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ABSTRACT
In this paper, we revisit the issue of estimating the ‘fossil’ disc mass in the circumprimary disc,
during the merger of a supermassive black hole binary. As the binary orbital decay speeds up
due to the emission of gravitational waves, the gas in the circumprimary disc might be forced
to accrete rapidly and could in principle provide a significant electromagnetic counterpart
to the gravitational wave emission. Since the luminosity of such flare is proportional to the
gaseous mass in the circumprimary disc, estimating such mass accurately is important. Previous
investigations of this issue have produced contradictory results, with some authors estimating
super-Eddington flares and large disc mass, while others suggesting that the ‘fossil’ disc mass
is very low, even less than a Jupiter mass. Here, we perform simple 1D calculations to show
that such very low estimates of the disc mass are an artefact of the specific implementation
of the tidal torque in 1D models. In particular, for moderate mass ratios of the binary, the
usual formula for the torque used in 1D models significantly overestimates the width of the
gap induced by the secondary and this artificially leads to a very small leftover circumprimary
disc. Using a modified torque, calibrated to reproduce the correct gap width as estimated by
3D models, leads to fossil disc masses of the order of one solar mass. The rapid accretion of
the whole circumprimary disc would produce peak luminosities of the order of 1–20 times the
Eddington luminosity. Even if a significant fraction of the gas escapes accretion by flowing out
the secondary orbit during the merger (an effect not included in our calculations), we would
still predict close to Eddington luminosities that might be easily detected.

Key words: accretion, accretion discs – black hole physics – gravitational waves –
hydrodynamics – galaxies: formation.

1 IN T RO D U C T I O N

The merger of two supermassive black holes (SMBH) is estimated
to be one of the most intense events of gravitational wave (GW)
emission and the ability to detect one such event is of paramount
importance not only to test general relativity directly but also to
provide constraints on galaxy formation.

There is now strong evidence for the presence of SMBHs with
masses between 106 and 109 M� in the nuclei of the local Universe
galaxies (Kormendy & Richstone 1995; Magorrian et al. 1998;
Ferrarese & Ford 2005). In a hierarchical scenario for the galaxy
evolution, nearby galaxies are the outcome of several mergers be-
tween progenitors of smaller mass. If each of the progenitors of a
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galaxy merger contains an SMBH in its centre the resulting galaxy
will naturally host a pair of SMBHs.

It is expected that dynamical friction between the binary and
the crowded field of stars in which they are embedded can remove
angular momentum from the binary and reduce its orbital separa-
tion down to parsec scales (Begelman, Blandford & Rees 1980), at
which the process is expected to stall due to the depletion of the
loss cone (Milosavljević & Merritt 2001). Galaxy scale 3D hydro-
dynamical simulations (Escala et al. 2005; Dotti et al. 2006; Cuadra
et al. 2009) have shown that further shrinkage of the binary due
to angular momentum loss to the gaseous background can lead to
orbital separations of the order of 0.1 pc. At separations of the or-
der of 0.001 pc, the main driver of orbital decay is the emission
of GW. The evolution of the system between 0.1 and 0.001 pc is
much harder to study. 3D and 2D simulations are appropriate to
study the dynamics of binary–disc interaction on short time-scales,
and are thus well suited to study the final stages of the orbital
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Figure 1. Sketch of the binary system. The accretion disc, which orbits
around the primary BH of mass Mp is divided into two regions by the
presence of the secondary BH of mass Ms that orbits in Keplerian motion
at a radius a: a circumprimary disc (inner disc) and a circumbinary disc
(outer disc). The inner disc is truncated at Redge whose size depends on the
intensity of the tidal torques.

decay, before and during the GW-driven phase (D’Orazio, Haiman
& MacFadyen 2013; Farris et al. 2014). The overall evolution of
the system during the long disc-driven decay is best followed using
simple 1D diffusion models for the disc (Armitage & Natarajan
2002; Haiman, Kocsis & Menou 2009; Lodato et al. 2009; Chang
et al. 2010; Kocsis, Haiman & Loeb 2012; Rafikov 2013).

In this paper, we want to estimate the mass left over in the cir-
cumprimary disc at decoupling, i.e. when the orbital decay due to
GW emission becomes dominant. This quantity is the result of the
long-term evolution of the system from large distances (∼0.1 pc)
down to the decoupling region. For our purposes, thus, it is most
appropriate to study the problem within a 1D diffusion model.

In previous studies, several configurations for the disc–binary
system have been investigated. Armitage & Natarajan (2002) as-
sumed that the binary finds itself embedded in a gaseous disc that
has already settled down to a steady-state disc. Lodato et al. (2009)
investigated a configuration in which the binary interacts with a
finite amount of gas that is brought in the binary vicinity as a con-
sequence of the same accretion episode that has formed the binary
itself. Chang et al. (2010) considered the evolution of a binary em-
bedded in a steady-state disc with a large mass inflow coming from
the disc exterior. In all these configurations, we can describe the
system as sketched in Fig. 1: the accretion disc is rotating around
a central (or primary) (black hole) BH of mass Mp, and the sec-
ondary BH of mass Ms is in Keplerian orbit at a radius a around the
primary. For simplicity, we assume that the primary BH is located
at the centre of the accretion disc (thus neglecting the displacement
between the primary BH and the centre of mass of the binary) and
that the disc is coplanar to the binary orbit (Ivanov, Papaloizou &
Polnarev 1999). The disc and the binary exchange angular momen-
tum through tidal interaction in a planet-like dynamics: a secondary
BH of non-negligible mass opens up a gap in the disc at the lo-
cations where the tidal torques equal the viscous torques, with the
gap following the secondary as it migrates (disc-driven phase). A
low-mass secondary BH barely perturbs the disc and thus migrates
on a viscous time-scale tν = R2/ν, where R is the radial cylindri-
cal coordinate and ν is the disc viscosity. Conversely, a secondary
BH of mass comparable to the disc is able to heavily perturb the
disc by opening a wide gap but migrates more slowly. Neglecting

accretion on to the secondary BH, the disc results thus divided into
two well-defined regions: a circumprimary (or inner) disc orbiting
around Mp and a circumbinary (or outer) disc orbiting around the
whole binary.

