and 3. The position of the dike-

gabbro boundary, therefore, has little control

over the seismic velocity structure of the crust

(4, 18).

Relative to other well-studied upper ocean

crust sections (31), Site 1256 shows a thick

lava sequence and a thin dike sequence.

Steady-state thermal models require that the

conductive lid separating magma from rapidly

circulating seawater thins as spreading rate

increases, indicating that the thin dike se-

quence is a direct consequence of the high

spreading rate. A thick flow sequence with

many massive individual flows and few pillow

lavas is a reasonable consequence of short

vertical transport distance from the magma

chamber and similar to observations from the

middle of segments on the fastest spreading

ridges in the modern ocean (32). This is in

direct contrast to spreading models developed

from observations of tectonically disrupted

Fig. 3. Summary lithostratigraphic column of the basement drilled to date at Site 1256 showing
recovery, major lithologies, downcore index alteration mineral distribution (thick lines show
abundant distribution; thin lines show rare distribution), downcore distribution of Mg number
[where Mg number 0 100 � Mg/(Mg þ 0.9 � Fe) atomic ratio; symbols as in Fig. 5], and seismic
velocity measured on discrete samples, by wireline tools, and by seismic refraction (25).
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fast-spread crust exposed in Hess Deep (33),

which suggest that regions of high magma

supply should have thin lavas and thick dikes.

Similarly, there is little evidence for tilting (at

most a few degrees) in Hole 1256D and no

evidence for substantial faulting. In contrast,

the upper crust exposed at Hess Deep shows

substantial faulting and rotations within the

dike complex (33). The ponded flow at Site

1256 indicates that faults of È50 to 100 m

must exist in superfast-spread crust to provide

the necessary relief for ponding of the flow,

but faulting and rotations in the dike section

must be less common than in crust formed at

fast spreading rates, if observations from Hess

Deep are widely applicable.

The simplest model for mid-ocean ridge

magma plumbing is that the melt lens imaged

byMCS is themagma chamber in which crystal-

rich residues are separated from the evolved

lavas that reach the seafloor. The upper gabbro,

when partially molten, would have had depth

and impedance properties consistent with geo-

physically imaged melt lenses (14) based on

trends established for active ridges (Fig. 1). If

the upper gabbro intruded on axis and extended

roughly horizontally for at least hundreds of

meters, its MCS image would look exactly like

modern melt lens reflectors, yet it could not

have been the site of fractionation. Its chilled

margin against the underlying dike screen pre-

cludes segregating a crystal residue that sub-

sides to form the lower crust as in the gabbro

glacier model, and its fractionated composition

requires that crystals have been segregated else-

where. This implies that sills or other bodies

containing cumulate materials must exist deep-

er in the crust and/or below the boundary be-

tween crust mantle, consistent with recent

models based on lower crustal sections of

ophiolites (5, 17) and some marine geophysical

experiments (34–37). However, the gabbro

glacier mode of accretion cannot yet be rejected

because fractionated gabbros in the dike-gabbro

transition are not unexpected, and the predicted

region of cumulate rocks could still exist just

below the present maximum depth of Hole

1256D.

The È800-m-thick lava sequence is much

less hydrothermally altered than other basement

sites [e.g., Sites 417 and 418 and Holes 504B

and 896A (25, 38)], and the systematic change

with depth from oxidizing to reducing seawater

alteration in the upper lavas found elsewhere

does not occur. Instead, oxidizing alteration

occurs irregularly, associated with steeply dip-

ping vein networks, indicating a structural con-

trol of alteration rather than simply decreasing

seawater influence downward. The secondary

mineralogy of the rocks indicates a stepwise

increase in alteration temperatures downhole

from È100-C in the lavas to È250-C in the

uppermost dikes. Aside from the granoblastic

Fig. 4. (A) Schematic lith-
ostratigraphic section of
the Plutonic Complex from
the lower portion of Hole
1256D with representative
photographs of key sam-
ples. The distribution of
rock types is expanded pro-
portionately in zones of
incomplete recovery. Felsic
plutonic rocks include
quartz-rich oxide diorite
and trondhjemite. (B) Pho-
tomicrograph of a dike
completely recrystallized to
a granoblastic association
of equant secondary plagi-
oclase, clinopyroxene,
magnetite, and ilmenite.
Some granoblastic dikes
have minor orthopyroxene.
(C) The dike-gabbro bound-
ary: Medium-grained oxide
gabbro is intruded into
granoblastically recrystal-
lized dike along an irregular
moderately dipping contact.
The gabbro is strongly hy-
drothermally altered. (D)
Quartz-rich oxide diorite
strongly altered to actinolit-
ic hornblende, secondary
plagioclase, epidote, and
chlorite. Epidote occurs in
È5-mm clots in the finer
grained leucocratic portions
of the rock. (E) Disseminated
oxide gabbro with patchy
texture and centimeter-scale
dark ophitically intergrown
clinopyroxene and plagio-
clase patches separated by
irregular, more highly al-
tered leucocratic zones. (F)
Medium-grained strongly
hydrothermally altered gab-
bro. The sample is cut by
several chlorite þ actino-
lite veins with light gray
halos. Plagioclase is re-
placed by secondary pla-
gioclase and clinopyroxene
by amphibole. (G) Clast of
partially resorbed dike
within gabbro.

