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Abstract 

Transition metal complexes containing chiral bidentate ligands are robust catalytic system for 

the preparation of chiral compounds as fine chemicals, fragrances and insecticides. 

Bifunctional P-ligands, N-ligands or P-N ligands are preferentially used for the preparation of 

late transition metals complexes (Rh, Ru, Pd, Ir, Pt) to modify their catalytic performance. 

While the reduction of olefin and carbonyl groups has been widely investigated, the 

asymmetric reduction of imines is relatively underdeveloped, although enantiopure amines 

play an important role in the preparation of many products. The asymmetric hydrogenation of 

cyclic imines is more difficult in comparison to the acyclic analogue because aromatic 

compounds are more stable, the reaction requires harsher conditions and it suffers from easy 

deactivation of the catalysts due to the poisoning. 

The interest of both academic and industrial research groups has increased in recent years in 

asymmetric hydrogenation of cyclic and acyclic imines, with a focus on the discovery of 

catalytic system with excellent enantioselectivity and activity under low hydrogen pressure or 

alternative source of hydrogen. Moreover, the development of ATH in aqueous media is 

emerged as a valid alternative to the use of organic solvents for its no toxic, economic and 

environmental compatible profile. 

Since the pioneering work of Noyori and Ikariya groups in 1995, the catalysts of choice in 

ATH reductions of ketones have been established to be the ruthenium(II) complexes chelating 

different substituted 1,2-diamines such as DPEN and its derivatives. In particular the 

monotosylated compounds were revealed as the most efficient ones. All these types of 

catalysts were based on the presence of ligands forming a five membered ring in coordination 

to the metal centre. Some examples of symmetric 1,4 diamines and few examples of 1,3-

diamines were reported in literature, mainly used as a typical ruthenium complex 

[(diphosphine)-RuCl2-(diamine)] for hydrogenation of simple aromatic and aliphatic ketones. 

In this PhD thesis are reported the synthesis of simple asymmetric monotosylated 1,3-

aminophosphine and monotosylated 1,3-diamines, up to now poorly investigated. The 

evaluation of their catalytic performances and their application for the preparation of artificial 

hydrogen transferases are also investigated. 

Chiral benzyl alcohols, used as synthons for the preparation of bidentate ligands, were 

obtained by biotransformation. Screening results revealed Rhodotorula rubra MIM 147 as an 

efficient catalytic system for this purpose. 

The first generation of this type of ligand was based on chiral 1,3 tosyl aminophosphine 

compounds able to use for the preparation of chelating six member ring complexes containing 

Ir(I) and Ru(II). Chelating aminophosphines have a combination of hard (N) and soft (P) 

Lewis base centers which make these ligands particularly useful in a variety of catalytic 



      
 

 

reactions. In fact these precatalysts, in hydrogenation reaction of several prochiral substrates 

such as ketones, imines and inactivated double bonds, showed a wide activity without 

stereoselectivity. 

Second generation of ligands containing linear and branched 1,3 tosyl diamines in which the 

tosyl moiety was present in different position, were synthesised to improve stereoselectivity. 

In respect to the tosyl aminophosphines: they are more easy to synthesise, to functionalize and 

are more easy to handle because are not air sensitive. Moreover these compounds are water 

soluble and act as suitable ligands for hydrogen transfer reaction conditions. 

[Ru (p-Cymene) (Tsdiamine)] complex (S-9a) results the best catalyst for the reduction of 

acetophenone in water used under ATH conditions (e.e.=56%, Yield=97%), revealing the 

importance of stereogenic centre to be in proximity of the amine involved in the catalytic 

cycle. The Ts moiety contribute to increase both the reaction conversion and 

enantioselectivity through a steric and/or an electronic effects. Considering different hydrogen 

donors, the used of HCOONa was revealed the best choice. 

Ligand (S-9) was used for the preparation of [IrCp*Tsdiamine] complex (S-9b) and applied in 

the reduction of cyclic imines in ATH reaction conditions. 

Substrates were reduced in excellent yield, in aqueous medium even if the enantioselectivity 

was low. The conformation of chelating six member ring seems to play a primary role for the 

enantiodiscrimination of the substrate adopting a chair conformation in this condition. 

Starting from the assumption that the reduction of these substrates is not easy to obtain, the 

results using this catalyst, encouraged our research to improve the stereoselectivity of the 

system, and for this reason, transition metal catalysts was applied in the development of 

artificial metallo enzymes. This hybrid system results from the incorporation of a catalytically 

competent organometallic moiety within a macromolecule. For this work was exploited the 

biotin-streptavidine technology. In fact tethering a biotin anchor to a catalyst precursor 

ensures that, in presence of streptavidine (Sav), the metal moiety is quantitatively 

incorporated within the host protein. 

Meta and para biotinylated aminosulfonamide iridium d
5
-pianostool complexes were 

prepared and their performances were evaluated in combination with Sav wild type and 10 

different mutants in position 112. After this chemo-genetic optimization, the para-

biotinylated aminosulfonamide iridium d
5
-pianostool complex (S-33a) embedded in 

combination with Sav S112C allowed to obtain an imine reductase able to reduce 

dihydroisoquinolines with good activity and enantioselectivity (e.e.=66%,Yield=90%), in 

aqueous solution using HCOONa as hydrogen donor.
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                                                                                    INTRODUCTION 

 

 

An invention requires four Gs to succeed, Geist, Geld, Geduld and 

Gluck. The first of these is axiomatic. You have got to have a good 

idea. The second is essential. One needs financial support but I 

would suggest a proper balance. Too much or too little is inhibitory. 

For the third you must have patience. Things never move as fast as 

you would have them. Finally luck is all-important. I suspect that no 

invention has ever been made without some fortuitous help. 

 

Paul Ehrlich 
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1.1 ORGANOMETALLICS CHEMISTRY 

 

Organometallics compound, with their metal-carbon bonds, lie at the interface between 

classical organic and inorganic chemistry in dealing with the interaction between inorganic 

metal species and organic molecules. The presence of d electrons in their valence shell 

distinguishes the organometallic chemistry of the element of group 3-12 of the periodic table 

(transition elements), from that of the group 1-2 and12-18, the main groups of periodic table. 

Transition metal ions can bind ligands (L) to give a coordination compound or complex MLn 

(2< n <9).  

Organometallic chemistry is a subfield of coordination chemistry in which the complex 

contains M-C or M-H bond. Depending on the number of ligands bound to the metal, 

complexes adopt different geometry (L=6 Octahedral, L=5 square pyramid or trigonal 

bipyramid, L=4 tetrahedral or square planar). In addition, if ligand contain more than one 

donor to the metal, we observe a so called chelate effect. An interesting behaviour of 

complexes is the TRANS effect by which certain ligands LT, facilitate the departure of a 

second ligand L, trans to the first, and their replacement or substitution by an external ligand.  

TRANS effect series: 

 

OH
-  

<  NH3  <  Cl
- 
 <  Br

-  
<  CN

- 
,  CO ,  C2H4  <  PR3  <  H

-
 

Low                                         TRANS effect                                          high 

 

 

 

 

 

 

 

 

 



                                                                               Chapter 1: Introduction 
 

3 

 

1.2 CRYSTAL FIELD 

 

Crystal field model provide to understand structure, spectra and magnetisms of transition 

metal complexes explaining how the d orbital of the transition metal are affected by the 

presence of the ligands. Metal ion isolated contains five d orbital degenerate (same energy).  

 

 

Fig.1 

 

As the ligands L (negative charge) approach the metal from the six octahedral direction, d 

orbitals that point toward the L group are destabilized and move to high energy (dσ) while 

those that point away from L decrease in energy (dπ). The magnitude of the difference 

between this set of energy (crystal field splitting, Δ) depends on the effective negative charge 

and the nature of the ligand.(Fig. 1). Higher Δ leads to stronger L-M. To this value is also 

linked the high-spin or low-spin metal configuration. If crystal field splitting is small, 

electrons may rearrange to give high-spin form (all the unpaired spin are aligned). On the 

other hand, if Δ becomes large enough, then the energy, gained by dropping from dσ to the dπ 

level, will be sufficient to drive the electrons into pairing up. The spin state is correlated to the 

magnetic moment of the complexes. For example, in the low spin of a d
6
 ion, the molecule is 

diamagnetic, so it’s very weakly repelled by the magnetic field. Differently the high spin form 

is paramagnetic and in this case it’s attracted into the field because there are unpaired 

electrons. The colors of transition metal complexes often arise from the absorption light that 

corresponds to the Δ (energy gap). So called high-field ligands such as CO give rise to a large 

Δ, while low-field ligands like H2O or NH3, can give a low Δ, and the spin pairing is lost and 

even the d
6
 configuration can become paramagnetic. The general trend shows that 𝜋 donor 
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ligand such as halide or H2O tend to be weakly field while 𝜋 acceptor ligand like CO is a 

strong-field ligand. 

 

I 
-
 <   Br 

-
 <  Cl 

-
  <  F 

- 
 <  H2O  <  NH3  <  PPh3  <  CO,H  

 

            low Δ                                                                                                    High Δ  

            𝜋 donor                                                                             𝜋 acceptor/σ donor   

 

 

Other ligand such as NH3 are good σ donors but are not significant 𝜋 acceptor. CO in contrast 

is an example of 𝜋 acid ligands, which have empty orbitals of the right symmetry to overlap 

with a filled d π orbital of the metal. In general 𝜋 acceptor ligand has a filled orbital that acts 

as σ donor and an empty orbital that acts as 𝜋 acceptor.This orbitals are the highest occupied 

(HOMO) and the lowest unoccupied molecular orbitals (LUMO) of L. This back bonding is a 

key feature of M-L bonds and these ligands (also hydride) are high field. 

Ligands such as OR
-
 and F

-
 are 𝜋 donor as a result of the lone pairs that are left when one lone 

pair has formed the M-L σ bond. The repulsion of two filled  π orbitals, destabilize the dπ of 

the complex decreasing the Δ which corresponds to a weaker L-M bond.                                               
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1.3 TYPES OF LIGANDS 

 

Most ligands form the M-L σ bond by using a lone pair, that is, a pair of electrons that are 

nonbonding in the free ligand. For ligands such as PR3 or pyridine these lone pairs are often 

the HOMO and the most basic electrons in the molecules. Is also possible to find two other 

types of ligand on the base of their behaviour in organometallic compounds: 

 

π- complexes 

Ethylene has no lone pairs, yet it binds strongly to low valence metals. In this case the HOMO 

is the C=C π bond, and it is these electrons that form the M-L σ bond, hence the term π 

complex. Arrow “1” represents electron donation from the filled C=C π bond to the empty dσ 

orbital on the metal. Arrows “2” represent the back donation from the filled M(d π) orbital to 

the empty C=C π*.(Fig.2) 

 

Fig.2 Π-bond donor, ethylene, to a metal. Only one of the four lobes of the dσ  orbital is shown. The + and – 

signs refer to symmetry. 

 

This type of binding is represented as (ɲ2
-C2H4) where ɲ represents the hapticity of the ligand, 

defined as the number of atoms in the ligand bonded to the metal. 

 

σ- complexes 

Molecular hydrogen has neither lone pair nor π bond, yet is also binds as an intact molecule to 

metals in such complexes. The only available electron pair is the H-H σ bond. Arrow 3 
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represent electron donation from the filled H-H σ bond to the empty dσ orbital on the metal 

and 4 represent the back donation from the filled M(dπ) orbital to the empty H-H σ*(Fig.3) 

 

Fig. 3 σ-bond donor, hydrogen, to a metal. Only one of the four lobes of the dσ  orbital is shown. The + and – 

signs refer to symmetry. 

