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1. SUMMARY 
 

Reproductive success in plants is dependent on the timing of the switch from vegetative to 

reproductive phase coinciding with optimal environmental and developmental conditions. 

This is a key step that dramatically influences plant productivity, one of the most important 

aspects in agriculture. Plants have evolved an elaborate regulatory network that integrates 

endogenous and environmental signals to ensure that flowering occurs when conditions are 

most favorable. During the last two decades, functional genomics studies have revealed the 

existence of a complex network of genetic interactions responsible of integrating the different 

types of signals, both internal and external, that plants receive and that define when plants 

can enter into the reproductive phase (Liu et al. 2009). However, the molecular 

characterization of the floral transition process is far from being completed, therefore new 

studies flanked by new research methods are needed to identify and characterize the 

proteins and protein complexes that play a key role in the transition to the reproductive phase 

(Jang et al. 2009). One of these proteins involved in floral transition is SVP (Short Vegetative 

Phase), a MADS-Box transcription factor studied for a long time at genetic level. It has been 

reported (Liu et al. 2007) that the ectopic expression of this transcription factor causes a late 

flowering phenotype in transgenic plants. Moreover, this line develops abnormal leaves and 

also the flower structure is altered. It is known that many, if not all transcription factors, play 

their biological role as part of multi-subunit protein complexes, on the other side knowledge 

on those protein complexes is scarce. In the case of SVP, some interacting partners have 

been identified via yeast-2-hybrid assays (Gregis et al. 2009), however in planta evidences 

of such interactions have not been provided, yet. During the last two years, in our laboratory 

we developed a protocol that enable us to coimmunoprecipitate protein complexes using an 

antibody against GFP fused to SVP, in order to identify the putative partners that interact 

together, with SVP, in controlling the flowering time. The analysis of the first data generated 

a large number of putative candidates involved in acetylation, deacetylation and methylation 

of histones (Cohen et al. 2009; Berr et al. 2010). A major conclusion that can be drawn from 

our findings, in agreement with recent publications in this field, is that SVP controls flowering 

time in Arabidopsis by a chromatin-dependent expression regulation of genes involved in 

the process. The aim of this project was the validation of the results, by using different 

methods, and the characterization of these putative partners in order to identify the right 

composition of different complexes in which SVP interacts with, and the mechanisms behind 
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the regulation of flowering time. The flowering time analysis of mutants of the two most 

promising candidates  GCN5 (GENERAL CONTROL NON-REPRESSIBLE 5) and SDG2 

(SET domain protein 2) revealed, in agreement with already published data, their 

involvement in this mechanism (Bertrand et al. 2003; Guo et al. 2010; Berr et al. 2010). 

Moreover, preliminary data obtained by analyzing the 35S::SVP-GFP svp/svp  SDG2/sdg2 

plants, indicate that the floral defect caused by the overexpression of SVP, needs also the 

presence of SDG2 protein. 
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2. INTRODUCTION 
 

Floral transition is a key step in the life cycle of plants since it determines the period of flower 

development, thus defining the transition from vegetative to reproductive phase, a crucial 

process that dramatically influences plant productivity. Clearly, the possibility to control this 

process has an estimable value in agriculture, since it will allow plants to flower under 

optimal environmental conditions, thus enabling maximal crop yield, every year, 

independently from the environmental conditions (Kang et al. 2011). To reach this ambitious 

goal, it is extremely important to gain a deep knowledge of all the molecular processes 

responsible of the flower transition process. During the last two decades, functional 

genomics studies have revealed the existence of a complex network of genetic interactions 

responsible of integrating the different types of signals, both internal and external, that plant 

receives and that define when plants can enter into the reproductive phase (Liu et al. 2009). 

However, the molecular characterization of the floral transition process is far from being 

completed, therefore new studies flanked by new research methods are needed to identify 

and characterize the proteins and protein complexes playing key roles in the transition to 

the reproductive phase (Jang et al. 2009), on the model species Arabidopsis thaliana is 

necessary. 

 

2.1 The model species Arabidopsis thaliana 
 

Arabidopsis thaliana (Figure 1) is a small herbaceous eudicot, member of the family of the 

Brassicaceae, that can be found in temperate areas. This plant is the first of which the 

genome was completely sequenced at the end of year 2000 thanks to the Arabidopsis 

Genome Iniziative. Arabidopsis present a lot of characteristics that makes it the best plant 

model organism used to study developmental, biochemical and physiological processes. 

The knowledge obtained from these studies can often be transferred to other plants with 

economical relevance like Rice, Barley, Maize etc. Genetic engineering it’s very easy, since 

plants can be transformed by using Agrobacterium tumefaciens through a simple procedure 

called “floral dipping”, that doesn’t require plant regeneration. Another advantage of this 

plant is the availability of many different mutants, both single nucleotide mutants obtained 

by EMS mutagenesis, and insertional mutants obtained by T-DNA or transposon insertions. 

To date 320.000 insertional mutants, covering more or less all the genome, are available in 
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the NASC (Nottingham Arabidopsis Stock Center) and ABRC (Arabidopsis Biological 

Resource Center) stock center. Other important characteristics of Arabidopsis that makes it 

an ideal model organism are the life-cycle very short (from seed to seed in 6 weeks), its 

small genome (146Mb), its little 

dimension and the abundance of seed 

produced by every single plant. The most 

commonly used ecotypes are Columbia 

(Col) and Landsberg erecta (Ler),and 

both of them have been sequenced. One 

of the main features of the Arabidospis 

genome is the large amount of genetic 

redundancy, in fact about 60% of the 

entire genome is thought to be derived 

from a single event of duplication. 

Subsequently a process of specialization 

took place accumulating mutations in the 

coding sequence of the duplicated genes, 

thus conferring different gene functions 

and expression profiles.  

 

2.2 Meristems 
 

In Arabidopsis thaliana the primary meristems (root and shoot meristems) are formed during 

embryogenesis and form primary tissues from which all organs develop. Meristems can be 

classified into determinate or indeterminate: a determinate meristem is a meristem in which 

the stem cell reservoir is transient and its maintenance must be stopped at the correct stage 

of development. An indeterminate meristem, instead, grows indefinitely and its stem cell 

reservoir is maintained constantly. Meristem cells can produce daughter cells that 

differentiate to produce organs and to maintain the indeterminate meristem. Cytological and 

histological studies have shown that the angiosperm indeterminate shoot apical meristem 

(SAM) consist of dividing cells laid out in an organized manner (Evans & Barton 1997). Three 

positions have been recognized within the SAM (Figure 2). The central zone (CZ), localized 

at the apex of the SAM, is a small cluster of enlarged, highly vacuolated cells with a slow 

Figure 1. In this picture is represented the life cycle 

of the model plant Arabidopsis Thaliana. 
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rate of division as they are the reservoir of pluripotent stem cells. The peripheral zone (PZ) 

surrounds the central zone and is the site of organ formation, with small cells and fast 

division. The rib zone (RZ) is beneath to the central zone, constitutes the meristem pith and 

contributes to the bulk of the meristem. In Arabidopsis, the SAM gives rise to different tissues 

during the different phases of plant life cycle. During the vegetative growth phase the SAM 

proliferates to produce vegetative structures such as leaves and secondary shoots. A wild-

type plants produces a rosette of 13-15 leaves in long day (LD) conditions (Hartmann et al. 

2000). Upon environmental and endogenous signals, the floral transition occurs triggering 

the transformation of the SAM into an inflorescence meristem (IM). The Arabidopsis IM is 

an indeterminate meristem and develops in a spiral manner multiple determinate floral 

meristems (FMs) that produce a precise number of floral organs arranged in a whorled 

pattern (Irish 1999). Every FM is committed to form a single flower, composed of four sepals, 

four petals, six stamens and one pistil in a whorled pattern. 

 

 

2.3 The floral transition 
 

The floral transition is a key step in the life cycle of plants, as it determines the switch from 

vegetative phase, where only leaves are produced by the SAM, to reproductive phase, 

during which flowers are formed. The flower contains both male and female gametes that 

are essential for plant reproduction. The decision to flower is one of the most important 

events during plant’s life cycle and must be fine regulated. In Arabidopsis thaliana there are 

Figure 2. Structural features of Arabidopsis shoot apical and floral meristems. (a) Section through 
a vegetative SAM showing the cell layers (L1, L2, and L3) and the histologically defined domains. 
CZ, central zone; PZ, peripheral zone; RZ, rib zone.(b) Confocal micrograph of an indeterminate 
SAM. The stem cell reservoir (sc) is at the apex constituting the inflorescence meristem, and floral 
meristems (fm) arise from the flanks. (c) Confocal micrograph of a determinate flower, after the 
floral meristem has produced sepals (se), petals (pe), stamens (st), and two carpels (ca) in the 
center of the flower (Fletcher 2002). 
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five different pathways that control the floral transition in order to produce flowers and then 

seed and fruits (Figure 3), under the best environmental conditions (temperature, light). 

Three of these pathways are influenced by environmental stimuli: the photoperiodic pathway 

is regulated by day length, the vernalization pathway is regulated by low temperature, and 

the thermosensory pathway that is regulated by sub-optimal but not freezing temperature. 

The remaining two pathways, the autonomous pathway and the one controlled by plant 

hormone gibberellins, are dependent on internal signals. The signals generated from these 

different pathways are then integrated at the level of so called Floral Pathway Integrator 

genes which are LEAFY (LFY), FLOWERING LOCUS T (FT), and SOPPRESSOR OF 

OVEREXPRESSION OF CONSTANS (SOC1) (Kardailsky et al. 1999; Blázquez & Weigel 

2000; Simpson & Dean 2002). LFY encodes a protein present only in the plant kingdom, it 

is expressed in young leaf primordia with a maximum expression peak in young flower 

meristems (Blázquez et al. 1997) where it  is involved in the establishment of floral meristem 

identity. Its multiple role is responsible of different phenotypes in the plant. Overexpression 

of LFY  confers an early flowering phenotype, while the lfy mutant shows the conversion of 

flowers into leaf-like structures with few inflorescence-like structures (Weigel, 1992). LFY 

integrates the photoperiodic and gibberellin pathways, through separate cis elements 

present on its own promoter (Blázquez & Weigel 2000). FT encodes a protein similar to 

phosphatidylethanolamine binding protein (PEBP) and Raf kinase inhibitor protein (RKIP) in 

animals (Kardailsky et al. 1999; Kobayashi et al. 1999) and its mRNA has been detected in 

all plant organs. Since the ft mutant flowers late in long day (LD) conditions but it is only 

slightly affected in short day (SD) conditions, FT has been attributed to the photoperiodic 

pathway (Koornneef et al. 1991). SOC1 encodes a MADS box transcription factor that 

belongs to a gene family of four members: SOC1, AGL42, AGL71 and AGL72 (Parenicová 

et al. 2003). SOC1 is expressed mostly in leaves and in the shoot apex, it is absent from 

stage 1 flower meristems and it reappears in the center of older flower meristems. SOC1 

integrates autonomous, vernalization an GA pathways (Moon et al. 2003). Working together 

with an other MADS box transcription factor AGAMOUS-LIKE24 (AGL24), SOC1 is able to 

bind each other’s promoters generating an auto-regulatory feedback loop and it is 

responsible of LFY activation (Lee et al. 2008).  



 

 
12 

 

 

Figure 3. Here is represented the regulatory network that controls flowering in Arabidopsis (Fornara et al. 

2010). 

 

2.4 The photoperiodic pathway 

Arabidopsis thaliana is a facultative long day plant: it flowers under long-day conditions, that 

is when spring and summer are coming. Studying mutants with altered photoperiodic 

flowering resulted in the identification of many genes that regulate flowering in response to 

long-day signal. These include light (photo) receptors, circadian clock components and 

clock- and light-regulated genes (Nakamichi et al. 2007; Takase et al. 2007). 

For instance, mutations in CONSTANS (CO), GIGANTEA (GI), FLOWERING LOCUS T 

(FT), FLOWERING LOCUS D (FD), FLOWERING WAGENINGEN (FWA), 

CRYPTOCHROME 2 (FHA) and FE cause lateness in flowering under long-days, but they 

have little effect under short-day; so all these genes have been placed in the photoperiodic 

pathway(Abe et al. 2005; Fowler et al. 1999). 

One of the main players in this pathway is CO, a B-box zinc finger protein that promotes 

transcription of downstream flowering time genes (Putterill et al. 1995; Robson et al. 2001). 
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Alteration of CO expression has been observed in a number of circadian mutants. In fact the 

circadian clock controls expression of CO in the vascular tissue of leaves: CO mRNA level 

rises around 12 hours after dawn and it stays high throughout the night (Park et al. 1999; 

Fowler et al. 1999; Suárez-López et al. 2001). CO is also regulated at the post-translational 

level: cryptochrome and phytocrome A photoreceptors act at the end of the day to stabilize 

the CO protein (Valverde et al. 2004), while in darkness the protein is rapidly degraded. 

Under short-days the CO mRNA is only expressed during the dark hours, so the protein can 

never accumulate. 

The major targets of CO are FT, a floral pathways integrator, and TSF (TWIN SISTER OF 

FT). CO promotes their expression in the leaves and their transport throughout the phloem 

system to the shoot apex (Figure 4) (Corbesier et al. 2007). It has been discovered that the 

double mutant ft-10 tsf-1 is 

photoperiod-insensitive and that the 

inactivation of these genes fully 

suppresses the early-flowering 

phenotype caused by over-

expression of CO. Moreover both 

these genes are repressed by SVP in 

leaves (Lee et al. 2007; Li et al. 2008; 

Jang et al. 2009). It has been shown 

that in yeast FT and TSF can interact 

with the bZIP transcription factor FD 

(Abe et al. 2005; Wigge et al. 2005; 

Jang et al. 2009). In the SAM the 

complex FT/FD is involved in the 

 

Figure 4. The photoperiodic pathway. 

Appropriate day length allows the 

accumulation of the transcription factor 

CO that controls expression of FT  in the 

leaf. FT protein moves through the 

phloem to the shoot apex where it 

interacts with the transcription factor FD 

to activate key genes such as AP1 and 

SOC1. SOC1 then activates LFY, a 

transcription factor required for AP1 

expression in wild-type plants (Lee & 

Zeevaart 2007). 
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activation of SOC1 (Searle et al. 2006), while it directly activates the MADS-box transcription 

factor AP1 in the floral meristem (Abe et al. 2005; Wigge et al. 2005). An ectopic expression 

of AP1 (APETALA 1) is observed in the over-expression of either FT or FD driven by the 

control of the CaMV 35S promoter (Kobayashi et al. 1999). In Arabidopsis thaliana an FT-

independent photoperiodic pathway exists, but it is still not well characterized. The main 

player is AGL17 (AGAMOUS-LIKE 17), a gene which is positively regulated by CO and that 

can influence LFY  and AP1 expression, since the expression of both these genes are 

reduced in the agl17 mutant (Han et al. 2008). 

 

 

2.5 The vernalization pathway 

The vernalization pathway, which acts redundantly with the autonomous pathway, 

accelerates flowering upon exposure to a long period of cold (three to eight weeks). The 

requirement for vernalization is an adaptation to temperate climates that prevents flowering 

before winter and permits flowering in the favourable conditions during spring. 

Arabidopsis plants can be summer-annual, if they are rapid-flowering and usually complete 

their reproductive cycle in one growing season, or winter-annual, if they may not complete 

their life cycle until the second growing season after an intervening winter.  

To discover the genes involved in the vernalization pathway, winter- and summer-annual 

Arabidopsis plants were crossed and their progeny was analyzed using molecular makers. 

Two genes were found to be involved in this process: FLOWERIG LOCUS C (FLC), a 

MADS-box transcription factor mostly expressed in meristems and leaves, and FRIGIDA 

(FRI), a nuclear protein found only in plants (Lee & Amasino 1995). In fact, in all the summer-

annual Arabidopsis plants, these genes carry mutations that reduce their expression 

however FLC is expressed at high levels only in the presence of FRI (Johanson et al. 2000). 

In winter-annual Arabidopsis, vernalization promotes flowering by causing a down-

regulation of FLC, which normally represses genes required for the transition to flowering 

(Michaels & Amasino 1999). 

Screenings on mutagenized winter-annual plants were performed: plants that showed 

acquired insensitivity to vernalization were analysed to find the site of the mutation. Many 

different genes were discovered through these studies, such as VERNALIZATION 1 

(VRN1), VERNALIZATION 2 (VRN)2, VERNALIZATION INSENSITIVE 3 (VIN3), VRN5/ 
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VIN3-LIKE 1(VIL1), and atPRMT5 (Levy et al. 2002; Bastow et al. 2004; Sung et al. 2006; 

Sung & Amasino 2004; Greb et al. 2007).  

All these genes seem to be involved in remodelling FLC chromatin. The vernalization effect, 

in fact, is due to repressive histone modifications in the FLC locus, in particular to histone 

H3 Lys9 (H3K9) and histone H3 Lys27 (H3K27) methylation (Bastow et al. 2004; Sung & 

Amasino 2004). 

However it has been shown that vernalization may act also through an FLC-independent 

pathway; for example, vernalization clearly promotes flowering in flc null mutants in SD 

(Scortecci et al. 2001). This is probably due to the repressive activity of FLC paralogs. In 

fact, in Arabidopsis five paralogs of FLC have been identified: FLOWERING LOCUS M 

(FLM)/MADS AFFECTING FLOWERING 1 (MAF1), MAF2, MAF3, MAF4, and MAF5. 

FLM/MAF1, MAF2, and MAF. All these genes act as floral repressors, probably in a manner 

similar to what FLC does (Ratcliffe et al. 2001; Scortecci et al. 2003).  

It has been shown that in plants with high FLC expression, FT and SOC1 genes are 

repressed (Lee et al. 2000; Michaels et al. 2005). Moreover it has been demonstrated that 

FLC directly represses SOC1 and FD, by binding their promoting regions, and FT, by binding 

a region in its first intron (Hepworth et al. 2002; Helliwell et al. 2006; Searle et al. 2006). 

It has recently been discovered that the regions of SOC1 and FT that are bound by FLC are 

also recognized by SVP. Coimmunoprecipitation analysis demonstrated that SVP and FLC 

interact in a repressive complex to delay the floral transition in Arabidopsis (Li et al. 2008). 

Although SVP interacts with FLC to repress flowering, SVP mRNA levels are not affected 

by vernalization, while vernalization results in the stable repression of FLC (Bastow et al. 

2004; Sung & Amasino 2004). Recently it has been shown that the circadian clock has an 

influence on SVP levels, in fact in a double mutant of two clock components, LATE 

ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), SVP 

protein accumulates to higher levels than in wild type plants (Fujiwara et al. 2008). This 

suggests that there may be a cross-talk between the photoperiodic pathway and the 

vernalization pathway. 

 

 

2.6 The autonomous pathway 

The autonomous pathway acts in parallel with the vernalization pathway as it also 

culminates in the repression of FLC. The mutants in this pathway are characterized by 
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delayed flowering in both LD and SD, in contrast to the mutants of the photoperiodic pathway 

that show delayed flowering only in LD conditions. Several genes have been associated to 

the autonomous pathway: LUMINIDEPENDENS (LD), FCA, FY, FPA, FLOWERING 

LOCUS D (FLD), FVE, FLOWERING LATE KH MOTIF (FLK), REF6 and FLOWERING 

LOCUS D (FLD) (Lee et al. 1994; Macknight et al. 1997; Schomburg et al. 2001; Simpson 

et al. 2003; Simpson et al. 2004; Sanda & Amasino 1996).  

FCA, FPA, FY, and FLK proteins are predicted to be involved in RNA metabolism (Macknight 

et al. 1997; Schomburg et al. 2001; Simpson et al. 2003), while FVE, FLD, and REF6 have 

domains that usually are associated with chromatin-modifying components, for example 

FLD and REF6 are predicted to be histone demethylases (Noh et al. 2004; Jiang et al. 2007). 

Even if there is no evidence that these proteins directly interact with FLC mRNA or with the 

FLC locus, it has been demonstrated that mutations in the FLC locus completely suppress 

the delayed flowering phenotypes of autonomous pathway mutants (Michaels & Amasino 

2001). 

 

 

2.7 The thermosensory pathway 

Ambient growth temperature is a very important regulator of many plant processes, as it 

affects the rates of metabolic reactions and morphogenesis. Flowering, in particular, is 

largely  influenced by changes in ambient temperature. For example wild-type plants grown 

at 16°C are late flowering (Blázquez et al. 2003). To date only a few information are available 

about the thermosensory pathway. To discover the genes involved in this process, genetic 

screens have been performed to identified mutants whose flowering time isn’t affected by 

temperature changes (Blázquez et al. 2003). These analyses evidenced that some genes, 

namely FCA and FVE, which had previously been attributed to the autonomous pathway, 

are also involved in the thermosensory process (Blázquez et al. 2003). Moreover, it was 

found that also the svp mutant fails to respond to low temperature, suggesting that SVP is 

part of this pathway (Lee et al. 2007). In particular this gene seems to act as a repressor 

downstream of FCA and FVE and upstream of FT. ChIP experiments demonstrated a 

preferential binding of SVP on the FT 5’ promoter (Lee et al. 2007). Another gene that can 

possibly be involved in the thermosensory pathway is SOC1, as it was shown that the double 

mutant soc1 ft has a reduced response to temperature changes, when compared to ft single 

mutant (Lee et al. 2007). 
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Likely, in the apex SOC1 is regulated by TERMINAL FLOWER1 (TFL1), a member of the 

FT family, that usually acts as a repressor downstream of FCA and FVE (Strasser et al. 

2009). 

Recently it was demonstrated that six small RNAs (miR156, miR163, miR169, miR172, 

miR398 and miR399) are ambient temperature-responsive and that the expression of one 

of them (miR172) is altered in the svp mutant (Lee et al. 2010). 

 

 

2.8 The GA pathway 

The gibberellin pathway is necessary to promote flowering especially under SD conditions 

(Wilson et al. 1992). In fact, mutations that disrupt either GA biosynthesis or signaling show 

alterations in flowering time. For example, a mutation in GA1, the enzyme that catalyzes the 

first step in the biosynthesis of GA, completely suppresses flowering under SD conditions 

(Moon et al. 2003). 

The gibberellin pathway acts, at least in part, by up-regulating the floral meristem identity 

gene LFY since it has been shown that LFY activity is reduced in the ga1-3 mutant and that 

it increases when exogenous GA is applied to both wild-type and ga1-3 mutant plants 

(Blazquez et al. 1998; Blázquez & Weigel 2000). Moreover a cis-element has been found in 

the LFY promoter that abolishes its response to GA without affecting LFY induction by 

photoperiod, indicating that the two different pathways are integrated at the level of the LFY 

promoter (Blázquez & Weigel 2000). GA may also be involved in inducing FT expression, 

even if it has not been clearly demonstrated. What is known so far is that, both in LD and in 

SD, gibberellins promote FT expression in wild-type and in ga1-3 plants (Hisamatsu & King 

2008). 

Finally gibberellins are able to induce SOC1, in fact over-expression of SOC1 rescued the 

non-flowering phenotype of ga1-3 and the soc1 mutant showed reduced sensitivity to GA 

(Moon et al. 2003). 

It is likely that gibberellins regulate flowering in Arabidopsis through the activation of the two 

flowering pathway integrators SOC1 and LFY independently, but the existence of other 

factors involved in this process has been proposed (Moon et al. 2003). Moreover, it has 

been shown that SOC1 and AGL24 up-regulate each other in response to GA and 

synergistically determine flowering time under SD conditions (Li et al. 2008). 
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2.9 MADS-box transcription factors 
 

A major gene involved in the regulation of the floral transition is SHORT VEGETATIVE 

PHASE (SVP), a MADS-box transcription factor that is involved in the autonomous, 

thermosensory and GA pathways that negatively regulate flowering (Hartmann et al. 2000). 

The MADS-box transcription factors family comprises 107 members (Parenicová et al. 

2003). The MADS domain is highly conserved in all eukaryotes and the term MADS derives 

from its first four discovered members: MCM1 (Yeast), AGAMOUS (Arabidopsis), 

DEFICIENS (Antirrhinum) and SRF (Human) (Schwarz-Sommer et al. 1992; Messenguy & 

Dubois 2003). In plants, two different classes of MADS-box transcription factors have been 

identified: the type I, divided into Mα, Mβ and Mγ clades, and type II, that comprises the Mδ 

and MIKC clades (Alvarez-Buylla et al. 2000; Parenicová et al. 2003). Around 60 members 

compose the type I subfamily and they do not share any sequence similarity with the type II 

class, except for the MADS-box domain (De Bodt et al. 2003). Only a little part of these 

transcription factors has been functionally characterized, and recent studies suggest their 

involvement in gametophyte and seed development (Köhler et al. 2003; Bemer et al. 2008; 

Colombo et al. 2008; Kang et al. 2008). Concerning the type II MADS-box genes, the Mδ 

class has not been well characterized, while many members of the MIKC clade have been 

intensively studied. The MIKC transcription factors share a conserved structure formed by 

the MADS domain (M), the intervening domain (I), the keratin-like  domain (K) and the C-

terminal domain (C) (Becker & Theissen 2003). The MADS domain is located in the N-

terminus of the protein and is highly conserved; it is composed of 58 aminoacids and 

functions as a DNA binding domain that recognizes a specific sequence in the promoter 

regions called CArG-box (CC(A/T)6GG) (Schwarz-Sommer et al. 1992; Huang et al. 1993; 

Shiraishi et al. 1993; Riechmann & Meyerowitz 1997). The MADS domain is also involved 

in nuclear localization and protein dimerization carried out through two antiparallel β-sheets 

that are present within the MADS domain, while an α-helix facilitates contact with the DNA 

(Messenguy & Dubois 2003). The intervening domain is involved in dimer formation 

(Riechmann & Meyerowitz 1997), together with  the keratin-like domain. (Kaufmann et al. 

2005). The C-terminal domain, that is the most variable, is involved in ternary complex 

formation and transcriptional activation (De Bodt et al. 2003; Masiero et al. 2002). The 

capacity of MADS-box proteins to form different heterodimers and ternary complexes, 

increases the complexity of their regulation; forming different complexes, with different 

activities (de Folter et al. 2005). Since many floral organ and floral meristem identity genes 
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belong to the MADS-box transcription factor family (Parenicová et al. 2003), the study of 

their functions is central to the comprehension of the molecular mechanisms responsible of 

plant development and plant reproduction, with important commercial outcome. 

 

2.10 MADS-Domain and Chromatin remodeling 
 

Floral organs identity is specified by the combinatorial action of MADS-domain transcription 

factors, but the mechanisms by which MADS-domain proteins activate or repress the 

expression of their target genes is still largely unknown. From affinity purification and mass 

spectrometry studies, it was shown that five major floral homeotic MADS-domain proteins 

(AP1, AP3, PI, AG, and SEP3) interact in the floral tissues as proposed in the “floral quartet” 

model (Smaczniak, Immink, et al. 2012). Furthermore, the results of this study indicate that 

the MADS-domain proteins interact not only with each other but also with a large number of 

non-MADS transcriptional regulators. Chromatin remodeling and modifying factors 

represent the most prominent group among these interactors. Several IP and MS analysis 

performed on floral tissues using as baits either AP1, AP3, AG, or SEP3 fused to a GFP at 

their C-terminus (de Folter et al. 2007; Urbanus et al. 2009), identified large protein 

complexes whose molecular mass is far from that of a MADS-protein heterotetramer. SOC1 

and FUL were identified as interactors of AP1-GFP supporting the existence of a FUL/SOC1 

protein complex active in floral transition. Therefore it was analyzed also the enrichment of 

non-MADS proteins, and  several classes of nucleosome-remodeling factors were found, 

like RELATIVE OF EARLY FLOWERING 6 (REF6), recently characterized as histone 

H3K27demetylase (Lu et al. 2011). This suggests that the MADS-domain proteins can 

recruit or redirect the basic chromatin remodeling machinery to modulate the promoter 

structure of their target genes. Several others MADS-domain proteins, such as SHORT 

VEGETATIVE PHASE (SVP), are also binding partners of AP1 according to Y2H studies 

(de Folter et al. 2005), but they were not detected by the MS analysis probably for their very 

low abundance and their limited overlap in expression with AP1. The interaction between 

MADS-proteins with chromatin remodeling proteins is important for the regulation of gene 

expression by the MADS-domain factors (Smaczniak, Immink, et al. 2012), and their 

physical interaction suggests an important role of these TFs in controlling chromatin 

dynamics during plant development. Recent studies on chromatin accessibility during plant 
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development, suggest that MADS-domain TFs may act as pioneer factors that directly or 

indirectly trigger changes in the chromatin state (Zaret & Carroll 2011). 

