
Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata

Dipartimento di Fisica

Corso di Dottorato di Ricerca in Fisica, Astrofisica e Fisica Applicata

Ciclo XXVII

Decoherence, non-Markovianity
and quantum estimation in

qubit systems subject to classical noise
Settore Scientifico Disciplinare FIS/03

Supervisore: Professor Matteo PARIS

Co-Supervisore: Doctor Paolo BORDONE

Coordinatore: Professor Marco BERSANELLI

Tesi di Dottorato di:

Claudia BENEDETTI

Anno Accademico 2013/2014



Commission of the final examination:

External Referee:
Dr. Elisabetta Paladino

External Members:
Prof. Sabrina Maniscalco
Prof. Chiara Macchiavello

Final examination:

Date 30/01/2015
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Introduction

We live in the age of quantum technologies. We talk about quantum computers and
quantum computation and we are able to write quantum algorithms that achieve expo-
nential speedup over their classical analogues; quantum communication and quantum
cryptography promise absolute secure transmission of messages and faithful transfer of
unknown quantum states; not to cite the many ways in which quantum mechanics af-
fects our daily life. The common denominator to all these applications is the concept
of quantum information. Since the world is ultimately quantum-mechanical, it is a nat-
ural thought imagining to encode information in a quantum system: this idea lies at
the heart of quantum information theory. Quantum information theory is the quantum
analogue of classical information theory. It was born from the union between quantum
physics and computer science. It describes the notions of quantum source and quantum
channels and studies how the exploitation of non-classical correlations enables encod-
ing, processing and distribution of information in ways impossible or inefficient in the
classical world. Encoding information in a quantum system opened to the possibility of
using the concepts of quantum theory in a whole new way and of thinking a different set
of rules to describe how the information can be manipulated and accessed. The results
are impressive: quantum teleportation, superdense coding, quantum key distribution,
just to cite a few.

Quantum entanglement is a key resource in quantum communication and informa-
tion processing and it embodies quantum correlations that have no classical analogue.
To such an extent they are often regarded as synonyms. However, over the last years,
the dichotomy entanglement-quantum correlations was challenged and it is nowadays
recognized that entanglement does not capture all the possible quantum correlations re-
siding in a quantum system. There exist non-classical correlations that are possibly more
fundamental and more general than entanglement. Specifically, it was shown that there
exist separable states that still have correlations without classical analogue. Various mea-
sures of these correlations were introduced and among them the quantum discord, an
entropic measure introduced in 2001 [1,2], has been the center of a lot of studies over the
last decade. Under suitable conditions, quantum discord has been proved to be more
robust against decoherence than entanglement [3, 4].

As a consequence of the recent advances in the design of semiconductors structures,
the working of an increasing number of nanodevices is affected by or based on the the
quantum nature of their components. Solid-state systems are very promising candidates
for the realization of quantum information processing devices, due to the controllabil-
ity of their quantum state, their scalability and the feasible integration with microelec-
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viii Introduction

tronic devices. An essential ingredient to exploit the quantumness of a physical system
is the preservation of its coherent time evolution and its non-classical correlations. This
would be no problem if quantum systems could be regarded as isolated systems. But
the standard description of quantum dynamics, in terms of Schrödinger equation and
unitary evolution, is an idealization. In fact, the unavoidable interaction with an incon-
trollable environment usually destroys coherence and quantumness, making their use
for quantum technology ineffective. The fragile quantum information encoded in an
open quantum system is lost due to the presence of the environment that continuously
monitors the system. The result of the interaction with the environment is to replace the
unitary evolution with a non-unitary dynamics. For this reason, decoherence may be
considered the ultimate obstacle to the practical and efficient realization of the quantum
information and communication protocols. Decoherence may be induced by a classical
or a quantum bath, i.e. by the interaction with an environment described classically or
quantum-mechanically. Although the quantum modeling for the bath is more common,
there are situations where this description may be mathematically challenging, for ex-
ample if the environment is very complex and tracing out the degrees of freedom of the
bath can be a difficult task, or even inappropriate, for example because of the approxi-
mations introduced to derive a master equation are too strong to hold in real systems.
As a matter of fact, the classical description becomes progressively more reliable as far as
the environment has many degrees of freedom or when the interaction between a quan-
tum system and a classical fluctuating field is taken into account. Recently, it has also
been shown that even certain quantum environments may be described with equivalent
classical models. However understanding whether and under which conditions the two
descriptions are equivalent is still a debated topic [5–8].

It is well established that quantum correlations are a fundamental resource for the
quantum information processing. But recently, another figure of merit as been addressed
as resource for quantum technology, i.e. the concept of quantum non- Markovianity.
While Markovianity is well defined for classical stochastic process, it does not general-
ize in a straightforward way to the quantum world. The effort to find a generalization
of the concept of non-Markovianity for quantum system led to many different defini-
tions [9–15] but an agreement is still missed. Classically, it is possible to quantify the
non-Markovianity of a stochastic process in terms of the Kolmogorov n-point probabil-
ity distribution. However it has been proved [16, 17] that there are clear differences be-
tween the classical and the quantum notions of non-Markovianity. When we talk about
’quantum non-Markovianity’ we refer to the non-Markovian character of the dynami-
cal map describing the evolution of the quantum system, according to some measure.
From a qualitative approach, systems in which recoherence phenomena occur, such as
revivals of quantum correlations, are called non-Markovian open quantum system. For
such system, the Born-Markov approximation leading to a master equation of the Lind-
blad form, does not lead to a correct description of the dynamics of the physical system.
Non-Markovianity is the focal point of recent research in understanding if the existence
of memory effects enable to accomplish tasks that cannot be achieved with Markovian
processes [18–22]. However, to date there is no general theory linking non-Markovian
dynamics with an increase in the efficiency of quantum information processing and
communication. Efforts have been made to understand if it is possible to connect the
presence of non-Markovianity with the efficiency enhancement of quantum protocols.
Would that be true, non-Markovianity becomes a key concept in quantum information
theory, not a mere label to classify different kinds dynamical maps.
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Since the interaction of a quantum systems with the external environment introduces
noise, thus degrading the overall performances of any device or protocol exploiting
the quantumness of the system, the precise characterization of the noise is a crucial
ingredient for the design of high-precision measurements and reliable communication
protocols. A suitable description of classical noise is given in terms of stochastic pro-
cesses [6, 23–26]. The characterization of classical noise is often performed by collecting
a series of measurements at different times to estimate its autocorrelation function and
its spectral properties [27–29]. This procedure is generally time consuming and may re-
quire the control of a complex system. A question thus arises whether more effective
techniques may be developed. To this purpose, the use of quantum probes to estimate
the parameters of classical noise comes into play. The idea is to use a simple quantum
system, such as a qubit, coupled to a classical fluctuating field and explore the perfor-
mances of quantum measurements performed at a single fixed interaction time to extract
information about the classical noise. The power and implications of this idea are un-
deniable: the features of a complex system may be determined by monitoring a small
probe, which is usually characterized by few and easily controllable degrees of freedom.
The canonical way to attack this problem is by using the tools of quantum estimation
theory [30–33]. Indeed, quantum estimation theory allows one to find the best strategy
to estimate the value of an unknown parameter, even if it is not accessible by direct mea-
surement. Upon collecting the outcomes from a measurement of a suitably optimized
observable, it is possible to build an estimator to infer the value of the unknown param-
eter with the ultimate precision allowed by quantum mechanics.

A deep understanding of the mechanisms of the decoherence in quantum systems,
in order to reduce its detrimental effects, is an essential step toward the development
of quantum technologies. The precise characterization of the stochastic process gener-
ating the classical noise, possibly using minimal resources, is thus a crucial ingredient
for the design of high-precision measurements and reliable communication protocols.
Moreover, from an applicative point of view, increasing ability in reservoir engineering
techniques paves the way to new methods of decoherence control based on the manip-
ulation and modification of properties of the environment such as its spectrum or its
microscopic structure.

This PhD dissertation collects my personal contribution to the study and understand-
ing of the role played by different kinds of classical noise in affecting the dynamics of
a quantum system. I consider a qubit system coupled to a stochastic classical field and
address the decoherence and non-Markovianity induced by the external noise as well as
the spectral characterization of the classical field by quantum-limited measurement on
the qubit. In order to maintain the analysis self-contained and to address situations of
practical interest, I focus on dephasing dynamics, i.e. I assume that the dephasing ef-
fects of the environment are much stronger than relaxation ones. This situation happens
when the typical frequencies of the environment are smaller compared to the natural fre-
quency of the quantum system under investigation. In this case, fluctuations can cause
a superposition of states to decohere, without inducing transitions between different en-
ergy levels.
I thus analyze the dynamics of quantum correlations for two non-interacting qubits ini-
tially prepared in a maximally entangled state and interacting with a classical noise. The
dynamics of the two qubits is ruled by a stochastic Hamiltonian with time dependent
coupling. The ensemble average of the time-evolved states over the noise parameters
describes the evolution of the quantum system under the effect of the classical noise.
Upon a suitable choice of the stochastic time-dependent terms in the Hamiltonian, I was
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able to describe the effects of both independent (separate) and common environments:
in the former, each qubit is locally coupled to a random external process, while in the
latter both qubits are subject to the effect of a common classical source of noise. Then,
I address a simpler single-qubit system, in order to evaluate the non-Markovianity of a
dephasing map as a function of the noise nature and parameters. Finally, I analyze how
a single-qubit system can be exploited to gain information about a classical noise that
affects its dynamics.
Two kinds of noise are taken into account: Gaussian and non-Gaussian noise. Gaussian
stochastic processes are fully characterized by their mean and variance. Relevant exam-
ples of Gaussian processes are the Ornstein-Uhlenbeck process [34,35] and the fractional
Brownian motion [36]. A Gaussian statistics for the noise may be legitimately assumed
when the environment surrounding the quantum system is composed by a large num-
ber fluctuators. Moreover, the Gaussian approximation is valid even in the presence
of non-Gaussian noise, as far as the coupling with the environment is weak. However
there are situations where the Gaussian assumption is not a priori justified and the non-
Gaussian nature of the noise must be taken into account. Non-Gaussian processes cannot
be fully characterized by their second order statistics. Moreover, the knowledge of the
spectrum or equivalently the autocorrelation function alone is not sufficient to describe
the dynamics and the decoherence phenomena of a quantum system. Among the class
of open quantum systems interacting with a non-Gaussian classical environment, a lot
of attention has been devoted to qubit-systems subject to random telegraph noise and
1/fα noise. The random telegraph noise is generated by a bistable fluctuator, i.e. some
quantity which flips between two values with a switching rate γ. Examples of fluctua-
tors are dynamical defects which randomly switch between two metastable states. This
noise affect numerous devices based on semiconductors, superconductors and normal
metals [37–44]. It also represents the building block to describe noises with 1/fα spec-
trum.
1/fα noise is an ubiquitous noise in nature (see Ref.s [45–48] and references therein).
Moreover, in almost all quantum computing nanodevices, fluctuations with 1/fα spec-
trum of different variables and physical origin have been detected. Actually, this noise
represents the main source of decoherence in solid-state quantum system. Despite the
huge variety of systems affected by this noise, its origin and the shape of its spectrum
have been an unsolved problem for a long time and still many open issues related to
this noise remain unsolved. However, 1/fα noise is commonly attributed to fluctuators,
specifically a collection of bistable fluctuators whose switching rates γ are distributed
according to a specific distribution pα(γ).

This Thesis is organized as follows.

• In Chapter 1 I review the basics concepts and terminology of quantum mechan-
ics that I will use in the later chapters. Then I introduce the concept of non-
Markovianity according to two recent measures, and the tools of quantum esti-
mation theory necessary to infer the value of an unknown parameter.

• In Chapter 2 I review the main concepts about stochastic processes and how they
are characterized. I introduce the two classes in which stochastic processes may
be divided into, that is Gaussian and non-Gaussian processes and introduce some
paradigmatic representatives of both classes.

• In Chapter 3 I introduce my contribution to the study of the dynamics of quantum
correlations, both entanglement and discord, between two non interacting qubit
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subject to a classical noise generated either by a Gaussian or a non-Gaussian pro-
cess. I study how different kinds of noise affect the decaying of quantum corre-
lations and find that, depending on the nature and the parameters of the noise
considered, correlations decay either with a monotonic or a damped oscillating be-
havior. In this chapter I also introduce a new microscopic model for 1/fα noise
based on random bistable fluctuators.

• Chapter 4 is devoted to the analysis of non-Markovianity of the dynamical map
of a qubit subject to classical noise, in terms of information backflow and channel
capacities. I show how the non-Markovian character of the channel depends upon
the noise parameters and I also make a connection between the appearance of re-
vivals in the quantum correlations and the presence of an information backflow to
the system. Moreover, I show that non-Markovianity leads to an increase in the
capacities of quantum channels compared to the corresponding Markovian ones.

• In Chapter 5 I address the complementary problem of decoherence induced by a
classical environment on a quantum system, that is to use a quantum system as
a probe to characterize the properties of a classical noise, e.g. its spectral proper-
ties. By using the tools of quantum estimation theory I show that it is possible to
effectively extract information on the noise, by using a single qubit as a probe.
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CHAPTER 1

Preliminaries and Mathematical tools

This chapter is introductory. I review the key concepts in quantum mechanics, quan-
tum non-Markovianity and quantum estimation theory. This chapter is not intended to
be exhaustive about the discussed topics. I just introduce the basic ingredients which
constitute the preliminary notions necessary to my research project.

1.1 Introduction to quantum mechanics

Quantum mechanics provides the mathematical and conceptual framework we need for
the description of the physical processes we are interested in and the low that they obey.
The postulates of quantum mechanics give a connection between the physical world and
the mathematical formalism of quantum mechanics [49].

Postulate 1: Associated to any isolated physical system there is a complex
vector space with inner product, that is a Hilbert space, known as the state
space of the system. The system is completely described by its state vector |ψ〉,
which is a unit vector in the system’s state space.

The word “state” means the available information about the properties of the system
(e.g. energy, spin, etc..) we are interested in. According to the superposition principle
any linear superposition of N quantum states is also a quantum state:

|ψ〉 =

N∑
n=1

an|ψn〉. (1.1)

If |ψ〉 is normalized and the |ψn〉 are orthonormal states, the coefficients an must satisfy
the constrain

M∑
n=1

an = 1 (1.2)

and the quantity |an|2 is interpreted as the probability to find the system |ψ〉 in the state
|ψn〉 after a suitable measurement.

The time evolution of a quantum state is prescribed by the second postulate of quan-
tum mechanics.

1



2 1.1 Introduction to quantum mechanics

Postulate 2: The evolution of a closed quantum system is described by a
unitary transformation. The state |ψ(t)〉 of the system at time t is related to the
state |ψ(t0)〉 at time t0 < t by a unitary operator U

|ψ(t)〉 = U |ψ(t0)〉. (1.3)

The time evolution of a ket state is governed by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 (1.4)

where H is the Hamiltonian of the system. Eq. (1.4) is linear and homogeneous and of
first order in t. It follows that, given an initial state |ψ(0)〉, the state at any subsequent
time is determined. The formal solution of Eq. (1.4) can be written as

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (1.5)

where we introduced the time-evolution operator U(t, t0) and t0 is the initial time. U is
a unitary operator which satisfies the following properties:

U(t, t) = I (1.6)
U(t, t′)U(t′, t0) = U(t, t0) (1.7)

U†(t, t0)U(t, t0) = U(t, t0)U†(t, t0) = I (1.8)

and it itself satisfies the Schrödinger equation:

i~
d

dt
U(t, t0) = HU(t, t0), (1.9)

with initial condition U(t0, t0) = I. This initial condition, together with Eq. (1.9) allows
one to completely define the operator U(t, t0). In fact, we can rewrite Eq. (1.9) as:

U(t, t0) = I− i

~

∫ t

t0

H(s)U(s, t0)ds. (1.10)

However the solution (1.10) is only formal. We can rewrite it using an iterative procedure
for the integrand:

U(t, t0) = I− i

~

∫ t

t0

dt1H(t1) +

(
− i
~

)∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) + . . . (1.11)

obtaining a series expansion for H(t). Note that t2 ≤ t1 and the ordering in which the
terms H(t) appears is important only in the case the Hamiltonian does not commute at
different times. But let us here focus on Hamiltonians which commutes at different times
[H(t1), H(t2)] = 0. It follows that we can rewrite the expression:∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) =
1

2!

∫ t

t0

dt1

∫ t

t0

dt2H(t1)H(t2) (1.12)

without the need of using a time-ordering operator. By generalizing the equivalence to
an n-dimensional integral, one can write the Dyson series for the time evolution opera-
tor:

U(t, t0) = exp
[
− i
~

∫
H(s) ds

]
. (1.13)

= I +

∞∑
n=1

1

n!

(
− i
~

)n ∫ t

t0

dt1 . . .

∫ t

t0

dtnH(t1) . . . H(tn). (1.14)



Preliminaries and Mathematical tools 3

We recall that Eq. (1.14) gives the explicit expression for the evolution operator U(t, t0)
in the case in which the system Hamiltonian H(t) commute at different times.

The physical properties of a quantum state can be access by measuring some observ-
ables, represented by Hermitian operators. Observables are described through Hermi-
tian operators because these operators have real eigenvalues, which are appropriate for
representing physical quantities. The third postulate of quantum mechanics provides a
means for describing the effects of measurements on quantum systems.

Postulate 3: Quantum measurements are described by a collection {Mi} of
measurement operators acting on the state space of the system being measured.
The index i refers to the measurement outcomes that may occur in the ex-
periment. If the state of the quantum system is |ψ〉 immediately before the
measurement then the probability that result i occurs is given by:

p(i) = 〈ψ|M†iMi|ψ〉 (1.15)

and the state of the system after the measurement gave result i is

|ψ〉 −→ Mi|ψ〉√
〈ψ|M†iMi|ψ〉

(1.16)

The measurement operators satisfy the completeness equation∑
i

M†iMi = I. (1.17)

An important class of measurements is known as projective measurements. A projec-
tive measurement is described by an observable, M , that is a Hermitian operator on the
state space of the system being observed. An Hermitian operator M , with the set of
eigenvectors {|i〉} satisfies the eigenvalue equation M |i〉 = mi|i〉 and admits a spectral
decomposition:

M =
∑
i

mi|i〉〈i| =
∑
i

miPi (1.18)

where we introduced the projectors Pi onto the eigenspace of M with eigenvalue mi.
The projector operator satisfies the completeness relation

∑
i Pi = I and the orthogonal-

ity condition PiPk = δikPk. The possible outcomes of the measurement correspond to
the eigenvalues mi of the observable.

Projective measurements are a special case of Postulate 3, and this can easily be seen
by supposing that the measurement operators M in (1.15) and (1.16) in addition to sat-
isfy the completeness relation, also satisfy the conditions that they are Hermitian and
MiMj = δijMi. With these additional restrictions, Postulate 3 reduces to a projective
measurement and the average value of the observable M is written as:

〈M〉 =
∑
i

mipi =
∑
i

mi〈ψ|Pi|ψ〉 = 〈ψ|M |ψ〉 (1.19)

Every time we are given a set of orthogonal projectors Pi satisfying the completeness
relation and the PiPk = δikPk, we know that the corresponding observable is M =∑
imiPi. Moreover, the phrase “measure in a basis |i〉, where |i〉 forms an orthonormal

basis”, means to perform the projective measurement with projectors Pi = |i〉〈i|.



4 1.1 Introduction to quantum mechanics

1.1.1 The qubit

The bit is the fundamental concept in classical computation and information theory.
Quantum computation and information processing are built upon the quantum ana-
logue of the bit, the quantum bit or qubit. A qubit is a two-level quantum system, like
the two spin states of a spin- 1

2 particle, the vertical and horizontal polarization states of
a single photon or the ground and excited states of an atom. The difference between bits
and qubits is that a qubit can be in other states than |0〉 or |1〉. In fact, it can be in any
superposition of these two states. Its most general state can be written as:

|ψ〉 = α|0〉+ β|1〉 (1.20)

with |α|2 + |β|2 = 1. Put in another way, the qubit is a vector in a two-dimensional
complex vector space. We shall usually identify the state |0〉 with the vector (1, 0) and
similarly |1〉with (0, 1). Upon introducing the spherical polar coordinates 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π, this state can be equivalently written as:

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ|1〉. (1.21)

The parameters θ and φ define a point on a unit three-dimensional sphere, called the
Bloch sphere. This is a sphere of unit radius, with each point on its surface corresponding
to different pure states. Opposite points on the surface represent a pair of mutually
orthogonal states. The north and the south poles correspond to the states |0〉 and |1〉
respectively.

1.1.2 Density matrix

In the more general case, the state of a physical system is not fully known and some
information about it is missing. It is only known that the system is in the normalized
state |ψi〉 with probability pi. In this case the system is in a statistical ensemble and the
mean value of an observable M is given by:

〈M〉 =
∑
i

pi〈ψi|M |ψi〉. (1.22)

It is convenient to introduce the density operator, or density matrix, in order to mathe-
matically describe the statistical ensemble. The density matrix is defined as:

ρ =
∑
i

pi |ψi〉〈ψi|. (1.23)

The states |ψi〉 in Eq. (1.23) do not need to be orthogonal, however it is always possible
to write the density operator in diagonal form:

ρ =
∑
i

ρi|ρi〉〈ρi| (1.24)

with ρi the non-negative real eigenvalues of the density matrix and |ρi〉 the correspond-
ing eigenvectors. The density matrix is represented by a complex matrix which satisfies
the following three properties:
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1. ρ is Hermitian:
In fact, upon expanding a any pure state |ψi〉 over an orthonormal basis {j}, that
is |ψi〉 =

∑
n a

(i)
n |n〉, it is possible to write the density matrix and its elements as

ρ =
∑
i

pi|ψi〉〈ψi| =
∑
i

pi
∑
l,m

a
(i)
l a(i)∗

m |l〉〈m| (1.25)

ρjk = 〈j|ρ|k〉 =
∑
i

pia
(i)
j a

(i)∗
k (1.26)

From this last equality is easy to check that the density matrix is Hermitian, since

ρ∗jk =
∑
i

a
(i)∗
j a

(i)
k = ρkj (1.27)

2. ρ has a unit trace:

Tr[ρ] =
∑
k

ρkk
Eq. (1.26)

=
∑
k,i

pia
(i)
k a

(i)∗
k =

∑
i

pi
∑
k

|a(i)
k |

2 = 1 (1.28)

where we used the condition (1.2).

3. ρ is a non-negative operator:
An operator ρ is non-negative if, for any vector |ϕ〉 in the Hilbert space, the condi-
tion 〈ϕ|ρ|ϕ〉 ≥ 0 holds. For density matrices we have

〈ϕ|ρ|ϕ〉 =
∑
i

pi〈ϕ|ψi〉〈ψi|ϕ〉 =
∑
i

pi|〈ϕ|ψi〉|2 ≥ 0 (1.29)

If one of the probabilities pi is unity, that is if pi = δki, then the density operator (1.23)
reduces to the simple form ρ = |ψk〉〈ψk|. In this case, that is when the state vector is
known, ρ is referred to as pure density operator or pure state. In the case of a pure state
Tr[ρ2] = 1 while for mixed states Tr[ρ2] < 1. This can be easily shown by diagonalizing
the density matrix as in Eq. (1.24) with eigenvalues ρi ≥ 0. Once the density matrix is
diagonalized it is very easy to compute ρ2 as:

ρ2 =
∑
i

ρ2
i |ρi〉〈ρi|. (1.30)

The trace is calculated as Tr[ρ2] =
∑
i ρ

2
i . But since

∑
i ρi = 1 and ρi ≥ 0, it follows that

0 ≤ ρi ≤ 1, therefore Tr[ρ2] ≤ 1 and it is equal to one if and only if ρi = 1 for only one
value i and zero otherwise. This corresponds exactly to a pure state described by density
matrix ρ = |i〉〈i|.

From Eq. (1.22), we can rewrite the average value of an operator M as:

〈M〉 =
∑
j

pj〈ψj |M
∑
i

|i〉〈i|ψj〉 =
∑
i

∑
j

〈i|ψj〉pj〈ψj |M |i〉

=
∑
i

〈i|
∑
j

pj |ψj〉〈ψj |M |i〉 =
∑
i

〈i|ρM |i〉

= Tr [ρM ] . (1.31)



6 1.1 Introduction to quantum mechanics

where we have used the equality I =
∑
i |i〉〈i| and Eq. (1.23). Notice that, in Eq. (1.31),

the trace in independent of the basis {i} used to calculate the average value of M .
The diagonal elements of a density matrix have an important physical meaning. From
Eq. (1.26) we can write the diagonal terms as:

ρii =
∑
k

pk|a(k)
i |

2 = Tr[ρPi] (1.32)

where Pi = |i〉〈i| is the projector operator introduced in (1.18). The diagonal elements
thus represent the probability that the system is left in the state |i〉 after measuring the
observable whose eigenstates are {|i〉}. For this reason the diagonal elements of the
density matrix are called the population of {|i〉}. The off-diagonal terms ρjk, instead,
represent the quantum interference between the states |j〉 and |k〉. We can see from
Eq. (1.26) that ρjk is a weighted sum of interference terms a(i)

j a
∗(i)
k . If ρij 6= 0 then a

quantum-coherence effect between the states is present. For this reason the off-diagonal
elements of the density matrix are called coherences. It is important to highlight that the
distinction between diagonal and off-diagonal terms depends on the choice of the basis
{|i〉}.

Using the density matrix approach, we can reformulate the postulates of quantum
mechanics, as follows.
Postulate 1: Associated to any isolated physical system there is a Hilbert space known
as the state space of the system. The system is completely described by its density opera-
tor, which is a Hermitian positive operator ρ with trace one, acting on the state space of
the system. If a quantum system is in the state ρi with probability pi, then the density
operator for the system is

∑
i piρi.

Postulate 2: Eq. (1.5), written for state vectors, may be rewritten in terms of the density
matrix describing a quantum system. In particular, the time evolution of a closed quan-
tum system is described again by the unitary transformation (1.14) through the relation:

ρ(t) = U(t, t0)ρ(t0)U†(t, t0). (1.33)

Postulate 3: Quantum measurements are described by a collection of measurement op-
erators {Mi}, that act on the state space of the system being measured. The index i refers
to the outcome that may occur in the experiment. The probability that the result i occurs
is given by:

pi = Tr[MiρM
†
i ] = Tr[M†iMiρ], (1.34)

and the measurement maps the initial state ρ into a statistical ensemble of states {pi, ρ
′

i}
where

ρ
′

i =
MiρM

†
i

Tr[MiρM
†
i ]
. (1.35)

The reformulation of the postulates of quantum mechanics in terms of density operators
is mathematically equivalent to the description in terms of state vectors. However the
density operator approach permits to describe systems whose state is not completely
known and subsystems of a composite system.

In section 1.1.1 we introduced the concept of quantum bit and the mathematical rep-
resentation for pure states of a single qubit through the Bloch sphere Eq. (1.21). This
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description has an important generalization to mixed states. In fact, the density matrix
for an arbitrary mixed state qubit may be written as:

ρ =
I + ~r · ~σ

2
, (1.36)

where ~σ = {σx, σy, σz} is the vector of Pauli matrices defines as:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (1.37)

The Pauli matrices have determinant det(σj) = −1, zero trace Tr[σj ] = 0 and satisfy the
condition σ2

j = I for j = x, y, z. The vector ~r = {rx, ry, rz} is called the Bloch vector and
is a real three-dimensional vector satisfying the condition ||~r|| ≤ 1. For pure states this
condition becomes ||~r|| = 1. The expression (1.36) is obtained by expanding the general
qubit density matrix ρ = |ψ〉〈ψ|, obtained from Eq. (1.21) over the basis {I, σx, σy, σz}
as ρ = r0I + cxσx + cyσy + czσz . Since the condition Tr[ρ] = 1 must hold for all density
matrices, it immediately follows that r0 = 1

2 . The expansion coefficient are computed as
ci = 1

2ri for i = x, y, z and the relations between the parameters θ and φ and the Bloch
vector components are:

rx = cosφ sin θ ry = sinφ sin θ rx = cos θ (1.38)

1.1.3 Composite systems and the reduced density matrix

The Hilbert space of a composite physical system composed by n subsystems is the ten-
sor product of the vector spaces of the subsystemsH = H1 ⊗H2 ⊗ . . .Hn.
The density operator approach is very useful when describing a quantum system whose
state is not fully known and to describe a subsystem of a composite larger system. The
equation (1.23) describes the state of the global system.
Suppose we have a bipartite system ρ, that is two physical systems A and B ( which we
call Alice and Bob, as they are ususally referred to in the quantum information commu-
nity) whose joint state is described by the density matrix ρ. There are plenty of situations
in which we might be interested in describing the state of only one subsystem. The math-
ematical tool that allows one to address only a subsystem of a composite system is called
reduced density matrix. The reduced density matrix of a bipartite system is defined as:

ρA ≡ TrB [ρ] (1.39)
ρB ≡ TrA [ρ] , (1.40)

where TrA(B) is the partial trace operator over systemA(B). The most general expression
of a density matrix ρ for a bipartite system may be written as:

ρ =
∑
lnmp

ρln,mp|ln〉〈mp|, (1.41)
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where we introduced the notation |jk〉 = |j〉A ⊗ |k〉B to describe the sets of orthonormal
basis for subsystems A and B respectively. The partial trace is then defined by:

ρA = TrB

∑
lmnp

ρln,mp|ln〉〈mp|

 =
∑
k

B〈k|
∑
lmnp

ρln,mp|ln〉〈mp|k〉B

=
∑
k

∑
lm

ρlk;mk|l〉〈m|.