 

In general, the basicity of electron pairs decreases in the following order: lone pairs > π- 

bonding pairs > σ- bonding pairs. The usual order of binding ability is the follow: 

 

Lone-pair donor > π donor > σ donor. 

 

Ligands can also classified in spectator and actor which remain unchanged or undergo some 

chemical conversion during chemical transformation, respectively. The role of these ligands is 

to impart solubility, prevent the departure of the metal and influence the electronic and steric 

properties of the complex. Apparently small changes in spectator ligand can entirely change 

the chemistry. An interesting example is PPh3, which is a very useful ligand with thousands of 

complexes known while, apparently similar ligands, NPh3 or P(C6F5)3, appear to be a very 

little used ligands. Important aspect are: nature of donor, nature of substituents and steric 

factor. Moreover, an important role of spectator ligands is to block certain sites, to leave a 

specific set of sites available for the actor ligands so the desired chemistry can occur. 
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1.4 PHOSPINE LIGANDS 

 

Tertiary phosphines, PR3, are important ligands because they constitute one of a few series of 

ligands in which electronic and steric properties can be altered in a predictable way by 

varying R. They also stabilize an exceptionally wide variety of ligands of interest to the 

organometallic chemist as their phosphine complexes (R3P)n M-L. Similar to NH3, phosphines 

have a lone pair on the central atom that can be donated to a metal. Differently to NH3, they 

are also π acid, to an extent that depends on the nature of the R group.  

 

Low π-acidity-PMe3 < PAr3 < P(OMe)3 < P(OAr)3 < PCl3 < CO -high π-acidity 

 

In other word, phosphines are usually strong σ-donor ligands and only weak π –acceptors and 

this effect can be increased with electron donating group in the rest R, while electron 

withdrawing groups in R favour the π-acceptor backbonding. (Fig. 4) 

 

 

Fig.4 

 

The second important feature of PR3 as a ligand is the variable steric size, which can be 

adjusted by changing R. Carbon monoxide is so small that as many can bind as are needed to 

achive 18e
-
. This is rarely true for phosphines, where only a certain number of phosphines can 

fit around the metal. The great advantage is that by using bulky PR3 ligands, we can favour 
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forming low-coordinate metals or we can leave room for small but weakly bonding ligands, 

which would be excluded by a direct competition with a smaller ligand such as CO or PMe3. 

Thanks to Tolman it is possible to quantify the steric effects of phosphines with its cone 

angle. This is obtained by taking a space-filling model of the M(PR3) group, folding back the 

R substituents as far as they will go, and measuring the angle of the cone that will just contain 

all the ligand, when the apex of the cone is at the metal(Fig. 5) 

 

 

 

Fig.5 

 

A bulkier ligand (large θ) tends to have a higher dissociation rate than smaller ligands and 

electron-rich metal-centres tend to accelerate the “oxidative addition”, a key-step in the 

catalytic cycle. Moreover optically pure phosphine ligands are able to provide the chiral 

information in asymmetric catalytic reactions. 
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1.5 CATALYSIS 

Nowadays catalysis plays a vital role in chemical synthesis, and in particular efficient 

organometallics catalyst provides a logical basis for molecular science and related 

technologies.
[1,2]

 Although the control of stereochemistry
[3-17]

 is a major concern of modern 

organic synthesis, reactivity and productivity are also important in making reactions practical 

and efficient.
[18]

 These important attribute can be achieved only by designing suitable 

molecular catalyst and reaction conditions through a deep understanding of the catalytic cycle. 

 

Fig.6. Mechanisms of transfer hydrogenation of imines. 

Yamamoto et al. proposed a catalytic cycle for the transfer hydrogenation of imines catalyzed 

by the cationic mono hydride complex 117, based on deuterium-labelling experiments.
[19]

 

(Fig.6) The catalytic cycle starts with the formation of the imine-coordinated isopropoxide 

complex 118 by the reaction of the cationic ruthenium hydride 117 with 2-propanol in the 

presence of imine. Hydrogen transfer from the isopropoxide to the coordinated imine carbon 

through cyclic transition state 119 gives the acetone coordinated amido complex 120. 

Substitution of the coordinated acetone by 2-propanol gives the intermediate 122. A second 

proton transfer from 2-propanol to the nitrogen generates 123. Replacement of the amine with 

the incoming imine liberates the hydrogenation product, regenerating 118. 



                                                                               Chapter 1: Introduction 
 

10 

 

1.6 OVERVIEW IN HOMOGENEOUS 

ASYMMETRIC CATALYSIS 

 

Chemical catalysis could be divided in two main branches: Homogeneous and Heterogeneous 

catalysis, (catalyst and reagent are present in the same phase or in different phase 

respectively). These are very different catalytic tools widely used in industry to perform a 

very large range of reactions.
[20-24] 

While heterogeneous catalysis is the first methodology 

used on large scale (Haber–Bosch process for the preparation of ammonia applied by BASF 

using an inexpensive iron catalyst in 1909), the youngest Homogeneous catalysis was born in 

1966 when Wilkinson presented the first homogeneus catalyst for the hydrogenation of 

alkenes (1,Fig.7).
 [25]

  

 

Since that date this field became very active and many research groups started to investigate 

different type of reaction like hydroformylation, carbonylation, hydrocianation, 

oligomerisation of alkens and hydrogenation including the Asymmetric ones.
[26-27]

  

 

Asymmetric Hydrogenation (AH), provides to introduce a stereogenic centre into a product 

used in the life sciences industries starting from prochiral compounds containing C=C, C=O 

or C=N moiety using chiral transition metal complexes. Bifunctional P-ligands, N-ligands or 

P-N ligands are preferentially used for the preparation of late transition metals complexes 

(Rh, Ru, Pd, Ir, Pt) to modify their catalytic performance.  

 

 

 

Fig.7. Rh pre-catalyst developed by Wilkinson for the reduction of olefin. 
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Historically, the first industrial application of Asymmetric Homogeneous catalysis was the 

manufacture of L-DOPA with 94 % e.e. (5, Scheme 1) used as drug in Parkinson’s disease. 

The stereogenic centre was introduced by asymmetric hydrogenation of olefin performed by 

enantiopure biphosphane ligand DIPAMP (Fig.8) also known as Knowles catalyst.
[11,28]

  

 

  

 

 

Scheme 1.  Industrial process for the synthesis of L-DOPA (5). 
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Fig. 8  [Rh(R,R)-DIPAMP)] used for asymmetric hydrogenation of dehydro amino acids. 

 

Another example in which Rhodium is applied in the asymmetric reduction of carbon double 

bond is shown in the synthesis of Tipanavir, drug used in the treatment of HIV (9, Scheme 

2).
[29]

 In this compound, one of the key stereogenic centre can be accessed with Rh complex-

(R,R-Me-DuPhos) 10 (Fig. 9) and its use leads to the formation of compound 9 in >94% e.e. 

 

 

 

Fig.9  C2-symmetric bis(phospholanes) for the enantioselective hydrogenation of α-amino acid derivatives. 
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Scheme 2  Industrial process for the Synthesis of Tipanavir (9). 

 

Ruthenium based catalysts are a very powerful tools to asymmetrically reduce carbonyl 

compound such as beta keto esters or ketons.
[13]

 An example of application is the synthesis of 

intermediate 13, for the manufacture of carbapenem antibiotics (Scheme 3). The α-substituted 

beta keto ester is asymmetrically reduced, with concomitant dynamic kinetic resolution, by 

Ru-Xyl-BINAP (Fig.10) system, synthesised by Noyori in 1980.
[30] 
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Scheme 3 Large scale application for the Azetidinone synthesis. 

 

 

Fig.10 Atropoisomeric chiral Diphosphines used in asymmetric hydrogenation of beta-keto esters. 

 

All the catalysts mentioned above contain a chiral bifunctional P-ligand able to reduce in very 

enantioselective manner C=C and C=O bonds under Hydrogenation condition. 
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1.7  IMINES REDUCTION BY HOMOGENEOUS 

CATALYSIS   

 

While the reduction of olefin and carbonyl group have been widely investigated,
[24]

 the 

asymmetrical reduction of imines, is relatively underdeveloped, although enantiopure amines 

play an important role in the preparation of many product.
[31]

 The interest of both academic 

and industrial research groups in asymmetric hydrogenation of cyclic and acyclic imines 

(Fig.11) has increased in recent years, with a focus on the discovery of catalytic system with 

excellent enantioselectivity and activity under low hydrogen pressure or alternative source of 

hydrogen.
[32]

  

 

 

 

Fig 11  Example of Cyclic and Acyclic imines studied in asymmetric Hydrogenation. 
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The Asymmetric Hydrogenation of cyclic imines is more difficult compared to the acyclic 

analogue because aromatic compounds are more stable, the reaction requires harsher 

conditions and it suffers from easy deactivation of the catalysts due to poisoning. To modify 

the intrinsic catalytic performance of late transition metals ( Rh, Ru, Pd, Ir, Pt) preferentially 

bifunctional P-ligands, N-ligands or P-N ligands are used for the preparation of complexes. 

Considering the use or not of  Hydrogen gaseous as reductant it’s possible to divide the 

reactions into 2 different classes: Hydrogenation and Transfer Hydrogenation of imines. 
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1.8  ASYMMETRIC HYDROGENATION OF 

IMINES 

 

 
 

Fig. 12 General reaction of enantioselective hydrogenation of imine. 

 

1.8.1 PHOSPHOROUS - PHOSPHOROUS LIGANDS 
 

Iridium is the most efficient metal used for the formation of chiral amines with high to 

excellent enantioselectivities under mild conditions.
[33]

  

Ligands 28-30 reported in Fig.13 were the first chiral diphosphines used in 1990 by Blaser to 

prepare complexes with [Ir(COD)Cl]2. The catalyst were applied for the asymmetric 

hydrogenation of acyclic imines with moderate enantioselectivity.
[34]

  

 

Fig 13  First chiral P-P ligands used to asymmetrical reduce imines. 
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The introduction of chiral ferrocenyl phosphine ligands by Zhang et al. in 2001 gave an high 

enantioselective system for the hydrogenation of N-arylimines achieving e.e. up to 99% in 

presence of iodine.
[35]

 The same author described in 2009 the first example of efficient 

enantioselective hydrogenation of primary imines.
[36]

 A relevant example in the use of chiral 

ferrocenyl diphosphines ligand,
[37]

 is the production of (S)-metolachlor. (Scheme 4).
[38]

   

 

The synthesis of this pesticide is the largest scale application of enantioselective 

hydrogenation, producing over 10,000 tons/year of the desired product with 79% e.e. The 

reduction of immine is performed with the catalyst prepared in situ from [Ir(COD)Cl]2 and the 

JosiPhos ligand 33 developed by Togni and Blaser (Fig.14) In this case the presence of 

additive as iodide and acetic acid, is crucial for the activity of catalytic system.
[39,40]

 Although 

the enantiselectivity is only 80%, it’s sufficient to provide an economics advantage over the 

use of racemic mixture. Moreover, the catalyst cost could be offset by high catalytic activity 

(TOF >600.000 h
-1

) and low catalyst usage (S/C ratio >2.000.000).  

 

 

 
Scheme 4  Synthesis of (S)-Metolachlor. 
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Fig 14  Josiphos ligand. 