 

2.11 Role of SVP during the floral transition 
 

Besides the floral pathway integrator genes described above, SHORT VEGETATIVE 

PHASE (SVP) belonging to the MADS-box transcription factor family, plays a central role 

together with its closely related MADS-box AGAMOUS LIKE 24 (AGL24) in the control of 

floral transition. SVP is a repressor of the floral transition since the svp mutant shows an 

early flowering phenotype compared with wild-type plants. In the opposite side, AGL24 is a 

promoter of flowering and the agl24 mutant displays a delay of flowering (Yu et al. 2002; 

Hartmann et al. 2000; Michaels et al. 2003). SVP and AGL24 show high similarity in their 

primary amino acid sequences and their expression is detected during the vegetative phase 

before the floral transition (Parenicová et al. 2003; Hartmann et al. 2000; Michaels et al. 

2003; Yu et al. 2002). In situ analysis shows the expression of SVP in whole vegetative 

seedlings and its expression gradually decrease during the floral transition until it disappears 

from the inflorescence meristem (Hartmann et al. 2000). AGL24 is expressed in the shoot 

apical meristem and in the leaves during the vegetative phase, increasing its expression in 

the emerging floral meristem (Michaels et al. 2003; Yu et al. 2002). In the floral meristem 

both SVP and AGL24 proteins are co-expressed and play a redundant role in controlling 

homeotic genes responsible for the formation of floral organs. SVP and AGL24 play their 

role during the floral transition by interacting with the floral pathways integrator genes and 

by receiving signals from the pathways controlling flowering time. SVP for example plays an 

important role in the response of plants to changes in the ambient temperature because the 

mutant svp is insensitive to temperature changes (Lee et al. 2007). Recently, it has been 

demonstrated that SVP interacts in vivo with the protein FLC during vegetative growth where 

they bind the same promoter regions of FT and SOC1 forming a multimeric complex 

(Hartmann et al. 2000; Li et al. 2008). SVP is also regulated by GA treatments that reduce 

its expression in SD conditions in wild-type plants (Li et al. 2008). According to these data, 

SVP regulates flowering by receiving stimuli from different pathways (autonomous, 

thermosensory and GA) underlining the relevance of this gene in the control of the floral 

transition (Li et al. 2008). Finally, recent studies with chromatin-immunoprecipitation analysis 



 

 
21 

 

have shown that both SVP and AGL24 directly promote and repress, respectively, the 

expression of SOC1 binding elements within the SOC1 promoter (Li et al. 2008).  
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3. AIM OF THE PH.D. PROJECT 
 

During my PhD project, I contributed to shed light into the flower transition process applying 

functional genomics and proteomics tools to the study of the model species Arabidopsis 

thaliana. Based on data already published I chose SVP transcription factor as a good 

candidate to investigate at protein level the floral transition mechanisms. The first aim of the 

project was to generate a transgenic line carrying the chimeric protein SVP-GFP under the 

control of the constitutive promoter CaMV35S. With this line I was able to get to the heart of 

the project, starting with proteomic studies. During the first year I was able to set up a 

protocol for the isolation of intact nuclei from different tissues of Arabidopsis, and to obtain 

nuclear protein complexes in their native state. This protocol was very important for the 

continuation of the project, in fact the skills and the results obtained were essential to 

perform coimmunoprecipitation assays of nuclear protein complexes in which different 

putative interactors of SVP, possibly involved in the control of the floral transition, were 

identified. The last goal of the project was the validation of results that took the end of second 

year and the large part of the third year. A functional genomics approach, including isolation 

of Arabidopsis mutants silenced in the candidate genes as well as gene expression analyses 

were exploited to confirm the relationships between SVP and its putative interactors. The 

obtained results, together with information already available about the putative interactors, 

allowed us to shed light on the biochemical mechanisms responsible of SVP-mediated 

inhibition of floral transition. In addition, we were able to develop a powerful biochemical 

approach that could be used for further studies, on nuclear transcription factors that act as 

part of protein complexes. 

 

 

  



 

 
23 

 

4. MATERIALS AND METHODS 
 

4.1 Plant material and growth conditions  
 

The Arabidopsis thaliana ecotype used in this work is Columbia 0 (Col-0). For the 

coimmunoprecipiations from seedling material, the plants were directly sown on soil and 

kept under short day conditions for three weeks (22°C, 8 h light and 16 h dark). While for 

the inflorescence material, the plants were directly sown on soil and kept under long-day 

conditions, until the inflorescence appears (22°C, 16 h light and 8 h dark). The T-DNA mutant 

plants studied during the validation of MS analysis were ordered from NASC collection and 

their line identification code is reported in the table 8.  

 

4.2 Yeast Two hybrid assay  
 

The two hybrid assays were performed at 28°C in the yeast strain AH109 (Clontech), using 

the co-transformation technique. The coding sequences of SVP, and GCN5 were cloned in 

the Gateway vector GAL4 system (pGADT7 and pGBKT7, Clontech) passing through 

pDONOR207 (Life Technologies). Yeast two hybrid assays were tested on selective YSD 

medium lacking leucine, tryptophan, adenine and histidine supplemented with different 

concentrations of 3-aminotriazole (1-3 mM 3-AT).  

 

4.3 RNA isolation, Reverse Transcription-PCR and quantitative Real-Time (qRT-PCR) 
analysis  
 

Total RNA was extracted using the LiCl method (Verwoerd et al. 1989) for all the expression 

analyses. Total RNA was treated with the Ambion TURBO DNA-free DNase kit and then 

retro-transcribed using the ImProm-II™ Reverse Transcription System (Promega). The 

cDNAs were standardized relative to UBIQUITIN10 (UBI10) and PROTEIN 

PHOSPHATASE 2A SUBUNIT A3 (PP2A- At1g13320) transcripts and the gene expression 

analyses was performed using the iQ5 Multi Colour Real-Time PCR detection system (Bio-

Rad) with a SYBR Green PCR Master Mix (Biorad). Baseline and threshold levels were set 

according to the manufacturer's instructions. 
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4.4 Crosslinking of plant material  
 

During the first part of this thesis work, different strategies were used to improve the Co-IP 

protocol. Especially for the first trials, formaldehyde crosslinking was the method used to 

stabilize protein-protein complexes before the nuclei isolation and the immunoprecipitation 

steps. The material was crosslinked following the protocol described in (Gregis et al. 2013) 

and according to other previous papers describing the crosslinking procedures 

(Klockenbusch & Kast 2010). All the steps have to be done at low temperature in order to 

reduce the activity of proteases that can digest the proteins and protein complexes. It is 

important to work with fresh material, only. Up to 1 g of plant material is collected into a 

falcon tube and kept in ice, then  the fixation can starts as below: 

- 25 ml of MC buffer and 1% of formaldehyde are added to the sample, followed by 20 

minutes of incubation under vacuum  

- The reaction is stopped by adding glycine to a final concentration of 0.125 M and by 

incubating 2 minutes under vacuum followed by 5 minutes on ice 

- The tissues are washed 3 times with MC buffer to eliminate formaldehyde residues, 

and the fixed material is dried on paper to eliminate water as much as possible 

- The samples are frozen using liquid nitrogen and grinded to a fine powder 

- At this point the samples can be stored at -80°C or used directly for the nuclear 

extraction steps 

Once the immunoprecipitation is done, the crosslinking needs be reverted in order to 

separate the single proteins from the complexes and to run either the immunoblotting or the 

mass spectrometry analysis. The crosslinking reversion occurs by heating the IP samples 

at 99 °C for 10-15 minutes, according to Klockenbusch & Kast, 2010 protocol.  

 

MC Buffer: 

- 10 mM NaPi pH 7 

- 50 mM NaCl 

- 0.1% Sucrose 
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4.5 Nuclear proteins isolation 
 

All the information about the protocol developed during my first year are hereinafter 

described in detail:  

 0.5 g of Arabidopsis material seedlings/inflorescences are broken in a 15 cm mortar 

and a large pestle in nitrogen to a very fine powder. 

 30 ml of Buffer 1 are added into the mortar in presence of nitrogen and the powder 

under gently shaking. The buffer will freeze and form blocks. The buffer will be then 

broken and mix with the powder to obtain a very fine powder 

 Let the frozen powder to melt into the mortar 

 Pour the melted powder into a 50 um mesh placed with a funnel on top of a centrifuge 

tube 

 Let the solution get into the tube and squeeze the remaining solution in the mesh 

 Centrifuge at 6000 rpm in the JA25.50 rotor (4000 xg) for 20 min at 4 C. The pellet 

will consist of nuclei whereas the supernatant will be the cytosol. 

 Collect 1 ml of cytosol, add 2 ul of Protease inhibitor cocktail and centrifuge at 

maximum speed in a bench-top centrifuge for 30’ at 4 C. Take the supernatant as a 

extranuclei fraction. 

 Resuspend the nuclei pellet in 10 ml of buffer 1 by using a 5 ml pipette 

 Centrifuge at 5.000 rpm for 10 min at 4 C with the same rotor/centrifuge as above 

 Resuspend the nuclei pellet in 10 ml buffer 1 by using a 5 ml pipette 

 Centrifuge at 4.000 rpm for 10 min at 4 C. 

 Resuspend the pellet in 1 ml buffer 2 by using a 5 ml pipette 

 Centrifuge in a bench-top centrifuge at 2000 x g for 8 min at 4 C. The pellet obtained 

is made of intact nuclei in their native state. 

 Add buffer 3 (high salt buffer), 2/3 of the nuclei pellet, to the nuclei 

 Keep under shaking for 45’ at 4 C 
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 Sonicate for 20” twice at amplitude of 15% 

 Centrifuge at 5.000 rpm 4 C for 15’ 

 Collect the supernatant, made of nuclear proteins in their native state, in new tubes  

 

Buffer 1 (Nuclei extraction buffer): 50 mM MES pH 8.5, 25 mM KCl, 5 mM MgCl2, 30% 

glycerol, 5% sucrose.  

To be added fresh: 10 mM betamercapto-ethanol (70 ul/100 ml), 1 mM DTT (1M stock; store 

at -20 C), 1 mM PMSF (0.1 M stock in ethanol; store at -20 C), 5 ug/ml, Chymostatin (1000x 

stock in DMSO; store at -20 C), 5 ug/ml Leupeptin (1000x stock; store at -20 C), 5 ug/ml 

Antiparin (1000x stock; store at -20 C)Β-mercapto ethanol (70 ul  in 100ml), 0.3% Triton 

(25% stock; store at 4 C) 

Buffer 2 (Nuclei extraction buffer without triton): As buffer 1 without triton 

Buffer 3 (Native extraction buffer): High salt solution from Sigma, 5 mM DTT, 1:200 Protease 

inhibitor cocktail (Serva protease inhibitor Mix #39103, 64.2 mg dissolve in DMSO) as an 

alternative: 1.6 M KCl, 25% glycerol, 50 mM Hepes pH 8.0, 3 mM MgCl2, 0.2 mM EDTA, 5 

mM DTT, 1:200 protease inhibitor cocktail 

 

4.6 Coimmunoprecipitation  
 

For the coimmunoprecipitation step were used two different systems; for the first CoIP was 

used the Dynabeads system, while for all the others coimmunoprecipitations was used the 

GFP-Trap system. 

Dynabeads system (Invitrogen): 

Dynabeads® Protein A Immunoprecipitation Kit (Catalog Number 10006D) 

 

GFP-Trap® system (Chromotek): 

GFP-Trap_MA (magnetic version, Catalog Number gtma-20)  
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All the information about the procedures and the buffer compositions are available online for 

the respectively company. No changes or variation in the procedure suggested from the 

company were made for the coimmunoprecipitation steps. 

 

4.7 Trypsin digestion 
 

4.7.1 In gel trypsin digestion:  

This kind of trypsin digestion was required for the MALDI-TOF analysis that we used for the 

first coimmunoprecipitation made through Dynabeads system.  

 

1. Washing 

 Cut out the gel bands or slices and cut them into small pieces of ca. 1 mm2. Use a 

sharp clean scalpel on a clean piece of parafilm. The smaller the gel pieces, the faster 

and better the digestion but more protein loss will occur when you make them too 

small. Transfer the gel pieces to clean low binding micro centrifuge tubes 

 Wash gel pieces 2X in 50 ul water when you have not done so yet.  

Remark: Some (most) protocols use a 50% acetonitril wash but this is not necessary when 

the sample is measured by LC-MSMS.  

2. Cysteines reduction and alkylation 

 Add 15 ul 50 mM Dithiotreitol in 50 mM NH4HCO3 or more, enough to cover the gel 

pieces (e.g. you will need 50 ul for a gel slice).  

 Gently shake for 1 hr at 60 ºC to reduce all disulfide bridges.  

 Centrifuge shortly, cool to room temperature and replace the DTT by 15 ul 100 mM 

Iodoacetamide in 50 mM NH4HCO3 or more, enough to cover the gel pieces.  

 Incubate at room temperature in the dark while gently shaking for 1 hour.  

 Centrifuge shortly and remove the reagent. Wash the gel pieces 1 time with 50 ul 50 

mM NH4HCO3 pH 8.  

 At this point you may freeze + de-freeze the gel pieces to further increase the Trypsin 

accessible area. 
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3. Enzymatic digestion 

 Add 10 – 20 ul cold freshly prepared Trypsin solution (10 ng/ul).  

 When there is still some gel piece sticking out of the solution, then add extra 50 mM 

NH4HCO3 (but NO Trypsin) to completely cover the gel pieces. 

 Incubate overnight while shaking at room temperature (20 °C) or 4 hours at 37 °C or 

2 hours at 45 °C. 

4. Extraction of peptides 

 Volumes described are for one narrow protein band. You will have to use larger volumes 

when you have used a gel slice. 

 Sonicate for 2 (one ep) to 30 (series of eps) min.  

 Centrifuge shortly and use a narrow 20 ul pipet tip to transfer the basic supernatant 

to a clean low binding tube.  

 Add 10 ul 5% TFA/H2O to the gel pieces 

 Sonicate for 2 (one ep) to 30 (series of eps) minutes and transfer the acidic 

supernatant to the same tube with the same narrow 20 ul pipet tip used above. 

 Add 10 ul of 15% AcNi / 1% TFA to the gel pieces  

 Sonicate for 1 min and transfer the supernatant to the same tube with the same 

narrow 20 ul pipet tip used above.  

 The total sample volume is now approximately 25 ul (with 5% AcNi) and the pH is 

about 2  

 

4.7.2 In solution trypsin digestion: 

 

This kind of treatment was use to prepare all the other coimmunoprecipitated samples for 

the Orbitrap LC-MS/MS machine. 

- Weigh 0,2g NH4HCO3 and dissolve in 50 ml to obtain 50mM NH4HCO3 pH8. 

- Weigh 7,7 mg DTT (dithiotreitol) in a 1,5 ml tube and keep on ice 

- Weigh 19 mg iodocetamide in a 1,5 ml tube and keep on ice 

- Weigh 24 mg cysteine in a 1,5 ml tube and keep on ice 
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- Add 1 ml 50 mM NH4HCO3 to the DTT, iodocetamide and the cysteine just before use. 

 

 Use the first 50 μl of the eluate of the immunoprecipitation (which contains 

most magnetic beads) to prepare for MS. 

 Add 1 μl 50 mM DTT (dithiotreitol) in 50 mM NH4HCO3 pH8 (7,7 mg/l) to each 

IP sample and incubate 1-2 hours at 37°C. 

 Add 1 μl 100 mM iodocetamide in 50 mM NH4HCO3 pH8 (19 mg/l) to each IP 

sample and incubate at least 1 hour at room temperature in the dark. 

 Add 1 μl 200 mM cysteine in 50 mM NH4HCO3 pH8 (24 mg/l) to each IP 

sample to stop the alkylation. 

 Add 1 μl trypsin sequencing grade (0,5 μg/μl in 1 mM HCl) to each IP sample 

and incubate overnight at 20°C on a shaker. Do not incubate longer than 

approximately 16 hours because this will increase the amount of 

chymotrypsinic cleavages. 

 The next morning add approximately 1,5-3 μl 10% TFA to make the pH 

approximately pH 3. Check the pH with a pH paper (try to avoid a pH of 1 or 

4). 

 Centrifuge 5 min. at maximum speed and pipet the supernatant into a new 

Low Bind tube. Repeat this 4-5 times to make sure that there are no beads in 

the samples anymore. 

 The samples are ready to inject into the MS. Store the samples at -20. 

 

4.8 Mass spectrometry data analysis 
 

All the MS analysis were made using triplicate samples, in particular it has been used wt 

plants as a negative control and the native line SVP::SVP-GFP or the overexpression line 

35S::SVP-GFP. The raw data were obtained using Orbitrap mass spectrometry instrument. 

The data obtained from the wt samples were considered as nonspecific interactors, and 

used to clean up the data obtained from the tagged lines mentioned before, in order to obtain 

a short list of real putative SVP interactors. Moreover, nuclear protein coimmunoprecipitated 

samples can be easily contaminated by cytosolic and/or chloroplast proteins. For this 

reason, the data obtained after the comparison between the negative control and the tagged 
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lines, were further cleaned up from all these contaminants. The list obtained was based on 

the number of peptides generated by the MS machine, that match with a known protein 

present in the database. The analysis of the raw output based on the peptides, were 

performed by bioinformatics using proper software as mentioned below. Based on 

information already available in literature was generated a short list of putative SVP 

candidates that can have a biological relevance with the role of SVP. This short list 

represented the starting point to verify in different ways the role of these candidates in 

controlling the floral transition mechanisms together with SVP. 

 

4.8.1 Bioinformatics analysis: (Smaczniak, Li, et al. 2012) 

The Orbitrap type of mass spectrometers generate high-resolution data with a large dynamic 

range, and thus they are able to detect very-low-abundance proteins in complex samples. 

This is important for the identification of interaction partners of natively expressed 

transcription factors or signaling proteins. Identification of peptides in the eluates, after 

digesting the proteins with trypsin, revealed a large number of proteins in the IP samples on 

the basis of the MaxQuant/Andromeda19 peptide database search and initial filtering, 

thereby suggesting a substantial amount of background proteins in the eluates. To 

distinguish specifically immunoprecipitated proteins from the background, we applied a LFQ 

strategy and compared protein abundances between IP samples and IP controls. There are 

two LFQ methods that are often used in quantitative proteomics. First is the spectral 

counting method, which compares the number of identified MS/MS (MS2) spectra for 

peptides of a particular protein and can be used with the data obtained with any type of mass 

spectrometer. The second method is quantification using the MS (MS1) peak 

intensity/abundance (extracted ion chromatogram) measurement that allows the separation 

of the identification process, which uses both MS2 and MS1 data, from the quantification 

process that takes place only at the MS1 level. Both methods are suitable for analyzing 

protein abundance changes in large-scale proteomics experiments. In our experiments, we 

used MS1 peptide peak intensities/abundances for quantification, as the MS1 data also 

contain complete peak elution profiles required for relative protein quantification. Proper 

alignment of high-resolution MS1 peaks from several LC-MS runs is essential for accurate 

quantification. In addition, when MS1 peptide peak alignment is correct, it is not necessary 

to identify all MS1 peaks from every LC-MS run (in contrast to the spectral counting method), 

as a single identification can characterize well-aligned peptide peaks in other runs, ultimately 
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allowing for proper abundance comparison between those peptide peaks. We tested 

software packages for protein LFQ: MaxQuant (v1.2.2.5, Max Planck Institute of 

Biochemistry, Martinsried, Germany) and Progenesis LC-MS (v2.6, Nonlinear Dynamic). 

MaxQuant is freeware that was developed especially to process high-resolution, Orbitrap-

type data. At the current stage of software development, MaxQuant is unable to process 

data obtained from other types of mass spectrometers. Progenesis LC-MS, in contrast, is a 

commercial software package that processes data obtained from many different types of 

mass spectrometers directly or in standard formats (e.g., .mzXML or .mzML). To correct for 

the variability in total protein amount in the IP samples and controls, we used a normalization 

approach assuming that most background proteins were unaffected by our experimental 

conditions. The normalization procedures are incorporated into both software applications. 

Low or zero MS1 intensity values in the control data sets can strongly impair the ratio 

calculation for low abundance proteins, such as the interaction partners in our data sets. 

Therefore, there is a need for imputation of a minimal quantity value for peptides that were 

not quantified (could not be normalized) to calculate approximate protein ratios. We tested 

several imputation strategies of missing values before (peptide intensity noise imputation) 

or after (lowest protein abundance imputation) data normalization. We calculated protein 

ratios by dividing the combined and normalized peptide intensities/abundances of a 

particular protein in the IP samples with the corresponding values in the controls. Proteins 

identified with at least two peptides (including one unique peptide) that are markedly 

enriched in the sample at a permutation-based false discovery rate (FDR) of 0.01 were 

considered potential interaction partners of the bait protein. 
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4.9 Segregation analysis and primer combinations 
 

All the plants used in this thesis were controlled by PCR in order to verify the correct 

genotype of the different mutants, transgenic lines and crosses (Tables 1 and 2). Both the 

35S::SVP-GFP and SVP::SVP-GFP lines have an svp/svp background, so to check this type 

of plants, and then their respective crosses with sdg2 and gcn5 mutants, it was necessary 

to control every time the state of the endogenous locus of SVP.  

 

 

 

Table 1. In this table are indicated the combination of primers for segregation analysis 
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Table 2. In this table are indicated the sequence of primers for segregation analysis 
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5. RESULTS 
 

 

5.1 The transgenic line CaMV-35S::SVP-GFP 
 

As a member of the MADS-box transcription factors, the structure of SVP is very similar to 

many other members of this family, especially for particular regions with conserved domains. 

For this characteristic working at proteomic level with this transcription factor family is rather 

complex, especially when antibodies specific for each MADS-box, and Yeast two-hybrid 

assays are needed. This was true for the study of SVP, for which a specific antibody to be 

used for different immuno-based assays, including protein complex coimmunoprecipation, 

was not available. A simple way to solve this problem was the generation of a chimeric 

protein obtained through the fusion of the protein of interest with either a tag or protein for 

which a specific antibody is commercially available. In our specific case, we chose the 

GREEN FLUORESCENT PROTEIN (GFP), because a good correspondent specific 

antibody was available. Using the Gateway Cloning system, SVP was fused to the GFP at 

the C-terminal in order to generate a chimeric protein which was functional both at the level 

of SVP activity and GFP fluorescence. The obtained construct was integrated in the genome 

of svp knock-out plants via Agrobacterium tumefaciens and the transformed events were 

selected based on the rescue of the svp phenotype (Figure 5), i.e. flowering time identical 

to WT plants under short- and long-day conditions, and the level of GFP fluorescence in the 

nuclei. 

 Figure 5. Phenotypes of WT (Col-0), svp knock-out and one of the selected transgenic line. Plants were grown 

for 4 weeks under long-day conditions in a growth chamber. The early flowering phenotype of the svp mutant 

WT svp 
35S::SVP-GFP 

In svp background 
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plant is clearly visible, whereas the transgenic line 35S::SVP-GFP shows the same flowering time of the WT 

plant, thus indicating the complete rescue of the early flowering phenotype.  

5.2 The native line SVP::SVP-GFP 
 

The SVP overexpression line mentioned above represents a forced system in which the 

SVP-GFP chimeric gene is expressed through the whole life cycle of the plant and in all its 

tissues. This confers to the transformant line a late flowering phenotype and leads to defects 

in flower development. For this reason, we chose also the native line SVP::SVP-GFP to 

perform the same experiments and to compare the results with the overexpression ones. In 

fact the chimeric protein controlled by the native promoter of SVP allows us to reproduce 

and investigate both the real expression profile and the correct subcellular localization of the 

protein. This line was already available in the lab of Martin Kater group where it was used 

for genetic studies and for the identification of pathway directly regulated by SVP (Gregis et 

al. 2013). This chimeric line was generated using the Gateway cloning system in which a 

putative promoter region of SVP (around 1000 bp upstream the SVP ORF) and the full length 

genomic sequence were fused to the GFP to generate a chimeric protein SVP::GFP under 

the control of the native SVP promoter. The construct was integrated in svp null mutant 

plants via Agrobacterium-mediated transformation with the binary vector pGREENII that 

confers BASTA resistance to the transformed plants. The obtained svp defective, BASTA-

resistant plants were complemented to the wild type phenotype (Figure 6), indicating that 

the SVP-GFP chimeric protein is functional and that those plants represent a good material 

to design genetic and biochemical analysis. Since in general the TFs are required at a very 

small amount in the cells to play their role, they are not easily detected with common 

biochemical approaches. Conversely, thanks to the fusion with fluorescent proteins we are 

normally able to detect a good signal of fluorescence and we are able to detect the chimeric 

protein via immunoblotting. These plants, together with the overexpression line, were used 

to perform the coimmunoprecipitation analysis described in this thesis.  

  



 

 
36 

 

Figure 6. Phenotypes of WT (Col-0), svp knock-out and one of the selected transgenic line SVP::SVP-GFP in 

svp background.  Plants were grown for 4 weeks under long-day at 22°C. The early flowering phenotype of 

the svp mutant plants is clearly visible, whereas the transgenic complemented line shows the same flowering 

time phenotype of the WT plants, indicating the complete rescue of the svp early flowering phenotype. 

 

5.3 Nuclei isolation 
 

As a transcription factor, SVP is located into the nuclei of plant cells where it is able to bind 

specific sequences in the promoter region of its target genes, thus modulating the level of 

their expression. The localization of SVP was confirmed in vivo by analyzing the 

overexpression line 35S::SVP-GFP at the fluorescence microscope, and a good signal of 

the chimeric protein was detected in the nuclei. In collaboration with Federico Valverde from 

the institute of Biochemistry and Photosynthesis of Seville, within the frame of the project 

titled “Azione integrata Italia-Spagna” and supported by MIUR, a specific protocol was 

developed aimed to purify intact nuclei from different tissues of Arabidopsis. This protocol 

allowed us to obtain nuclear proteins in their native state with almost no contamination of 

extra-nuclear proteins that could hamper our analyses, including the possibility of forming 

aspecific complexes whit SVP. Since, we were interested in the regulation of flower 

transition mediated by SVP, we focused our attention in identifying the protein complexes 

that SVP can form into the nucleus at two different stages of the Arabidopsis life cycle: the 

seedling (2 cotyledons and first two leaves) and inflorescence meristem stages. The material 

collected is ground using liquid nitrogen and with crystals of frozen buffer in order to obtain 

a fine powder that will melt in its own buffer. A series of centrifugations with decreasing 

speed, are then required to separate the organelles that remains in suspension from a pellet 

made of a intact nuclei. These purified nuclei can be broken by sonication in order to release 
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their protein content and eliminate nuclear membranes. The material obtained from purified 

nuclei was checked for the presence of contaminants deriving from other cell compartments 

especially from the cytosolic fraction. As shown in Figure 7, through SDS-PAGE stained with 

Blue Coomassie staining, and Western Blotting analyses, we were able to show that such 

purified nuclear fractions did not contain major contaminants as RUBISCO, which was 

almost undetectable and were enriched with histones. 

   

Figure 7. Quality check of nuclear protein isolation compared with the extranuclei fraction composed for the 

large part of cytosolic and organellar proteins. On the left the SDS-PAGE stained with Blue Coomassie shows 

(black arrow) the presence of large subunit of Rubisco only in the extranuclear  fraction, whereas the protein 

is almost absent in the nuclear fraction. On the right is shown the immuno-decoration of a replica filter using 

an antibody against Histones H3. 
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5.4 Co-Immunoprecipitation 
 

5.4.1 Dynabeads® Protein A: 

Reached the desired quality of the nuclear preparation, we proceeded with the break of the 

nuclear envelope in order to release the protein content. The nuclei can be broken by two 

different ways: either in the presence of denaturing conditions like high concentration of 

Urea that denatures all the proteins and disrupts all the complexes interactions, or in the 

presence of high salt concentration which is able to break the nuclei maintaining the protein 

structures and protein-protein interactions in their native state. The latter procedure is 

essential to immunoprecipitate the protein of interest together with its partners in the protein 

complex. There are many different strategies to perform the immunoprecipitation and to 

analyze the immuno-precipitated samples, therefore different trials were necessary to define 

the best conditions and the methods compatible with our kind of samples and their protein 

concentration. The first method that we tried was based on the use of magnetic beads 

(Dynabeads system from Invitrogen), coupled with protein A, and able to bind the GFP 

specific antibody. The bead-associated GFP antibody was then used to recognize the 

chimeric SVP-GFP protein and to immunoprecipitate it together with its putative interactors. 

