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Colloidal two-dimensional monolayers sliding in an optical lattice are of recent importance as a
frictional system. In the general case when the monolayer and optical lattices are incommensurate, we
predict two important novelties, one in the static equilibrium structure, the other in the frictional behavior
under sliding. Structurally, realistic simulations show that the colloid layer should possess in full
equilibrium a small misalignment rotation angle relative to the optical lattice, an effect so far unnoticed but
visible in some published experimental moiré patterns. Under sliding, this misalignment has the effect of
boosting the colloid monolayer friction by a considerable factor over the hypothetical aligned case
discussed so far. A frictional increase of similar origin must generally affect other incommensurate
adsorbed monolayers and contacts, to be sought out case by case.
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The mutual sliding of crystalline lattices offers, despite
its apparently academic nature, one of the basic platforms
to understand the nanoscale and mesoscale frictional and
adhesion phenomena [1]. In one of the freshest develop-
ments, Bohlein and collaborators [2] showed that the
sliding of a two-dimensional crystalline monolayer of
colloidal particles in an optical lattice provides unexpected
information on elementary tribological processes in crys-
talline sliding systems with ideally controlled commensu-
rabilities. Given the scarcity of reliable and controllable
frictional systems, it is hard to overestimate the importance
of such model systems with full external control over all
parameters including periodicity, coupling strengths, and
applied forces. For this reason two-dimensional mono-
layers in periodic lattices require a close theoretical study.
In this Letter we describe two main surprises, one structural
and one frictional, that emerge from realistic molecular
dynamics simulations. We show first of all that incom-
mensurate colloid islands naturally develop in full
equilibrium a small misalignment angle relative to the
substrate. Second, sliding simulations demonstrate that
the misaligned angular orientation increases significantly
the dynamic friction with respect to the (hypothetical
and unstable) aligned case. While both are important
for colloidal monolayers, their potential impact extends
in principle beyond the specific case, to a wider variety of
systems where mutually incommensurate two-dimensional
lattices are brought in static and then in sliding contact.
In colloid monolayers, the two-dimensional density may

vary from “underdense” (ρ < 1, where ρ ¼ al=ac with al
the spacing of the optical lattice and ac that of the colloid
lattice, both triangular) to perfectly commensurate (ρ ¼ 1,

one particle per potential well), to “overdense” (ρ > 1),
each with its specific sliding behavior. Both experiments
[2] and theory [3,4] indicated that commensurate (ρ ¼ 1)
friction is large, dropping to much lower values for ρ ≠ 1,
where the optical and colloid lattices are incommensurate.
This drop reflects the great mobility of the preexisting
misfit dislocations, also called kinks or “solitons.” In these
studies the two lattices, colloid and optical, were silently
assumed to be geometrically aligned, prior to and during
sliding. That assumption however is dangerous. A long-
known theoretical result suggests [5], for example, that a
harmonic monolayer subject to an incommensurate peri-
odic potential of weak amplitudeU0 may partly convert the
misfit compressional stress to shear stress by an equilib-
rium geometric misalignment of the monolayer (see Fig. 1)
through a small rotation angle

FIG. 1 (color online). (a) Schematic of a two-dimensional
colloidal lattice (black dots) aligned with an incommensurate
triangular periodic potential mimicking the optical lattice (blurred
spots represent potential minima). (b) A misaligned configuration
rotated by an angle θ.
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θNM ¼ arccos

�
1þ ρ2ð1þ 2δÞ
ρ½2þ δð1þ ρ2Þ�

�
; ð1Þ

whose energy-lowering effect originates from a better
interdigitation of the two lattices. Independent of U0, the
rotation angle is nonzero in this approximation provided
the transverse two-dimensional sound velocity cT is suffi-
ciently smaller than the longitudinal cL, precisely if
δ ¼ ðcL=cTÞ2 − 1 > ρ−1. While this kind of rotated epitaxy
has been addressed experimentally [6,7] and theoretically
[8] for adsorbed rare-gas monolayers, its possible presence
in colloidal monolayers was so far unsuspected. More
importantly in the context of sliding friction, the tribologi-
cal impact of an equilibrium geometrical misalignment is
unexplored in any incommensurate system. The externally
forced rotation turning a commensurate layer into an
incommensurate one is well known to reduce friction, as
exemplified by the sliding of graphene flakes on graphite
[9,10]. Different as these two cases are, a possible expect-
ation might be that the equilibrium geometry, alignment of
commensurate layers, or misalignment of incommensurate
layers, should always exhibit a higher friction relative to
forcedly rotated ones, since the optimal T ¼ 0 geometry
must in every case correspond to a closer interdigitation of
the two lattices.
First, let us consider structural alignment. Using the