(ρA)lm =
∑
k

ρlk;mk (1.42)

and equivalently for ρB , where we used the orthogonality relations B〈k|n〉B = δkn and
B〈p|k〉B = δpk
The reason why the reduced density operator describes the state of a subsystem is justi-
fied by the fact that it provides the correct statistics for the measurements made on the
subsystem. To understand this, let us assume that we wish to compute the mean value
of an operator O1 acting only on subsystem 1 of a bipartite system. We require that the
same operator acting on the entire Hilbert space can be written as Õ = O1 ⊗ I2, with I2
the identity operator inH2. Thus, we can write:

〈Õ〉 = Tr[ρ Õ] =
∑
jk

〈jk|ρ Õ|jk〉

=
∑
jk

〈jk|

∑
lm
np

ρln,mp|ln〉〈mp|

 (O1 ⊗ I2) |jk〉

=
∑
jk

∑
m

ρjk,mk〈m|O1|j〉 =
∑
jm

〈j|ρA|m〉〈m|O1|j〉

=
∑
j

〈j|ρAO1|j〉 = Tr[ρAO1] (1.43)

where we used Eq.s (1.41) and (1.42).

1.1.4 Open quantum systems

Although all closed quantum systems are described by unitary evolutions, more general
state changes are possible for open quantum systems. In fact, quantum systems are
never isolated from their environments, and the theory of closed quantum systems fails
to describe many features of quantum dynamics.

In the context of open quantum system, the open system S, described by density ma-
trix ρ, is coupled to another quantum systemB, described by ρB , called the environment.
Thus S can be regarded as a subsystem of the global system S + B, consisting of open
system plus environment. The Hilbert space of the total system is the tensor product of
the two subsystems spacesH = HS ⊗HB . The interaction with the environment creates
system-environment correlations that prevent the state of S to be described in terms of
unitary evolution.

In the case of an open quantum system, in fact, the dynamics is described by quantum
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maps E(ρ). Given an input state ρ, the output state of the system ρ′ is thus given by:

ρ′ =
E(ρ)

Tr[E ]
. (1.44)

The dynamical map E is called a quantum operation, i.e. a linear, trace-decreasing map that
preserve positivity and satisfies the additional property of complete positivity. Complete
positivity means that if we introduce an extra system ρB of arbitrary dimensionality
to the principal system ρ, such that the global state is described by the density matrix
ρT , then it must be true that (I ⊗ E)(ρT ) is positive for any positive operator ρT of the
combined system. The trace in denominator in Eq. (1.44) is included in order to preserve
the trace condition Tr(ρ) = 1. A class of operations that is of particular interest is the
trace-preserving operations, for which the condition Tr[E(ρ)] = 1 holds and Eq. (1.44)
may be rewritten as:

ρ′ = E(ρ). (1.45)

Physically, trace-preserving operations arise in situations where the system is coupled
to some environment that is not under observation and the effect of the evolution is
averaged over all possible outcomes of the interaction with the environment. In the
following we will focus on trace-preserving operations.

We stated that, in general, the final state of the system E(ρ) may not be related by a
unitary operator to the initial state ρ. However the composite system, assumed to start
from an initial product state ρ⊗ρB , will evolve according to a unitary transformation U .
The dynamics of the system alone is given by the partial trace of the total system over
the environment degrees of freedom:

E(ρ) = TrB
[
U(ρ⊗ ρB)U†

]
(1.46)

This equation tells us that any completely positive trace-preserving (CPTP) quantum
operation can always be mocked up as a unitary evolution on a larger system.
E in Eq. (1.46) can be rewritten using an equivalent and very elegant form, known as the
operator-sum representation. Let us call {|ωi〉} the orthonormal basis for the state space
of the environment, and ρB = |ω0〉〈ω0| its initial state. Eq. (1.46) can thus be rewritten
as:

E(ρ) =
∑
i

〈ωi|U
(
ρ⊗ |ω0〉〈ω0|

)
U†|ωi〉

=
∑
i

KiρK
†
i . (1.47)

where the Ki = 〈ωi|U |ω0〉 are operators acting on the state space of the principal system
alone. The operators Ki must satisfy the completeness condition

∑
iK
†
iKi = I and they

completely specify the quantum operation. Eq. (1.47) is also known as the Kraus de-
composition [50]. Once we know the expression for the Kraus operatorsKi, it is possible
to describe the dynamics of the principal system ρ without having to explicitly consider
properties of the environment. Two examples of quantum operations are the unitary
transformations U (1.33) and the measurements M (1.35), for which E(ρ) = UρU† and
Ei(ρ) = MiρM

†
i respectively.
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A quantum channel Et is a completely positive trace preserving map, which connects
an input state ρ0 at time t0 with the final state ρ at time t: ρ = Et,t0(ρ0). It can be mathe-
matically described using equivalently Eq. (1.46) or Eq. (1.47).
The possibility of reliably sending a message through a channel is a fundamental prob-
lem in quantum communication. The typical scenario of a communication procedure
sees a sender, Alice, transmitting unknown quantum states through the channel to the
receiver Bob. Unfortunately, the channel is usually subject to noise, quantum or classi-
cal, which prevent a transmission of the message with a very high fidelity to the original
states. More details about quantum channels will be given in Sec. (1.3.2) Here we just
want to introduce a very important channel, that will be addressed in later chapters to
describe the dynamics of the systems we are interested in, that is the dephasing channel.
The dephasing, or phase damping, channel is an ideal model of noise that capture the
the important feature of quantum open system of losing quantum information without
the loss of energy. Physically, it describe situations where the quantum system interacts
with an external environment whose frequencies are much smaller that the system char-
acteristic frequency.
The Kraus decomposition for the dephasing channel in the case of a qubit system may
be written as ρ = pρ0 + (1 − p)σzρ0σz , where ρ0 is the initial state of the system before
entering the dephasing channel, ρ is the output state and the quantities p and (1 − p)
represent the probability that the operation to be applied on the physical system is the
identity and σz respectively. That is, with probability p the system will be left in its ini-
tial state ρ0 and with probability (1 − p) will be subject to a σz operation. By letting the
probability depending on time and introducing the dephasing coefficient Λ(t) = 2p(t)− 1,
we can write the dephasing map as

ρ(t) =
1 + Λ(t)

2
ρ0 +

1− Λ(t)

2
σzρ0σz. (1.48)

The effect of a dephasing channel is to leave the populations unchanged and multiplying
the off-diagonal elements by the dephasing coefficient Λ. In fact, by writing the initial
density matrix as ρ0 =

∑1
j,k=0 ρjk|j〉〈k|, Eq. (1.48) can be explicitly written as

ρ(t) =

(
ρ00 Λ(t)ρ01

Λ(t)ρ10 ρ11

)
(1.49)

Since the off-diagonal elements have no classical analogue, the effect of the dephasing
channel is to introduce quantum decoherence, altering the quantum phase between the
components of the quantum state. If the dephasing function is a decaying function with
time, for example Λ(t) = e−λt, we will call the corresponding map ’phase damping’.
The importance of dephasing channel relies in the fact it provides a useful model to
describe many physical situation and, since it induces a decay of quantum coherences,
it plays a central role in the transition from quantum to classical world.

1.1.5 Classical and quantum information theory

The classical theory of information was developed by Shannon in 1948, in the context of
sending information over a channel, such as a telephone wire. The first requirement for
a measure of information is that the amount of information in an event X must depend
upon its probability p. This is a very natural requirement. Suppose, in fact, that the pos-
sible outcomes of the event X are {xi} and the probability of an event, say x0 to occur is
one p(x0) = 1. Then learning the value of X by measuring it bring us no information. If
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x0 is close but not equal to unity, then learning that X = x0 gives us some information
but still not much. In fact in this case finding that X = x0 simply confirm something
that we would have already guessed. However, if X takes an unlikely value, we would
be surprised about it and we could say that we have acquired a large amount of infor-
mation.
The second requirement for a measure of information is that it should be a continuous
function of the probability p. This means that if the probability of an event slight changes,
the information contained in that event changes only by a small amount.
A third constrain is that the information measure is an additive quantity. If we call SE
the measure of information, then we require that SE(px, py) = SE(px) + SE(py). The
reason behind this requirement is explained by considering two independent events X
and Y that happen with probabilities px and py such that p(xi, yi) = px(xi)py(yi). If we
know that X = xi and we learn that Y = yi, then we expect we are adding something to
our knowledge by providing additional information. The fact that the product of prob-
abilities becomes a sum for SE suggest that the measure of information is a logarithm.
Shannon proved that there is a unique measure which satisfies the previous require-
ments. It is called the Shannon entropy and it is the quantity which quantifies the ig-
norance about the random variable X or otherwise stated the information gain that is
obtained after learning the value of X . It is defined as follows: If the random variable X
can take the value x with probability p(X = x) = p(x), then the Shannon entropy of the
random variable X is

SE(X) = −
∑
x

p(x) log2 p(x) (1.50)

where the minus sign is put in order for SE to be a positive quantity. The logarithm in
basis 2 means that the information is counted in ’bits’. When the random variable X
describes a binary system, that is it can only assume the two values 0, with probability p
and 1 with probability (1− p), then the associated Shannon information is

SE(X) = −p log2 p− (1− p) log2(1− p). (1.51)

This quantity has a maximum of 1 bit for p = 1/2, that is when the outcomes 0 and 1 are
equally likely to be found after a measure, and it takes value zero for p = 0 and p = 1,
meaning that there is no gain of information if we know from the start the value of the
random variable X .
The Shannon entropy SE(X) is a fundamental quantity in classical information theory.
Shannon showed that a classical source of letters taken from an alphabet {xi}with prob-
abilities pi can be compressed so that on average each use of the source can be repre-
sented using SE(pi) bits of information. This theorem is known as the noiseless channel
coding theorem [51]. Moreover, Shannon also proved that data distributed according to
Xn, i.e. n copies of X , can be transmitted with an arbitrarily small probability of error
as n becomes large by sending nSE(X) bits. This is called noiseless data compression.
Other relevant measures of information can be defined starting from the definition of
the Shannon entropy. These measures capture the relationship between two random
variables X and Y . I will here briefly recall only the ones that will be useful for further
discussions.
The joint entropy measures the combined information in two random variables:

SE(X,Y ) = −
∑
x,y

p(x, y) log2 p(x, y) (1.52)
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where p(x, y) is the joint probability distribution of the two random variable. This quan-
tity tells us about the total uncertainty about the pair (X,Y ). If X and Y are inde-
pendent, then the additive property of the Shannon entropy shows that SE(X,Y ) =
SE(X) + SE(Y ). In fact, for independent variables we have:

SE(X,Y ) = −
∑
x,y

p(x)p(y) log[p(x)p(y)] =

= −
∑
y

py
∑
x

px log px −
∑
x

px
∑
y

py log py = SE(X) + SE(Y ). (1.53)

This equality does not hold when X and Y are not independent.
The conditional entropy measures the information contained in one random variable given
that the outcome of the other random variable is known. It is defined as:

SE(X|Y ) = −
∑
x,y

p(x, y) log[p(x|y)] (1.54)

where p(x|y) = p(x,y)
p(y) is the conditional entropy. If X and Y are completely independent

then H(X|Y ) = H(X), since the conditional probability is p(x|y) = p(x)p(y)
p(y) = p(x). This

is due to the fact that acquiring information from Y does not increase the knowledge
about X . The conditional and the joint entropies are related. In fact, it is possible to
describe the joint distribution of X and Y by measuring first X and then measuring Y
given that Y is already known. This leads to the relationship:

SE(X,Y ) = SE(X) + SE(Y |X). (1.55)

Eq. (1.55) can easily be proven by applying the definition of p(x|y).
The mutual information is the difference between the information gained from learning
the value of X and Y separately and as a joint distribution:

SE(X : Y ) = SE(X) + SE(Y )− SE(X,Y ) (1.56)

The mutual information is used to describe the situation in which two events share in-
formation about one other. Having mutual information means that the two events are
no longer independent and it is possible, by looking just at one of them, to extract in-
formation about the other. The quantity SE(X) + SE(Y ) represents the uncertainty on
the variables X and Y treated separately and SE(X,Y ) is the joint entropy . It is usually
used as a measure of correlations between two events.
SE(X : Y ) is symmetric, i.e. SE(X : Y ) = SE(Y : X). If variables X and Y are in-
dependent, the expression for the mutual information is zero, meaning that there is no
difference between measuring the two variables independently or as a joint distribution.

In the quantum scenario, the information is stored in the quantum state of a system,
described by the density operator ρ which evolves according to the laws of quantum
mechanics. The classical probability distributions are replaced with with density matri-
ces, and the summations with trace operations. The unit of quantum information is the
qubit, introduced in Sec. 1.1.1. A qubit can be physically implemented, for example, by
a spin of an electron or nucleus, or in the polarization of a photon.

If we want to generalize the measures of information previously introduced to the
quantum world, we find that quantum information can be quantified in the same way



Preliminaries and Mathematical tools 13

as classical information using Shannon’s requirements. The measure, which we will call
S, should be a continuous function of the probabilities of the outcomes of measurements
made on a quantum system and it should be additive, that is, if ρ1 and ρ2 are uncorre-
lated systems, then S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2). S is called the von Neumann entropy.
If we diagonalize the density matrix ρ =

∑
i ρi|ρi〉〈ρi|, with ρi its eigenvalues, then the

von Neumann entropy is defined as:

S(ρ) = −Tr[ρ log2 ρ] (1.57)

and can be reformulated as:

S(ρ) = −
∑
i

ρi log2(ρi). (1.58)

The von Neumann entropy quantifies the mixedness of a state. If a state is pure, its en-
tropy is zero, while a maximally mixed state has the largest possible amount of entropy,
which is log2D, if D is the dimension of the system. For qubit system, the maximum of
the von Neumann entropy is log2 2 = 1. From this last expression, we can deduce that
the von Neumann entropy is the Shannon entropy for the probability distribution {ρi},
i.e. the Shannon entropy of a random variable X which takes values i with probability
ρi. This confirms the fact that a density matrix in its diagonal basis can be seen as a
classical probability distribution. Analogously to Shannon entropy, it can be proved that
the von Neumann entropy is the expected rate of compression of a string of quantum
states [52].
By analogy with the Shannon entropies, it is possible to define quantum joint and condi-
tional entropies and the quantum mutual information. The quantum joint entropy of two
quantum states ρA and ρB is the von Neumann entropy of their joint density operator,
S(ρAB).
The quantum conditional entropy is the information gained from ρAB when ρB is known:

S(ρA|ρB) = S(ρAB)− S(ρB) (1.59)

The quantum mutual information measures the correlations between two quantum sys-
tems ρA and ρB . The generalization to the quantum world of the mutual information
(1.56) can be written as:

S(ρA : ρB) = S(ρA) + S(ρB)− S(ρA, ρB). (1.60)

Quantum mutual information is a very important quantity, since its quantum general-
izations lead to the definition of quantum discord. We will give more details about this
in Sec. (1.2.2).

1.2 Quantum correlations

One of the best signature of non-classicality in a quantum system is the existence of cor-
relations that do not have a classical counterpart. Entanglement and discord describe the
quantum correlations contained in a system, coming either from non-separability or the
impossibility of local discrimination. Quantum correlations are a fundamental resource
for quantum technology, e.g. the processing of quantum information and for the effec-
tive implementation of quantum enhanced protocols.
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Entanglement is the most prominent form of quantum correlations, but in many cases
disentangled states exhibit non-classical behavior too. The paradigm entanglement-
separability has been, for decades, the standard approach to address the quantification
of quantum correlations in a physical system. In fact, separable states were thought
to carry only classical correlations, while the presence of correlations other than classi-
cal were associated solely to the presence of entanglement. However, since the work
of Knill and Laflamme [53] on the deterministic quantum computation with one qubit,
many works appeared trying to investigate the role of entanglement as a prerequisite
for obtaining quantum speedups of information processing tasks [54–56]. Several other
measures of quantum correlations have been investigated in the literature [1, 2, 57–59],
and among them quantum discord has received a lot of attention. In the past decade it
has been recognized that separable mixed states may represent a quantum resource if
they show non-zero quantum discord [4, 60–62].
In the next section we will briefly introduce the concepts of entanglement and quantum
discord, and we will review their main properties.

1.2.1 Entanglement

Entangled states have been known almost from the very beginning of quantum mechan-
ics, and already in 1935 Schrödinger was defining them as “the most characteristic trait
of quantum mechanics”. Entanglement is a key element in quantum information pro-
cessing and quantum communications. Examples of its applications include quantum
teleportation, fast quantum algorithms and quantum error-correction [63–66].

For decades entanglement was studied in works related to the foundations of quan-
tum mechanics, such as non-locality and the violations of Bell’s inequalities [67–71].
However, in the last decade, entanglement begun to be seen as a powerful resource.
For example, the efficient working of a quantum computer or the speed-up of certain
quantum algorithms compared to the classical counterparts, relies on the presence of
entanglement. For an exhaustive review on entanglement, we address the reader to the
Ref.s [72–74].
Entanglement describes quantum correlations that can appear in a quantum system. In
this context, we define classical correlations those correlations that can be generated by
local operations and classical communication (LOCC). If, by observing a quantum sys-
tem, we find correlations that cannot be reproduced by LOCC, then we label them as
entanglement.
Mathematically, a quantum state is called entangled if it is not separable, i.e. if it cannot
be written as a convex combination of tensor product states:

ρsep =
∑
k

pk ρ
A
k ⊗ ρBk (1.61)

ρent 6=
∑
k

pk ρ
A
k ⊗ ρBk . (1.62)

Separable states can be produced locally using only a LOCC-scheme. This means that
Alice and Bob can solely communicate in a classical way and perform quantum opera-
tions only on their subsystem. Any combination of this sequence is allowed but nothing
more general. Because of the way in which they are produced, separable states cannot
be entangled.
Another important property of entanglement is that it does not increase under LOCC
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transformations. This immediately follows from the fact that LOCC can only create sep-
arable states. Moreover, entanglement does not change under local unitary operations.
This is due to the fact that local unitaries can be inverted and, by the non-increase of en-
tanglement under LOCC, two states connected by local unitaries have an equal amount
of entanglement.
Another feature about entanglement is that there are maximally entangled states, i.e.
states that are more entangled than all other states living in the same Hilbert space. If
we focus on bipartite systems of qubits, these states are called Bell states. There are four
Bell states:

|Φ±〉 =
1√
2

(|00〉 ± |11〉) (1.63)

|Ψ±〉 =
1√
2

(|01〉 ± |10〉) . (1.64)

These states are very important for the quantum information processing and communi-
cations and will be addressed in the later chapters.
As a result of the interaction with a noisy environment, entanglement may decay as a
function of time. This decay of entanglement may display different qualitative behav-
iors. For example, entanglement may be degraded exponentially in time, reaching a zero
value asymptotically, or it can decay to zero in a finite time. In this case we talk about
entanglement sudden death (ESD) [75]. However, in certain cases it is possible to see rebirth
of entanglement, i.e. entanglement can decay to zero and then display revivals, with an
oscillating dynamics.

Given the definition of entanglement and separability, it is natural to ask whether a
given quantum state is entangled or not. Answering this question is a fundamental but
not trivial task.

There are many criteria for bipartite entanglement in mixed states. Since it is beyond
the scope of this work to discuss all of them, here I will focus on PPT criterion, which
will be useful for later discussion.
PPT criterion is based on the concept of partial transpose operation. By expanding the
density matrix of a composite system ρ in a chosen product basis

ρ =
∑
i,j

∑
k,l

ρij,kl|i〉〈j| ⊗ |k〉〈l|, (1.65)

one defines the partial transposition as the transposition operation with respect one sub-
system:

ρTA =
∑
i,j

∑
k,l

ρji,kl|i〉〈j| ⊗ |k〉〈l| (1.66)

where the superscript TA refers to the fact that the transposition is done by respect Alice
indexes. While the partial transpose depends on the basis in which the operation is
performed, its spectrum is basis-independent. A density matrix has a positive partial
transpose (PPT) if its partial transposition has no negative eigenvalues.
The PPT criterion (also called Peres-Horodecki criterion) [76] states that:

If ρ is a bipartite separable state, then ρ is PPT.

The proof follows directly from the definition of separable state (1.61). In fact, by ap-
plying the partial transposition operation, we obtain ρTA =

∑
k pk (ρAk )T ⊗ ρBk . But
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(ρAk )T = (ρAk )∗ are non-negative matrices with unitary trace, so they are legitimate den-
sity matrices. If follows that none of the eigenvalues of ρTA is negative.
This criterion provides a very powerful tool to detect entanglement. Given a density
matrix, it is sufficient to compute the partial transpose and its eigenvalues. If at least one
of them is negative, then the state is entangled. The PPT criterion was proved to be a
necessary and sufficient condition for separability in 2× 2 and 2× 3 systems [77, 78]
Many efforts have been devoted through years to find physically motivated quantitative
measures of entanglement, especially for mixed states of a bipartite systems. Examples
include the concurrence [79, 80], the entanglement of formation [81, 82]. the distillable
entanglement [81] and the relative entropy of entanglement [83]. However in our work
we address the negativity as a measure for entanglement.

Negativity

The negativity measure of entanglement is based on the trace norm of the partial trans-
pose ρTA of a bipartite mixed state ρ. It measures the degree to which ρTA fails to be
positive. In this sense the negativity measure of entanglement can be regarded as a quan-
titative version of Peres’ criterion for separability. The negativity was first introduced by
Vidal and Werner in 2002 [84] who defined it as:

N(ρ) ≡ ||ρ
TA ||1 − 1

2
. (1.67)

This measure vanishes for separable states. The trace norm of a generic operator O is

||O||1 = Tr
√
O†O, (1.68)

and it is equal to the sum of the absolute values of the eigenvalues of O, when O is
Hermitian. For example, in the case of density matrices ||ρ||1 = Tr[ρ] = 1. In the case
of partial transposed matrices, the trace is still Tr[ρTA ] = 1 but now the eigenvalues may
take both negative and positive values. It follows that Eq. (1.67) can be rewritten in
terms of the sum of the negative eigenvalues of the partial transposed matrix. In fact,
upon diagonalizing the transposed density matrix as ρTA =

∑
k λk|k〉〈k| with

∑
λk = 1

but
∑
|λk|may be different from 1, we can write

Tr
√

[ρTA†ρTA ] =
∑
k

|λk| (1.69)

||ρTA ||1 − 1 =
∑
k

|λk| −
∑
k

λk. (1.70)

We can thus renormalized the negativity as

N(ρ) = 2
∑
k

|λ−k | (1.71)

=
∑
k

|λk| − 1 (1.72)

where λ−k are the negative eigenvalues of the partial transposed density matrix and the
factor 2 was added in order for the negativity to be bound between 0 for separable states
and 1 for maximally entangled states.
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1.2.2 Quantum discord

The state ρ of a bipartite quantum system usually contains both classical and quantum
characteristics, in particular, it may have both classical as well as quantum correlations.
It is important, in quantum information theory, to be able to distinguish between these
two kinds of correlations. For a long time it was believed that entanglement described
the whole of quantum correlations and the dichotomy entanglement-separability was
the milestone to address this problem. However, entanglement is a special kind of quan-
tum correlations, but not the only kind. Indeed, there exist separable states that have
quantum correlations, even if they have zero entanglement.

One of the lesson we learn from quantum mechanics is that the measurement pro-
cess disturbs the state of a physical system, in contrast to what happen in the classical
scenario. It follows that it is possible to claim that the disturbance induced by a mea-
surement on a state is a good evidence of its quantumness. In particular we focus on
bipartite systems in which a local measurement is performed on one subsystem. The
disturbance induced by the measurement on the system changes indeed the global state,
creating correlations that do not have a classical analogue.

Quantum discord arises from the generalization to the quantum world of the clas-
sical mutual information. As anticipated in Sec. 1.1.5, the classical mutual information
measures the correlations between two random variablesX and Y and its quantum gen-
eralization was given in Eq. (1.60).
The classical mutual information can also be viewed as the difference between the infor-
mation gained from learning the value of X and the information gained from learning
X when Y is already known:

J(X : Y ) ≡ SE(X)− SE(X|Y ), (1.73)

where we used the conditional entropy SE(X|Y ) of Eq. (1.54), which measures our
uncertainty, on average, about the value of X , given that we know the value of Y . If X
and Y are independent, their mutual information in zero while if they are completely
correlated, the mutual information is equal to the information contained in X . Eq. (1.56)
and (1.73) are equivalent expressions for the classical mutual information.
The generalization of Eq. (1.73) to the quantum case is not trivial. This is due to the
presence of the conditional entropy S(ρA|ρB), which requires to specify the the state of
A given the state of B. The ambiguity arises from the fact that in quantum theory a
measurement on a subsystem changes the state of the whole system. Let us focus on
projective measurements. According to Eq. (1.35), the state of subsystem A after the
output corresponding to measurement operator PBj on subsystem B has been detected,
is given by:

ρA|PBj =

(
IA ⊗ PBj

)
ρ
(
IA ⊗ PBj

)
Tr[IA ⊗ PBj ρ]

(1.74)

with probability pj = Tr[IA⊗PBj ρ]. Here IA is the identity operator acting on subsystem
A. The entropies S(ρA|ρB) may thus be written S(ρA|PBj ) and they tell us about the
missing information about partyA. When we weight them by probabilities pj , we obtain
the conditional entropy of A given the complete measurement {PBj }:

S
(
ρA|{PBj }

)
=
∑
j

pjS(ρA|PBj ). (1.75)
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Eq. (1.73) can thus be generalized to the quantum case as:

J(A : B)PBj = S(ρA)− S(ρA|{PBj }). (1.76)

Eq. (1.76) represents the information gained about the subsystem A as a result of the
measurement {PBj } on subsystem B. The quantity

C(ρ) = sup
{PBj }

J(A : B) (1.77)

is interpreted as a measure of classical correlations. See Refs. [1, 2, 85] for further expla-
nations. Maximizing this quantity over all possible measurements {PBj } on subsystem
B corresponds to finding the measurement that disturbs least the quantum state and
allows one to extract the most information about A.

We now have two quantum analogs of the classical mutual information: the direct
generalization I , which represents the total correlations, and the measurement-induced
quantum mutual information J , which represents the classical correlations in a quantum
system. The difference between the two quantum versions of the mutual information is
called quantum discord:

QB(ρ) = I(ρ)− J(ρ)

= S(ρA)− S(ρ) + S
(
ρA|{PBj }

)
. (1.78)

and it is interpreted as a measure of quantum correlations. It can be shown that the
quantum discord is always non-negative. It is moreover worth notice that quantum
discord is non-symmetric under the exchange A ↔ B, because the conditional entropy
involves a measurement on one subsystem to infer the the state of the other. Analogously
to Eq. (1.78), it is possible to define the discord in the case the measurement is performed
on subsystem A as:

QA(ρ) = S(ρB)− S(ρ) + S
(
ρB |{PAj }

)
. (1.79)

Quantum discord is distinct from entanglement for mixed states. In the case of pure
states, however, quantum discord reduces to the von Neumann entropy of the reduced
density matrix

It is easy to verify that not only entangled, but almost all separable, states have a
non-zero quantum discord, that is they are affected by the measurement process. This
is an evidence of quantum properties. In order to better understand which states can be
classified as purely classical, i.e. they do not have quantum correlations, we introduce
the separable ’classical-quantum’ (CQ) states [86] as:

ρCQ =
∑
k

pk|αk〉〈αk| ⊗ ρBk (1.80)

ρQC =
∑
k

pkρ
A
k ⊗ |βk〉〈βk| (1.81)

where the sets {αk} and {βk} represents orthogonal basis in the A and B subsystem
respectively, and ρAk and ρBk are quantum states. It is trivial to prove that if we apply a
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projective measurement {Pi} on the basis {αk}, we obtain QA(ρCQ) = 0 and the state
ρ
{Pi}
CQ = ρCQ is left unperturbed. In fact:

ρ
{Pi}
CQ =

∑
i

(Pi ⊗ I)ρCQ(Pi ⊗ I) =
∑
ik

pk|αi〉〈αi|αk〉〈αk|αi〉〈αi| ⊗ ρBk

=
∑
k

pk|αk〉〈αk| ⊗ ρBk = ρCQ (1.82)

On the contrary, a projective measurement on subsystem A of a QC state, changes the
state of the system:

ρ
{Pi}
QC =

∑
i

(Pi ⊗ I)ρQC(Pi ⊗ I) =
∑
ik

pk|αi〉〈αi|ρAk |αi〉〈αi| ⊗ |βk〉〈βk| 6= ρQC . (1.83)

CQ states are not disturbed by the measurement on subsystem A. A subset of CQ states
which display a zero-discord are written as:

ρCC =
∑
k

pk|αk〉〈αk| ⊗ |βk〉〈βk| (1.84)

where {αk} and {βk} are again two orthonormal sets and all the uncertainty about
the physical state is given by the probability distribution {pk}. These states are called
classical-classical states and display only classical correlations. One could consider CC
states to correspond simply to the embedding into the quantum formalism of a classical
joint probability distribution {pk}.