Unfortunately, this method did not work for our purpose; in fact, the interaction between the 

protein A covalently associated to the beads and the GFP antibody was not strong enough, 

and during the elution step large part of the GFP antibody was found in the 

immunoprecipitated samples, thus hampering downstream analyses, including 

immunoblottings and mass spectrometry (Figure 8).  
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Figure 8.  Immunoprecipitaed sample fractionation and MS-analyses. On the left is reported the SDS-PAGE 

stained with colloidal coomassie  in which all the fractions obtained during the coimmunoprecipitation 

procedure in both 35S::SVP-GFP (lane 1-3-5-7) and WT material (lane 2-4-6-8) were fractionated.: NB, Not 

Bound is made by all the proteins that did not bind the beads (lanes 1 and 2); WA, Washing fractions, obtained 

both before and after the elution step, composed of proteins that aspecifically interact with the beads (lanes 3-

4-7-8);  IP, Eluted fraction composed of proteins that were specifically bound to the beads (lanes 5-6), possibly 

containing SVP and its interacting partners. Interesting immunoprecipitated proteins were visible only in the 

transgenic line (lane 5), while they were totally absent in the control sample (lane 6). On the right mass 

spectrometry data, obtained from the analyses of bands excises in lane 5 are reported. As mentioned before, 

with this method we obtained a lot of antibody contamination and the mass spectrometry analysis was only 

able to detect peptides belonging to the GFP antibody used to immunoprecipitate SVP. 

 

5.4.2 GFP-Trap®: 

Because of the problems caused by the Dynabeads method, we decide to move to another 

coimmunoprecipitation procedure named GFP-Trap® and developed by Chromotek. The 

advantage of this new procedure is that the antibody is covalently coupled to the magnetic 

beads (Figure 9). This kit allowed us to elute from the beads the immunoprecipitated proteins 

without any kind of contamination generated by the antibodies detached during the elution 

step. Furthermore, exploiting this feature, we were also able to increase the strength of the 

washing buffers before the elution step in order to eliminate as many contaminations as 

possible. Thus, this approach allowed us to obtain high quality IP samples, suitable for Mass 

Spectrometry (MS) analysis. The MS analysis requires a preliminary trypsin digestion, 

necessary to cut the proteins into short polypeptides. The analysis of all the peptides, allows 
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then to identify all the proteins contained in IP samples. In the case of the Dynabeads 

method the IP samples were fractionated in a SDS PAGE and only the visible bands were 

excised and subjected to in-gel trypsin 

digestion (Figure 8),while the IP samples 

obtained by the new way, were directly 

digested, avoiding the SDS-PAGE 

fractionation step. In the first case, the 

detection of putative protein partners is 

limited to the very low number of bands 

visible after the colloidal coomassie 

staining, loosing for instance all the putative 

interactors present at very low amount and 

not visible in the stained gel. On the other 

hand, through an in solution-digestion of the 

whole IP samples, it is possible to detect 

much more proteins, even those present at 

lower abundance.  

 

 

5.5 Cross-Linking method for protein interaction analysis (Klockenbusch & Kast 2010) 
 

Protein-protein interactions are at the basis of most cellular processes, including signal 

transduction, protein synthesis and gene transcription. In plants, knowledge of these protein 

interactions network is important to better understand the molecular mechanisms at the 

basis of those processes, that nowadays remain well studied only at the genetic level. At 

present, protein-protein interactions are investigated by different strategies including yeast-

two-hybrid and by in vitro binding assays (Young 1998; Willander & Al-Hilli 2009). However, 

even if these approaches are very fast and easy to use, they are also prone to false positive 

identifications because they do not take into account the temporal and spatial separations 

that occur in a living system. A powerful technique that can solve this problem is an affinity 

enrichment of the protein of interest followed by detection of its binding partners by means 

of mass spectrometry. This technique has two main drawbacks: weak interactions could be 

missed in stringent washing conditions, while nonstringent conditions lead to a high number 

Figure 9. A scheme of the common 

coimmunoprecipitation procedure. The difference 

between Dynabead and Chromotek system is the 

binding of the antibody to the affinity matrix 
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of false positives. One method to solve this problem is to treat intact cells with a covalent 

cross-linking agent, to stabilize all the occurring protein-protein interactions, including the 

very weak and transient ones. The shortest and cheapest cross-linker available is 

formaldehyde, that has been used for long time in histology as fixing agent. Low 

concentration requirement and especially short reaction time allow the utilization of 

formaldehyde as a cross-linker to analyze protein-protein interactions. Formaldehyde is a 

very small molecule and thus the cross-linking occurs only for proteins closely associated. 

Furthermore, its high permeability through cell membranes enables to treat intact cells, 

without using any kind of solvent, otherwise needed for others cross-linkers. Even if the 

cross-linking seems to be a powerful method to detect protein-protein interactions, it is still 

not able to identify all the possible complexes that the protein of interest can form with its 

partners. This is due to the possibility that hidden epitopes are generated by the formation 

of the large complex in which such protein can take part. In any case, after the 

coimmunoprecipitation of the complexes, the cross-linking need to be reverted to separate 

each single protein that will be digested with trypsin and analysed in mass spectrometry. 

Also in this case formaldehyde remarks its versatility for its type of cross-linking that can be 

easily and completely reverted by heating the sample at 99°C for just 5 minutes. 

Formaldehyde-mediated cross-linking seems to be a promising method to analyse protein-

protein interactions and can be coupled with the conventional methods mentioned before, 

to refine the result obtained with all the different techniques. 

 

5.6 Analysis of the Mass Spectrometry data 
 

Before being subjected to the MS analysis, the coimmunoprecipitated samples need to be 

digested with Trypsin in order to generate shorter polypeptides, able to be recognized by 

the MS technique. The methods used for Trypsin digestion mentioned in the previous 

paragraph, are strictly linked to the type of Mass Spectrometry device that we wanted to 

use. In our case we tried two different kind of MS; the MALDI-TOF (Matrix-assisted laser 

desorption/ionization coupled with a Time of Flight analyzer) and the Orbitrap (Ion Trap 

Mass Analyzer) (Makarov 2000; Hu et al. 2005). For MALDI-TOF analysis, it is 

recommended the In-gel Trypsin digestion, well described in the methods paragraph, while 

for the Orbitrap analysis is required a direct Trypsin digestion (see materials and methods). 

The MALDI-TOF spectrometer was only used for the samples obtained through the 
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Dynabeads procedure in which unfortunately, only the heavy chains of the GFP antibody 

were detected, while for all the other coimmunoprecipitations we moved to the Orbitrap 

system. Once analyzed, the output generated by the Orbitrap MS machine is made for a 

huge list of polypeptides recognized by analysis. As described before, the Mass 

Spectrometry is a very sensitive technique, able to recognize peptides present in a very low 

concentration. We must keep in mind that all the aspecific proteins immunoprecipitated 

together with the real interactors of SVP, and also the human protein contaminations 

belonging to the operators that prepare the samples are recognized by the MS and they will 

be found in the output. The cleanup of the raw output of the sample of interest is made by 

eliminating all the peptides found also in the WT sample (negative control) and excluding all 

proteins belonging from different organisms for example trypsin used to digest the samples 

and human keratin. From the cleaned list generated, other criteria of selection are applied 

in order to reduce the number of candidates to a short list of strong putative interactors. 

Generally, this last selection is based on the number of times that a peptide is detected in 

the sample, coupled with literature documentation about the pertinence of the result. For 

example, a chloroplast protein found in large amount in our nuclear protein samples is for 

sure a contaminant and eliminated from the list of putative interactors. The first table (Table 

3) shown below contains a selection of the putative interactors obtained by analyzing 

seedling material of the transgenic line 35S::SVP-GFP. The other tables (Tables 4-5-6-7) 

contain results obtained from inflorescence material, crossing the MS output of both 

35S::SVP-GFP and the native line SVP::SVP-GFP already available in the group of 

professor Martin Kater. This kind of selection allowed us to generate a very short list of real 

putative interactors that can be analyzed to verify if they are part of a SVP complex. 
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5.6.1 Coimmunoprecipitation from seedling: 

 

Table 3. In the table are reported the results of MS analysis performed on seedling material 

 

5.6.2 Coimmunoprecipitation from inflorescence: 

 
Table 4. RNA Helicases found via MS analysis of samples from inflorescence tissues. 
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Table 5. Histones modification proteins found via MS analysis, using inflorescence tissues. 

 

Table 6. Proteins found via MS analysis, using inflorescence tissues. 

 

Table 7. Proteins found via MS analysis, using inflorescence tissues. 
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5.7 Analysis of the putative interactors 
 

Based on the short list of the putative interactors of SVP showed before, eight candidates 

were chosen in order to investigate further the putative interaction with SVP (Table 8). Those 

candidates were involved in different aspect of chromatin remodeling, including histones 

modifications (acetylation and methylation) and nucleosome assembly. These candidates 

were also selected, based on the common notion that transcription factors, including SVP, 

act as part of large protein complexes that include chromatin remodeling factors in order to 

modulate the expression of their own target genes. For each of the eight candidate genes 

that we chose, the corresponding knock-out mutants were ordered to verify their possible 

involvement in flowering time determination.  

 

  

Table 8.  The Gene ID, gene name and T-DNA insertion codes of the eight candidate genes are listed. 

 

For each of the ordered lines, homozygous lines for the T-DNA insertion were selected and 

analyzed at phenotypic level. Only two of them, namely gcn5 altered in histone H3 acetyl 

transferase and sdg2 affected in histone H3 lysine 4 methylation, displayed a clearly visible  

phenotype compared with WT plants, reported in the Figure 10.  
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Figure 10.  Phenotypes of each knock-out mutant compared with the WT plants grown for 4 weeks under 

green-house conditions. As it can be observed, only sdg2 and gcn5 display altered phenotypes characterized 

by a reduced size of the rosette. At later stages these mutants show also flower sterility as already published 

and for the case of gcn5 a low percentage displays also a three-cotyledons phenotype (described in detail in 

the next paragraph). For all the other mutants, there are no differences compared with the control.  

 

5.8 SDG2 and GCN5 as putative interactors 
 

From the phenotypic analysis of the eight candidates, only two of them (gcn5 and sdg2) 

showed a different rate of growth compared to the WT, and thus were subsequently chosen 

to better investigate their relationship with SVP. Both of them are completely sterile, so is 

not possible work with a pure homozygous line, but only with a segregating progeny that 

contains a quarter of homozygous plants.  

 

5.8.1 SET domain protein 2 (SDG2): 

 

Four types of histone modifications have been described in plants, namely methylation, 

acetylation, phosphorylation and ubiquitination (Zhang et al. 2007; Johnson et al. 2004). 

Four lysine residues in Arabidopsis core histones can be specifically methylated, histone H3 

lysine4 (H3K4), H3K9, H3K27, and H3K36 (Zhang et al. 2007). The Arabidopsis SET 

domain group 2 (SDG2)  is part of the SDGs class III, that is the class of the SDGs able to 
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modifying H3K4me2/3 (Jackson et al. 2002). The morphological defects in sdg2 first become 

apparent at 6–8 days after germination, when sdg2 seedlings are smaller with curly leaves 

and have significantly shorter roots. sdg2 plants remain dwarf, with smaller rosettes through-

out the whole vegetative growth, and they flower significantly earlier in all photoperiods 

tested (i.e., short day, long day, and constitutive light). This early transition from vegetative 

to reproductive growth is accompanied by the down-regulation of flowering repressor gene 

FLC. Moreover, although the correct number of floral organs (sepal, petal, stamen, and 

carpel) is formed in sdg2 flowers, sdg2 mutants are completely sterile (Guo et al. 2010).  

 

Figure 11. The structure of the SDG2 gene with the position of all T-DNA insertions available, and the protein 

structure are shown (Berr et al. 2010). 

Considering the phenotypes and the information already published in literature that link both 

SDG2 and GCN5 to mechanisms related to the regulation of the flowering time, it was clear 

that we were in the right way using our coimmunoprecipitation and MS methods. Analysis 

made in our laboratories confirmed the data present in literature showing a dwarf phenotype, 

curly leaves and an early flowering compared with the WT plants (Figure 12). 

               

Figure 12. The pictures on the left shows the phenotype of the mutant line sdg2-2 analyzed in laboratory and 

compared with the WT plant. The table on the right reports the flowering time analysis made in long day 
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conditions comparing all the mutants and transgenic lines available in our lab. It is visible the early flowering 

of sdg2-2 compared with WT. 

 

5.8.2 Histone Acetyltransferase GCN5: (GENERAL CONTROL NON-

REPRESSIBLE 5) 

 

The developmental transition of a plant from a vegetative to reproductive stage is regulated 

in response to a variety of external stimuli and endogenous cues. To ensure that flowering 

occurs in favorable conditions, many plants flower only after an extended period of cold, 

known as vernalization (Bond et al. 2009). One of the major player in controlling cold 

response is FLC (Michaels & Amasino 2001; Sheldon et al. 1999) and modification of 

chromatin state can modulate the expression of known and unknown factors upstream of 

FLC through histone acetylation (Deng et al. 2007). Histone acetylation is altered by the 

antagonistic actions of histone acetyltransferaes (HATs) and histone deacetylases 

(HDACs), which add or remove acetyl groups on lysine residues of histone tails (Shahbazian 

& Grunstein 2007). GCN5 is one of the 12 putative HATs present in Arabidopsis genome, 

and is able to acetylate lysine residues of histone tails. It plays a role in numerous biological 

processes such as floral development, embryonic cell-fate patterning and promotion of light-

regulated genes (Bertrand et al. 2003; Long et al. 2006; Benhamed et al. 2006). Histone 

acetyltransferases also play a role in the regulation of flowering time in Arabidopsis. Taken 

together all these information tell us that GCN5 represents a good candidate in controlling 

the flowering time processes and its role must be deeply investigated. As for the SDG2 gene 

described before, also for GCN5 we studied the phenotype and also in this case the 

homozygous mutant plants were completely sterile, with dwarfism and early flowering 

(Figure 14). In addition a certain percentage (10%) of the homozygous plants displays 

pleiotropic phenotypes such a three cotyledons seedling and a gradient of plant sizes.  
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Figure 13. Scheme of GCN5 gene with the position of the T-DNA insertion in the gcn5 mutant allele. 

 

 

Figure 14. Phenotypes of gcn5 mutants compared with WT control. The two pictures in the center, shows the 

gradient of the gcn5 phenotypes while the picture on the right showing a tri-cotyledons phenotype that is 

present for a low percentage of gcn5 homozygous plants. 

Also in the case of gcn5 the flowering time was analyzed to see if in the mutants are early 

flowering like the svp mutant, in order to connect their action in the same flowering control 

pathway (Figure 12). 

 

5.9 In vivo validation of the candidates selected from the MS output  
 

After the phenotypical analysis of the two putative interactors GCN5 and SDG2, an approach 

to verify in vivo their interaction with SVP was employed. The most common way to validate 

the in vivo interactions is the Yeast two hybrid assay (Y2H). The open reading frame 

encoding SVP was fused to the activation domain (AD) and GCN5 open reading frame was 

fused to both the binding domain (BD) and AD, and tested for interaction. We were not able 

to obtain the entire open reading frame of SDG2 because of the huge length of its CDS 

sequence (ca. 7k base pairs). Therefore, only the SVP-GCN5 and GCN5-GCN5 interactions 

were tested, and both of them resulted to be negative. The negative result obtained was not 
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surprising (Table 9), because Y2H can only detect a direct interaction between two proteins. 

With high probability GCN5 and also SDG2 take part to a multimeric complex together with 

SVP, but they are not directly bound to SVP that is probably linked with them via other 

protein partners. Clearly, other approaches will have to be used to validate these interactions 

in planta, including FRET. 

                               

Table 9. This matrix reports the protein interactions tested via yeast Two Hybrid assay. 

 

5.10 In planta validation of proteomics data 
 

By means of yeast two hybrid assays we were only able to test the interaction between SVP 

and GCN5, while other approaches have been planned in order to validate the mass 

spectrometry data. The negative results obtained by the yeast two-hybrid assay do not 

discard the hypothesis that GCN5 and SDG2 can have a role, together with SVP, in the 

chromatin remodeling controlling the floral transition. The idea is that they work in a large 

complex composed by different factors, in which GCN5, SDG2 and SVP are physically 

separated by other factors. This scenario could explain why via yeast two hybrid we were 

not able to confirm the direct interaction. To establish whether there is a relation between 

these three factors we introduced the single sdg2 and gcn5 mutations in the overexpression 

line 35S::SVP-GFP background, looking for differences from the overexpression phenotype. 

The strong phenotype of both the single mutants described before suggests an important 

role of these chromatin remodeling factors for the correct development of the plant. The idea 

is that the late flowering phenotype and the flower defects in the SVP overexpression will be 

reverted to the wild type or better to the svp phenotype although the levels of SVP transcript 

and protein are very high. As reported in literature, the MADS-domain TFs as pioneer factors 

in DNA binding can act as a platform for the chromatin remodeling factors that, by 

modulating the chromatin structure, can promote or repress the transcription of the target 
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genes (Pajoro et al. 2014). Due to the sterility of both the single mutants sdg2 and gcn5 

already described, we performed the crosses using pollen of the heterozygous plants for 

these two mutants, while homozygous plants for the SVP overexpression were used as a 

mother. This procedure took long time and preliminary data are available only for SDG2. In 

the F2 generation, a 35S::SVP-GFP svp/svp SDG2/sdg2 plant was isolated, which lacked 

the floral defect caused by the overexpression of SVP, suggesting also a sort of dosage 

effect of sdg2 mutation. Even if this first result supports our idea about the connection 

between SVP and SDG2, other analyses need to be made to confirm this evidence, starting 

from the evaluation of the flowering time of this line. 
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6. DISCUSSION 
 

 

6.1 The SVP::SVP-GFP and the 35S::SVP-GFP lines 
 

This plant material played a central role in all the experiments performed during this thesis 

work. As a starting point for the project, these two lines were used both for the set-up of the 

experiments of nuclear proteins isolation and coimmunoprecipitation, as well as for the 

crosses made with the putative interactors of SVP identified by the Mass Spectrometry 

analysis. The transgenic line 35S::SVP-GFP in svp/svp background, generated during the 

first year of the Ph.D. project showed the same phenotype of the overexpression line 

35S::SVP in the WT background, characterized by a delay in flowering time and floral organs 

defects, indicating that the chimeric protein is functional. Furthermore, when the chimeric 

protein localization was investigated by in vivo fluorescent microscopy observations of 

Arabidopsis leaves tissues, it was detected within the nuclei of the observed cells, 

consistently with the notion that SVP is a transcription factor. These data were also 

supported by the immunoblotting assays performed on the purified nuclear proteins, with an 

antibody against the GFP protein. Further support comes from the information that the native 

line SVP::SVP-GFP already available in our lab (Gregis et al. 2013), was able to 

complement the svp/svp mutant, shifting its flowering time back to values similar to the wild 

type. The SVP::SVP-GFP chimera was also localized in the nucleus by the same in vivo 

fluorescence microscopy study. These data confirm that also in the line SVP::SVP-GFP 

svp/svp the chimeric protein is functional.  

 

6.2 The nuclei isolation protocol 
 

Our goal was to isolate nuclei from the inflorescence tissues of the SVP::SVP-GFP and the 

35S::SVP-GFP lines, in comparison with the wild type. After the generation and the 

validation of the plant material necessary for our experiments, we realized through 

coomassie staining and western blot analysis, that the protocol of nuclei isolation 

represented a limiting step in term of quality of the material to analyze by MS. As reported 

in the results chapter, the immunoprecipitated proteins analyzed via Mass Spectrometry can 

contain many extranuclear contaminant proteins. The design of a  robust method able to 
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purify as much as possible the nuclear protein fraction, was crucial for the generation of a 

high quality material that would yield a clean MS outcoming list, with the lowest amount of 

extranuclear (which are likely to be false positives) putative interactors. After different 

adjustments and modifications of various steps of a general protocol for nuclei isolation from 

Arabidopsis tissues, we were able to develop a robust protocol that makes it possible to 

isolate only the nuclear protein fraction without any contamination of proteins from other 

cellular compartments. The quality of the nuclei isolation was checked by coomassie 

staining, in which the major cytosolic contaminant protein RUBISCO, was not observed in 

the nuclei protein fraction and by immunoblotting with antibodies specific for histones, that 

were highly enriched in the nuclear fraction. 

 

6.3 The coimmunoprecipitation strategy 
 

As the improvement of the nuclei isolation protocol, the design of a tailored 

coimmunoprecipitation experiment was crucial for the quality of the results, and time 

demanding. The goal/difficulty was to device a good strategy to immunoprecipitate the 

tagged proteins (the chimeric protein SVP-GFP) together with their interactors, with the 

highest efficiency i.e. reducing the loss of tagged proteins and their own interactors, while 

maintaining high the stringency of the elution conditions and without any kind of 

contamination due to the adopted immunoprecipitation system. As it happened during first 

trials, the non-covalently bound antibody detached from the magnetic beads used for the 

CoIP, and it represented the major contaminant of our IP samples. After different trials, we 

decided to adopt a new tool for IP analysis where the GFP-specific antibody was covalently 

linked to the magnetic beads, therefore it was not released into the IP samples after elution. 

We checked the quality of the material resulting from the IP experiment before going ahead 

with the mass spectrometry. Western blotting analysis performed with an antibody against 

the GFP detected in the IP samples a large amount of chimeric protein, and no GFP-specific 

antibody contamination, indicating that the immunoprecipitation strategy worked properly, 

and that we had established a good protocol to identify SVP interactors. 
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6.4 The Mass Spectrometry data  
 

The material resulting from the IP performed on both the SVP::SVP-GFP and the 35S::SVP-

GFP lines was analyzed either by a MALDI-TOF or a ORBITRAP mass spectrometer 

(Makarov 2000; Hu et al. 2005), the latter providing much better results in term of sensitivity. 

Moreover, the trypsin digestion of the protein samples was initially performed “in gel”: 

samples were run into a SDS PAGE, and the slice of gel containing all the proteins was 

excised, subjected to trypsin treatment and MS-analyzed. This procedure unluckily reduced 

the quality and the number of proteins identified within the sample, as the list of peptides 

identified by MS was far too short to be reliable. This could be due by the presence of 

acrylamide that might represent an obstacle to protein digestion and peptide release. Better 

results were obtained when a protocol based on “in solution” trypsin digestion, in which the 

IP samples were directly digested without the SDS-PAGE step, was adopted. After this 

treatment, a relatively large list of putative protein interactors was obtained, and many of the 

interactors were shared between the two output lists. By comparing the IP-MS lists, we were 

able to generate a short list of strong putative SVP interactors, to be validated through 

functional genomics studies. 

 

6.5 The putative interactors 
 

Looking through the short list of putative interactors, generated applying the different filters 

described above, a main group of proteins could be recognized. A large part of the putative 

interactors found in the IP samples, indeed, is involved in chromatin remodeling indicating 

a strong interaction between SVP and chromatin modifications. It has been already shown 

that MADS-box TFs are able to interact with this class of proteins, in order to modify the 

chromatin structure promoting or repressing the transcription of the target genes (Lu et al. 

2011; Smaczniak, Immink, et al. 2012). The high number of chromatin modifying factors, 

like histone acetyltransferase, deacetylase and methyltransferase, suggest the capacity of 

SVP to form different types of complexes interacting with different chromatin remodeling 

factors, possibly playing different roles. The corresponding knock-out mutants of eight of 

these putative candidates did not show a relevant phenotype compared with the wild type, 

however other two knock-out mutants altered in SDG2 and GCN5 genes showed a 

flowering-time phenotype. It possible that these chromatin remodeling factors, play their role 
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in a large protein complexand with SDG2 and GCN5 playing a crucial role in SVP-dependent 

flowering time determination. 

 

6.6 SDG2 and GCN5 as a putative interactors 
 

The analysis of the two single mutants sdg2 and gcn5, showed a marked alteration of the 

flowering time, compared with wild type plants (Guo et al. 2010; Bertrand et al. 2003). 

indicating that sdg2 and gcn5 may be needed for the perfect functionality of SVP and part 

of the molecular network that controls the flowering time process. Beside this important 

finding, the data also represent a strong evidence of the goodness of our co-

immunoprecipitation and MS analysis strategies, thus validating the work made until now. 

These two interactors were used to deep investigate their role in controlling the flowering 

time mechanisms, and their interaction with SVP. 

 

6.7 In vivo validation 
 

Driven by the results obtained during the analysis of the single mutants and the data present 

in literature, we started to deep investigate the role of SDG2 and GCN5 during the flowering 

time. Different strategies were used in order to validate the interaction between these factors 

and SVP. Among them, we started with the yeast two hybrid assay by which we were not 

able to confirm the direct interaction between GCN5 and SVP, whereas SDG2 could not be 

tested because the CDS is not available. Our hypothesis is that SVP is part of a large 

complex that binds to the promoter region of the SVP target genes, where it modulates 

nuclear gene expression by changing chromatin structure. Moreover, it is not necessary that 

all the identify factors directly interact with SVP, since other proteins can be interposed 

between them and SVP. Moreover, crosses between the single mutant sdg2 and gcn5 whit 

the 35S::SVP-GFP line were performed to identify other functional interactions between 

these factors and SVP. Preliminary data available for sdg2, revealed that the 35S::SVP-

GFP svp/svp SDG2/sdg2 plants, lacks the flower defect caused by the overexpression of 

SVP. Even if further analyses are required, these data strongly correlate SDG2 to the SVP 

role in influencing flower morphology. 
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7. CONCLUSIONS 
 

During the three years of my PhD I contributed to shed light into the floral transition 

mechanisms. In the first part of my work, I focused my attention to define a proteomic 

approach able to identify the protein partners of SVP. Even if during the last decade the SVP 

was very well studied at genomic level, only a few information are available at the proteomic 

level. The genetic network in which SVP play a role, promoting or repressing the expression 

of their target genes in controlling the flowering time mechanism, was deep investigate (Lee 

et al. 2007; Li et al. 2008; Jang et al. 2009). About the protein partners of SVP, forming a 

complex responsible to control flowering time, only few interactors were identified by yeast 

two-hybrid assay (de Folter et al. 2005). The complex mechanisms of the floral transition, is 

probably controlled by different complexes in which SVP takes part. The protein composition 

of these complexes is still unknown and their identification can allow us to attribute to SVP 

different functions depending on the type of complex in which it takes part. A new strategy 

and new tools are required in order to identify the components of these complexes, reducing 

the amount of work, and the time used to analyze and validate the data obtained. The 

protocol developed during the first year was a starting point to deep investigate the proteins 

interactors of SVP. As a transcription factor, SVP play its role at the nuclear level, interacting 

with others protein classes. The protocol was therefore focused to purify the nuclear protein 

fraction, maintaining the proteins in their native state to preserve the protein-protein 

interactions. The  nuclear purification coupled with the Mass Spectrometry analysis, allowed 

us to define a lists of putative interactors. The large part of these putative interactors are 

involved in histone modifications, such as acetyltransferases, deacetylases and 

methyltransferases. This suggests that the MADS-domain proteins can recruit or redirect 

the basic chromatin remodeling machinery to modulate the promoter structure of their target 

genes. The interaction between MADS-proteins with chromatin remodeling proteins is 

important for the regulation of gene expression by the MADS-domain factors (Smaczniak, 

Immink, et al. 2012), and their physical interaction suggests an important role of these TFs 

in controlling chromatin dynamics during plant development. The two promising candidate 

found in our MS analysis, GCN5 and SDG2, seems to represent a good validation of the 

procedure on which our work is based. In fact, data already published in literature report a 

connection between GCN5, SDG2 and the flowering time processes especially in the 

repression of flowering caused by SVP. GCN5 and SDG2 are involved respectively in 
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histone acetyltransferase and histone methyltransferase and as reported in literature we 

confirmed their flowering delay compared with the WT plants. Another important evidence 

that link these two proteins to SVP, belong to the phenotype observation in the 35S::SVP-

GFP background in which the single mutation sdg2, and gcn5 were introgressed. First 

evidence were showed in the case of SDG2, where the isolated plants 35S::SVP-GFP 

svp/svp SDG2/sdg2 lacked the floral defect caused by the overexpression of SVP, 

suggesting also a sort of dosage effect of sdg2 mutation. Even if more analysis are needed 

to better investigate their role in flowering time and their interaction with SVP, the results 

obtained during my work also opened a new windows into the world of flowering time, 

suggesting a strong interaction between chromatin modification factors and the floral 

transition, in accordance with literature data (Smaczniak, Immink, et al. 2012). Our 

hypothesis is that SVP binds the promoter regions of the target genes and then recruits the 

different protein interactors, acting as a platform for the chromatin remodeling complexes 

that modulates the transcription of the downstream gene. Probably the activation or 

repression activity of a transcription factor depends on the different composition of the 

chromatin remodeling complex driven by endogenous and exogenous stimuli such a 

developmental stage, temperature, light and hormones. Going on with this project, in the 

future, we aim to identify the composition of all the different complexes generated by each 

kind of stimuli and the action of each different complexes in the flowering time related 

processes. 
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8. FUTURE PROSPECTIVE  
 

All the work made during these three years of my PhD allowed us to set up a good strategy 

in the identification of protein complexes. Especially for SVP we were able to identify a 

putative mechanism based on chromatin remodeling that can control the flowering time in 

Arabidopsis. Nevertheless, we spent a lot of time setting the protocols and making trials. At 

this time a lot of work is needed to better validate the preliminary results obtained and for 

deep study of the mechanisms in which SVP is involved in controlling flowering time. Next 

work to finish this part and going on with the project, are articulated in many validation 

experiments and new methods that can be placed side by side at the currently strategies in 

use. 