The investigations by Lodato et al. (2009) and Chang et al. (2010)
lead to apparently conflicting results. Indeed, Chang et al. (2010)
estimate that the fossil disc mass is extremely low, of the order of
10−6–10−3 M�, depending on the parameters. On the other hand,
Lodato et al. (2009), while not giving specific numbers for the inner
disc mass, clearly show that the surface density at decoupling can
be much higher than estimated by Chang et al. (2010). The origin
of this discrepancy is unclear, and it could be due to the different
setup and initial conditions used in the two studies. In this paper, we
aim to resolve the issue by re-evaluating the inner disc mass, using
a disc configuration close to the one used by Chang et al. (2010).

As the binary decays further, the angular momentum loss due
to the emission of GW rapidly increases and eventually takes over
(GW-driven phase). We define the decoupling time tdec as the time
when the binary merger time-scale becomes shorter than the viscous
time-scale at the inner edge of the outer disc, i.e. when the outer
disc is not able to follow viscously the accelerating secondary and
thus decouples from the evolution of the binary (for a detailed
study on the decoupling process see Farris et al. 2014). Assuming
for simplicity that the inner disc can drain only by accretion on
to the primary BH, in the late GW-driven phase the inner disc is
forced to accrete by the plunging secondary BH that migrates much
more rapidly. The extremely rapid accretion of the whole inner disc
(whose mass is substantially frozen during the GW-driven phase)
might lead to a super-Eddington flare. Note that Baruteau, Ramirez-
Ruiz & Masset (2012), using 2D simulations, show that such rapid
accretion can be reduced due to the funnelling of the inner gas out
of the secondary orbit during the GW-driven phase, estimating that
up to 80 per cent of the inner disc mass can escape accretion in this
way. Such results, however, need to be confirmed in 3D simulations
and using a wider range of parameters, especially for the disc aspect
ratio (which Baruteau et al. 2012 fix to a relatively large value).

The paper is organized as follows. In Section 2, we illustrate the
physical model that we adopt to describe the disc–binary system
with a detailed discussion of the torque implementation. In Sec-
tion 3, we describe the results of a set of simulations with different
parameters and the overall evolution of a fiducial run. In Section 4,
we discuss our results in comparison with those in literature and we
propose an analytic argument to explain the discrepancy in the esti-
mate of the inner disc mass. In Section 5, we present our conclusions
and the outlook for this work.

2 PH Y S I C A L M O D E L

In order to describe the coupled evolution of the disc–binary system,
we have implemented a time-dependent 1D model that solves for
the disc surface density �(R, t) and for the binary separation a(t) in
a self-consistent way.

2.1 Disc dynamics

The evolution of the disc surface density in presence of the sec-
ondary BH is described by the classical hydrodynamical equations
of accretion theory (Lynden-Bell & Pringle 1974; Pringle 1981):
the continuity equation:

∂�

∂t
+ 1

R

∂

∂R
(�RvR) = 0 , (1)
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and the angular momentum conservation

∂

∂t

(
�Rvϕ

) + 1

R

∂

∂R

(
�RvϕRvR

) = 1

2πR

∂Gν

∂R
+ �T� , (2)

where v = (vR, vϕ, vZ) is the fluid velocity, Gν = 2πν�R3�′ is
the usual viscous torque and �T is the specific tidal torque exerted
by the binary on the disc. Using equations (1) and (2), we obtain an
expression for vR and substituting it back in equation (2) we obtain
the time evolution equation:

∂�

∂t
= 3

R

∂

∂R

[
R1/2 ∂

∂R

(
R1/2ν�

)] − 2

R

∂

∂R

[
�T�

�

]
, (3)

where ν(R) is the disc viscosity and �(R) = √
GMp/R3 is the disc

angular velocity.
Making use of the impulse approximation (Lin & Papaloizou

1979b; Binney & Tremaine 1987) we can compute a simplified
expression for �T(R) that has been widely used in literature (Lin &
Papaloizou 1979a; Armitage & Natarajan 2002; Lodato & Clarke
2004; Lodato et al. 2009):

�T = −f

2
q2�2R2

(
R

�

)4

R < a, (4)

�T = f

2
q2�2R2

(
a

�

)4

R > a, (5)

where f is a normalization factor and � = R − a. The change of sign
across R = a in the tidal torque accounts for the behaviour of the
secondary BH that removes angular momentum from the gas inside
its orbit and adds angular momentum to the gas outside. The net
effect is that the satellite repels the gas from its orbit, thus creating
an annular gap whose width depends on the intensity of the tidal
torques with respect to the pressure and viscosity gradients that act
to close the gap.

Since the above expression diverges in R = a, following Lin &
Papaloizou (1986) and Syer & Clarke (1995), we smooth the torque
by taking:

� = max {H, RH, |R − a|} , (6)

where H is the disc thickness and RH = a(q/3)1/3 is Hill’s sphere
radius of the secondary BH. This smoothing prescription follows
from the basic idea that the gap should be larger than both H (other-
wise it would be replenished by the pressure gradients in less than
a dynamical time-scale) and RH (that should be depleted due to the
accretion on the secondary BH).1

It is easy to see that the intensity of the tidal torque determines
the gap width since the gap edges are the locations where the vis-
cous torques, that try to refill the gap with a diffusive behaviour, are
balanced by the tidal torques that act to keep the gap open. Analo-
gously to �T, we can define the specific viscous torque �ν dividing
the annular viscous torque Gν by the mass of the annulus, namely:

�ν = Gν

2πR��
= νR2

�
�′ = −3

2

�R

�
ν, (7)

where the last equality holds for a Keplerian disc. The gap width
is thus the value of � for which �ν = �T. In Fig. 2, we illustrate
how, if the intensity of �T changes, then the location of the gap

1 We should note that apart from this smoothing prescription we have not
taken into account the accretion on the secondary BH in the model. This is
a good approximation for q = 0.1 (Farris et al. 2014), but some accretion is
expected for q � 0.3, which might slow down migration somewhat.

