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ABSTRACT 

The theoretical basis behind the ability of constrained Cα-tetrasubstituted amino acids (CTAAs) 

to induce stable helical conformations has been studied through Replica Exchange Molecular 

Dynamics, Potential of Mean Force and Quantum Theory of Atoms In Molecules calculations on 

Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-NHMe peptide models. We found that the origin of helix 

stabilization by CTAAs can be ascribed to at least two complementary mechanisms limiting the 
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backbone conformational freedom: steric hindrance predominantly in the (+x,+y,-z) sector of a 

right-handed 3D Cartesian space, where the z axis coincides with the helical axis and the Cα of 

the CTAA lies on the +y axis (0,+y,0), and the establishment of additional and relatively strong 

C-H∙∙∙O interactions involving the CTAA. 

Introduction 

Many biological events are caused by protein-protein interactions (PPIs),
1
 often involving 

helical motifs.
2
 Much attention has been paid to the development of synthetic bioactive peptides 

targeting PPIs.
3-4

 A well-designed peptide can indeed show greater selectivity and specificity, 

and lower toxicity, than classical drug-like molecules.
5-7

 However, the use of peptides can be 

affected by drawbacks such as low bioavailability, metabolic degradation and poor 

conformational stability.
8
 To overcome these limitations, non-proteinogenic amino acids (AA) 

may be inserted in the sequence to provide peptides that are inherently stable to proteases and 

peptidases,
9
 and that fold into well-ordered secondary structures.

10-11
  

A widely exploited class of non-proteinogenic AAs is that of the Cα-tetrasubstituted AAs 

(CTAAs), which act as helix-stabilizers by limiting the conformational freedom of the peptide 

backbone.
5, 12-20

 Among these, the most studied are α-aminoisobutyric acid (Aib), which 

stabilizes α- or 310-helices depending on the peptide chain length,
21-23

 its higher homologues such 

as Cα,α-diethylglycine, found to stabilize an extended conformation known as the 2.05 helix,
15, 24

 

and cyclic derivatives such as 1-aminocyclopropane-1-carboxylic acid (Ac3c) and 1-

aminocyclopentane-1-carboxylic acid (Ac5c), which stabilize helices and other turn-like 

conformations.
25-27

 Moreover, with chiral CTAAs, the stability of helical secondary structures 

depends on the configuration at Cα of the CTAA relative to the screw-sense of the helix. Thus, 
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chiral CTAAs may induce a preferred screw-sense preference in an otherwise achiral peptide 

chain.
10, 28-42

 

Although different CTAAs have been exploited in the preparation of stable foldamers,
10, 30, 43

 

and new CTAAs are constantly being developed,
44-48

 intuitive descriptors that could be used to 

predict how a given CTAA can drive peptide folding, or to compare different CTAAs in terms of 

stabilization efficacy, are, to our knowledge, not yet defined. 

In this article we discuss the theoretical investigation of a selection of chiral constrained 

CTAAs (Figure 1), some of them experimentally shown to be helix-stabilizers,
10

 which aims to 

explain, at an atomistic level, the reason for their conformational behavior. 

This objective was pursued by using Replica Exchange Molecular Dynamics (REMD),
49

 which 

reproduces the experimental folding behavior of several peptides of small to medium length,
50-52

 

and Quantum Theory of Atom in Molecules (QTAIM) which, by locating bond critical points 

(BCP) and corresponding bond paths (BP),
53

 allows a quantitative characterization of non-

bonded interactions, found to be critical in the stabilization of secondary structures.
54-58

 

We find that the insertion of CTAAs in Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-NHMe model 

peptides, a system used in similar studies previously reported,
10, 59

 limits the backbone 

conformational freedom through at least two complementary mechanisms: 1) steric hindrance 

predominantly in the (+x,+y,-z) sector of a right-handed 3D Cartesian space (Figure 2), where 

the +z→-z axis coincides with the N→C helical axis and the Cα of the CTAA lies on the +y axis 

(0,+y,0) and 2) the generation of additional intramolecular C-H∙∙∙O interactions. 



This document is the Accepted Manuscript version of a Published Work that appeared in final 

form in 

The Journal of Physical Chemistry B, copyright © American Chemical Society after peer review 

and technical editing by the publisher. 

To access the final edited and published work see http://dx.doi.org/10.1021/jp510775e 

 4 

 

Figure 1. A selection of CTAAs reported by literature.
10, 47-48, 60-62

 

 

Figure 2. 3D Cartesian space used to represent peptides containing CTAAs. The most 

representative geometry from cluster analysis of Ac-L-Ala-(1R,2S,4R)-IIIb-L-Ala-Aib-L-Ala-

NHMe is shown; c.o.m. = center of mass. 