Computing the quantum discord (1.78) for a generic quantum state is not an easy
task because it involves an optimization procedure. However, for a certain family of of
two-qubit states, called X-states, an analytical solution was found by Luo in Ref. [87].
X-states are characterized by the density matrix

ρ =
1

4

IA ⊗ IB +
∑

j=x,y,z

aiσ
A
j ⊗ σBj

 (1.85)

where aj are real coefficients and σj are the Pauli matrices. The quantum discord for
such states has an analytical expression:

Q(ρ) =
1

4
[(1− ax − ay − az) log2(1− ax − ay − az)

+ (1− ax + ay + az) log2(1− ax + ay + az)

+ (1 + ax − ay + az) log2(1 + ax − ay + az)

+ (1 + ax + ay − az) log2(1 + ax + ay − az)]

− 1− a
2

log2(1− a)− 1 + a

2
log2(1 + a)] (1.86)

where a = max(|ax|, |ay|, |az|).
In the most general case of an arbitrary two-qubit state, it was shown in Ref. [88] that an
analytical expression for the discord cannot be obtained, since the optimization problem
for the conditional entropy requires the solution to a pair of transcendental equations in
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the parameters of the state.
For the sake of completeness, we mention here a class of two-qubit states that belong to
the X-states and that we will consider in the following discussions. It is the class of Bell-
states mixtures, or Bell-diagonal states, i.e. combinations of the four Bell states (1.63) and
(1.64):

ρ = c1|Φ+〉〈Φ+|+ c2|Φ−〉〈Φ−|+ c3|Ψ+〉〈Ψ+|+ c4|Ψ−〉〈Ψ−| (1.87)

where the coefficients 0 < ci < 1 satisfy the relation
∑
i ci = 1. The relations between

the ai coefficients in Eq. (1.85) and the ci coefficients in Eq. (1.87) are given by:

ax = c1 − c2 + c3 − c4
ay = −c1 + c2 + c3 − c4 (1.88)
az = c1 + c2 − c3 − c4.

Generally, quantum discord is more robust than entanglement, in the sense that it decays
to zero at a slower rate with respect to entanglement. Actually, under certain conditions,
not only quantum discord is degraded in slow way, but it can be completely unaffected
by decoherence, while entanglement decays. This phenomenon is called frozen quantum
discord [89].

1.3 Quantum non-Markovianity

Quantum systems inevitably interact with their environment. As a result, they are not
isolated and the theory of closed quantum systems fails to correctly describe many es-
sential features of their dynamics. It is therefore necessary to include the effects of the
environment in the description of the dynamics of the quantum system. The effect of
the environment on the dynamics of an open quantum system is to replace the unitary
evolution with non-unitary dynamics. Dynamical maps are conventionally classified
into two categories: Markovian maps, which describe memoryless dynamics and non-
Markovian maps, whose evolution is characterized by memory effects. In many practical
situations, Markovian dynamics is only an approximation of the more realistic and more
complicated non-Markovian dynamics and a Markovian description fails to account to
for the phenomena appearing because of memory effects.
In classical theory of stochastic processes, a Markov process is defined by the Markov
condition, which is a condition for the hierarchy of the n-point probability distribution
function pertaining to the process, as will be discussed in the next chapter ( for a defini-
tion of Markovian stochastic processes, see Chap. 2). However this hierarchy does not
exist in quantum mechanics. It follows that while Markovianity is well defined for clas-
sical stochastic processes, its quantum extension remains elusive and subtle and is the
subject of an ongoing debate in the quantum information community. The definition of
non-Markovianity and the quantification of quantum memory effects in the dynamics of
open quantum systems have received a lot of interest in recent years. Historically, quan-
tum Markovianity has been associated to the property of divisibility of the dynamical
map describing the system evolution. A dynamical map Et has the property of divisibil-
ity if it can be written as the composition of two CPTP maps:

Et = Et,t′ Et′ , ∀ t′ ≤ t. (1.89)

It follows that non divisibility occurs if there exist times t′ at which Et,t′ is not CPTP.
Several measures for quantum non-Markovianity have been proposed in the past years,
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which are based on different mathematical and physical concepts. Examples include
measures based on the distinguishability of quantum states, as measured by the trace
distance [90] or fidelity [91], semigroup properties [15], divisibility of the dynamical
maps [13], Fisher [14] or mutual quantum information [11] and the channel capacities [9].
A common characteristic to many of these measures is that they are based on the non-
monotonic behavior of certain quantities appearing when the divisibility property is vi-
olated. Among the different measures of non-Markovianity, we focus our attention on
two of them, because of their interpretation of non-Markovianty from a quantum infor-
mation theory perspective, by linking the concept of non-Markovianity to the flow of
information and exchange of entropy between the system and the environment. These
measures, called BLP and BCM measures, are based on the non-monotonic time evolu-
tion of the distinguishability of states and of the quantum capacity respectively.

1.3.1 BLP measure of non-Markovianity

This measure was introduced by Breuer, Laine and Piilo (BLP) in Ref. [90]. They used the
concept of information flow between the system and the environment and distinguisha-
bility between quantum states to define non-Markovianity.
BLP measure is based on the idea that a Markovian dynamics tends to reduce the distin-
guishability between any two initial states, while non-Markovianity is associated with a
partial regrowth, for at least one interval of time, in distinguishability. Loss of state dis-
tinguishability is interpreted as an irreversible flow of information from the system to
the environment. An increase in distinguishability, on the contrary, reflects a partial, and
often temporary, reversed flow of information back to the system. Memory effects thus
emerge through information backflow. The distinguishability between any two states ρ1

and ρ2 can be quantified using the trace distance:

D(t; ρ1, ρ1) =
1

2
||ρ1(t)− ρ2(t)||1 (1.90)

where ||.|| is the trace norm defined in Eq. (1.68). The trace distance is well defined
and finite for all pairs of quantum states and provides a metric on the space of physical
states. D is equal to zero if and only if ρ1(t) = ρ2(t) and is equal to 1 for orthogonal
states. Moreover D is symmetric in the inputs and satisfies the triangular inequality
D(ρ1, ρ2) ≤ D(ρ1, ρ3) +D(ρ3, ρ2).

It can be proved that the trace distance is preserved under unitary transformations
U :

D(t;Uρ1U
†, Uρ2U

†) = D(t; ρ1, ρ2). (1.91)

More generally, called E a complete positive and trace-preserving (CPTP) maps, E is a
contraction of the trace distance D(Eρ1, Eρ2) ≤ D(ρ1, ρ2).
The trace distance between any two quantum states is related to the probability of dis-
tinguishing the two states [92]. Imagine Alice prepares a quantum system in the state
ρ1 with probability 1/2 and in the state ρ2 with probability 1/2. Then she gives the sys-
tem to Bob, who performs a measurement to distinguish the two states. The maximal
probability that Bob can identify the state is:

Pmax =
1

2
[1 +D(ρ1, ρ2)] . (1.92)

For example, if ρ1 and ρ2 are orthogonal, the trace distanceD(ρ1, ρ2) = 1, the probability
pmax = 1, which means that Bob is able to distinguish the states with certainty. In this
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sense, the trace distance can be interpreted as a measure of distinguishability between
quantum states. The dynamical change of the distinguishability between quantum states
can be interpreted in terms of a flow of information between the system and the environ-
ment. When a quantum process reduces the distinguishability between quantum states,
information is leaking from the system. Correspondingly, an increase of distinguishabil-
ity means that there is a backflow of information into the system. The invariance under
unitary transformations indicates that information is preserved under the dynamics of
closed systems, while the contraction property guarantees that the maximal amount of
information that the system can recover is the same amount that earlier flowed out of it.
BLP introduce an “information flux” σ as the rate of change of the trace distance by
means of

σ(t, ρ12(0)) =
d

dt
D(ρ1(t), ρ2(t)) (1.93)

where ρ12(0) is the initial joint density matrix of the two states, and the initial time is
t0 = 0. For non-Markovian processes, the information must flow back to the system for
some intervals of time and thus σ must be positive for such intervals. The BLP measure
of non-Markovianity quantifies the total increase of distinguishability over the whole
time evolution, that is the total amount of information backflow:

NBLP = max
ρ12(0)

∫
σ>0

dt σ(t, ρ12(0)). (1.94)

The time integration is over all time intervals in which σ > 0 and the maximum is taken
over all pairs of initial states. Negative σ means information loss from the system to
the environment, while positive σ indicates a reversed flow of information. The inte-
gration over all positive fluxes accumulates the information that returns to the system .
Whenever NBLP > 0 the dynamics is non-Markovian.

It is possible to show that all divisible maps, i.e. maps having the property Et = Et,sEs
with t > s > t0, are Markovian according to this measure, but the converse is not true in
general [12]. Notice that the notation Et,s indicates a quantum channel that describe the
evolution of a density matrix from an initial time s to a final time t. Using Eq. (1.93), the
measure of non-Markovianity can be rewritten as:

NBLP = max
ρ12(0)

∑
n

[D (ρ1(tmax
n ), ρ2(tmax

n ))−D (ρ1(tmin
n ), ρ2(tmin

n ))] , (1.95)

where tmax
n and tmin

n correspond to the time points of the local maximum and minimum of
the trace distanceD(ρ1(t), ρ2(t)) respectively. In order to calculate the non-Markovianity
according to this measure one should sum up the total contributions of all intervals
{tmax
n , tmin

n } and finally perform the maximization over all pairs of initial states. Gener-
ally, the optimization over all pairs of initial states is not an easy task and it makes the
measure difficult to compute, although it has been shown that the two states maximiz-
ing the measure are orthogonal to each other [93]. Moreover, for some simple dynamical
maps the maximizing pair has been found [94–96]. In particular for the case of a de-
phasing channel, the trace distance calculated for the two optimal initial states is given
by:

D(t) = |Λ(t)|, (1.96)

which is the absolute value of the dephasing coefficient appearing in Eq. (1.49).
In the following, we use the name optimal trace distance for the expression (1.96), that is
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the trace distance computed for the optimal pair. Thus the study of non-Markovianity
can be reduced to the analysis of the optimal trace distance (1.96). Once its expression is
known it is possible to write the information flux σ and then numerically compute the
non-Markovianity as the integral of σ over the time intervals in which it is positive.

1.3.2 BCM measure of non-Markovianity

The second measure that we use, introduced by Bylicka, Chruściński and Maniscalco, is
based on the concept of quantum capacities.
We introduced the concept of quantum channels in Sec. (1.1.4). In the typical scenario
of quantum information processing and communication, Alice and Bob are at opposite
ends of a quantum channel. Alice sends informations (classical or quantum) through the
channel and Bob receives it. The maximum amount of information that can be reliably
transmitted along a noisy channel is known as the channel capacity. The quantum capac-
ity bounds the rate at which quantum information can be reliably transmitted through
the channel Et.
In the case of degradable channels [97], such as the dephasing channel, the single-use
quantum capacity may be written as

CQ(Et) = sup
ρ
Ic(ρ, Et) (1.97)

where Ic represents the coherent information [98]:

Ic(ρ, Et) = S
(
Et(ρ)

)
− Sex(ρ, Et), (1.98)

with S(ρ) the von Neumann entropy defined in Eq. (1.57) and Sex(ρ, Et) is the entropy
exchange [98, 99]. The superior in Eq. (1.97) should be taken over all possible states of
the considered system. It is worth stressing that, contrarily to the trace distance, the co-
herent information describes how the entropy of both the system and the environment
change. Hence, this quantity is more apt to capture the concept of information flow be-
tween the system and the environment. More explicitly, coherent information is, in fact,
quantifying the flow of information between system and environment, while the trace
distance is quantifying only the loss of information that we have on the system without
any indication on whether this information is acquired by another agent (and may come
back).
Strictly speaking, Eq. (1.97) describes the quantum capacity only for memoryless degrad-
able channels [100–102] and thus it seems unsuitable to to address quantum channels
arising from the interaction with a classical environment exhibiting long-lasting time
correlations. However, in the following chapters, we will be interested in the effects of
memory during the propagation of the information carriers, rather than the memory effects
among subsequent uses of the channel. For this reason expression (1.97) will fit nicely
for our purposes.
A central result in quantum information theory is the data processing inequality [98]
which says that processing quantum information reduces the amount of correlations be-
tween input and output. For a divisible channel Et = Et,sEs with s ≤ t, this inequality
may be written as I(ρ, Et) ≤ I(ρ, Es). As a consequence of the quantum data-processing
inequality, the quantum capacity is a monotonically decreasing function of time for di-
visible quantum channels. Divisibility, however is a property of Markovian dynamical
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maps. The BCM measure is therefore based on the non-monotonic behavior of CQ(Et):

NBCM =

∫
dCQ(Et)

dt >0

dCQ(Et)
dt

dt (1.99)

=
∑
n

[CQ (ρ1(tmax
n ), ρ2(tmax

n ))− CQ (ρ1(tmin
n ), ρ2(tmin

n ))] (1.100)

Non-Markovianity corresponds to NBCM > 0. Even if this measure does not explicitly
involve a maximization procedure, an optimization procedure is required in the compu-
tation of the quantum capacity (1.97). In the case of a dephasing channel, however, the
analytical expression for CQ is known [30]:

CQ(t) = 1− SE
(

1− Λ(t)

2

)
(1.101)

where Λ(t) is the dephasing coefficient in Eq. (1.48) and SE the Shannon binary entropy
(1.51). The operational interpretation of quantum capacity allows one to use NBCM to as-
sess if and how non-Markovianity can be seen as a resource for quantum communication
and information processing.

1.4 Quantum estimation theory

Several quantities of interest in quantum information theory do not correspond to quan-
tum observables and cannot be assessed directly by measurement. Examples are the pu-
rity of a quantum state, a quantum phase or quantum correlations. The canonical way to
address this problem is to use the tools of local quantum estimation theory (QET). In this
section we review only the main tools of local QET that will be useful in the following
chapters. For a more exhaustive discussion on the topic, see Ref.s [103–105].
The aim of an estimation procedure is to find the best strategy to infer the value of an
unknown parameter with the highest possible precision. This is done by performing
indirect measurements on the quantum system, i.e. inferring the value of the parameter
by processing the set of outputs from the measurement of a different observable, or a set
of variables.

The usual scenario in quantum estimation theory is to consider a family of quan-
tum states ρλ depending on an unknown parameter λ, usually corresponding to non-
observable quantity. The goal of any estimation procedure is to infer the value of the
parameter λ by measuring some observable quantity on the system ρλ. To this aim,
repeated measurements are performed on the system and then the overall sample of
outcomes (x1, x2 . . . , xM ) is processed in order to obtain an estimator for the unknown
parameter. An estimator λ̂ = λ̂(x1, x2 . . . xM ) is a function of the outcomes {xi}. We
denote by V (λ̂) the corresponding mean square error (MSE):

V (λ̂) = E
[(
λ̂− λ

)2
]

(1.102)

where E [X] denotes the expected value (or mean or first moment) of the random vari-
able X . An estimator is said to be unbiased if E

[
λ̂
]

= λ, that is if the expected value of
the estimator is equal to the true value of the parameter. For unbiased estimators, the
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MSE is equal to the variance σ2(λ̂) = E
[(
λ̂− E

[
λ̂
])2
]

. The concept of the variance of a

stochastic process will be introduced in Chapter. 2.
Given a sample of experimental data, there will be an infinite number of functions of
the sample that might be proposed as estimators of the unknown parameter. Therefore,
we need a figure of merit to quantify the precision of an estimator, in order to find the
best estimate of the parameter. This quantity is the variance. The smaller is the variance
σ2(λ̂) associated to the estimator, the more precise is the estimator, because it will tend to
have values that are concentrated more closely around the true value of the parameter.
However, the accuracy of an estimation procedure can never be infinite. This is due to
the Cramér-Rao (CR) inequality, which provides a lower bound to the precision of any
unbiased estimator for the parameter λ:

V (λ̄) ≥ 1

M F (λ)
(1.103)

where M is the number of measurements and F (λ) is the Fisher information (FI):

F (λ) =

∫
dx p(x|λ) [∂λ log p(x|λ)]

2
, (1.104)

where p(x|λ) is the conditional probability of obtaining the outcome x when the true
value of the parameter is λ. The proof of the CR inequality and the conditions that must
be satisfied for the theorem to hold can be found in Ref. [105].
In the case of a qubit, we may for instance consider the population measurement in a
given basis {j}. The density operator of the system can thus be written as ρ=

∑
jk=0,1

ρjk|j〉〈k|. In such a case the Fisher is given by:

F (λ) =
(∂λρ00)2

ρ00
+

(∂λρ11)2

ρ11
(1.105)

where ρii are the two diagonal elements of the density matrix in the population basis.
In order to compute the ultimate bound to precision as posed by quantum mechan-

ics, the FI must be maximized over all possible measurements. Given a quantum system,
the conditional probability of obtaining outcome xi knowing that the parameter has the
value λ, may be written as according to Eq. (1.34) p(xi|λ) = Tr[ρλEi], where Ei is a
quantum measurement Ei = M†iMi. The maximization over all the possible measure-
ments can be achieved upon introducing the Symmetric Logarithmic Derivative Lλ as
the operator which satisfies the relation:

Lλρλ + ρλLλ
2

= ∂λρλ. (1.106)

We address the reader to Ref. [33] for the mathematical details in the optimization pro-
cedure. After the maximization one obtains the ultimate bound to the precision of any
estimator, as expressed by the quantum Cramér-Rao (QCR) bound:

V (λ) ≥ 1

M G(λ)
. (1.107)

HereG(λ) = Tr[ρλL2
λ] is the so-called quantum Fisher information (QFI), i.e. the superior

of F (λ) over the quantum measurements. In the case of a qubit, the expression of the
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QFI can be found after diagonalizing the density matrix according to Eq. (1.24) ρλ =∑2
n=1 ρn|ρn〉〈ρn|:

G(λ) =

2∑
n=1

(∂λρn)2

ρn
+ 2

∑
n6=m

(ρn − ρm)2

ρn + ρm
|〈ρm|∂λρn〉|2. (1.108)

The first term in Eq. (1.108) is the classical FI of the distribution {ρn}, while the second
term has a quantum nature and vanishes when the eigenvectors of ρλ do not depend
upon the parameter λ. When the condition F (λ) = G(λ) is fulfilled, the measurement
is said to be optimal. Once a measurement has been chosen, and performed, one has to
process the data, i.e. chose an estimator. Often in the process of making an estimate, we
must choose among several unbiased estimators for a given parameter. Estimators for
which the CR bound is saturated, with the equality condition satisfied in Eq. (1.103), are
said to be efficient.

A suitable figure of merit to assess the overall estimability of a parameter is given by
the single-measurement quantum signal-to-noise ratio (QSNR):

R = λ2G(λ) (1.109)

which accounts for the fact that large values of the parameter are generally easier to
estimate, while small values need more precise estimators. A given parameter is said
to be easily estimable if the corresponding R is large. On the contrary, if R is small the
estimation of λ is an inherently inefficient procedure, whatever strategy is employed to
infer its value.

Once a measurement has been chosen, possibly the optimal one, one has to find an
estimator, i.e. a procedure to process data in order to infer the value of the parameter
of interest. An example of an estimator which is asymptotically efficient, i.e. saturates
the QCR bound in the limit of large samples, is the maximum likelihood (ML) estima-
tor. Consider M independent measurements of the random variable X , with probability
distribution p(x|λ). The joint probability function of an experimental sample of size M ,
{xi}Mi=1, is given by the product

∏
p(xi, λ) and it is usually referred to as the likelihood

function L(λ):

L(λ) = L(λ|x1, x2 . . . , xM ) =

M∏
i=1

p(xi|λ). (1.110)

The likelihood function says how “likely” it is to obtain the experimental sample {xi} for
any given value of the parameter λ. The ML estimator for the parameter λ is the value
yielding the largest likelihood of the observed values, that is the value that maximizes
the quantity in Eq. (1.110):

λ̂ML = arg maxL(λ). (1.111)

λ̂ML is known to be asymptotically efficient [105] and it saturates the CR bound for a
large number of measurements M � 1. On the other hand, in practical situations one
is usually interested in checking whether this regime is achieved for values of M within
the experimental capabilities.

We showed in Sec. 1.1.5 that the conditional probability is related to the joint proba-
bility by the relation p(x, y) = p(x|y)p(y). But since the joint probability is symmetric for
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an exchange x↔ y, i.e. p(x, y) = p(y, x) we my write:

p(x|y) =
p(y|x)p(x)

p(y)
. (1.112)

Eq. (1.112) is know as the Bayes’ rule. Suppose we collect a sample of experimental
data Ω = {xi}Mi=1 obtained fromM repeated measurements of the random variableX(λ)
which depends upon the unknown and unaccessible real parameter λ. If we call p(Ω|λ)
the conditional probability distribution of obtaining the experimental sample Ω when
the true value of the parameter is λ, we can rewrite Bayes’ rule as:

p(λ|Ω) =
p(Ω|λ)p(λ)∫

Λ
p(Ω|λ′)p(λ′)dλ′

(1.113)

where p(λ) is the a priori probability distribution, p(λ|Ω) is called the a posteriori prob-
ability distribution and it is built using the collected data Ω = {xi} and Λ is the set of
possible values for the parameter λ. Thus, before observing the data, our guess about λ
is expressed in terms of the prior distribution, whereas once the data are observed, this
priori distribution is updated to yield the posterior distribution. The Bayesian estimator
is defined as the mean of the posterior distribution p(λ|Ω):

λ̂B =

∫
Λ

λp(λ|Ω)dλ. (1.114)

The precision of the Bayesian estimator is quantified through its variance:

Var[λ̂B ] =

∫
Λ

[
λ− λ̂B

]2
p(λ|Ω)dλ. (1.115)

In the Bayesian approach, the unknown parameter is treated like a random variable,
with an associated probability distribution conditioned by the experimental data. As the
maximum likelihood estimator, the Bayes estimator is asymptotically efficient, saturat-
ing the Cramér-Rao bound.

1.5 Summary

• The formalism of density matrices allows us to describe the state of a quantum
system, its temporal evolution and the effects of quantum measurements on such
state.

• Quantum correlations, i.e. correlations with no classical analogue such as entan-
glement and quantum discord, are a resource for quantum information technolo-
gies. Entangled states cannot be generated using a LOCC scheme and are math-
ematically defined as non-separable states. However, quantum discord describes
a more general kind of quantum correlations, that can be found also in separable
state. Discord quantifies correlations arising from the “sensitivity” to local mea-
surements, i.e. the fact that measuring one subsystem of a global quantum system
perturbs the state of the other part.

• While a classical definition of non-Markovianity for stochastic processes is well
known, its generalization to the quantum world is not straightforward. Accord-
ing to BLP measure, a non-Markovian dynamics is associated with a regrowth



28 1.5 Summary

in distinguishability between quantum states and this regrowth is interpreted as
an information backflow to the system. BCM measure, instead, associates non-
Markovianity with a non-monotonic behavior of the quantum capacity.

• Quantum estimation theory allows one to find the optimal setting to efficiently es-
timate the value of an unknown parameter. The ultimate bound to the precision of
the variance associated with an estimator is bounded from below according to the
quantum Cramér-Rao theorem and it is proportional to the inverse of the quantum
Fisher information.



CHAPTER 2

Stochastic processes and classical noise

In this chapter I review the main concepts related to the theory of stochastic processes
and classical noise [47, 106–108]. Since the topics is quite large, I present here only the
notions that are necessary to the comprehension of my work.

We can define a random phenomenon as an empirical phenomenon that obeys prob-
abilistic, rather than deterministic, laws. Examples are the motion of a particle in Brow-
nian motions or the fluctuating current in an electric circuit due to thermal noise or the
growth of a population such as a bacterial colony. Without the need to introduce formal
definitions, for our purposes it will be sufficient to state that, from a mathematical point
of view, a random variable X is an object defined by a set of possible values {xi} and a
probability distribution over this set p(X = xi) = p(xi). The set may be discrete or con-
tinuous. The probability distribution p(x) is non-negative and normalized. The set of
states and the probability distribution fully characterize the random variable. However
there are other fundamental quantities that are often used.
Let us consider a random variable X whose set of possible values {x} is a continuous
set. The average, or expected value or expectation, of X is defined as:

E [X] =

∫
x p(x) dx (2.1)

and the variance:

σ2 = E
[
(X − E [X])

2
]

= E
[
X2
]
− E [X]

2
. (2.2)

If the possible values {xi} of the random variable X are discrete, the integral in Eq. (2.1)
is substituted by a sum: E [X] =

∑
i xip(xi).

The quantity E [Xm] is called the m-th moment of X . It follows that the average is the
first order moment and the variance is the difference between the second moment and
square of the first one. The characteristic function of a stochastic variable X is defined
by:

φX(u) = E
[
eiuX

]
. (2.3)

In the case of a Gaussian random variable, i.e. a random variable following a Gaussian
distribution p(x) = 1√

2πσ2
exp

[
− (x−µ)2

2σ2

]
with average µ and variance σ2, the character-

istic function can be rewritten as:

φGX(u) = eiµu−
1
2σ

2u2

. (2.4)
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The characteristic function completely determines the behaviour and the properties of
the probability distribution of the random variable X . In fact, from Eq. (2.3), we can
alternatively write it as the Fourier Transform of the probability distribution p(x):

φX(u) =

∫
eiuxp(x)dx, (2.5)

A stochastic process is described as a collection of {X(t), t ∈ T} of random variables
indexed by a parameter t varying in an index set T . It should be pointed out that a
stochastic process {X(t), t ∈ T} is in reality a function of two arguments {X(t, s), t ∈
T, s ∈ S}. For a fixed value of t,X(t, ·) is a function on the probability space S, i.e. X(t, ·)
is a random variable. On the other hand, if s is fixed in S, then X(·, s) is a function of
time that represent a possible observation of the stochastic process {X(t), t ∈ T}. The
function X(·, s) is called realization of the process.

A very important function for stochastic processes is the autocorrelation function
C(t1, t2), defined as:

C(t1, t2) = E [X(t1)X(t2)] . (2.6)

where t1 and t2 are two instants of time.
A process is called stationary when its moments are not affected by a shift in time, i.e.
when

E [X(t1 + τ)X(t2 + τ) . . . X(tn + τ)] = E [X(t1)X(t2) . . . X(tn)] (2.7)

for all n and τ . In particular, E [X] is independent of time. Moreover, the autocorrelation
function of a stationary process depends only on time differences |t1 − t2|, such that
C(t1, t2) = C(|t1 − t2|). Often there exist a constant τc such that the autocorrelation
function is zero o negligible for |t1 − t2| < τc; one then calls τc the autocorrelation time.
The Fourier transform of the autocorrelation function is the power spectral density, as
stated by the Wiener-Khinchin theorem [109, 110]:

S(ω) =

∫ ∞
−∞

C(τ)e−iωτdτ. (2.8)

Any function of a stochastic process fX(t) = f [X(t)] is a stochastic process itself.
For a fixed random variable X , different realizations of the stochastic process exist. The
average of fX(t) is obtained as the ensemble average over all the possible realizations of
the stochastic process:

f(t) = E [fX(t)] =

∫
fx(t)p(x)dx. (2.9)

Another important quantity is the noise phase, defined as:

ϕ(t) =

∫ t

t0

X(s)ds. (2.10)

The noise phase is still a random variable, distributed according to a probability den-
sity p(ϕ) which depends upon the specific stochastic process {X(t)}. The characteristic
function of the random variable ϕ(t) is given by:

E
[
eiϕ(t)

]
= E

[
e
i
∫ t
t0
X(s) dx

]
(2.11)



Stochastic processes and classical noise 31

and it plays a fundamental role in computing the dynamics of a quantum system subject
to classical noise, as we will show in later chapters.
A relevant class of stochastic processes are Markovian processes. A stochastic process is
called Markovian if the conditional probabilities satisfy the property that for any set of
n successive times one has

p(xn, tn|x1, t1; . . . ;xn−1, tn−1) = p(xn, tn|xn−1, tn−1) (2.12)

where t1 < t2 < · · · < tn. Eq. (2.12) shows that the probability for X to take the value xn
at time tn given the values xi at previous times ti only depends upon the last assumed
value and not on previous ones. In this sense, it is said that Markovian processes do
not display memory effects: predictions for the future of the process are based solely on
its present state, without the need of knowing the process’s full history. The Markov
condition (2.12) implies that the conditional transition probability obeys the Chapman-
Kolmogorov equation [106]:

p(x, t|y, s) =
∑
z

p(x, t|z, τ)p(z, τ |y, s). (2.13)

A Markov process is therefore uniquely characterized by its conditional transition prob-
ability and the initial distribution. If a stochastic process does not have the Markov
property, then it is said to be non-Markovian.