Figure 2. Different torque intensities induce different gap sizes. Two
torques of different intensity are shown, the upper one being more intense
than the lower one. The gap inner edge (Redge) is located where the tidal
torque �T equals the viscous torques �ν (that here for simplicity has been
fixed to be constant). It can be seen that, for a given �ν , the gap edge pro-
duced by the stronger torque is located at R′′

edge, that is smaller (i.e. the gap
is wider) than that produced by the weaker torque (R′

edge). The same result
applies for R > a.

edges changes as well: for a given viscous torque intensity (that in
the figure is assumed constant for simplicity) a stronger tidal torque
truncates the inner disc at a smaller radius. Therefore, in order to
implement a realistic tidal torque, the parameters describing the
torque (f and the smoothing prescription) have to be chosen care-
fully, so as to reproduce the gap size obtained by more sophisticated
3D simulations.

Since the size of the gap in the disc, as well as the migration rate of
the secondary, depends on the intensity and the spatial distribution
of the tidal torques, a correct smoothing of the tidal torques is
necessary not only to avoid numerical issues, but mostly to avoid
an unphysical estimate of the interaction between the disc and the
binary that can lead to a wrong estimate of the inner disc mass.

2.2 Tidal torque smoothing

As shown by Goldreich & Tremaine (1979, 1980), the disc and
the secondary interact by exchanging angular momentum at dis-
crete resonant locations, the so-called Lindblad Resonances (LR),
where a characteristic frequency of the secondary matches an
epicyclic frequency within the disc: at these locations the disc re-
sponds to the presence of the secondary through the excitation of
density waves that carry energy and angular momentum in the disc
and dissipate through shocks.

In a Keplerian disc, the LR are located at radii:

RL = a

(
1 ± 1

m

)2/3

m = 1, 2, . . . , (8)

which shows that for low m the LR are far from the position of
the secondary whereas for increasing m they accumulate towards
R = a. We find that the innermost Lindblad resonance (hereafter
IMLR) is placed at RIMLR = 2−2/3a � 0.63a , whereas the outermost
one (OMLR) is placed at ROMLR = 22/3a � 1.59a . Since the IMLR
and the OMLR are the farthermost resonances from the satellite,
they constitute the boundaries of the region that can effectively
contribute to the tidal torque: outside this region, the disc can exert
no torque on the satellite, nor the satellite can exert any torque on
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Table 1. Inner and outer gap edges obtained
by Artymowicz & Lubow (1994) performing
3D SPH simulations, for α = 0. We report
the widths wIMLR and wOMLR of the Gaus-
sian smoothing that is needed to reproduce
the same gap edges.

q Gap edges Gaussian widths
Inner Outer wIMLR wOMLR

0.11 0.46a 1.8a 370H 75H
0.43 0.38a 1.8a 370H 83H

the disc. As noted in Lodato et al. (2009), since �T scales as q2,
for high q it can occur that the analytical expressions (4) and (5)
gives a non-negligible contribution also outside the region of LR.
In order to avoid this unphysical contribution, we need to smooth
out the torque for R < RIMLR and R > ROMLR. We can do this by
fine-tuning the torque formulae (4) and (5) in two different ways,
depending on the mass ratio of the binary.

For q � 1, the torque formulae (4) and (5) already gives no
contribution outside the IMLR and the OMLR, and the gap size is
determined by the parameter f. Therefore, in this case, it is sufficient
to fine-tune the value of f to reproduce realistic gap sizes. Follow-
ing Armitage & Natarajan (2002) that performed high-resolution
2D simulations using the ZEUS hydrodynamic code (Stone &
Norman 1992), we take f = 10−2 with which we reproduce gaps of
approximately the correct size.

For larger mass ratios, the torque is still significant outside the
LR region and thus we smooth it out with a Gaussian cutoff by
setting:

�T = −f

2
q2�2R2

(
R

�

)4

exp

[
−

(
R − RIMLR

wIMLR

)2
]

R ≤ RIMLR

(9)

�T = f

2
q2�2R2

(
a

�

)4

exp

[
−

(
R − ROMLR

wOMLR

)2
]

R ≥ ROMLR,

(10)

where wIMLR and wOMLR determine the sharpness of the cutoff
and for RIMLR < R < ROMLR the formulae (4) and (5) still hold.
We fine-tune the values of wIMLR and wOMLR so that the gap edges
(measured after the secondary has opened a clear gap in the disc) are
located in the same positions computed by Artymowicz & Lubow
(1994) with 3D smoothed particle hydrodynamics (SPH) simula-
tions. Artymowicz & Lubow (1994) studied circumbinary discs
around binaries with q = 0.11 and 0.43, on circular and eccentric
orbits, and for discs with different Reynolds numbers. Furthermore,
Artymowicz & Lubow (1994) and Papaloizou & Pringle (1977)
showed that for zero-eccentricity binaries the location of the gap
edges does not depend on the value of the Shakura–Sunyaev viscos-
ity parameter α (see equation 11). In Table 1, we report the values
of wIMLR and wOMLR that we obtain for each mass ratio. Since the
binary we are considering for our purposes is on a circular orbit and
the values found for wIMLR and wOMLR weakly depend on the mass
ratio, for our simulations we always adopt the values wIMLR = 370H
and wOMLR = 75H.

Note that the formula used here for the local torque is clearly an
approximation, used in our 1D model to reproduce the correct gap
width and secondary migration rate. Recent simulations by Farris
et al. (2014) allow us to compute the local torque as a function of

radius. The torque obtained in this case has a different functional
form from the one used here. In particular, it has an oscillatory
behaviour and does not vanish until 2–3a. However, for compa-
rable values of q, Farris et al. confirm the gap widths found by
Artymowicz & Lubow (1994). The exact shape of the torque close
to the secondary does not affect any of our results (indeed, in many
cases one can treat the secondary, simply imposing an effective
boundary condition; see Syer & Clarke 1995), as long as the gap
width and migration rate are reproduced correctly. If we had kept
our analytical torque formula, allowing it to extend to 2–3a (Farris
et al. 2014), we would have obtained an incorrect gap width. Hence,
we have preferred to be consistent with our approach and smooth
the torque in order to reproduce reasonable gap widths.