same methods as in Ref. [[3]], we model the colloidal
system in an optical lattice as a two-dimensional monolayer
of Np pointlike classical particles, mutually repelling
through a screened Coulomb potential UppðrijÞ while
immersed in a static two-dimensional triangular lattice
potentialWðriÞ ¼ U0wðriÞ, where wðriÞ is a dimensionless
periodic function of spacing al (as specified in the
Supplemental Material [11]), and U0 is the amplitude
(“corrugation”) parameter. The Hamiltonian is thus

H ¼
XNp

i¼1

�
U0wðriÞ þ

1

2

X
j≠i

UppðrijÞ
�
: ð2Þ

The particles are confined to the ðx; yÞ plane, and subjected to
either planar periodic boundary conditions (PBCs) in a given
area A, or alternatively to an additional Gaussian confining
potential GðrÞ ¼ −AG expð−r2=σ2GÞ, in which case they
form an island with open boundary conditions (OBCs).
Temperature is generally set to zero, because the results are
clearer and require less statistics in this limit. Finite temper-
ature results are otherwise not essentially different, as shown
along with details of optimization protocols in the
Supplemental Material [11]. Within the confinement region
the two-dimensional particles crystallize in a triangular
lattice of mean spacing ac, with modulations induced by
the periodic potential (in the OBC case there is also a
confinement-induced variation between a dense center and
a sparser periphery). Here and in the rest, we shall focus

for specificity on the underdense incommensurate case
ρ ¼ 3=ð1þ ffiffiffi

5
p Þ≃ 0.927; the physics with different values

of ρ ≠ 1 including ρ > 1 is qualitatively similar, as briefly
discussed in the Supplemental Material [11].
We determined, by means of careful energy minimiza-

tion, the optimal T ¼ 0 two-dimensional geometry of all
Np particles for increasing corrugation strength; shown
here are the results for U0 ¼ 0.1–0.6, where the effects are
particularly clear. The final, optimal geometry of the two-
dimensional colloid lattice initially aligned at θ ¼ 0° with
the optical lattice axes is found to be misaligned, with a
small rotation angle θopt ≃ 2.3° in PBC calculations. This
rotation realizes a better interdigitation with the optical
lattice, and occurs spontaneously during the simulation at
the cost of creating the dislocations required by the PBC
constraints (see the Supplemental Material [11]). More
detailed energy minimizations were done in OBC, which
do not have the same problem. Since the 30 000 particle
islands are too large to spontaneously rotate, we carried
out simulations starting from a prearranged sequence of
misalignment angles. The total energy minimum versus θ
confirms, as shown by Fig. 2, the structural misalignment
angle at equilibrium, with a magnitude in the range 3° <
θopt < 5° (depending on the optical lattice strength U0)
generally somewhat larger than in PBC, where angular
constraints hinder the misalignment.
These structural results compare instructively with

those expected from the harmonic model [5]. In our
case a two-dimensional phonon calculation for the mono-
layer yields a sound velocity ratio cL=cT ¼ 1.806, larger
than the theoretical threshold value ð1þ ρ−1Þ1=2 ≃ 1.442.
The corresponding theoretical misalignment θNM ≃ 2.6°
is in qualitative agreement with the more realistic simu-
lation result. Figures 2(b) and 2(c) show how the two
pieces that compose the total energy, namely, the periodic
lattice energy part W ¼ hWðriÞi controlled by the corru-
gation amplitude U0 and the interparticle interaction
Upp ¼ hUppðrijÞi, behave. Misalignment raises the inter-
particle energy, but that cost is overcompensated, by a
factor of 2, by a corrugation energy gain. The incom-
mensurate colloid static equilibrium structure is misaligned
because that permits a better interdigitation with the
optical lattice.
Even if our predicted misalignments are small, their