 

Also atropoisomeric diphosphines (Fig.15) were used in combination with Iridium giving 

highly efficient catalyst in the hydrogenation of cyclic imines.
[41-49]

  

 

Fig.15  Selection of atropoisomeric diphosphines studied in the asymmetric hydrogenation of cyclic amines. 
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1.8.2 PHOSPHOROUS – NITROGEN LIGANDS 
 

Chelating aminophosphines have a combination of hard (N) and soft (P) Lewis base centers 

which make these ligands particularly useful in a variety of catalytic reactions.
[50-53]

 The 

catalytic system RuCl2(diphosphine)-(diamine) developed by Noyori in 1990’s for the 

reduction of ketones
[54,55]

 was also shown to be useful for the reduction of imines.
[56-58]

 In 

2004, Morris developed RuCl2(aminophosphine)2 catalyst for the reduction of ketones and 

imines as well.
[59]

 In 1997, Pfaltz et al. reported for the first time that Ir-complexes containing 

chiral phosphine-oxazolines (40, Fig.16) were highly efficient in the hydrogenation of 

imines.
[60]

 In 2006 Andersson reported a new class of aminophosphine-oxazoline ligands with 

2-azanorbornane backbone 41 that gave high e.e. values in the Iridium catalysed 

hydrogenation of imines.
[61]

 In the same year Zhang and co-worker reported a phosphine-

oxazoline ligands containing a spiranic backbone 42 which provided the best 

enantioselectivities for this family of ligands.
[62]

 

 

 

 

Fig. 16  Phosphine- oxazolines ligands. 

 

1.8.3 NITROGEN – NITROGEN LIGANDS 

 

Noyori, Ikariya and co-workers discovered a conceptually new chiral Ruthenium catalyst 

bearing N-sulfonylated 1,2-diamines that is highly efficient in asymmetric hydrogen transfer 

of imines.
[63]

 Based on that system, Ikariya et al. recently reported the Iridium chiral complex, 

(43, Fig.17) [Cp*IrCl{(S,S)-Tscydn}] efficient for the asymmetric hydrogenation of acyclic 

imines. The addition of silver salts (AgSbF6) caused an improvement in conversion and 

enantioselectivity. 
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 Fig 17 Ir complex used as useful catalyst for the asymmetric reduction of acyclic imines.  

 

Considering cyclic imines, is quite rare find an efficient hydrogenation system based on 

diamine-iridium complexes. The sole recent example is the use of (44, Fig.18) 

[Cp*Ir(OTf)(CF3TsDPEN)}] as air stable and selective catalyst for the asymmetric reduction 

of quinolines.
[64]     

 

 

Fig.18  Rare example of Iridium complex applied in the reduction of cyclic imines. 

 

Metals other than iridium were also tested in the asymmetric hydrogenation of cyclic imines 

and other substrates. Among them, ruthenium is the second most studied. It has provided 

modest results in hydrogenation using molecular hydrogen, which explains the fewer articles 

published in the recent years. However, it is commonly used and provides excellent results in 

asymmetric transfer hydrogenation.  
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1.9 ASYMMETRIC TRANSFER 

HYDROGENATION OF IMINES 

 

Transfer hydrogenation has been used for many years with heterogeneous catalysts, but so far 

these are unsuitable for asymmetric synthesis. Starting from 1980s various groups showed 

that homogeneous catalysts, based on group VIII metals, were able to reduce C=O, C=C 

bonds with this mechanism. This catalysts, doesn’t require the presence of Hydrogen gaseous 

under high pressure with an improvement of safety and an easier flow scheme. In 1981, Grigg 

et al. proposed C=N transfer hydrogenation, using Wilkinson’s catalyst, [RhCl[P(C6H5)3]3], in 

isopropanol to reduce aldimines into secondary amines.
[65] 

Six years later, in 1987, a 

ruthenium catalyst, Ru3(CO)12, for transfer hydrogenation of imines was reported by Jones et 

al.
[66]

 who successfully used it for the reduction of benzylideneaniline. In 1992 Maestroni
[67]

 

synthesized useful chiral bypiridine ligands but the efficiency (conversion and 

enantioselectivity) of such catalysts remained generally low. Despite many ligand 

modification the e.e was not sufficient until 1995 when Noyori, Ikariya and co-worker 

discovered a conceptually new chiral Ruthenium catalyst bearing N-sulfonylated 1,2 

diamines.
[68]  

(45, Fig.19). 

 

 

 

 Fig.19  (S,S)-Ru(II) catalyst 

 

Since then, many efforts have been devoted toward the development for the asymmetric 

transfer hydrogenation of ketones and imines.
[69]

 In this strategy different hydrogen source are 

used other than hydrogen gas. Typically the sources of hydrogen employed are isopropanol, 
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azeotrope mixture (formic acid and TEA) or formiate salts. Generally the catalysts consist of 

an arene or Cp-metal (Ru,Rh,Ir) complex with a chiral bidentate ligand (monotosylated 1,2 

diamines or aminoalcohols) and an halide ligand. The backbone of the bidentate ligand is 

usually an ethylene bridge so that 1,2 relationship between the heteroatoms provides a stable 

five–member ring with the metal. Recently research is mainly focused on a more 

environmentally friendly used of TsDPEN. For this purpose, Deng et al. reported in 2006 the 

first asymmetric transfer hydrogenation of imines and iminiums salts in water using the 

soluble ligand reported in (46, Fig 20). 

 

 

 

 

Fig. 20  Soluble ligand for the transfer hydrogenation of imines. 

 

Catalysis was performed with a water-soluble Ru(II)-catalyst and NaHCO2 as hydrogen 

source. The enantioselectivity was improved by addition of CTAB, a surfactant which 

increased the solubility of the substrate, product, and catalyst.
[70,71]

 

 

Also other routes to increase the water solubility of organometallic complexes have been 

reported:(see Fig.21) i) the use of polymer-supported catalyst (ligand 47);
[72] 

ii) incorporation 

of the catalyst in a biomolecular scaffold;
[73]

 and iii) use of other types of ligand, e.g. based on 

a pyridine moiety (ligands 48, 49 and 50).
[74–77] 
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Fig 21  Ligands prepared with different strategies to improve the water solubility. 

 

A key parameter for asymmetric transfer hydrogenation is the pH as highlighted by Xiao et 

al.in 2005. They reported that the pH of the reaction solution affects the catalyst performance 

in the aqueous-phase.
[72]

 The observed variations of enantioselectivity according to the pH 

may be explained by the protonation of TsDPEN ligand under acidic conditions.
[78]

 

Depending on the nature of the aromatic sulfonamide moieties, the pKa of the corresponding 

N-H group varies between 4.5 (Ar = C6F5) and 7.6 (Ar = p-toluene).
[79]

 The change in the 

sulfonamide protonation leads to an “on and- off” catalyst state observed by Xiao, as 

illustrated in Fig 22.
    

 

 

 

Fig 22  Different Metal –TsDPEN states correlated to basic (51) or acid (52 )conditions. Ligand L may 

represented water molecule.
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1.10 ENZYMES 

 

Enzymes are macromolecular biological catalysts responsible for thousands
[80]

 metabolic 

processes that sustain life.
[81][82]

Most of them are proteins, although some catalytic RNA 

molecules have been identified.
[83][84]

 Folded polypeptides (Fig. 23) containing metallic ion 

cofactors in their active sites (Metalloenzymes) possess the ability to perform complex 

biological transformations (e.g. photosynthesis, respiration, water oxidation, molecular 

oxygen reduction and nitrogen fixation, etc.).  

 

 

Fig 23  Picture of ribbon diagram of human carbonic anhydrase II. Zinc ion visible at center. 

 

Humans have used enzymes for thousands of years for fermentation processes in order too 

produce and preserve foodstuff. Only in the 1858 Louis Pasteur placed a milestone of 

biocatalysis. He treated an aqueous solution of racemic tartaric acid ammonium salt with a 

culture of the mold Pennicillium glaucum leading to the consumption of (+) tartaric acid and 

enrichment of the (-) enantiomer.
[85]

 This was the prototype of enzyme catalyzed racemic 

resolution widely used today in academia and industry.
[86,87]
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Enzymes as catalysts in synthetic organic chemistry gained importance in the latter half of the 

20
th

 century, when the advent of recombinant DNA
[88]

 allowed to obtain proteins in large 

quantities for practical applications.  

 

Moreover, with the development of directed evolution
[89,90]

 beginning in the 1990s other 

problem such as narrow substrate scope, poor stereo- and/or regioselectivity, insufficient 

stability under operating conditions and product inhibition can be addressed. Nowadays, 

biocatalytic steps using fine-tuned biological scaffolds are implemented in industry in order to 

synthesize complex molecules, e.g. advanced pharmaceutical or insecticide intermediates 

under environmentally friendly conditions.
[91–92] 
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1.11 ENZYMATIC CATALYSIS 

 

Biocatalysis has many benefits to offer in the context of green chemistry.
[93]

 Reactions are 

performed under mild conditions (physiological pH, room temperature and atmospheric 

pressure) with a biodegradable catalyst (an enzyme) that is derived from renewable resources 

and in an environmentally compatible solvent (water). Furthermore, reactions of 

multifunctional molecules proceed with chemo-, regio- and stereoselectivities and generally 

without the need of functional group activation, protection and deprotection steps required in 

traditional organic syntheses. These statement affords processes which are more economic, 

generate less waste and are, therefore, both environmentally and economically more attractive 

than conventional routes. As a direct consequence of the high regio and stereo- selectivities, 

coupled with milder reaction conditions, allowed to obtained products in higher quality than 

traditional chemical or chemo-catalytic processes. 

 

An illustrative example is the green-by-design, two-step, three-enzyme process 
[94,95]

 for the 

synthesis of a key intermediate 57 in the manufacture of anticholesterolemic atorvastatin, 

(Lipitor®). (Fig. 24) 

 

 

 

Fig 24  Synthesis of key intermediate for the manufacture of Atorvastatin. 
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All previous manufacturing routes to obtain the hydroxynitrile product 57 involved, as the 

final step, a standard SN2 substitution of halide with cyanide ion in alkaline solution at high 

temperatures. However, both substrate and product are base-sensitive and extensive by-

product formation is observed. To make things worse, the product is a high-boiling oil and a 

troublesome high-vacuum fractional distillation is required to recover product of acceptable 

quality, resulting in further yield losses and waste.  

Using in vitro evolution strategies
[96]

, Codexis led to the development of a very active and 

selective enzymes, and the process has been successfully commercialized on a multi-ton 

scale. The first step involves the biocatalytic reduction of ethyl-4-chloroacetoacetate 55 using 

a ketoreductase (KRED) in combination with glucose and a NADP-dependent glucose 

dehydrogenase (GDH) for cofactor regeneration. The (S)-ethyl-4-chloro-3-hydroxybutyrate 

product 56 was obtained in 96% isolated yield and 99.5% e.e. In the second step a halohydrin 

dehalogenase (HHDH) was employed to catalyze a nucleophilic substitution of chloride by 

cyanide using HCN at neutral pH and room temperature.  

The improvement of the enzyme, increased the activity more than 2500-fold, compared to the 

wild-type, allowing the complete transformation of the substate in 8 h with an increased 

substrate loading to 160 g L
-1

. Moreover, the problem connected to the formation of emulsion 

was overcome reducing the enzyme loading, and the downstream process became very easy. 

The E factor (Environmental Factor ) of this process is 5.8 while Atom economy is 45%. 