Methods 

REMD simulations. CTAAs were designed using MOE,
63

 capped respectively with an acetyl 

(Ac) and a NHMe group at the N- and C-termini and submitted to a “Low Mode” conformational 

search (MMFF94x force field, Born solvation, iteration limit = 40000, MM iteration limit = 

2500, rejection limit = 500). The two lowest energy conformations having φ and ψ dihedrals 
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matching a right- or a left-handed helix (φ = ±60°, ψ = ±45°) were selected to derive partial 

charges with the R.E.D.IV software.
64

 Each geometry was optimized at the HF/6-31G(d) level 

and two different spatial orientations were used to derive orientation- and conformation-

independent RESP-A1 charges. Charge restraints of −0.4157, 0.2719, 0.5973 and −0.5679 were 

imposed to the backbone nitrogen, hydrogen, carbonyl carbon and oxygen, respectively, as 

observed for standard AAs in the AMBER ff99SB force field.
65

 

REMD simulations were carried out on each Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-NHMe 

peptide by starting from an extended conformation (ψ=φ=ω= 180°). The simulation protocol was 

previously optimized to reproduce the X-ray conformation of Boc-L-Ala-Aib-L-Ala-Aib-Aib-

OMe
66

 and further validated through the reproduction of both NMR and X-ray geometries of 

related CTAA containing pentapeptides.
10, 59

 It is known that several polypeptide force fields are 

affected by a certain degree of helical propensity.
67-70

 Thus, we preliminarily evaluated the 

ability of different force field and solvent model combinations to reproduce the folding of a 

selection of helical, turn-like and random coil peptides, made by 5-15 residues, and ff99SB 

coupled with the implicit solvent model by Onufriev, Bashford, and Case (igb = 5).
71

 provided 

the best agreement with the available experimental data (results are available from the authors 

upon request). Our impression is that, with this method, the overall helical content is slightly 

overestimated, but this error, being systematic, should not affect the comparison of different 

CTAAs. Briefly, 12 replicas were run at temperatures from 260.00 to 658.94 K, using the 

ff99SB/igb = 5 force field and solvent model combination. The protocol details, given 

elsewhere,
10

 were modified in the present study only in the simulation length, which was raised 

up to 250 ns per replica, for a total of 3 μs of simulation for each peptide. REMD simulations 

were conducted with the pmemd module of the Amber12 suite.
72

 The trajectories were extracted 
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at 308.53 K, unless stated otherwise. The simulation convergence was assessed on the basis of 

cluster analyses performed at 50-100, 100-150, 150-200 and 200-250 ns time intervals. We 

considered a simulation converged when the standard deviation of the main cluster population 

(σpop%), averaged with respect to the different intervals, was below 5%. Cluster analyses were 

performed with ptraj by using the average-linkage algorithm and by sampling one every four 

frames.
72

 The pairwise mass-weighted root mean squared displacement (RMSD) on Cα was used 

as a metric and a total of five clusters were requested on the basis of pseudo-F statistics and 

SSR/SST ratio.
73

 Secondary structure analyses were performed by DSSP
74

 on the 50-250 ns 

trajectories every Δt = 50 ns, coherently with cluster analyses, using the ptraj “secstruct” 

command. H-bonds were analyzed with VMD 1.9.1
75

 over the whole 250 ns trajectory, with a 

donor−acceptor distance threshold of 4.0 Å and an angle cutoff of 30°. Only H-bonds with an 

occupancy (occ%) greater than 5% were considered. 

2D and 3D Potentials of Mean Force (PMF) were obtained with Amber software coupled with 

the Weighted Histogram Analysis Method (WHAM) and WHAM-2d,
76

 respectively. PMF were 

calculated over the 250 ns trajectory by setting a histogram limit of ±180°, 100 bins and a 

tolerance of 0.01. Selected dihedrals (φ1, φ2, ψ2 and ψ3, accordingly to Figure 2) were obtained 

from the REMD trajectories at 260, 283, 308 and 335 K. 

QTAIM calculations. Selected geometries were fully optimized with Gaussian09
77

 at the 

MPWB95/6-31+G(d,p) level,
78

 a method that had proved reliable in previous studies from our 

group,
79

 with the CPCM solvation model for water.
80

 Vibrational analyses were performed at the 

same level to confirm optimized geometries as a minimum (no imaginary frequencies observed). 

QTAIM calculations were performed with AIM2000 on the obtained wave functions.
81

 The 

maximum number of Newton iterations and the step-size were set to 400 and 0.5, respectively, 
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while other parameters were left as default. N-H∙∙∙O, C-H∙∙∙O and backbone N∙∙∙O BCPs were 

analyzed and the electronic density (ρ(rc)), the sign of the Laplacian (∇2(𝑟𝑐)), and the ellipticity 

(ε) were used to characterize the BCP network in terms of strength, type and stability of each 

BCP. BCPs with ε > 1 were considered as unstable and consequently discarded. 

Results and Discussion 

Conformational analysis. Table 1 reports results from cluster and DSSP analyses, while 

Table 2 shows results of the H-bond analysis of the REMD trajectories of peptides 1-15.  

Table 1. Average Helical Population from Cluster Analysis (poph%) and Average DSSP Helical 

Content (h%)
a
 Obtained from the REMD Trajectories of Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-

NHMe Peptides 1-15.
b
 Differences Between Peptides Containing CTAAs of Opposite 

Stereochemistry (Δpoph% and Δh%) are also Reported. 

# (R)-CTAAs
c
 poph% h% # (S)-CTAA

c
 poph% h% Δpoph% Δh% 

1 (R)-I
10

 43.2±3.3 46.7±1.0 8 (S)-I n.a.
d
 23.1±1.2 0.5 23.5 

2 (R)-II
47

 85.1±0.9 85.8±0.6 9 (S)-II 76.6±3.1 68.1±1.7 8.5 17.7 

3 (1R,2R,4R)-IIIa
e
 73.3±2.0 80.0±0.2 10 (1S,2S,4S)-IIIa

e
 72.2±1.7 73.6±1.8 1.1 6.4 

4 (1S,2R,4S)-IIIb
e
 79.7±1.5 82.0±0.7 11 (1R,2S,4R)-IIIb

e
 90.4±1.8 90.5±0.4 -20.3 -8.5 

5 (1S,2R,4R)-IV 61.9±2.6 56.5±1.4 12 (1R,2S,4S)-IV
f
 30.6±2.7

e
 35.8±1.1 31.3 20.7 

6 (1R,2R,4R)-V 82.5±1.6 82.9±0.5 13 (1S,2S,4S)-V 84.8±2.1 69.0±0.8 -2.3 +13.9 

7 (R)-VI 83.1±2.4 84.1±1.3 14 (S)-VI 81.6±1.8 73.5±1.1 1.5 10.6 

a 
Calculated as the sum of 310- and α-helix content of CTAA, averaged with respect to the 50-