2.3 Disc energetics

In an accretion disc surrounding an SMBH binary, we expect to
find regions characterized by different regimes, depending on the
distance from the central BH, the temperature, the disc thickness,
etc. Following the approach adopted in Lodato et al. (2009), our
code is capable of reproducing both radiation-pressure- and gas-
pressure-dominated regimes (we expect the first to occur in the
inner part of the disc and the latter in the outer ones), and also to
take into account both Thomson scattering and free–free absorption
as sources of opacity.

In order to compute the viscosity of the disc, we adopt the standard
α-prescription (Shakura & Sunyaev 1973):

ν = αcsH, (11)

where cs is the sound speed and α is a dimensionless number
smaller than unity. In order to avoid viscous and thermal instabilities
in the disc, following Lightman & Eardley (1974), we assume that
the viscous stresses are proportional to the gas pressure (and not
to the total pressure, sum of gas and radiation contributions), and
therefore cs = √

kBTc/μmp, with kB being the Boltzmann constant,
Tc the mid-plane temperature, μ = 0.67 the mean molecular weight
(ionized hydrogen) and mp the proton mass.

The mid-plane temperature profile is computed by solving
the vertical energy balance at each radius. First, we suppose
that the energy dissipated by the viscous processes (released mainly
in the disc mid-plane) is completely irradiated by the disc at its
surface by imposing:

9

8
ν��2 = σSBT 4

s , (12)

where σ SB is the Stefan–Boltzmann constant and Ts is the surface
temperature. Then, we assume that the disc is optically thick to its
own radiation, i.e. the optical depth τ = κ�/2 
 1, where κ is the
opacity (given by the dominant source among Thomson scattering
or free–free absorption). Finally, plugging the α-prescription (11)
in equation (12) and using the fact that Ts = 4Tc/3τ 1/4, we find that
the mid-plane temperature is given by

Tc =
(

9

16

αkB

μmpσSB
κ��2

)1/3

. (13)

Once computed the viscosity and the central temperature, the disc
thickness can be calculated from the vertical hydrostatic equilibrium
that results from the balance between gravity and the total pressure.
At each radius, the structure of the disc is fully determined by ν, Tc

and H, and we use an iterative procedure that converges to consistent
values for these three parameters.
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Note that Lodato et al. (2009) have shown that, in order to si-
multaneously conserve energy and angular momentum in the 1D
formulation that we adopt here, a tidal heating contribution should
be added at the disc edge to account for the dissipation of non-
axisymmetric structures induced by the tidal force. We neglect here
this contribution, mostly to compare more directly to Chang et al.
(2010, who also do not include it). This tidal heating term could
modify some of the results in limited portion of the parameter space
(see Kocsis et al. 2012), when the gap is not fully open.

2.4 Binary dynamics

To derive the equation for the binary evolution, we simply impose
that the angular momentum of the whole disc–binary system is
conserved and we take into account the angular momentum lost
due to the emission of GW. The binary separation thus evolves as
follows:

ȧ = − 4π

aMs �s

∫ Rout

Rin

�T� R dR − 8c

5
q(1 + q)

(
RS

a

)3

, (14)

where �s = √
GMp/a3 is the angular velocity of the secondary

and RS is the Schwarzschild radius of the primary, RS = 2GMp/c2.
The first-term on the right-hand side (rhs) is the tidal back reaction
of the disc on the binary and the second term is due to the GW
emission (Peters & Mathews 1963; Peters 1964).

We note that while the direction of migration due to the tidal
torque can change in time since it depends both on the intensity of
the torque and on the surface density distribution, the emission of
GW always acts to shrink the binary.

3 R ESULTS

3.1 Numerical code: setup and initial configuration

We solve numerically the coupled equations (3) and (14) with a
1D finite-difference numerical scheme that allow us to compute the
time evolution time of �(R, t) and a(t). We use a radial logarithmic
grid of 200 points, with the inner radius equal to the innermost stable
circular orbit (ISCO) around the central BH, i.e. Rin = 3RS, and the
outer radius Rout = 10a0 where a0 = 104RS is the initial position
of the secondary BH. At Rin, we apply a zero-torque boundary
condition to implement the accretion on the central BH, whereas at
Rout we can choose to set either a zero-torque boundary condition
or an inflow of material Ṁext, depending on the scenario we want
to model.

In previous investigations, Armitage & Natarajan (2002) ini-
tialized the disc with a steady-state disc corresponding to
Ṁext = 1 M� yr−1, while during the simulation they assumed
Ṁext = 0. With this choice, the secondary BH results parachuted
inside a disc that has already settled down to a steady state and
therefore the binary hardening is driven by the almost infinite reser-
voir of gas upstream and not by an inflow of material coming from
Rout. More recently, Lodato et al. (2009) investigated a scenario
in which the SMBH binary interacts with a finite amount of gas
that evolves together with the binary and is far from a steady state:
as initial configuration they assumed a constant surface density
profile between 0.8a0 and 2a0 and Ṁext = 0 to simply model this
scenario. We performed several tests of our code using these two
configurations and we are able to reproduce the results of Armitage
& Natarajan (2002) and Lodato et al. (2009) to a high degree of
accuracy.

Despite being less realistic than the previous scenario, to compare
our results to the work of Chang et al. (2010), in all our simula-
tions we choose to initialize the disc to a steady-state disc of low
mass. To do this, instead of adopting analytic solutions, we have ob-
tained the steady-state configurations by solving numerically with
our code equation (3) without the tidal term on the rhs and applying
a Ṁext �= 0. To probe the accuracy of our code, we successfully
proved that the surface density profile of this initial steady state
is in good agreement with the standard solutions of the Shakura–
Sunyaev α-disc. The initial accretion rate through the disc is thus
constant and is set to a very low value, much smaller than the Ṁext

that we then apply. As the simulation starts, the disc starts to fill up
with mass and the accretion rate thus starts to slowly grow, as the
disc tries to evolve towards the new configuration appropriate for
the higher accretion rate. At the initial time-step, we set the position
of the secondary BH in R = a0 and we let the system evolve: at the
beginning, the secondary BH clears a gap in the disc and, once the
tidal interaction becomes strong enough, it starts migrating.