 

 

 

E Factor =  kg waste / kg product                                    (Eq 1.2) 

 

 

 

Atom Economy =    mass of atom product_ x 100          (Eq 1.3) 

                          mass of atom reactants 
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1.12 ARTIFICIAL METALLO ENZYMES 

 

The artificial metalloenzymes concept was created by Whitesides and Wilson in 1978 when 

they postulated:  

 

“A globular protein modified by introduction of a catalytically active metal at 

an appropriate site could, in principle, provide an exceptionally well-defined 

steric environment around that metal, and should do so for considerably 

smaller effort than would be required to construct a synthetic substance of 

comparable stereochemical complexity.”
[97] 

 

 

In their pioneering work, Whitesides and Wilson incorporated one biotinylated phosphine-

rhodium(I) complex (58, Fig.25) within avidin, for the hydrogenation of α-acetamidoacrylic 

acid, yielding a modest chiral induction (44% e.e).
[97]   

    

 

 

 

Fig.25 Biotinylated Rhodium complex 58 and graphical representation of artificial metalloenzymes based on 

supramolecular anchoring. 
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Considering the ability of macromolecules to selectively discriminate substrates and the 

number of chemical transformations catalysed by transition metals, which have not been 

observed to occur enzymatically, several research groups reasoned that a hybrid catalyst may 

combine some of the most attractive features of homogeneous and enzymatic catalysts 

(Tab.1).
[98]

 Starting from the 70’s, chemists have designed this catalyst, so called “artificial 

metalloenzymes“, that exhibit high selectivity for the synthesis of enantiomerically enriched 

compounds in aqueous media. 

 

 

 Homogeneous 

catalysis 

Enzymatic 

catalysis 

Artificial 

metalloenzymes 

Substrate 

scope 

Large Limited Large 

Enantiomers Both accessible Single enantiomer Both 

Functional 

group 

tolerance 

Small Large Small 

Reaction 

repertoire 

Large Small Large 

Turnover 

number 

Small Large Modest 

Solvent 

tolerance 

Organic>aqueous Aqueous>Organic Aqueous>Organic 

Optimization  Chemical Genetic Chemogenetic 

II coordination 

sphere 

No defined Well defined Well defined 

Reaction 

conditions 

Harsh Mild Mild 

 

Tab. 1  Comparison of homogeneous, enzymatic and Artificial metalloenzymes catalysis. 

 

In more general terms, the development of a hybrid catalyst results from the combination of a 

biomolecular scaffold (e.g. proteins,
[99,100]

 DNA
[101]

 or peptides
[102]

) with an active catalytic 

moiety.  
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Such an endeavour is likely to meet with success thanks to the intimate knowledge of both the 

protein scaffold that hosts the metal entity and the interaction(s) between the metal and its 

chelating ligands (the first sphere of coordination) and the protein environment (the second 

sphere of coordination). (Fig 26) 

 

 

 

Fig. 26  Representation of first and second coordination sphere provided by ligand and biomolecules 

respectively. 

 

The three key parameters in the design of an artificial metalloenzyme are a) the transition 

metal catalyst, b) the biomolecular scaffold, and c) the mode of attachment of the transition 

metal catalyst to the scaffold. 

 

The choice of the transition metal catalyst is principally guided by the catalytic activity that is 

desired. Moreover the reactivity of the transition metal catalyst needs to be orthogonal to the 

biomolecular scaffold, (it should be inert to the chemical functionalities presented by the 

biomolecule) and the catalyst should be tolerant to water. 

 

Considering the biological scaffold, two different strategies could be used: 

1) de novo design 

2) modification of an existing natural enzyme or protein. 
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Using the first strategy, the biomolecular scaffold is created from scratch. An interesting 

example is reported in 2014 by Pecoraro et al 
[103]

 in which protein design allow for the 

creation of artificial enzymes catalyzes the hydration of CO2 with an efficiency within 1400-

fold of the fastest carbonic anhydrase isoform. (Fig 27) 

 

 

 

Fig. 27 a) the entire bundle (last four residues removed for simplicity) and b) the ZnII His3O site (PDB: 

2A3D).
[104] 

 

Even if significant advances have been made in the computational methods that are required 

for this purpose, 
[105,106]

 our understanding of protein folding is still far from sufficient to 

allow the routine design of novel enzymes for any desired synthetic transformation. For this 

reason, the design of artificial metalloenzymes has focused on the creation of active sites in 

existing, native, biomolecular scaffolds, such as proteins and DNA. The design of active sites 

into native scaffolds offers more choices and it is, in principle, simpler than de novo design 

considering that most native scaffolds already have sufficient thermodynamic stability and 

tolerance for mutations. Furthermore, structural information for most of the scaffolds used to 

date is available, facilitating the design and optimization process considerably. 

 

To rationally design an artificial metalloenzyme, two strategies for the attachment are 

available: the no-covalent strategy including dative and supramolecular interactions and the 

covalent anchoring strategy.
[107]

 (Fig.28) 
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Fig. 28 Different anchoring strategies for the localization of precatalyst within macromolecule (blue). a) dative, 

b) covalent, and c) supramolecular. The first coordination sphere chemically synthesizd is rapresented in orange 

while M is the transition metal. 

 

The covalent approach,
[108–111]

 proposed for the first time by Kaiser in 1984,
[112]

 commonly 

uses a cysteine as an anchoring residue. This method allows for precise localization of a metal 

complex within or on the surface of a biological scaffold, but a considerable drawback is that 

the optimization and redesign is not straightforward and is time-consuming, involving 

chemical modification and non-trivial purification steps. 

 

The dative anchoring strategy relies on the coordination of a catalytic metal by chemical 

functionalities present directly on the surface of the macromolecular scaffold. An example are 

the sulfonamide ligands that bind hCA II zinc.
[113–116]

  

 

In supramolecular approach 
[117,118] 

a strong and highly specific non-covalent interaction 

between bio and a small molecule derived from specific ligand/inhibitor structures to generate 

artificial metalloenzymes. This technique allows for easy chemical optimization of metal 

ligand features (first coordination sphere) and avoids uncertainties concerning the localization 

of the metal within the macromolecular scaffold.
[119]

 

 

The above mentioned examples of artificial metalloenzymes based on the biotin/(strept)avidin 

interaction involve supramolecular anchoring. The success of this approach is related to the 

ease of self-assembly of these artificial metalloenzymes, which allows for rapid optimization. 

A potential complication is that there may be some ambiguity about where the catalyst might 

bind, depending on the strength and selectivity of the supramolecular interactions.  
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1.13 BIOTIN-STREPTAVIDIN TECHNOLOGY 

 

As previously mentioned, the first example of a hybrid catalyst based on biotin-avidin 

technology was developed by Whitesides and Wilson in 1978.
[97]

 A biotinylated Wilkinson’s 

catalyst was embedded into avidin to obtain 44% e.e. for the reduction of α-acetamidoacrylic 

acid.  

Several years after this system was used and optimized in the Ward group relied on the high 

affinity of (+)-biotin (also known as vitamin H) towards two proteins, streptavidin and avidin. 

To introduce the catalytic metal within the host protein, the biotin, used as anchor, was 

derivatized through orto, meta and para position with solfonammide moiety. Despite the 

modifications, the affinity towards the host protein remains high
[120]

 and the metalloenzyme 

remains remarkably stable even under harsh catalytic conditions, e.g. 55 ◦C and mixture of 

water and organic solvents.
[121] 

Subsequently, rational chemo-genetic modifications (rational design, Section 1.8) of the 

hybrid catalyst, improved the enantioselectivity of the reaction up to 91% e.e. (R) as well as 

reversed of the enantioselectivity 75% e.e. (S) for the reduction of 4’-

bromoacetophenone.
[122,123]  

 

Using the same technology this group realized, a novel artificial transfer hydrogenase for the 

enantioselective reduction of cyclic imines in 2011.
[124] 

Imines were reduced under mild 

conditions using formiate as hydrogen source. Chemo-genetic optimization of the hybrid 

catalyst resulted in a system that yielded both enantiomers (S, 78% and R, 96 % e.e.) of 

salsolidine 54 (Fig. 29). 

 

 
Fig. 29 Reaction catalyzed by artificial transfer hydrogenase based on Biot-streptavidin technology.

[124] 
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In a very recent paper they implemented the
 
chemical diversity using three-leggend piano 

stool complexes tethering the biotin anchor on the Cp
* 
moiety.

[125]
 

An alternative approach focused on directed evolution of hybrid catalysts was implemented 

by Reetz and co-workers.
[126]

 They were able to enhance or invert the selectivity for the 

transfer hydrogenation of α-acetamidoacrylate obtaining 65% e.e. (R) or 7% e.e. (S) under 

optimized conditions. 

 

Having demonstrated the potential of Artificial metalloenzymes for enantioselective 

transformation of prochiral substrates,
[122,123]

 the biotin- streptavidin technology was also used 

for other reactions for which one of the substrate does not bind to the catalytic metal center in 

the transition state like asymmetric transfer hydrogenation,
[124]

 dihydroxylation
[127]

 and 

sulfoxidation.
[128]

 (Fig. 30) 

 

 

 

 

 
Fig. 30  Postulated transition states for catalysts where one of the substrates does not bind to the metal: a) 

asymmetric allylic alkylation, b) sulfoxidation, c) asymmetric transfer hydrogenation. 
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1.14 HUMAN CARBONIC ANHYDRASE II 

TECHNOLOGY 

 

 

Wild-type human Carbonic Anhydrase II (hCA II, EC 4.2.1.1, M [g·mol−1] = 29227 pI 7.4) is 

a monomeric globular protein containing 259 amino acids
[116]

. This Protein is a 

metalloenzyme that catalyze the reversible hydration of carbon dioxide into bicarbonate with 

high efficiency (kcat/KM = 1.5 × 10
8
 M

−1
 s

−1
.) 

 

 

      (Eq 1.4) 

 

 

Mutations or expression deficiency of the isozymes are involved in diseases such glaucoma, 

ureagenesis and lipogenesis.
[129]

 Moreover, overexpression of hCA IX and hCA XII are found 

in certain forms of cancers
[130,131]

 and inhibitors have been designed for diagnosis and 

therapy.
[132,133] 

 

 

In the active site, hCA II contains catalytic Zn II ion, tetrahedrally coordinated to three 

histidines (His94, His96 and His119) and a solvent molecule. This cofactor is located at the 

base of a funnel shaped cavity measuring roughly 15 Å in diameter at its mouth and 15 Å 

deep.
[134]

 

 

Human carbonic anhydrase II has been extensively studied, and the parameters of its 

structural stability are well known and here reported in table below. 

         

  

Temperature
[135,136]

 up to 55 ◦C 

 

pH
[116]

 5.7—8.4 

 

Metal 
[137]

 low exchange rate 

 

Organic solvent 
[138]

 less than 20 % (DMSO) 

 



                                                                               Chapter 1: Introduction 
 

37 

 

Several characteristics of Human Carbonic Anhydrase II are attractive for the development of 

a new artificial metalloenzyme: 

 

 

1) it’s a monomeric protein is easy to overexpress in E.coli and to purify 

2) hCA has a large binding pocket able to accommodate metal complexes 

3) it is possible to apply computational design for rational tailoring of the active site to 

accommodate inhibitors compatible with soft transition metals
[139,140]

 

4) the X-ray determination of hCA II structure is well established.
[116]

 

 

 

Considering lock-and-key model described by Fischer in 1894, sulfonamide derivatives were 

proposed in 1940 by Keilin et al. as specific inhibitors of human Carbonic Anhydrase 

isozymes
[141]

 because these molecules are analogs to the transition state of CO2 hydration. 

The sulfonamide nitrogen anion coordinates to the Zn II cofactor, and two hydrogen bonds are 

established with the protein scaffold as reported in (Fig.31). In addition the second oxygen of 

sulfonamide coordinates weakly to Zn II. 

 

 
 

Fig. 31  Sulfonamide bound to the active site of hCA II. 