experimental existence is easily revealed, because the
rotation angle θ between two lattices is highly amplified
by the moiré pattern, which rotates relative to the periodic
potential lattice by an angle ψ satisfying the geometric
relation cos θ ¼ ρ−1sin2ψ þ cosψ ½1 − ρ−2sin2ψ �1=2 [12].
As the moiré superlattice rotates by ψ, its spacing L
also decreases [13] from its aligned value of about
L ¼ acρ=ð1 − ρÞ to its rotated value of L0 ¼ ac=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ−2 − 2ρ−1 cos θ

p
. As an example, Fig. 3 reports

the structures of the artificially unrotated and of the
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optimally rotated (θopt ¼ 7°) configurations calculated for
ρ≃ 0.83 and U0 ¼ 6.3 (parameters believed to be appro-
priate to experiments in Ref. [14]) in comparison with one
another and with the corresponding experimental structural
moiré pattern. Both the orientation and spacing of Fig. 3(c)
agree with the θopt ¼ 7° but not with the θopt ¼ 0° pattern,
proving that the misalignment was actually present in that
experiment.
The particle static displacements associated with the

optical lattice potential are also enlightening. Figure 4
shows the moiré pattern of a small portion of the monolayer
island (ρ ¼ 0.927, U0 ¼ 0.27) for θ ¼ 0° and for θopt ¼ 4°,
corresponding to a moiré angle ψ ≈ 15°. Particle displace-
ments, designated by arrows, change from longitudinal
compression dilations to mixed shear-longitudinal, vortex-
like displacements upon optimal misalignment. A large
two-dimensional bulk modulus and a weak shear rigidity of

the crystalline monolayer are crucial factors increasing the
extent of the shear distortions, therefore enhancing the
lattice misalignment.
We come to our second point, i.e., the forced sliding

of the particle monolayer over the periodic corrugation and
the associated frictional losses. The shear distortions and
the corresponding increased interdigitation at the optimal
misalignment angle θopt are expected to affect the sliding of
the particle lattice over the periodic potential. Sliding is
realized by a flow of the soliton superstructure, accom-
panied by dissipation as part of the work goes into soliton-
related time-dependent distortions of the two-dimensional
lattice. That work will change once the nature (longitudinal
to shear), orientation (0° to ψ), and periodicity (L to L0)
change with θ (0° to θopt). We determine the magnitude of
the expected friction change by simulating the overdamped
sliding dynamics of the OBC island over a range of θ
values, so as to assess the frictional effect of misalignment
near its optimal value. We applied an external driving force
Fd acting on each particle, slowly varying to and fro as a
function of time, mimicking the experimental drag force
ηvd induced by a fluid of viscosity η and slowly back and
forth time-dependent speed vd [2] (details in the
Supplemental Material [11]). Despite a nonzero torque,
generally present for all preset angles that differ from θopt
(and from zero) the misalignment angle did not have the
time to change appreciably in the course of the simulation.
Under sliding, the frictional power dissipated per particle
was calculated as [3]

pfric¼Fd ·hvcmi−ηjhvcmij2¼ðη=NpÞΣihjvi−vcmj2i; ð3Þ

where vcm is the center-of-mass velocity, vi is the velocity
of particle i, and brackets denote steady-state averages.
Because of the confining envelope potential, the lattice
spacing ac, close to constant in the central part, increases
toward the periphery, where colloids also tend to be pinned
by the corrugation. To address properties of mobile colloids

FIG. 2 (color online). Relative static energy of structure-
optimized colloid islands (OBC) as a function of the trial rotation
angle θ. (a) Total energy per particle Etot. (b) Periodic-potential
(corrugation) contribution W to Etot. (c) Interparticle interaction
contribution Upp to Etot. Curves correspond to increasing corru-
gation amplitudeU0 ¼ 0.18–0.54. Energies are measured relative
to that of the colloidal monolayer at rest and at U0 ¼ 0. Dashed
line: ideal NM angle [Eq. (1)] θNM ≈ 2.6°.