As we already said, physical systems are never isolated from their environment. In-
teraction with an external bath introduces noise on the dynamics of the system itself,
causing phenomena of decoherence and loss of quantumness. If the environment is de-
scribed using a classical model, the classical noise may be modeled as a stochastic pro-
cess, i.e. a function of time that does not have a deterministic behavior. In this sense, in
the following, we will often use the expression “noise induced by a random process”.

When a stochastic process can be fully characterized using only its second order
statistics, i.e. the average and the variance, it is said to be Gaussian. All the informa-
tion about the Gaussian process is thus contained in the autocorrelation function, or
equivalently, in the power spectrum. On the other side, a stochastic process is called
non-Gaussian if it cannot be fully characterized by the mean and variance. As a con-
sequence, the mere knowledge of the spectrum is not sufficient to describe the process
and, as we will show in the next chapters, the very structure of the environment plays a
very important role. In the following section we review some paradigmatic examples of
Gaussian and non-Gaussian processes that will be later referred to in our work.

2.1 Gaussian stochastic processes

A stochastic process {X(t), t ∈ T} is said to be a Gaussian process if for any integer n
and any subset {t1, t2 . . . , tn} the n random variables X1 . . . Xn are jointly normally dis-
tributed, in the sense that their joint characteristic function is given, for any real numbers
u1, u2, . . . , un, by

φX(t1),X(t2)...,X(tn)(u1, u2 . . . , un) =

E

exp

i n∑
j=1

ujX(tj)

 = exp

i∑
j

ujµj −
1

2

n∑
j,k

ujukK(tj , tk)

 (2.14)



32 2.1 Gaussian stochastic processes

where µj = E [X(tj)] and we introduced the covariance kernel:

K(tj , tk) = E [X(tj)X(tk)]− E [X(tj)]E [X(tk)] . (2.15)

Eq. (2.14) is written in the case of a Gaussian process discrete in time, with times t taking
only discrete values tk. Its generalization to a continuous time Gaussian process, where
the value of variable t can vary continuously in the set T , is given by:

E
[

exp
(
i

∫ t

t0

u(s)X(s)ds

)]
=

exp
[
i

∫ t

t0

u(s)µ(s)ds− 1

2

∫ t

t0

∫ t

t0

u(t)u(s′)K(s, s′) ds ds′
]

(2.16)

where we substituted the discrete subset of T , {t1, t2 . . . , tn}, with the continuous time
interval [t0, t]. As we see from Eq.s (2.14) and (2.16), the Gaussian process is fully char-
acterized by its mean and its autocorrelation function.

From Eq. (2.16), it is immediate to write the explicit expression of the expectation
E
[
eiuϕ(t)

]
with u a constant function and ϕ(t) defined in Eq. (2.11). In fact, for Gaussian

process, this quantity is given by:

E
[
eiuϕ(t)

]
= exp

[
i u

∫ t

t0

µ(s)ds− 1

2
u2β(t)

]
(2.17)

where we introduced the β-function as:

β(t) =

∫ t

t0

∫ t

t0

K(s, s′) ds ds′ (2.18)

which depends on the specific form of the autocorrelation kernel K.
From a comparison between Eq. (2.17) and Eq. (2.4), one immediately sees that the
characteristic function of ϕ(t) is that of a normal distributed variable. It follows that ϕ
is a random variable with a Gaussian distribution characterized by mean

∫ t
t0
µ(s)ds and

variance β(t).

2.1.1 Examples of Gaussian processes

In this section we review the main notions about the Ornstein-Uhlenbeck (OU) process
and fractional Brownian (fB) process, that will be employed in later chapters.

The best known example of stationary Gaussian process is the Ornstein-Uhlenbeck
process. The OU process is a stationary Markovian Gaussian process which describes
the stochastic behavior of the velocity of a Brownian particle. A stochastic process is
said to be an Ornstein-Uhlenbeck process [111] with zero mean if it is a Gaussian process
satisfying:

µOU(t) = 0 (2.19)

COU(|t− t0|) =
Γγ

2
e−γ|t−t0|. (2.20)

Here Γ is the damping rate and γ is the inverse of the autocorrelation time τc and plays
the role of a memory parameter. In the limit of zero autocorrelation time, i.e. when



Stochastic processes and classical noise 33

γ → ∞, the autocorrelation function is a Dirac delta. It follows that in this limit the
Ornstein-Uhlenbeck process becomes a Gaussian white noise with a flat power spec-
trum.
The OU process is a stationary Markovian Gaussian process which describes the stochas-
tic behavior of the velocity of a Brownian particle. From Eq. (2.18), we can easily com-
pute the β function for the OU process as:

βOU(γ,Γ, t) =
Γ

γ

(
γt+ e−γt − 1

)
. (2.21)

The power spectrum of the Ornstein-Uhlenbeck process is the Fourier transform of the
autocorrelation function (2.20) and it is given by:

SOU(ω) =
γ2Γ√

2π(γ2 + ω2)
. (2.22)

The power spectrum of the OU process is a Lorentzian.

The fractional Brownian process, also called fraction Brownian motion (fBm), describes
anomalous diffusion. It is a stochastic non-stationary process with zero average E [X(t)] =
0 and characterized by the autocorrelation function:

CfB(t, t0) =
1

2

(
|t|2H + |t0|2H − |t− s|2H

)
(2.23)

where Γ(x) is the Euler Gamma function and H is a real parameter H ∈ [0, 1] called the
Hurst parameter [112]. The Hurst parameter is directly linked to the fractal dimension
of the trajectories of the particles exposed to the fractional noise. Because of the non-
stationarity of this process, the power spectrum as defined in Eq. (2.8) does not exist
and a generalized spectrum should be introduced. In Ref. [113] it was shown that the
generalized noise spectrum has a power-low dependence S(ω) ∝ |ω|−2H−1.
Moreover, the fractional Brownian motion is a self similar Gaussian process, that is
BH(at) = |a|HBHt.

WhenH = 1/2, the autocorrelation function can be written as min(t, t0) meaning that
the fB process reduces to the Wiener process (i.e. Brownian motion). From Eq. (2.18) we
may compute the β function for the fB process as:

βfB(t) =
t2H+2

2H + 2
. (2.24)

Finally, we introduce also noise generated by stationary Gaussian processes with zero
average and a Gaussian (G) and a power-law (PL) autocorrelation function:

CG(t− t0) =
Γγ√
π
e−γ

2(t−t0)2

(2.25)

CPL(t− t0, α) =
α− 1

2

γΓ

(γ|t− t0|+ 1)α
(2.26)

where again γ is a noise parameter, Γ is the damping rate and we assume α > 2. From
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these autocorrelations functions, it is easy to compute the respective β-functions:

βG(t) =
Γ

γ

[
γtErf(γt) +

e−(γt)2 − 1√
π

]
(2.27)

βPL(t) =
Γ

γ

[
(1 + γt)2−α + γt(α− 2)− 1

α− 2

]
. (2.28)

In the limit where γ → ∞, the β function for the three stationary processes OU, G and
PL tends to the quantity Γt.

As we will see in the following chapter the β function is related with the decay of
decoherences in the density matrix of a single- and two-qubit system subject to Gaussian
noise.

As a final remark, notice that for Gaussian processes with zero average E [X(t)] =
0 ∀ t, the covariance kernel (2.15) coincides with the autocorrelation function (2.6).

2.2 Non-Gaussian stochastic processes

From the knowledge of the mean and the covariance function of a stochastic process, one
cannot in general determine its probability law. In particular, Eq.s (2.14) and (2.16) do
not hold for a non-Gaussian process and the average and variance are not sufficient to
characterize the process, but all the higher order momenta are required. Moreover, the
knowledge of only the noise spectrum is not sufficient, since noise sources with identical
power spectra can have different decohering effects. It follows that it is necessary to
specify the model for the noise source in more detail, providing more information about
the stochastic process generating the noise [114].

Non-Gaussian noise cannot be mimicked by any Gaussian model, such as a bath of
harmonic oscillators. The microscopic structure of the environment plays a central role
in determining the dynamics of the quantum system subject to the noise. A key concept
that lies at the very heart of the noise models we will present in the following is that of
bistable fluctuators. A bistable fluctuator, often referred to also as two-level fluctuator
(TLF), is a quantity which switches randomly between two values with a certain switch-
ing rate. More details will be given in Sec. (2.2.1). The effect of a single fluctuator is to
produce the random telegraph noise (RTN), while a proper collection of TLFs gives rise
to 1/fα noise.

In the following we review two paradigmatic examples of non-Gaussian noises, gen-
erated by non-Gaussian processes, i.e. the random telegraph noise and the 1/fα noise.

2.2.1 The random telegraph noise

The random telegraph noise describes a discrete stochastic process {B(t), t ∈ [0,∞]},
where the random variable B can only take two possible values, for example B(t) =
±1. Jumps between the two states ±1 occur at a switching rate γ such that the average
number of flips in a time interval [0, t] is γt. The probability that the fluctuator switch n
times after the t follows a Poisson distribution:

pn(t) =
(γt)n

n!
e−γt. (2.29)

The autocorrelation function of the random variable B(t) is an exponential decaying
function:

CRTN(t− t0) = e−2γ|t−t0| (2.30)
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and γ is the autocorrelation coefficient. The spectrum of the RTN is a Lorentzian function
and it is calculated following Eq. (2.8) as the Fourier transform of the autocorrelation
function:

SRTN(ω) =
4γ

(2γ)2 + ω2
. (2.31)

We write the noise phase as

ϕ∗(t) = νϕ(t) = ν

∫ t

t0

B(s)ds. (2.32)

In this way ϕ∗(t) is a stochastic variable which can take values in the interval [−ν(t −
t0), ν(t − t0)]. In the case of RTN, the probability distribution of the noise phase ϕ∗(t)
cannot be described by a simple Gaussian distribution function and its characteristic
function cannot be calculated as easily as in Eq. (2.17). The analytical expressions for the
probability distribution p(ϕ∗, t) and, consequently the characteristic function E

[
eiνϕ(t)

]
was found [114, 115] and they read:

p(ϕ∗, t) =
1

2
e−γt [δ(ϕ+ νt) + δ(ϕ− νt)] +

γ

2ν
e−γt[Θ(ϕ+ νt)−Θ(ϕ− νt)]

×

I1
(
γt
√

1− (ϕ/(νt))2
)

√
1− (ϕ/(νt))2

+ I0

(
γt
√

1− (ϕ/(νt))2
) (2.33)

E
[
eiνϕ(t)

]
=

1

2
e−γt

[(
1 +

γ

2δ

)
eδt +

(
1− γ

2δ

)
e−δt

]
(2.34)

where In(x) is the modified Bessel function, δ(x) is the Dirac delta, Θ(x) is the Heaviside
step function and δ =

√
γ2 − ν2. The proof of Eq.s (2.33) and (2.34) can be found in

[114, 115]. Here we just highlight the main ingredients to obtain them. First, by writing
the noise phase as a discrete sum with time step τ :

ϕ∗(t) = ντ

N∑
n=1

B(tn), B(tn) = B(nτ) (2.35)

the integration over time can be thought as a one-dimensional random walk process,
where at each step the random walker moves a step ντ on the “left” or on the “right”
direction. Since γ is the switching rate, we call α = 1 − γτ the probability for a step in
the same direction as the previous one and β = γτ the probability of for a step to be in
the opposite direction. We call m the number of steps from the origin and Pn(m) the
probability to be in position m at time step n. The probability can then be written as
the sum of two contributions: An(m) is the probability to reach position m coming from
the left and Bn(m) the probability coming from the right: pn(m) = An(m) + Bn(m). It
follows that:

An+1(m) = αAn(m− 1) + βBn(m− 1) (2.36)
Bn+1(m) = βAn(m+ 1) + αBn(m+ 1). (2.37)

Next step is to rewrite these equations in the continuum limit, with N → ∞, τ → 0
and Nτ a fixed time. In particular, An(m) and Bn(m) are substitute by the quantities
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Figure 2.1: Probability distribution function p(ϕ∗, t) as a function of the phase ϕ∗ for νt = 1.
Different lines are for different values γt. For large values of γt the probability distribution ap-
proaches a Gaussian distribution

a(ϕ∗, t) ≡ a(mντ, nτ) and b(ϕ∗, t) ≡ b(mντ, nτ). By expanding to first order in τ the
functions a and b, one obtains the telegraph equation:

∂2
t p+ 2γ∂tp =

(ν
2

)2

∂2
ϕp (2.38)

where we introduced the continuous probability p = a + b. The solution to the tele-
graph equation, imposing initial conditions p(ϕ∗, 0) = δ(ϕ) and ṗ(ϕ∗, 0) = 0, is given by
Eq. (2.33). The characteristic function (2.17) is then obtained as the average E

[
eiνϕ

]
=∫

eiϕ
∗(t)p(ϕ∗, t)dϕ∗.

From Eq. (2.17), we can identify two regimes for the dynamics of the characteristic func-
tion E

[
eiνϕ

]
. In fact, when γ > ν, i.e. in the weak coupling regime, the function δ is a

real quantity and the characteristic function is a monotonic decaying function of time.
On the other hand, in the strong coupling regime where γ < ν, the characteristic func-
tion is a damped oscillating function of time. The explicit expression in the two regimes
is given by:

E
[
eiνϕ(t)

]
=

{
e−γt

[
cosh(δt) + γ

δ sinh(δt)
]

δ =
√
γ2 − ν2 γ > ν

e−γt
[
cos(δt) + γ

δ sin(δt)
]

δ =
√
ν2 − γ2 γ < ν

(2.39)

The first regime is usually referred to as fast or Markovian regime, while the second is
called slow or non-Markovian regime [116].
The probability distribution p(ϕ∗, t) in Eq. (2.33) is a function of ϕ∗ for fixed values of γt.
For small γt, the probability distribution has a large peak centered in ϕ∗ = 0, which is
cut by the δ-function at ϕ∗ = νt. For larger switching rates γt� 1, the peaks approaches
a Gaussian distribution. This behavior is shown in Fig. 2.1. In fact, using the asymptotic
behavior of the Bessel function, we can approximate In(x) → 1√

2πx
ex. Moreover, for

ϕ∗ � νt, one can also expand the square root
√

1− (ϕ∗/νt)2. It follows that the central
peak is thus described by a normal distribution with variance E

[
ϕ∗2
]

= ν2t/γ. In the
weak coupling limit, the Gaussian part of p(ϕ∗, t) will dominate in the average E

[
eiϕ
∗]

and the Gaussian approximation is valid. On the contrary, for strong couplings, the
average is dominated by the δ-functions and thus the behavior is strongly non-Gaussian,
even for γt > 1.
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2.2.2 The 1/fα noise

The 1/fα noise was first observed in 1925 by Johnson while studying the current fluc-
tuations of electronic emission in a thermoionic tube [117]. Since then, the 1/fα noise
has been the focus of many studies. Up to the present, 1/fα noise has been measured
on semiconductors, semimetals, normal metals, superconductors, tunnel junctions, etc
[118–123].

The exponent α appearing in the spectrum is a positive number. In many practical
situations, α is very close to unity. However here we consider a more generic spectrum,
allowing a broader range α ∈ [0.5, 2.5] for the possible values of α . The closeness of
α to one justifies the fact that often the term 1/f noise is used to address the whole
family of noises with power-law spectra of the type 1/fα. These kinds of noises are usu-
ally referred to as colored spectra. The color of the noise depends upon the value of the
parameter α. The cases with α = 1 and α = 2 are often called pink and brown noise re-
spectively. The expression ’color of the noise’ is a methaphor to suggest that white noise,
in analog with white light, comes from an environment which contains all different fre-
quencies with a flat power spectrum, whereas other colors of noise can be obtained by
selecting specific frequency ranges.

The principal property of 1/f noise is that its spectral density S(f) increases with
decreasing frequency f = ω

2π , down to the lowest frequencies that can be measured:

S1/f (ω) ∝ 1

ω
. (2.40)

It is scale invariant, meaning that for a fixed frequency ratio ω2/ω1 the integrated
noise power is constant. The integrated power id defined as SP (ω1, ω2) = 1

2π

∫ ω2

ω1
S(ω)dω

and in the case of 1/f noise it has the expression:

SP (ω1, ω2) ∝ ln

(
ω1

ω2

)
. (2.41)

It thus depends only on the ratio between the frequencies ω1 and ω2 and not their specific
values.
1/fα fluctuations follow a non-Markovian statistics. In fact, even if the noise arises from
a sum of Markovian contributions, the overall effect is essentially non-Markovian, with
long autocorrelation times.

The importance of 1/fα noise relies in the fact that it is an ubiquitous noise in nature.
In fact, it is found in very different physical systems (insulators, semiconductors, nor-
mal metals, superconductors, etc..). However it poses many problems. One of the first
question that 1/f noise arises is whether the spectral density decreases infinitely with
decreasing frequency or a minimum nonzero frequency exists. In fact, the 1/fα noise
is not integrable on the whole frequency range:

∫∞
−∞ S(f)df = ∞, due to its divergence

at low frequencies. To fix this problem, it was hypothesized that the noise has a cutoff,
such that it manifests only in a frequency range f1 < f < f2. Experimentalists have tried
to find the lower bound f1 [124], but no cutoff frequency has ever been observed.

The very nature of this kind of noise is still a debated and open question: indeed there
is not a universally recognized explanation about the sources and microscopic mecha-
nisms behind 1/f noise. Completely different systems display very similar spectra, with
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this characteristic behavior. However it is not clear whether this noise is indeed univer-
sal, i.e. it is an inherent property of all systems, or not.

The amount of studies about the 1/fα noise problem is huge. For a review see
Ref.s [45, 46, 48] and references therein. The interest in studying 1/fα noise stems from
the fact that this problem is very general. Indeed, 1/fα noise is a serious interference
that limits the proper working of electronic devices at low frequencies. Moreover, the
progressive reduction of the systems size led to observation of 1/fα spectra in various
mesoscopic systems and in nanodevices. Although a universal mechanism leading to
1/fα noise does not seem to exist, but rather a variety of origins depending on the phys-
ical system involved, the scientific community now largely agrees on the fact that flicker-
ing noise results from a superposition of fluctuators having switching rated distributed
according to a specific probability law. The fluctuators mimic, for example, the dynamic
defects in a material.
The 1/fα noise is thus obtained from a collection of N bistable fluctuators, each charac-
terized by a switching rate γj and a Lorentzian power spectrum as in Eq. (2.31). Before
justifying this statement, let us first show how is it possible, from a mathematical point
of view, to obtain a function proportional to 1/ω.
Mathematically a 1/ω function is obtained integrating a Lorentzian function, with pa-
rameter γ, multiplied by a weight function proportional to γ−1:∫ γ2

γ1

dγ
4γ

(2γ)2 + ω2

1

γ
=

2

ω

[
tan−1

(
2γ2

ω

)
− tan−1

(
2γ1

ω

)]
. (2.42)

When the two extremes of integration satisfy the conditions 0 < γ1 � ω � γ2 and , then
the tan−1

(
2γ2

ω

)
tends to π/2 and tan−1

(
2γ1

ω

)
to 0, giving rise to the spectrum:

S1/f (ω) ∝ π

ω
. (2.43)

It follows that the probability distribution pα of the switching rates in the case α = 1 is
proportional to the inverse of the switching rate p1(γ) ∝ γ−1. The same line of reasoning
can be followed for a generic value of the coefficient α. In particular, one can show that
if the Lorentzian function is multiplied by a weight function proportional to 1/γα, the
result is the desired 1/fα spectrum:

∫ γ2

γ1

4γ

(2γ)2 + ω2

1

γα
=

2F1

(
1, α2 ,

2+α
2 ,− ω2

4γ2
1

)
γα1 α

−
2F1

(
1, α2 ,

2+α
2 ,− ω2

4γ2
2

)
γα2 α

(2.44)

where 2F1 is the hypergeometric function. By expanding to first order Eq. (2.44) around
γ1 = 0 and γ2 =∞ one obtains:

S1/fα(ω) ∝
2αΓ

(
1− α

2

)
Γ
(

2+α
2

)
αωα

(2.45)

where we introduced the Euler Γ function. It is clear from previous equations that, in
order to reproduce a 1/fα spectrum, the probability distribution should be proportional
to γ−α. Since pα(γ) should be normalized to unity

∫ γ2

γ1
pα(γ)dγ = 1, the probability

distribution reads:

pα(γ) =


1
γ

[
1

ln(γ2/γ1)

]
α = 1

α−1
γα

[
(γ1γ2)α−1

γα−1
2 −γα−1

1

]
α 6= 1

(2.46)
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As shown in Eq.s (2.42) and (2.44), we assume that the characteristic behavior 1/f ∝ 1/ω
is found only in a region of the spectrum satisfying the condition γ1 < ω < γ2.
We can rewrite Eq.s (2.42) and (2.44) in a more general way as

S1/fα(ω) =

∫ γ2

γ1

SRTN(ω, γ)pα(γ)dγ (2.47)

where pα(γ) is given by Eq. (2.46), SRTN is the random telegraph noise spectrum (2.31)
and we explicitly wrote its dependency on the switching rate γ.
We already stated that 1/fα noise may be obtained from a collection of N bistable fluc-
tuators, each characterized by a switching rate γj and a Lorentzian power spectrum. In
order to justify this statement, assume that each bistable fluctuator is thus a source of
random telegraph noise and that the switching rates are picked from the distribution
(2.46). In formula:

B(t) =

N∑
j=1

Bj(t), Bj(t) = ±1, Sj(f, γj) =
4γj

(2γj)2 + 4π2f2
. (2.48)

The spectrum of N sources of RTN may be calculated as:

S1/fα(ω) =

N∑
j=1

Sj(ω, γj) =

N∑
j=1

4γj
(2γj)2 + 4π2f2

∝ 1

fα
(2.49)

where the last proportionality is true only if the γj are distributed according to Eq. (2.46).
Eq. (2.49) may be viewed as the Monte Carlo sampling of the integral
N
∫ γ2

γ1
SRTN(ω, γ)pα(γ)dγ, which is, but for a constant, the one in Eq. (2.47). Therefore,

in order to obtain the 1/fα spectrum, it is necessary (i) to consider a sufficiently large
number of fluctuators and (ii) that the selected γj are a representative sample of the dis-
tribution pα(γ) in the range [γ1, γ2]. This means that the minimum number of fluctuators
one can sum up depends on the range of integration. In fact, a large number of fluctua-
tors is required to sample the distribution of the switching rates over a large range, while
few fluctuators are sufficient in the case of a narrow range.

Summarizing, a stochastic process with 1/fα spectrum can be reproduced consider-
ing a collection of a large number N of bistable fluctuators. To each fluctuator corre-
sponds a specific switching rate selected from the probability distribution pα(γ) (2.46).
However, the expression in Eq. (2.47), can also be interpreted as the power spectrum
arising from a bistable fluctuator with an unknown switching rate γ, distributed accord-
ing to pα(γ). This different microscopic model will be introduced in Sec. 3.2.3. What we
want to highlight here is the fact that, because of the non-Gaussian nature of the stochas-
tic process, a given spectrum can arise from environments with different microscopic
structures. Diversified noise modelings may lead to different dynamics for the quantum
system affected by the noise and, depending on the “engineering ” of the environment,
the quantum properties may be preserved or degraded in time.

2.3 Summary

• A collection of random variables {X(t), t ∈ T} parametrized by a discrete o con-
tinuous index t describe a stochastic process. Stochastic processes provide a useful
tool to describe classical fluctuations in physical system.
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• Stochastic processes can be divided into two classes: Gaussian processes, which
can be fully characterized by their mean and variance, and non-Gaussian pro-
cesses, that require higher order statistics for their complete description.

• Examples of Gaussian processes are the Ornstein-Uhlenbeck process, which de-
scribes the stochastic behavior of the velocity of a Brownian particle, and fractional
Brownian motion, that describes anomalous diffusion.

• Random telegraph noise is a non-Gaussian noise arising from a bistable fluctuator
that flips between two states with a certain switching rate. Depending on the ratio
between the switching rate and the coupling constant, two regimes arise: fast or
Markovian RTN and slow or non-Markovian RTN.

• 1/fα noise is an ubiquitous noise in nature and affects almost all superconductor
and semiconductors nanodevices and it constitutes the main source of decoherence
in solid state qubits. It arises from a collection of bistable fluctuators distributed
according to a proper distribution function.



CHAPTER 3

Dynamics of quantum correlations

In this chapter I analyze the dynamics of quantum correlations, both entanglement and
quantum discord, between two qubits subject to classical noise. In particular, I con-
sider two non-interacting qubit initially prepared in a maximally entangled state or in
a Bell mixture, subject to a noisy classical environment which induces dephasing (see
Sec. 1.1.4). It is worth remembering that dephasing channels lead to non-dissipative
dynamics and are suitable to portray situations where the typical frequencies of the en-
vironment are smaller compared to the natural frequency of the qubit ω0.
The interaction between the qubits and the environment can be either local or global, i.e.
both the case of independent environments acting locally on each qubit and the case of
a common environment affecting the two qubits are considered. The classical noise is
introduced as a stochastic process affecting the energy splitting of the qubits. If we set
~ = 1, the initial time t0 = 0 and adopt the spin notation, the two-qubit Hamiltonian is
given by:

H(t) = HA(t)⊗ IB + IA ⊗HB(t), (3.1)

where IA(B) is the identity matrix for subspace A(B), HA(B) is the single qubit Hamilto-
nian which contains a stochastic term giving rise to noise:

HA(B)(t) = ω0σz + ν BA(B)(t)σz (3.2)

with ω0 the energy splitting of the qubit, ν is the coupling constant between the system
and the environment and σz is the Pauli matrix. The time-dependent coefficient B(t)
describes a stochastic process affecting the coherent dynamics of the quantum system.
For the moment, we do not specify the nature of the stochastic process and keep the dis-
cussion as general as possible.
As known from Eq. (1.33), the global system evolves according to a unitary evolution op-
erator U . Since the two qubits are non-interacting, the evolution operator for the global
system is the tensor product of the two subsystem operators U(t) = UA(t)⊗ UB(t). The
Hamiltonian (3.2) commutes at different times, thus the single-qubit time evolution op-
erator can be written as in Eq. (1.13) UA(B)(t) = e−i

∫ t
0
HA(B)(s)ds and it is given by:

UA(B)(t) = e−i[ω0t+νϕA(B)(t)]σz =

(
e−i[ω0t+νϕ(t)] 0

0 ei[ω0t+νϕ(t)]

)
, (3.3)

where we used the noise phase (2.10)

ϕA(B)(t) =

∫ t

0

BA(B)(s) ds. (3.4)

41
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The global evolution operator U(t) = UA(t) ⊗ UB(t) is thus a diagonal matrix with ele-
ments:

U11(t) = ei{2ω0t+ν[ϕA(t)+ϕB(t)] U44(t) = U†11(t)

U22(t) = eiν[ϕA(t)+ϕB(t)] U33(t) = U†22(t)
. (3.5)

From the global evolution operator, one computes the evolved density matrix of the
global system as ρG(t) = U(t)ρ0U

†(t). As the initial state of the two-qubit system we
chose a Bell-state mixture defined in Eq. (1.87). Moreover, since local unitary transfor-
mations do not alter the amount of quantum correlations in the system, we apply the
rotation Rz = eiω0tσz ⊗ eiω0tσz , in order to eliminate the dependency of the density ma-
trix upon the qubit splitting energy ω0. It follows that the evolved density matrix of the
global system has the form:

ρG(t, ϕ) =
1

2
c1 + c2 0 0 c1−c2

e2iν[ϕA(t)+ϕB(t)]

0 c3 + c4
c3−c4

e
2iν[ϕA(t)−ϕ(t)]

0

0 c3−c4
e−2iν[ϕA(t)−ϕB(t)] c3 + c4 0

c1−c2
e−2iν[ϕA(t)+ϕB(t)] 0 0 c1 + c2

 . (3.6)

The two-qubit density operator can be obtained according to Eq. (2.9) as the ensemble
average of the global ρG over all the possible realizations of the process B(t) ( or equiv-
alently ϕ(t)):

ρ(t) = E [ρG(t)] . (3.7)

Averaging the global density operator Eq. (3.6) means computing the expected value of
the quantity e2iνϕ(t). This expectation depends on the nature of the considered stochastic
process generating the noise. In the following section we will calculate this average in
the cases of Gaussian and non-Gaussian noise and we will analyze the features of the
dynamics of quantum correlations in both cases. Two scenarios will be presented: in the
case of independent environments, each qubit is coupled to its own stochastic process
and in general BA(t) 6= BB(t); in the case of a common environment, both qubits feel
the effect of the same external field and BA(t) = BB(t).