100, 100-150, 150-200 and 200-250 ns time intervals. 
b 

The poph% and h% values obtained from 

the REMD trajectory of the reference Ac-Ala-Aib-Ala-Aib-AlaNHMe peptide 15 are 51.3±4.9 

and 51.8±1.2, respectively. 
c 

The stereochemical descriptor refers to the Cα configuration. 
d 

The 

representative geometry of the most populated cluster does not correspond to a helix. 
e 

Experimental IIIa:IIIb ratio = 7:1.
12, 48

 
f 

The representative geometry of the most populated 

cluster corresponds to a left-handed helix. 
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Table 2. H-bond Analysis of REMD Trajectories of Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-NHMe 

Peptides 1-15 (donor: N-H; acceptor: C=O).
a
  

# CTAA donor acceptor occ%  # CTAA donor acceptor occ% 

1 (R)-I Aib4 Ala1 39.00  8 (S)-I Aib4 Ala Aib4 

  Ala5 I 12.94    Ala5 I Ala5 

  Ala5 Ala1 7.11      n.d.
b
 

2 (R)-II Aib4 Ala1 69.72  9 (S)-II Aib4 Ala1 62.91 

  Ala5 II 57.57    Ala5 II 52.06 

3 (1R,2R,4R)-IIIa Aib4 Ala1 64.15  10 (1S,2S,4S)-IIIa Aib4 Ala1 60.07 

  Ala5 IIIa 47.11    Ala5 IIIa 51.79 

4 (1S,2R,4S)-IIIb Aib4 Ala1 63.84   11 (1R,2S,4R)-IIIb Aib4 Ala1 72.81 

  Ala5 IIIb 58.91    Ala5 IIIb  65.69 

5 (1S,2R,4R)-IV Aib4 Ala1 41.55  12 (1R,2S,4S)-IV Aib4 Ala1 31.89 

  Ala5 IV 25.30    Ala5 IV 38.40 

  Ala5 Ala1 11.20      n.d.
b
 

6 (1R,2R,4R)-V Aib4 Ala1 65.78  13 (1S,2S,4S)-V Aib4 Ala1 62.08 

  Ala5 V 55.69    Ala5 V 60.69 

7 (R)-VI Aib4 Ala1  70.17  14 (S)-VI Aib4 Ala1 72.60 

  Ala5 VI 60.13    Ala5 VI 54.16 

a
The reference H-bonds occ% obtained from the REMD trajectory of the Ac-Ala-Aib-Ala-Aib-

AlaNHMe peptide 15 are 4→1 45.01%, 5→2 26.55% and 5→1 6.82%.
b
 Not detected. 

The average population of helical geometries (poph%) and the DSSP helical content (h%), as 

well as φ and ψ dihedrals of the most representative structures obtained from cluster analysis 

(Table S1, S.I.), show that the considered peptides fold into a right-handed 310-helix, except for 8 

and 12. The former peptide, containing (S)-I (Figure 1), was previously shown by circular 

dichroism (CD), recorded in MeOH, and NMR experiments, performed in CD3CN solution, not 

to fold into well-ordered secondary structures.
10

 The latter peptide contains (1R,2S,4S)-IV and, 
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interestingly, is the only one showing a left-handed helix as the most populated cluster (poph% = 

30.6±2.7). However, a minor amount of left-handed helix can also be observed for peptides 15, 1 

and 5 (CTAA = Aib, (R)-I and (1S,2R,4R)-IV, respectively). 

Accordingly to cluster and DSSP analyses, the highest helical structuration is observed for 

peptides 11 (CTAA = (1R,2S,4R)-IIIb), 2 (CTAA = (R)-II), 7 (CTAA = (R)-VI) and 6 (CTAA = 

(1R,2R,4R)-V), all having poph% and h% values above 80%. It can be noted that, among these 

CTAAs, (1R,2S,4R)-IIIb is the only one with an S configuration at Cα. Indeed, similarly to what 

theoretically predicted and experimentally observed for I,
10

 the stereochemistry at Cα seems to 

influence, although to different extents, the ability of each CTAA to stabilize helical secondary 

structures and in all examples a “eutomer” (the enantiomer with the highest stabilization effect) 

and a “distomer” (the enantiomer with the lowest stabilization effect) can be observed, a 

classification which, however, depends on the stereochemistry of the other AA present in the 

chain. 

