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1. Introduction and main results

The present work aims to clarify relations between the strongest version of distri-
butional chaos, DC1, as introduced in [9], and topological entropy. There are DC1
continuous maps of a compact metric space with zero toplogical entropy (cf., e.g.,
[6]). There are also maps with positive topological entropy which are not DC1 [11]; it
should be noted that these maps are distributionally chaotic in a weaker sense. Such
examples do exist even in a special class T of triangular, or skew-product maps of the
square which has been intensively studied because its dynamics is sufficiently com-
plicated but still they have some essential similarities with one-dimensional maps.

We are able to provide a condition sufficient for DC1 in T : existence of a periodic
orbit whose period is not a power of 2. In T , this condition is stronger than positive
topological entropy but, for maps in T , there is no weaker condition implying positive
topological entropy (except for trivial condition that a factor of the map has positive
topological entropy). See, e.g., [5], [7] or [8] for details and other references. Our
result also contributes to the solution of a problem by A. N. Sharkovsky from the
eighties concerning classification of triangular maps. We believe that our result will
be useful also for those who are interested in applications of distributional chaos (in
quantum physics, for example).

Let ϕ be a map from a compact metric space (M, ρ) into itself. For a pair (x, y) of
points in M and a positive integer n, define a distribution function Φ(n)

xy : R → [0, 1]
by

Φ(n)
xy (t) =

1

n
#{0 ≤ i < n; ρ(ϕi(x), ϕi(y)) < t}. (1)

Then Φ(n)
xy is a non-decreasing function, Φ(n)

xy (t) = 0 for t ≤ 0, and Φ(n)
xy (t) = 1 for

t > diam(M). Define the lower and upper distribution function generated by ϕ, x
and y as

Φxy(t) = lim inf
n→∞

Φ(n)
xy (t), and Φ∗xy(t) = lim sup

n→∞
Φ(n)

xy (t),

respectively. Obviously, Φxy ≤ Φ∗xy. If there are points x, y ∈ M such that

Φ∗xy ≡ 1 and Φxy(t) = 0, for some t > 0, (2)

then ϕ exhibits distributional chaos of type 1, briefly, DC1. Recall that DC1 was
originally introduced in [9] for the class C of continuous maps of the interval, for
weaker notions DC2 and DC3 see, e.g., [11] or [2].
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Throughout this paper we consider distributional chaos on the class T of triangular
maps of the square. Recall that F ∈ T if F : I2 → I2 is a continuous map of the
form F (x, y) = (f(x), gx(y)), for any (x, y) in I2. In I2 we use the metric assigning
to a pair of points (xi, yi), i = 1, 2, the distance max{|x1 − x2|, |y1 − y2|}.

In [11] there is an example of a map F ∈ T with positive topological entropy which
is not DC1. This is because in T , but not in C, there are maps of type 2∞ with
positive topological entropy. Neverthless, the next theorem shows that, contrary to
this, the maps in T still have similar behavior as the continuous maps of the interval.

Theorem 1. If F ∈ T has a periodic point whose period is different from 2n, for
any n ≥ 0, then F is DC1.

In T , existence of a homoclinic trajectory implies existence of a periodic point of
period 6= 2n, n ≥ 0, cf. [5]. Hence, we have the following:

Corollary. If F ∈ T has a homoclinic trajectory then it is DC1.

It should be emphasized that, for maps in T , Theorem 1 and Corollary exhibite
all known nontrivial implications between DC1 and other properties of dynamical
systems which are in C equivalent to positive topological entropy, cf. [4], [7], [5] and
[8] for more details. Recall also that a weaker form of Theorem 1, for triangular
maps which are nondecreasing on the fibres Ix = {x} × I, is proved in [8]. Its proof
is relatively simple, and cannot be addapted to the general case of our Theorem 1.

The paper is organized as follows. In the next section we recall some and prove some
other results concerning continuous maps of the interval with zero topological en-
tropy. They will be used in Section 3 which contains auxillary results. In particular,
Lemma 3 (and its corollary, Lemma 5, concerning nonautonomous dynamical sys-
tems) which is essential for our proof of the main result is interesting in itself. Proof
of Theorem 1 can be found in Section 4. In the sequel we use standard terminology
and notation. On places, some notions and basic facts are recalled. For other notions
and related results, see, e.g., [1], [5], [7] or [8].