3.2 Resulting fossil disc mass

How much mass is left in the inner disc at decoupling has been the
subject of debate recently. Armitage & Natarajan (2002) estimate
a relatively large mass based on very idealized initial conditions.
Lodato et al. (2009), using more realistic conditions found a rel-
atively large mass, too, with super-Eddington accretion rates once
the inner disc is rapidly accreted during the GW-driven binary de-
cay. Conversely, Chang et al. (2010) found that the fossil disc mass
is extremely low, being of the order of planetary masses. Thus, our
main aim is to resolve the discrepancy and estimate what is the
mass of the fossil disc at decoupling, comparing our results to those
of Chang et al. (2010). We thus perform a number of simulations,
using the very same parameters of Chang et al. (2010). Our code is
similar to the one used by Chang et al. (2010) in many respects and
we would thus expect to reproduce their results.

In the simulations that we perform, we are interested in com-
puting the evolution of the accretion luminosity Lacc as the binary
approaches to the merger and we do that by simply computing
Lacc = ηṀc2 where η = 0.1 is the accretion efficiency and Ṁ is the
instantaneous mass accretion rate on to the primary BH (measured
as the mass per unit time flowing inside the ISCO, i.e. R < Rin).
As described above, we call decoupling radius the location where
the merger time driven by the emission of GW becomes smaller
than the merger time due to the tidal interaction with the disc. At
that point, the binary decouples from the dynamics of the disc and
evolves on a time-scale that is too short for the disc to respond
viscously (but see Farris et al. 2014). During this phase, the mass of
the inner disc is substantially frozen since the secondary forces it to
accrete on to the primary at a rate much higher than the viscous one.
During the evolution of the system, we compute Lacc from Ṁ at each
time-step and we estimate the peak luminosity Lpeak = max(Lacc)
that is reached immediately before the merger. We can put a lower
limit to Lpeak estimating the average luminosity that is produced
by the accretion of the inner disc in the time interval between the
decoupling and the merger, namely

Lpeak ≥ Md,in(tdec)

tmerger − tdec
ηc2, (15)

where Md, in(t) is the time-dependent mass of the inner disc, defined
as follows:

Md,in(t) =
∫ Redge

Rin

2πR �(R, t) dR, (16)
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Table 2. Comparison of simulations results. We perform sim-
ulations for different values of Mp = 106, 107, 108 M�,
Ṁext = 0.1, 0.01 M� yr−1, q = 0.1, 0.3 and α = 0.1, 0.01. In the ta-
ble, masses are in units of M� and luminosities in units of LEdd. We
report the inner disc mass at decoupling Md, in and the luminosity peak
just prior to merger Lpeak. For better comparison, we report the values

obtained by Chang et al. (2010) in the last two columns, M (∗)
d,in and L

(∗)
peak.

Mp q Ṁext α Md, in Lpeak M
(∗)
d,in L

(∗)
peak

106 × 10−3 × 10−3

0.1 0.1 0.1 0.95 1.97 0.0012 0.146
0.01 17 13.7 0.012 0.277

0.01 0.1 0.41 0.86 0.000 12 0.015
0.01 8.4 6.44 0.0012 0.029

0.3 0.1 0.1 1.47 1.7 0.0001 0.038
0.01 25 8.8 0.001 0.023

0.01 0.1 0.68 0.92 0.000 008 0.004
0.01 13 5.32 0.0001 0.002

107 × 10−3 × 10−3

0.1 0.1 0.1 183 6.22 0.66 0.154
0.01 2970 20.8 46 1.077

0.01 0.1 83 1.38 0.073 0.018
0.01 1600 9.66 0.64 0.154

0.3 0.1 0.1 300 2.9 0.062 0.015
0.01 450 23.5 0.56 0.115

0.01 0.1 140 1.51 0.0062 0.001
0.01 2400 8.22 0.075 0.015

108

0.1 0.1 0.1 19 2.67 0.2 0.5
0.01 34 0.47 0.9 2.154

0.01 0.1 11 1.31 0.029 0.069
0.01 35 0.48 0.18 0.438

0.3 0.1 0.1 26 2.15 0.024 0.052
0.01 34 0.189 0.15 0.323

0.01 0.1 22 1.24 0.0033 0.007
0.01 34 0.19 0.033 0.069

where Redge is the outer edge of the inner disc, as shown in Fig. 1.
Clearly, this estimate is valid if we assume that the whole inner disc
is accreted during the merger (Baruteau et al. 2012).

We perform a series of simulations exploring different re-
gions of the parameters space by varying the primary BH
mass Mp = 106, 107, 108 M�, the external accretion rate
Ṁext = 0.1, 0.01 M� yr−1, the mass ratio q = 0.3, 0.1 and the
Shakura–Sunyaev viscosity parameter α = 0.1, 0.01, whereas we
keep fixed the initial separation a0 = 104RS and the initial disc mass
Md = 103 M�.

The results of the simulations are shown in Table 2. We report
the inner disc mass at decoupling Md, in and the peak value of the
accretion luminosity Lpeak just prior to merger. In almost all the
cases, we obtain peak luminosities that clearly exceed the Edding-
ton luminosity and in four cases the flare is super-Eddington by
one order of magnitude. It is remarkable that even though Md, in is
relatively small (in many cases a few per cent of one solar mass), its
forced accretion during the final inspiral of the secondary results in
an extremely luminous flare.