 

Also the aromatic moieties of sulfonamide were found to interact significantly with the 

primary hydrophobic faces inside the funnel-shaped cavity,
[142] 

and to further increase the 

binding affinity between ligands and protein, secondary recognition elements may be 

exploited. 
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Whitesides and Jain reported in 1994, that para-substituted benzenesulfonamides bearing 

benzyl moieties can interact with the hydrophobic upper rim of the funnel-shaped cavity of 

hCA II increasing the binding between protein and small molecule (Kd =2 nM).
[143]

 

In 2002 the same group computationally designed para-benzenesulfonamide derivatives and  

reported an inhibitor with the highest known affinity for hCA II (Kd =30 pM).
[144]

  

Another approach to further increase the affinity of inhibitors, was made by Fierke groups. 

They introduced fluorine substituents on the molecular scaffold (Kd =0.29 nM).
 [145]

 
 
The 

presence of fluorine moieties also increase the metabolic stabilization of inhibitors when used 

as drugs. 

 

 

The application of hCA II in hybrid catalyst was fruitfully explored by Ward group, and in 

2013 they reported the used of this scaffold as host protein for the creation of artificial 

metalloenzymes able to asymmetrically reduce imines by transfer hydrogenation.
[146] 

(Fig.32) 

 

 

 

 
 

 
Fig. 32  Hybrid catalyst for imine reduction obtained combining hCA II (blue) and an aryl- sulfonamide bearing 

bidentate ligand (green) able to anchor an IrCp* moiety within the protein. Picture from publication.
[146]
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1.15  CATALYST OPTIMIZATION: 

BIOLOGICAL AND CHEMICAL DIVERSITY. 

 

Directed evolution is one of the most powerful tools to engineer enzymes enhancing the 

activity and the selectivity of enzymes.
 [147,148]

 

This evolutionary approach involves the introduction of random mutations into the genes, 

thus creating a library of mutant proteins. These enzymes variants are screened for catalytic 

activity and selectivity, and the best candidates taken forward to another round of random 

mutagenesis.  

In the case of hybrid catalysts, this process turns out to be complicated as for the need to use 

purified (or semi-purified) protein for screening. 

 

To optimize hybrid catalysts, the chemo-genetic approach, previously described, was found to 

be the most suitable solution.
[149,150]

 It concerned two distinct optimizations:
 

 

1) genetic modification of the protein scaffold, based on computational calculations and X-

ray structures. Particular attention is given to the active site of enzyme (<10 Å around the 

catalytic metal center);
[151,152]

 

 

2) chemical fine-tuning of the catalytic moiety, to adjust  the localization of the catalytic 

moiety inside the funnel-shaped cavity of the protein.  

 

 
Fig. 34  Design evolution cycle. 
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The parallel use of this techniques allow the design of a small collection of hybrid catalysts 

with improved activity and selectivity screenable on a relatively short time frame. 

This operation can also be performed iteratively as shown in Figure 34 resulting in a process 

which has been called “designed evolution”.
[153]
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2.1 Synthesis of chiral synthons 

 

Several yeasts were tested for the asymmetric reduction of  substrates 1, with the aim to 

discover an efficient biocatalytic tool for the preparation of enantiopure chiral alcohols 2. 

Among 20 different microorganisms, Rhodotorula rubra MIM 147 and Sporidiobolus 

pararoseus SD2 showed their wide capabilities in the asymmetric reduction of carbonylic 

group in α-position to aromatic ring as reported in Fig.1 

 

Fig.1 Scheme of synthesis for the preparation of chiral alcohol employing biotrasformation. 

Compounds 1a,1c and 1e are commercially available, while compounds 1b,1d and 1f were 

synthesised in our laboratory. As shown in Fig.2, to introduce the ethyl group in compounds 

1b, 1d and 1e, a condensation reaction was performed using Saccharomyces cerevisiae as 

biocatalyst, obtaining full conversion in 48h.  

 

 

Fig.2 Biotrasformation reaction using Baker’s yeast allows to introduce the ethyl group in β position.  
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Acetaldehyde, produced in presence of glucose by Baker’s yeast as intermediate by alcoholic 

fermentation, performs an electrophilic attack at the C2 in α position to the nitrile and keto 

groups. Indeed the presence of these two electron withdrawing moieties allow the chemical 

condensation between the active methylene and the aldehyde leading the formation of  

unsatured carbonyl compound (intermediate 1). Finally the double bond reduction performed 

by yeast gives the saturated product as racemate.
[1]

 

In particular, using R.rubra MIM 147, we were able to prepare in quantitative yields six 

enantiopure alcohols in S configuration, as reported in Table 1. 

 

 %C
 

e.e.
 

e.d.
 

CN

OH

 

95 >99
a 

- 

 

90 >99
a 

- 

 

92 >99
b 

- 

 

94 >99
a 

92
a 

CN

OH

S

 

89 >99
a 

70
a 

CN

OH

O

 

92 >99
b 

73
b 

 

Tab 1. Results obtained using R.rubra MIM 147 after 48 h. a) HPLC equipped with OD-H coloumn, eluent  

95/5 hexane/iPrOH, flow= 0.8mL/min. b) GC using a chiral stationary phase column (MEGA DMT β, 25 m, 

internal diameter 0.25 mm), 180°C. 
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Fig.3 HPLC chromatograms of compound S-2a obtained using R.rubra MIM 147. OD-H Chiralcel, eluent: 

hexane/iPrOH = 95:5, flow = 0.8 mL/min, λ = 216 nm; rt: (R) = 42.6 min, (S) = 44.6 min. 

 

 

 

Minutes

5 10 15 20 25 30 35 40 45 50

m
A

U

0

10

20

30

40

m
A

U

0

10

20

30

40

4
2

,6
9

0

  

2
7

2

  

0
,3

6
2

4
5

,0
9

7

  

2
1

4

  

9
9

,6
3

8

Detector 1-216nm

 Rid Rubra benCN

 Rid Rubra benCN

Retention Time

Lambda Max

Area Percent



Chapter 2: Results and discussion 
 

49 

 

 

 

Fig.4 HPLC chromatograms of compound 2b: OD-H Chiralcel, eluent: hexane/iPrOH= 95:5, flow 

= 0.8 mL/min, λ = 216 nm; rt: (R,S) = 26.9 min, (S,S) = 28.6 min, (S,R) = 34.2 min, (R,R) = 36.4 

min. 
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2.2 First generation ligands: 1,3 Ts-aminophosphines  

 

Chiral benzyl alcohol 2a was used for the preparation of tosyl aminophosphines as useful 

ligands for the preparation of transition metal complexes. New ligands containing both 

phosphine and tosyl amino moieties are synthesised as shown in Scheme 1. 

 

Scheme 1 

Starting from (S)-alcohol (obtained in 95% yield in 48 h with e.e. up to 99% by biocatalysis), 

we were able to obtain both enantiomers (R-5, S-5), using different synthetic approaches. The 

synthesis proceeded with the same pathway until the formation of compound S-4 ([α]D= -

18,9), then different mechanisms of cyclization were exploited. Cyclic compound S-6 was 

obtained by acid-base reaction without affecting chiral centre (retention of configuration), 

while the synthesis of compound R-5 was led by SN2 mechanism with an inversion of 

configuration. The enantiomeric relationship, due to the different mechanisms of cyclization, 

was confirmed by [α]D data ([α]D = +24,7 and –24,6 respectively for compound R-5 and S-5) 

and these results are comparable to those reported in literature.
[2,3]

 Final step of synthesis 

allow to introduce phosphine moiety at the chiral centre with an inversion of configuration 

respect to the previous cyclic compound as confirmed by [α]D data ([α]D = -124,7 and +124,9 

respectively for compound S-7 and R-7). In this way we were able to prepare both 

enantiomers of tosyl aminophosphine starting from the same chiral alcohol avoiding the need 

to identify another catalyst for the synthesis of R-alcohol. 
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Fig.4 
31

P- NMR of S-7 or R-7: -2.77 ppm 
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2.2.1 Tosylaminophosphine transition metal complexes 

 

The Ts-aminophosphine ligands, shown above, were used for the synthesis of the 

corresponding transition metal complexes. Precatalysts in Fig.5 were synthesised using 

different metal complexes as starting material: [Ir(COD)Cl]2, [Ru(p-Cymene)Cl2]2, 

[RuCl2(PPh3)3], [Rh(COD)2ClO4].  

 

 

Fig.5 

 

The synthesis of Rh(I) complex was not successful, while complexes containing Ru(II) and 

Ir(I) were fully characterized (
1
H,

 31
P,

13
C, ESI

+
). 

31
P–NMR, reported below, confirm the 

phosphorous coordination of Ts-aminophosphine ligands and the formation of transition metal 

complexes. Ir(I) complex 33 has a single pick to +26.32 ppm, [Ru(S-7)(p-cymene)]
+
 complex 

34 shows a single pick to +28.70 ppm.( Fig.6-Fig.7) 
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Fig.6  
31

P-NMR of 33: +26.32 ppm 

 

Fig.7  
31

P-NMR of 34: +28.70 ppm 
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Complex obtained with [RuCl2(PPh3)3], 35, shows four dublet between 52-62 ppm due to cis 

isomers Fig.8). 

 

 

Fig.8 
31

P-NMR of 35: +61.65, +56.35, +52.85 ppm 
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2.2.2 Catalytic results of tosyl aminophosphine precatalyst 

 

Precatalysts were used in hydrogenation reactions for the asymmetric reduction of different 

prochiral substrates reported in Fig.9. For this reaction the solution containing substrate and 

catalyst was transferred with a cannula in stainless steel autoclave and pressurized to 20 atm.  

 

 

 

Fig.9 Aromatic ketons, imines and inactivated double bonds used as substrates for hydrogenation 

reaction. 

 

All the samples were analyzed by 
1
H-NMR, GC or HPLC equipped with chiral column after 

24 h. Results in term of conversion, enantiomeric excess and TON are summarized in Table 2 

and Table 3.  
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%C e.e TON 

1 a 
1
 10 0 52.5 

2 g 
2
 98 0 295 

3 l 
2
 100 0 303 

4 f 
1
 100 0 639 

5 d 
3
 0 (95) 0 0 (397 ) 

6 e 
4
 10 0 36 

7 m 
5
 100 (100) 0 316 (316) 

8 n 
3
 100 (100) 0 291 (291) 

 
Table 2. Results obtained with Ir(I) precatalyst 33. In bold results obtained in absence of 

potassium ter-butanoate. 1) GC Iso 120°C, 2) OJ-H, 90.10(hexane/i-PrOH) flow=0.8mL/min, 3) 

OJ-H 90.10 (hexane/i-PrOH) flow=1mL/min, 4) OD-H 85.15 (hexane/i-PrOH) flow=0.8mL/min, 

5) OJ-H 98.2 (hexane/i-PrOH, 0.1% TFA) flow=1mL/min. 
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%C e.e TON 

1 a 
1
 60 0 315 

2 b 
1 

50 0 218 

3 c 
2 

50 0 165 

4 g 
3 

28 0 85 

5 l 
2 

100 0 322 

6 h 
2 

0 0 0 

7 i 
4 

0 0 0 

8 f 
1
 90 0 575 

9 m 
5 

60 0 190 

 

Table 3. Results obtained with Ru(II) precatalyst 34. In bold results obtained in absence of 

potassium ter-butanoate. 1) GC Iso 120°C, 2) OD-H, 90.10 (hexane/i-PrOH) flow=1mL/min; 3) 

OJ-H 90.10 (hexane/i-PrOH) flow=0.8mL/min; 4) OJ-H 90.10 (hexane/i-PrOH) flow=1mL/min; 

5) OJ-H 98.2 (hexane/i-PrOH, 0.1% TFA) flow=1mL/min. 

From the obtained results, general considerations have been summarized: 

 

1) tosyl aminophosphine catalysts showed a high versatility to reduce different prochiral 

functional groups as aryl ketones, imine and inactivated double bonds. 