2. Maps of the interval with zero topological entropy.

We recall some basic properties of maps f ∈ C with h(f) = 0, i.e., with zero
topological entropy (cf., e.g., [1] or [10]). Any periodic point of such map has period
2n, for some n ∈ N. Moreover, any ω-limit set ω̃ of f is simple, i.e., either it is a
singleton – a fixed point, or it splits into two compact periodic portions ω̃0 and ω̃1
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of period 2; thus, f 2(ω̃i) = ω̃i, i = 0, 1. In particular, for any infinite ω̃ = ωf (x),
there is a decreasing sequence {Vn(ω̃)}∞n=0 of minimal compact periodic intervals
such that, for any n, Vn(ω̃) has period 2n and its orbit contains ω̃. Thus,

ω̃ ⊆
∞⋂

n=0

2n−1⋃
j=0

f j(Vn(ω̃)) =: S(ω̃). (3)

The set S(ω̃) is the solenoid containing ω̃. For simplicity, denote V j
n (ω̃) := f j(Vn(ω̃)).

Then, for any infinite ω-limit sets ω̃ and ω̃′ of f , not necessarily distinct, and for
any i, j,m, n ∈ N,

V i
m(ω̃) ∩ V j

n (ω̃′) 6= ∅ ⇒ V i
m(ω̃) ⊆ V j

n (ω̃′) or V i
m(ω̃) ⊇ V j

n (ω̃′). (4)

If, for an infinite ω-limit set ω̃, V j1
1 (ω̃) ⊃ V j2

2 (ω̃) ⊃ · · · is a nested sequence then
M =

⋂∞
n=1 V jn

n either is a singleton hence, a point of ω̃, or is a wandering interval.
Then M belongs to the set CR(f) of chain recurrent points of f . In particular, if
ω(f) denotes the set of ω-limit points of f then, for any x ∈ CR(f) \ ω(f),

for any n ∈ N there is j ∈ N with x ∈ V j
n (ωf (x)) (5)

The following lemmas are used to prove our theorem.

Lemma 1. (Cf. [4].) Let f ∈ C, h(f) = 0, and let ωf (x) be infinite. Let U = [u, v]
be the convex hull of ωf (x), and V = [a, b] the minimal compact invariant interval
containing U . Then

(i) V \ U contains no fixed point of f ;

(ii) there is an interval J relatively open in I such that U ⊆ J , J \ U contains no
fixed point of f , and f(J) ⊆ J .

Lemma 2. Let f ∈ C, h(f) = 0, and let L ⊆ ω(f) be an interval. Then L ⊆ Per(f)
and there is an n ∈ N such that all points in L have periods less or equal to 2n+1.

Proof. This result must be known but we are not able to give a reference. So let
h(f) = 0 and L ⊆ ω(f). Since ω(f) is closed we may assume L = [a, b]. Then

L ⊆ Per(f). (6)
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To see this assume that x ∈ (a, b)\Per(f). Then x belongs to an infinite ω-limit set
ω̃. If S(ω̃) is nowhere dense then, by (3), x ∈ Per(f). If S(ω̃) fails to be nowhere
dense then, by (3), S(ω̃) contains an interval. This interval is wandering, and has
a preimage in any V j

n (ω̃). Consequently, L would contain a wandering interval J
which is impossible since ω(f) ∩ J = ∅.

Thus, for some n ∈ N, there is a periodic point p ∈ L of period 2n. Then, if we
replace f by g = f 2n

, we have that K :=
⋃∞

i=0 gi(L) is an interval with g(K) ⊆ K.
Since K = L ∪ g(K), if K \ g(K) contains an interval J , then, for any i > 0,
gi(J) ∩ J = ∅, contrary to (6). So we have K = g(K) and, by [3], this implies that
g|K is a homeomorphism, K ⊆ Per(g), and no point in K has period other than 1
or 2. 2

Lemma 3. Let f ∈ C have zero topological entropy. Then, for any ε > 0, there is
an Nε ∈ N with the following properties: For any n ≥ Nε in N there are disjoint
compact intervals H1, H2, · · · , Hk such that

(i) H = H1 ∪H2 ∪ · · · ∪Hk is a neighborhood of CR(f);

(ii) for any i, λ(Hi) < ε, or Hi contains an interval Ki such that λ(Hi \Ki) < ε,
and either Ki is a wandering interval contained in CR(f), or Ki consists of periodic
points of f ;

(iii) for any i, f 2n
(Hi ∩ CR(f)) = Hi ∩ CR(f).