A significant effect of Cα stereochemistry on both poph% and h% was found for IV (Δpop% = 

31.3; Δh% = 20.7), characterized by the norbornane core, with the (1S,2R,4R) enantiomer being 

the eutomer. An R configuration at Cα of CTAAs also leads to a higher helical propensity in 

peptides containing I, II, V, VI and IIIa, this last being the CTAA with the lowest difference 

among opposite stereochemical configurations (Δpop% = 1.1; Δh% = 6.4). H-bond analyses 

(Table 2), in accordance with cluster and DSSP analyses, generally showed stable i+3 → i H-

bonds typical of the 310-helix, with occupancies of 50-70% of the total simulation time. Only the 

trajectories of peptides 1, 5 and 15, based on (R)-I, (1S,2R,4R)-IV and Aib, respectively, showed 

the presence of a i+4 → i H-bond, typical of α-helices, although with limited occupancies 

(7.11%, 11.2% and 6.82%, respectively). Surprisingly, the behavior of the norbornane 
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(1S,2R,4R)-IV is significantly different from that of the highly related norbornene (1R,2R,4R)-V 

and a possible reason will be given later. 

These observations are supported by 3D-PMF analyses, which provide a clear indication on the 

statistical accessibility of selected dihedral pairs in the REMD trajectory. 3D-PMF were 

computed for φ1-ψ2 and φ2-ψ3 dihedral pairs (Figure 3 and S1, S.I.), belonging to the CTAA and 

CTAA+1 residues.  

In the PMF profiles we generally observed a global minimum corresponding to a right-handed 

helix, and a local minimum corresponding to a left-handed helix. Among the CTAAs considered, 

(1R,2R,4R)-V and (1R,2S,4R)-IIIb appear to be the most selective toward a right-handed helix. 

Indeed, for peptides 1, 3, 5 and 15, PMF(φ1-ψ2) profiles showed the presence of additional local 

minima, corresponding to β-strands or polyproline helices (Figure 3). These geometries appear to 

be statistically more accessible for peptide 15, having Aib at position 2, followed by 5 

((1S,2R,4R)-IV), 3 ((1R,2R,4R)-IIIa) and 1 ((R)-I). Peptide 2, containing the indane CTAA (R)-

II, shows an additional minimum in a region that does not correspond to a well-defined 

secondary structure (-130 ≤ φ1 ≤ -180 deg.; -60 ≤ ψ2≤ +30 deg.) while peptide 7, containing the 

tetrahydrocarbazole CTAA (R)-VI, shows only the minima corresponding to right- and left-

handed helices, but with a ΔE between the two that is apparently lower than that observed for 

peptides 6 and 11. Similar findings were shown by 3D-PMF(φ2-ψ3) profiles (Figure S1, S.I.), 

although the minimum corresponding to the right-handed helix has, for all the peptides, a larger 

basin than that observed for the φ1-ψ2 dihedral pair. 
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Figure 3. PMF profiles (kcal/mol) as a function of φ1-ψ2 dihedral pairs obtained from the REMD 

simulation of peptides 1-3, 5-7, 11 and 15 containing the eutomer CTAAs (R)-I, (R)-II, 

(1R,2R,4R)-IIIa, (1S,2R,4R)-IV, (1R,2R,4R)-V, (R)-VI, (1R,2S,4R)-IIIb and Aib, respectively. 
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Figure 4. 2D-PMF profiles from the analyses of 260, 283, 308 and 335 K trajectories of peptides 

containing Aib and the CTAA eutomers. Dihedrals associated with PMFs higher than 6 kcal/mol 

were not sampled at the selected temperatures. 

2D-PMF were also evaluated to obtain a more detailed description of the ΔE associated with 

the rotation of individual dihedrals (Figure 4). In 2D-PMF(φ1) and (φ2) profiles we observed that 

the energy difference between the two minima, corresponding to the right- and left-handed 

helices, (ΔEM) is correlated with the h% and poph% values obtained from DSSP and cluster 

analyses (Table 1) and used here as helix-stabilization indexes. However, the energy barrier 

between the two minima (ΔEM
‡
) is quite high, so their interconversion may be unlikely to occur 
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at the temperatures and timescale under consideration, provided that this particular reaction 

coordinate is kinetically relevant. 

Conversely, 2D-PMF(ψ2) and (ψ3) profiles show a ΔEM
‡
 which can be easily overcome. 

Interestingly, in the 2D-PMF(ψ3) profiles, both the ΔEM and ΔEM
‡
 values appear to be 

proportional to h% and poph% (Table 1 and Figure 4). Moreover, a relatively low barrier for the 

helix/β-strand conformational switch can be observed only for peptides containing, at position 2, 

Aib, (R)-I or (1S,2R,4R)-IV, suggesting a lower helix-stabilization capability of those CTAAs, 

compared with the others under discussion. 

It should be noted that the peptide model used in the present study, which contains Aib at 

position 4, was chosen to allow a direct comparison of theoretical results with the previously 

reported experimental data.
10

 However, to assess if the relative helical propensity of CTAAs is 

influenced by Aib, we also simulated the behavior of an L-Ala pentapeptide substituted at the 

central position 3 by (R)-I or (1R,2R,4R)-V, selected as representatives of the least and the most 

performing CTAAs, respectively. 

Table 3. DSSP Helix Content (h%)
a
 and H-bond Analyses of 100 ns REMD Trajectories of Ac-L-

Ala2-CTAA-L-Ala2-NHMe Pentapeptides 16-17. 

    H-Bond  

# CTAA h% donor acceptor occ% 

16 (R)-I 42.9±1.4 Ala4 Ala1 32.04 

   Ala5 Ala2 35.85 

   Ala5 Ala1 7.09 

17 (1R,2R,4R)-V 81.9±0.4 Ala4 Ala1 38.81 

   Ala5 Ala2 60.32 

   Ala5 Ala1 5.61 
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a
 Calculated as the sum of 310- and α-helix content of CTAA, averaged with respect to the 25-

50, 50-75, 75-100 ns time intervals.
 