 BiFC (Bimolecular Fluorescence Complementation) and FRET (Fluorescence 

Resonance Energy Transfer) to validate in vivo interaction in substitution of Yeast 

Two Hybrid assay. 

 Cross the transgenic lines 35S::SVP-GFP and svp mutant with the two mutants  

sdg2-2 and gcn5 to verify some difference in flowering time. 

 Real-time PCR of the mutant plants sdg2-2 and gcn5 to check  the expression of the 

SVP gene targets. 

 Blue native Gel electrophoresis and Sucrose gradients of IP fractions in order to 

separate the different complexes and analyze the protein composition of each one. 

 Perform new Coimmunoprecipitation in collaboration with the Gerko group and work 

together to find new interactors of SVP. 

 Studies on chromatin modification involved in the flowering time mechanisms. 
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10. PUBLICATIONS  
 

 

During the three years of my Ph.D., I was also involved in other projects focused on the 

short-term and long-term regulation of photosynthesis and more in general of chloroplast 

activities. The long-term regulation studies were mainly focused on nuclear-chloroplast 

communication, in particular the retrograde signaling, that controls chloroplast biogenesis 

and chloroplast functionality. These projects were concluded with two publications, 

respectively on 2012 and 2014, and one manuscript has been recently submitted. Regarding 

the long-term regulation and retrograde signaling, the first manuscript published on 2012 

demonstrated the importance of individual plastid ribosomal proteins (PRPs) in Arabidopsis 

thaliana development (Romani et al. 2012). Plants devoid of specific PRPs showed different 

phenotypes ranging from embryo lethality to compromised vitality, with the latter being 

associated with photosynthetic lesions and decreases in the expression of plastid proteins. 

The prps mutants were then used to investigate the molecular details of the plastid gene 

expression (PGE)-dependent retrograde signaling pathway (Tadini et al., 2015). In 

particular, we have been able to identify a novel protein complex, named Retrosome, where 

the PRPS1 protein interacts with GUN1 and enzymes of the tetrapyrrole biosynthesis 

pathway, and that is responsible to coordinate the assembly of protein complexes within the 

thylakoid membranes. Concerning the short-term regulation, during the three years of my 

PhD we have started a project focused on the analysis of mutants affected in the Oxygen 

Evolving Complex (OEC) protein composition, with the aim to obtain plants with reduced 

linear electron transport and enhanced alternative electron transport pathways, including 

Cyclic Electron Transport (CET). In Allahverdiyeva et al., (2013), plants devoid of PsbQ and 

PsbR subuints have been generated and their phenotypes have been investigated at 

molecular and physiological level. Currently, we have generated plants with a minimal OEC 

complex devoid of PsbO1, PsbP2, PsbQ1, PsbQ2 and PsbR subunits where we could show 

that under limited Linear Electron Transport (LET) plants enhance the CET pathway 

essential to induce the NPQ and to regulate LET itself (manuscript in preparation). 
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1Dipartimento di Bioscienze, Università degli studi di Milano, I-20133 Milano, Italy,
2Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München,

D-82152 Planegg-Martinsried, Germany, and
3Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
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SUMMARY

A lack of individual plastid ribosomal proteins (PRPs) can have diverse phenotypic effects in Arabidopsis

thaliana, ranging from embryo lethality to compromised vitality, with the latter being associated with

photosynthetic lesions and decreases in the expression of plastid proteins. In this study, reverse genetics was

employed to study the function of eight PRPs, five of which (PRPS1, -S20, -L27, -L28 and -L35) have not been

functionally characterised before. In the case of PRPS17, only leaky alleles or RNA interference lines had been

analysed previously. PRPL1 and PRPL4 have been described as essential for embryo development, but their

mutant phenotypes are analysed in detail here. We found that PRPS20, -L1, -L4, -L27 and -L35 are required for

basal ribosome activity, which becomes crucial at the globular stage and during the transition from the

globular to the heart stage of embryogenesis. Thus, lack of any of these PRPs leads to alterations in cell division

patterns, and embryo development ceases prior to the heart stage. PRPL28 is essential at the latest stages of

embryo–seedling development, during the greening process. PRPS1, -S17 and -L24 appear not to be required

for basal ribosome activity and the organism can complete its entire life cycle in their absence. Interestingly,

despite the prokaryotic origin of plastids, the significance of individual PRPs for plant development cannot be

predicted from the relative phenotypic severity of the corresponding mutants in prokaryotic systems.

Keywords: ribosome, plastid, embryo, development, photosynthesis, Arabidopsis thaliana.

INTRODUCTION

Plant growth and development are controlled by the con-

certed actions of many signalling pathways, which are trig-

gered by developmental and metabolic cues. Plastids play

an important role in plant development. On the one hand,

they display a variety of interconvertible differentiated forms

which are closely associated with different cell types (Waters

and Pyke, 2005; Hsu et al., 2010). In addition, many essential

metabolic processes take place in plastids (Neuhaus and

Emes, 2000; Yamaguchi and Kamiya, 2000; Seo and Koshiba,

2002; DellaPenna and Pogson, 2006) that also serve as

sources of signals to the nucleus (plastid or retrograde sig-

nalling) which regulate plastid biogenesis and coordinate

cell differentiation and tissue architecture (Lopez-Juez and

Pyke, 2005; Lopez-Juez, 2007; Pesaresi et al., 2007; Tejos

et al., 2010).

Embryogenesis also depends on plastid function and

differentiation, and is usually divided into two phases.

During embryo morphogenesis, the basic body plan is

established, whereas embryo maturation includes cell

growth and expansion together with the accumulation of

macromolecules that allow the embryo to withstand the

desiccation that accompanies seed formation and enable

seedling growth after germination (Goldberg et al., 1994).

Embryo morphogenesis begins with a single-celled zygote

which, in Arabidopsis thaliana, undergoes a stereotypical

series of cell divisions giving rise in turn to pre-globular,

globular, heart and torpedo, linear- and bent-cotyledon

stages and mature green embryos. Plastids in embryonic

cells of A. thaliana remain undifferentiated and non-

photosynthetic until the late globular stage, when grana
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become visible (Hsu et al., 2010; Tejos et al., 2010). Subse-

quently, the number of chloroplasts increases at the torpedo

stage, before entry into the maturation phase, during which

chloroplasts contribute to seed metabolism by producing

NADPH and ATP for fatty acid biosynthesis, supplying

oxygen to otherwise hypoxic seeds and refixing respiratory

CO2 via the Calvin cycle (Rolletschek et al., 2002; Ruuska

et al., 2004).

The precise roles of proplastids and chloroplasts during

embryogenesis are not fully understood. Nevertheless,

genetic screens in Arabidopsis have demonstrated that

impairment of plastid functions can perturb embryogenesis

and even result in embryo lethality (Hsu et al., 2010; Bryant

et al., 2011; Muralla et al., 2011; Lloyd and Meinke, 2012).

Indeed, among the 400 Arabidopsis genes so far identified

as essential for embryo development, about 30% encode

chloroplast-localised proteins (see the SeedGenes Project

database, http://www.seedgenes.org/). Such plastid proteins

are frequently involved in metabolite biosynthesis or, like

aminoacyl-tRNA synthetases and plastid ribosomal proteins

(PRPs), play a role in plastid protein synthesis. Thus, of the

nuclear-encoded elements of the plastid ribosome, three

components of the small subunit (PRPS5, -S9 and -S13) and

eight of the large subunit (PRPL1, -L4, -L6, -L10, -L13, -L18, -

L21 and -L31) have been suggested to be essential for

embryogenesis (Hsu et al., 2010; Bryant et al., 2011; Muralla

et al., 2011; Lloyd and Meinke, 2012; Yin et al., 2012).

However, only in five cases (PRPS5, -S13, -L1, -L6 and -L21)

has the gene–phenotype relationship been unambiguously

confirmed by allelism tests or genetic complementation

assays (Bryant et al., 2011; Lloyd and Meinke, 2012; Yin

et al., 2012). In the absence of PRPL21, embryo development

is arrested at the globular stage (Yin et al., 2012), whereas

the loss-of-function phenotypes of PRPS5, -S13, -L1 and -L6

were analysed in the course of large reverse genetics

screens without further detailed characterisation. Neverthe-

less, these four PRPs are annotated in the SeedGenes Project

database as essential at the pre-globular or globular stage of

embryo development, similar to mutants defective in other

aspects of plastid protein synthesis (Berg et al., 2005;

Muralla et al., 2011).

Interestingly, not all ribosomal subunits are equally

important for embryo development. For instance, Arabi-

dopsis lines without PRPL11 show normal germination rates

and are characterised by reduced photosynthetic perfor-

mance, pale green leaf colour and a drastic reduction in

growth rate under greenhouse conditions, in association

with diminished levels of protein synthesis in plastids

(Pesaresi et al., 2001). Similarly, lack of PRPS21 in the ghs1

(glucose hypersensitive1) mutant increases sensitivity to

glucose, together with a reduction in plastid protein synthe-

sis, altered photosynthetic performance and impaired chlo-

roplast development (Morita-Yamamuro et al., 2004). The

Arabidopsis ore4-1 mutant was identified on the basis of its

extended leaf longevity, and shown to exhibit reduced

expression of the PRPS17 gene (Woo et al., 2002). In this

mutant, as well as in lines lacking PRPL24 (Tiller et al., 2012),

growth rate and leaf pigment content are decreased, as a

consequence of altered plastid protein synthesis. Although

analysis of the five plant-specific ribosomal proteins PSRP2–

6 is hampered by the lack of knock-out lines for PSRP2, -4

and -5, preliminary analyses have indicated that none of the

five is essential for embryo development (Tiller et al., 2012).

In the present study, a reverse genetic approach targeted

to several PRPs associated with different ribosome domains

was employed to further dissect the function of plastid

ribosomes during embryogenesis and plant development.

Interestingly, although plastids originated from free-living

prokaryotes, we found little correlation in phenotypic sever-

ity between homologous plastid and prokaryotic mutants.

RESULTS

Isolation of mutants for PRPS and PRPL proteins

in Arabidopsis

Arabidopsis lines carrying T-DNA insertions in single-copy

nuclear genes coding for a total of nine protein components

of the small (PRPS proteins) and large (PRPL proteins)

subunits of the plastid ribosome were identified. Of these,

five (PRPS1, -S20, -L27, -L28 and -L35) have not been func-

tionally characterised previously in A. thaliana. PRPS17 had

been analysed using leaky alleles or RNA interference (RNAi)

lines only (Woo et al., 2002; Tiller et al., 2012), while PRPL1

and PRPL4 have been reported to be essential for embryo

development (Bryant et al., 2011) but their mutant pheno-

types have not been subjected to thorough investigation.

Only prpl24-1 has been characterised in detail before (Tiller

et al., 2012), and is used here as a control.

One insertion mutant allele only was found for each of

three PRPS genes (PRPS1/At5g30510, PRPS17/At1g79850

and PRPS20/At3g15190) and four PRPL genes (PRPL24/

At5g54600, PRPL27/At5g40950, PRPL28/At2g33450 and

PRPL35/At2g24090) (Figure 1). Two mutant alleles each were

obtained for PRPL1/At3g63490 and PRPL4/At1g07320.

Interestingly, two splicing variants have been reported for

PRPL1 and PRPL24, and up to four different transcripts have

been predicted for PRPL4 (see http://www.arabidopsis.org/).

Real-time PCR analyses indicate that both PRPL1 splicing

variants are present in leaves and developing siliques, with

PRPL1.1 being more abundant than PRPL1.2 (Figure S1 in

Supporting Information). Conversely, only one transcript

variant was detectable for PRPL4 (PRPL4.1) and PRPL24

(PRPL24.1) in both leaves and siliques.

Mutations in PRPS1, PRPS17 and PRPL24 affect growth

and photosynthesis

Only in the case of PRPS1 and PRPS17, and the prpl24-1

allele used as a control for lines with a reduced plastid
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translation efficiency (Tiller et al., 2012), could homozygous

mutants be identified by PCR-based genotyping. The T-DNA

insertions in the PRPS17 and PRPL24 loci completely sup-

pressed the accumulation of the corresponding transcripts,

whereas residual amounts [about 8% of the level in Colum-

bia-0 (Col-0)] of PRPS1 transcripts were detected by North-

ern analysis in prps1-1 homozygotes (Figure 2). An agarose

gel stained with ethidium bromide and showing the different

rRNA molecules was used as a loading control, allowing us

to discern any effects of loss of PRPL24 or PRPS17 on rRNA

accumulation. Indeed, specific reductions in levels of 23S

rRNA and 5S-4.5S rRNA were found in prpl24-1 leaves,

whereas the amount of 16S rRNA was decreased in prps17-1

leaves (Figure 2).

All three prp homozygotes were characterised by pale

green cotyledons and leaves, and reduction in overall size

(Figure 3a), and the mutant phenotype segregated as a

single-locus recessive trait. Quantification of growth rates by

non-invasive image analyses under optimal growth-cham-

ber conditions showed that the size of 4-week-old prpl24-1

and prps1-1 mutant plants was reduced by about 80% and

60%, respectively, relative to the corresponding wild type

(WT) background (Col-0) (Figure 3b). For prps17-1, a reduc-

tion of approximately 55% in size in comparison to the WT

[Landsberg erecta (Ler)] was measured.

Photosynthetic performance was characterised by moni-

toring chlorophyll (Chl) a fluorescence. The data showed a

clear decrease in maximum quantum yield of photosystem II

(PSII) (FV/FM, ratio of variable to maximum fluorescence) in

prpl24-1 and a somewhat less pronounced effect in prps1-1

and prps17-1 plants (Col-0, 0.83 � 0.01; Ler, 0.83 � 0.01;

prpl24-1, 0.47 � 0.03; prps1-1, 0.69 � 0.01; prps17-1, 0.66 �
0.01; see also Figure 3c). A similar picture emerged when the

Figure 1. T-DNA tagging of PRPS and PRPL genes. Exons are indicated as

numbered white boxes, introns as black lines. Arrowheads indicate the

positions of translation initiation and stop codons. Sites, designations and

orientations of T-DNA insertions are indicated (RB, right border; LB, left

border). For PRPL1, PRPL4 and PRPL24, the intron–exon structures of the most

abundant transcript variants are indicated. The T-DNA insertions are not

drawn to scale.

Figure 2. Northern analyses of wild type (Col-0 and Ler) and mutant (prpl24-1,

prps1-1 and prps17-1) plants. Total leaf RNA was fractionated on a denaturing

agarose gel, transferred to a nylon membrane, and hybridised with the

corresponding PRP cDNA probes, reported on the left side of the panel. An

agarose gel stained with ethidium bromide and showing the different rRNA

molecules (from 25S to 4.5S; Zybailov et al., 2009) was used as a loading

control.
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effective quantum yield of PSII (FII) was taken into account. In

this case too, prpl24-1 plants were markedly impaired with

respect to Col-0, whereas differences between prps1-1 and

prps17-1 and the corresponding WT plants were less marked

(Col-0, 0.77 � 0.01; Ler, 0.77 � 0.01; prpl24-1, 0.43 � 0.02;

prps1-1, 0.63 � 0.01; prps17-1, 0.60 � 0.02; see also

Figure 3d). To quantify the alteration in leaf coloration in

prpl24-1, prps1-1 and prps17-1 plants, leaf pigments were

analysed by HPLC. As expected, mutant plants contained

only 58% (prps1-1), 50% (prps17-1) and 68% (prpl24-1) of WT

levels of total chlorophyll (Chl a + b) (Table 1). The Chl a/b

ratio was also clearly decreased in prpl24-1, and to a lesser

extent in prps1-1 (Table 1), indicating either a higher PSII/PSI

ratio or, rather more likely in light of the nature of the

mutations, an increase in the size of the Chl b-binding

peripheral antenna (which is made of nuclear-encoded su-

bunits) relative to the Chl a-binding reaction centres, synthesis

of which requires plastid ribosomes. Interestingly, the Chl a/b

ratio was not markedly altered in prps17-1 with respect to Ler

plants, suggesting that in this case the reduction in amounts of

plastid-encoded reaction centres might be accompanied by a

similar decrease in antenna complexes.

All mutant phenotypes could be rescued by Agrobacte-

rium tumefaciens-mediated transformation of homozygous

mutants with either the appropriate coding sequence

(PRPS1 and PRPS17) fused to the 35S promoter of cauli-

flower mosaic virus (35S-CaMV), or the genomic sequence

including a 1-kbp fragment of the promoter (PRPL24),

corroborating a direct correspondence between genotype

and phenotype (see Table S1). Thus, when PRPS1 and

PRPL24 were introduced into the corresponding mutants, a

complete rescue of the mutant phenotype was observed,

whereas a marginal reduction of FII values and leaf pigment

content with respect to WT remained after complementation

of prps17-1 lines with the WT PRPS17 gene (Table S1).

Taken together, the data indicate that PRPS1, PRPS17 and

PRPL24 are required for optimal plastid performance in

terms of photosynthesis and growth, but their loss is

compatible with plant viability.

Plastid protein synthesis and thylakoid composition

are perturbed in prps1-1, prps17-1 and prpl24-1 plants

To determine whether the defect in photosynthetic perfor-

mance described above is associated with alterations in the

protein composition of thylakoids, two-dimensional blue

native (2D BN)/SDS-PAGE and one-dimensional (1D) SDS-

PAGE were performed on thylakoids and total protein

extracts, respectively (Figure 4). Quantification of banding

(a) (b)

(c) (d)

Figure 3. Phenotypes of mutant (prpl24-1, prps1-

1 and prps17-1) and wild-type (Col-0 and Ler)

plants.

(a) The different genotypes were grown for

4 weeks in a growth chamber.

(b) The growth kinetics of the different genotypes

was measured from 4 to 28 days after germina-

tion (d.a.g.). Each point is based on the determi-

nation of mean leaf area from at least 10

individuals (n ‡ 10). Bars indicate standard devi-

ations.

(c,d) The photosynthetic parameter FV/FM (c) and

FII (d) of the different genotypes were measured

as described in the Experimental Procedures.

Signal intensities for FV/FM and FII are indicated

according to the colour scale at the bottom of the

figure.
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patterns on Coomassie-stained 2D BN/SDS polyacrylamide

(PA) gels revealed marked reductions in levels of the plastid-

encoded PSII core subunits PsbA, PsbB, PsbC and PsbD in

prpl24-1, prps1-1 and prps17-1 thylakoids, with amounts

corresponding to 25–27, 51–59 and 40–44%, respectively, of

those seen in the WT (Figure 4a, Table 2). Accumulation of

PsbB was also quantified by 1D SDS-PAGE and immunoblot

analysis, and values comparable to those from stained 2D

SDS-PA gels were obtained (Figure 4b, Table 2). Other

plastid-encoded subunits of thylakoid multiprotein com-

plexes, including the reaction centre of PSI (PsaA/B), the

b-subunit of ATPase (ATPase b), cytochrome b6 (PetB) and

the large subunit of Rubisco (RbcL) also showed marked

declines in level in mutant plants, particularly in prpl24-1

homozygotes. The reduced accumulation of the PSI reaction

centre was accompanied by a decrease in amounts of

nuclear-encoded PSI subunits, such as PsaD, PsaF and PsaO,

indicating that the entire PSI complex is destabilised as a

result of the mutations (Figure 4b, Table 2). Other nuclear-

encoded thylakoid proteins, including the PSI antenna pro-

tein Lhca2, and Lhcb4 and Lhcb6 (the minor antenna of PSII),

behaved like PSI and PSII, while the nuclear-encoded com-

ponents of LHCII (Lhcb1-3) were least affected (Figure 4a,

Table 2), most probably because they can accumulate

independently of PSI and PSII (Caffarri et al., 2005).

To study whether the putative defects in plastid protein

synthesis which, in the case of prps17-1 and prpl24-1, are

already suggested by the changes in rRNA accumulation

(see Figure 2), might be mitigated by adaptive mechanisms

at the transcriptional and/or post-transcriptional level, the

effects of prps1-1, prps17-1 and prpl24-1 mutations on

accumulation and processing of plastid transcripts were

studied by Northern analysis (Figure 5a). The steady-state

level of the psbA transcript was increased by a factor of

almost two in mutant leaves relative to WT plants. A similar

increase was also observed for rbcL mRNA and for tran-

scripts of the psaA–psaB and atpB–atpE operons, monitored

by employing psaB- and atpB-specific probes. These results

exclude the possibility that the reduced accumulation of

plastid-encoded proteins (see Figure 4) can be ascribed to

reduced transcription of plastid genes. To investigate this

issue further, plastid protein synthesis was measured by

monitoring the rate of incorporation of [35S]methionine into

plastid proteins in young leaves of WT and mutant (prps1-1,

prps17-1 and prpl24-1) plants in the presence of light and

inhibitors of cytoplasmic protein synthesis for 5, 15 and

30 min. Subsequently, total leaf proteins were extracted and

fractionated by SDS-PAGE (Figure 5b). In three independent

experiments, the amount of PsbA and RbcL labelled in

prpl24-1 plants was decreased on average to 20% of WT

levels after 30 min of [35S]methionine incubation. More

moderate reductions in the levels of labelled PsbA and RbcL

proteins (to about 40 and 30% of WT) were observed in

prps1-1 and prps17-1 leaves, respectively.

Taken together, our results imply that the phenotypic

behaviour of prpl24-1, prps1-1 and prps17-1 mutants with

respect to the reduction in growth rate and photosynthesis is

caused by a decrease in the accumulation of photosynthetic

proteins. This can be attributed to defects in ribosome

function, as indicated by reductions in rRNA levels and

translation of plastid mRNAs.

PRPS20, -L1, -L4, -L27, -L28 and -L35 are required for

normal embryonic development

Unlike the three ribosomal mutations described above, no

homozygous mutant plants could be identified in the case of

prps20-1, prpl4-1, prpl27-1, prpl35-1 and prpl1-1, the last of

which was used as a control for an embryo-lethal phenotype

(Bryant et al., 2011). Homozygous WT (PRP/PRP) and

heterozygous mutant (PRP/prp) plants segregated in a 1:2

manner, indicating that the corresponding gene products

are essential during the early stages of embryo and/or seed

development.

To further characterise the developmental phenotype of

these mutant lines, silique length, seed-setting numbers and

the ratio of normal to abnormal seeds in siliques were

quantified in homozygous WT (PRP/PRP) and heterozygous

mutant plants (PRP/prp). Whereas seed set and silique

morphology were very similar in all PRP/PRP and PRP/prp

plants (Table S2), albino seeds were readily distinguishable

Table 1 Levels of leaf pigments in light-adapted mutant (prpl24-1, prps1-1, prps17-1) and wild-type (Col-0 and Ler) plants at the six-leaf rosette
stage. Leaf pigments were determined by HPLC and are reported in pmol mg)1 leaf fresh weight. Mean values � SD are shown

Leaf pigment content (pmol mg)1 leaf fresh weigh)

Nx Lut Chl b Chl a b-Car VAZ Chl a + b Chl a/b

Ler 36 � 3 117 � 13 249 � 22 1007 � 95 100 � 10 51 � 4 1251 � 98 4.05 � 0.03
Col-0 39 � 4 124 � 11 246 � 23 952 � 76 985 � 8 43 � 4 1198 � 98 3.87 � 0.03
prpl24-1 39 � 4 1075 � 11 191 � 20 625 � 61 32 � 2 53 � 5 815 � 79 3.27 � 0.11
prps1-1 30 � 2 87 � 9 146 � 10 549 � 53 37 � 3 44 � 4 694 � 63 3.76 � 0.09
prps17-1 26 � 2 77 � 6 123 � 11 497 � 39 34 � 3 50 � 1 619 � 51 4.04 � 0.06

Nx, neoxanthin; Lut, lutein; Chl b, chlorophyll b; Chl a, chlorophyll a; b-Car, b-carotene; VAZ, violaxanthin + antheraxanthin + zeaxanthin.
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at 6–7 days after fertilisation (DAF) in all siliques of PRP/prp

plants bearing each of the five different mutant alleles

(Figure 6a, left panel). In mature siliques, the albino seeds

eventually turned into shrunken, dark brown structures that

were unable to germinate on either MS medium or soil

(Figure 6a, right panel). In all mutant plants analysed, the

mean percentage of albino/aborted seeds ranged between

23.7 and 26.9%, whereas only 1.7 and 2.1% aborted seeds

were observed in WT Ler and Col-0 sister plants, respectively

(Table S2). These values are consistent with a 3:1

(normal:aborted seeds) segregation ratio, indicating that

the abnormal seed phenotype is a recessive trait controlled

by a single locus. To confirm that the abnormal seed

phenotypes were indeed caused by mutation of the PRP

genes, an additional mutant allele (in the case of PRPL1

and PRPL4) was phenotypically characterised or the

respective WT PRP gene was introduced into heterozygous

mutant plants to obtain in the next generation homozygous

mutants containing the transgenic PRP gene. As expected,

the prpl1-2 and prpl4-2 alleles behaved phenotypically like

the prpl1-1 and prpl4-1 alleles, respectively (Table S2).

Moreover, viable plants with normal seeds and WT-like

photosynthetic performance and leaf pigment content were

obtained by introducing the WT PRP genes into the

homozygous mutant background, demonstrating that the

seed phenotypes are indeed caused by mutation of the PRP

genes (Tables S1 and S2).

To determine whether embryo development was affected

in the prps20, prpl1, prpl4, prpl27 and prpl35 mutants,

optical sections of cleared seed whole-mounts at different

developmental stages were analysed by microscopy

(Figure 6b). At 3–4 DAF, WT embryos had reached the heart

stage (Figure 6b, top panel), whereas about 25% of the seeds

from PRP/prp plants were retarded in their development and

the embryos arrested at the globular stage (Figure 6b,

bottom panel, left picture of each genotype). In the WT,

heart-stage embryos undergo an ordered series of cell

divisions that allow them to traverse through the torpedo

and linear cotyledon stages to the fully mature embryo stage

(Figure 6b, top panel). In contrast, although they retained

the capacity for cell division, mutant embryos at 4–5 DAF

exhibited a disordered globular-like structure (Figure 6b,

bottom panel, right picture of each mutant), and began to

disintegrate at about 15 DAF. To visualise the cellular

organisation of mutant and WT embryos, representative

siliques of heterozygous PRPS20/prps20-1 plants at 3–4 DAF

were subjected to a modified pseudo-Schiff propidium

iodide (mPS-PI) staining technique (Figure 6c; see Experi-

mental procedures). The mutant embryos showed a disor-

dered globular-like organisation marked by abnormal cell

division patterns. In particular, mutant globular embryos

showed additional transverse cell division planes (Figure 6c,

arrowheads) while lacking the usual two longitudinal divi-

sion planes (Figure 6c, inset). Therefore, it appears that

while the epidermis, the first element of embryo radial

pattern (Jenik et al., 2007) which becomes visible in the

16-cell embryo (early globular), can differentiate in mutant

embryos, provascular cells fail to differentiate. Similar

(a)

(b)

Figure 4. Two-dimensional blue native (BN) SDS-PAGE separation and one-

dimensional SDS-PAGE analysis of thylakoid proteins from wild-type (Col-0

and Ler) and mutant (prps1-1, prps17-1 and prpl24-1) leaves.