2) tosyl aminophosphine catalysts showed a high activity, reducing most substrates with 

good TON and excellent conversion. 

3) chiral Ts-aminophosphine Ir(I) or Ru(II) catalysts showed no stereoselectivity, in all 

reductions. 

 

Iridium complex seems to have greater activity than Ruthenium one. For imine reduction, the 

absence of t-BuOK, improves the performance of the catalytic system (Table 2, entry 5), 

while for the reduction of inactivated double bonds, the presence of this salt doesn’t affect the 

outcome of the reactions (Table 2, entry 7and 8). 
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The fact that all the reactions proceed without stereoselectivity means that the first 

coordination sphere between substrates and chiral six member ring catalyst isn’t sufficient to 

address the outcome of the reactions in term of enantioselectivity. An explanation could be 

found thanks to stereochemical considerations on chelating six member ring complexes. In 

presence of one substituent, a chair conformation is favored, and the substituent occupies an 

equatorial site. This cause a σ-symmetry and suggest a little discrimination in binding, giving 

a pre-catalyst which acts as achiral complex.
[4]

Another explanation for lack selectivity could 

be due to the instability of the catalyst in hydrogenation reaction. 
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2.3 Second generation ligand: 1,3 tosyl diamine 

 

The chelating six member ring tosyl aminophosphine metal catalysts shown before, 

demonstrated promising activity but an implementation of stereoselectivity should be 

addressed. To reach this goal we decided to synthesised linear and branched 1,3 tosyl 

diamines containing tosyl moiety present in different position. These compounds have better 

features in respect to tosyl aminophosphine ones. Indeed they are more easy to synthesize, to 

functionalize and are more easy to handle because are not air sensitive. Moreover these 

compounds are water soluble and act as suitable ligands for hydrogen transfer reaction 

reductions. 

 

2.3.1 Linear 1,3 tosyl diamines 
 

In Schemes 2 and 3 are reported the synthetic pathways used for the preparation of linear 1,3 

tosyl diamines in which tosyl and amino moieties are introduced in different positions respect 

to chiral centre. This change was made with the purpose to understand if and how these 

different feature affecting the catalytic properties of the ligands.   

Scheme.2 
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Considering Scheme 2, the enantiopure alcohol S-2, obtained by biotrasformation (see 

Section 3.1), was used as asymmetric starting compound, while the amino alcohol S-3 

represents the branching point for the synthesis of tosyl diamines R-9 and S-9 in which is 

possible to produce both enantiomers containing the amino moiety at the chiral centre. In this 

case we used CDI
[3] 

to made cycling compound S-6 which maintains the configuration at the 

chiral centre, while cyclic compound R-5 was synthesised as shown before (see Section 3.2). 

The attempt to prepare ligand R-9 by mesylation of S-10 failed because in presence of 

mesylchloride this intermediated gave the cyclic compound R-6 instead of the corresponding 

mesylated compound. 

 

 

Scheme.3 

 

To introduce tosyl moiety close to the chiral centre, pathway reported in Scheme 3 was 

applied. In this case we used as starting material the commercially available (R)-3-chloro-1-

phenyl-1-propanol. Product S-14 was obtained with an inversion of configuration. 
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2.3.2 Branched 1,3 tosyl diamines 
 

Scheme 4 and 5 show the pathways used to prepare branched 1,3 tosyl diamines containing 

amino and tosyl moieties in different positions. This approach was used to achieve two 

different aims:  

i) to identify if the introduction of a second chiral centre in α position to the preexisnting 

stereocentre allowed to introduce the conformational stability and rigidity to the six 

member ring during coordination as evidenced in the case of Chairphos and 

Skewphos
[4]

. 

ii) to understand if the different position of amino and tosyl moieties affects the catalytic 

properties of the ligands.   

 

To introduce the ethyl group, a condensation reaction was performed using Saccharomyces 

cerevisiae and this intermediate was used to obtained the chiral alcohol S,S-2b by asymmetric 

biocatalysis with Rhodotorula rubra MIM 147 in 24 h with excellent e.e. and d.e. values 

(Section 3.1). 

 

 

Scheme 4 
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Scheme 5 

 

These schemes of synthesis are strictly related the previously reported (see Section 3.3.1). 

Interesting to be note that for the preparation of R,S-24 the use of Teoc-OSu (N-[2-

(Trimethylsilyl)ethoxycarbonyloxy]succinimide) as protecting amino group was exploitable. 

In this case cyclization reaction doesn’t occur and the last step of the reaction scheme allows 

to obtain the terminal amino moiety in quantitative yield using zinc bromide in nitromethane.  
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2.3.3 Tosyl diamines transition metal complexes 
 

Linear and branched 1,3 tosyl diamines ligands shown above, were used for the synthesis of 

the corresponding transition metal complexes. As first attempt [Ru(p-Cymene)Cl2]2 was used 

for the preparation of precatalyst. Fig.10  

 

 

Fig.10 

 

These four complexes were characterized and used for asymmetric transfer hydrogenation 

(ATH) revealing as a valid alternative to the use molecular hydrogen in obtaining 

enantiomerically pure compounds.
[5]

 To improve the catalytic performances of this system, 

different parameters were considered such as solvent, temperature and hydrogen donor.  

With regards to solvents, water was revealed the best choice, as when iPrOH or MeOH were 

employed the reaction conversion resulted significantly decreased. In the same way the 

selection of hydrogen donors
[6]

 (HCOOH, HCOONa, azeotropic mixture HCOOH:TEA 5:2  

and iPrOH) proved HCOONa among others, in ratio 10:1 with the substrate, as the best in 
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terms of enantioselectivity (pH=8.10). In fact using a different hydrogen donors, a racemic 

mixture of the product was obtained in all cases. An explanation of these behavior could be 

found considering the pH of the reaction as highlighted by Xiao et al. in 2005.  They reported 

that the pH of the reaction solution affects the catalyst performance in the aqueous-phase.
[7]

 

(see Fig.11) 

 

 

Fig 11. Graph of conversion (●), enantioselectivity (■) and pH (▲) versus 

time for the reduction of acetophenone in water with Ru(II) (R,R) Ts.DPEN 

at 40°C.
[7]

 

 

In that case the observed variations of enantioselectivity according to the pH may be 

explained by the protonation of TsDPEN ligand under acidic conditions.
[6]

 Depending on the 

nature of the aromatic sulfonamide moieties, the pKa of the corresponding N-H group varies 

between 4.5 (Ar = C6F5) and 7.6 (Ar = p-toluene).
[8]

 The change in the sulfonamide 

protonation leads to an “on and- off”catalyst state observed by Xiao.
 

 

Another evaluated parameter in our case was the variation of temperature (20°C, 40°C or 

60°C) which didn’t show significant effect in conversion and enantioselectivity. In Table 3 

were reported the results obtained for the four complexes under the set reaction conditions: 

water as solvent and HCOONa as hydrogen donor at 40°C. 
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Entry Complex Conversion (%) e.e.% 

1 S-9a 97 56 (R) 

2 S-14a 68 33 (R) 

3 S,R-20a 44 22 (R) 

4 R,S-24a 18 4 (R) 

 

Table 3. ATH of acetophenone using Ru(II) complexes. Reactions were carried out 

at 40°C using 0.5 mmol of substrate with 0.5 mol % of ruthenium complex in 3 mL 

of water in presence of 10 equiv. HCOONa as hydrogen donor. Conversion and e.e. 

were determined by GC after 48 h. 

 

Unexpectedly the presence of an additional chiral centre in 2 position in ligands S,R-20a and 

R,S-24a decrease the enantioselectivity and the activity of the catalysts (Entries 3 and 4 vs 1 

and 2). This behaviour might be correlated to the instability of the catalysts,
[9]

 an aspect 

already observed during the synthesis of the complexes that proceeded with lower yield than 

in the case of complexes S-9a and S-14a.  

 

The results obtained by changing the position of tosyl moiety confirmed the importance of 

stereogenic centre to be in proximity of the amine involved  in the catalytic cycle contributing 

to increase both the reaction conversion and enantioselectivity through a steric and/or an 

electronic effect (Entries 1 vs 2 and 3 vs 4). 

Ligand S-9 was then used for the preparation of Iridium Cp*complex as shown in Fig.12.  
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Fig.12 [IrCp* S-9Cl] complex. For the synthesis see Section 3.4.2. 

 

This precatalyst was applied in ATH reactions for the reduction of imines in aqueous media 

(Scheme 6). Given the prevalence of the chiral 1,2,3,4-tetrahydroisoquinoline motif in natural 

alkaloids and pharmaceutical molecules,
[10]

 the development of methods for their production 

is highly desirable. As model and challenging substrate were used dihydroisoquinoline 

analogues 15a,b and results are reported in Table 4.  

 

 

 

Scheme 6. 
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Entry Substrate Conversion (%) e.e.% 

1 15a 95
d
 2 (R)

a
 

2 15b 95
d
 5 (R)

b 

 

Table 4. ATH of imines using Ir(III) complex S-9b. Reactions were carried out at 

40°C using 5 mmol of substrate with 0.5 mol % of iridium complex in 1 mL of 

MOPS buffer pH=7 in presence of HCOONa 3M as hydrogen donor. Conversion 

was determined after 96 h by 
1
H-NMR. e.e. were determined by HPLC using OD-H 

column hexane/EtOH /DEA 95/5/0.1, flow=0.8. a) r.t sub= 13.25, r.t (S)= 19.2, r.t 

(R)= 25.3. b) r.t sub= 12.39, r.t (S)= 9.13, r.t (R)= 11.68.  

In our system, imines were reduced with excellent yield, in water and in absence of  

molecular hydrogen even if low enantioselection was observed. Again the conformation of 

chelating six member ring seems to play a primary role for the enantio discrimination of the 

reaction and we speculated that in this conditions a chair conformation was adopted. 

Starting from the assumption that the reduction of these substrates is not easy to obtain, the 

results using this catalyst, encouraged our research to improve the stereoselectivity of the 

system, and for this reason, transition metal catalysts was applied in the development of 

artificial metalloenzymes.
[11]
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2.4 Artificial metallo enzymes 

 

2.4.1 Synthesis of biotynilated ligands 
 

1,3 tosyl diamine ligands were used for the development of artificial imine reductases. For 

this scope we decided to use the well know biotin-streptavidin system.
[12]

 

To obtain a suitable ligand for strepatavidine (Sav), a new scheme of synthesis was projected 

and used (Scheme 7). Considering the catalytic results shown before, we decided to prepare 

ligand which contains the amino group on the stereocentre, while the tosyl moiety was 

replaced by the corresponding nitro derivatives to allow the introduction of biotin in para or 

meta position.  

Scheme 7 

The alcoholic function of nitro compounds R-26n was activated involving the use of 

mesylchloride and then substituted with azido group. The selective reduction of this moiety 

respect to nitro moiety was achieved using Staudinger reduction 
[13]

to get compound S-28n. 
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The amino function was protected employing di-tert-butyl dicarbonate S-29n and finally nitro 

group was reduced using hydrogen in presence of Pd/C. Then a condensation reaction was 

performed in presence of biotin and the amino function at the chiral centre was restored using 

trifluoroacetic acid. 

2.4.2 Synthesis of [Ir(Cp*) (diamine) Cl] biotynilated 

complexes 
 

Biotinylated ligands were used for the preparation of the corresponding Ir(III) transition metal 

precatalyst. The synthesis is reported in Scheme 8 (see also Section 3.4.3) and allows to 

obtain both complexes in quantitative yield as orange-brown powder, analyzed by EA and 

ESI. 