Proof. Assume h(ϕ) = 0 and let ε > 0. By Lemma 2, there is an N1 ∈ N such that
any interval L ⊆ ω(f) either consists of periodic points of period not greater than
2N1 , or has diameter less than ε/3. Moreover, there is an Nε ∈ N such that, for any
infinite ω-limit set ω̃ of f and any n, j ∈ N with n ≥ Nε, V j

n (ω̃) either has diameter
less than ε/3, or contains a wandering interval Kj

n(ω̃) such that V j
n (ω̃) \Kj

n(ω̃) has
measure less than ε/3. Moreover, since the periodic orbits of f are simple we may
assume that any periodic orbit of f 2Nε

has diameter less than ε/3. Finally, assume
that Nε ≥ N1.

Fix an n ∈ N, n ≥ Nε, and let X be the union of the sets V j
n (ω̃), for all j ∈ N and all

infinite ω-limit sets ω̃. By (4), X is the union
⋃∞

i=1 Vi of a countable family of disjoint
intervals Vi. The family V of their closures Vi also is disjoint. To see this note that
if Vi is not of the form V j

n (ω̃) then it is the union of a strictly increasing sequence
{V ji

n (ω̃i)}∞i=1. Hence, f 2n
(Vi) = Vi. Let ai < bi be the minimum and maximum of

V ji
n (ω̃i) ∩ ω̃i, respectively. Since V j1

n (ω̃1) is periodic it is disjoint from any ω̃i, i > 1.
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Then, ai < min V j1
n (ω̃1) and bi > max V j1

n (ω̃1) since if, e.g., bi < max V j1
n (ω̃1) then

the intervals V j1
n (ω̃1) and V ji

n (ω̃i) being minimal would be disjoint. Thus, for any
i > 0,

f 2n

(ai)− ai > λ(V j1
n (ω̃1)), bi − f 2n

(bi) > λ(V j1
n (ω̃1)). (7)

By the continuity, (7) implies that no two distinct intervals in V can have a point in
common, and that the interval between any two intervals from V cannot be a subset
of Per(f). Consequently, there is a family of disjoint open intervals A = {Ai}∞i=1

such that, for any i,

the endpoints of Ai are in I \ ω(f), (8)

Vi ⊆ Ai ⊆ Bε/3(Vi), (9)

where Bδ(M) denotes the open δ-neighborhood of a set M , and

f 2n

(Ai ∩ CR(f)) = Ai ∩ CR(f). (10)

Property (8) follows by Lemma 2 since the intervals between neighbor sets from
A cannot be subsets of Per(f), (9) follows since n > N1, and (10) by (5). Then
A =

⋃A is open and hence, Y := ω(f) \ A is a closed subset of Per(f).

Now we need a system B = {Bi}∞i=1 of open intervals covering Y , satisfying condi-
tions (8) and (10), with Ai replaced by Bi, and such that any two intervals in A ∪ B
either are disjoint or one is contained in the other one. More precisely, the inter-
vals from B are disjoint but may contain infinitely many intervals from A. Finally,
we need that any interval Bi either has length less than ε, or contains an interval
Ki ⊆ Per(f) such that Bi \Ki has measure less than ε. It is easy to construct such
a family B using (8) – (10) and Lemma 2, e.g., by transfinite induction.

To finish the argument note that A ∪ B is an open cover of ω(f), hence there is a
finite subcover G1, · · · , Gk. Take Hi = Gi, for 1 ≤ i ≤ k. The property (i) follows
since, by (5), A ∪ B covers CR(f), (ii) and (iii) since Gi ∈ A ∪ B and any interval
in A ∪ B has these properties. The intervals Hi are obviously disjoint. 2

We conclude this section by the following simple result.

Lemma 4. Let p be a fixed point of f ∈ C and ε > 0. Assume that, for any
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neighborhood W of p, there are a point x and positive integers m < n such that
|fm(x)− p| > ε and x, fn(x) ∈ W . Then h(f) > 0.

Proof. This result must be known, and it is easy to prove it since the hypothesis
implies existence of a horseshoe or, equivalently, existence of a trajectory homoclinic
to p. It is well-known that in either case, h(f) > 0. Cf. also [1]. 2

3. Preliminary results.

Before stating the next lemma we introduce some terminology. If {ϕn}∞n=1 is a se-
quence of continuous maps from a compact metric space X to itself, then S =
(X, {ϕn}∞n=1) is a nonautonomous dynamical system. The S-trajectory {yn}∞n=0 of a
point y ∈ X is defined by y0 = y, and yn = ϕn(yn−1), for n > 0.