(a) Thylakoid protein complexes were fractionated by BN-PAGE in the first

dimension and then by 15% SDS-PAGE, followed by staining with colloidal

Coomassie Blue (G 250). The identity of relevant proteins is indicated by

arrows. Note that Ler behaved like Col-0.

(b) Total leaf proteins were fractionated by SDS-PAGE, and blots were probed

with antibodies raised against individual subunits of photosystem I (PsaD,

PsaF, PsaO), photosystem II (PsbB), LHCI (Lhca2), the minor antenna of

photosystem II (Lhcb4, Lhcb6), the chloroplast ATP synthase (b-subunit), the

Cyt b6/f complex (PetB) and the large subunit of Rubisco (RbcL). Decreasing

levels of wild-type proteins were loaded in the lanes marked 0.5· Col-0 and

0.25· Col-0. Immunodecoration with an actin-specific antibody was employed

to control for equal loading.
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differences were also observed in the other mutant geno-

types, indicating that, in the absence of PRPS20, -L1, -L4, -

L27 or -L35, embryo development is perturbed due to a

change in cell division patterns, which prevents embryos

from progressing through the globular to the heart stage

and beyond.

Table 2 Quantification of thylakoid proteins in light-adapted mutant plants (prps1-1, prps17-1 and prpl24-1). Wild-type levels are set to 100%.
Average values were calculated from three independent 2D polyacrylamide gels and protein gel blots (see Figure 4)

Protein

prpl24-1 prps1-1 prps17-1

2D PAGE Immunoblot 2D PAGE Immunoblot 2D PAGE Immunoblot

PsaA/Ba 0.31 � 0.03 nd 0.59 � 0.05 nd 0.46 � 0.04 nd
PsaD nd 0.32 � 0.03 nd 0.44 � 0.04 nd 0.39 � 0.04
PsaF nd 0.34 � 0.03 nd 0.52 � 0.04 nd 0.45 � 0.03
PsaO nd 0.28 � 0.02 nd 0.37 � 0.03 nd 0.32 � 0.04
PsbAa 0.27 � 0.02 nd 0.51 � 0.03 nd 0.42 � 0.02 nd
PsbBa 0.25 � 0.02 0.34 � 0.03 0.54 � 0.04 0.45 � 0.04 0.41 � 0.04 0.48 � 0.04
PsbCa 0.25 � 0.02 nd 0.55 � 0.02 nd 0.40 � 0.03 nd
PsbDa 0.27 � 0.02 nd 0.59 � 0.04 nd 0.44 � 0.04 nd
Lhca2 nd 0.31 � 0.03 nd 0.27 � 0.02 nd 0.36 � 0.02
Lhcb1/b2/b3 0.67 � 0.04 nd 0.74 � 0.05 nd 0.53 � 0.04 nd
Lhcb4 nd 0.32 � 0.03 nd 0.45 � 0.04 nd 0.38 � 0.03
Lhcb6 nd 0.39 � 0.03 nb 0.48 � 0.04 nd 0.45 � 0.04
ATPase ba 0.29 � 0.03 0.26 � 0.03 0.51 � 0.05 0.46 � 0.04 0.42 � 0.03 0.45 � 0.04
PetBa nd 0.18 � 0.02 nd 0.79 � 0.05 nd 0.39 � 0.03
RbcLa nd 0.19 � 0.02 nd 0.27 � 0.03 nd 0.21 � 0.02

nd, not determined.
aProteins encoded by plastid genes.

(a) (b)

Figure 5. Translation efficiency of chloroplast-encoded proteins in wild-type (WT; Col-0 and Ler) and mutant (prps1-1, prps17-1 and prpl24-1) leaves.

(a) Analysis of transcripts from WT and mutant leaves. Total leaf RNA was fractionated by denaturing agarose gel electrophoresis, blotted onto nylon membrane,

and hybridised with the probes reported on the left side of the panel. A replicate agarose gel, stained with ethidium bromide and showing the different rRNA

molecules, was used as a loading control.

(b) Incorporation of [35S]methionine into total leaf proteins isolated from six-leaf-rosette plants at low light (20 lmol photons m)2 sec)1). After pulse labelling with

[35S]methionine for 5, 15 and 30 min in the presence of cycloheximide, total leaf proteins were isolated, fractionated by SDS-PAGE and detected by autoradiography.

As loading control, a portion of the Coomassie Brilliant Blue (C.B.B.)-stained SDS-PAGE, corresponding to the LHCII migration region, is shown. Levels of

[35S]methionine incorporation into RbcL and PsbA proteins were quantified and reported in the bar-plot. Values were normalised to the maximal signal intensities

obtained in WT leaves (Col-0 and Ler) after 30-min labelling.
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Mutation of the gene coding for PRPL28 results in a

phenotype which differs from that described above.

Although siliques of heterozygous PRPL28/prpl28-1 plants

were also characterised by the presence of albino seeds at

6–7 DAF (Figure 6a, left panel), these seeds retained their very

pale colour even in mature siliques (Figure 6a, right panel)

and accounted for about one-quarter of all seeds, which is

typical of a monogenic recessive trait (Table S2). The pale

seeds contained fully mature albino embryos (Figure 6d) that

were able to germinate on both soil and MS medium, but

they did not survive past the cotyledon stage when grown

under photoautotrophic conditions (Figure S2). This obser-

vation, together with the complete restoration of the WT

phenotype by introduction of the WT PRPL28 gene into the

prpl28-1 background (see Table S1), implies that PRPL28 is

essential for the latest stages of embryo–seedling develop-

ment, during the greening process.

DISCUSSION

Decreases in plastid translation rates can affect

photosynthesis

Certain ribosomal proteins are not essential for ribosomal

function, but their removal reduces the translational

capacity and decreases the photosynthetic performance of

plastids. Thus, Arabidopsis mutants that lack PRPS21, -L11

(a)

(b)

(c)

(d)

Figure 6. Effects of loss of plastid ribosomal

proteins (PRPs) on early plant development.

(a) Morphological characterisation of seed devel-

opment in siliques of wild-type (WT; Col-0) and

heterozygous PRPL27/prpl27-1 and PRPL28/

prpl28-1 plants. In WT siliques at 10 days after

fertilisation (DAF), all developing seeds are

green, whereas in PRPL27/prpl27-1 and PRPL28/

prpl28-1 siliques around 25% of seeds are albi-

notic. A very similar phenotype was observed in

heterozygous PRPS20/prps20-1, PRPL1/prpl1-1,

PRPL4/prpl4-1 and PRPL35/prpl35-1 plants. In

mature WT siliques (at 20 DAF) all seeds are

round and yellowish, whereas 25% of seeds are

shrunken and aborted (in PRPL27/prpl27-1) or

much paler (in PRPL28/prpl28-1). Note that

PRPS20/prps20-1, PRPL1/prpl1-1, PRPL4/prpl4-1

and PRPL35/prpl35-1 siliques behaved like

PRPL27/prpl27-1 siliques.

(b) Characterisation of different stages of embryo

development. Top panel, cleared whole mount of

WT (Col-0) seeds containing embryos at different

developmental stages including pre-globular (1

DAF), globular (3 DAF), transition globular to

heart (3–4 DAF), torpedo (4–5 DAF) and linear

cotyledons (6 DAF). Bottom panel, 25% of

embryos from PRPS20/prps20-1, PRPL1/prpl1-1,

PRPL4/prpl4-1, PRPL27/prpl27-1 and PRPL35/

prpl35-1 siliques stopped developing, although

they retained the capacity for cell division, and

remained arrested at a disordered globular

stage. For each genotype, the left image was

taken at 3–4 DAF and the right picture at 4–5 DAF.

Bars = 20 lm.

(c) Analysis of cell division pattern of mutant

embryos from WT (Col-0) and heterozygous

PRPS20/prps20-1 plants. Siliques were subjected

to a modified pseudo-Schiff propidium iodide

(mPS-PI) staining technique aimed at visualising

the cellular organisation of embryos. The trans-

verse cell division plane in the mutant is indi-

cated by arrowheads. Insets show the cell

division planes typical of WT embryos. Note that

the cell division pattern of prpl1-1, prpl4-1,

prpl27-1 and prpl35-1 mutant embryos was very

similar to the one of prps20-1 mutant embryos.

Bars = 20 lm.

(d) Images of isolated fully mature embryos (bent

cotyledon stage) from WT (Col-0) and prpl28-1

seeds. Bars = 20 lm.

Different functions of plastid ribosome subunits 929

ª 2012 The Authors
The Plant Journal ª 2012 Blackwell Publishing Ltd, The Plant Journal, (2012), 72, 922–934



or -L24, or have reduced amounts of PRPS17, are viable but

display a marked drop in rates of photosynthesis and growth

(Pesaresi et al., 2001; Woo et al., 2002; Morita-Yamamuro

et al., 2004; Tiller et al., 2012). In this study, characterisation

of Arabidopsis lines lacking PRPS1 or -S17, together with the

prpl24-1 mutant as a control, confirmed that these loss-of-

function mutants are able to complete their entire life cycle

(Figure 7), although all three mutant genotypes showed

reductions in growth rate, leaf pigment content and photo-

synthetic performance. The altered photosynthetic perfor-

mance is attributable to the marked decrease in chloroplast

translational activity in these mutants, as shown by reduced

incorporation of [35S]methionine into PsbA and RbcL. Are

PRPS17 and PRPL24 dispensable for the basal activity of

plastid ribosomes (for PRPS1 this cannot be unequivocally

concluded because residual expression of PRPS1 remains in

prps1-1 homozygotes) or are there alternative explanations

available for the viability of these prp mutants? Theoreti-

cally, dual targeting of their nuclear-encoded mitochondrial

counterparts (At1g49400 and At3g18880 in the case of

PRPS17; At5g23535 in the case of PRPL24) to mitochondria

and chloroplasts could account for the viability of prps17

and prpl24 mutants. However, the Ambiguous Targeting

Predictor (http://www.cosmoss.org/bm/ATP; Mitschke et al.,

2009), a machine-learning implementation that predicts

dual-targeted organelle proteins, attributed very low scores

to At1g49400 (0.53), At3g18880 (0.53) and At5g23535 (0.44),

whereas PRORS1, an experimentally verified dual-located

protein (Pesaresi et al., 2006), was unambiguously predicted

into both plastids and mitochondria (0.95). Moreover, pro-

teomic studies failed to detect At1g49400, At3g18880 and

At5g23535 within chloroplasts [see also ‘The Subcellular

Location of Proteins in Arabidopsis Database (SUBA; http://

suba.plantenergy.uwa.edu.au/flatfile.php?) and the Plant

Proteome Database (http://ppdb.tc.cornell.edu/dbsearch/

gene.aspx?)]. Therefore, it is unlikely that dual targeting of

nuclear-encoded mitochondrial ribosomal proteins contrib-

utes to the phenotypes observed for the prps17 and prpl24

mutants.

Plastid translation is required for embryo development in

Arabidopsis

Plastid differentiation during embryogenesis, which gener-

ates specific patterns of chloroplast-containing cells in spe-

cific cell layers at specific stages of embryogenesis, must be

tightly regulated (Tejos et al., 2010), but how this is achieved

at the molecular level remains unclear. Functional plastids

are certainly essential for embryogenesis in Arabidopsis.

Thus, based on the work of Bryant et al. (2011) and Yin et al.

(2012), and the data in the present study, it can be concluded

that at least nine nuclear-encoded PRPs (PRPS5, -S13, -S20, -

L1, -L4, -L6, -L21, -L27 and -L35) are essential for embryo

development in Arabidopsis. Our analysis of lines lacking

PRPS20, -L1, -L4, -L27 or -L35 indicate that these PRPs be-

come indispensable at the globular stage of embryo devel-

opment (see Figures 6 and 7), corroborating previous

analyses of lines lacking PRPL21 (Yin et al., 2012). Moreover,

such mutant embryos are characterised by perturbations in

cell division patterns, leading to the formation of highly

disordered globular-like structures. The resulting failure to

differentiate specific cell layers prevents the progression of

embryo development beyond this stage. This defect in the

patterning of cell division could be due to the lack of specific

molecules, such as hormones produced by plastids (Peltier

et al., 2006; Santner and Estelle, 2009; Santner et al., 2009)

that either directly influence cell division or are involved in

the coordination of nuclear and plastid gene expression.

Which plastid process is essential for embryogenesis in

Arabidopsis?

The possibility that the embryo lethality observed in some

prp mutants is caused by interference with the photosyn-

Figure 7. Schematic representation of functions

of plastid ribosomal proteins (PRPs). The pro-

teins PRPS5, -S13, -S20, -L1, -L4, -L6, -L21, -L27

and -L35 allow the transition from the globular to

the heart stage. PRPL28 is essential for the

greening of embryos and seedlings, whereas

PRPS1, -S17, -S21, -L11 and -L24 play a major

role in adult plants, being pivotal for optimal

ribosome activity. Note that the role of the

following subunits has been reported in previous

publications: PRPS5, -S13, -L1, -L6 (Bryant et al.,

2011; Lloyd and Meinke, 2012); PRPL21 (Yin

et al., 2012); PRPS21 (Morita-Yamamuro et al.,

2004); PRPL11 (Pesaresi et al., 2001) and PRPL24

(Tiller et al., 2012).
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thetic process can be excluded, because mutants devoid of

components essential for thylakoid electron flow can still

reach the seedling stage (see, for instance, Maiwald et al.,

2003; Weigel et al., 2003; Ihnatowicz et al., 2004). Intraspe-

cific variation with respect to the sensitivity of plant

embryogenesis to the loss of plastid translation has shed

further light on the role of plastids in embryogenesis. In

most cases, mutations that interfere with chloroplast trans-

lation efficiency in barley, maize or Brassica napus generally

do not disrupt embryogenesis, but allow the formation of

albino seedlings instead (Hess et al., 1994; Zubko and Day,

1998). For instance, lack of the plastid-encoded PRPS12 re-

sults in embryo lethality in Arabidopsis, whereas the corre-

sponding maize mutant is able to germinate and produce

albino seedlings (Ostheimer et al., 2003; Asakura and Bar-

kan, 2006). Several lines of evidence suggest that a relative

lack of the plastid-encoded accD-subunit of the multimeric

acetyl-CoA carboxylase required for fatty acid biosynthesis

might be one of the causes responsible for the lethality of

Arabidopsis embryos defective in plastid translation (Bryant

et al., 2011). Indeed, grass species and B. napus contain a

plastid-located monomeric acetyl-CoA carboxylase that,

differently from Arabidopsis, is encoded in the nucleus and

translated in the cytosol (Schulte et al., 1997; Chalupska et

al., 2008). Therefore fatty acid biosynthesis (and embryo-

genesis) can continue even when plastid protein synthesis is

affected in these species. The essential nature of fatty acid

biosynthesis in embryo development is also known from the

disruption of a nuclear-encoded subunit of the plastid mul-

timeric acetyl-CoA carboxylase (At5g16390; Li et al., 2011),

as well as from the arrest of fatty acid biosynthesis by pre-

venting the accumulation of the S-malonyltransferase en-

zyme (At2g30200; Bryant et al., 2011). This, together with the

observed block in embryogenesis at the globular stage in

prp mutants (this study and Yin et al., 2012), suggests that at

the globular stage, when pro-plastids start to differentiate

into chloroplasts (Mansfield and Briarty, 1991), fatty acid

biosynthesis might become essential for embryo develop-

ment (Kobayashi et al., 2007). Certainly, disruption of other

essential plastid functions can also lead to the arrest of

embryogenesis. For instance, loss of function of key players

in the TOC-TIC machinery required for plastid protein im-

port, such as TOC75, TIC20, TIC110, results in embryo

lethality (Jarvis, 2008; Inaba and Ito-Inaba, 2010; Kasmati

et al., 2011). Likewise, mutation in the gene encoding the key

enzyme of galactolipid biosynthesis, MGD1, compromises

proper embryogenesis. Mutation in other essential proteins,

such as chaperons, proteases and aminoacyl-tRNA synth-

ases, in plastids also compromise embryogenesis (Inaba

and Ito-Inaba, 2010). However, with the exception of the ClpP

protease (Shikanai et al., 2001), these genes are encoded by

the nuclear genome; therefore disruption of plastid transla-

tion cannot directly interfere with their expression.

Can one predict which plastid ribosomal proteins are

essential for embryogenesis?

The nine plastid ribosomal subunits identified so far

as being essential for embryogenesis in Arabidopsis

(PRPS5, -S13, -S20, -L1, -L4, -L6, -L21, -L27 and -L35) con-

tribute to different ribosomal domains in either the 30S or

the 50S subunit (Stelzl et al., 2001). Moreover, the essential/

non-essential nature of the role of PRPs in Arabidopsis

embryogenesis cannot be predicted on the basis of studies

on prokaryotes. This is outlined in the following three sce-

narios in which the phenotypic effects of the removal of

individual subunits from Escherichia coli are compared with

those of deletion of their counterparts in chloroplast ribo-

somes in Arabidopsis.

1 Lethality in E. coli/embryo lethality in Arabidopsis:

(P)RPL4 and-L27 (this study; Table S3; Hashimoto et al.,

2005; Bryant et al., 2011). Only in these cases is the

essential nature of the Arabidopsis PRP reflected in the

E. coli mutant phenotype.

2 Viability in E. coli/embryo lethality in Arabidopsis:

(P)RPS20, -L1 and -L35 (this study; Table S3; Hashimoto

et al., 2005; Bryant et al., 2011). Interestingly, loss of

PRPL35 also results in aberrant embryo morphogenesis

and non-viable seeds in maize (Magnard et al., 2004),

indicating that a certain level of plastid protein synthesis is

also needed for normal embryo development in grasses.

3 Lethality in E. coli/unperturbed embryogenesis in Arabid-

opsis: (P)RPS1, -S17, -L24, -L28 (this study; Table S3;

Hashimoto et al., 2005). The Arabidopsis prps1-1, prps17-1

and prpl24-1 mutants are viable, albeit with reduced

photosynthetic performance. However, a fundamental

role of PRPS1 in Arabidopsis cannot be entirely excluded,

because some residual PRPS1 gene expression can still be

observed in prps1-1 plants. Interestingly, the maize high

chlorophyll fluorescence 60 mutant, which lacks PRPS17,

displays a seedling-lethal phenotype (Schultes et al.,

2000), in contrast to the corresponding Arabidopsis

mutant which can complete its life cycle. Although

Arabidopsis plants without PRPL28 are seedling lethal,

they still show embryo and seed formation (this study).

Given the altered pigmentation of prpl28-1 mutant seeds,

it can be speculated that the formation of the photosyn-

thetic machinery, which is associated with the greening

process, is disturbed. For instance, a specific role of

PRPL28 in the translation process on the surface of

thylakoid membranes might be hypothesised (Minami

and Watanabe, 1984; Hurewitz and Jagendorf, 1987; Zhang

et al., 1999). Indeed, stromal ribosomes are recruited into

thylakoid polysomes, which are active in synthesising

thylakoid proteins that are essential for the biogenesis of

the photosynthetic apparatus. In this context, PRPL28

might play a major role in the recruitment of ribosomes to
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thylakoids. Alternatively, the presence of PRPL28 might be

specifically required for thylakoid-bound ribosomes.

Taken together, this cross-kingdom comparison of mutant

phenotypes clearly suggests that the impact of specific

ribosomal proteins on embryogenesis in Arabidopsis can-

not be predicted on the basis of their mutant phenotypes in

E. coli. In principle, this can be explained by changes in the

function of these proteins during evolution of the chloro-

plast from a cyanobacterial endosymbiont, or more proba-

bly by the combination of changes in protein and rRNA

sequences.

The sensitivity of embryogenesis to plastid gene expres-

sion in Arabidopsis allows one to identify PRPs which are

essential for embryogenesis. Further studies have to clarify

whether these PRPs are also essential for ribosomal func-

tion, or whether plastid ribosomes that lack such PRPs retain

a basal activity that is insufficient to meet the need for plastid

protein synthesis during embryogenesis.

EXPERIMENTAL PROCEDURES

Plant material, propagation and growth measurements

Mutant alleles were identified by searching the T-DNA Express
database (http://signal.salk.edu/cgi-bin/tdnaexpress) and mutant
lines were obtained from the SALK collection (Alonso et al., 2003)
(prps20-1/Salk_094710; prpl4-1/Salk_117563; prpl4-2/Salk_094226;
prpl24-1/Salk_010822; prpl28-1/Salk_142282), the SAIL collection
(Sessions et al., 2002) (prps1-1/Sail_560_B02; prpl1-1/Sail_295_A02;
prpl35-1/Sail_367_E07), the John Innes Centre collection (Tissier
et al., 1999) (prps17-1/GT_5_19055; prpl1-2/GT_5_101962) and the
GABI-KAT collection (Rosso et al., 2003) (prpl27-1/GABI_123H12).
With two exceptions, mutant alleles are in the Col-0 genetic back-
ground; prps17-1 and prpl1-2 are derived from Ler. T-DNA inser-
tions were confirmed by sequencing PCR products obtained using
gene- and T-DNA-specific primers (Table S4). Arabidopsis thaliana
Heynh. WT (Col-0 and Ler) and mutant plants were grown under
controlled growth chamber conditions as described (Pesaresi et al.,
2009). Phenotypic analyses were also conducted on plants grown
on Murashige and Skoog (MS) medium (Duchefa, http://
www.duchefa.com/) with or without 1% (w/v) sucrose. Growth
measurements are described elsewhere (Leister et al., 1999).

Plant transformation and isolation of transgenic lines

For complementation analyses, the PRPS1 and PRPS17 coding
sequences were recombined into the Gateway plant transformation
destination vector pB2GW7 (Flanders Interuniversity Institute for
Biotechnology, Gent, Belgium), under the control of the 35S pro-
moter from the Cauliflower Mosaic Virus (CaMV) (see Table S5 for
primer sequences). For PRPS20, PRPL24, PRPL27, PRPL28 and
PRPL35 the corresponding genomic sequences, together with 1 kbp
of promoter regions, were recombined into pB2GW7, devoid of the
35S-CaMV promoter. Plants were transformed according to Clough
and Bent (1998) and independent transgenic plants were selected on
the basis of their resistance to Basta.

Nucleic acid analysis

Arabidopsis thaliana DNA was isolated as described (Ihnatowicz
et al., 2004). For RNA analysis, total leaf RNA was extracted from

fresh tissue using the TRIZOL reagent (Invitrogen, http://www.
invitrogen.com/). Northern analysis was performed under stringent
conditions, according to Sambrook and Russell (2001). Probes
complementary to nuclear and chloroplast genes were used for the
hybridisations. Primers used to amplify the probes are listed in
Table S6. All probes used were cDNA fragments labelled with 32P.
Signals were quantified with a phosphoimager (Typhoon; GE
Healthcare, http://www3.gehealthcare.com/) using the program
IMAGEQUANT.

For quantitative real-time PCR (qRT-PCR) profiling, 4-lg aliquots
of total RNA, treated with DNase I (Roche Applied Science, http://
www.roche-applied-science.com/) for at least 30 min, were utilised
for first-strand cDNA synthesis using iScript reverse transcriptase
(Bio-Rad, http://www.bio-rad.com/) according to the supplier’s
instructions. The qRT-PCR profiling was carried out on an iCycler
iQ5 real-time PCR system (Bio-Rad), using the oligonucleotide
sequences reported in Table S6. Data from three biological and
three technical replicates were analysed with Bio-Rad iQ5 software
(version 2.0).

PAGE and immunoblot analyses

Leaves were harvested from plants at the six-leaf rosette stage, and
thylakoids were prepared as described (Bassi et al., 1985). For BN-
PAGE, thylakoid samples equivalent to 100 mg of fresh leaf material
were solubilised and fractionated as described in Pesaresi et al.
(2009). For 2D PAGE, BN-PAGE lanes were subsequently fraction-
ated on denaturing Tricine-SDS gels (15% PA gel) and the protein
content was stained with colloidal Coomassie Blue (G 250).

For immunoblot analyses total proteins were prepared from
plants at the six-leaf rosette stage (Martinez-Garcia et al., 1999),
then fractionated by SDS-PAGE (on 12% PA gels) (Schägger and
von Jagow, 1987). Subsequently, proteins were transferred to
poly(vinylidene difluoride) membranes (Ihnatowicz et al., 2004),
and replicate filters were immunodecorated with appropriate anti-
bodies. Signals were detected by enhanced chemiluminescence
(GE Healthcare) and quantified using IMAGE QUANT for Macintosh
(version 1.2; Molecular Dynamics, http://www.mdyn.com/).

In-vivo translation assay

The in-vivo translational assay was performed essentially as in
Pesaresi (2011). Twelve leaf discs of 4 cm diameter were incubated
in a buffer containing 20 lg ml)1 cycloheximide, 1 mM K2HPO4–
KH2PO4 (pH 6.3), and 0.1% (w/v) Tween-20 to block cytosolic trans-
lation. The [35S]methionine was added to the buffer (0.1 mCi ml)1)
and the material was vacuum-infiltrated. Leaves were exposed to
light (20 lmol photons m)2 s)1) and four leaf discs were collected
at each time point (5, 15 and 30 min). Total proteins were extracted
as described above and loaded on Tricine SDS-PAGE (12% PA).
Signals were detected and quantified using the phosphorimager
and the IMAGEQUANT program as described above.

Chlorophyll fluorescence and pigment analyses

In vivo Chl a fluorescence of leaves was measured using the Dual-
PAM-100 (Walz, http://www.walz.com/) as described (Pesaresi et al.,
2009). Five plants of each genotype were analysed and average
values plus standard deviations were calculated. Plants were dark-
adapted for 30 min and minimal fluorescence (F0) was measured.
Then pulses (0.8 sec) of saturating white light (5000 lmol pho-
tons m)2 sec)1) were used to determine the maximum fluorescence
(FM), and the ratio (FM ) F0)/FM = FV/FM (maximum quantum yield
of PSII) was calculated. A 10-min exposure to actinic light
(80 lmol photons m)2 sec)1) served to drive electron transport
between PSII and PSI. Then steady-state fluorescence (FS) was
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measured, and F 0M was determined after exposure to further satu-
ration pulses (0.8 sec, 5000 lmol photons m)2 sec)1). The effective
quantum yield of PSII (FII) was calculated as the ratio ðF 0M � FSÞ=F 0M.

In vivo Chl a fluorescence of whole plants was recorded using an
imaging chlorophyll fluorometer (Imaging PAM; Walz) by exposing
dark-adapted plants to a pulsed, blue measuring beam (1 Hz,
intensity 4; F0) and a saturating light flash (intensity 4) to obtain
FV/FM. A 10-min exposure to actinic light (80 lmol pho-
tons m)2 sec)1) was then used to calculate FII.

Pigments were analysed by reverse-phase HPLC (Färber et al.,
1997).

Whole-mount preparation and microscopy

To analyse defects in seed development, siliques of WT and het-
erozygous PRPS20/prps20-1, PRPL1/prpl1-1, PRPL4/prpl4-1,
PRPL27/prpl27-1, PRPL28/prpl28-1 and PRPL35/prpl35-1 plants were
manually dissected and observed using a Zeiss LUMAR.V12
stereomicroscope (http://www.zeiss.com/). To follow defects during
embryo development, siliques from the same genotypes were
cleared as reported (Yadegari et al., 1994). Developing seeds were
observed using a Zeiss Axiophot D1 microscope equipped with
differential interface contrast (DIC) optics. Images were recorded
with an Axiocam MRc5 camera (Zeiss) using the Axiovision pro-
gram (version 4.1). Modified pseudo-Schiff propidium iodide (mPS-
PI) embryo staining was performed as described by Truernit et al.
(2008). Whole seeds were observed with a Leica TCS-SP5 confocal
laser scanning microscope (Leica Microsystems, http://www.leica-
microsystems.com/). The excitation wavelength for mPS-PI-stained
samples was 488 nm, and fluorescence emission was collected
between 520 and 720 nm.
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SUMMARY

The oxygen-evolving complex of eukaryotic photosystem II (PSII) consists of four extrinsic subunits, PsbO

(33 kDa), PsbP (23 kDa), PsbQ (17 kDa) and PsbR (10 kDa), encoded by seven nuclear genes, PsbO1

(At5g66570), PsbO2 (At3g50820), PsbP1 (At1g06680), PsbP2 (At2g30790), PsbQ1 (At4g21280), PsbQ2

(At4g05180) and PsbR (At1g79040). Using Arabidopsis insertion mutant lines, we show that PsbP1, but not

PsbP2, is essential for photoautotrophic growth, whereas plants lacking both forms of PsbQ and/or PsbR

show normal growth rates. Complete elimination of PsbQ has a minor effect on PSII function, but plants

lacking PsbR or both PsbR and PsbQ are characterized by more pronounced defects in PSII activity. Gene

expression and immunoblot analyses indicate that accumulation of each of these proteins is highly depen-

dent on the presence of the others, and is controlled at the post-transcriptional level, whereas PsbO stability

appears to be less sensitive to depletion of other subunits of the oxygen-evolving complex. In addition,

comparison of levels of the PSII super-complex in wild-type and mutant leaves reveals the importance of

the individual subunits of the oxygen-evolving complex for the supramolecular organization of PSII and

their influence on the rate of state transitions.