3.1 Dynamics of quantum correlations in the presence of Gaussian
noise

In this section, we consider the case where the external classical field BA(B) affecting
the qubits dynamics in Eq. (3.2) is described by means of a zero-mean Gaussian process,
characterized by an autocorrelation functionK(t). Specifically, we focus on the Ornstein-
Uhlenbeck and fractional Brownian motion processes, characterized by autocorrelation
functions (2.20) and (2.23) respectively. The relevant quantity we need to compute in
order to analyze the qubits dynamics is the characteristic function E

[
e2iνϕ(t)

]
which,

following Eq. (2.17) is given by:

E
[
e±2iνϕA(B)(t)

]
= e−4ν2β(t). (3.8)

Independent environments
If we consider the case of independent environments (IE), the two-qubit density operator
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reads:

ρIE(t) =
1

2


c1 + c2 0 0 c1−c2

e4ν2β(t)

0 c3 + c4
c3−c4
e4ν2β(t)

0

0 c3−c4
e4ν2β(t)

c3 + c4 0
c1−c2
e4ν2β(t)

0 0 c1 + c2

 . (3.9)

This is a pure dephasing dynamics. The dephasing coefficients e−4ν2β(t) affecting the
off-diagonal elements of the density operator are monotonic decaying function of time,
because of the monotonicity of the β- function in the case of OU and fBm processes (see.
Eq.s (2.21) and (2.24)). It is possible to rewrite the density operator in the Pauli matrix
basis (1.85) as

ρIE(t) =
1

4

(
I + e−4ν2β(t)a1σx ⊗ σx + e−4ν2β(t)a2σy ⊗ σy + a3σz ⊗ σz

)
(3.10)

where a1, a2 and a3 are the component of the initial state ρ0.
Since the density matrix depends on time only through the function β(t), the system

will reach the separable steady state ρ∞(t) = 1
4 (I + a3σz ⊗ σz), for t→∞. The dynamics

of the system can be studied by analyzing the trajectories in the {ax, ay, az} parameter
space [125]. The trajectories of the evolved states in the ai-parameter space are shown in
Fig. 3.1 (left). The tetrahedron is the set of valid Bell-diagonal states. The four Bell states
sit at the four vertices of the tetrahedron. The blue octahedron, specified by |ax|+ |ay|+
|az| ≤ 1 is the set of separable Bell-diagonal states. There are four entangled regions
outside the octahedron, one for each vertex of the tetrahedron. Classical states, diagonal
in a product basis, lie on the Cartesian axes.

We notice that, with the exception of initial Bell states, the trajectories of the system
actually enter the set of separable states at a finite time, thus showing a sudden death of
entanglement.

The negativity as a function of time, for an initial arbitrary Bell-state mixture, is cal-
culated according to Eq. (1.72) and it is given by:

NIE(t) =
1

2

(∣∣∣c1 + c2 + e−4ν2β(t)(c3 − c4)
∣∣∣+
∣∣∣c1 + c2 − e−4ν2β(t)(c3 − c4)

∣∣∣+
+
∣∣∣e−4ν2β(t)(c1 − c2) + c3 + c4

∣∣∣+
∣∣∣−e−4ν2β(t)(c1 − c2) + c3 + c4

∣∣∣)− 1. (3.11)

In the asymptotic limit of t→∞ the entanglement tends toward zero. It does not exists
a limiting non-zero value for entanglement.
The discord is calculated using Luo’s formula since the evolved state is an X-state. We
do not rewrite the expression here, because it is the same as in Eq. (1.86), but for the
substitutions: ax → e−4ν2β(t)a1, ay → e−4ν2β(t)a2 and az → a3. In the case of an initial
Bell state, for example the |Φ+〉 state, the entanglement and the quantum discord read:

NIE(t) = e−4ν2β(t) (3.12)

QIE(t) = h
(
e−4ν2β(t)

)
(3.13)

where the function h is defined as:

h(x) =
1 + x

2
log2(1 + x) +

1− x
2

log2(1− x). (3.14)
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Figure 3.1: Trajectories of the system in the space of parameters {ax, ay, az}, for two independent
environments (left) and for a common environment (right). The Bell-state mixtures, a subclass
of the X-states in Eq. (1.85), form a tetrahedron. The set of separable states is the dark-blue
octahedron. The initial states are Bell-state mixtures that lie on the surface of the tetrahedron. For
independent environments, the trajectories converge to the green line ax = ay = 0. For a common
environment, the trajectories are directed orthogonally to the plane ax = ay , shown in green. In
both cases, az remains constant.

Both the negativity and the discord are monotonically decreasing functions of time that
tend to zero as t→∞.
We already anticipated that in the most general case of an initial mixture of Bell states,
the peculiar phenomenon of entanglement sudden death is found. In addition, also the
phenomenon of freezing of quantum discord appears. Let us first consider the behavior
of entanglement for mixture of Bell states. The ESD can be understood, for our model, by
looking at the trajectories in the {ax, ay, az} parameter space, as shown in Fig. 3.1 (left).
In fact, they converge to the line ax = ay = 0 and enter the octahedron of separable states
at finite time. This happens for every mixture of Bell states, except for mixtures of |Φ±〉
and mixtures of |Ψ±〉. In this case, the trajectories follows the edge of the tetrahedron
and reaches the vertex of the octahedron for t→∞.

Regarding the behavior of quantum discord, the phenomenon of frozen discord ap-
pears for mixtures of Bell states. This can be figured out geometrically by plotting the
surfaces of equal discord, as was done by Lang and Caves in Ref. [125] in the parameter
space diagram. These surfaces consist of three intersecting tubes running along the axes.
The tubes are cut off by the state tetrahedron. As discord decreases, the tubes collapse to
the Cartesian axes. Frozen discord appears when the trajectories that lie on the surface
of constant discord meet the intersection with another tube. After this intersection, dis-
cord decreases monotonically to zero in time as the trajectories reach the Cartesian axes
around which the intersecting tube is running.

Fig. 3.2 shows the ESD and the frozen discord for a mixture of two Bell states. The
negativity decay to zero at a finite time, while the discord remains constant up to a cer-
tain time and then goes to zero monotonically. On the right, the corresponding trajectory
of the system is shown together with a surface of constant discord. We see that the tra-
jectory initially lies on the surface of a tube up to the point where two tubes meet. At
this point, quantum decoherence starts and discord goes to zero monotonically as the
trajectory reaches the az axes.
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Figure 3.2: Left panel: Evolution of negativity (blue line) and discord (red line) for the initial state
ρ = 3

4
|Φ+〉〈Φ+| + 1

4
|Ψ+〉〈Ψ+|. The classical field is generated by an OU process with γ = 1

and ν = 1. Both entanglement sudden death and frozen discord appear. Right: Trajectory of the
system in the ai parameter space. The surface corresponding to discord Q = 0.1877 is shown: the
trajectory initially lies on the surface.

Common environment
In the case of a common environment affecting the dynamics of the system, the two
qubits are coupled to the same stochastic process BA(t) = BB(t) = B(t) and the density
operator has the form:

ρCE(t) =
1

2


c1 + c2 0 0 c1−c2

e8ν2β(t)

0 c3 + c4 c3 − c4 0
0 c3 − c4 c3 + c4 0

c1−c2
e8ν2β(t)

0 0 c1 + c2

 (3.15)

where we use the relation E
[
e−4iνϕ(t)

]
= e−8ν2β(t) and this coefficient is still a monotonic

decreasing function of time. We can write the density matrix (3.15) in the Pauli matrix
basis as:

ρ(t) =
1

4

{
I +

1

2

[
e−8ν2β(t)(a1 − a2) + a1 + a2

]
σx ⊗ σx+

+
1

2

[
e−8ν2β(t)(a2 − a1) + a1 + a2

]
σy ⊗ σy + a3σz ⊗ σz

}
. (3.16)

In this case, the negativity as a function of time for an initial arbitrary mixture of Bell
states, is

NCE(t) =
1

2

[∣∣∣e−8ν2β(t)(c1 − c2) + c3 + c4

∣∣∣+
∣∣∣e−8ν2β(t)(c2 − c1) + c3 + c4

∣∣∣+ (3.17)

+ |1− 2c3|+ |1− 2c4| − 2
]

(3.18)

The quantum discord has the same expression as that in Eq (1.86), with ax, ay and az
the coefficients in Eq. (3.16). In the case of a Bell state as an initial state, the quantum
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Figure 3.3: Dynamics of negativity (blue line) and discord (red dashed line) for the initial state
ρ = 1

10
|Φ+〉〈Φ+|+ 8

10
|Ψ+〉〈Ψ+|+ 1

10
|Ψ−〉〈Ψ−|. The negativity is constant over time, while discord

stabilizes to a constant value after transintient time. In the plot, the external field is mimicked
through a Ornstein-Uhlenbeck process with γ = 1 and ν = 1.

correlations are given by:

NCE(t) = e−8ν2β(t) (3.19)

QCE(t) = h
(
e−8ν2β(t)

)
, (3.20)

where h is the function defined in Eq. (3.14). Also in the case of a common environment
the quantum correlations between two qubits initially prepared in a Bell state decay
monotonically in time.

The trajectories of the system are shown in Fig. 3.1, on the right panel. They run
orthogonally to the plane ax = ay . By looking at the figure, we notice that the system
experiences ESD when the initial state has az > 0, except for mixtures of |Φ±〉, for which
N(t)→ 0 only for t→∞. For those Bell state mixtures that are entangled and for which
az < 0, the trajectories run parallel to the surface of the octahedron and hence negativity
is constant over time. This set also includes the two Bell states |Ψ±〉 which are stable
states of the dephasing dynamics. An example of this behavior is shown in Fig. 3.3. But
in general, in the majority of cases, we found that quantum discord is more robust than
entanglement.

So far, we showed that the effect of the longitudinal stochastic field is to induce de-
coherence through a monotonic decay of all quantum correlations. The nature of Gaus-
sian process affects the resulting dynamics only through the time dependence of the
β-function, i.e. the decaying velocity, as we can see from Figure 3.4. In particular, de-
pending on the initial state, different behaviors may appear: for initial Bell states, the
negativity goes asymptotically to zero, as a smooth function of time; on the contrary,
if the initial state is a mixture of Bell states, entanglement displays ESD, reaching zero
abruptly. For a fixed initial state, the robustness of quantum correlations depends on
the nature of the considered stochastic process: different expressions of the β(t) function
give different decaying velocities for entanglement.

We now investigate the role of the different considered processes in enhancing the
system’s ability to retain its coherence. To be quantitative, we define the entanglement-
preserving time t∗ as the time at which the negativity of the system falls below a certain
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Figure 3.4: Negativity as a function of the interaction time for an initially pure Bell state (left) and
for the mixture ρ = 1

10
|Φ+〉〈Φ+|+ 9

10
|Ψ+〉〈Ψ+| (right) interacting with independent environments

driven by different stochastic processes: white noise (solid blue), OU with γ = 1 (red dashed),
Wiener (green dotted), fBm with H = 0.9 (dot-dashed black). For pure Bell states, the negativity
decreases smoothly to zero, while for mixtures of Bell states ESD appears.

Table 3.1: The entanglement-preserving time t∗ for different environments and for an initial pure
Bell state. The quantity β∗ is given by β∗ = −1/4ν2 log(r) ' 0.0025 and W (z) is the Lambert
function, i.e. the principal solution of z = W expW .

Process t∗

Ornstein-Uhlenbeck 1
γΓ

[
γβ∗ + ΓW

(
−e−

γβ∗
Γ −1

)
+ Γ

]
White noise β∗/Γ

[(2H + 2)β∗]
1

2H+2

Wiener [3β∗]1/3

threshold, that we fix at the ratio r = 99% of the initial negativity.
We first consider the case in which the initial state is a Bell state. We already calculated
the negativity as a function of time in the case of independent (3.12) and common (3.19)
environments. Upon introducing the quantity β∗ = −1/(4ν2) log(r) ' 0.0025, we may
calculate the entanglement-preserving time by inverting the relation β(t) = β∗. Exam-
ples for different processes are shown in Table 3.1, where we wrote the dependencies
of t∗ on the relevant parameters of the processes, i.e. the inverse of the correlation time
γ for the Ornstein-Uhlenbeck process with Γ fixed and the Hurst parameter H for the
fractional noise. We also report the results for white noise (i.e. a Gaussian noise with a
flat power spectrum, that can be obtained as a limit of the OU process with γ →∞) and
the Wiener process (i.e. fBm with H = 1

2 ).
The entanglement-preserving time for OU and fB processes is shown in Fig. 3.5 as a

function of the characteristic parameters γ and H . For the Ornstein-Uhlenbeck process,
in the limit of a quasi-static field, i.e. γ → 0, the entanglement-preserving time diverges,
t∗ → ∞, such that the system retains its coherence indefinitely, while in the Markovian
limit, γ → ∞, t∗ → β∗/Γ, recovering the behavior typical of the white noise. In the case
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Figure 3.5: The entanglement-preserving time t∗ as a function of the characteristic parameter of the
external field. We show results for Ornstein-Uhlenbeck with Γ = 1 (left) and fractional Brownian
noise (right) and for the case of independent (solid blue) and common (red dashed) environments.

of fBm, the dependency of t∗ on H is well approximated by a linear relation and the
higher the diffusion coefficient, the longer the entanglement-preserving time. We also
notice that, for vanishing H , t∗ is comparable to the OU process with γ = 1. Indeed,
we have that βOU(t) ' 1

2γt
2 for small t and βfB(t) ' 1

2 t
2 for vanishing H . For general

mixtures of Bell states, t∗ is always smaller than the case of pure Bell states.
In Fig. 3.6 we show t∗ as a function of the initial negativity N0 for a set of randomly

generated initial Bell-mixed states interacting with OU and fBm external fields (blue and
red points respectively) either independently (left panel) or as a common environment
(right panel). As it is apparent from the plots, the larger is the initial entanglement, the
longer is the preserving time. This is true both in the case of independent and common
environments. In the former case, the entanglement-preserving time is longer than in
case of a common bath, for a fixed value of the initial negativity. In both scenarios, the
entanglement is more robust in the case of fBm, rather than the OU process, with longer
values of the preserving time t∗.

By looking at Fig. 3.6 we see that the values of t∗ are not much dispersed. Rather, they
concentrate around typical values which strongly depend on the kind of environment
and only slightly on the initial negativity itself. Besides, the value of t∗ is bounded
from below by an increasing function of the initial negativity, the analytical expression
of which can be obtained by determining the entanglement-preserving time for mixtures
of a Φ+ and a Ψ+ Bell state. In this case, for a given ratio r to the initial negativity, t∗
satisfies the equation

β(t∗) =
1

4A
log

[
N0 + 1

N0(2r − 1) + 1

]
. (3.21)

where A = 1 for independent environments and A = 2 for a common environment.
From Eq. (3.21) we obtain lower bounds to t∗ as a function of N0, which are shown
(solid and dashed black lines) in Fig. 3.6.

As previously discussed, the interaction of the two-qubit system with the external
classical field induces a sudden death of entanglement for most of the Bell-state mixtures.
In this section we study how the nature of the stochastic Gaussian process affects the
entanglement sudden death time, tESD, i.e. the time at which the state becomes separable
and its negativity goes to zero.
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Figure 3.6: The entanglement-preserving time t∗ (for a ratio r = 0.99 to the initial negativity) as
a function of the initial negativity N0 for randomly chosen initial Bell-state mixtures. We show
results for the Ornstein-Uhlenbeck process with γ = 1 (blue points) and the Wiener process, i.e.
fractional Brownian noise with H = 1/2 (red points). The solid and dashed black lines are the
lower bounds for t∗ for the OU and Wiener process respectively, obtained from Eq. 3.21. Left:
independent environments. Right: common environment.

In Fig. 3.7 we show tESD versus the initial negativity N0 for randomly generated Bell-
state mixtures for the OU process and the fBm with H = 1

2 . We can see that tESD is
bounded from below by a monotonically increasing function of negativity, which itself
diverges for N0 → 1, i.e. as the initial state gets closer to a pure Bell state. The analytical
expression of this function is obtained by considering initial states belonging to a face of
the Bell-state tetrahedron, and thus easily follows from Eq. (3.21) by substituting r = 0.
We have

β(tESD) =
1

4A
log

(
1 +N0

1−N0

)
(3.22)

where A = 1 for the independent-environments case and A = 2 for the common-
environment case. ESD time is thus longer for larger values of the initial entanglement.
In the case of independent environments the lower bound is larger than in the case of
a common environment, confirming the tendency of entanglement to be more robust in
the case of independent noises affecting the two qubits.

3.2 Dynamics of quantum correlations in the presence of non-Gaussian
noise

In this section we address the quantum correlations between two non-interacting qubits
initially prepared in the Bell state |Φ+〉 whose dynamics is influenced by the stochastic
terms Bi(t), i = A,B following a non-Gaussian statistic. In particular, we will focus on
two paradigmatic examples of non-Gaussian noise: the random telegraph noise char-
acterized by a switching rate ξ and the 1/fα noise arising from a collection of N RTN
sources with switching rates {ξi}Ni=1. Hereafter we will use the dimensionless time and
switching rate:

τ = νt and γ = ξ/ν, (3.23)

re-scaled with the coupling constant ν. The key ingredient in analyzing the dynamics of
the two qubit system is to compute the ensemble average of the global state of the system
over all the different realizations of the stochastic terms, e.g. the noise phase ϕ(τ) =
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Figure 3.7: The entanglement sudden death time tESD as a function of the initial negativity N0

for randomly chosen (initial) Bell-state mixtures, for the Ornstein-Uhlenbeck process with γ = 1
(blue) and the Wiener process (red). The solid and dashed lines are the lower bounds for tESD for
the OU and Wiener process respectively, obtained from Eq. 3.22. Left: independent environments.
Right: common environment.

∫ τ
0
B(s)ds. In the following the analyze in detail the dynamics of quantum correlations

in the case of two qubits exposed to RTN and 1/fα noise.

3.2.1 Random telegraph noise

The global density matrix ρG, describing the state of the two qubits initially prepared
in a Bell state, for a specific realization of the stochastic process Bi(t) is given by Eq.
(3.6) with coefficients c1 = 1, c2 = c3 = c4 = 0. In order to write the expression for
the density operator of the two-qubit system, we should perform the average operation
over the stochastic noise phase. In the case of RTN, the quantity E

[
eiϕ(τ)

]
is known (see

Eq. (2.39)) and it is easily generalized to the case E
[
einϕ(τ)

]
by applying the substitution

ν → nν where n is some integer:

∆n(τ, γ) = E
[
einϕ(τ)

]
=

{
e−γτ

[
cosh(δτ) + γ

δ sinh(δτ)
]

δ =
√
γ2 − n2 γ > 2

e−γτ
[
cos(δτ) + γ

δ sin(δτ)
]

δ =
√
n2 − γ2 γ < 2

(3.24)

For a fixed value of the switching rate γ, the coefficient (3.24) is a function only of τ , and
we can simplify the notation by showing only the dependency on time ∆n(τ). In the
case of separate environments n = 2 while for a common environment n = 4 and the
system density operator in the computational basis {00, 01, 10, 11} has the expression:

ρIE(τ) =
1

2
(|00〉〈00|+ |11〉〈11|) +

1

2
∆2

2(τ)(|00〉〈11|+ |11〉〈00|) (3.25)

ρCE(τ) =
1

2
(|00〉〈00|+ |11〉〈11|) +

1

2
∆4(τ)(|00〉〈11|+ |11〉〈00|). (3.26)

In the limit of long times τ → ∞ the function ∆n tends to zero and the states (3.25) and
(3.26) reduced to the maximally mixed state ρ∞ = 1

2 I. The partial transposed density
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Figure 3.8: Top panels: Time evolution of negativity (left) and discord (right) for two qubits subject
to RTN for independent and common environments in the weak coupling regime with γ = 7.
Bottom panels: Time evolution of N(τ) and Q(τ) in the strong coupling regime with γ = 0.2.

matrix has the expression:

ρPTIE(τ) =
1

2
(|00〉〈00|+ |11〉〈11|) +

1

2
∆2

2(τ)(|01〉〈10|+ |10〉〈01|) (3.27)

ρPTCE(τ) =
1

2
(|00〉〈00|+ |11〉〈11|) +

1

2
∆4(τ)(|01〉〈10|+ |10〉〈01|) (3.28)

and the absolute value of its negative eigenvalues gives the negativity:

NIE(τ) = ∆2
2(τ) NCE(τ) = |∆4(τ)|. (3.29)

The discord is computed from Eq. (1.86) as:

QIE(τ) = h
(
∆2

2(τ)
)

QCE(τ) = h (∆4(τ)) (3.30)

where h(x) is the function defined in Eq. (3.14). The dynamics of quantum correlations
is shown in Fig. 3.8. Note that the choice of a maximally entangled initial state, together
with the sheer dephasing nature of the interaction with the environment, makes the
quantum discord a function of the negativity only. In these system, in fact, the evolved
state is a mixture of Bell states.
In agreement with previous works [116, 126, 127], in the weak regime γ > 2, quantum
correlations decay exponentially with time. On the other hand, in the strong coupling
regime γ < 2 quantum correlations exhibit damped oscillations in time, with alternat-
ing ESD and revivals. The peaks of revivals are at times τ = k πδ with k = 0, 1 . . . and
integer number. This behavior can be explained by noticing that the function ∆n(τ) in
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Figure 3.9: Left panel: Negativity between two qubits subject to fast RTN as a function of time for
different values of the switching rate. The higher is the switching rate, the less degraded are the
quantum correlations. Right panel: Entanglement-preserving time as a function of the switching
rate of the RTN in the case of independent and common environments. Solid lines refer to the
exact solution found by solving the equation N(τ∗) = r with r = 0.99, while dots are for the
approximated expression in Eq.s (3.33) and (3.34).

the strong coupling regime has peaks at times τ = k 2π
δ . The negativity has a double

number of peaks because of the power of two and absolute values operations in Eq.s
(3.29). The smaller the value of the switching rate γ, the higher the height of the peaks,
until the limit γ � 1 where the function ∆n(τ) becomes indeed a periodic function with
periodicity T → π in the case of independent environments and T → π

2 in the case of a
common environment.
It should also be noticed that in the weak coupling regime, quantum correlations in a
common environment are weaker than in the case of independent environments. The
opposite behavior appears in the strong coupling regime, where the effect of a common
environment is to better preserve the quantum correlations between the two qubits.

Following the analysis performed for the case of Gaussian processes, we quantify
the entanglement-preserving time τ∗ also in the case of RTN. We specifically consider
only the fast RTN regime, because of the monotonic decay in time of the coherences
∆n(τ). Again, we define the entanglement-preserving time as the time at which the
entanglement falls below a certain fraction r of its initial value. In this way we are able to
investigate the role of the switching rate in the degradation of the quantum correlations.
The left panel in Fig. (3.9) shows the dependency of the negativity for a two-qubit system
initially prepared in the |Φ+〉 state, on the switching rate rate, as a function of time. The
larger is the value of γ, the less degraded are the quantum correlations. This behavior
is due to the fact that large switching rates correspond to weak couplings between the
system and the environment and, as a consequence, more time is required for the system
to feel the effect of the external noise. The entanglement-preserving time τ∗ is obtained
by finding the solution to the equation NIE(CE)(τ

∗) = r, since the initial negativity is
equal to one. It is not possible to find the analytical solution for this equation for a
generic γ, however we compute τ∗ numerically. The results are shown in the right panel
of Fig. 3.9 for the case of independent and common environments. In agreement with
the time evolution of entanglement, we find that τ∗ increases with larger values of γ.
It means that for faster BFs the quantum correlations are better preserved. We are also
able to confirm that the effect of independent environments acting on each qubit helps
protecting the system against decoherence better than a common environment acting
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Figure 3.10: (a) Entanglement-preserving time as a function of the initial negativity for a set of
randomly generated initial Bell mixtures subject to RTN with γ = 10. Blue points stand for the
case of independents environments acting on the two qubits, while the red points represent the
case of a common environment affecting the two-qubit system. (b) Same as panel (a) but with
γ = 50.

on both qubits. Although an analytical expression for τ∗ is not found for a generic γ,
however in the limit of large switching rates γ � 1, it is possible to write an analytical
approximation for the entanglement-preserving time. In fact, in this regime δ ' γ so that
δ − γ ' 0 and the and the ∆n-function may be approximated as:

∆n(τ, γ) =
e(δn−γ)t

2

(
1 +

γ

δn

)
+
e−(δn+γ)t

2

(
1− γ

δn

)
' e(δn−γ)t

2

(
1 +

γ

δn

)
(3.31)

where δn =
√
γ2 − n4. The negativity thus reads:

NIE(τ, γ) =
e2(δ2−γ)t

4

(
1 +

γ

δ2

)2

NCE(τ, γ) =
e(δ4−γ)t

2

(
1 +

γ

δ4

)
(3.32)

and these expressions can be easily inverted to obtain the entanglement-preserving time:

τ∗IE(γ) =
1

2(δ2 − γ)
ln

(
4 r

(1 + γ
δ2

)2

)
(3.33)

τ∗CE(γ) =
1

δ4 − γ
ln

(
2 r δ4
δ4 + γ

)
. (3.34)

The points in the left panel of Fig. (3.9) represent the fitting curves calculated using
Eq.s (3.33) and (3.34). The agreement between the exact and the approximated solution
is very good already for γ & 20, while the true behavior of τ∗ is not captured by the
approximation for smaller values of the switching rate.
If, instead an initial Bell state, we consider a Bell-mixture, the global evolution is written
in Eq. (3.6), and the dynamics of the two-qubit system is described by the density matrix:

ρ(τ, γ) =
1

2 c1 + c2 0 0 (c1 − c2)∆(τ, γ)
0 c3 + c4 (c3 − c4)∆(τ, γ) 0
0 (c3 − c4)∆(τ, γ) c3 + c4 0

(c1 − c2)∆(τ, γ) 0 0 c1 + c2

 . (3.35)
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Figure 3.11: Entanglement-sudden-death time as a function of the initial negativity for a set of
randomly generated initial Bell mixtures subject to RTN with γ = 10 (a) and γ = 30 (b). Blue
points stand for the case of independents environments acting on the two qubits, while the red
points represent the case of a common environment affecting the two-qubit system.

with ∆(τ, γ) = ∆2
2(τ, γ) for independent environments and ∆(τ, γ) = ∆4(τ, γ) in the

case of a common environment. We can notice that Eq. (3.35) has the same expression of
the density matrix of a system subject to Gaussian noise in Eq.s (3.9) and (3.15), but for a
different dephasing coefficient which, in the case of RTN is a function of ∆n. It follows
that the negativity has the same expression as in the cases presented in the previous Sec-
tion, but for the substitutions e−4ν2β(τ) → ∆2

2(τ, γ) for independent environment and
e−8ν2β(τ) → ∆4(τ, γ) in the case of a common bath. In Fig. 3.10 we report τ∗ as a func-
tion of the initial negativity N0 for a set of randomly generated initial Bell-mixed states
subject to fast RTN. As in the case of a Gaussian environment, the larger is the initial
negativity, the longer is the entanglement-preserving time. We confirm that the effect of
a common environment is to degrade faster the correlations and that larger values of the
switching rates preserves better the quantum correlations. . We find again that the min-
imum entanglement-preserving time for a given value of the initial negativity is given
by the mixture of |Φ+〉 and |Ψ+〉 states. This minimum value is computed by finding the

solutions to the equation ∆n(τ∗, γ) =
(

1−N0+2N0r
1+N0

)n/4
.

We also analyze the entanglement-sudden-death time τESD for initial Bell mixtures. In
Fig. 3.11 we report the τESD for a set of randomly generated initial states as a func-
tion of the initial negativity. The higher is the initial entanglement, the larger is the
entanglement-sudden-death time. All the previously discussed behaviors are found: a
common environment is more detrimental against quantum correlations than indepen-
dent baths and the bigger the value of the switching rate, the longer is the time required
for the state to become separable. Initial Bell states have an infinite τESD, with an expo-
nential decay of entanglement.