Lemma 5. Let ϕ ∈ C and h(ϕ) = 0. Then, for any ε > 0, there are N, T ∈ N,
δ > 0, and disjoint compact sets M1, · · · , Mk with the following properties.

(i) M = M1 ∪ · · · ∪Mk is a neighborhood of CR(ϕ) and each Mk is a finite union
of disjoint intervals;

(ii) for any i, λ(Mi) < ε, or Mi contains an interval Ki such that λ(Mi \Ki) < ε,
and either Ki is a wandering interval contained in CR(ϕ), or Ki consists of periodic
points of ϕ;

(iii) for any i, ϕ2N
(Mi ∩ CR(ϕ)) = Mi ∩ CR(ϕ).

Moreover, if S = (I, {ϕi}∞i=1) is a nonautonomous dynamical system, with any ϕi ∈ C
satisfying

||ϕi − ϕ2N || < δ, for any i ≥ 1, (11)

then, for any trajectory {yn}∞n=0 of S,

(iv) the number of n’s for which yn /∈ M , is less than T ;

(v) if, for some n, yn, yn+1 ∈ M then there is an i such that yn, yn+1 ∈ Mi.

Proof. Fix an ε > 0, and let H, Hi and Nε be as in Lemma 3, and let N ≥ Nε.
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Let δ0 = mini6=j dist(Hi, Hj). Put

Di =
{
x ∈ Hi; ϕ

2N

(x) ∈ Bδ0/2(H \Hi)
}

, 1 ≤ i ≤ k, (12)

and let D = D1∪· · ·∪Dk. For any interval J complementary to CR(ϕ), let D(J) ⊆ J
be the minimal interval such that D∩J = D∩D(J). By Lemma 3(iii), D∩CR(ϕ) =
∅, hence, by the continuity of ϕ, the distance between each Di and CR(ϕ) is positive.
It follows that there are finitely many J such that D(J) 6= ∅. Let W be the union
of all sets D(J) and, for any i, 1 ≤ i ≤ k, let Mi = Hi \W . Then W is the union of
finitely many open intervals, hence M := M1 ∪ · · · ∪Mk is a finite union of compact
intervals. Since W ∩ CR(ϕ) = ∅, Lemma 3 implies that M satisfies the first three
conditions (i) – (iii).

It remains to prove (iv) and (v). It is well-known that, for any x ∈ I \ ω(ϕ), there
is an interval Ux such that any trajectory of ϕ visits Ux no more than two times [1].
Since, by (i), X = I \M is disjoint from CR(ϕ) ⊇ ω(ϕ), there is a finite cover of
X by sets Ux1 , Ux2 , · · · , Uxs . Put T = 2s. Then, by (12), any trajectory {yi}∞i=0 of
ϕ2N

satisfies (iv) and (v). To finish the argument note that f 7→ CR(f) is upper
semicontinuous [1]. Hence if δ ≤ δ0/2 is sufficiently small than, for any ϕi ∈ C with
||ϕi − ϕ2N || < δ, M is a neighborhood of CR(ϕi) and, by (12), ϕi(Mk)∩Ml = ∅ for
k 6= l. 2

Lemma 6. (Cf. [8].) Let g ∈ C have positive topological entropy. Then, for an
integer N ≥ 1, the map f = gN has a basic set ω̃ ⊂ I(i.e., infinite maximal ω-limit
set containing periodic points) with the following properties:
(i) ω̃ contains fixed points p < q of f .
(ii) For any interval J ⊂ I having an infinite intersection with ω̃ there is an integer
n ≥ 0 such that {p, q} ⊂ Int(fn(J)).

Lemma 7. (See [8].) Let k, s be positive integers, and let a0 > 0 and ai ≥ 0, if
1 ≤ i ≤ s. If

a1 + a2 + · · ·+ as ≥ a0(1 + k)s (13)

then, for some i, 0 ≤ i < s,

ai+1

a0 + a1 + · · ·+ ai

> k. (14)
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4. Proof of theorem 1.

Assume that F has a periodic point w = (p, q) of period k = mn, where m is an
odd integer. If n is a multiple of the period s of p, then w is a periodic point of
ϕ := F s|Ip of period k/s and so ϕ is (isomorphic to) a map from C which is not of
type 2∞. Therefore ϕ is DC1 [9] and consequently, also F is DC1.

So we may assume that the base map f has positive topological entropy and that,
for each periodic point p of f with period s, the function F s|Ip is of type 2∞.