As shown by results of DSSP and H-bond analyses reported in Table 3, both CTAAs maintain 

their ability to stabilize helical secondary structures and, more importantly, their hierarchy in 

terms of helical propensity is also respected. 

Mechanism of helix stabilization. Although PMF analyses provide valuable insights into the 

folding preferences of peptides containing CTAAs, they do not explain the mechanism of 

secondary structure stabilization. Compared to natural AAs, all CTAAs are characterized by an 

additional alkyl group at Cα that is responsible of the limitation of φ1 conformational freedom, 

but this does not explain the differences in conformational preference among related CTAAs.
15

 

The preference of some natural AAs for helical secondary structures have been suggested to be 

due to side-chain entropic and steric factors,
82-84

 as well as the ability to stabilize helical H-bond 

networks.
55, 85-90

 Similar reasons may also contribute to the helix stabilization by CTAAs. 

To obtain preliminary information on the structure-“activity” relationships of CTAAs 

(“activity” implying the ability to induce or stabilize helical conformations), we evaluated the 

effect of steric hindrance through a 3D quantitative structure-property relationship (QSPR) 

analysis using the PHASE software.
91-92

 This is a well-known medicinal chemistry tool generally 

used to derive, on the basis of a set of compounds with known activity data, predictive 3D-

pharmacophore models.
93

  

We aligned ideal models of helix conformations for peptides 1-7, 9-11, 13-15 (peptides 8 and 

12 were excluded since a right-handed helix conformation was not observed by cluster analysis) 

and performed a 3D-QSPR analysis using h% from DSSP as the “activity” values (Table S2, 

S.I.). Results were visualized through a 3D plot showing as blue cubes or red cubes the regions 
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where hydrophobic substituents positively or negatively affect the helix content, respectively 

(Figure 5). 

 

Figure 5. 3D-QSPR regions obtained by PHASE analysis of peptides 1-7, 9-11,13-15. The blue 

and red cubes indicate regions where a hydrophobic group increases or decreases, respectively, 

the helix content. Peptides 1 (purple carbons), 6 (green carbons) and 11 (orange carbons) are 

shown as a reference. 

A positive contribution to the helix stabilization can be exerted by the presence of hydrophobic 

substituents in the (+x,+y,±z) sector of the right-handed 3D Cartesian space, even though the 

effect seems to be more evident in the (+x,+y,-z) area, possibly due to the nature of the model 

peptides under consideration which bear the CTAA at position 2. Steric hindrance that develops 

along the -z axis should in fact be relevant in limiting the rotational freedom of ψ2, as evidenced 

by PMF analyses (Figure 5), and the effect on the downstream dihedrals can be a consequence of 

this. Indeed, the best performing (1R,2S,4R)-IIIb has its aryl group in the (+x,+y,-z) region, 
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while, its enantiomer, (1S,2R,4S)-IIIb, which has a lower helix stabilizing capability, points the 

aryl group toward the (-x,+y,-z) sector. 

In addition, (1R,2R,4R)-IIIa, whose aryl group lies in the (-x,+y,+z) region, has h% and poph% 

lower than (1R,2S,4R)-IIIb (Table 1) as well as reduced ΔEM
‡ 

and ΔEM in the 2D-PMF profiles 

(Figure 4), although it is still well performing. Since the plot shown in Figure 5 suggests that 

steric hindrance in the (-x,+y,+z) region has limited effects, the lower helix-stabilizing ability of 

(1R,2R,4R)-IIIa could be due to its reduced steric hindrance in the (+x,+y,-z) region. 

To confirm this hypothesis we evaluated the behavior of a modified CTAA, named 

(1R,2R,4R)-IIIawr (Figure S4, S.I.), where the aromatic ring of the benzoxanorbornene moiety 

of (1R,2R,4R)-IIIa was deleted. As expected, the peptide containing the modified CTAA showed 

h% and poph% equivalent to those of peptide 3 (Tables 1 and S4, S.I.). The 2D-PMF as a function 

of φ1, ψ2, φ2 and ψ3 are comparable, except for a slight difference of 0.5 kcal/mol in ΔEM in 

PMF(φ1) and PMF(ψ2) (see Figure S5, S.I.). 

The same modification was performed to (1R,2S,4R)-IIIb, obtaining (1R,2S,4R)-IIIbwr 

(FigureS4, S.I.). As expected, the model peptide maintained a right-handed 310-helical 

conformation. However, its poph% and h% were respectively 6 and 4% lower than those of 

peptide 11 (Tables 1 and S4, S.I.). Moreover, comparing their 2D-PMF(φ1) and 2D-PMF(ψ) 

profiles, we observed a slight lowering of ΔEM
 
and a more significant lowering in the 2D-

PMF(φ1) ΔEM
‡
 (Figure S6, S.I.). Actually, the loss in helix-stabilization power of (1R,2S,4R)-

IIIbwr compared to (1R,2S,4R)-IIIb was lower than expected, but this can be explained by 

observing that the HC=CH bridge of (1R,2S,4R)-IIIbwr is still positioned in the (+x,+y,-z) 

sector and the oxa bridge points towards (+x,+y,+z) (Figure 6A). 
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Figure 6. A. Superimposed right-handed 310-helices of peptides 3 ((1R,2R,4R,)-IIIa; pink) and 

Ala-(1R,2S,4R)-IIIbwr-Ala-Aib-Ala (ochre). B. Superimposed right-handed 310-helices of 

peptides 11 ((1R,2S,4R)-IIIb; orange) and Ala-(1R,2S,4R)-Vbdm-Ala-Aib-Ala (purple). 