Keywords: Arabidopsis thaliana, photosynthesis, oxygen-evolving complex, protein complex, NPQ, state

transitions.

INTRODUCTION

Photosystem II (PSII) is a large pigment–protein complex

found in the thylakoid membranes of plants, algae and

cyanobacteria, which catalyzes light-induced electron

transfer from water to the plastoquinone pool, with

concomitant production of oxygen and protons. The core

complex is made up of six major intrinsic proteins [D1/

PsbA, D2/PsbD, CP47/PsbB, CP43/PsbC and the a and b

subunits (PsbE and PsbF) of cytochrome b559] and a

number of low molecular mass intrinsic membrane

proteins, associated with an inorganic Mn4O5Ca cluster

and a number of chloride ions. Together, these form the

minimal unit that is capable of light-induced oxygen

evolution (Bricker and Frankel, 2011; Ifuku et al., 2011b;

Bricker et al., 2012).

© 2013 The Authors
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For optimal oxygen evolution, plants and green algae

require an additional set of four lumen-exposed extrinsic

proteins with apparent molecular masses of 33, 23, 17 and

10 kDa (PsbO, PsbP, PsbQ and PsbR, respectively), which

form the so-called oxygen-evolving complex (OEC). In

Arabidopsis thaliana, two genes each code for PsbO

(PsbO1, At5g66570; PsbO2, At3g50820), PsbP (PsbP1,

At1g06680; PsbP2, At2g30790) and PsbQ (PsbQ1,

At4g21280; PsbQ2, At4g05180), whereas PsbR is encoded

by a single gene, At1g79040 (Suorsa et al., 2006; Yi et al.,

2008; http://www.arabidopsis.org).

These extrinsic proteins have been the subject of exten-

sive investigation by numerous laboratories over the last

25 years, and high-resolution structures have been

obtained for PsbP (Ifuku et al., 2004) and PsbQ (Calderone

et al., 2003). Analysis of psbo1 and psbo2 insertional

knockout mutants has yielded insights into their roles in

photosynthesis (Murakami et al., 2002, 2005; Lundin et al.,

2008; Allahverdiyeva et al., 2009). In particular, these two

mutants differ in phenotype. Arabidopsis psbo1 plants are

characterized by retarded growth, low PSII activity, pale

green leaves and enhanced susceptibility to photoinactiva-

tion, whereas psbo2 knockout plants show wild-type (WT)

levels of PSII activity, growth rate and pigment content.

However, both PsbO subunits appear to be required for

PSII assembly/stability and photoautotrophy, as shown by

the observation that Arabidopsis RNAi lines in which

expression of both genes are suppressed only grow on

sucrose-supplemented medium (Yi et al., 2005). Insertional

T-DNA mutants have also been used to provide insights

into the function of the PsbR protein in Arabidopsis

(Suorsa et al., 2006; Allahverdiyeva et al., 2007; Liu et al.,

2009). Lack of PsbR was found to lead to decreased rates

of oxygen evolution and quinone (Q�
A) re-oxidation

(Allahverdiyeva et al., 2007). Moreover, Arabidopsis psbr

mutants showed a reduced content of both PsbP and PsbQ

proteins, and near-total depletion of these proteins was

observed under steady-state low-light conditions, indicat-

ing that PsbR is required for the stable assembly of PsbP

and, probably indirectly, of PsbQ (Suorsa et al., 2006).

RNAi has also been used to investigate the role of the PsbP

and PsbQ proteins (Ifuku et al., 2005b; Yi et al., 2007, 2008,

2009; Ido et al., 2009). Plants that lacked detectable

amounts of PsbP were unable to survive in the absence of

sucrose, and were characterized by extensive defects in the

architecture of the thylakoid membrane (Yi et al., 2007,

2009). In addition, immunological analysis of the PSII pro-

tein complement showed marked reductions in CP47 and

D2, and, to a lesser extent, in D1 and CP43 proteins, dem-

onstrating that PsbP is essential for PSII core assembly

and thylakoid organization (Yi et al., 2007). On the other

hand, plants that lacked PsbQ were indistinguishable from

WT, indicating that PsbQ is dispensable in higher plants, at

least under optimal growth conditions (Ifuku et al., 2005b;

Yi et al., 2009). Moreover, a non-essential role for PsbQ

has recently been corroborated by the finding that halo-

phytes lack the PsbQ protein (Pagliano et al., 2009; Trotta

et al., 2012).

Although RNAi-mediated silencing of the PsbP and PsbQ

genes has clarified important aspects of their roles in oxy-

gen evolution and PSII electron transport, the lack of sta-

ble T-DNA insertion lines has made it impossible to

attribute specific functions to each of the two PsbP and

PsbQ isoforms. This is unfortunate, particularly for the two

isoforms of PsbP, which differ markedly in size (Goulas

et al., 2006) and are differentially expressed under condi-

tions of environmental stress. For example, PsbP2, unlike

PsbP1, has been shown to be specifically repressed during

cold acclimation (Vergnolle et al., 2005; Goulas et al.,

2006). Moreover, the PsbP2 gene, unlike PsbP1, shows a

very low degree of co-expression with the majority of the

genes encoding lumen proteins, perhaps implying a

distinctive function for this subunit (Granlund et al., 2009).

However, Ifuku et al. (2008) have proposed that the PsbP2

gene does not produce a functional PsbP2 protein in the

most commonly used Arabidopsis ecotype (Columbia-0,

Col-0), due to a frameshift in its sequence.

Here, we report the isolation and characterization of

insertional psbp and psbq mutants in Arabidopsis, and the

generation of lines bearing various combinations of these

mutations, including the psbq1-1 psbq2-1 double mutant

and the psbq1-1 psbq2-1 psbr-1 triple mutant. We show

that PsbP1 is essential during the early stages of seedling

development, but becomes dispensable in mature plants.

The psbq1-1 psbq2-1 psbr-1 triple mutant accumulates

functional PSII complexes, and shows a WT-like phenotype

with respect to rates of growth and biomass accumulation

under optimal greenhouse conditions, despite having

lower steady-state levels of PSII super-complexes and

displaying a markedly reduced rate of oxygen evolution, as

well as alterations in thylakoid protein phosphorylation,

state transitions and non-photochemical quenching.

RESULTS

Isolation of mutants for PsbP and PsbQ proteins in

Arabidopsis

Lines bearing T-DNA or Ds transposon insertions in the

nuclear genes coding for each of the PsbP and PsbQ iso-

forms were identified by targeted PCR. Two mutant alleles

were isolated for each of the four genes (Figure 1). In the

case of PsbQ1, PsbQ2 and PsbP1, T-DNA or Ds insertions

are located downstream of the predicted translation start

codon, whereas the PsbP2 insertions map to the 5′ UTR

region. The double mutant psbq1-1 psbq2-1 was obtained

by crossing single mutants and genotyping F2 progeny.

The single mutant psbr-1 (Suorsa et al., 2006) was crossed

with the psbq1-1 psbq2-1 plants to generate the psbq1-1

© 2013 The Authors
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psbq2-1 psbr-1 triple mutant. In each single mutant, the

T-DNA and Ds insertions abolished gene expression com-

pletely, as revealed by quantitative real-time PCR analysis

(Figure 2). No major changes in expression of the other

OEC-encoding genes were noted, except in the case of

PsbQ1, whose expression was increased by approximately

75% in psbp2-1 and psbq2-1 leaves, and by 50% in psbr-1

leaves.

Interestingly, psbq and psbr-1 single mutants, together

with the corresponding double and triple mutants, showed

no visually discernible phenotype when grown under opti-

mal greenhouse conditions (Figure 3a). Similarly, plants

homozygous for psbp2 mutant alleles were indistinguish-

able from WT plants grown on soil and when plated on

MS medium, whereas psbp1 plants only grew on sucrose-

supplemented medium (Figure 3b), supporting the notion

that the PsbP1 protein is essential for photoautotrophy.

Thylakoid protein composition is affected in the OEC

mutants

Thylakoid polypeptide composition was investigated by

immunoblot analysis in psbp2-1, psbq1-1, psbq2-1 and

psbr-1 single mutants, together with the double mutant

psbq1-1 psbq2-1 and the triple mutant psbq1-1 psbq2-1

psbr-1 (Figure 4 and Table 1). The psbq single mutants

(psbq1-1 and psbq2-1) were characterized by depletion of

one of the two isoforms, which are electrophoretically

distinguishable (Figure 4a), whereas the PsbQ protein was

completely absent in psbq1-1 psbq2-1 plants, confirming

that the T-DNA insertions lead to complete silencing of the

PsbQ genes. Similarly, the psbr-1 mutant showed no accu-

mulation of the PsbR subunit (Suorsa et al., 2006; Fig-

ure 4a), and the seedling-lethal phenotype of mutants

bearing both psbp1-1 and psbp1-2 alleles indicated com-

plete inactivation of PsbP1 gene. In contrast, no changes

were observed in overall accumulation of the PsbP sub-

unit, or in the levels of OEC or PSII core proteins, in psbp2-

1 plants (Figure 4b).

The depletion (psbq1-1 and psbq2-1) or complete

absence (psbq1-1 psbq2-1) of PsbQ was accompanied by a

marked decrease in the abundance of PsbR and PsbP

subunits, but no alteration in PsbO levels was observed.

Similarly, the absence of PsbR (psbr-1) was associated with

reduced accumulation of the PsbQ and PsbP proteins to

18% and 3% of the WT levels, respectively, with no

concomitant change in PsbO abundance. Interestingly, the

simultaneous absence of PsbQ and PsbR subunits led to

the disappearance of PsbP from 4-week-old (eight-leaf

rosette stage) psbq1-1 psbq2-1 psbr-1 mutant plants, and

reduced the amount of PsbO to approximately 30% of the

WT level (Figure 4a).

The complete absence of PsbP1 in mature psbq1-1

psbq2-1 psbr-1 plants, together with the seedling-lethal

phenotype of the psbp1 mutant, may indicate that the

PsbP1 protein is required during the early stages of plant

development, but becomes dispensable in mature plants.

To clarify this point, the accumulation of PsbP protein was

investigated in the rosettes of WT, psbr-1 and psbq1-1

psbq2-1 psbr-1 mutants at various stages of development

and after exposure to low-light conditions for 5 h

(Figure 4c; see also Experimental procedures). In particu-

lar, proteins were extracted from cotyledons/leaves and

from both intact and ruptured thylakoids with the aim of

monitoring whether the reduction of PsbP abundance may

be ascribed to the PsbP luminal pool rather than to the

PsbP fraction associated with PSII. Interestingly, steady-

state levels of PsbP showed a marked decrease in WT

plants at the eight-leaf rosette stage, independently of the

isolation procedure, whereas it was already barely detect-

able during the six-leaf rosette phase in the triple mutant,

and did not accumulate at all at the eight-leaf stage, when

Figure 1. T-DNA tagging of PSBQ and PSBP genes.

Exons are indicated as numbered white boxes, while introns are shown as

black lines. Arrowheads indicate the positions of translation initiation and

stop codons. The locations, designations and orientations of T-DNA inser-

tions are indicated (RB, right border; LB, left border). Note that, in the case

of the PsbQ1 and PsbP1 genes, the intron–exon patterns reflect the compo-

sition of the transcript variants identified in leaves, and correspond to

At4g21280.1 and At1g06680.1, respectively (see also annotations at TAIR,

http://www.arabidopsis.org). The T-DNA insertions are not drawn to scale.

© 2013 The Authors
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plants were fully developed. Even more marked differences

in PsbP accumulation were observed in the lumen of WT,

psbr-1 and the triple mutant, indicating that the pool of sol-

uble (unassembled) PsbP is also affected by the absence of

PsbR and PsbQ subunits.

To monitor the effects of altered OEC subunit composi-

tion on the thylakoid electron transport chain, patterns of

accumulation of the major thylakoid protein complex

subunits were also investigated (Figure 4d and Table 1).

Interestingly, no marked decrease in thylakoid proteins

was observed in any of the single mutants, with the excep-

tion of CP43 in psbq2-1 (85% of WT levels) and D2 in psbr-

1 (84% of WT levels). Comparable reductions in PSII core

subunits, except D1, were observed both in psbq1-1

psbq2-1 and psbq1-1 psbq2-1 psbr-1 thylakoid membranes.

In addition, diminished amounts of the b-subunit of AT-

Pase were detected in the double and triple mutant thylak-

oids. However, accumulation of PSI (Lhca2) and PSII

(Lhcb2) antenna proteins was not affected, even in the case

of psbq1-1 psbq2-1 psbr-1 thylakoids, in which OEC forma-

tion is limited by the amount of PsbO available.

The abundance of key regulatory proteins, including the

kinases STN7 and STN8 (Bonardi et al., 2005), the phos-

phatase TAP38 (Pribil et al., 2010), the PsbS protein (Li

Figure 2. Relative expression levels of OEC-encoding genes in 4-week-old (eight-leaf rosette stage) WT (Col-0) and mutant plants.

Levels of PsbO1, PsbO2, PsbP1, PsbP2, PsbQ1, PsbQ2 and PsbR gene expression were ascertained by real-time PCR of cDNA obtained from leaves of WT and

mutant plants. Gene expression was normalized with respect to the level of PsbR transcript in WT plants, and ubiquitin was used as an internal reference. The

bars indicate standard deviations. Note that, in subsequent figures, data obtained from analyses of psbp1-1, psbp2-1, psbq1-1, psbq2-1, psbr-1, psbq1-1

psbq2-1, psbq1-1 psbq2-1 psbr-1 alleles are shown; identical data were obtained for the corresponding second allele in each figure.

(a)

(b)

Figure 3. Phenotypes of WT (Col-0), single and

multiple mutant plants grown either in a

growth chamber or on MS medium.

(a) Arabidopsis WT and mutant plants were

grown for 4 weeks (eight-leaf rosette stage) in a

growth chamber.

(b) Col-0, psbp1 and psbp2 plants were grown

for 10 days on MS medium supplemented or

not with 1% sucrose.

© 2013 The Authors
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(a)

(b)

(d) (e)

(c)Figure 4. Immunoblot analyses of PSII proteins

in WT (Col-0) and mutant leaves.

(a) Nitrocellulose filters carrying fractionated

thylakoid proteins, isolated from WT and

mutant plants at the eight-leaf rosette stage,

were probed with antibodies raised against

individual subunits of the OEC (PsbO, PsbP,

PsbQ and PsbR).

(b) Immunoblot analyses of WT and psbp2

thylakoids using antibodies specific for OEC

proteins and PSII core subunits (D1, D2, CP43

and CP47).

(c) Accumulation of PsbP protein in total cotyle-

dons/leaves, intact thylakoids, ruptured thylak-

oids and the thylakoid lumen of WT and mutant

plants at various stages after germination. A

D1-specific antibody was used to verify the

abundance of PSII core complexes. A plastocya-

nin-specific antibody (PetE) was used as a

marker of the thylakoid lumen.

(d) Immunoblot analyses performed on the

same set of genotypes as in (a) to monitor the

accumulation of major thylakoid protein com-

plexes using antibodies specific for PSI (PsaD),

PSII (D1, D2, CP43, CP47 and PsbS), LHCI

(Lhca2), LHCII (Lhcb2), the chloroplast ATP syn-

thase (ATPase b) and the cytochrome b6/f

complex (PetB).

(e) Immunoblot analyses monitoring the accu-

mulation of STN7 and STN8 kinases, the thyla-

koid-associated phosphatase TAP38 and the

subunits responsible for cyclic electron trans-

port (PnsB2 and PGRL1).

Decreasing levels of WT thylakoid proteins

were loaded in the lanes marked 0.59 Col-0 and

0.259 Col-0.

Table 1 Quantification of thylakoid proteins in light-adapted mutant plants

Protein psbp2 psbq1 psbq2 psbr
psbq1
psbq2

psbq1
psbq2 psbr

PsbO 0.95 � 0.21 0.91 � 0.17 1.08 � 0.28 0.92 � 0.24 0.92 � 0.27 0.29 � 0.14
PsbP 1.00 � 0.07 0.42 � 0.11 0.44 � 0.16 0.03 � 0.02 0.35 � 0.11 0
PsbQ 1.00 � 0.03 0.28 � 0.13 0.35 � 0.09 0.18 � 0.06 0 0
PsbR 0.92 � 0.17 0.74 � 0.24 0.51 � 0.22 0 0.58 � 0.27 0
D1 0.97 � 0.09 1.11 � 0.14 0.94 � 0.14 1.00 � 0.12 0.98 � 0.13 1.17 � 0.19
D2 1.08 � 0.09 0.96 � 0.14 1.06 � 0.19 0.84 � 0.18 0.64 � 0.11 0.73 � 0.13
CP43 1.08 � 0.15 1.02 � 0.14 0.85 � 0.21 0.92 � 0.23 0.69 � 0.28 0.71 � 0.23
CP47 0.96 � 0.21 0.96 � 0.14 0.94 � 0.28 1.03 � 0.18 0.65 � 0.12 0.76 � 0.14
PsbS ND 1.12 � 0.23 0.95 � 0.31 0.91 � 0.27 1.12 � 0.26 0.97 � 0.22
Lhcb2 ND 0.94 � 0.14 1.11 � 0.25 0.93 � 0.22 0.94 � 0.17 0.95 � 0.23
PsaD ND 0.97 � 0.03 0.94 � 0.04 0.98 � 0.06 0.95 � 0.06 0.95 � 0.04
Lhca2 ND 0.93 � 0.17 0.91 � 0.24 1.05 � 0.22 0.98 � 0.04 0.96 � 0.07
PetB ND 0.97 � 0.08 1.12 � 0.15 0.96 � 0.15 1.09 � 0.24 1.08 � 0.23
ATPase b ND 1.03 � 0.26 0.93 � 0.24 0.94 � 0.06 0.36 � 0.16 0.42 � 0.19
STN7 ND 0.93 � 0.28 0.91 � 0.27 0.49 � 0.24 0.64 � 0.23 0.63 � 0.22
STN8 ND 0.81 � 0.31 0.78 � 0.26 1.82 � 0.32 1.64 � 0.25 1.88 � 0.36
TAP38 ND 0.97 � 0.23 1.06 � 0.18 1.29 � 0.29 1.31 � 0.17 1.45 � 0.08
PnsB2 ND 1.04 � 0.25 1.03 � 0.17 0.94 � 0.17 0.96 � 0.06 0.91 � 0.25
PGRL1 ND 0.96 � 0.11 1.078 � 0.11 0.53 � 0.13 0.55 � 0.15 0.57 � 0.22

WT (Col-0) levels are set to 1 (100%). Values are means � SD from five independent protein gel blots (see Figure 4). ND, not determined.
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et al., 2000) required for non-photochemical quenching, as

well as PnsB2 (Sirpi€o et al., 2009; Takabayashi et al., 2009;

Ifuku et al., 2011a) and PGRL1 (DalCorso et al., 2008),

which are involved in cyclic electron transport, was also

investigated to characterize how plants react to alterations in

the subunit composition of the OEC (Figure 4e and Table 1).

Interestingly, the STN7 and STN8 kinases responded in pre-

cisely opposite ways: the levels of STN7 fell by 40-50% and

those of STN8 increased approximately twofold in psbr-1,

psbq1-1 psbq2-1 and psbq1-1 psbq2-1 psbr-1mutant thylak-

oids. An increase in TAP38 abundance was also observed in

psbr-1, psbq1-1 psbq2-1 and psbq1-1 psbq2-1 psbr1-1

plants, whereas a decrease of approximately 40–50% in

PGRL1 was detected in the same set of mutants. Levels of

PsbS and PnsB2were unaltered inmutant thylakoids.

The OEC subunit composition influences PSII–LHCII

organization and the dynamics of state transitions

In order to detect possible changes in the organization of

thylakoid protein complexes in the mutants, thylakoid

membranes were solubilized with b-dodecyl maltoside and

analyzed by large-pore Blue Native PAGE in the first

dimension (Figure 5a), and subsequently subjected to 2D

SDS–PAGE (Figure 5b and Table 2). Prominent changes in

protein complex organization were observed in psbr-1,

psbq1-1 psbq2-2 and psbq1-1 psbq2-1 psbr-1 thylakoids.

Compared to WT, a reduction of 36% in the amount of the

PSII–Light Harvesting Complex of PSII (LHCII) super-com-

plexes was noted in psbr-1 thylakoids, and more pro-

nounced effects were seen in both the psbq1-1 psbq2-1

mutant (reduced by 58%) and the psbq1-1 psbq2-1 psbr-1

mutant (reduced by 54%), indicating that OEC subunit com-

position has an effect on PSII–LHCII organization.

As psbr-1, psbq1-1 psbq2-2 and psbq1-1 psbq2-1 psbr-1

plants exhibited the most extensive defects, further analy-

ses, including thylakoid phosphoprotein-specific immuno-

blot experiments, were performed on these mutant lines

(Figure 6a). As expected, phosphorylation of almost all PSII

core (P-D1, P-D2), LHCII (P-Lhcb) and Cas (P-Cas; Vainonen

et al., 2008) proteins increased inWT leaves under both stan-

dard (growth light, GL) and PSII-favoring light conditions,

and decreased after incubation in the dark or under light con-

ditions that favor excitation of PSI. The only exception is

P-CP43, which accumulated to similar levels in dark-adapted

and GL-adapted leaves. A similar pattern was observed in

mutant plants, although phosphorylation of LHCII wasmark-

edly decreased in GL- and PSII light-adapted thylakoids iso-

lated from psbr-1 and psbq1-1 psbq2-1 psbr-1 plants, but not

from the psbq1-1 psbq2-1mutant (Figure 6a and Table 2). In

addition, accumulation of P-D1 and P-D2 proteins was barely

detectable in psbq1-1 psbq2-1 psbr-1 leaves under all light

conditions tested, whereas P-CP43 accumulated to levels

lower than those seen in WT. Comparable decreases in

phosphorylation of PSII core proteins, with the exception of

P-D2, were observed in thylakoids isolated fromGL- and PSII

light-adapted psbr-1 and psbq1-1 psbq2-1 leaves, although

the reduction in PSII core protein phosphorylation wasmore

pronounced in psbq1-1 psbq2-1 than in psbr-1 leaves in the

dark and under PSI light conditions (Figure 6a and Table 2).

Interestingly, P-Cas accumulation appeared to be more

affected in psbq1-1 psbq2-1 than in psbq1-1 psbq2-1 psbr-1

thylakoids.

LHCII phosphorylation forms the basis for state transi-

tions, a well-known short-term adaptive mechanism that

involves the re-equilibration of excitation energy between

the photosystems. The effects of OEC deficiencies on this

mechanism were followed by monitoring the chlorophyll a

fluorescence yield during state 1 to state 2 (Figure 6b, left

panel) and state 2 to state 1 transitions (Figure 6b, right

panel), which may be driven by irradiating plants at wave-

lengths that specifically excite PSII and PSI, respectively.

Surprisingly, psbr-1, psbq1-1 psbq2-1, and, even more strik-

ingly, psbq1-1 psbq2-1 psbr-1 leaves were able to switch

from one state to the other much more rapidly than WT

(Figure 6b). Despite the altered kinetics, the extent of state

transitions did not differ markedly between WT and mutant

plants (WT, 0.11 � 0.02; psbr-1, 0.11 � 0.02; psbq1-1

psbq2-1, 0.12 � 0,01; psbq1-1 psbq2-1 psbr-1, 0.09 � 0.03;

see also Figure S1).

Interestingly, the changes in thylakoid protein abun-

dance and behavior in OEC mutant plants, i.e. the marked

decrease in thylakoid protein accumulation, the relative

inefficiency of PSII–LHCII super-complex formation and the

alterations in protein phosphorylation levels, did not result

in major modifications in thylakoid membrane architecture,

as shown by ultrastructural comparisons of thylakoids in

chloroplasts isolated from WT, psbr-1, psbq1-1 psbq2-1

and psbq1-1 psbq2-1 psbr-1 leaves (Figure S2).

The functional properties of the PSII complex depend on

OEC subunit composition

To estimate the photochemical efficiency of PSII com-

plexes, chlorophyll a fluorescence was monitored in WT

and mutant leaves (Figure 7). The data shown in Fig-

ure 7(a) indicate a clear decrease in the maximum (FV/FM)

and effective quantum yield of PSII (ΦII) in psbq1-1 psbq2-1

psbr-1, and a somewhat less pronounced effect was also

observed in psbr-1 leaves, particularly under low and med-

ium actinic light intensities, whereas psbq1-1 psbq2-1 and

WT plants had identical FV/FM and ΦII values. In addition,

the steady-state levels of non-photochemical quenching

were reduced in mutant plants at light intensities higher

than 100 lmol photons m�2 sec�1 (Figure 7b). In particular,

at the highest light intensity used in the experiment

(920 lmol photons m�2 sec�1), non-photochemical quench-

ing levels decreased by 32% in psbq1-1 psbq2-1 leaves, and

more drastic reductions were observed in psbr-1 (46%) and

psbq1-1 psbq2-1 psbr-1 (55%) leaves, indicating reduced

© 2013 The Authors
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electron flow through the mutant thylakoid membranes. This

was investigated further by measuring the rate of steady-

state oxygen evolution in WT, psbr-1, psbq1-1 psbq2-1 and

psbq1-1 psbq2-1 psbr-1 leaves under GL conditions in a

CO2-saturated atmosphere. The psbr-1 and psbq1-1 psbq2-1

psbr-1 leaves showed 23% and 35% decreases, respectively,

in the steady-state oxygen evolution rate relative to WT, in

agreement with previous findings (Suorsa et al., 2006;

Allahverdiyeva et al., 2007), whereas a 13% reduction was

observed in the psbq1-1 psbq2-1 double mutant (WT, 6.33 �
0.43; psbq1-1 psbq2-1, 5.52 � 0.23; psbr-1, 4.87 � 0.33;

psbq1-1 psbq2-1 psbr-1, 4.13 � 0.43 lmol O2 m�2 sec�1).

(a)

(b)

Figure 5. Blue Native and 2D SDS–PAGE analy-

ses of thylakoid membrane protein complexes

in WT (Col-0), single and multiple mutant

plants.

(a) Thylakoid membranes, isolated from WT

(Col-0) and mutant plants at the eight-leaf

rosette stage were solubilized with 1% w/v

b-dodecyl maltoside prior to fractionation by

Blue Native PAGE. NDH, NAD(P)H dehydroge-

nase; PS, photosystem; LHC, light-harvesting

complex; Cyt b6/f, cytochrome b6/f.

(b) Native PAGE of dodecyl maltoside-solubi-

lized membranes was followed by separation of

protein complexes in the second dimension by

SDS–PAGE and silver staining. Asterisks

indicate the position of PSII–LHCII super-

complexes.

(a)

(b)

Figure 6. Thylakoid protein phosphorylation

and state transitions in WT (Col-0) and mutant

plants.

(a) Thylakoid proteins extracted from WT (Col-

0) and mutant plants (eight-leaf rosette stage)

kept in the dark (D), and subsequently exposed

to growth light (GL), PSI-specific light (PSI) or

PSII-specific light (PSII), were fractionated by

SDS–PAGE. Phosphorylation of LHCII (P-Lhcb),

PSII core proteins (P-D1, P-D2, P-CP43) and the

Cas protein (P-Cas) was detected by immuno-

blot analysis using a phosphothreonine-specific

antibody. One of three immunoblots for each

genotype is shown.

(b) Fluorescence yield of WT and mutant leaves

illuminated with PSII-specific light, which

induces the state 1 to state 2 transition (left

panel), and with PSI-specific light, which trig-

gers the state 2 to state 1 transition (right

panel). Each plot shows representative data for

one of four replicates. See also Figure S1.
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PSII complex activity was also investigated by monitor-

ing the functional status of the donor and acceptor sides.