Since FN is DC1 iff F is DC1, we may assume that f has the properties indicated
in Lemma 6 (i) and (ii). Hence there are compact interval neighborhoods U0, V0 of
p and q, respectively, such that

dist(U0, V0) = ε > 0 (15)

and, for any interval J ⊂ I containing infinitely many points of ω̃,

fn(J) ⊃ U0 ∪ V0, for some n ≥ 1. (16)

We prove the theorem by showing that there are points α = (p, z), β = (x, y) in I2

such that

Φαβ(ε) = 0, and Φ∗αβ ≡ 1. (17)

Our proof depends on an increasing sequence

ν = {n(i)}∞i=0, (18)

of positive integers which will be specified later, see (31) and (34) – (36). Now we
proceed with three stages.

STAGE 1. Our first aim is to find x ∈ I such that

Φpx(ε) = 0 and Φ∗px ≡ 1. (19)

Notice that the distribution functions in (17) are generated by the map F while these
in (19) by f . Clearly, the first condition in (19) implies the first condition in (17),
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for any choice of z and y. Since any basic set is perfect, any neighborhood J of p or
q has an uncountable intersection with Q and hence, by Lemma 6, (16) is satisfied
for such J . Consequently, by the induction argument, there are decreasing sequences
{Ui}∞i=0 and {Vi}∞i=0 of compact interval neighborhoods of p and q, respectively, such
that

f(Ui+1) = Ui and f(Vi+1) = Vi, for every i ≥ 0, (20)

and hence,

∞⋂
i=0

Ui = {p} and
∞⋂
i=0

Vi = {q}. (21)

By (16) there are minimal integers ui and vi such that

fui(Ui) ⊇ V0, and f vi(Vi) ⊇ U0, for any i ≥ 0. (22)

Now we proceed as follows. We pick up a point x ∈ Un(0) with the itinerary

Un(0)
m1−→ U0

m2−→ Vn(1)
m3−→ V1

m4−→ Un(2)
m5−→ U2

m6−→ Vn(3)
m7−→ V3

m8−→ Un(4) · · · (23)

where A
m−→ B means that fm(A) ⊇ B. Existence of x with itinerary (23) follows

by (20), (22) and the Itinerary Lemma. To prove (17) it suffices to estimate the
corresponding lower and upper distribution functions generated by the pair p and
x, and choose (18) properly.

Thus, by (20) and (22), we always can satisfy (23) by taking, for any k ≥ 0,

m4k+1 = n(2k)− 2k, m4k+3 = n(2k + 1)− (2k + 1). (24)

m4k+2 ≥ u2k, m4k+4 ≥ v2k+1. (25)

For simplicity, denote

t0 = 0, and tk =
k∑

i=1

mi, for any k ≥ 1. (26)
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Note that the estimation of mi with even i in (25) is independent of the choice of
(18). Therefore we may take m4k+2 and m4k+2 arbitrarily big in order to assure that,
given an Nk ∈ N, t4k is divisible by 2Nk , cf. (34).

Then, by (23),

f i(x) ∈ U2k, if t4k ≤ i ≤ t4k + m4k+1, (27)

and

f i(x) ∈ V2k+1, if t4k+2 ≤ i ≤ t4k+2 + m4k+3. (28)

Thus, by (21), (26) and (27)

Φ∗px(δ) ≥ lim sup
k→∞

m4k+1

t4k + m4k+1

, for any δ > 0, (29)

and similarly, by (15), (26) and (28),

Φpx(ε) ≤ lim inf
k→∞

t4k+2

t4k+2 + m4k+3

. (30)

Now if the sequence ν in (18) satisfies

n(k)

t2k

> k, for any k > 0, (31)

then

m4k+1

t4k + m4k+1

> 1− 1

k
, and

t4k+2

t4k+2 + m4k+3

<
1

k
, for any k > 0

and, by (29) and (30), (19) is satisfied.

STAGE 2. Now we specify (18). In Lemma 5, put ϕ = F |Ip and, for any k ≥ 1, let
ε = 1

k
to obtain compact sets Mk

1 , Mk
2 , · · · , Mk

m(k), integers N = Nk > 0, T = Tk > 0,
and δ = δk > 0. Assume that

for any k, Nk < Nk+1, Tk < Tk+1, and δk > δk+1 → 0. (32)
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Denote

Mk = Mk
1 ∪Mk

2 ∪ · · · ∪Mk
m(k). (33)

By induction define (18) satisfying (31) and such that, for any k > 0,

t4k is divisible by 2Nk , (34)

n(2k) > Qk + 2k, where Qk = (1 + k)Tk(t4k + Tk), (35)

and

u ∈ Un(2k) implies || F i|Ip − F i|Iu || < δk, 0 ≤ i ≤ Qk. (36)

Condition (36) can be satisfied by (20) and (21).