3.2.2 1/fα noise

Consider the case of two qubits interacting with a collection of N fluctuators with fixed
switching rates {γi}Ni=1, distributed according to the probability distribution pα(γ) in
Eq. (2.46). With the expression “fixed switching rates” we want to underline the fact
that, before computing the dynamics, it is necessary to assign to each switching rate γi a
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Figure 3.12: Upper panels: Time evolution of negativity and discord for two qubits interacting
with two independent environments, consisting in a collection ofN bistable fluctuators with spec-
trum 1/f when [γ1, γ2] = [10−4, 104]. Lower panels: same as before, but with qubits subject to a
common environment.

specific value taken from the distribution pα(γ) in a range [γ1, γ2].
The evolution operator in Eq. (3.3) depends upon the global stochastic phase ϕ(τ) =∑N
j=1 ϕj(τ) (we dropped the subscript A(B) to lighten the notation) and the global den-

sity matrix is calculated for a fixed realization of the stochastic noise phase ϕ(τ) as in Eq.
(3.6). The two-qubit density matrix at time τ is calculated as the ensemble average of the
global density operator over all possible realizations of the global noise phase:

ρ(τ) =

∫
ρG(τ, ϕ)pT (ϕ, τ)dϕ (3.36)

where pT (ϕ, τ) =
∏
j p(ϕj , τ) is the global noise phase distribution and p(ϕj , τ) is given

by Eq. (2.33) since each bistable fluctuator is a source of RTN. Eq. (3.36) depends upon
the characteristic function of the global phase e±2iϕ(τ). This quantity can be computed
in terms of the RTN coefficient ∆n(τ, γ) of Eq. (3.24) as follows:

Λ(τ) = E
[
e±2iϕ(τ)

]
= E

[
e±
∑N
j=1 2iϕj(τ)

]
=

N∏
j=1

∆n(τ, γj) (3.37)

where the last inequality holds since the RTN phase coefficients are independent and
the coefficient ∆n(τ, γj) corresponds to the j-th fluctuator with switching rate γj . We are
now able to compute the evolved density matrix for the two-qubit system as:

ρIE(CE)(τ) =
1

2
(|00〉〈00|+ |11〉〈11|) +

1

2
ΛIE(CE)(τ)(|00〉〈11|+ |11〉〈00|) (3.38)
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where we introduced the time-dependent coefficients:

ΛIE(τ) =

N∏
j=1

∆A
2 (τ, γj)∆

B
2 (t, γj) ΛCE(τ) =

N∏
j=1

∆4(τ, γj). (3.39)

Eq. (3.38) has the same mathematical expression as Eq.s (3.25) and (3.26), but for a differ-
ent time-dependent coefficient. Its partial transpose is thus computed similarly to Eq.s
(3.27) and (3.28) and allows us to compute the negativity as:

NIE(CE)(τ) = |ΛIE(CE)(τ)| , (3.40)

and the quantum discord is calculated by using Eq. (1.86):

QIE(CE)(τ) = h(ΛIE(CE)) . (3.41)

The negativity is the product of many oscillating coefficients ∆n(τ, γi), with various pe-
riodicities as explained in Sec. 3.2.1, which depend on the value of the selected switching
rate. In the case of switching rates taken from a 1/γ distribution, the product of these
terms results in a monotonic decay for both entanglement and discord. This is due to the
fact that the γs picked from a 1/γ distribution tend to have contributions both from the
γ > 2 and the γ < 2 regimes and the resulting effect is a “destructive interference” that
leads to a monotonic behavior.

In Fig. 3.12 we report the behavior of such quantities in the case of 20 and 100 fluctu-
ators. As the number of fluctuators is increased the quantum correlations decay faster.
We consider 20 sources of RTN as the minimum number of fluctuator needed to obtain
both a reliable profile of the frequency spectrum and a representative sample of the pα(γ)
distribution. Although it is possible to obtain a pink noise spectrum even with a smaller
number of fluctuators, this case is a too strong approximation and it does not describe a
sample of 1/γ-distributed switching rates.
A very different behavior arises when the γ’s are selected from a 1/γ2 distribution (see
Fig. 3.13). Phenomena of sudden death and revivals appear for both entanglement and
quantum discord. As the number of fluctuators is increased, the heights of the peaks
decrease. The peaks have a periodicity of π/2 and π/4 for different and common en-
vironments respectively. This is explained by considering that the selected switching
rates γi have small and very close values, since they are picked from a 1/γ2 distribution.
We already know from Sec. 3.40 that for small values of γ the function ∆n(τ) tends to
become a periodic function with periodicity π and π/2 for independent and common
environments respectively and this periodicity will be halved for the functions ∆2

n(τ)
and |∆n(τ)|. The product of functions with almost the same periodicity gives a periodic
behavior with narrow peaks.

In Fig. 3.14 we report the negativity and the discord as a function of time τ and the
noise parameter α, for a specific sample of the {γj} and for N = 100 fluctuators in the
case of independent environments. We confirm that the same qualitative behavior is
found for entanglement and discord, due to the fact that quantum discord is a function
of the negativity. For small values of α the quantum correlations decay in an exponential
way, while at increasing values of α revival peaks, with π/2 periodicity, begin to appear.
The height of the peaks raises with α and reaches its maximum for the 1/f2 noise .The
qualitative trend is clearly identified, while it is not possible to make precise claims about
the heights of the peaks or about a threshold value. In fact, the quantitative results
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Figure 3.13: Upper panels: Time evolution of negativity and discord for two qubits interacting
with two independent environments, consisting in a collection ofN bistable fluctuators with spec-
trum 1/f2 when [γ1, γ2] = [10−4, 104]. Lower panels: same as before, but with qubits subject to a
common environment.

depends upon the range of selected switching rates, upon the number of fluctuators,
and upon the {γj} sample.
Fig.s 3.12, 3.13 and 3.14 were obtained by numerical simulation of the dynamics of theN

bistable fluctuators. Indeed, the quantum correlations described by Eq.s (3.40) and (3.41)
are computed numerically after the selection of the switching rates {γi}Ni=1. The values
N of the γ’s are generated through a Monte Carlo method. Starting from the probability
distribution pα(γ) of the switching rates and introducing a random number 0 < r < 1
we can select the proper switching rates {γi} as:

α = 1 r =

∫ γi

γ1

p1(γ)dγ =
1

ln(γ2/γ1)
ln

(
γi
γ1

)
(3.42)

→ γi = γ1

(
γ2

γ1

)r
(3.43)

α 6= 1 r =

∫ γi

γ1

pα(γ)dγ =
γα−1

2

γα−1
2 − γα−1

1

γα−1
i − γα−1

1

γα−1
i

−→ γi =
γ1γ2[

γα−1
2 − r

(
γα−1

2 − γα−1
1

)]1/(α−1)
(3.44)

In order to get a better insight into the dependency of quantum correlations upon the
selected sample {γi}, in Fig. 3.15 we compare the time evolution of the entanglement
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Figure 3.14: Negativity (left) and quantum discord (right) as a function of the dimensionless time
τ and the noise parameter α, between two qubits interacting with independent collections of N =
100 bistable fluctuators.

between two qubit in independent environments for the case of N = 20, 50, 100 fluctu-
ators, and for two values of the parameter α, i.e.: α = 1 (solid-black line) and α = 2
(dashed-red line). 30 curves are drawn for each value of α, corresponding to 30 different
samples of the switching rates {γj}. Different choices of the range [γ1, γ2] are confronted
(see figure caption). Increasing the number of fluctuators make the results less sensitive
to the specific selection of the switching rates. Consider, as example, the top panels in
Fig. 3.15 and let us focus on the 1/f noise. For a small number of fluctuator (N = 20),
different samples {γi} give rise to different qualitative behavior: rather than the mono-
tonic decaying, some samples of the γs show a little revival at τ = π/δ. As the number
of bistable fluctuators is increased, only the monotonic behavior appears.

For high frequencies both 1/f and 1/f2 noise spectra induce an exponential decay
of correlations, while at low frequencies revival peaks appears, whose heights decrease
increasing the number of fluctuators. Indeed a number of peaks with periodicity π/2
and exponentially decreasing heights are present. In Fig. 3.15, to make the picture more
readable, only the first peak is shown.

We showed that the qualitative behavior of the quantum correlations in the case of
two qubits subject to 1/fα noise, depends upon the selected sample of switching rates
{γi} and upon the range of the distribution [γ1, γ2]. However, we are interested in ana-
lyzing the general dynamics of quantum correlations by eliminating at least the depen-
dency upon the sample, i.e. in studying an average behavior, which does not depend on
the specific choice of the γi’s but only on the probability distribution pα(γ). Moreover,
we want to be able to consider situations in which the 1/fα noise raises from a collection
of few fluctuators, up to the limit where a single fluctuator is interacting with the quan-
tum system.
In order to study the general behavior of quantum correlations, independently on the se-
lected switching rates, we introduce an alternative microscopic model for 1/fα in which
the noise arises from a collection of random bistable fluctuators. This model is presented
in the next section.
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Figure 3.15: Time evolution of the negativity for three different numbers of bistable fluctuators
N = 20 (left column), 50 (central column) and 100 (right column) for two specific values of the
noise parameter α: α = 1 (black lines) and α = 2 (red lines). 30 curves are shown for each value
of α corresponding to 30 different samples of the γj ’s. Different choices of the range [γ1, γ2] are
presented. Specifically [10−4, 104] (top panels), [1, 104] (central panels) and [10−4, 1] (right panel).

3.2.3 1/fα noise generated by random bistable fluctuators

We call random bistable fluctuator (RBF) a quantity which flips between two values with
a random switching rate. This means that the switching rate γ is not known a priori,
but the fluctuator is described by a statistical mixture whose elements are taken from the
ensemble {γ, pα(γ)} and γ ∈ [γ1, γ2].
1/fα noise can be ascribed to a single random bistable fluctuator or to a collection of
them. In order to validate this model from a mathematical point of view, we recall Eq.
(2.47) which provides a way to reproduce the 1/fα noise:

S1/fα(ω) =

∫ γ2

γ1

SRTN(ω, γ)pα(γ)dγ. (3.45)

This integral can be interpreted as the spectrum of a single fluctuator whose switching
rate is randomly chosen from a distribution pα(γ). In fact, the autocorrelations function
of a random bistable fluctuator B(t) may be written as:

CRBF(τ) = E [B(τ)B(0)]

=

∫ ∫
B(τ)B(0)p(B)dB pα(γ)dγ =

∫
CRTN(τ, γ) pα(γ)dγ (3.46)

where CRTN is the autocorrelation function of the random telegraph noise Eq. (2.30) with
an explicit dependence on the switching rate. The power spectrum is calculated from
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Eq. (2.8) and can be written as:

SRBF(ω) =

∫ ∞
−∞

e−iωτCRBF(τ)dτ =

∫
pα(γ)dγ

∫ ∞
−∞

e−iωτCRTN(τ, γ)dτ (3.47)

which gives exactly Eq. (3.45) upon assuming that the probability distribution pα(γ) is
non-zero only in the range of values [γ1, γ2]. If we have a collection ofN random bistable
fluctuators , the spectrum would be

SRBF(ω) =

N∑
j=1

S1/fα(ω) ∝ N

ωα
. (3.48)

Within this model of noise, the stochasticity of the environment does not only arise
from the process BA(B)(τ) in the Hamiltonian (3.2), but also from the randomness in
the switching rates. The global state of the system (3.6) corresponds to a specific real-
ization of the global stochastic phase ϕA(B)(τ) =

∑N
j=1 ϕj A(B)(τ) and a specific choice of

the switching rates {γj}. Two ensemble averages are required in order to describe the
density matrix of the two-qubit system: the first average in over all the possible realiza-
tions of the noise phase, and the results is exactly the same as Eq. (3.36) obtained from a
collection of bistable fluctuators:

ρ(τ, {γi}) =

∫
ρG(τ, {γi}, ϕ)pT (ϕ, τ)dϕ (3.49)

where we wrote explicitly the dependency of the global density matrix on the choice of
the switching rates and the noise phase. The second average is over the possible choices
for the switching rates:

ρIE(τ) =

∫ γ2

γ1

∫ γ2

γ1

ρIE(τ, {γ})pα({γA})pα({γB})d{γA}d{γB} (3.50)

ρCE(τ) =

∫ γ2

γ1

ρCE(τ, {γ})pα({γ})d{γj} (3.51)

where we used the notation pα({γ}) =
∏N
j=1 pα(γj) and d{γ} =

∏
j dγj .

If we consider as initial state the Bell state |Φ+〉, then the first ensemble average Eq.
(3.49) gives the same result as in the case of a collection of bistable fluctuators Eq. (3.38).
The second average gives the solution for the two-qubit density operator:

ρIE(CE)(τ) =
1

2
(|00〉〈00|+ |11〉〈11|) +

1

2
ΓIE(CE)(τ)(|00〉〈11|+ |11〉〈00|) (3.52)

where we introduced the time dependent coefficient

ΓIE(τ) =

∫ γ2

γ1

∫ γ2

γ1

ΛIE

(
τ, {γ}

)
pα
(
{γA}

)
pα
(
{γB}

)
d{γA}d{γB}

=

[∫ γ2

γ1

∆2(τ, γ)pα(γ)dγ

]2N

(3.53)

ΓCE(τ) =

∫ γ2

γ1

ΛCE

(
τ, {γ}

)
pα
(
{γ}
)
d{γ} =

[∫ γ2

γ1

∆4(τ, γ)pα(γ)dγ

]N
(3.54)
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Figure 3.16: Upper panels: Time evolution of the negativity N(τ) (left) and the quantum dis-
cord Q(τ) (right) for two qubits interacting with a single random bistable fluctuator with 1/f
spectrum for different (solid black line) and common (dashed red line) environments when
[γ1, γ2] = [10−4, 104]. Bottom panels: Time evolution of negativity (left) and discord (right) for
two qubits interacting with a single random fluctuator with 1/f2 spectrum for different (solid
black line) and common (dashed red line) environments when [γ1, γ2] = [10−4, 104].

The partial transposed matrix of Eq. (3.52) is trivial to compute and through its negative
eigenvalues we are able to write the expression for the negativity, and through Eq. (1.86)
the expression for the quantum discord:

NIE(CE)(τ) = |ΓIE(CE)(τ)| (3.55)

DIE(CE)(τ) = h
[
ΓIE(CE)(τ)

]
(3.56)

where h(x) is the function defined in Eq. (3.14). The dynamics of the qubit and thus of
the quantum correlations is governed by the function ΓIE(CE)(τ). This time-dependent
coefficient may be easily evaluated numerically, either by numerical integration or by
equivalent series representation (see Sec. 3.2.3), as reported at the end of this chapter.

As explained at the beginning of this section, Eq. (3.45) can be interpreted as the
spectrum arising from a single random bistable fluctuator. This means that one RBF is
sufficient to mimic 1/fα noise. In the following we analyze the case of a single ran-
dom bistable fluctuator interacting with the two-qubit system in both configurations of
independent and common environments.

The dynamics of N(τ) and D(τ) is shown in Fig 3.16, for the cases of pink and brown
noise. The range of integration is [10−4, 104]. The expressions for the negativity and the
discord are written in Eq.s (3.55) and (3.56) for N = 1 with the integral ΓIE(CE) to be com-
puted numerically. Quantum correlations decay with damped oscillations. In the case of
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Figure 3.17: Dynamics of entanglement for two qubits interacting with a single random bistable
fluctuator with 1/f and 1/f2 spectrum for different ranges of integrations: (Upper panels)
[γ1, γ2] = [10−4, 2] and (Lower panels) [γ1, γ2] = [2, 104].

qubits subject to independent noises with 1/f spectrum, the oscillations have a periodic-
ity of π. This periodicity can be explained by analyzing the analytical expressions of the
quantum correlations. In particular, we recall that in the integrals (3.53) and (3.54), the
∆2(τ, γ) functions exhibit damped oscillations for γ < 2 with periodicity 2π/δ, and for
γ > 2 monotonically decay. Their weighted superposition leads to an interference effect
that can be summarized as follows: the oscillating components result in the formation of
alternatively positive and negative peaks spaced by π/2. On the other hand, the mono-
tonic decaying components combine to cancel the negative peaks and to preserve the
positive ones. Finally we are left with an oscillating function with periodicity of π. The
same concept applies in the case of a common environment, but now the ∆4(τ, γ)’s sum
up in an oscillating function with periodicity of π/2.

The 1/f2 noise leads to oscillating functions of time with periodicity π/2 and π/4
for different and common environments respectively. Again this periodicity is related to
the fact that with the 1

γ2 distribution, the selected values of γ accumulate near the lower
value of the frequency range, thus leading to a beat phenomenon with constructive in-
terference with the above mentioned periodicity.
If different ranges of integration are considered, different time-behavior for the quantum
correlations can arise. In particular, if we engineer the environment to have only low-
frequency components γ � 1, the quantum correlations evolve in time with damped
oscillations. On the other hand, if one could select only fast components γ � 1, both
entanglement and discord decay monotonically in time. Fig. (3.17) shows these features
for the entanglement in the case of α = 1 and α = 2.

In the most general case, in which there are N random bistable fluctuators, we are
able to recover the behavior in Fig. 3.12 and 3.13 for the same number N of oscillators.



Dynamics of quantum correlations 63

Quantum correlations decay exponentially in the case of 1/f noise and with damped os-
cillations in the case of 1/f2 noise. The scenario with N RBF can be useful to obtain the
average behavior of a collection of bistable fluctuators. Indeed, it describes the ensemble
average over all possible realizations of the sample {γj}Nj=1.

Our results about the 1/fα noise clearly show that the mere knowledge of the spec-
trum is not sufficient to determine the dynamical evolution of the quantum correlations.
Indeed, the number of decoherence channels also play a key role. Different physical
models for the environment can lead to the same spectrum. But, if the two-qubit system
interact with only one decoherence channel, revivals may appear more easily because the
system is affected only by one source of classical noise and information can flow back. If
many sources of decoherence are present, then the information may be completely lost
depending on the channel characteristics, that is, the distribution of the switching rates.
This interpretation of revivals as information backflow is just a conjecture here. In the
next chapter, I will prove the association between the presence of revivals and the back-
flow of information by calculating the BLP measure of non-Markovinity for two qubits
interacting with different numbers of RBF N .

Series representation for ΓIE(CE)(τ)

The dynamics of the two-qubit system depends upon the quantities ΓIE(CE)(τ) intro-
duced in Eq. (3.53) and (3.54). In order to evaluate these quantities, we must be able
to compute the integral:

Γ(τ, α) =

∫ γ2

γ1

∆n(τ, γ)pα(γ)dγ (3.57)

where ∆n and pα are given in Eq.s (3.24) and (2.46) respectively. Let us focus on the case
n = 2 for the ∆n-function. The evaluation of Eq. (3.57) can be done by numerical evalu-
ation of the integral. Another possible way, may be through its series representation, as
shown in the following.

Eq. (3.57) may be rewritten as

Γ(τ, α) =Nα(γ1, γ2)

∫ γ2

γ1

dγ e−γτγ−α ×
[
cosh δτ + γτ

sinh δτ

δτ

]
(3.58)

where we substituted t → τ = νt and γ → γ = γ/ν, and the normalization Nα reads as
follows

Nα(γ1, γ2) =


1

ln γ2−ln γ1
α = 1

(α− 1)
[

(γ1γ2)α−1

γα−1
2 −γα−1

1

]
α 6= 1

. (3.59)

Using the new variable y = γτ we may write the integral (3.58) as the sum of two con-
tributions:

Γ(τ, α) = Nα(γ1, γ2)
[
F (γ2τ, α, τ)− F (γ1τ, α, τ)

]
, (3.60)

where
F (y, α, τ) = τα−1

[
F1(y, α, τ) + F2(y, α, τ)

]
,



64 3.2 Dynamics of quantum correlations in the presence of non-Gaussian noise

and

F1(y, α, τ) =

∫
dy e−y y−α cosh

√
y2 − 4τ2 , (3.61)

F2(y, α, τ) =

∫
dy e−y y−α+1 sinh

√
y2 − 4τ2√

y2 − 4τ2
. (3.62)

Upon expanding the hyperbolic functions and using the relation∫
dy e−y y−α (y2 − 4τ2)k =

k∑
p=0

(−)1+k+p (2τ)2(k−p) ×
(
k
p

)
Γ(2p+ 1− α, y) , (3.63)

where Γ(a, x) is the (incomplete) Euler Gamma function, the two functions Fk may be
rewritten as

F1(y, α, τ) =

∞∑
k=0

k∑
p=0

(−)1+k+p τ
2(k−p)

(2k)!
×
(
k
p

)
Γ(2p+ 1− α, y) , (3.64)

F2(y, α, τ) =

∞∑
k=0

k∑
p=0

(−)1+k+p τ2(k−p)

(2k + 1)!
×
(
k
p

)
Γ(2p+ 2− α, y) . (3.65)

We now introduce the new index s = k − p and rearrange series as

∞∑
k=0

k∑
p=0

... =

∞∑
p=0

∞∑
k=p

... =

∞∑
p=0

∞∑
s=0

... ,

thus arriving at

F1(y, α, τ) =

∞∑
p=0

∞∑
s=0

(−)1+s

[2(p+ s)]!

(
p+ s
s

)
(2τ)s Γ(2p+ 1− α, y)

=−
∞∑
p=0

1

(2p)!
Φp+ 1

2
(−τ2) Γ(2p+ 1− α, y) , (3.66)

where Φn(x) denotes the confluent hypergeometric function 0F1(n, x). Analogously, we
arrive at

F2(y, α, τ) =−
∞∑
p=0

1

(2p+ 1)!
Φp+ 3

2
(−τ2) Γ(2p+ 2− α, y) . (3.67)

Upon substituting Eqs. (3.66) and (3.67) in Eq. (3.60) we obtain a series representation
for the quantity Γ(τ, α). As a matter of fact, truncating the series at the first term, i.e.
p = 0 in Eqs. (3.66) and (3.67), already provides an excellent approximation for α & 3/2
and any value of τ . In formula

Γ(τ, α) '1

2
Nα(γ1, γ2)τα−2

[
2τ cos 2τ Γ∗(1− α, γ1τ, γ2τ)

+ sin 2τ Γ∗(2− α, γ1τ, γ2τ)
]
, (3.68)

where Γ∗(a, x, y) = Γ(a, x)−Γ(a, y). On the other hand, for α . 3/2 the number of terms
needed for a reliable approximation rapidly grows.



Dynamics of quantum correlations 65

3.3 Summary

• We analyzed the dynamics of quantum correlations of two qubits subject either to
Gaussian or to non-Gaussian noise in the two different scenarios of independent
and common environments.

• In the case of Gaussian noise affecting the system, the dynamics depends upon the
time dependence of the β-function. Quantum correlations decay monotonically in
the case of qubits initially prepared in a Bell state both for the case of independent
and common Gaussian environments. If the initial state is in a Bell-mixture, entan-
glement displays sudden death, while quantum discord may have a different be-
havior depending on the initial state and the independent/common environment
scenario considered.

• Entanglement preserving time and sudden death time as a function of the Gaussian
noise parameters, depends upon the specific process considered.

• Random telegraph noise gives rise to two different regimes for the dynamics of
quantum correlations. In the weak coupling regime, quantum correlations de-
cay monotonically in time, while in the strong coupling regime they decay with
damped oscillations. Entanglement-preserving times and sudden-death times de-
pend upon the value of the switching rate, in the case of qubits subject to fast RTN:
the larger is γ, the longer are the decoherence times. The effect of a common en-
vironment is to destroy correlations faster with respect to the case of independent
environments.

• The effect of 1/fα noise arising from a collection of bistable fluctuators on the dy-
namics of quantum correlations depends on the value of α. In particular, for small
values of the parameter, they decay monotonically. On the other hand, for low-
frequency noise, that is higher values of α, the quantum correlations decay with
oscillations. Decoherence becomes stronger as the number of fluctuators increases.

• When the environment is described using random bistable fluctuators giving rise
to a 1/fα noise, a strong dependence on the number of random fluctuators for
the dynamics of entanglement and discord is found. In particular, for a single
fluctuator, revivals appear for all considered values of α. However increasing the
number of fluctuators leads to a behavior in agreement with the case of a collection
of bistable fluctuators with fixed switching rates.





CHAPTER 4

Non-Markovianity of Gaussian and non-Gaussian noisy
channels

In this chapter we analyze the non-Markovian character of a noisy channel by applying
the BLP and BCM measures of non-Markovianity, as introduced in Sec. 1.3, to a single-
and two-qubit system subject to classical noise. The dynamical map of the quantum
system interacting with these kinds of environment is pure dephasing. The aim of this
chapter is to analyze the non-Markovian features of the dephasing channel and to ver-
ify if there exist any relationship between the monotonic or non-monotonic decaying of
quantum correlations and the non-Markovian nature of the dynamical map. In particu-
lar, we want to verify the conjecture that the presence of revivals of quantum correlations
is a sign for an underlying non-Markovian nature of the considered quantum channel,
at least for the systems we consider in this thesis.

In order to address the non-Markovianity of a dephasing channel arising from the
interaction of a quantum system with a classical field, we start with the simple case
of a single qubit interacting with classical environment. The single qubit case can be
treated analytically and, as we will show in the following, the results in terms of non-
Markovianity are the same for the single- and a two-qubit dephasing map we are inves-
tigating.
Consider a single qubit interacting with a classical field, whose Hamiltonian is described
by Eq. (3.2):

H(t) = ω0σz + ν B(t)σz (4.1)

whereB(t) is the stochastic process generating the noise. Let us consider a generic qubit-
state described by the state vector

|ψ0〉 = α|0〉+ β|1〉, (4.2)

where α and β are complex numbers satisfying the condition |α|2 + |β|2 = 1. The system-
environment interaction of Eq. (4.1) describes a non-dissipative dephasing channel, and
it is suitable to portray situations where the typical frequencies of the environment are
smaller than the natural frequency of the qubit.
Different expressions for B(t) may be employed, corresponding to different kinds of
classical noise. In the next sections, we briefly review the dynamics of the generic
qubit state (4.2) and then we will employ these results to explicitly evaluate the non-
Markovianity of the corresponding channels in the cases of both Gaussian and non-
Gaussian noise. Given an initial state ρ0 = |ψ0〉〈ψ0| at initial time t0 = 0, the global
system evolves according to the evolution operator in Eq. (3.3) and the global density
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matrix ρG(t) = U(t)ρ0U
†(t). If, in addition, we multiply it by a rotation matrix eiω0tσz ,

its expression is given by:

ρG(t) =

(
|α|2 e−2iνϕ(t)αβ∗

e2iνϕ(t)α∗β |β|2
)

(4.3)

where ϕ(t) is again the noise phase ϕ(t) =
∫ t

0
B(s)ds. The qubit density matrix is cal-

culated as the ensemble average of the global density operator ρ(t) = E [ρG(t)]. The
expectation of the quantity E

[
e2iνϕ(t)

]
depends on the nature of the stochastic process

considered B(t), as shown in the previous chapter. In the following sections, different
kinds of noise will be taken into account and compared.

4.1 Non-Markovianity of Gaussian noisy channels

We show in Sec. (3.1) that the dynamics of quantum correlations is monotonically de-
creasing in the case of Gaussian noise (we are only referring to states which have both
entanglement and quantum discord, i.e. are non-separable). The characteristic function
of the noise phase is given by Eq. (3.8). For a fixed value of the coupling constant ν,
it depends only on the β-function and it coincides with the dephasing coefficient of the
density operator ρ(t) = E [ρG(t)].
We start by considering the BLP measure of non-Markovianity. We already know from
Eq. (1.96), that in the case of a dephasing channel, the analytical expression for the op-
timal trace distance is known and it coincides with the absolute value of the dephasing
coefficient. It immediately follows that, for Gaussian processes, the optimal trace dis-
tance reads:

D(t) = e−4ν2β(t). (4.4)

Since the function β(t) is a monotone function for all the Gaussian processes we intro-
duced in Sec. 2.1.1, the derivative of the optimal trace distance is always negative and
the BLP measure of non-Markovianity (1.95) is identically zero for all times.

We expect to find the same Markovian character in the case in which the quantum
system is composed by two non-interacting qubits. To this purpose, consider a two-qubit
system interacting subject to classical Gaussian noise. We analyze both the case where
the two qubits are coupled to separate and independent environments, and the case in
which they interact with the same environment. An analytical proof of the Markovianity
of the quantum map for a generic two-qubit system seems intractable since a two qubit
density operator is described by 9 independent parameters. We can however show that
the trace distance decreases monotonically for an X-state.
First, we analyze the different-environment case. We consider two initial arbitrary X-
states

ρ1(0) =
1

4

I +
∑

j=x,y,z

ajσj ⊗ σj

 , ρ2(0) =
1

4

I +
∑

j=x,y,z

bjσj ⊗ σj

 (4.5)

whose time evolution is given by Eq. (3.10):

ρ1(t) =
1

4

(
I + e−4ν2β(t)axσx ⊗ σx + e−4ν2β(t)ayσy ⊗ σy + azσz ⊗ σz

)
(4.6)
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and an analogue expression for ρ2(t) where the coefficients aj are substituted by the
coefficients bj . The trace distance is computed following Eq. (1.90) and it is given by:

D(t, ρ1, ρ2) =
1

8

[∣∣∣e−4ν2β(t)(ax + ay − bx − by) + (az − bz)
∣∣∣+∣∣∣e−4ν2β(t)(ax + ay − bx − by) + (−az + bz)
∣∣∣+∣∣∣e−4ν2β(t)(ax − ay − bx + by) + (az − bz)
∣∣∣+∣∣∣e−4ν2β(t)(ax − ay − bx + by) + (−az − bz)
∣∣∣] . (4.7)

There is no need to find the optimal pair, since the trace distance is a non-increasing
function of time for every choice of the initial pair. In a similar way we can find the
expression of the trace distance between two qubits interacting with a common environ-
ment and again we find that it is a non-increasing function of time.