 

 

Scheme 8 
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2.4.3 Application of Artificial Metallo Enzyme using Biot-

[Ir(Cp*) (diamine) Cl] and Streptavidin. 
 

Streptavidin was used as biological scaffold for the preparation of immine reductases 

exploiting its high affinity constant for biotin. This binding event is one of the strongest no-

covalent interactions known in nature (Kd ranging from 1.9 10
-13

 M 
[14]

 to 10
-15

 M 
[15]

. Protein 

consists of four homomeric subunits folded into eight-stranded β-barrels, which can each bind 

one molecule of biotin, also known as vitamin H, and results very stable under extreme 

conditions such as high temperatures, extreme pH values and high concentrations of 

guanidium chloride.  

Streptavidin wt and mutants S112X used for this study were kindly gift from the group of 

Prof. T. Ward from the university of Basel. The molecular mass of  non-glycosilated wt 

protein is 65.7 kDa (16.4kDa for the monomer) and each monomer consists of 159 amino 

acids (mature streptavidin) including a tag for secretion of 24 amino acids. The first 15 amino 

acids of the mature streptavidin, however, are replaced by a T7 tag (aa 1-11, introduced by 

Cantor et al., who thought that it might increase the solubility of the protein) and three amino 

acids (aa 12-14), which are a result of cloning strategy. Sav wt and mutants were expressed 

using E.coli and subsequently purified by affinity chromatography using imino biotin 

coloumn. The free binding sites per tetramer were determined using an assay with biotin-4-

fluorescein,
[16]

and used for the calculation of final concentration of free binding sites.Tab.5 

  

Mutant 
Free binding sites 

/tetramer 

Savwt 3.2 

S112H 3.4 

S112Y 3.6 

S112T 3.6 

S112M 3.6 

S112Q 4 

S112A 3.8 

S112C 3.9 

S112R 3.8 

S112E 3.3 

S112K 3.2 
Tab.5 Free binding sites per tetramer of Sav wt and 

mutants used in this work.  
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Fig.13.-Stability of SAV wt with DMF:(•) buffer, (•) 2%DMF, (•) 6% DMF, (•) 15% DMF. 

 

Stability of the protein, under catalytic conditions, was evaluated as display in Fig.13. The CD 

spectra shows the loss of positive Cotton effect when DMF concentration increases to 15%, 

revealing the denaturation of the protein. The concentration of 1.6% was fixed for the stability 

of the protein during the catalytic reaction. 

 

As a starting screening, we investigated the catalytic activity of the d
5
 Ir –pianostool bearing 

the biotinylated aminosulfonamide ligand (S-33a and S-33b) as bare catalysts and their 

combination with wild-type streptavidin (Sav) for the production of salsolidine 15a (Scheme 

9), taking account of different reaction parameters such as pH, temperature, substrate 

concentration and catalyst loading. 

 

 

Scheme 9. 
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Protein Entry Complex %C e.e. 

None 1
a
 S-33a >99

 
rac 

Sav wt 2
a
 S-33a 83

 
10(R) 

None 3
b
 S-33a 99

 
rac 

Sav wt 4
b
 S-33a 82

 
18(R) 

None 5
c
 S-33a 81

 
rac 

Sav wt 6
c
 S-33a 10 16(R) 

None 7
d
 S-33a 99

 
rac 

Sav wt 8
d
 S-33a 65

 
9(R) 

None 9
e
 S-33b 83

 
rac 

Sav wt 10
e
 S-33b 76

 
8(R) 

Table 6. a) [sub]f =150mM, [cat]f =0.68 mM, 30°C, pH=6.5; b) [sub]f =50mM, [cat]f = 

0.34mM, 30°C,pH=6.5; c) [sub]f =150mM, [cat]f= 0.68mM, 10°C,pH=6.5; d) [sub]f =50mM, 

[cat]f =0.34 mM, 30°C, pH=7.5, e) [sub]f =35mM, [cat]f =0.34 mM, 30°C, pH=6.5. e.e was 

evaluated using HPLC OD-H column hexane/EtOH 95/5 0.1% DEA flow=0.8mL/min. 

Conversion was obtained using correction factor of 1.45 at 230nm. 

 

Results, displayed in Table 6, showed very high activity of the iridium pianostool para 

biotinylated aminosulfonamide catalyst except when temperature decreases to 10°C (entries 

1,3,7 vs entry 5) but in all cases absence of stereoselectivity occur and similar behavior can be 

observed also in the case in which meta biotinylated aminosulfonamide iridium complex was 

used. Differently, when transition metal catalyst is embedded to Sav wt, a little decreasing of 

activity and an improvement of strereoselectivity was observed (entry 2,4,6,8,10). For both 

types of meta and para iridium catalysts, the ones containing biotine moiety in para position 

revealed best performances. Finally, although the mechanism of imine reduction is not 

already well understood and continuously debated, different authors demonstrated that only 

protonated imines are reduced in ATH catalysis.
[17] 

Even if mechanistic study are far to our goal, data in Table 6, agree in principle with an ionic 

mechanism proposed. Best results were obtained when catalysis was carried out at pH 6.5 and 

30°C. 

With the aim to investigate the possibility to improve the selectivity of our catalyst (S-33a, S-

33b), genetic optimization of the biological scaffold was performed. For this reason and 

thanks to the collaboration with Prof. Ward from the University of Basel, ten mutants in 

position 112 were tested. 
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This choice for the genetic optimization site is suggested by literature docking studies
[18]

 and 

X-ray structure
 [19] 

which reveal that this position lies close to the biotinylated metal upon 

incorporation into streptavidin.  

Catalytic results are reported in Table 7 and 8. 

Protein Entry AA Complex %C e.e. 

None 1
b 

 S-33a >99
 

rac 

Sav wt 2
b
 Serine S-33a 83

 
18(R) 

112K 3
a
 Lysine S-33a 12 7(R) 

112M 4
a
 Methionine S-33a 15 4(R) 

112R 5
a
 Arginine S-33a 30 rac 

112C 6
b
 Cysteine S-33a 40 58(R) 

112H 7
b
 Histidine S-33a 65

 
13(R) 

112Y 8
b
 Tyrosine S-33a 76

 
17(R) 

112T 9
b
 Threonine S-33a 69

 
10(R) 

112Q 10
b
 Glutamine S-33a 76

 
16(R) 

112A 11
b
 Alanine S-33a 79 13(R) 

112E 12
b
 Glutamic acid S-33a 80 19(R) 

Table 7 a) [sub]f =150mM, [cat]f =0.68 mM, 30°C, pH=6.5; b) [sub]f =50mM, [cat]f= 0.34mM, 

30°C,pH=6.5. 

 

Changing the amino acid residue respect to the serine, present into SAV wt , an important 

improvement in stereoselectivity was observed when cysteine residue was substituted. (Tab 6, 

Entry 6).  

The presence of other amino acids tested, gave results comparable to the wt assuming that the 

hindrance and the nature of them didn’t affect the second coordination sphere among catalyst 

and substrate. The decrease of activity observed when cysteine was present suggest a partial 

interaction among transition metal catalyst and thiol group present in mutant 112C.
[20,21,22]

   

This two consideration led to hypotized that when our type of catalyst was used, the position 

112 is not involved as recognition element for the substrate while it is important for the 

transmission of chirality at the metal. 
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Protein Entry A.A Complex %C e.e 

None 1
 

 S-33b 83 rac 

Sav wt 2 Serine S-33b 76 8(R) 

112K 3 Lysine S-33b 70 7(R) 

112M 4 Methionine S-33b 82 2(R) 

112R 5 Arginine S-33b 83 4(R) 

112C 6 Cysteine S-33b 10 40(R) 

112H 7 Histidine S-33b 58 8(R) 

112Y 8 Tyrosine S-33b 67 4(R) 

112T 9 Threonine S-33b 68 2(R) 

112Q 10 Glutamine S-33b 72 2(R) 

112A 11 Alanine S-33b 77 6(R) 

112E 12 Glutamic acid S-33b 79 12(R) 

Table 8. [sub]f =35 mM, [cat]f =0.34 mM, 30°C, pH=6.5. 

A similar behaviuor was observed when meta biotynilated catalyst was used. In this case a 

depletion of activity and selectivity were observed comparing data present in Table 7 with 8. 

For clearly, bubble chart of all catalytic results was presented in Fig.13 

 

                  Fig.13. Bubble chart of data reported in table 6 and 7. 

L
E

G
E

N
D
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Finally, our best artificial metalloenzyme, resulting from chemo-genetic optimization 

(Sav112C+S-33a), was tested working at fixed substrate concentration and varying the 

catalyst loading. Data reported in Table 9 shown that high ratio of [sub]/[cat] dramatically 

decrease the activity of artificial imine reductase. (entry 1). This poisoning behaviour can be 

due to a strong coordination among imine and catalyst which affects the catalytic activity.  

 

Protein Entry A.A Complex %C e.e TON [cat]/[sub] 

112C 1
a
 Cysteine S-33a 4 63 12 1/294 

112C
 2

b 
‘’ S-33a 40 58 58 1/147 

112C 3
c
 ‘’ S-33a 90 66 66 1/74 

Tab 9. Optimization of 112C with S-33a. All reaction were carried out at in MOPS buffer 1.2M, NaCOOH 

3M, 30°C, pH=6.5and [sub]f =50mM. a) [cat]f =0.17 mM. b) [cat]f= 0.34mM;  c) [cat]f= 0.68mM.  

 

 

Fig.14 

 

In Fig 14 is graphically described the correlation between TON and [cat]/[sub] ratio. In the 

first part of this curve, a double loading of catalyst (0.17mM to 0.34mM) improves 4.8 times 

the turn over number of the reaction, while doubling further the load of catalyst, TON 

increases only 1.14 times, even if this catalytic conditions allow to obtain the best 

enantiomeric excess.(entry 3) 

In conclusion, the combination of chelating six member ring transition metal complexes 

containing para biotinylated aminosulfonamide and Sav S112C results in the formation of 

imino reductases able to reduce dihydroisoquinoline 15a with 66% e.e and TON=66 in ATH 

conditions. While the chiral d
5 

Ir pianostool para biotinylated aminosulfonamide acts as 
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achiral ligand in the reduction of our reference compound, the presence of biological scaffold 

allows to introduce a new source of chirality with good activity and enantioselectivity.  

How the presence of the protein directs the enantio selectivity of the reaction is far to be 

clarified, it reasonable seems due to the interaction between the iridium and thiol residue in 

position 112 when cysteine is used instead of serine. 

. 
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3.1 GENERAL EXPERIMENTAL CONDITIONS 

3.1.1 Solvents and reagents 

Materials and  reagents were purchased at the highest commercially available grade and used 

without further purification. 

Solvents used for reactions correspond  to the quality “puriss”. For analytical and high 

performance liquid chromatography (HPLC), HPLC-grade solvents were used. Commercially 

reagent grade solvents were dried according to standard procedures and freshly distilled under 

nitrogen before use. All manipulations involving air sensitive materials were carried out in an 

inert atmosphere using standard Schlenk techniques in oven-dried glassware.  

3.1.2 Separation and purification methods 

Reactions were monitored by thin layer chromatography (TLC) using Merck silica gel 60 

F254 plates. Flash chromatography was performed using Merck silica gel 60, particle size 40-

63 μm. 

Compounds were visualized by gas chromatography analysis using a chiral stationary phase 

column (MEGA DMT β, 25 m, internal diameter 0.25 mm) or by HPLC analysis with Merck-

Hitachi L-7100 equipped with Detector UV6000LP and chiral column (OD-H Chiralcel or 

AD Chiralpak).  