We then evaluated the role of the oxa or methylene bridges by comparing the folding 

behaviors of model peptides containing (1R,2S,4R)-Vb (Figure S5, S.I.), which is the non-

isolated regioisomer of (1R,2S,4R)-V,
61

 and the parent (1R,2S,4R)-IIIbwr. We only observed 

minor differences in cluster and DSSP analyses (Δpoph% = 1.4 and Δh% = 2.6, both in favor of 

(1R,2S,4R)-IIIbwr; see Tables S3-4, S.I.), as well as in the 2D-PMF(φ) and (ψ) analyses which 

also showed similar profiles, except for an increased ΔEM
‡
 observed in 2D-PMF(φ1) for 

(1R,2S,4R)-Vb (Figure S7, S.I.), suggesting that this CTAA might disfavor a right-to-left helix 

conversion.  

As a countercheck, we replaced the oxygen bridge in (1R,2S,4R)-IIIb by a –CH2- group, 

obtaining (1R,2S,4R)-IIIbmb (Figure S4). In this case also, we observed significant differences 

neither in cluster and DSSP analyses of the two model peptides (Δpoph%(IIIb-IIIbmb) = -0.5; Δh%(IIIb-

IIIbmb) = 1.7; see Tables 1 and S4, S.I.), nor in 2D-PMF(φ) and (ψ) profiles (Figure S8), so we can 

conclude that the oxa bridge in the III family seems not to play a relevant role in helix-

stabilization. 
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We then investigated whether the positive contribution to helix stabilization of the aryl group 

in IIIb was due to its aromatic nature or merely due to a steric effect. We compared the folding 

behavior of peptide 11, containing (1R,2S,4R)-IIIb, to that of a model peptide containing the 

modified CTAA (1R,2S,4R)-Vbdm (Figure S4, S.I.), having a methyl group at C5 and C6. 

Cluster and DSSP analyses showed an improvement of about 7% in the helical content of 

(1R,2S,4R)-Vbdm over (1R,2S,4R)-Vb (Tables 1 and S4), with the former getting close to the 

poph% and h% values of (1R,2S,4R)-IIIb. We also observed that the PMF profiles of (1R,2S,4R)-

Vbdm and (1R,2S,4R)-IIIb are closely related, although the former seems to have even more 

limited conformational freedom (Figure S9, S.I.) that might be ascribed to higher steric 

hindrance parallel to the z axis (Figure 6B). 

(R)-VI is also a strong helix stabilizer, with h% and poph% about 5% lower than those of 

(1R,2S,4R)-IIIb (Table 1). The superimposed right-handed 310-helices of peptides 2 and 11 

(Figure 7A and C) show that the saturated ring of the tetrahydrocarbazole moiety of (R)-VI is 

located in the (+x,+y,-z) area, but the rest of the group lies in the (-x,+y,-z) sector. Indeed, 2D-

PMF profiles reproduced those of (1R,2S,4R,)-IIIb, but with lower ΔEM and ΔEM
‡
 and increased 

propensity to the β-strand region, as shown by the PMF(ψ3) profile (Figure 4). The behavior of 

peptide 4, having poph% and h% of about 10% lower than 11, can also be due to the positioning of 

its benzoxanorbornene core in the (-x,+y,-z) sector (Figure 7). 
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Figure 7. Front (A, B) and top (C, D) views of superimposed right-handed 310-helices of 

peptides 7 ((R)-VI; green), 11 ((1R,2S,4R,)-IIIb; orange) and 4 ((1S,2R,4S)-IIIb;magenta). 

Although steric hindrance is undoubtedly relevant in the helix-stabilization capability of 

CTAAs, it does not explain the similar behavior of structurally unrelated CTAAs, such as (R)-

VI, (R)-II and (1R,2R,4R)-V (h% =84.1, 85.8 and 82.9%, respectively) as well as the different 

stabilizing effect predicted for related CTAAs, such as (1S,2R,4R)-IV and (1R,2R,4R)-V (h% = 

56.5 and 82.9, respectively).  

Indeed, the similarly performing (R)-II, (1R,2R,4R)-V and (R)-VI (Table 1 and Figure S10, 

S.I.) have their bulky groups in different regions of Cartesian space, with only (R)-VI partially 

lying in the (+x,+y,-z) sector. Conversely, the norbornene moiety of (1R,2R,4R)-V is located in 

the (-x,+y,+z) area, which does not seem to affect the helix stabilization, and the indane moiety 

of (R)-II lies on the +y axis. 
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We hypothesized that these results could be due to differences in the intramolecular H-bond 

networks, as observed for some natural AAs,
55, 57

 so we employed QTAIM calculations to find 

evidence for such differences. 

For all the peptides considered here, the BCP network comprised the helical i+3 → i N-H∙∙∙O 

BCPs having ρ(rc) in the typical H-bond range (0.002-0.022 a.u.)
94-95

, a positive ∇2(𝑟𝑐), meaning 

that the interaction is mainly electrostatic, and a low ε, indicating that H-bonds are stable. We 

observed Cβ-H∙∙∙O i+3 → i BCPs, also occurring in natural peptides,
55, 57

 with ρ(rc) between 

0.003-0.009 a.u., which is about one half of the electron density of a typical N-H∙∙∙O BCP 

(Tables S6-23, S.I.). Moreover, we observed an additional Aib4 → Ala3 Cβ-H∙∙∙O BCP (Figure 

7) with a 𝜌(𝑟𝑐) = 0.011-0.012 a.u., rather a high value for a CH∙∙∙O interaction involving a 

hydrogen bound to an sp
3
 carbon, which is nonetheless also observable in the extended 

conformations (Table S9). 