FIG. 3 (color online). Equilibrium configurations obtained for
ρ≃ 0.83 and U0 ¼ 6.3. (a) Unrotated θ ¼ 0° and (b) optimally
rotated θopt ¼ 7°. Dark (light) colloids enjoy best (worse) W.
Only the central part of the island, optimized in OBC, is shown.
(c) Experimental geometry for the same ρ, adapted from Ref. [14],
where both the moiré angles and spacing compare directly with
(b) rather than (a).
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at a well-defined density, trajectories were analyzed, as is
also done in experiments, considering only particles
belonging to the central portion of the island, in our case
a square of size 80 × 80a2c. The duration of the sliding
simulations was fixed by requiring a total center-of-mass
displacement not smaller than Δxcm ≈ 2–3ac.
Figure 5, our main dynamical result, shows that friction

is increased by a very substantial factor by misalignment
relative to alignment, reaching a maximum of about 2 at the
optimal angle θopt, subsequently dropping for larger angles
where the energy gain and static distortion magnitude also
drop. The physical reason for the frictional peak at θopt can
be further appreciated by looking at the particles’ steady-
state velocity distribution Pv and at the corresponding static
interparticle spacing distribution (at zero velocity) Pr, both
shown in Fig. 6 for increasing θ. The important points
here are that small interparticle distances are energetically
costly, and that a large spread of velocities relative to the
center of mass denotes larger frictional dissipation, accord-
ing to the rhs of Eq. (3). At perfect alignment, short
distances (colored column) are very frequent, which is
energetically costly. At the same time the spread of
velocities is moderate and so is friction. In the optimally
misaligned case θopt instead, the shortest distance becomes
less frequent, thus reducing energy as we already know. At
the same time however Pv develops longer tails at lower
and higher particle velocities, both of which increase
friction. At θ > θopt finally the velocity spread drops and
so does friction, the monolayer sliding being less and less
affected by corrugation.
In conclusion, colloid monolayers in an incommensurate

optical lattice develop, in full equilibrium and with realistic
parameters, a small-angle structural misalignment, quite
evident in moiré patterns such as those of Fig. 3. Upon
forced sliding, this misalignment can considerably increase

the sliding friction, directly extractable from the colloid
drift velocity in experiment, using Eq. (3), over the
hypothetical aligned geometry.
The present results and understanding naturally extrapo-

late to the sliding of misaligned incommensurate lattices
in contact such as, for example, physisorbed rare-gas or
molecular submonolayer islands [6–8]. An interesting side
aspect is in this case that misalignment transforms the
orientation angle of a physisorbed island, generally
assumed to be fixed, into a continuous and possibly
dynamical variable. The inertial sliding friction of such

FIG. 4 (color online). Moiré patterns of the particle monolayer’s
central region as obtained inOBC for ρ ¼ 0.927,U0 ¼ 0.27 (a) for
θ ¼ 0° (moiré angle ψ ¼ 0°) and (b) for the optimal θ ¼ 4° (moiré
angle ψ ≈ 15°). Each dot indicates a particle in the unrelaxed
configuration, colored according to the local corrugation potential
WðrÞ: dark for potential minima, bright for maxima. White arrows
show the displacements of each particle from the ideal triangular
lattice to the fully relaxed configuration, magnified 15 times. The
compressions-dilations at θ ¼ 0° are turned into largely shear,
vortexlike displacements at θopt ¼ 4°.

FIG. 5 (color online). Dissipated friction power pfric as a
function of the trial misalignment angle θ (U0 ¼ 0.27). Three
curves are reported corresponding to increasing values of the
driving force Fd ¼ 0.18; 0.27; 0.36. The inset shows pfric as a
function of Fd for two values of θ.

FIG. 6 (color online). (a)–(c) The distribution Pr of nearest-
neighbor distances in the static relaxed configurations (Fd ¼ 0,
U0 ¼ 0.27) at rotation angles θ ¼ 0°, θ ¼ θopt ¼ 4°, and θ ¼ 10°.
(d)–(f) Corresponding velocity distribution Pv of particles sliding
under an external force Fd ¼ 0.36.
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islands determines the inverse slip time in quartz crystal
microbalance experiments [15], whose data must, at least in
some cases, embed the frictional enhancement caused by
misalignment when present. Even though the time needed
to diffusively rotate an ∼100-nm-size island may be
exceedingly large, the orientation angle distribution of
islands will usually, under either stationary or sliding
conditions, be continuous rather than delta-function-like.
Our general ignorance of the two-dimensional lattice
orientations of incommensurate rare gas islands (as
opposed to full monolayers, whose epitaxy generally
differs) poses at present an obstacle to the investigation
of these effects, which must nonetheless be considered as
generically present and effective. The possible local mis-
alignment of incommensurate three-dimensional crystals in
contact and its potential role in sliding friction is an even
less explored, but interesting issue, which remains open for
future consideration.