Gaussian noise leads to Markovian dynamical maps. This means that there is no
regrowth in distinguishability between any two quantum states. The BCM measure of
non-Markovianity confirms this result.

4.2 Non-Markovianity of non-Gaussian noisy channels

Consider a single qubit subject to a classical non-Gaussian noise. Its evolved density
matrix is obtained from Eq. (4.3) once we specify the stochastic process generating the
noise, i.e. the expectation E

[
e2iνϕ(t)

]
.

In the following we study the non-Markovian character of a qubit subject to random
telegraph noise and colored noise with 1/fα spectrum.

4.2.1 Random telegraph noise

The evolved density matrix in the case of a qubit subject to random telegraph noise with
switching rate ξ is easily computed averaging the global density matrix (4.3) and using
Eq. (3.24) to calculate the dephasing coefficient:

ρG(τ) =

(
|α|2 ∆2(τ, γ)αβ∗

∆2(τ, γ)α∗β |β|2
)
. (4.8)

Hereafter we use dimensionless time τ ≡ νt and switching rate γ ≡ ξ/ν. The first step to
compute the BLP and BCM non-Markovianity measures is the evaluation of the optimal
trace distance and the quantum capacity, respectively. From Eqs. (1.96) and (1.101), we
can write:

D(t)(τ, γ) = |∆2(τ, γ)|, (4.9)

CQ(τ, γ) = 1− SE
(

1−∆2(τ, γ)

2

)
. (4.10)

Two different regimes naturally arise: for γ < 2 both the trace distance and the quan-
tum capacity display damped oscillations, i.e. the dynamics is non-Markovian, whereas
for γ ≥ 2 they decay monotonically, i.e. the dynamics is Markovian. In fact, the non-
Markovianity measures NBLP and NBCM correspond to the integrals, over their range of
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positivity, of the quantities

σBLP =
d

dτ
D(τ, γ) = −γ |∆2(τ, γ)|+ sgn [∆2(τ, γ)] (γ cosh δτ + δ sinh δτ) e−γτ (4.11)

σBCM =
d

dτ
CQ(τ, γ) = − 4

ln 2
e−γτ

sinh δτ

δ
arctanh [∆2(τ, γ)] , (4.12)

respectively. If γ > 2 Eq. (4.11) can be simplified since ∆2(τ, γ) > 0 ∀ t. It has expression:

σBLP = −γe−γτ
[
cosh(δτ) +

γ

δ
sinh(δτ)

]
+ (γ cosh δτ + δ sinh δτ) e−γτ

= −4 e−γτ
sinh δτ

δ
if γ ≥ 2 (4.13)

while σBCM keeps the same expression. As it is apparent from the expressions, for γ ≥ 2,
both the σ’s are negative definite such that both the measures NBLP and NBCM vanish.
On the other hand, both the σ’s show an oscillatory behavior as a function of time, which
includes positive values, for any values of γ < 2.

We are interested in finding the extrema of the functionsD(τ, γ) andCQ(γ, τ) in order
to define the regions where they are increasing function of time and thus computing the
non-Markovianity measures (1.95) and (1.100). The maxima τmax

k and minima τmin
k of

D and CQ are at the same points for the two functions. As we discussed in Sec. 3.40,
the ∆n(γ, τ) function has the maxima located at τ = kπ/δ. The minima of the function
D(t) can be computed easily in the strong coupling regime γ < 2 by looking for the
time-points in which Eq. (4.9) goes to zero:

cos(δt) +
γ

δ
sin(δt) = 0 → tan(δt) = − δ

γ

t =
arctan

(
−δ
γ

)
+ kπ

δ
(4.14)

where δ =
√

4− γ2. Note that the minima are the points where the two functions D and
CQ vanish. It follows that we can write the extremal points for the two functions as:

τmax
k = kπ/

√
4− γ2 (4.15)

τmin
k = τmax

k + τ∗ = τmax
k + (4− γ2)−

1
2 arctan

[
−(4− γ2)

1
2

γ

]
. (4.16)

We now have all the ingredients to compute the non-Markovianity of the dephasing
channel through the BLP and BCM measures:

NBLP =

∞∑
k=1

D(γ, τmax
k ) =

1

exp

(
πγ√
4−γ2

)
− 1

(4.17)

NBCM =

∞∑
k=1

CQ(γ, τmax
k ) (4.18)

In the left panel of Fig. 4.1 we show the optimal trace distance dynamics in the non-
Markovian regime γ < 2 for three specific values of γ. We notice that the smaller is



Non-Markovianity of Gaussian and non-Gaussian noisy channels 71

1 2 3 4 5 6 t0.0
0.2
0.4
0.6
0.8
1.0
D

Ha L

0.5 1.0 1.5 2.0
g

10-11
10-8
10-5
0.01

10

Hb L

NBCM

NBLP

Figure 4.1: Non-Markovianity of RTN channels. The left panel shows the trace distance as a
function of time for three different values of the switching rate: γ = 1 (solid black line), γ = 0.1
(dashed red line) and γ = 0.01 (dotted blue line). The right panel is a log-plot of both BLP and
BCM non-Markovianity measures as a function of γ.

γ, the higher are the revivals of the trace distance, and thus the more enhanced is the
non-Markovian character of the dynamics. A similar behavior occurs for the quantum
capacity. We do not show it here, because the qualitative behavior is exactly the same as
the trace distance’s. But because of the important operational meaning of the quantum
capacity, it is worth a comment. For low values of γ the quantum capacity has revivals.
This means that there are specific channel lengths for which it is possible to reliably
transmit information through the channel. Moreover, if the switching rate is very small,
the channel capacity almost recovers its initial value. On the other end, there are channel
length for which CQ(τ, γ) is zero, thus no information can be sent through the channel.
If it is possible to properly engineer the environment to select the channel length, infor-
mation can be sent through the quantum channel without any loss.
We can see from the right panel of Fig. 4.1 that bothNBLP andNBCM increase for decreas-
ing values of γ. From a physical point of view this reflects the fact that small values of
γ correspond to non-negligible and long-living environmental correlations, as described
by the RTN autocorrelation function in Eq. (2.30), and therefore to more pronounced
memory effects. The left panel of Fig. 4.1 also shows that NBCM decays faster than NBLP

as a function of γ. On the other hand, as mentioned above, the threshold between the
Markovian and non-Markovian regime is the same for both measures and corresponds
to γ = 2, for which both measures vanish. More precisely, for γ ≥ 2 both the measures
are identically zero since the time derivatives of both the trace distance and the quantum
capacity are negative definite, meaning that information permanently leaks away from
the system.

4.2.2 Colored 1/fα noise

In this section we describe the environment as a collection of N random bistable fluctua-
tors, as described in Sec. 3.2.3, giving rise to a 1/fα noise. The dynamics of a single-qubit
system subject to 1/fα noise can be analyze through the density matrix

ρ(t) =

(
|α|2 Γ(τ, α,N)αβ∗

Γ(τ, α,N)α∗β |β|2
)

(4.19)
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Figure 4.2: Non-Markovianity of colored channels. The left panel shows the trace distance for a
qubit subject to 1/fα noise generated by a single random fluctuator for different values of α ≥ 1:
α = 1 (solid black line), α = 1.3 (dotted red line), α = 1.5 (dashed blue line) and α = 2 (dotdashed
green line). The right panel shows the same quantity for values of α < 1: α = 0.5 (solid black line),
α = 0.6 (dotted red line), α = 0.8 (dashed blue line) and α = 0.9 (dotdashed green line).

where

Γ(τ, α,N) =

[∫ γ2

γ1

∆2(t, γ)pα(γ)dγ

]N
(4.20)

is the dephasing coefficient depending upon the noise parameter α and the numberN of
bistable fluctuators. The expression for Γ(τ, α,N) was obtain in an analogue way to the
coefficient ΓIE(t) in Eq. (3.53). Remember that with this microscopic model for the noise
already N = 1 random bistable fluctuator is sufficient to gnerate a 1/fα noise spectrum.
We already mentioned that NBLP and NBCM have the same qualitative behavior since
they depend only on the dephasing factor. For this reason, we focus initially only on
the behavior of trace distance. For colored noise with spectrum 1/fα, the optimal trace
distance is calculate according to Eq. (1.96):

D(τ, α,N) = |Γ(τ, α,N)|. (4.21)

This quantity cannot be evaluated analytically since the integral in Eq. (4.20) is not ana-
lytically solvable. We computed it numerically upon assuming that the range of integra-
tion is [γ1, γ2] = [10−4, 104].

The optimal trace distance for a generic number of fluctuators may be written in
terms of the same quantity for a single fluctuator as follows

D(τ, α,N) = D(τ, α)N , (4.22)

where D(τ, α) = |Γ(τ, α)|. We thus first analyze the non-Markovianity of a colored en-
vironment generated by a single random fluctuator. For a fixed value of α and N = 1
the trace distance is always a non-monotonic function of time, as illustrated in Fig. 4.2.
Therefore, contrarily to the case of RTN, the dynamics is always non-Markovian for a
single fluctuator. However, one can still identify two regimes depending on the value
of α. For, α ≥ 1 the optimal trace distance is characterized by pronounced oscillations
in time between zero and a maximum value, which depends upon the value of α. The
larger is α, the larger are the local maxima. For α = 1 higher and lower maxima alter-
nate periodically at times τ = π/2. As α increases, the height of the alternating peaks
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Figure 4.3: Non-Markovianity of colored
channels. The plot shows the trace distance as
a function of time for α = 1. The two curves
refer two different ranges of integration in
Eq. (4.20): [10−4, 2] (green solid line) and
[2, 104](blue dashed line).
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Figure 4.4: Non-Markovianity of col-
ored channels. The plot shows the non-
Markovianity measures as a function of the
number of fluctuators. The plot shows NBLP

(solid lines) and NBCM (dashed lines) as a
function of the number of fluctuators for
different values of α. The three pairs of lines
(from top to bottom) refer to α = 1.0 (black),
α = 1.5 (red) and α = 2 (blue).

increases until it becomes uniform, as shown in Fig. 4.2 (left). For α < 1, D is still non-
monotonic, but the oscillations are less noticeable and the optimal trace distance never
vanishes. This case is illustrated in Fig. 4.2 (right). Generally, as α decreases, the am-
plitude of the oscillations in the trace distance decreases, both in the α < 1 and in the
α ≥ 1 region of parameter space. Non-Markovianity is thus stronger for systems inter-
acting with environments with a dominant low frequency component in the frequency
spectrum. By changing the range of integration in Eq. (4.20), we can analyze the contri-
bution of small and large switching rates on non-Markovianity. In particular, in Fig. 4.3
we compare the behavior of the trace distance for two mutually exclusive ranges of inte-
gration, namely for γ ∈ [10−4, 2] and γ ∈ [2, 104]. In the first case we integrate only over
small values of the switching rates, and the trace distance exhibits revivals, revealing the
presence of information back flow. In the second case the integration is performed over
big values of γ and, as a result, D(t, α, 1) decays monotonically. This behavior is con-
sistent with the results obtained for the RTN channel: memory effects are dominant for
low switching rates, i.e. longer correlation times. Thus non-Markovianity is a distinctive
trait of low-frequency noise spectrum.

We now consider the case of a larger number of fluctuators N � 1. From Eq. (4.22),
and remembering that 0 ≤ D ≤ 1, one sees immediately that the overall effect of having
a large number of fluctuators is to decrease the value of the optimal trace distance. As a
consequence, oscillations in the trace distance are damped and may disappear, depend-
ing also on the value of α, leading to a monotonic decay. This behavior is illustrated in
Fig. 4.4, where NBLP and NBCM are plotted as a function of the numbers of fluctuators
and for three different exemplary values of α. The figure clearly shows that for smaller
values of α, i.e. in the α < 1 regime, a small number of fluctuators is sufficient to com-
pletely wash out memory effects. For increasingly larger values of α, non-Markovianity
persists also for Nf ≈ 100. Generally, increasing the number of fluctuators brings the
system towards a Markovian dynamics. Summarizing, non-Markovianity is typical of
environments with a small number of fluctuators and a noise spectrum dominated by
low-frequencies.
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Figure 4.5: Non-Markovianity of colored channels. The plot shows the quantum capacity for a
qubit subject to 1/fα noise generated by 10 random bistable fluctuators for different values of
α: α = 1 (dashed black line), α = 1.5 (dashed red line), α = 2 (dotted blue line) and α = 2.5
(dotdashed green line).

Let us now analyze the behavior of the quantum channel capacity. In Fig. 4.5 we
consider as an example the case of ten random fluctuators and different values of α.
As expected, CQ(τ, α,N) is an increasing function of α. It has revivals at times multi-
ples of π/2. As the number of fluctuators is increased the peaks become narrower and
smaller, and the CQ(τ, α,N) is zero almost everywhere. The quantum capacity is thus
very sensitive to the channel length or, equivalently, to the time during which the qubit
is subjected to noise. In more detail: only certain lengths of the channel, corresponding
to non-zero values of CQ(τ, α,N), allow for reliable transmission of quantum informa-
tion. This characteristic lengths depend on the specific parameters of the noise. Besides,
the range of non-zero values of CQ(τ, α,N), decreases as N increases, making robust
quantum communication a more challenging task. From our results, we conclude that
non-Markovian quantum channels may be advantageous compared to Markovian ones,
because they may lead to an increase in the quantum capacity, allowing for a reliable
transfer and distribution of information. A proper environment manipulation based on
the exploitation memory effects may be used to induce revivals of the quantum corre-
lations of a system and the channel capacity. As mentioned above, these conclusions
hold upon assuming that the channel is reset after each use, i.e. focusing on memory ef-
fects during the propagation and neglecting memory effects among subsequent uses of
the channel. Of course, memory effects among uses should be eventually addressed in
view of realistic implementations. Our results should be considered a first step toward
a complete analysis of this class of channels, including both types of memory effects.

4.2.3 Two-qubits non-Markovianity

We conclude this section by addressing the non-Markovianity of RTN and colored envi-
ronments acting independently on two dephasing qubits. The dynamics is governed by
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the Hamiltonian
H(t) = HA(t)⊗ IB + IA ⊗HB(t) (4.23)

where HA(B)(t) is the single qubit Hamiltonian in Eq. (4.1). If we focus on the BLP
measure, numerical maximization should be performed in order to find the maximizing
initial pair of states, due to the large number of parameters in the Hilbert space. The nu-
merical approach consists in generating random pairs of initial states, in order to sample
the state space. For every initial pair, we calculate the evolved density matrix, following
the prescriptions in Sec. 3.2. Given the eigenvalues λi of the evolved density matrix, the
trace distance is the sum D(t) =

∑
i |λi|. We then study the numerical derivative of the

trace distance and sum up those regions where the σ = dD
dt > 0. The initial pair which

give the largest value for NBLP is the numeric optimal initial pair.
In both the case of RTN and colored noise, the maximizing pair corresponds to the two
orthogonal factorized states |+ +〉 and | − −〉.
We have numerically confirmed that the optimal trace distance in this case also takes the
form: D(t) = |∆2(τ, γ)| and D(t) = |Γ(τ, α,N)| for RTN and 1/fα noise respectively..
The BCM non-Markovianity measure is straightforward to calculate because the quan-
tum capacity is additive for degradable channels as the one here considered, namely
C2q(Φ(t)) = 2CQ(Φ(t)), where the subscript 2q stands for two qubits. It follows that the
non-Markovian dynamics of two qubits subjected to independent RTN or colored noise
is simply related to the single-qubit non-Markovianity, and therefore it is the same.

Our results show that non-Markovianity features are actually connected to the re-
vivals of quantum correlation. In fact, if we compare Eq. (3.29) and Eq. (3.55) for the
negativity in the case of RTN and colored noise respectively, with the results (4.9) and
(4.21) for the optimal trace distance, it is immediate to see that revivals in the entangle-
ment coincide with revivals of the optimal trace distance, i.e. non-Markovianity. On the
other hand, a monotonic decay of quantum correlations implies a Markovian quantum
dynamical map for the quantum system.

4.3 Summary

• We studied the non-Markovian character of the dynamical map of a qubit subject
to classical noise. Non-Markovianity was evaluated by means of BLP and BCM
measure, based on the trace distance and the quantum capacity respectively.

• Gaussian noise always leads to a Markovian dynamics.

• Depending on the value of the switching rate, random telegraph noise induces two
regimes: fast RTN corresponds to a Markovian dynamics, while slow RTN makes
the dynamics of the quantum system non-Markovian.

• When the environment is modeled as a single random bistable fluctuator, the dy-
namics of the system is always non-Markovian, independently on the value of α.
As the number of random fluctuators is increased, low frequency environments
preserve the non-Markovianity, while smaller values of α induces a Markovian
dynamical map.





CHAPTER 5

Quantum probes for the spectral properties of a classical
environment

So far, we have analyzed the effects of a classical environment on the quantum proper-
ties of a simple quantum system such as a single- or two-qubit system. We described
classical noise by means of a stochastic term in the system Hamiltonian. We now want
to study a complementary situation. The question we ask ourselves is if and how we can
characterize the stochastic process generating the noise affecting the system using min-
imal resources. To this aim, we address the characterization of a random classical field
by quantum probes. With the term quantum probes we mean a microscopic system, say
a qubit encoded into a particle, subject to classical noise, that we can use to estimate the
parameters of the noise itself. The idea is to exploit quantum measurements performed
at a fixed interaction time on the qubit to extract information about the classical envi-
ronment. This is possible because the decoherent dynamics of the probe is induced by
interaction with the environment and it strongly depends on the properties of the latter,
such as its spectrum. If the probe can be easily controlled and manipulated, then it may
be possible to extract information about a complex environment in an efficient way. In
this chapter, we focus on the characterization of the noise by estimating the parameters
of its autocorrelation function (or the spectrum). The scheme we follow requires to find
the optimal state preparation of the probe, the optimal interaction time and the efficient
measurement to be performed on the open quantum system, in order to extract the max-
imum information possible about the external noise.
As in the previous chapter, here we focus on dephasing dynamics, assuming that relax-
ation effects are negligible. We consider a single-qubit system interacting with classical
noise arising from a stochastic process with a Gaussian or non-Gaussian statistics. Again,
the system Hamiltonian has the form:

H(t) = ω0σz +B(t)σz (5.1)

where B(t) is a stochastic process, whose autocorrelation function depends upon an
unknown parameter λ. Starting from a generic initial pure state belonging to the family
of states:

|ψ0〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉, (5.2)

we are able to write the evolved density matrix of the two-qubit system, as done in
Chapter 4, as

ρ(t) =
1

2

 1 + cos θ e−2iω0t f(λ) sin θ

e2iω0t f(λ) sin θ 1− cos θ

 , (5.3)
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and the expectation f(λ) = E
[
e−2iϕ(t,λ)

]
depends upon the considered stochastic pro-

cess B(t) and we explicitly wrote its dependency upon the noise parameter λ we want
to estimate. By using the tools of quantum estimation theory we are able to analyze the
performances of an efficient estimator for the noise parameters. In fact, the goal of an
estimation procedure is not only to determine the value of an unknown parameter, but
also to infer this value with the largest possible precision, as imposed by the Cramèr-
Rao inequality. Our main aim is to optimize the parameter estimation procedure by
using quantum probes. In other words, we determine the initial qubit state preparation
and the interaction time that maximize the quantum Fisher information. We show that
the ultimate precision may be achieved by a population measurement in the rotating
frame of the qubit. Finally we establish under which conditions it is possible to estimate
efficiently the spectral properties of the environmental noise.
In order to calculate the QFI as in Eq. (1.108), we need the eigenvalues ρ± and eigenvec-
tors |ρ±〉 of the density operator. The eigenvalues are given by:

ρ±(λ) =
1

2

(
1±

√
cos2 θ + f2(λ) sin2 θ

)
(5.4)

where we substituted the symbol ρ1,2 with ρ± to denote eigenvalues. The eigenvectors
depend upon the angle θ, the expectation f(λ), the interaction time τ and the qubit
frequency ω0. We do not write them here since they have a very long expression. Instead
we write the analytical expression of the coefficients |〈ρm|∂λρn〉|2 with m,n = ±:

|〈ρ±|∂λρ±〉|2 =
cos2 θ sin2 θ [∂λf(λ)]

2

4
(
cos2 θ + f(λ)2 sin2 θ

)2 (5.5)

The quantum Fischer information (1.108) is calculated analytically:

G(λ) =

[
sin2θ f2(λ)

(f2(λ)− 1)
(
cos2 θ + f2(λ) sin2 θ

) +
sin2 θ cos2 θ

cos2 θ + f2(λ) sin2 θ

] [
∂λf(λ)

]2
=

[
∂λf(λ)

]2
sin2θ

1− f2(λ)
(5.6)

Eq. (5.6) is maximized for θ = π
2 . It follows that the optimal initial state is the superpo-

sition |ψ0〉 = 1√
2
(|0〉+ |1〉) = |+〉.

To complete our analysis, we now prove that the optimal measurement achieving the
QFI is a realistic one, since it corresponds to the projectors onto the eigenstates of the
system. For the optimal initial |+〉, the eigenvalues and eigenvectors of the density op-
erators have the expression:

ρ±(λ) =
1

2
[1± f(λ)] (5.7)

|ρ±〉 =
1√
2

[
±e−2iω0t|0〉+ |1〉

]
. (5.8)

Since the eigenvalues do not depend upon the parameter λ, the second term in the QFI
(1.108) vanishes and the QFI coincides with the FI of the distributions (5.7), computed
from Eq. (1.104):

F (λ) =
[∂λρ+(λ)]2

ρ+(λ)
+

[∂λρ−(λ)]2

ρ−(λ)
= G(λ), (5.9)
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The optimal measurement is thus obtained from the projectors onto the eigenstates of
the density matrix Π± = |ρ±〉〈ρ±|:

Π± =
1

2

(
1 ±e−2iωot

±e2iωot 1

)
(5.10)

= e−iω0tσz |±〉〈±|eiω0tσz . (5.11)

In other words, the optimal measurement corresponds to σx in the qubit reference frame
which rotates with frequency ω0.

5.1 Characterization of classical Gaussian processes

In this section we focus on three particular Gaussian processes. Specifically, we assume
that the stochastic field in Eq. (5.1) is driven either by an Ornstein-Uhlenbeck or by
a Gaussian or a power-law process. The corresponding autocorrelation functions are
given in Eq.s (2.20), (2.25) and (2.26) respectively. From these autocorrelation functions,
it is possible to calculated the β-functions (2.21), (2.27) and (2.28), which can be re-written
in terms of the dimensionless quantities g = γ/Γ and τ = Γt as:

βOU (g, τ) =
1

g

(
gτ + e−gτ − 1

)
(5.12)

βG(g, τ) =
1

g

[
gτ Erf(gτ) +

e−(gτ)2 − 1√
π

]
(5.13)

βPL(g, τ) =
1

g

[
(1 + gτ)2−α + gτ(α− 2)− 1

(α− 2)

]
. (5.14)

The qubit evolved density operator is described by the matrix reported in Eq. (5.3) with
the substitution f(λ) = E

[
e−2iϕ(t,λ)

]
= e−2β(g,τ). The characterization of the classical

noise amounts to estimate the overall noise parameter g by performing measurements
on the quantum probe after the interaction with the environment, as described by the
density matrices in Eq. (5.3). In order to make this procedure as effective as possible,
i.e. to extract the maximum amount of information on the noise by inspecting the state
of the probe, we have to suitably optimize the interaction time, the measurement to be
performed at the output and finally, the data processing after collecting an experimental
sample.
In particular we want to study the quantum Fisher information and the quantum signal-
to-noise ratio for the estimation of the noise parameter g of the considered processes and
assess the performances of the ML estimator by a set of simulated experiments.

The quantum Fisher information gives the ultimate quantum bound to the precision
of an inference procedure. The analytic expression for the QFI is given by Eq. (5.6) and,
in the case of a Gaussian process affecting the dynamics of the qubit initially prepared in
the optimal state, it takes the form:

G(g, τ) =
4

e4 β(g,τ) − 1
[∂g β(g, τ)]

2
. (5.15)

Given the β-functions in Eqs. (5.12)-(5.14), the QSNR is calculated from Eq. (1.109) and
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Figure 5.1: The quantum signal-to-noise ratioR(g) as a function of g and the interaction time τ for
different stochastic processes: (a) OU, (b) G, and PL with (c) α = 3 and (d) α = 10.

it is given by:

ROU (g, τ) =
4 e−2gτ

g2

[
(1− egτ + gτ)2

e
4
(
τ+ e−gτ−1

g

)
− 1

]
(5.16)

RG(g, τ) =
4

πg2


(
e−g

2τ2 − 1
)2

e
4

(
e−g2τ2−1√

πg
+τ Erf(gτ)

)
− 1

 (5.17)

RPL(g, τ) =
4

g2

 (1 + αgτ + (α− 1)(gτ)2 − (1 + gτ)α)2(
e

4
(
τ+

(1+gτ)2−α−1
g(α−2)

)
−1
)

(α− 2)2(1 + gτ)2α

 (5.18)

The QSNRs of Eqs. (5.16)-(5.18) are shown in Fig. 5.1. As it is apparent from the plots,
the qualitative behavior is the same for all processes. At any fixed value of g there is
a maximum in the QSNR, achieved for an optimal value of the interaction time τM(g).
The value of this maximum RM = R(τM) decreases with g. It follows that smaller values
of g may be better estimated than larger ones. The optimal time τM(g) decreases with
increasing values of the parameter. This means that the smaller is g, the longer is the
interaction time that is required to effectively imprint the effects of the external environ-
ment on the probe. The dependency of τM on the parameter g is shown in the upper left
of Fig. 5.2, for the three considered processes. For small values of g we can approximate
the curves with the function τM ' a/

√
g (with a ' 0.89 for OU and similar values for the

other processes) while for g � 1 we may write τM ' b/g, with b ' 2.5 for OU. The cor-
responding values of the QSNR, i.e. RM are shown in the right panel of the same figure.
RM is almost constant for small g and then start to decrease. We have RM ' a− b

√
g for

g � 1, where a ' 0.161 and b = 0.096 for OU, and RM ' b/g for g � 1, with b ' 0.33
for OU. It follows that g may be effectively estimated when it is small, since the QSNR
is large. In this regime, the estimation procedure is also robust, since the optimal inter-
action time and the resulting value of the QSNR depend only weakly on the value of g.
On the other hand, for larger g the estimation procedure is unavoidably less effective.

Efficient estimator for a Gaussian process

In this Section we present the results of simulated experiments, performed to assess the
performances of the maximum likelihood estimator and to characterize its asymptotic
regime. In particular, we have numerically simulated repeated measurements of the
observable described by the projectors Π± in Eq. (5.11), and then estimated the value of
the parameter g in the case of OU process using the MLE.
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Figure 5.2: The left panel shows the optimal interaction time τM(g), which maximizes the QSNR,
for the three different processes: OU (solid black), G (dashed red) and PL (dotted blue). In the PL
case, we set α = 3. The right panel shows the corresponding (maximized) values of the QSNR
RM , using the same color code.
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Figure 5.3: Estimated ratio gML/g between the ML estimated value of g and the true value, together
with the corresponding error bars as a function of the number of repeated measurements M as
obtained from simulations. In the left panel the results for g = 0.01 (solid black) and g = 100 (red
dashed) are compared. Smaller values of the parameter are better estimated. In the right panel the
considered values are g = 0.1 (solid black) and g = 1 (red dashed). Note that the simulated data
in both panels are computed for the same values of M and then the red points are slightly shifted
along the x-axes for the sake of clarity.

Imagine to have performed M repeated measurements of Π± at the optimal time
τM . Each run returns ±1, according the probability distributions (5.7). Let us call N the
number of outcomes with value +1. The frequentist interpretation of probability leads
us to write the relation

ρ+(g, τ) =
N

M
, (5.19)

implicitly assuming that the number of measurement is large M � 1.
In order to simplify the notation, we hereafter call p(g, τ) ≡ ρ+(g, τ). By inverting

Eq. (5.19), we can write the inversion estimator ĝ of g: ĝ(N,M) = p−1
(
N
M , τM

)
. Before

analyzing the performances of this estimator we show that it coincides with the ML
estimator. In fact, from Eqs. (1.110) and (1.111) we have:

L(g, τ) =p(g, τ)N
[
1− p(g, τ)

]M−N (5.20)

∂gL(g, τ) =− [1− p(g, τ)]M−N−1p(g, τ)N−1[M p(g, τ)−N ]∂gp(g, τ). (5.21)
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Figure 5.4: Dependency of the variance (red lines) of the ML estimator as a function of the number
of measurements for the case g = 1. The blue shaded area represents the QCR bound. Variances
below the quantum bound mean that the estimator has a bias. Inset: The same as in the main
frame but for a large number of measurements: the bias is no longer present.