Other peculiarities in the QTAIM analyses performed on the right-handed 310-helices of 

peptides 2, 6 and 7 (containing (R)-II, (1R,2R,4R)-V and (R)-VI at the 2 position, respectively) 

gave a good explanation of their different behaviors (Tables S6,8,10, S.I.). Indeed, peptide 7 

showed only the typical BCP network of helical secondary structures, with a ∑ 𝜌 (𝑟𝑐) = 0.1002 

a.u.. Conversely, in peptide 6 we noticed the presence of an additional intra-residue C-H∙∙∙O 

BCP, involving the methylene C7-H and the backbone carbonyl group of (1R,2R,4R)-V, with a 

𝜌(𝑟𝑐) = 0.0135 a.u., which is in the range of strong H-bonds (Figure 8 and Table S8). 
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Figure 8. (A) Ball and stick representation and (B) QTAIM molecular graph of the optimized 

right-handed 310-helical conformation of Ac-Ala-(1R,2R,4R)-V-Ala-Aib-Ala-NHMe. The red 

arrow indicates the intra-residue C-H∙∙∙O. 

Such an unconventional H-bond is able to constrain the ψ2 dihedral to a value compatible with 

a right-handed helix, thus justifying the stability of the helix secondary structure of peptide 6. 

Moreover, this intramolecular C-H∙∙∙O interaction is also evident in the X-ray geometry of an 

Ac-L-Ala-CTAA-L-Ala-Aib-L-Ala-NH2 model peptide containing,
59

 at the 2-position, a recently 

synthetized β-benzylsulfanylnorbornene AA (Figure S11, S.I.),
96

 providing further validation to 

our theoretical predictions. Furthermore, a Δ∑ 𝜌 (𝑟𝑐) = 0.0153 a.u. was found between peptides 6 
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and 7, a difference which is comparable to the 𝜌(𝑟𝑐) of a single H-bond, thus suggesting a 

stronger ability of (1R,2R,4R)-V to strengthen the H-bond network. Indeed, it is known that the 

Gibbs free energy of folding of a protein is of the order of magnitude of a single H-bond.
97

 

This hypothesis can also explain the worse performance of (1R,2R,4R)-IIIa compared to 

(1R,2R,4R)-V (Δpoph% ~ 10% and Δh% ~3%), although both CTAAs exert steric hindrance in 

the same sector. Indeed, in peptide 3 we did not observe the intra-residue C-H∙∙∙O BCP and the 

Δ∑ 𝜌 (𝑟𝑐) between 3 and 6 resulted of 0.0131 a.u. in favor of 6. Similar results were obtained by 

comparing peptide 6 with that containing (1R,2R,4R)-IIIawr (Tables S8,15, S.I.). 

As a further test, we studied the folding behavior of (1R,2R,4R)-IIIamb, where the oxygen in 

position 7 of the (1R,2R,4R)-IIIa benzoxanorbornene core was substituted by a methylene group 

(Figure S4). As expected, the ∑ 𝜌 (𝑟𝑐) of the obtained peptide model resulted equivalent to that 

of peptide 6 (0.1166 a.u. and 0.1155 a.u., respectively) and an intra-CTAA C-H∙∙∙O BCP with 

𝜌(𝑟𝑐) = 0.0137 a.u. was observed (Table S19). This led to an increase in both poph% and helix% 

of ~10% and 3%, respectively, compared to (1R,2R,4R)-IIIa (Tables 1 and S4-5, S.I.). Thus, this 

modified CTAA proved to be a helix stabilizer as strong as (1R,2R,4R)-V.  

Regarding peptide 2, QTAIM analysis showed a ∑ 𝜌 (𝑟𝑐) = 0.1150 a.u. and the presence of a 

peculiar i+1→i C-H∙∙∙O BCP with 𝜌(𝑟𝑐) = 0.0110 a.u. (Table S6), between C7-H of the aromatic 

ring of (R)-II and the carbonyl group of Ala1. Thus, the helix-stabilizing power of (R)-II is 

probably due to a combination of its steric hindrance and the additional C-H∙∙∙O H-bond. 

However, neither of the two features are fully matched, because the (R)-II steric hindrance is 

principally located in the (+x,+y,0) region while the 𝜌(𝑟𝑐) of its particular C-H∙∙∙O BCP is 

slightly lower than that of the intra-CTAA BCP observed for (1R,2R,4R)-V.  
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Moreover, the PMF(φ1) and PMF(ψ2) profiles of peptides 6 and 7 (containing (1R,2R,4R)-V 

and (R)-II, respectively) are quite different, probably due to the ability of (1R,2R,4R)-V to form 

the intra-CTAA C-H∙∙∙O interaction, while (R)-II is involved only in a C-H∙∙∙O interaction with 

Ala1, allowing wider conformational freedom to the CTAA backbone. 

The comparison of (1S,2R,4R)-IV and (1R,2R,4R)-V required the study of additional 

secondary structures. Indeed, despite their apparent structural similarity, peptide 5 showed 

Δpoph% and Δh% of about 20% lower than 6. Moreover, we observed that the (1R,2S,4S)-IV 

enantiomer led peptide 12 to a left-handed helix (poph% = 30.6%), while a right-handed 

conformation was obtained for peptide 13, containing (1S,2S,4S)-V (Table 1). 