This work was mainly supported under ERC Advanced
Grant No. 320796-MODPHYSFRICT, and partly by the
Swiss National Science Foundation through SINERGIA
Contract No. CRSII2_136287, by PRIN/COFIN Contract
No. 2010LLKJBX 004, and by COST Action MP1303.

[1] A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, and
E. Tosatti, Rev. Mod. Phys. 85, 529 (2013).

[2] T. Bohlein, J. Mikhael, and C. Bechinger, Nat. Mater. 11,
126 (2012).

[3] A. Vanossi, N. Manini, and E. Tosatti, Proc. Natl. Acad. Sci.
U.S.A. 109, 16429 (2012).

[4] J. Hasnain, S. Jungblut, A. Trster, and C. Dellago,
Nanoscale 6, 10161 (2014).

[5] A. D. Novaco and J. P. Mc Tague, Phys. Rev. Lett. 38, 1286
(1977).

[6] C. G. Shaw, S. C. Fain, and M. D. Chinn, Phys. Rev. Lett.
41, 955 (1978).

[7] T. Aruga, H. Tochihara, and Y. Murata, Phys. Rev. Lett. 52,
1794 (1984).

[8] M. S. Tomassone, J. B. Sokoloff, A. Widom, and J. Krim,
Phys. Rev. Lett. 79, 4798 (1997).

[9] M. Dienwiebel, G. S. Verhoeven, N. Pradeep, J. W. M.
Frenken, J. A. Heimberg, and H.W. Zandbergen, Phys.
Rev. Lett. 92, 126101 (2004).

[10] A. E. Filippov, M. Dienwiebel, J. W.M. Frenken, J. Klafter,
and M. Urbakh, Phys. Rev. Lett. 100, 046102 (2008).

[11] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.114.108302 for a de-
scription of calculational details, including optimization
protocols.

[12] F. Grey and J. Bohr, Europhys. Lett. 18, 717 (1992).
[13] P. San-Jose, A. Gutièrrez-Rubio, M. Sturla, and F. Guinea,

Phys. Rev. B 90, 075428 (2014).
[14] S. Bleil, H. H. von Grünberg, J. Dobnikar, R. Castañeda-

Priego, and C. Bechinger, Europhys. Lett. 73, 450
(2006).

[15] J. Krim, Adv. Phys. 61, 155 (2012).

PRL 114, 108302 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 MARCH 2015

108302-5

http://dx.doi.org/10.1103/RevModPhys.85.529
http://dx.doi.org/10.1038/nmat3204
http://dx.doi.org/10.1038/nmat3204
http://dx.doi.org/10.1073/pnas.1213930109
http://dx.doi.org/10.1073/pnas.1213930109
http://dx.doi.org/10.1039/C4NR01790K
http://dx.doi.org/10.1103/PhysRevLett.38.1286
http://dx.doi.org/10.1103/PhysRevLett.38.1286
http://dx.doi.org/10.1103/PhysRevLett.41.955
http://dx.doi.org/10.1103/PhysRevLett.41.955
http://dx.doi.org/10.1103/PhysRevLett.52.1794
http://dx.doi.org/10.1103/PhysRevLett.52.1794
http://dx.doi.org/10.1103/PhysRevLett.79.4798
http://dx.doi.org/10.1103/PhysRevLett.92.126101
http://dx.doi.org/10.1103/PhysRevLett.92.126101
http://dx.doi.org/10.1103/PhysRevLett.100.046102
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.108302
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.108302
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.108302
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.108302
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.108302
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.108302
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.108302
http://dx.doi.org/10.1209/0295-5075/18/8/009
http://dx.doi.org/10.1103/PhysRevB.90.075428
http://dx.doi.org/10.1209/epl/i2005-10399-0
http://dx.doi.org/10.1209/epl/i2005-10399-0
http://dx.doi.org/10.1080/00018732.2012.706401