STAGE 3. Let {yn}∞n=0 be a trajectory of the nonautonomous system F = (I, {F |Ixn}∞n=0)
where {xn} is the trajectory of x chosen in Stage 1. This trajectory depends on the
choice of ν in (18) which has been fixed in Stage 2. We show that, for any k > 0,
there is a positive integer Sk satisfying t4k < Sk ≤ t4k+1 and such that

lim
k→∞

ΦSk
αβ0

(η) = 1, for any η > 0, (37)

where β0 = (x0, y0), and α = (p, z) is a suitable point in Ip. Then (17) follows by
(19). Here the distribution function Φn

αβ0
(t) for the nonautonomous system F is

defined similarly as in (1).

By (34) – (36), and by (iv) and (v) of Lemma 5, the set

{t4k ≤ n < t4k + Qk; yn ∈ Mk and n ≡ 0 (mod 2Nk)} (38)

consists of less than Tk blocks Ai of consecutive integers. Apply Lemma 7, with
a0 = t4k +Tk, s = Tk, and ai ≥ 0 the length of Ai, to find j(k), Hk, Sk ∈ N such that

t4k ≤ Hk < Sk ≤ Qk,
Sk

Hk

> k, (39)
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and

yn ∈ Mk
j(k), if n ≡ 0 (mod 2Nk) and Hk ≤ n < Sk. (40)

Since ε = 1/k → 0 the family {Mk
j(k)}∞k=1 contains an infinite decreasing subsequence

{Mki

j(ki)
}∞i=1. Denote by M∞ its intersection. By (i) and (ii) of Lemma 5, M∞ ⊆

CR(F ). By (40) there is a subsequence of {yHk
}∞k=1 converging to a point z ∈ M∞.

Without loss of generality assume limk→∞ yHk
= z.

Denote G = F |Ip. Since, for any ϕ ∈ C with zero topological entropy the set CR(ϕ)\
ω(ϕ) consists of intervals contained in solenoids [1] there are two possible cases, either
ω̃ := ωG(z) is infinite or z ∈ Per(G).

Fix an η > 0 and assume first that ω̃ is infinite. Then it is contained in a solenoid,
hence there is a decreasing sequence {Lk}∞k=1 of compact periodic intervals generating
this solenoid such that Lk ⊇ M∞ has period 2Nk . Fix a k0 > 0 such that δk0 < η/2.
If z is an interior point of Lk0 then yHk

∈ Lk0 , for any sufficiently large k. Hence, by
(36),

|Gn(z)− yHk+n| ≤ |Gn(Lk0)|+ |Gn(z)−Gn(yHk
)| < η,

for any n between 0 and Sk−Hk, and any k ≥ k0, with no more than 2/η exceptions
for n since the intervals in the orbit of any Lk are disjoint. This, by (39), proves
(37) provided z is an interior point of Lk0 . In the other case note that z /∈ Per(G)
so, for i = 2Nk0 or i = 2Nk0

+1, z is an interior point of Lk0 . Then, by the continuity,
yHk+i ∈ Lk0 , for any large k, and similarly as before we obtain (37).

It remains to consider the other case when z ∈ Per(F ). Without loss of generality
assume p is a fixed point of G. If M∞ is an interval then, by Lemma 5 (ii), it consists
of fixed points of G. If z is an interior point then, for any sufficiently large k, yHk

is also an interior point hence, fixed a point of G. Thus, by (36) and (40), for any
sufficiently lagre k,

|Gn(z)− yHk+n| ≤ |z − yHk
|+ |Gn(yHk

)− yHk+n| < |z − yHk
|+ δk < η,

whenever 0 ≤ n < Sk−Hk. This gives (37). Finally, if M∞ is a singleton or an interval
of fixed points with p as is its endpoint then, by Lemma 4, there is a neighborhood
W of z such that if yHk

∈ W then |Gn(yHk
) − z| < η/2, for 0 ≤ n < Sk − Hk.

13



Consequently, for any sufficiently large k, by (36) and (40), |z − yn| < η whenever
0 ≤ n < Sk −Hk, and (37) follows. 2
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