The kinetics of flash-induced increase and the subsequent

relaxation of the chlorophyll fluorescence yield (FF relaxa-

tion) were compared between WT and mutant leaf discs. In

the absence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea

(Figure 7c), the kinetics of relaxation in WT leaves were

dominated by the fast phase (0.38 � 0.08 msec, relative

amplitude 41.1% � 4.3), which arises from Q�
A to QB/Q

�
B

electron transfer (Figure 7c and Table 3). The contribution

of the middle phase (4.7 � 1.3 msec) to the whole relaxa-

tion curve amounted to 28.3 � 4.7%. This phase reflects

the re-oxidation of Q�
A in the PSII centers, which had an

empty QB pocket at the moment of triggering the flash.

Table 2 Quantification of PSII super-complex accumulation and thylakoid protein phosphorylation in psbr-1, psbq1-1 psbq2-1 and psbq1-1
psbq2-1 psbr-1 plants

Protein complex/phospho-protein psbr psbq1 psbq2 psbq1 psbq2 psbr

PSII–LHCII super-complexesa 0.64 � 0.19 0.42 � 0.15 0.46 � 0.18
P-CP43b 0.95 � 0.15 (D) 0.41 � 0.16 (D) 0.67 � 0.18 (D)

0.84 � 0.21 (GL) 0.96 � 0.15 (GL) 0.74 � 0.21 (GL)
0.46 � 0.19 (PSI) 0.09 � 0.04 (PSI) 0.07 � 0.04 (PSI)
0.81 � 0.22 (PSII) 0.98 � 0.25 (PSII) 0.67 � 0.19 (PSII)

P-Cas 0.78 � 0.18 (D) 0.15 � 0.07 (D) 0.98 � 0.18 (D)
0.98 � 0.17 (GL) 0.78 � 0.18 (GL) 0.93 � 0.19 (GL)
0.69 � 0.15 (PSI) 0.21 � 0.13 (PSI) 0.72 � 0.16 (PSI)
1.09 � 0.23 (PSII) 1.18 � 0.24 (PSII) 0.64 � 0.17 (PSII)

P-D2b 0.23 � 0.09 (D) bdl (D) bdl (D)
0.29 � 0.08 (GL) 0.84 � 0.14 (GL) 0.04 � 0.03 (GL)
bdl (PSI) bdl (PSI) bdl (PSI)
0.54 � 0.09 (PSII) 0.61 � 0.11 (PSII) 0.03 � 0.02 (PSII)

P-D1b bdl (D) bdl (D) bdl (D)
bdl (GL) 0.06 � 0.04 (GL) bdl (GL)
bdl (PSI) bdl (PSI) bdl (PSI)
0.04 � 0.03 (PSII) 0.09 � 0.05 (PSII) bdl (PSII)

P-LHCIIb 0.93 � 0.24 (D) 0.96 � 0.14 (D) 0.49 � 0.16 (D)
0.78 � 0.15 (GL) 1.21 � 0.17 (GL) 0.27 � 0.11 (GL)
bdl (PSI) bdl (PSI) bdl (PSI)
0.67 � 0.22 (PSII) 1.11 � 0.18 (PSII) 0.39 � 0.18 (PSII)

bdl, below detection limit. D, dark-adapted; GL, growth light-adapted; PSI, photosystem I-specific light-adapted; PSII, photosystem II-specific
light-adapted (see also Experimental procedures).
WT (Col-0) levels are set to 1 (100%).
aValues are means � SD from three independent 2D SDS–PAGE experiments.
bValues are means � SD from three independent phosphothreonine-specific immunoblots (see also Figures 5b and 6a).

(a) (b)

(c) (d)

Figure 7. Photosynthetic performance of WT

(Col-0) and mutant plants.

(a,b) The photosynthetic parameters FV/FM
(dark-adapted), ΦII (a) and non-photochemical

quenching (NPQ) (b) were measured in WT and

mutant plants at the eight-leaf rosette stage,

grown under low light conditions

(80 lmol photons m�2 sec�1), dark-adapted for

30 min and illuminated for 15 min with various

light intensities. Fluorescence was recorded

after dark adaptation and at the end of each illu-

mination period. PDF, photosynthetically active

flux density.

(c, d) Relaxation of flash-induced chlorophyll

fluorescence yield in leaves of WT (Col-0) and

mutant plants. The measurements were per-

formed after single-flash excitation of WT and

mutant leaves in the absence (c) and presence

(d) of 50 lM DCMU. For ease of comparison, the

fluorescence relaxation curves were normalized

to the F0h and FM values. Traces are based on

the means of three replicates.
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The relative amplitude of the slow phase (3.02 � 2.0 sec),

which arises from S2(QAQB)
� charge recombination, was

29.4 � 5.8%. In psbr-1, and psbq1-1 psbq2-1 psbr-1 leaf

discs, the overall FF relaxation kinetics were slower

compared to psbq1-1 psbq2-1 and WT. The fast phase

showed slower time constants of 0.79 � 0.07 and

0.86 � 0.23 msec in psbr-1 and psbq1-1 psbq2-1 psbr-1

leaves, respectively. Moreover, psbr-1, psbq1-1 psbq2-1

psbr-1, and, even more clearly, psbq1-1 psbq2-1 leaf discs

were characterized by slower middle phases compared to

WT, demonstrating significantly retarded electron transfer

from Q�
A to QB. In contrast, the slow phase of FF relaxation

kinetics in WT and mutant thylakoids was characterized by

rather similar time constants (Figure 7c and Table 3).

FF relaxation kinetics were also measured for WT and

mutant leaf discs in the presence of DCMU (Figure 7d and

Table 3), which blocks the re-oxidation of Q�
A by forward

electron transfer. Hence, this measurement mainly reveals

the donor-side status of PSII complexes. Major modifica-

tions of FF relaxation kinetics were observed only in

psbq1-1 psbq2-1 psbr-1 leaf discs, in which the time con-

stant and the amplitude of the dominant slow phase, aris-

ing from S2Q
�
A relaxation, were 1.10 � 0.05 sec and

97.0 � 0.4%, respectively, compared to 0.79 � 0.03 sec

and 99 � 0.4% forWT leaf discs.

Interestingly, larger differences in the functional status

of both the donor and acceptor sides of PSII were observed

between isolated thylakoids prepared from WT and mutant

plants, indicating that the defects in OEC make the PSII

complexes so unstable that their function is prone to fur-

ther deterioration during the thylakoid purification proce-

dure (Figure S3).

DISCUSSION

PsbP1 is essential for photoautotrophic growth of

Arabidopsis plants

Under normal physiological conditions, the absence of one

or more of the extrinsic subunits of the OEC specifically

impairs both oxygen production capacity and photoauto-

trophic growth to a greater or lesser extent. Complete loss

of PsbQ proteins in psbq1-1 psbq2-1 plants results in only

a marginal decrease in oxygen evolution and ΦII values,

without altering photoautotrophic growth. Similar results

have been obtained in cyanobacteria, where PsbQ homo-

logs are dispensable for PSII accumulation and photoauto-

trophic growth (Thornton et al., 2004). Moreover, under

normal light conditions (GL), knockdown of PsbQ expres-

sion by RNAi had no effect on photoautotrophic growth,

PSII assembly or photosynthetic performance in tobacco

(Nicotiana tabacum) (Ifuku et al., 2005b) and Arabidopsis

(Yi et al., 2006), in agreement with our findings for the cor-

responding knockout mutants. However, a major pheno-

typic effect of PsbQ depletion was observed under low-

light conditions in Arabidopsis (Yi et al., 2006): RNAi plants

progressively became chlorotic and died, most probably as

a consequence of the reduced ability to produce oxygen

under limiting light conditions.

In the absence of PsbR, oxygen evolution, but not photo-

autotrophic growth, is also impaired under optimal

growth-chamber conditions (Figure 3), in agreement with

previous findings (Stockhaus et al., 1990; Suorsa et al.,

2006; Allahverdiyeva et al., 2007; Liu et al., 2009). This is

further supported by the phenotypic characteristics of

psbq1-1 psbq2-1 psbr-1 plants. Even the concomitant

absence of PsbQ and PsbR proteins does not preclude pho-

toautotrophic growth, although the leaves of triple mutants

are characterized by marked reductions in ΦII and rates of

oxygen evolution. Interestingly, no PsbP protein was

detected in mature psbq1-1 psbq2-1 psbr-1 leaves (eight-

leaf rosette stage), whereas residual levels accumulated up

to the four-leaf rosette stage in the triple mutant. This find-

ing, together with the fact that complete suppression of

PsbP1 expression prevents photoautotrophic growth, in

agreement with previous reports (Ifuku et al., 2005a; Yi

et al., 2007; Ido et al., 2009), and the observation that

PsbP1 accumulation decreases in WT plants as leaves get

older, is compatible with the assumption that PsbP1 has a

Table 3 Characteristic kinetic parameters of the FF relaxation curve in the WT and mutant leaves in the absence and presence of DCMU (see
Figure 7c,d)

Fast phase s (msec)/Amp (%) Middle phase s (msec)/Amp (%) Slow phase s (sec)/Amp (%)

Without DCMU
WT 0.38 � 0.08/41.1 � 4.3 4.7 � 1.3/28.3 � 4.7 3.02 � 2.0/29.4 � 5.8
psbr 0.79 � 0.07/38.4 � 5.1 8.2 � 3.0/31.5 � 0.5 3.02 � 2.5/26.9 � 7.9
psbq1 psbq2 0.47 � 0.04/46.2 � 3.8 16.3 � 7.7/16.4 � 2.3 3.09 � 1.4/33.1 � 5.6
psbq1 psbq2 psbr 0.86 � 0.23/46.3 � 4.2 9.8 � 5.0/23.1 � 2.1 4.03 � 3.4/27.5 � 8.4

With DCMU
WT 0.79 � 0.03/99 � 0.4
psbr 0.83 � 0.04/98 � 0.5
psbq1 psbq 0.80 � 0.04/98 � 0.3
psbq1 psbq2 psbr 1.10 � 0.05/97 � 0.4

Values are means � SD from three independent measurements.
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major role in PSII and OEC assembly, rather than simply

being a structural component of the PSII–OEC complex.

Interestingly, only PsbP1, but not PsbP2, is strictly required

for photoautotrophic growth. Gene expression and immu-

noblot analyses (see Figures 2 and 4b) show that the

PsbP2 gene contributes very little to the total PsbP tran-

script level, and that the PsbP2 protein does not accumu-

late inside the thylakoid lumen, at least under optimal

growth conditions. This result is compatible with the

reported frameshift mutation in the PsbP2 gene in the

Columbia ecotype (Ifuku et al., 2008), which is predicted to

encode a 125-residue protein, corresponding to amino

acids 129–263 of the PsbP1 protein. This truncated gene

product is presumably non-functional, as it lacks the chlo-

roplast transit peptide and is therefore incapable of being

translocated into the thylakoid lumen.

Like PsbP1, the PsbO protein has been reported to be

essential for photoautotrophic growth in both algae (May-

field et al., 1987) and Arabidopsis (Yi et al., 2005), due to

its vital role in stabilization of the Mn4O5Ca cluster. Its

presence is sufficient to support WT-like photoautotrophic

growth in mature psbq1-1 psbq2-1 psbr-1 leaves that lack

PsbP, PsbQ and PsbR.

OEC subunit composition influences PSII protein

abundance and the organization of PSII super-complexes

Gene expression analyses based on quantitative real-

time PCR clearly indicate that silencing of PsbP, PsbQ

and PsbR genes, either individually or in combination,

has only a marginal effect on the levels of transcripts

deriving from the remaining OEC gene(s). However, a

very different picture emerges when the accumulation of

OEC proteins is monitored via immunoblot analyses in

the various mutant backgrounds. Of the four OEC

subunits, PsbO appears to be least sensitive to perturba-

tion, as it is present in normal amounts in most of the

mutants analyzed. The only exception is observed in

psbq1-1 psbq2-1 psbr-1 thylakoids, where a decrease

to approximately 30% of WT levels was noted. The

relative stability of PsbO is attributable to interaction of

its N-terminal region with several PSII core subunits,

including CP43, CP47, D1 and D2, as shown in the PSII

crystal structure from Thermosynechococcus vulcanus

(Umena et al., 2011). Moreover, numerous cross-linking

studies have indicated that the PsbO protein may be

cross-linked to CP47 in higher plants (Bricker et al.,

1988; Enami et al., 1989; Seidler et al., 1996). Indeed,

levels of CP47 (and to a lesser extent D2 and CP43) are

significantly reduced in psbq1-1 psbq2-1 psbr-1 thylak-

oids, but D1 levels are unaffected (Figure 4d).

Based on these findings, it appears that PsbO provides a

basal structure for binding of the other OEC subunits to

PSII. The levels of PsbP fell below the limits of detection

only when a marked decrease in PsbO accumulation was

also observed, as in the case of mature psbq1-1 psbq2-1

psbr-1 leaves. Indeed, the PsbP protein is known to interact

with PsbO, and a variety of studies have shown that PsbO

is required for binding of PsbP to PSII (Miyao and Murata,

1989; Kavelaki and Ghanotakis, 1991). Moreover, PsbP lev-

els were also reduced in psbq1-1 psbq2-1 thylakoids that

totally lack PsbQ subunits but retain WT levels of PsbO,

supporting the possibility that a major function of PsbQ is

to stabilize the association of PsbP with PsbO in higher

plants (Kakiuchi et al., 2012). Previous studies had also

indicated that PsbP is required for the association of PsbQ

with PSII (Miyao and Murata, 1989; Kavelaki and Ghanota-

kis, 1991), in agreement with the standard model, in which

PsbO binds to the PSII core and PsbP interacts with both

PsbO and PsbQ (Bricker et al., 2012). Characterization of

the psbr-1 mutant further confirms this molecular model,

as both our immunoblot data (Figure 4) and previous

results (Suorsa et al., 2006) support a major role for PsbR

protein in assembly of PsbP into the PSII complex. PsbP

was barely detectable in psbr-1 thylakoids, and the con-

comitant lack of PsbQ2 in this geneotype is most probably

a secondary effect of the absence of PsbP.

The OEC protein composition has a prominent effect on

PSII assembly and accumulation, as shown by the lethal

phenotype of psbp1-1 plants. The decreased amounts of

PSII core subunits, such as D2, CP43 and CP47, found in

psbq1-1 psbq2-1 and psbq1-1 psbq2-1 psbr1-1 plants,

further support this inference (see Figure 4d). Moreover,

defects in the assembly of the OEC, as seen in psbr-1,

psbq1-1 psbq2-1 and psbq1-1 psbq2-1 psbr-1 plants,

appear to lead to a more general re-adjustment of the

entire thylakoid electron transport chain, particularly with

respect to proteins involved in regulatory processes, such

as PGRL1 (DalCorso et al., 2008), the STN7 and STN8

kinases (Bonardi et al., 2005) and the phosphatase TAP38

(Pribil et al., 2010), i.e. the enzymes that are responsible

for adaptation of photosynthetic function to varying envi-

ronmental conditions.

The OEC also plays a key role in defining the architec-

ture of PSII super-complexes in higher plants (Caffarri

et al., 2009; Ifuku et al., 2011b). PsbP knockdown by RNAi

in tobacco resulted in a severe decrease in the amount of

PSII–LHCII super-complexes, while amounts of unattached

LHCII trimers and minor LHCs were significantly increased

(Ido et al., 2009). Similarly, as shown here, the abundance

of PSII–LHCII super-complexes decreased in psbq1-1

psbq2-1 and psbq1-1 psbq2-1 psbr-1, and, albeit to a lesser

extent, psbr-1 thylakoids (Figure 5). One feature common

to all these genotypes is the marked decrease and/or com-

plete absence in their thylakoid membranes of PsbQ and

PsbP subunits, indicating that these have specific and

important roles in stabilizing PSII–LHCII super-complexes,

but do not have major effects on thylakoid membrane

organization (see also Figure S2).
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Removal of OEC subunits alters PSII activity and short-

term regulatory mechanisms

To obtain insights into the role of OEC subunits in the

function of the PSII complex, we performed a detailed

investigation of the behavior of chlorophyll fluorescence

and electron transport in psbr-1, psbq1-1 psbq2-1 and

psbq1-1 psbq2-1 psbr-1 mutant plants. The absence of

either PsbR alone, or PsbR and PsbQ, was shown to lower

the quantum yield of PSII, possibly due to impairment of

electron transfer through the reaction centers, whereas the

psbq1-1 psbq2-1 mutant behaved like WT. These observa-

tions are supported by FF relaxation experiments, which

revealed malfunctions on both the donor and acceptor

sides of PSII in psbq1-1 psbq2-1 psbr-1 leaves, and on the

acceptor side in psbr-1. In particular, a characteristic

feature of both psbr-1 and psbq1-1 psbq2-1 psbr-1 leaves

was the slower rate of electron transfer from QA to QB,

indicated by slower time constants for the fast and middle

phases of the FF relaxation curve relative to WT (Table 3

and Figure 7). In contrast, the time constant and amplitude

of the fast phase were only marginally increased in psbq1-

1 psbq2-1 leaves.

In the presence of DCMU, the FF relaxation curve is an

indicator of the donor-side status of the PSII complex. Sig-

nificant slow-down of FF relaxation kinetics, indicating a

stabilization of the S2Q
�
A charge pair, was observed only in

psbq1-1 psbq2-1 psbr-1 leaves (Table 3 and Figure 7).

Based on these findings, together with the oxygen

evolution rates observed in psbr-1, psbq1-1 psbq2-1 and

psbq1-1 psbq2-1 psbr-1 leaves, it seems clear that the PsbR

and PsbQ subunits play synergistic roles in the optimiza-

tion of photosynthetic water splitting and electron transfer

in PSII.

Interestingly, the less efficient thylakoid electron trans-

port chain in psbr-1 and psbq1-1 psbq2-1 psbr-1, which is

reflected by the low phosphorylation levels of LHCII under

various light conditions, impaired the kinetics but not the

extent of state transitions (see Figure 6b and Figure S1). It

may be hypothesized that the low LHCII phosphorylation

levels are compensated for by the faster transitions from

state 1 to state 2 (and vice versa) observed in mutant

leaves, most probably facilitated by the increased availabil-

ity of LHCII proteins loosely bound to photosystems that

results from impaired formation of PSII–LHCII super-com-

plexes. Similarly, the Arabidopsis psb27 mutant, which

cannot form PSII–LHCII super-complexes, has recently

been shown to exhibit highly accelerated state transitions,

indicating that dissociation of PSII–LHCII super-complexes

is required for movement of antenna proteins (Dietzel

et al., 2011).

Taken together, our findings indicate that, in higher

plants, the absence of PsbQ and PsbR results in only minor

changes in the oxygen evolution rate and growth behavior

under optimal growth conditions. However, their depletion

has a major effect on short-term regulatory mechanisms,

such as state transitions and non-photochemical quench-

ing, as a consequence of reduced PSII activity and defec-

tive PSII–LHCII super-complex accumulation.

EXPERIMENTAL PROCEDURES

Plant material and propagation

Arabidopsis thaliana mutant lines in the Columbia-0 (Col-0) back-
ground were obtained from the European Arabidopsis Stock Cen-
ter (http://arabidopsis.info/) after searching the T-DNA Express
database (http://signal.salk.edu/cgi-bin/tdnaexpress). The psbq1-1
(SALK_082214), psbq1-2 (SALK_ 082212), psbq2-1 (SALK_002715),
psbp2-1 (SALK_ 012599), psbp2-2 (SALK_073785) and psbr-1
(SALK_114496) (Suorsa et al., 2006; ) lines were obtained from the
SALK collection (Alonso et al., 2003), psbq2-2 (SAIL_229_A07) was
obtained from the SAIL collection (Sessions et al., 2002), psbp1-1
(GABI_556E08) was obtained from the GABI-Kat collection (Rosso
et al., 2003) and psbp1-2 (CSHL_ET12592) was obtained from the
Martienssen Lab collection (Sundaresan et al., 1995). T-DNA and
Ds insertions were confirmed by sequencing PCR products
obtained using gene- and insertion-specific primers (Table S1).
Arabidopsis plants were grown under controlled growth chamber
conditions as described previously (Pesaresi et al., 2009). In addi-
tion, phenotypic analyses were performed on plants grown on
Murashige and Skoog (MS) medium (Duchefa, http://www.duch-
efa.com/) with or without 1% w/v sucrose.

Nucleic acid analyses

Arabidopsis DNA was isolated as described previously (Ihnatowicz
et al., 2004). For gene expression analysis, total leaf RNA was
extracted from fresh tissue using the LiCl method (Verwoerd et al.,
1989). For quantitative real-time PCR analysis, 4 lg aliquots of total
RNA, treated with DNase I (Roche Applied Science, http://www.
roche-applied-science.com/) for at least 30 min, were utilized for
first-strand cDNA synthesis using iScript reverse transcriptase (Bio-
Rad, http://www.bio-rad.com/) according to the manufacturer’s
instructions. The quantitative real-time PCR profiling was per-
formed on an iCycler iQ5 real-time PCR system (Bio-Rad), using the
oligonucleotide sequences listed in Table S2. Data from three bio-
logical and three technical replicates were analyzed using Bio-Rad
iQ5 software (version 2.0).

PAGE and immunoblot analyses

Thylakoid isolation was performed as described by Jarvi et al.
(2011). Samples of thylakoid membranes, corresponding to 8 lg
chlorophyll, were solubilized in the presence of 1% b-dodecyl
maltoside (Sigma-Aldrich, http://www.sigmaaldrich.com/), and
optimal separation of the thylakoid membrane protein com-
plexes was obtained by large-pore Blue Native PAGE (Jarvi
et al., 2011). For two-dimensional protein fractionation under
denaturing conditions (2D SDS–PAGE), the denatured strips
were transferred to the top of an SDS–PAGE (15% w/v acrylam-
ide containing 6 M urea), and subjected to electrophoresis to
determine the subunit composition of the complexes. For pro-
tein visualization, gels were stained with silver as described pre-
viously (Blum et al., 1987).

For immunoblot analyses, total proteins were prepared as
described by Martinez-Garcia et al. (1999), and ruptured thylakoids
and the corresponding lumen fraction were obtained by sonica-
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tion as described by Lennartz et al. (2001). Total proteins, intact
and ruptured thylakoids, corresponding to 3 lg chlorophyll, as
well as the lumen fraction were fractionated by SDS–PAGE (12%
w/v acrylamide) (Schagger and von Jagow, 1987). Subsequently,
proteins were transferred to polyvinylidene difluoride membranes
(Ihnatowicz et al., 2004), and replicate filters were immunodecorat-
ed using appropriate antibodies.

For phosphorylation analyses, thylakoids were isolated from WT
and mutant plants kept overnight in the dark, or exposed to growth
light (100 lmol photons m�2 sec�1), or PSI- or PSII-specific light
conditions as described by Tikkanen et al. (2006). Thylakoids were
isolated as described above, fractionated by SDS–PAGE, trans-
ferred to polyvinylidene difluoride membranes and immunodeco-
rated with a polyclonal anti-phosphothreonine antibody (New
England BioLabs, http://www.neb.com/).

Electron microscopy

Pieces of leaf tissue from light-adapted WT and mutant plants
were fixed immediately with 2.5% glutaraldehyde in fixation buffer
(75 mM sodium cacodylate, pH 7.0, 2 mM MgCl2) for 1 h at room
temperature, rinsed several times in the same buffer, and post-
fixed for 2 h with 1% osmium tetroxide in fixation buffer at room
temperature, as described previously (Aseeva et al., 2007). All
micrographs were taken using an EM 912 electron microscope
(Zeiss, http://zeiss.com).

Chlorophyll a fluorescence and oxygen evolution analyses

In vivo chlorophyll a fluorescence of leaves was measured using a
Dual-PAM-100 (Walz, http://www.walz.com/) as described previ-
ously (Pesaresi et al., 2009), and the parameters FV/FM, ΦII (Genty
et al., 1989) and non-photochemical quenching (Grasses et al.,
2002) were quantified.

State transitions were measured as described previously (Lun-
de et al., 2000). Briefly, transition to state 2 was induced by
PSII-favoring red light (635 nm, 25 lmol photons m�2 sec�1),
whereas state 1 was reached using PSI-specific far-red light
(720 nm, intensity step 15). FF relaxation kinetics in the absence
or presence of DCMU were measured using a double-modula-
tion fluorometer (Photon System Instruments, http://www.psi.cz/)
in the 150 lsec–100 sec time range, as described previously (Al-
lahverdiyeva et al., 2007). Leaf discs were vacuum-infiltrated or
not with DCMU (50 lM), and dark adapted for 5 min before fluo-
rescence was measured. Similarly, thylakoid membranes, pre-
pared as described above, were incubated or not with 10 lM
DCMU, and dark-adapted for 5 min before fluorescence detec-
tion. Analysis of fluorescence spectra was performed as
described by Vass et al. (1999).

Oxygen evolution rates were measured on leaf discs of approxi-
mately 6 mm diameter, isolated from 4-week-old WT and mutant
plants. The discs were dark-adapted for 30 min in a buffer contain-
ing 1 M NaHCO3 (pH 9) to provide a CO2-saturated atmosphere
(Chow et al., 1989). A Clark-type O2 electrode (Oxygraph, Hansa-
tech, http://www.hansatech-instruments.com/) provided with an
electrode conditioning unit was used for the measurements. At
the end of the dark period, no O2 was detectable in the chamber.
Then the chamber was illuminated with white light, at a flux rate
of approximately 80 lmol photons m�2 sec�1, and oxygen pro-
duction was measured for 20 min.
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Plastid-to-nucleus retrograde signaling serves to coordinate nuclear gene expression 

with chloroplast functions. Genetic evidence suggests that the chloroplast protein GUN1 

integrates signals derived from perturbations in plastid redox state, plastid gene 

expression (PGE) and tetrapyrrole biosynthesis (TPB). However, the molecular 

mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. 

Here we show that GUN1 physically interacts with several chloroplast proteins, 

including the plastid ribosomal protein S1 (PRPS1), Mg-chelatase subunit D (CHLD) 

and two other TPB enzymes known to activate retrograde signaling. The abundance of 

PRPS1 and CHLD, as well as their association with protein complexes, is modulated by 

GUN1. We postulate that GUN1 controls the formation of “retrosome” complexes, 

which contain components involved in PGE or TPB, and trigger retrograde signaling. 

Retrosomes may also serve to coordinate PGE and TPB activity at the protein level. 

 

Developmental or metabolic changes in chloroplasts can have profound effects on the rest of 

the plant cell. Such intracellular responses are associated with signals that originate in 

chloroplasts and lead to large-scale changes in nuclear gene expression (retrograde 

signaling)1-3. While norflurazon (NF) efficiently blocks expression of photosynthesis-

associated nuclear genes (PhANGs) in wild-type (WT) plants, the so-called genomes 

uncoupled (gun) mutants4 are characterized by their capacity to express PhANGs after 

exposure to NF. Because the proteins GUN2, 3, 4, 5 and 6 are all involved in tetrapyrrole 

biosynthesis (TPB)5-7, one of the retrograde signaling pathways is clearly triggered by 

perturbations in TPB. Besides the TPB pathway, signals derived from plastid gene expression 

(PGE) and the thylakoid redox state (Redox), as well as products of secondary metabolism or 

carotenoid oxidation and mobile transcription factors  have been implicated in retrograde 

signaling1,2,8-13. Moreover, retrograde signals contribute both to the developmental control of 
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organelle biogenesis (biogenic control) and to rapid adjustments in energy metabolism 

(operational control)3,14.  

Genetic evidence suggests that GUN1 signaling activates the nuclear transcription factor 

ABI4 15. GUN1-ABI4 integrates signals from three different retrograde signaling pathways: 

TPB, PGE and Redox15. Strikingly, only very young plants show the gun phenotype, so 

GUN1-ABI4 signaling is thought to operate mainly in the biogenic control circuit3. GUN1 

contains two domains with putative nucleic acid-binding capacity - a pentatricopeptide repeat 

(PPR) and small MutS-related (SMR) domain; and, indeed, in-vitro experiments have 

suggested that GUN1 binds DNA15. Here, we analyzed the mechanism by which GUN1 

integrates signals from different retrograde pathways and show that retrograde signaling 

appears to involve GUN1-dependent formation of protein complexes (which we call 

retrosomes) containing components of PGE or TPB. Such retrosomes might also coordinate 

PGE and TPB activities at the protein level.      