From the 2D-PMF(φ1) and 2D-PMF(φ2) profiles of peptides 5 and 6 (Figure S3, S.I.) we 

noticed that ΔEM was about 1 and 1.5 kcal/mol lower, respectively, for the former. In addition, 

both PMF(ψ2) and (ψ3) profiles of 5 indicated a reduction in ΔEM and ΔEM
‡
 between the minima 

corresponding to helical conformations and in ΔE
‡
 between the helical and extended 

conformations (Figure 4 and S3). In particular, the ψ3 dihedral was energetically accessible for 

the whole ±180 deg. interval. 

Consequently, the reasons of the (1S,2R,4R)-IV lower helix-stabilization power can be 

attributed to a reduced stabilization of the right-handed helix and/or to a reduced destabilization 

of the extended conformation, compared to the related (1R,2R,4R)-V 

QTAIM analyses on the right-handed 310-helix of peptides 5 and 6 showed qualitatively 

similar BCP networks, comprising the i+3→i N-H∙∙∙O and i+3→i Cβ-H∙∙∙O BCPs typical of 310-

helices and the characteristic intra-residue interaction between C7-H and the carbonyl group. 

However, the BCP network of 6 turned out to be stronger than that of 5, with a Δ∑ 𝜌 (𝑟𝑐) ~ 
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0.0030 a.u., a difference which has been reported as significant to explain the different helix-

stabilization propensity of natural AAs (Tables S8-9, S.I.).
55, 97

 

Conversely, a ∑ 𝜌 (𝑟𝑐) = 0.0073 a.u. was observed between the extended conformations of 5 

and 6, in favor of the former peptide, since the BCP pattern of peptide 6 lacks the C-H∙∙∙O 

interaction between C5-H and Ala1, which is instead observable for (1S,2R,4R)-IV (Figure S12, 

S.I.). As a consequence, the extended conformation of peptide 5 is relatively more accessible 

than that of 6. Furthermore, it should be emphasized that, although the ∑ 𝜌 (𝑟𝑐) for the extended 

conformations are greater than those for the helical ones, the higher ε values of the BCPs in the 

extended structures show that the observed interactions are less stable than those in the helices 

(Tables S8-9, S.I.), confirming a preference for the helix in both cases. 

QTAIM analyses also explain the predicted tendency of (1R,2S,4S)-IV to stabilize a left-

handed helix, while (1S,2S,4S)-V, like (1R,2R,4R)-V, stabilizes a right-handed helix.
59

 Indeed, 

for peptide 12, containing (1R,2S,4S)-IV, the Δ∑ 𝜌 (𝑟𝑐) between left- and right-handed helices is 

0.0035 a.u., suggesting that the left-handed is favored over the right-handed helix (Tables S8 and 

S12-15, S.I.). Moreover, although the number of C-H∙∙∙O interactions is lower for the left-handed 

helix, these H-bonds are significantly stronger, having values similar to those computed for N-

H∙∙∙O H-bonds. Conversely, a ΔΣρ(rc) of 0.0059 a.u. was found for peptide 13, containing 

(1S,2S,4S)-V, in favor of the right-handed helix (Table S14-15, S.I.). 

Conclusions 

There is rising interest in using peptides to produce smart biomaterials as well as innovative 

drugs, and non-proteinogenic AAs represent a valuable resource for fine-tuning peptide 

properties. It is thus clear that knowledge of the molecular basis governing the behavior of a 
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given AA, when inserted into a complex sequence, is desirable to aid the design of new 

biomolecular tools. 

With this study, we aimed to elucidate the mechanism of helix stabilization exerted by a 

selection of synthetically accessible chiral CTAAs.  

Using a combination of REMD simulations and QTAIM analyses, we observed that most of 

the CTAAs considered were able to stabilize the helical secondary structure of an Ac-L-Ala-

CTAA-L-Ala-Aib-L-Ala-NHMe pentapeptide, with a preference for the right-handed 310-helix. 

The R-Cα enantiomer generally proved a stronger stabilizer of right-handed helices, except for 

(1R,2S,4R)-IIIb, which also turned out to be the strongest helix-stabilizer, though much less 

accessible synthetically.
48

  

We found two complementary mechanisms which can contribute to the reduction of the 

backbone conformational freedom. The first depends on the steric hindrance exerted by the 

CTAA in a region somehow parallel to the peptide helix axis, particularly in the area 

downstream of the CTAA itself, while the second can be ascribed to the strengthening of the 

helix H-bond network, comprising both classical NH∙∙∙O=C H-bonds and C-H∙∙∙O=C 

interactions.  

Chirality at the CTAA Cα was also found to be important. However, the correspondence 

between stereochemical configuration at Cα and helix-stabilizing power is probably due to the 

fulfilment of the two mechanisms proposed above. Further investigation of the role of CTAA 

stereochemistry in determining the preference toward a certain helix screw sense is currently 

ongoing. 
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Norbornene CTAA V turned out to be interesting for its ability to constrain the φ1 and ψ2 

dihedrals to values typical of helix geometries through an effective intra-residue C-H∙∙∙O=C 

interaction. Moreover, due to its relatively limited steric hindrance, it can be used in peptide 

synthesis with a reactivity comparable to that of Aib,
59

 but allowing the tuning of the peptide 

molecular shape in order to achieve a better match with the target protein binding surface. 
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