Fig. 5. FeOT (total Fe expressed as FeO) versus MgO
for the basement at Site 1256, compared with
analyses of northern EPR (outline) (50). Dashed lines
show constant Mg number. Possible primary mantle
melt compositions should have Mg number of 70 to
78 and MgO of 9 to 14 weight %. All flows and
dikes and most gabbros are too evolved to be
candidates for primary magmas.
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contact metamorphic assemblages in the basal

dikes, hydrothermal mineralogy and inferred

alteration temperatures of the lower dikes in

Hole 1256D are generally similar to those in

the lower dikes of Hole 504B (up to È400-C).
However, the dike section at Site 1256 is much

thinner than the section at Site 504 (È350 com-

pared with 91000 m), which indicates a much

steeper hydrothermal temperature gradient at

Site 1256 (È0.5-C/m compared with 0.16-C/m
in 504B).

Forming the lower oceanic crust through

the crystallization and subsidence of a high-

level melt lens (6, 7) is the most efficient

geometry for hydrothermal cooling of the

crust, as the latent and sensible heat can be

readily advected by shallowly circulating

hydrothermal fluids. However, models have

predicted larger hydrothermal fluid fluxes and

more intense alteration than those that have

been documented from ocean crustal sections

to date (39–41). Epidosites—equigranular

epidote-quartz-titanite rocks that delineate

zones of intense hydrothermal leaching and

channel-ways of upwelling black smoker-type

fluids—are common in ophiolites around the

dike-gabbro boundary (42–44) and are

recorded in the oceans from fore-arc crust

(45). Although epidote is a common replace-

ment mineral within and below the transition

zone in Hole 1256D (Fig. 3) and rare epidote-

rich alteration patches are present, epidosites

were not recovered. Because of the retrograde

solubility of calcium sulfate, anhydrite precip-

itation must play a critical but to date poorly

understood role in axial hydrothermal circula-

tion (46, 47). Anhydrite is more abundant in

the lava-dike transition and in the upper dikes

in Hole 1256D (Fig. 3) compared with Hole

504B (47), but still present in much lower

quantities than predicted by numerical models

of hydrothermal circulation resulting from the

crystallization of the crust in an axial melt

lens (46).

The question of whether the lower crust

solidifies by shallow crystallization and sub-

sidence (6) or in situ crystallization cooled

by deep hydrothermal circulation (9) remains

unresolved. The former model requires more

intense hydrothermal circulation above a shal-

low magma chamber to remove the latent heat

from crystallizing the lower crust; the latter

requires less shallow circulation but more

total circulation to remove both latent and

sensible heat from the lower crust. The high

thermal gradient inferred for the dike layer

appears adequate to conduct latent heat of

crystallization from a shallow magma cham-

ber, but evidence such as epidosites for the

large volume of water required to react with

hot rock to sustain this thermal gradient is

lacking. Also, the inferred thermal gradient

may not reflect steady-state conditions, with

high temperatures at depth possibly transitory

as the shallow gabbro crystallized. However,

evidence for the large volumes of water that

must pass through the upper crust to reach and

cool the lower crust is also lacking. Retro-

grade metamorphism under strongly hydrous

conditions would be expected below about

1000 msb as large volumes of water quenched

the upper crust before circulating at depth.

The penetration of the dike-gabbro bound-

ary in intact oceanic crust is a major milestone

that has taken more than four decades of

scientific ocean drilling that began with Op-

eration MoHole (48). Our success shows that

deep drilling in young ocean crust formed at

fast spreading rates is feasible. Such deep

drill holes are key to testing models of crustal

accretion and calibrating observations from

marine geophysics and ophiolites. The shal-

low depth to gabbros at Site 1256 was pre-

dicted from seismic studies of modern active

ridges by extrapolation to a spreading rate

substantially faster than that occurring on

the planet today. Further deepening of Hole

1256D will challenge current ideas on the

formation and cooling of the lower crust, for

example, testing the hypothesis that seismic

layer 3 at this site consists of relatively

impermeable fresh gabbro that cooled by

conduction.
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