The last two columns in Table 2 show the fossil disc mass and
peak luminosity as obtained by Chang et al. (2010). There is a
striking difference in the estimated disc mass by up to three orders of
magnitude with respect to ours. This systematic difference is found
for all parameters used and results also in a significant difference
in peak luminosity. We discuss the origin of this discrepancy in

Section 4, after describing the dynamical evolution of a fiducial
run.

Note that while Chang et al. (2010) obtain an almost linear rela-
tion between the fossil disc mass Md, in and the external accretion
rate Ṁext, in our case the dependence on Ṁext is much weaker. For
most of our simulations (with the exceptions of the low-viscosity
and high primary mass cases), the inner disc mass scales as Ṁ0.3

ext .
Increasing Ṁext leads to a faster migration rate which implies that
the inner disc has less time to drain out, but a linear scaling between
Md, in and Ṁext is not necessarily expected. Indeed, the dependence
of the migration rate on the external accretion rate is non-linear as
it depends both on the surface density and the temperature at the
inner edge of the outer disc, thus making it not straightforward to
find a simple prescription to relate these two quantities.

3.3 Evolution of a fiducial run

Let us describe the evolution of the system for a fiducial case with
Mp = 107 M�, q = 0.1, Ṁext = 0.1 M� yr−1 and α = 0.1.

We choose to initialize the disc with the same choice of Chang
et al. (2010), i.e. with a low-mass disc of mass 103 M�, appropriate
for a Shakura–Sunyaev disc accreting at a very low rate, e.g. 10−6–
10−7 M� yr−1. Note that the purpose of this initial configuration of
the disc is to give a simple realization of the planet-like regime in
which the binary evolution takes place and it can be shown (for a
detailed discussion see Chang et al. 2010) that the inner disc mass
at decoupling – and thus the peak luminosity just prior to merger –
does not depend on the initial mass of the disc.

The general evolution of the system is very similar to the one
described in Chang et al. (2010). Following Fig. 3, in each snap-
shot we show the surface density profile (solid line), the viscous
time-scale (dashed line) and the merger time-scale tmerger = a/ȧ

(dotted line). Time evolution proceeds as follows: top left, top
right, bottom left, bottom right. At the beginning (Fig. 3, top left),
the system reaches an initial quasi-stationary state in which the
outer disc accumulates some mass due to the external accretion
rate but the tidal torques are still not strong enough to push the
secondary.

Starting from this moment, the outer disc increased surface den-
sity begins to influence the secondary and to drive its inward mi-
gration. The gap edges are the locations where the viscous torques
equal the tidal torques and, since the latter depend on the position
of the secondary, the gap edges move together with the secondary.
As a result the system self-regulates in such a way that the viscous
time-scale at the gap edges equals the merger time-scale during the
disc-driven phase (Chang et al. 2010). Then, as the disc-driven mi-
gration continues (Fig. 3, top right), the gap moves inwards along
with the secondary, as we expect for a type II migration. The orbital
radius of the secondary has decreased by one order of magnitude,
and the inner disc has a slightly enhanced surface density. The vis-
cous time-scale at the gap edges continues to match the merger
time-scale (Fig. 3, bottom left). When the binary separation has de-
creased by another order of magnitude (a ≈ 100RS) the emission of
GW rapidly takes over the tidal interaction and starts driving the mi-
gration. At this stage, the outer disc is substantially decoupled from
the evolution of the binary and the inner disc is pushed inwards
more and more rapidly as the binary shrinks. Eventually (Fig. 3,
bottom right), the increasing velocity of the secondary (accelerated
by the growing GW emission) forces the inner disc to accrete on
a time-scale much shorter than the viscous one, thus producing
the spike in the surface density profile and the consequent flare in
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1124 M. Tazzari and G. Lodato

Figure 3. Disc and binary evolution for the fiducial case with Mp = 107 M�, q = 0.1, Ṁext = 0.1 M� yr−1 and α = 0.1. Each snapshot shows the surface
density profiles � (solid lines), the viscous time-scale profile tν (dashed lines, matched to the right axis), the merger time tmerge (horizontal dotted line, matched
to the right axis) and the secondary position (marked with a black dot). The snapshots have been taken, respectively, at 5 Myr (top left), 12 Myr (top right),
12.941 Myr (bottom left) and 12.948 Myr (bottom right) after the beginning of simulation.

luminosity. In the last snapshot, tmerger is not shown because it is
much smaller (about days) than the viscous one.

In Fig. 4, we show the accretion luminosity on the primary BH
as a function of time during the overall evolution of the simulation.
During the first 106 yr the accretion rate is very low, and it reflects
the initial condition for the disc surface density (see Section 3).
During this time the disc mass builds up as a consequence of the
imposed external accretion rate, slowly increasing the disc lumi-
nosity to values closer to typical AGN values. As the disc mass
grows, it pushes the secondary inwards, until, after roughly 107 yr,
the secondary migration becomes dominated by GW emission. Fi-

nally, it can be clearly seen the super-Eddington flare due to the
extremely rapid accretion of the inner disc that occurs at the end of
the GW-driven inspiral.

4 D I SCUSSI ON

4.1 Effects of tidal torque smoothing on luminosity peak

Comparing our results with those by Chang et al. (2010), we see
that these authors predict much lower inner disc masses and, con-
sequently, much smaller peak luminosities for all the computed
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Figure 4. Accretion luminosity on the primary BH as a function of
time during the overall evolution of the disc–binary system for a fiducial
run with Mp = 107 M�, q = 0.1, Ṁext, α = 0.1. The SMBHs coalesce
around 13 Myr, immediately after the apparent super-Eddington flare due to
the rapid accretion of the inner disc.

models by up to three orders of magnitude. For a better compari-
son, we report their results in the last two columns of Table 2. In
order to explain the discrepancy in the estimate of the inner disc
mass at the decoupling, we have performed several tests before
finding that the issue was in the implementation of the torque.