Eq. (5.21) has a maximum for p(g, τ) = N
M which, by inversion, gives the inversion

estimator

ĝML(N,M) = p−1

(
N

M
, τM

)
. (5.22)

Since we want to find the most precise estimation of the parameter which is allowed by
quantum mechanics, we compute Eq. (5.22) at the optimal time τM which maximizes
the quantum Fisher information. The ML estimator is a function of the number of re-
peated measurements M and the number N of outcomes with value +1. By numerical
simulations, we mimic the results of experiments. This is done by generating a set of
random numbers whose values are between 0 and 1. Then, we evaluate N by counting
the number of elements of the set whose value is smaller than p(ĝML, τM). We repeat the
procedure for different numbers of repeated measurements. The variance of the ML es-
timator (5.22) is computed using the error propagation theory. Upon assuming that the
measure outcomes follow a binomial distribution, the estimator variance σ2is given by:

σ2(ĝML) =

∣∣∣∣∂ĝML(N,M)

∂N

∣∣∣∣2N (1− N

M

)
. (5.23)

In Fig. 5.3 we shows the ratio between the estimated value ĝML and the true value as a
function of the number of repeated measurements for different values of the true param-
eter g. The estimated value oscillates around the true one, with standard deviations σ
decreasing as a function of M . In fact, as the number of measurements becomes larger,
the ratio ĝML/g gets closer to unity. The error associated to each point is smaller with
increasing number of measurements. The sets of data in Fig. 5.3 refer to g = 0.01 (black
solid line) and g = 100 (red dashed line) in the left panel and g = 0.1 (black solid line)
and g = 1 (red dashed line) in the right one. The left panel in Fig. 5.3 highlights the
fact that for the data associated to small g, the ratio converges more rapidly to unity and
with smaller error with respect to the case g = 100. This is in agreement with the results
of the previous subsection, where we found that RM is larger for smaller values of the



Quantum probes for the spectral properties of a classical environment 83

parameter, meaning that the parameter is better estimable in the regime g � 1. The right
panel of Fig. (5.3) confirm the behavior found in Fig. 5.2: in the region g < 1 it is possible
to easily estimate the parameter almost independently on the value of g.

As already mentioned, the variance σ2 decreases with increasing M . This is expected
from the QCR bound in Eq. (1.107) because the QFI is a fixed quantity for fixed g, so the
minimum error scales as 1

M .
In Fig. 5.4 we illustrate the behavior of the variance σ2 as a function of the measure-

ment number in the case g = 1. The red lines represent the variance and the shaded
area outlines the QCR bound. The reader may note that in certain cases the variance is
below the quantum bound. This means that the estimator is lightly biased. But as the
number of measurements in increased the bias tends to zero and the estimator becomes
efficient (it saturates the QCR bound, as shown in the inset) as expected for ML estima-
tor. The same qualitative behavior is found for other values of the parameter g. From
our analysis, we see that the asymptotic regime for ML estimator appears for a number
of repeated measurements of about 104 − 105. We have also analyzed the convergence
of a Bayesian estimator and found that the required M to have the asymptotic behavior
is larger. It follows that, to achieve the characterization of the spectral properties of a
Gaussian noise, a ML procedure leads to a faster estimation of the unknown parameters.
The estimation scheme presented here would be suitable also to infer the amplitude of
white noise, characterized by an autocorrelation function proportional to the Dirac delta.
In this case, the optimal state preparation and measurement are the same as those ob-
tained for the considered Gaussian noises. However, the quantum signal-to-noise ratio
is a monotonically descreasing function of time, leaving no room for any optimization
procedure.

5.2 Characterization of classical non-Gaussian processes

Let us assume now that the stochastic term in the Hamiltonian (5.1) has a non-Gaussian
statistic. Specifically, in this section we will focus on the random telegraph noise and the
1/fα noise. Following the approach used in the case of Gaussian noise, we maximize
the quantum Fisher information over the interaction time τ in order to estimate the noise
parameters: the switching rate γ in the case of RTN and the exponent α in the case of
colored noise.

5.2.1 Random telegraph noise

In the case of RTN, the dephasing factor in Eq. (5.3) coincides with f(λ) = ∆2(τ, γ) in
the Eq. (3.24) and, for the optimal state |+〉, the QFI may be written as:

G(γ, τ) =
[∂γ∆2(τ, γ)]

2

1−∆2
2(τ, γ)

. (5.24)

The two different regimes of slow and fast RTN give rise to different behaviors for the
QFI, which are illustrated in Fig. 5.5. For slow RTN, G is shown in the left panel of Fig.
5.5: the QFI is characterized by an oscillating behavior and, in particular, for γ � 2 the
peaks are located at multiples of τ = π

2 . In the fast RTN case (see the right panel of Fig.
5.5), G has only one peak and its maximum value decreases with γ.

In order to optimize the inference procedure we look for the interaction time that
maximizes the QFIG(τ, γ) (and, in turn, the QSNRR) at each fixed value of the switching
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Figure 5.5: The left panel shows the QFI G(τ, γ) as a function of the interaction time τ and the
switching rate γ for slow RTN. The lower panel shows a contour plot of of G(τ, γ) for fast RTN.

Figure 5.6: The optimal interaction time τM , maximizing the quantum Fisher information G(τ, γ)
for slow RTN, as a function of the switching rate γ (black line). The dashed red curve denotes the
function π/4γ.

rate γ. The maximization of the QFI has been performed numerically, leading to the
following approximation

τM(γ) '


nint

[
1

2γ

]
π
2 γ < 2

2
5γ γ > 2

. (5.25)

The approximation is very good for γ in range [10−3, 103] except for γ ' 2 where the
peaks are not exactly located at multiples of τ = π

2 and Eq. (5.25) is valid only to a
first approximation. In order to further illustrate the behavior of the QFI in the slow
RTN regime, in Fig. 5.6 we show the optimal interaction time τM as a function of the
switching rate. The steplike behavior of τM is due to the oscillating behavior of the
QFI. On the other hand, in the fast RTN regime, the maximum moves continuously as a
function of γ.

As seen from Eq. (5.25), optimal times increase with decreasing γ in the slow RTN
regime and with increasing γ in the fast RTN regime. When small switching rates are
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considered, long times are necessary to see the effect of the environment on the probe, in
agreement with the non-Markovian character of the corresponding evolution map (see
Sec. 4.2.1). In the case of γ � 2, the qubit and the external fluctuators act as if they were
decoupled, so long observation times are required to see the influence of the external
noise on the dynamics of the qubit. In both cases, the maximum values G(τM , γ) of the
QFI are inversely proportional to γ2. In particular, a numerical fit in range [10−3, 103]
leads to

G(γ) ≈ a

γ2
, (5.26)

where a is of the order of 0.1. The quantum signal-to-noise ratio R = γ2G(γ) ' a is
thus constant, meaning that quantum probes allow one for a uniform estimation of the
switching rate in the whole range of values we have considered.

5.2.2 Colored 1/fα noise

In the case of a collection of random bistable fluctuators, the relevant parameter to be
estimated is the “color” of the noise, i.e. the exponent α. In this case, the decoherence
coefficient is given by:

f(τ, α,N) = E
[
e−2iϕ(τ,λ)

]
= Γ(τ, α,N)

=

[∫ γ2

γ1

∆2(t, γ)pα(γ)dγ

]N
=
[
Γ(τ, α)

]N
(5.27)

and the quantum Fisher information is computed according to Eq. (5.6) as:

G(τ, α,N) = N2 Γ(τ, α)2N−2

1− Γ(τ, α)2N

[
∂αΓ(τ, α)

]2
. (5.28)

For colored environments realized by a single random fluctuator the above formula re-
duces to

G(τ, α) =

[
∂αΓ(τ, α)

]2
1− Γ(τ, α)2

. (5.29)

The QFI depends on the interaction time τ , the exponent α and the number of fluc-
tuators N . Different values for α and N may lead to considerably different tempo-
ral behaviors for the QFI. This is illustrated in Fig. 5.7, where we show the QSNR
R(τ, α,N) = α2G(τ, α,N) as a function of α and τ for two different numbers of fluc-
tuators. When a single fluctuator is considered, the QSNR has a maximum located at
α = 1, which corresponds to the best estimable value for the parameter. The situation
is totally reversed in the case of a bigger number of RBFs, for example N = 10, where
values of α close to one correspond to a very low QSNR.

In order to further illustrate this behavior, in Fig. 5.8 we show the QSNR, already
maximized over the interaction time, as a function of the exponent α for (three) fixed
numbers of fluctuators. For a single fluctuator the QSNR exhibits a single maximum
located at α = 1, i.e. pink noise is more precisely estimable than other kind of noise.
On the other hand, when the number of fluctuators is increased, two maxima appear
and their location move away from α = 1 for increasing N , with the largest maximum
drifting towards α = 2.
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Figure 5.7: Spectral characterization of colored noise: The left panel shows the QSNR R(τ, α,N)
as a function of the interaction time and the exponent α for a single fluctuator N = 1. The right
panel shows the same quantity for N = 10.
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Figure 5.8: Spectral characterization of col-
ored noise: The plot shows the QSNR
R(τM , α,N) as a function of α for different
numbers of fluctuators: N = 1 (black circles),
N = 10 (red squares) and N = 50 (green
rhombuses). Lines are guides for the eyes.
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Figure 5.9: Spectral characterization of col-
ored noise: The plots shows the number of
fluctuators Nmax that maximizes the QFI as a
function of the exponent α. The line is a guide
for the eyes.

To complete our analysis we also investigate with some more details the dependence
of the QFI on the structure of the environment, i.e. on the number of fluctuators describ-
ing the environment. In Fig. 5.9 we show the number of fluctuators Nmax maximizing
the QFI as a function of α. We first notice that there is indeed a dependence, and that
Nmax may be considerably different for, say, pink or brown noise. As it is apparent from
Fig. 5.9 Nmax decreases with increasing α until it reaches the value Nmax = 1 for val-
ues of α close to 1. Then it increases with α, up to Nmax = 540 for α = 2. As a final
remark, we also notice that when the number of fluctuators is taken equal to Nmax, then
the optimal interaction time maximizing the QFI is τM ' π/2 independently on α.

Efficient estimator for a non-Gaussian process

In order to illustrate the inference procedure that leads to an efficient estimator for the
spectral parameter of a non-Gaussian process, we consider here the case of fast RTN. We
simulate an experiment in which we perform M independent optimal measurements
and use the collected outputs to built an estimator and assess its performances. The
probability to obtain as a result of the measurement the state |+〉 is given by Eq. (5.7),
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i.e. p(γ, τ) = 1
2 [1 + ∆2(γ, τ)]. We simulate the outcomes of M repeated measurements

according to this probability distribution and we call N the number of outcomes with
value +1. As in the previous case, this is done by generating a set of M random number
in the interval [0, 1] and counting the number N of elements of the set which are smaller
than p(γT , τ) with γT the true value of the parameter.
The use of a maximum likelihood estimator to estimate the value of γ in this case is not
recommended, because the relation p(γML, τ) = N

M cannot be analytically inverted. In
this case we are able to numerically find the estimate for γ, but we are not able to cal-
culate the variance of the estimator according to Eq. (5.23). If we use a data-blocking
technique, i.e. we divide the the M outputs in blocks for each of which we compute the
ML estimator, the variance obtained as the spread of one block to another is very large,
even for a very large number of measurements (∼ 107).
A better strategy is to address a Bayesian estimation procedure. The conditional proba-
bility to obtain N outputs with value +1 when the true value of the parameter is γ is the
likelihood function:

p(N |γ) = p(γ, τ)N [1− p(γ, τ)]M−N . (5.30)

The a posteriori conditional probability distribution is calculated from Eq. (1.113). The a
priori probability can be guessed based on the information available before any measure-
ment. In our case, however, we do not have any prior information about the parameter,
so we assume for p(γ) an uniform distribution in an interval [γ1, γ2] and zero elsewhere.
With this assumption, the conditional probability distribution p(γ|N) takes the form:

p(γ|N) =
1

Np
p(N |γ) (5.31)

with Np =
∫ γ2

γ1
p(N |γ)dγ to have a normalized probability distribution.

The estimated switching rate and its associated variance are numerically calculated ac-
cording to Eq.s (1.114) and (1.115) at the optimal time τ = τM :

γ̂B =

∫ γ2

γ1

γ p(γ|N)dγ (5.32)

Var[γ̂B ] =

∫ γ2

γ1

[γ − γ̂B ]
2
p(γ|N)dγ (5.33)

and the range of integration has been fixed. In Fig. 5.10 (left), we show the estimated
ratio γ̂B/γT as a function of the number of repeated measurements M for two different
values of the true switching rate, specifically γT = 5 (black) and γT = 200 (red). The es-
timated error σ =

√
VarB [γ̂B ]/γT , i.e. the signal-to-noise ratio R, is also displayed. Our

results clearly show that the estimated values converge on the true value with smaller
error as the number of measurements is increased, i.e. the ratios tend to unity for both
analyzed cases. Moreover, the errors bar (normalized with γT ) associated with the two
estimates have the same length, confirming that the signal-to-noise ratio calculated from
Eq. (5.26) is independent upon the true value of the parameter and the estimation proce-
dure is robust against changes in the value of γT . The asymptotic regime of the Bayesian
estimator, in which it becomes efficient, is reached after already for∼ 104 measurements.
In the right panel of Fig. 5.10, we report the behavior of the variance as a function of
the repeated measurements for the case γT = 20. The shaded area represents the re-
gion where the quantum Cramèr-Rao bound is violated. The cases where the variance
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Figure 5.10: Left panel: Estimated ratio γ̂B/γT between the Bayesian estimated value of the
switching rate of the random telegraph noise and its true value, together with the correspond-
ing error bars as a function of the repeated measurements M . Two different values for γT are
considered: γT = 5 (black points and lines) and γT = 200 (red points and lines). Right panel:
Dependency of the variance (red lines) of the Bayesian estimator on the number of repeated mea-
surementsM in the case γT = 20. The blue dashed area represents the violation of the Cramèr-Rao
bound.

is smaller than limit imposed by quantum mechanics corresponds to biased estimators.
This may happen for a small number of measurements. As M is increased, the Cramèr-
Rao is saturated and the Bayesian estimator becomes efficient. These results show that it
is possible to efficiently characterize a classical noise following a non-Gaussian statistics
by performing repeated measurements only at one optimal instant of time.

5.3 Summary

• Simple quantum systems, such as a qubit, may be used as quantum probes to char-
acterize complex environments. In fact, the dynamics of an open quantum system
is affected by the environments which is interacting with. By measuring the state
of a quantum probe, it is possible to gain information about the environment.

• In order to maximize the extraction of information about the environment, it is
necessary to optimize the preparation of the probe, the interaction time and the
measurement to be performed on the quantum system.

• The figure of merit we address in order to evaluate the efficiency of the estimation
procedure is the quantum Fisher information (or equivalently the quantum signal-
to-noise ratio). In the case of a Gaussian process, the QFI exhibits a peak at the
optimal interaction time. For the analyzed processes, small values of the noise pa-
rameters may be estimated with very high precision. We showed that a maximum
likelihood estimator allows one to efficiently estimate the spectral properties of
an Ornstein-Uhlenbeck process with the minimum variance allowed by quantum
mechanics.

• The efficient estimation of the switching rate of the non-Gaussian random tele-
graph noise is robust against changes in the value of γ, meaning that the signal-to-
noise ration is uniform with respect the value of γ. The optimal interaction time
decreases with increasing γ in the slow RTN regime, while it increases with grow-
ing γ for fast RTN.
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• The estimation of the color of the noise α in the case of colored 1/fα noise strongly
depends on the microscopic structure of the environment, i.e. the number N of
fluctuators used to model it. For N = 1 the estimation at the optimal time is more
precise for α = 1, while for N > 1 the quantum Fisher information exhibits two
maxima drifting away from α = 1 as N is increased. We also find the optimal
microscopic structure, i.e. the optimal number of fluctuators, that maximizes the
signal-to-noise ratio.

• As an example of inference procedure for a non-Gaussian process, we analyzed
the performances of a Bayesian estimator of the switching rate of the fast RTN.
The estimator becomes unbiased and efficient as the number of measurements is
increased and the asymptotic regime is reached already after few thousand mea-
surements.





Conclusions

In this thesis I presented and discussed the results of the research I carried out during
my PhD, which has been devoted to the analysis of the decoherence in qubit systems
subject to classical noise and the characterization of a classical stochastic processes using
quantum probes.

The unavoidable interaction between a quantum system and its environment usu-
ally destroys the coherence and the quantumness in the system. However, a coherent
dynamics and the survivals of quantum correlations are necessary conditions for the
quantum information processing. A detailed description of the mechanism of decoher-
ence is thus of great relevance for the development of quantum technologies and the
precise characterization of the noise acting on a quantum system is the main tool in de-
signing protocols robust against the detrimental effects of decoherence.
The usual approach to study the decoherence due to the interaction between a quantum
system and the environment is to describe the latter as a quantum bath. But there exist
situations where this description may be challenging or inappropriate. In these cases,
modeling the environment with classical random fields, without invoking a quantum
environment at all, is a necessary approach. For certain types of dynamics, for example
phase damping, the decoherence induced by a quantum bath may be equivalently de-
scribed in terms of stochastic fluctuating classical fields.

In this thesis, I addressed the decoherence induced on a quantum system by a clas-
sical noise. The aim was twofold. The first was to study the mechanism of decoherence
through the analysis of the dynamics of quantum correlations, both entanglement and
quantum discord, and the non-Markovian character of the dynamical map of the system.
The second was to address the characterization of the spectral properties of a complex
classical environment using a simple qubit system as quantum probe.

In particular, I investigated the role of classical noise on the dynamics of quantum
correlations in a quantum system composed by two non-interacting qubits initially pre-
pared in a maximally entangled state or in a Bell-state mixture. The environment was
modeled through stochastic processes following either a Gaussian or a non-Gaussian
statistics. I computed the time evolved density matrix of the two qubits by perform-
ing the ensemble average over the stochastic process, both in the case of independent
and common environments. In the case of Gaussian noise, I focused on two diffusion
processes generating the noise: Ornstein-Uhlenbeck, characterized by a decoherence pa-
rameter, and the fractional Brownian motion, characterized by the Hurst parameter. I
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have characterized the trajectories of the system inside the set of mixtures of Bell-states
and shown the occurrence of sudden death of entanglement for certain sets of initial
quantum states. I introduced the entanglement-preserving time t∗ and the entangle-
ment sudden death time tESD in order to analyze the effects of the nature of the noise on
the decoherence. I found that t∗ is larger for fractional Brownian motion than Ornstein-
Uhlenbeck process and that a larger initial entanglement corresponds to a longer pre-
serving time. Moreover, I found that the entanglement-preserving time is bounded from
below by an increasing function of the initial entanglement. Regarding the effect of in-
dependent baths on the dynamics of correlations, independent environments degrade
them more weakly than a common one. Overall, I showed that engineering the environ-
ment has only a slightly influence over the occurrence of entanglement sudden death,
while it represents a valuable resource to increase the entanglement-preserving time.
In the case of qubits subject to a non-Gaussian environment, I focused on two examples
of noise: the random telegraph noise and the colored 1/fα noise arising from a collection
of bistable fluctuators with switching rates selected from a specific distribution pα(γ). In
the case of a two-qubit system affected by random telegraph noise, we confirm that two
regimes arises: quantum correlations decay monotonically for values of the switching
rate over a certain threshold, while they display revival of correlations for small values
of the switching rate. Moreover, a common environment preserves better the quantum
correlations in the case of slow RTN; the opposite behavior is found for qubits subjects
to fast RTN, where the effect of a common noise results in a faster decay of entanglement
and discord with respect to the case of independent environments.
In the case of a two-qubit system acted on by a 1/fα noise, the dynamics of quantum
correlations depends upon the color of the noise α and the number of fluctuators used
to model the environment. Depending on the characteristic of the spectrum, i.e. the
exponent α, quantum correlations display either a monotonic or a damped oscillating
behavior. For example, for pink noise, i.e. α = 1, quantum correlations decay mono-
tonically, while for brown noise, i.e. α = 2, sudden death and revivals occur. Quantum
correlations are written as a product of oscillating and exponential functions. Since the
switching rates of the fluctuators are selected from a distribution proportional to 1/γα,
for pink noise they lead to destructive interference, while brown noise enhances con-
structive interference. The action of independent or common environment has different
effects on the robustness of quantum correlations. The qualitative trend is identified,
whereas the quantification of the result depends explicitly upon the number of fluctu-
ators and the specific sample of the switching rates {γj}. In order to eliminate the de-
pendency of the dynamics of quantum correlations on the chosen sample, I introduced a
new microscopic model for the environment generating a 1/fα noise, based on random
bistable fluctuators.
When the two-qubit system interacts with a single bistable fluctuator, an oscillating be-
havior of quantum correlations has been found, independently on the value of α. The
effect of a common environment is of better preserving the correlations and to double
the number of revivals compared to the case of independent baths. If α = 1, the peaks of
entanglement and discord decay faster than in the presence of brown noise, i.e. α = 2.
In fact, for pink noise the switching rates are more uniformly distributed over the range
[γ1, γ2] than in the case of 1/f2 noise, thus leading to massive destructive “interference“.
The results presented clearly show that the behavior of quantum correlations is influ-
enced not only by the spectrum of the environment but also by the number of fluc-
tuators used to describe the microscopic structure of the environment. With a single
decoherence channel revivals of correlations appear. When the number of fluctuators
is increased, correlations decay monotonically. In order to relate this behavior with the
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flow of information in the system, I addressed the non-Markovianity of a quantum sys-
tem made of one or two qubits interacting with a classical random field. I considered
two measures of non-Markovianity, based on the trace distance and the quantum capac-
ity respectively, and I showed that their behavior is qualitatively similar. The fact that
the two measures agree confirms, at least for dephasing channels, that the trace distance
may be considered a measure of the flow of information from the system to the environ-
ment.
I found the analytical expressions of the optimal trace distance and the quantum capacity
and, by analyzing their time derivatives, I was able to identify the Markovian or non-
Markovian character of the dynamical map as a function of the noise parameters. For
Gaussian environments, the dynamical map is always Markovian. This arise from the
monotonic decaying of the trace distance or the quantum channel capacity. When the
environment has non-Gaussian fluctuations, environments with a spectrum dominated
by low-frequency contributions are generally non-Markovian. In the case of random
telegraph noise the non-Markovianity measures display a threshold in the switching
rates below with the dynamics is non-Markovian. Colored noise with 1/fα spectrum
induces a non-Markovian dynamical map in the case of a single random bistable fluctu-
ator realizing the environment, independently on the value of α. For a larger number of
fluctuators, non-Markovianity is typical of environments with a large values of the ex-
ponent α. Moreover, non-Markovianity decreases when the number of random bistable
fluctuators modeling the environment increases.

As a final point in my analysis, I have addressed estimation of a classical noise pa-
rameter using a qubit system as a quantum probe. By maximizing the quantum signal-
to-noise ratio, I have found the optimal setting, i.e. optimal state preparation and opti-
mal interaction time, to perform optimal measurements and maximize the extraction of
information. The ultimate bound to precision may be achieved by measuring the “po-
larization” of the qubit, i.e. the observable σx in the rotating frame of the qubit.
In the case of Gaussian noise, the estimable parameter was the decoherence parameter.
I showed that for any fixed value of the estimable parameter, the QSNR has a max-
imum, corresponding to an optimal value of the interaction time. This maximum is
larger for smaller values of the parameter, which may be estimated more precisely. The
Cramèr-Rao bound is reached by employing a maximum likelihood estimator, which
achieves the asymptotic regimes and the optimal performances after few thousand mea-
surements.
In the case of non-Gaussian noise, I have focus my attention on the estimation of the
switching rate for random telegraph noise and the color of noise through the exponent α
for 1/fα noise. For random telegraph noise, the quantum Fisher information is inversely
proportional to the square of the switching rate, meaning that the quantum signal-to-
noise ratio is constant. It follows that the switching rate may be estimated with uniform
precision in its whole range of variation and is thus the inference procedure is robust
against variations of the parameter value. The corresponding value of the optimal in-
teraction time decreases with increasing switching rates for slow RTN, while it grows
linearly with the switching rate in the fast RTN regime. I analyzed the performances of
a Bayesian estimator and compared its variance with the quantum Cramèr-Rao bound.
I showed that the asymptotic region is reached after only few thousand measurements.
For colored noise generated by random bistable fluctuators, the optimal characteriza-
tion of the noise strongly depends on the structure of the environment and two different
scenarios emerge. If the environment is modeled by a single random bistable fluctua-
tor, estimation is more precise for α = 1. On the other hand, when the environment is
described as a collection of several random fluctuators, the quantum Fisher information
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has two local maxima, whose positions drift towards the boundaries of the α-interval as
the number of fluctuator is increased. I also found that for any fixed value of α there is a
specific number of fluctuators maximizing the quantum Fisher information.

The characterization and control of quantum correlations are fundamental for the
development of quantum technologies. Not only quantum correlations constitute a re-
source to process the quantum information, but a deep understanding of their nature
will provide better insight into the nature of quantum states themselves.
The dynamics of open quantum systems and especially the possibility of controlling it
lies at heart of quantum information processing. The microscopic structure of the envi-
ronment, in addition to the noise spectrum, is relevant for the decoherence mechanisms
in quantum systems and may be a valid starting point for the engineering of colored
environments.

Together with quantum correlations, non-Markovianity represents a resources for
quantum information processing. Indeed, non-Markovian features are connected to the
revivals of quantum correlations. Whenever the dynamics is non-Markovian, revivals
of entanglement and discord are present, while they decay monotonically for a Marko-
vian dephasing map. The results presented in this thesis confirm that non-Markovianity
cannot be considered as a mere label to identify different kinds of dynamical evolutions.
Rather, it may be exploited for a better control of quantum channels and to better pre-
serve the quantum correlations useful for the quantum communication protocols and
the quantum information processing.

The external noise plays thus a central role in the dynamics of a quantum system.
Under suitable reservoir engineering, noise could be used as tool to enhance the quan-
tum properties of a system. The features of a complex environment may be reliably
determined by monitoring and controlling a small quantum probe. At present, I cannot
provide a quantitative statement about the performances of quantum probes compared
to classical ones since the modeling of the latter would be rather challenging. On the
other hand, the presented results show that quantum probes, besides having the ad-
vantage of introducing small perturbations into the system, require only measurement
performed at a single optimal interaction time, thus avoiding the need of observing the
system for a long time in order to collect a time series.

Having showed that the structural characteristics of the environment sensitively af-
fect the dynamics of a quantum system opens the doors to the world of environment
engineering aimed to improve the persistence of quantum properties or, for example, to
optimize transmission and transport protocols.
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[3] J. Maziero, L. C. Céleri, R. M. Serra, and V. Vedral, Phys. Rev. A 80, 044102 (2009).

[4] T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, Phys. Rev. A 80, 024103
(2009).

[5] J. Helm and W. T. Strunz, Phys. Rev. A 80, 042108 (2009).

[6] D. Crow and R. Joynt, Phys. Rev. A 89, 042123 (2014).

[7] W. M. Witzel, K. Young, and S. Das Sarma, arXiv:1307.2597v1 .

[8] T. Fink and H. Bluhm, arXiv:1402.0235v1 .

[9] B. Bylicka, C. D., and M. S., Sci. Rep. 4, 5720 (2014).

[10] S. Lorenzo, F. Plastina, and M. Paternostro, Phys. Rev. A 88, 020102 (2013).

[11] S. Luo, S. Fu, and H. Song, Phys. Rev. A 86, 044101 (2012).

[12] E.-M. Laine, J. Piilo, and H.-P. Breuer, Phys. Rev. A 81, 062115 (2010).

[13] A. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105, 050403 (2010).

[14] X.-M. Lu, X. Wang, and C. P. Sun, Phys. Rev. A 82, 042103 (2010).

[15] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys. Rev. Lett. 101, 150402 (2008).

[16] V. Bassano, A. Smirne, J. Laine, E.-M. Piilo, and H.-P. Breuer, New J.Phys. 13,
093004 (2011).

[17] V. Bassano, J. Phys. B 45, 154007 (2012).

[18] A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 109, 233601 (2012).

[19] R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, Phys. Rev. A 83, 042321
(2011).

[20] E.-M. Laine, H.-P. Breuer, and J. Piilo, Sci. Rep. 4, 4620 (2014).

95



96 Bibliography

[21] S. F. Huelga, A. Rivas, and M. B. Plenio, Phys. Rev. Lett. 108, 160402 (2012).

[22] M. Thorwart, J. Eckel, J. H. Reina, P. Nalbach, and S. Weiss, Chem. Phys. Lett. 478,
234 (2009).
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