 

Results 

Genetic interactions of gun1 with mutations affecting plastid ribosomal proteins    

We found that GUN1 is co-expressed with PGE genes, including PRPS1 encoding the plastid 

ribosomal S1 protein (Supplementary Fig. 1a), and that GUN1 also operates in adult leaves 

(Supplementary Fig. 1b,c). However, although GUN1 is a PPR-SMR protein, we could not 

detect obvious interactions between GUN1 and nucleic acids (Supplementary Fig. 2a-c). 

Therefore, we studied the functional relationship between GUN1 and selected plastid 

ribosomal subunits, in particular PRPS1. To this end, a T-DNA insertion based mutation of 

the GUN1 gene (gun1-102) was introduced into genetic backgrounds carrying mutations in 

genes for components of the small (PRPS1 and PRPS21) and large (PRPL11) subunits of the 

plastid ribosome. Notably, while gun1-102 plants displayed WT-like growth and 

photosynthesis, the three ribosomal mutants showed, to varying degrees, perturbations in 
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photosynthetic electron flow and decreased growth rates (Fig. 1a). Furthermore, while gun1-

102 prps21-1 behaved like the prps21-1 single mutant, gun1-102 prpl11-1 and gun1-102 

prps1-1 displayed either exacerbated (enhancer) or attenuated (suppressor) phenotypes (Fig. 

1a,b). Thus, a strongly enhancing effect of gun1-102 was observed in gun1-102 prpl11-1, 

which displayed a highly penetrant synthetic seedling-lethal phenotype (Fig. 1a,c). Only about 

3% of the double mutants developed beyond the cotyledon stage and produced variegated 

plants (Fig. 1d) with chlorotic sectors, which contained small plastids with vacuolated 

structures and plastoglobuli (Fig. 1e) and were not affected by exposure to increasing light 

intensities with respect to their abundance and size (Fig. 1d). This indicates that the white 

sectors are due to a specific, genetically determined defect in chloroplast biogenesis. In 

contrast, the gun1-102 mutation suppressed the effects of the prps1-1 mutation; hence, in 

gun1-102 prps1-1 plants, the negative effect of the prps1-1 mutation on growth and 

photosynthetic performance was largely attenuated (Fig. 1a,b), indicating that a functional 

relationship exists between GUN1 and PRPS1. The genetic interactions between gun1-102 

and mutations affecting plastid ribosomes are specific, because gun2, 3, 4 and 5 all failed to 

suppress the prps1-1 phenotype and did not induce seedling lethality when combined with the 

prpl11-1 mutation (Supplementary Fig. 3).  

 

GUN1 controls PRPS1 accumulation at the protein level  

Prokaryotic ribosomal S1 protein recognizes mRNA leaders and mediates binding of diverse 

mRNAs to the ribosome at the translation initiation step16. Given that this S1 function is 

conserved in chloroplasts, complete inactivation of PRPS1 can be expected to result in 

lethality in Arabidopsis, and such mutants have not been described yet. Accordingly, the 

prps1-1 allele used here is leaky (providing 8% of WT PRPS1 transcript levels17). Processing 

and abundance of plastid rRNAs is not altered in gun1-102, whereas both prps21-1 and prps1-

1 strains exhibit aberrant processing of 23S and 4.5S precursor rRNAs (Fig. 2a). Intriguingly, 
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in gun1-102 prps1-1, but not in gun1-102 prps21-1, the changes in 23S and 4.5S processing 

were largely attenuated (Fig. 2a). At the protein level, reduced PRPS1 accumulation (~1/3 of 

WT levels) in prps1-1 was associated with decreased levels of PRPS5 and PRPL2 (Fig. 2b). 

In gun1-102 prps1-1, the PRPS1 protein accumulated to WT-like levels, and amounts of 

PRPS5 and PRPL2 were near normal. The T-DNA in prps1-1 disrupts the promoter region of 

the gene17, and in the gun1-102 prps1-1 mutant PRPS1 mRNA levels were similar to prps1-1 

(Fig. 2a), suggesting that the suppressor effects are based on posttranscriptional events. 

Again, the suppressor effects observed are specific to gun1-102, because gun2, 3, 4 and 5 

each failed to rescue the accumulation of PRPS1 when combined with the prps1-1 mutation 

(Fig. 2c). In addition, the decreased formation of polysomes observed in prps1-1 and prps21-

1 mutants was attenuated in gun1-102 prps1-1, but not in gun1-102 prps21-1 leaves 

(Supplementary Fig. 4a). Accordingly, the drop in translation rates observed in prps1-1 was 

also reversed in gun1-102 prps1-1 plants (Supplementary Fig. 4b).   

 

Effects of misregulation of PRPS1 expression 

Overexpression of a functional GUN1:GFP fusion (oeGUN1-GFP; Supplementary Fig. 5a-d) 

reduces PRPS1 accumulation to about two-thirds of WT (Fig. 3a and Supplementary Fig. 5c), 

which supports the idea that GUN1 negatively regulates PRPS1 levels. Moreover, since 

amounts of PPRS1 reach about 175% of WT levels in the prpl11-1 mutant (Fig. 3a), a further 

increase upon removal of GUN1 in the prpl11-1 background might account for the seedling-

lethal phenotype seen in the double mutant. This would in turn imply that the surviving gun1-

102 prpl11-1 plants (see Fig. 1d) somehow managed to reduce PRPS1 concentrations to 

tolerable levels in sufficient cells during early development, before they experienced 

irreversible lethal effects. And indeed, levels of PRPS1 in surviving gun1-102 prpl11-1 plants 

are lower than in WT (Fig. 3a).  
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Overexpression of the S1 protein in E. coli leads to the accumulation of “free” S1, 

which is thought to inhibit translation by sequestering mRNAs18. To investigate whether a 

similar mechanism takes place in Arabidopsis, the relative level of ribosome-bound and non-

associated PRPS1 in Arabidopsis was investigated (Fig. 3b, Supplementary Fig. 5e). Only 

PRPS1 appeared in a ribosome-free form representing most likely PRPS1-mRNA complexes, 

whereas all other ribosomal proteins tested (S5, S7, L2 and L4) were exclusively detected in 

ribosomal complexes. Altered GUN1 levels in gun1-102 and oeGUN1-GFP had no effect on 

the size of the pool of PRPS1-mRNA complexes (Fig. 3b). 

To further corroborate the hypothesis that increased levels of PRPS1 negatively affect 

translation, we generated transgenic Arabidopsis lines that overexpressed the PRPS1 gene 

(35S:PRPS1 prps1-1 or oePRPS1). At low frequencies (<1%), oePRPS1 plants showed albino 

cotyledons and were seedling lethal. The progeny (four sibling plants each) of two viable 

overexpressors were analyzed in detail (oePRPS1_1.1 to _1.4, Fig. 3c,d; oePRPS1_2.1 to 2_4, 

Supplementary Fig. 5f,g). Interestingly, in most of the lines, photosynthetic rates in young 

emerging leaves were markedly reduced, indeed more so than in prps1-1 plants in some cases. 

These photosynthetic defects were associated with pale-green leaf pigmentation. In contrast, 

older leaves and the old sections of younger leaves on the same plants showed WT-like 

photosynthetic performance and coloration. In young leaves of the four oePRPS1_1 plants, 

wide variation in PRPS1 expression was detected, in the absence of any clear correlation 

between transcript and protein levels (Fig. 3d), implying that plants counterbalance increased 

expression of PRPS1 both at the transcript and the protein level. In all oePRPS1_1 plants, 

relatively more mRNA-associated PRPS1 was observed than in WT (Fig. 3b), indicating that 

– as in E.coli – overexpression of PRPS1 might interfere with translation owing to mRNA 

trapping by excess ribosome-free PRPS1.  

Because accumulation of PRPS1 protein, but not of its RNA template, is induced by 

heat, and knockdown of PRPS1 results in significant loss of heat tolerance, chloroplast 
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translation capacity has been suggested to be a critical factor in heat-responsive retrograde 

signaling19. Therefore, both GUN1 function and the cellular response to heat involve PRPS1. 

However, prps1-1 and oePRPS1 are not gun mutants (Supplementary Fig. 5h), implying that 

PRPS1 is either not involved in PGE signaling or the alterations in the PRPS1 levels in prps1-

1 and oePRPS1 are insufficient to perturb PGE signaling. Vice versa, gun1-102 and oeGUN1-

GFP lines showed WT-like phenotypes after heat challenge (Supplementary Fig. 5i), 

indicating that the ~30% drop in PRPS1 levels observed in oeGUN1-GFP plants (see Fig. 3a) 

does not alter heat tolerance sufficiently to be detectable by our assay.  

 

GUN1 promotes formation of complexes containing PRPS1 or CHLD  

We used several approaches to test for physical interactions of GUN1 with PRPS1 and other 

ribosomal proteins, and with several TPB enzymes, including the D subunit of the 

magnesium-chelatase (CHLD) and with protoporphyrinogen oxidase (PPOX) – both of which 

are tightly coregulated with GUN1 at the transcriptional level (see Supplementary Fig. 1a). 

Based on yeast two-hybrid (Y2H) analyses, mature GUN1 (GUN143-918) indeed interacts 

directly with PRPS1 and CHLD, but not with PPOX or any other ribosomal protein tested 

(Fig. 4a, Supplementary Fig. 6a). In addition, GUN1 interacts with three other TPB enzymes, 

namely porphobilinogen deaminase (PBGD), uroporphyrinogen III decarboxylase (UROD2) 

and ferrochelatase I (FC1) (Fig. 4a). Interestingly, mutants defective in three of these GUN1 

interactors – CHLD, PBGD and FC1 – have been described as gun mutants7,20,21. Two other 

GUN gene products, coproporphyrinogen III oxidase 1 (CPO1, ref. 21) and the I subunit of the 

Mg chelatase (CHLI, ref. 20), as well as GUN2, 3, 4 and 5, all failed to interact with GUN1 in 

our Y2H assay (Fig. 4a). To identify the protein-interacting domain(s) of GUN1, the N-

terminal portion of GUN1 (GUN143-251, GUN1N), its PPR-containing domain (GUN1252-687, 

GUN1M) and the C-terminal segment containing the SMR domain (GUN1688-918, GUN1C) 

were tested for their capacity to interact with the five proteins that interact with GUN143-918 
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(Fig. 4b). These experiments showed that all three GUN1 domains can interact with one or 

more of these proteins, and GUN1N interacts with four of them. GUN1-FC1 interactions 

appear to require more than one of the three GUN1 domains tested here.    

BiFC assays in tobacco-leaf mesophyll cells corroborated the interactions of GUN1 

with PRPS1, CHLD, PBGD, UROD2 and FC1, indicating that these interactions occur also in 

planta (Fig. 4c). The distribution of yellow fluorescence signals resulting from these protein-

protein interactions were localized to distinct spots within chloroplasts, resembling the 

distribution of green fluorescence emitted by the GUN1-GFP construct (see Supplementary 

Fig. 5b). The combination GSA1YN-GUN1YC, used as negative control, failed to produce a 

YFP signal.  

Because (i) GUN1 interacts with PRPS1 and (ii) changes in GUN1 levels affect the 

accumulation of PRPS1 at the protein level (see Fig. 3a), we tested whether the abundance of 

the other three GUN1 interactors for which antibodies were available (CHLD, PBGD and 

UROD2) is also affected by alterations in GUN1 levels (Fig. 4d). In all three independent 

oeGUN1-GFP lines (Supplementary Fig. 5c), accumulation of CHLD – but not of the 

corresponding transcript (Supplementary Fig. 6b) – was increased by about 50% (Fig. 4d). 

This effect was specific, because neither PBGD or UROD2 nor any other protein involved in 

TPB for which antibodies were available (CHLI, CHLH and GUN4) varied in its 

concentration in lines with different levels of GUN1. 

In light of these GUN1-dependent changes in the abundance of PRPS1 and CHLD, we 

analysed the distribution of PRPS1 and CHLD in protein complexes by sucrose-gradient 

fractionation and BN/SDS-PAGE analysis followed by Western analysis in gun1-102, WT 

(Col-0) and oeGUN1-GFP plants. The two proteins were detected in molecular species with 

different masses (PRPS1, ~200 kDa; CHLD, ~400 kDa), indicating that they associate with 

distinct complexes. Interestingly, increased GUN1 dosage enhances the stability, or increases 

the molecular mass, of protein complexes containing PRPS1 or CHLD, as demonstrated by 
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both sucrose-gradient (Fig. 4e) and BN/SDS 2D-PAGE gel (Fig. 4f) analyses. Thus, in gun1, 

but not in WT or oeGUN1-GFP, PRPS1 monomers accumulate; in oeGUN1-GFP plants, 

PRPS1-containing complexes clearly have a higher molecular mass than in WT (Fig. 4f). For 

CHLD, increasing doses of GUN1 resulted in a shift of CHLD-containing complexes towards 

a higher molecular mass (Fig. 4f). Moreover, GUN1-GFP also accumulates in complexes, as 

demonstrated by analysing oeGUN1-GFP plants with a GFP-specific antibody. 

 

Discussion 

Only seven other proteins in Arabidopsis, all located in chloroplasts or mitochondria, are 

PPR-SMR domain proteins like GUN1, and functions in the promotion of transcription or  

RNA endonuclease activity have been suggested for them22. However, unlike the other PPR-

SMR proteins, GUN1 seems to be expressed in very small amounts and has not yet been 

detected by proteomic approaches22. Previous analyses argued against a prominent role for 

GUN1 in plastid RNA metabolism23, and our NIP-chip and one-hybrid experiments also 

failed to detect any significant GUN1-nucleic acid interaction. Instead, our study 

demonstrates that GUN1 interacts with several chloroplast proteins. Previous analyses have 

shown that GUN1 has a function in early plant development24,25, and the seedling-lethal 

phenotype of gun1-102 prpl11-1 reported here (see Fig. 1b) corroborates this. But 

additionally, GUN1 clearly modulates PhANG expression (see Supplementary Fig. 1b) and 

PRPS1 accumulation (Fig. 3a) in adult leaves, implying that GUN1 also contributes to 

operational control.   

Because GUN1 physically interacts with PRPS1 and CHLD, and modulates the stability 

or formation of complexes containing these two proteins, we hypothesize that perturbations in 

PGE and TPB mobilize specific PGE- and TPB-related components, respectively, making 

them (more) available for interaction with GUN1 to trigger the formation of two different 

complexes. Each of these complexes can then elicit retrograde signaling, resulting into 
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downregulation of PhANG expression to match the decrease in activity of PGE or TPB in the 

chloroplast (Fig. 5a). We therefore designate these two types of complexes as “retrograde 

signaling triggering complexes” or “retrosomes”. In light of its low abundance, GUN1 might 

not be a component of retrosomes, but instead function as an assembly factor required for 

their formation. The GUN1-containing complexes that normally accumulate only transiently 

during complex assembly might grow in size and stability when GUN1 is overexpressed, 

which would explain their increase in molecular mass in oeGUN1-GFP plants (see Fig. 4f). 

Lack of GUN1 should interfere with the formation of both types of retrosomes, in order to 

accommodate the observation that gun1 is the only mutation known to suppress the effect of 

both lincomycin and norflurazon on PhANG expression (Fig. 5b). In addition, the model 

predicts that, in the absence of GUN1, the “mobilized” PGE- and TPB-related components 

should persist as free proteins (Fig. 5b), and indeed PRPS1 accumulates as the free monomer 

in the gun1-102 mutant (see Fig. 4f), as expected if GUN1 normally captures PRPS1 released 

from ribosomes to facilitate its integration into retrosomes. An intriguing possibility is that 

retrosomes might even be bifunctional and provide the organellar counterpart of the 

transcriptional coexpression of PGE and TPB genes in the nucleus26, i.e. that they could also 

coordinate PGE and TPB activities at the protein level (Fig. 5a). In this scenario, such 

coordination should be inhibitory; for instance, when PGE is perturbed, the resulting 

retrosome might sequester enzymatic TPB activity from its substrate, thus concomitantly 

reducing TPB activity, and vice versa. Alternatively, PGE and TPB activities could also be 

diminished by proteolytic degradation of retrosomes. Indeed, many genes encoding peptidases 

or proteases are co-expressed with GUN1 (see Supplementary Fig. 1a), explaining why 

PRPS1 levels decrease in oeGUN1-GFP plants and providing a means to switch off the 

retrograde signal as a prerequisite for dynamic signaling. In fact, associations between CHLD 

and ribosomes have been described in barley and Rhodobacter27 and interpreted as reflecting 

a mechanism that coordinates PGE and TPB. Because PRPS1 and CHLD are highly abundant 
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in chloroplasts28, the complexes they form (Fig. 4f) should be also sufficiently abundant to 

fulfil such a function in coordinating metabolic activities.   

 

Methods 

 

Plant material and cultivation. The Arabidopsis thaliana T-DNA insertion mutant lines 

gun1-102 (SAIL_290_D09) and prps21-1 (SAIL_1173_CO3) are both from the SAIL mutant 

collection29. The regions flanking the T-DNA insertion in the vector pCSA110 were PCR-

amplified and sequenced (primer sequences in Supplementary Table 1): gun1-102 contains 

the T-DNA insertion in exon 2 (position 2313 relative to the start codon); the T-DNA in 

prps21-1 lies in the only intron (position 1154). Both mutations prevent the accumulation of 

the respective transcripts, as determined by RT-PCR analyses (primer sequences in 

Supplementary Table 1), and the gun1-102 line shows a gun phenotype (see Supplementary 

Fig. 4h). The oeGUN1-GFP lines were generated by introducing the GUN1 coding sequence, 

under the control of the 35S promoter from the Cauliflower Mosaic Virus, into WT (Col-0) 

using the vector pB7FWG2 (Flanders Interuniversity Institute for Biotechnology, Gent, 

Belgium). All other mutants used here have been described previously, and are listed in 

Supplementary Methods. Arabidopsis thaliana plants were grown on soil in a climate 

chamber as described30.  

 

Electron microscopy. Pieces of leaf tissue from gun1-102 prpl11-1 plants, grown at 80 μmol 

photons m-2s-1, were fixed and postfixed as described31. All micrographs were taken using an 

EM 912 electron microscope (Zeiss, http://zeiss.com). 
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Coexpression analyses. To identify genes represented on the ATH1 microarray (22K) chip 

that show significant co-expression with GUN1, an expression correlation analysis with the 

“CoExSearch” tool implemented in ATTED-II (htt://atted.jp/; refs. 32,33) was performed. 

Hierarchical clustering was carried out with the single linkage method provided by the 

„HCluster“ tool in ATTED-II. Subcellular localizations for the different proteins were 

inferred from TAIR (http://arabidopsis.org/) and the “subcellular localization of proteins in 

Arabidopsis” database (SUBA3; http://suba.plantenergy.uwa.edu.au/). 

 

Chlorophyll (Chl) a fluorescence measurements. In vivo Chl a fluorescence of leaves was 

measured as described30 employing a Dual-PAM-100 (Walz, Effeltrich, Germany). Whole-

plant Chl a fluorescence was recorded using an imaging chlorophyll fluorometer (Walz, 

Germany) as reported earlier34.  

 

Nucleic acid analyses. Arabidopsis thaliana genomic DNA was isolated35 and RNA was 

purified from total leaf frozen tissue as before36. Northern analysis was performed under 

stringent conditions37 on 10-µg samples of total RNA. Probes complementary to nuclear and 

chloroplast genes were used for the hybridizations. Primers used to amplify the probes are 

listed in Supplementary Table 1. All probes used were cDNA fragments labelled with 32P. 

Quantitative real-time PCR (qRT-PCR) profiling was done as described previously38. All 

reactions were performed in triplicate on three biological replicates, and primers are listed in 

Supplementary Table 1.  

 

Immunoblot analyses. Immunoblot analyses were carried out as described35 and 

immunodecorated with specific antibodies. Antibodies directed against plastid ribosomal 

proteins were obtained from Uniplastomic (Biviers, France), the GFP antibody from Life 

Technologies (Carlsbad, USA). Antibodies specific for TPB enzymes were obtained from 
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R.M. Larkin (Michigan State University; CHLI, CHLD and CHLH), P.E. Jensen (CHLD), B. 

Grimm (Humbolt University, GUN4) and A. Smith (University of Cambridge, PBGD and 

UROD).  

 

Chloroplast isolation and sub-fractionation. Chloroplast isolation and preparation of 

soluble (stroma) and insoluble (thylakoids/envelope) fractions was performed as described39.  

 

Protein complex analyses. For sucrose gradient analysis, intact chloroplasts isolated as above 

were solubilized in Extraction Buffer (see above; ref. 39) containing 0.6% (v/v) NP-40 

detergent (15 min, 4°C). After centrifugation (16,000 g for 15 min), the supernatant was 

layered on a sucrose step-gradient (15%-55% (w/v)) and centrifuged (5 h, 240,000 g). Sixteen 

fractions were collected and analyzed by SDS-PAGE on a 12% PAA gel. 

For BN/SDS-PAGE analysis of stromal protein complexes, chloroplasts from 4-week-

old leaf material (corresponding to 60 µg of Chl) were isolated as described above, 

resuspended in 100 µl of 30 mM HEPES-KOH (pH 8.0), 60 mM KOAc and 10 mM MgOAc, 

and solubilized by adding NP-40 (final concentration 0.5% (v/v)) and centrifuged (16,000 g, 

15 min, 4 °C). The supernatant was then analysed by BN/SDS PAGE as described 

previously40.  

For two-hybrid assays, the coding sequences for the proteins of interest, devoid of the 

chloroplast transit peptides (cTP) (see Supplementary Table 1 for primer sequences), were 

cloned into pGBKT7 (GUN1) and pGADT7 (PRPS1, S21, L11 and L24; CHLD; FC1 and 2; 

PBGD; UROD1 and 2; CPO1, GSA1 and 2, CHLI1 and 2) vectors (Clontech Otsu, Japan), or 

vice versa. Interactions in yeast were then analysed as described before41. 

 

Bimolecular fluorescence complementation (BiFC) analyses. Cloning of genes into 

pVyNE or pVyCE (ref. 42), which carry sequences encoding the N-terminal or the C-terminal 



14 
 

portion of the Venus protein (a YFP derivative), respectively, transformation of 

Agrobacterium tumefaciens, infiltration of Nicotiana benthamiana leaves and BiFC analyses 

were performed as described43.  
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Figure legends 

 

Figure 1 │ Genetic interactions between gun1-102 and mutations affecting individual 

ribosomal proteins. a, Phenotypes of WT (Col-0), single (gun1-102, prps1-1, prps21-1 and 

prpl11-1) and double (gun1-102 prps1-1, gun1-102 prps21-1 and gun1-102 prpl11-1) mutant 

plants. The effective quantum yield of photosystem II (ΦII) is indicated for each plant 

(average ± SD; n ≥ 12). The photograph of the albinotic gun1-102 prpl11-1 plants (white 

circles) was taken at 5 days after germination (d.a.g.), whereas all other plants shown were 

four weeks old. b, Growth kinetics of the different genotypes. For each time point, the 

average leaf area (n ≥ 12 individuals) is provided. Standard deviations were ˂10%. c, Images 

of fully mature embryos from WT (Col-0), gun1-102 prpl11-1 and gun1-102 prpl11-1 plants. 

Scale bar: 20 μm. d, Phenotypes of four-week-old WT (Col-0) and gun1-102 prpl11-1 

escapers grown under different lighting conditions (25 [LL], 80 [GL] and 400 [HL] μmol 

photons m-2s-1). e, Electron micrographs of green (GS) and white sectors (WS) and the 
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transition zone between them (G-WS) in leaves from surviving gun1-102 prpl11-1 plants. V, 

vacuoles; P,  plastoglobules (P). Scale bar: 1 µm. 

 

Figure 2 │Characterization of plastid ribosomes. a, RNA gel-blot analyses of total RNA 

from 4-week-old WT (Col-0) and mutant (gun1-102, prps1-1, prps21-1, gun1-102 prps1-1 

and gun1-102 prps21-1) plants with probes specific for plastid rRNAs (23S, 16S, 5S and 4.5S) 

and mRNAs (psbA, rbcL) and PRPS1 transcripts. Transcript sizes (in Kb) are shown. As 

control, cytosolic 25S rRNA was stained with ethidium bromide. b, Immunoblot analyses, 

employing antibodies recognizing proteins of the 30S (PRPS1, S5 and S7) and 50S (PRPL2 

and L5) ribosomal subunits. Decreasing levels of WT proteins were loaded in the lanes 

marked 0.5x and 0.25x Col-0. c, Immunoblot analyses as in panel b were performed on WT 

(Col-0), prps1-1 and double mutants of prps1-1 and gun2-gun5 using a PRPS1-specific 

antibody. 

 

Figure 3 │Causes and effects of perturbations in PRPS1 levels. a, Immunoblot analyses of 

the PRPS1 protein in four-week-old leaves from WT (Col-0), mutants (prps1-1, prpl11-1 and 

surviving gun1-102 prpl11-1 individuals) and plants overexpressing GUN1-GFP (oeGUN1-

GFP). b, Distribution of PRPS1, L2 and S7 among ribosome-bound and non-bound pools, as 

determined by sucrose gradient and Western analysis of proteins from WT (Col-0), prps1-1, 

oePRPS1_1, gun1-102 and oeGUN1-GFP plants. Controls are shown in Supplementary Fig. 

5e. c, Phenotypic characterization of four-week-old WT (Col-0), prps1-1 and PRPS1 

overexpressors (35S:PRPS1 prps1-1 or oePRPS1_1). The bottom panel shows the 

photosynthetic performance (measured as ΦII), according to the colour scale. In addition, 

mean values (±SD) are provided. For plants with inhomogeneous ΦII, values for young 

emerging leaves and older leaves are indicated separately. d, Relative expression levels of 

PRPS1 transcripts (white bars) and protein (black bars) in prps1-1 and oePRPS1 plants (Col-
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0=100%). PRPS1 transcript accumulation was measured by real-time PCR of leaf cDNA; 

protein levels were quantified from Supplementary Fig. 5g.  

 

Figure 4 │Protein interactions of GUN1. a and b, Yeast two-hybrid assays. Cells were co-

transformed with a plasmid expressing mature GUN1 (a) or its truncated versions (GUN1N, 

GUN1M, GUN1C) (b) as bait protein and plasmids expressing potential interaction partners as 

prey proteins. Yeast cells were grown on permissive (−Trp−Leu) and selective (−Trp–

Leu−His+5 mM 3-AT) medium (which reveals interactions). Asterisks indicate GUN gene 

products. Controls are shown in Supplementary Fig. 6a. c, Bimolecular fluorescence 

complementation (BiFC). GUN1 and test proteins were either fused to the N-terminal (YN) or 

C-terminal (YC) end of the Venus protein, respectively, and co-transformed into tobacco 

leaves. Reconstitution of YFP fluorescence (signaling positive interaction) Chl 

autofluorescence (Auto) and their overlay are shown. Scale bars = 20 μm. d, Immunoblot 

analysis of TPB proteins from WT (Col-0), gun1-102 and oeGUN1-GFP lines. Decreasing 

WT protein concentrations were loaded into lanes 0.5x and 0.25x Col-0. e, Sucrose-gradient 

analysis of PRPS1 and TPB proteins from WT (Col-0), gun1-102 and oeGUN1-GFP plants. 

Proteins were detected by immunoblot analysis. f, Stromal proteins were fractionated by 

BN/SDS-PAGE, and proteins were detected with specific antibodies. Molecular masses of 

protein complexes were estimated according to ref. 44. The ~40-kDa PRPS1 signal 

corresponds to monomeric PRPS1. 

 

Figure 5 │The retrosome model. a, GUN1 can physically interact with certain components 

of PGE (grey shading) and TPB (green shading). Perturbations (symbolized by thin arrows) in 

PGE (e.g. by lincomycin treatment) or TPB (e.g. by NF treatment) might cause some of the 

components affected to interact with GUN1, thus promoting the formation of retrosomes that 

trigger retrograde signaling. If only involved in signaling, the abundance of retrosomes could 
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be limited by the – apparently low – concentration of GUN1, so that retrosomes might 

themselves contain GUN1 (upper panel). Retrosomes might also be bifunctional, i.e. they 

could also coordinate PGE and TPB activities at the protein level (lower panel) by down-

regulating pathways (symbolized by the thick, tapering arrow). Bifunctional retrosomes 

should be relatively abundant so that GUN1 might serve as an assembly factor (indicated by 

the dotted yellow circle). b, In gun1 mutants neither type of retrosomes is formed.  
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