Before discussing the torque implementation, we would mention
that a possible source of discrepancy may arise from the different
viscosity calculation: as explained in Section 2.3, while we neglect
radiation pressure when computing viscosity in order to maintain
the disc stable, we take it into account when computing the disc
thickness assuming that the disc is supported by both gas and radi-
ation pressure. Therefore, differently from Chang et al. (2010) that
completely neglect radiation pressure, our code is able to describe
radiation-pressure-dominated regions as well. During our tests, we
see that the radiation pressure actually becomes dominant only in
the inner disc in the very late phases just prior to merger and in the
inner edge of the outer disc after a significant amount of gas has
piled up. However, the estimate of the inner disc mass seems not to
be affected by this choice.

Another source of discrepancy might come from the way the gap
is initially opened in the disc: while our code computes the gap
opening consistently with the torque calculated at each timestep,
Chang et al. (2010) artificially open a cavity in the disc between
0.5a0 ≤ R ≤ 2a0 in order to simply model the gap clearing. At the
very beginning of the simulation these different implementations
produce visible differences in the gap width; however, after a few
Myr the gap width results determined by the intensity and the spatial
distribution of the tidal torque rather than by the initial clearing.

We thus conclude that the source of the discrepancy is in the
implementation of the torque. Indeed, while for small mass ratios the
LR responsible for the gap formation are those closer to the satellite
(and therefore the torque intensity is determined by the parameter
f), for the larger mass ratios q ≥ 0.1 that we are using here, the
torque given by equations (4) and (5) is a significant overestimate,
and thus needs to be smoothed out as we described in Section 2.2
above. In Fig. 5, we show the evolution of our fiducial model with

Mp = 107 M�, q = 0.1, Ṁext = 0.1 M� yr−1 and α = 0.1, but now
computed without smoothing the torque outside the LR. Note that
the evolution shown here is almost identical to the one shown by
Chang et al. (2010).

Comparing the snapshots in Fig. 5 with those in Fig. 3 it is
apparent that, without smoothing the torque, the code produces a
larger gap (the width being approximately 0.94a instead of 0.7a)
and smoother gap edges. Such wide gaps are an artefact of the
1D model with no smoothing and are not consistent with the more
detailed 3D simulations by Artymowicz & Lubow (1994). As a
result, starting from the initial stages (Fig. 5, top left) the inner
disc is truncated at a much smaller radius (as we expect after the
discussion in Section 2.2). As described in Chang et al. (2010), the
surface density of the disc regulates in such a way to keep the viscous
time at the outer edge equal to the migration time.2 If the outer edge
of the inner disc is located much further in, this requires a much
smaller surface density, thus leading to a significant underestimate
of the inner disc mass.

In this way, we can provide an analytic argument to quantify the
extent to which the inner disc mass is underestimated if the torque is
not smoothed. At the beginning of the simulation, when the binary
separation is large (a ≈ 104RS), in the region where the inner disc is
truncated by the tidal torques exerted by the satellite (at R ≈ Redge),
the disc is gas pressure dominated and opacity is dominated by
Thomson scattering, and thus we can write viscosity as

ν =
(

αkB

μmp

)4/3 (
9

16

κT

GMpσSB

)1/3

�2/3R, (17)

where we have substituted Tc from equation (13) in the α-
prescription (11) and used H = cs/� that holds for a geometrically
thin disc. With this expression for viscosity, we can estimate the
viscous time-scale at the inner gap edge:

tν(Redge) ∝ R2
edge

ν(Redge)
∝ Redge

�2/3
. (18)

We have seen that during the secondary migration the gap moves
together with secondary: this means that the viscous time at Redge

has to match the secondary migration time (Figs 5a,b,c). From
the above equation we see that, if the inner disc is truncated at
a smaller radius, then the surface density has to adjust itself to a
lower value �(Redge) ∝ R

3/2
edge, to give tν(Redge) = tmerger. To a first

approximation, we can then compute the inner disc mass:

Md,in =
∫ Redge

Rin

2πR� dR � 2πR
7/2
edge, (19)

where the strong dependence on Redge reflects the dependence of
viscosity on surface density in the gas-pressure-dominated region.
From the above result, we can now estimate the discrepancy in the
inner disc mass computed by two different torque implementations.
Adopting the same notation as in Fig. 2, R′

edge and R′′
edge are the

locations of the gap edges produced, respectively, by our code (with
torque smoothing outside the LR) and by the torque implementation

2 Note that Duffell et al. (2014) and Dürmann & Kley (2015) have performed
numerical simulations of type II migration where the migration time-scale
did not exactly match the viscous time-scale in the disc. This might be an
interesting phenomenon but needs to be studied with greater detail, and in
particular it is not clear whether such migration rates can be supported over
long time-scales, where a global balance of angular momentum could be
established. A full discussion of this issue is clearly beyond the scope of this
paper.
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Figure 5. Disc properties computed without torque truncation for the fiducial case with Mp = 107 M�, q = 0.1, Ṁext = 0.1 M� yr−1 and α = 0.1. Each
snapshot shows the surface density profiles � (solid lines), the viscous time-scale profile tν (dashed lines, matched to the right axis), the merger time tmerge

(horizontal dotted line, matched to the right axis) and the secondary position (marked with a black dot). The snapshots are taken at the same binary separations
of Fig. 3. Time evolution proceeds as follows: top left, top right, bottom left, bottom right.

used in Chang et al. (2010, without torque smoothing). Hence, we
obtain that the ratio between the inner disc masses computed in the
two cases is

M ′
d,in

M ′′
d,in

∝
(

R′
edge

R′′
edge

)7/2

. (20)

For the fiducial case that we are considering, we get (at the time
at which a gap has fully developed but the secondary has not yet

started migrating) R′
edge � 4.66 × 103rg and R′′

edge � 1.12 × 103rg

thus leading to

M ′
d,in

M ′′
d,in

≈ 150, (21)

comparable to the discrepancy that we found between our results
and those in Chang et al. (2010). We have verified that this ratio is
not strong function of time.
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4.2 Limitations of the present calculations

Some remarks should be made about the assumptions of the code,
and the validity of the results. In our code, the inner disc can only
accrete on the primary BH, forced by the GW-driven inspiral of the
secondary, thus neglecting any possible mechanism that is able to
drain the inner disc. Therefore, the estimates of the peak luminosity
that we report should be regarded as upper limits that hold in the
optimistic case in which there is no inner disc leakage, e.g. across
the gap or through jets.

Some processes that we are not considering in our simulations
might be responsible for a reduction of the inner disc mass in the
late phases of the binary shrinking. Indeed, given the 1D nature
of our code, by definition we are not able to describe off-plane or
not cylindrically-symmetric gas flows. However these flows, that
would require 2D or, better, 3D SPH simulations to be investigated,
might become relevant only in the innermost regions of the disc,
where the tidal interaction and the accretion on the primary cause a
significant heating of the gas, possibly allowing the disc to become
geometrically thick.

Another possible leakage of the inner disc may be due to a gas
flow across the gap, as showed by Baruteau et al. (2012). Gas
flow across the gap has been studied by Bryden et al. (1999) and
Artymowicz & Lubow (1996) and, more recently, by a variety of
authors (Shi et al. 2012; D’Orazio et al. 2013; Farris et al. 2014). In
general, since the intensity of the torque scales with q2, we expect
that a low-mass secondary is less efficient in producing a clear
gap, thus allowing a certain amount of gas to be funnelled through
the gap. As the secondary mass increases, the mass flow through
the gap decreases significantly, reaching a minimum value of the
order of 10 per cent of the unperturbed accretion rate for q ∼ 0.1
(D’Orazio et al. 2013). For even larger secondary masses, the cavity
is significantly deformed, becoming elliptical and allowing gas to
enter the cavity. Thus, the mass flow through the gap increases
with increasing secondary mass for q � 0.1. For the range of mass
ratios that we are interested in here (q ∼ 0.1–0.3), the leakage from
the outer to the inner disc might be as high as 40 per cent of the
unperturbed accretion rate, further enhancing the fossil disc mass
(D’Orazio et al. 2013). Note, however, that in most cases these
simulations, for numerical convenience, adopt very large values
for the disc aspect ratio (H/R ∼ 0.1), much larger than the values
obtained here (H/R ∼ 0.001).

Recent 3D magnetohydrodynamic (MHD) simulations by Shi
et al. (2012) suggest another mechanism that might favour an in-
crease in the inner disc mass through the gap. Indeed, they show
that in a highly ionized gas disc, where the magnetorotational in-
stability (MRI) can effectively induce angular momentum transport
through MHD turbulence, the gas flow across the gap results en-
hanced by more than one order of magnitude with respect to calcu-
lations that neglect the coupling between the gas and the magnetic
fields.

Finally, another limitation of the model comes from the fact
that the formulation of the problem as adopted here is strictly
valid only if the mass ratio q � 1. For larger mass ratios (pos-
sibly already for the q = 0.1 case discussed here), both the pri-
mary and the secondary will rotate around the common centre of
mass with an angular velocity that takes into account both the
primary and secondary mass. We have kept this simple formal-
ism for an easy comparison with the previous work by Chang
et al. (2010), but we note here that the detailed results might be
somewhat modified in 2D or 3D, especially for the largest values
of q.

5 C O N C L U S I O N S A N D O U T L O O K

In this work, we have revisited the problem of estimating the fossil
disc mass just prior to an SMBH merger in order to explain the
discrepancy among the contradictory results obtained by different
authors. While Armitage & Natarajan (2002) and Lodato et al.
(2009) predict large values of the inner disc mass at decoupling
(that thus result in powerful super-Eddington flares), Chang et al.
(2010) find values for the inner disc mass smaller by several orders
of magnitude (that therefore produce significantly less powerful
flares). These previous works consider very different scenarios for
the disc–binary system and a direct comparison of the estimates of
inner disc mass is not trivial.

In order to find the origin of the discrepancy, we have imple-
mented a 1D hydrodynamic code that solves the coupled evolution
of the disc and the binary in a self-consistent way. With our code
we have been able to reproduce the results of Armitage & Natarajan
(2002) and Lodato et al. (2009) with an extremely good agreement.
Then, we executed the simulations performed by Chang et al. (2010)
adopting their same initial configurations and parameters: we found
inner disc masses larger by up to three orders of magnitude than
those obtained by Chang et al. (2010). As discussed in Section 4,
we found that the origin of the discrepancy lies in the fact that for
mass ratios larger than 0.1 the usual analytic formula for the tidal
torque provides an unphysical contribution at large distances from
the satellite, resulting in an artificially wide gap, and therefore needs
to be smoothed out. In our simulations, we smooth the torque in
such a way to reproduce the correct gap sizes as found in 3D simula-
tions by Artymowicz & Lubow (1994). Differently from us, Chang
et al. (2010) do not perform the torque smoothing (Chang, private
communication) and thus obtain systematically reduced fossil disc
masses and peak luminosity.

It is worth remembering that these 1D computations neglect gas
streams that depart off the plane of the disc and that would re-
quire a more realistic 3D treatment. These effects might enhance
or decrease the actual luminosity during the merger. On the one
hand, for a given mass of the fossil disc, the analysis of Baruteau
et al. (2012) shows that up to 80 per cent of the inner disc mass
might leak out of the secondary orbit and escape accretion during
the GW-dominated inspiral. However, the limitations of such 2D
computations and the unclear dependence of this kind of leakage
on the disc–binary parameters require further investigations. On
the other hand, leakage from the outer to the inner disc during the
earlier disc-dominated phase would have the opposite effect of in-
creasing the fossil disc mass above what estimated here. Indeed, it
has been shown that MRI (Shi et al. 2012) and binary eccentricity
(Artymowicz & Lubow 1996) are effective in refilling the inner disc
through the gap, possibly ending with a further enhancement of the
accretion rate on the primary BH.

As a conclusion, taking our estimates as a lower limit to the fossil
disc mass, even if, as obtained by Baruteau et al. (2012) the inner
disc is depleted by around 80 per cent, we would still have a super-
Eddington flare in most cases, confirming that SMBH mergers are
particularly promising for observational purposes.
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