3.1.3 Spectroscopic methods 

1
H and 

13
C and 

31
P NMR spectra were recorded in CDCl3, DMSO or CD3OD on Bruker DRX 

Avance 300 MHz equipped with a non-reverse probe. Chemical shifts (in ppm) were 

referenced to residual solvent proton/carbon peak. and coupling constants (J) are reported in 

Hertz (Hz). 

The multiplicity’s are abbreviated as: s = singlet, d = doublet, dd = double doublet,  t = triplet, 

m = multiplet and br = broad. 

FTIR spectra were collected by using a Perkin Elmer (MA, USA) FTIR Spectrometer 

“Spectrum One” in a spectral region between 4000 and 450 cm
-1

 and analysed by 

transmittance technique with 32 scansions and 4 cm
-1

 resolution. 

Circular dichroism (CD) spectroscopy analyses were performed on Jasco 810 

spectrophotometer. Spectra were obtained from 210 nm to 320 nm with 0.1 nm step and 1 s 

collection time per step, taking three averages. The spectrum of the solvent was subtracted to 
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eliminate interference. The CD spectra were plotted as mean residue ellipticity θ (degree x 

cm
2
 x dmol

-1
) versus wave length λ (nm). 

Polarimetry analyses were carried out on Perkin Elmer 343 Plus equipped with Na/Hal lamp. 

3.1.4 Spectrometric methods 

MS analyses were performed by using a Thermo Finnigan (MA, USA) LCQ Advantage 

system MS spectrometer with an electronspray ionisation source and an ‘Ion Trap’ mass 

analyser. The MS spectra were obtained by direct infusion of a sample solution in MeOH 

under ionisation, ESI positive or negative.  

 

3.1.5 Other methods 

The elemental analyses (EA) were measured using Perkin Elmer Series II/CHNS/O 2400 

Analyzer. 
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3.2 SYNTHESIS OF LIGAND 

 

3.2.1  Synthesis of chiral tosyl aminophosphine ligands 

 

 

General scheme of synthesis 

 

 

 

Scheme 1 
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3.2.1.1 Synthesis of (S)-3-hydroxy-3-phenylpropanenitrile (S-2)  

 

 

 

 

Chiral starting compound for the synthesis of several ligands was synthetized by using 

biotransformation reaction employing Rhodotorula rubra MIM 147.  

 

Procedure of biotransformation with Rhodotorula rubra MIM 147: Rhodotorula rubra 

MIM 147 was routinely maintained on malt extract slants (8 g L
−1

, yeast extract 5 g L
−1

, agar 

15 g L
−1

, pH 5.6). The strain, grown on malt extract slants for 72 h at 28 °C, was inoculated 

into 1000-mL Erlenmeyer flasks containing 150 mL of the same liquid medium and incubeted 

on a reciprocal shaker (100 spm) for 48 h at 28°C. Cells obtained by centrifugation (4000×g 

for 15 min at 4 ◦C) of the culture broth (1L) were washed with tap water (3x200 mL) and re-

suspended in 500 mL of 0,1M phosphate buffer pH = 7 containing 50 g L
-1

 of glucose. The 

substrate dissolved in DMSO was added to the biotransformation system in 2 g L
-1

 (1). The 

biotransformation system was shaken with mechanic stirrer at 28°C for 24 h. The cells were 

separated by centrifugation and both were extracted  with diethyl ether (3x150 mL), dried 

with Na2SO4 and the solvent was removed in vacuo. The crude product was purified by flash 

chromatography (ethyl acetate/cyclohexane = 7:3) to give 786 mg of S-2 (78% yield). 

S-2: All characterization data are in agreement with previously reported literature.
1, 2

 [α]
20

D= -

63.8 (c=1, CHCl3). HPLC data: OD-H Chiralcel, eluent: hexane: 2-propanol = 95:5, flow = 

0.8 mL/min, λ = 216 nm; rt: (R) = 42.6 min, (S) = 44.6 min. 
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3.2.1.2 Synthesis of (S)-3-amino-1-phenylpropan-1-ol (S-3) 

 

 

 

 

 

 

In a stainless steel autoclave (20 ml), equipped with temperature control and a magnetic 

stirrer, purged five times with hydrogen, a solution of S-2 (550 mg, 3.74 mmol) in methanol 

with 1% of Pd/C was transferred. The autoclave was pressurised at 20 atm and kept under 

stirring at room temperature for four hours. The mixture was then filtered on Celite and the 

solvent was evaporated in vacuo to give the product as a yellow oil, without any further 

purification step (537 mg, 95% yield). 

 

[α]
20

D= -44.38 (c=0.3, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 1.80 (m, 2H), 2.97 (m, 4H), 

4.92 (dd, 1H, J=4.03, 8.06 Hz), 7.21 -7.38 (m, 5H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 

145.16, 128.43, 128.14, 127.20, 125.85, 125.54, 75.44, 40.57, 39.87 ppm; IR ν = 3360, 2917, 

2874, 1601, 1492, 1453, 1337, 1062, cm
-1

;MS (ESI) of C9H13NO m/z 152.0 [M+H]
+
, 174.1 

[M+Na]
+
. 
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3.2.1.3 Synthesis of tert-butyl-(S)-(3-hydroxy-3 phenyl propyl) 

carbamate (S-4) 

 

 

 

 

 

To a solution of S-3 (445 mg, 2.94 mmol) in a mixture of THF/water 1:1, Na2CO3 was added 

(720 mg, 6.76 mmol). The solution was then cooled to 0°C and a solution of di-tert-butyl 

dicarbonate (770 mg, 3.53 mmol) in 5 mL THF was added dropwise. After 1 h stirring at 0°C, 

the solution was warmed to room temperature and stirred for further 3 h. The reaction was 

monitored by TLC using dichloromethane/diethyl ether 1:1 as eluent. After 4 h the reaction 

was complete and water was added to the mixture and extracted with diethyl ether (3x10mL) 

to give the product as a yellow oil (575 mg, 78% yield).  

[α]
20

D= -18.9 (c=0.4, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 1.41 (s, 9H), 1.78 (m, 2H), 

3.18 (m, 2H), 4.15 (s, 1H), 4.64 (t, J = 8.79 Hz, 1H), 5.23 (s, 1H), 7.28 (m, 5H) ppm; 
13

C 

NMR (75 MHz, CDCl3): δ = 157.05, 144.54, 128.65, 127.59, 125.87, 79.76, 71.95, 39.77, 

37.83, 28.63 ppm; IR ν = 3363, 3274, 2975, 1677, 1546, 1291, 1180, 1025, 981 cm
-1

;MS 

(ESI) of C14H21NO3 m/z 274.10 [M+Na]
+
. 
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3.2.1.4. Synthesis of (R)-6-phenyl-3-tosyl-1,3-oxazinan-2-one (R-5) 

 

 

 

 

 

To a solution of S-4 (270 mg, 1.08 mmol) in fresh-distilled dichloromethane, 4-

dimethylaminopyridine (99 mg, 0.81 mmol) and triethylamine (2 mL, 14.04 mmol) were 

added. The reaction mixture was then cooled to -10°C and stirred for half an hour. A solution 

of tosyl chloride (267 mg, 1.4 mmol) in dichloromethane was then dropped into the former 

solution and stirred overnight allowing the reaction mixture to reach room temperature. The 

reaction was monitored by TLC using dichloromethane/diethyl ether 1:1 as eluent.  

After 24 h the reaction is completed. The desired product was obtained as a white solid by 

slow diffusion of hexane into the acetone solution (152 mg, 43% yield).  

 

[α]
20

D= + 24.7 (c=0.25, CHCl3).
 1

H NMR (300 MHz, CDCl3): δ = 2.27 (m, 2H), 2.45 (s, 3H), 

4.04 (m, 2H), 5.34 (dd, 1H, J = 2.93, 9.53 Hz), 7.23-7.37 (m, 7H), 7.94 (d, 2H, J = 8.43Hz) 

ppm; 
13

C NMR (75 MHz, CDCl3): δ = 145.44, 137.61, 135.37, 129.68, 129.16, 129.06, 

129.03, 125.75, 79.67, 44.22, 29.89, 21.93 ppm; IR ν = 3436, 2976, 2923, 1709, 1354, 1174, 

1148, cm
-1

; MS (ESI) of C17H17NO4S m/z 354.1 [M+Na]
+
. 
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3.2.1.5 Synthesis of (S)-N-(3-(diphenylphosphanyl)-3-phenylpropyl)-4 

methyl benzene sulphonamide (S-7) 

 

 

 

 

 

Compound R-5 ( 24 mg, 0.07 mmol) was dissolved in anhydrous THF and the solution was 

cooled to -78°C. After 20 minutes a solution of  LiP(Ph)2 was added drop wise (700 µl, 0.075 

mmol) and the mixture was stirred for an hour. Solvent was removed under vacum and 

compound S-7 ( 15 mg,  45% yield) was purified using  preparative TLC ( CHCl3/ EtOAc 

9/1) Rf = 0.6 

 

 

[α]
20

D= -124.7 (c=0.25, CHCl3).
 1

H NMR (300 MHz, CDCl3): δ = 2.97 (m, 2H), 2.42 (s, 3H), 

2.8-3.01 (m, 2H), 4.56 (m, 1H), 5.9 (m, 1H), 7.01 (d, 2H, 8.4 Hz), 7.23-7.57 (m, 15H), 7.72 

(d, 2H, 8.4 Hz) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 143.62, 139.41, 137,30, 134.99-134.2, 

132.4-132.0, 129.96-126.3, 74.54, 39.73, 36.79, 21.74. 
31P

 NMR (75 MHz, CDCl3): δ = -2.35 

ppm; MS (ESI) of C28H28NO2PS m/z 496.1 [M+Na]
+
.  
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3.2.1.6 Synthesis of (S)-6-phenyl-1,3-oxazinan-2-one (S-6) 

 

 

 

 

 

 

To a solution of S-4 (526 mg, 2.1 mmol) in anhydrous benzene, sodium hydride (84 mg, 2.1 

mmol) was added. The suspension was warmed to 80°C and stirred overnight. Reaction was 

allowed to reach room temperature, quenched with water and extracted with dichloromethane 

(3X10 ml). The collected organic layers were dried on Na2SO4, filtered and evaporated to 

give a pale oil. The desired product was obtained as a white solid by recrystallization  in 

acetone/hexane (152 mg, 43% yield). 

 

[α]
20

D= -37.4 (c=0.7, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 2.17 (m, 2H), 3.42 (m, 2H), 

5.34 (dd, 1H, J = 2.93, 9.53 Hz), 5.81 (s, 1H), 7.26-7.39 (m, 5H) ppm; 
13

C NMR (75 MHz, 

CDCl3): δ = 154.61, 138.67, 128.85, 128.59, 125.85, 78.83, 39.17, 28.91 ppm; IR ν = 3389, 

2966, 2878, 1797, 1682, 1494, 1456, 800, 702 cm
-1

; MS (ESI) of C10H11NO2 m/z 200.1 

[M+Na]
+
. 
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3.2.1.7 Synthesis of (S)-6-phenyl-3-tosyl-1,3-oxazinan-2-one (S-5) 

 

 

 

 

 

To a solution of S-6 (300 mg, 1.69 mmol) in anhydrous THF at 0°C the stoichiometric 

amount of NaH was added (68 mg, 1.69 mmol). After thirty minutes the solution of tosyl 

chloride in THF (387 mg, 2.03 mmol) was dropped into the former solution and stirred at 

room temperature overnight. The resulting solution was quenched with water and extracted 

with trichloromethane (3x10mL). The collected organic layers were dried on Na2SO4, filtered 

and evaporated to give a yellow oil then purified by crystallization in dichloromethane/hexane 

to provide the product as a white solid (440 mg, 80% yield).  

 

[α]
20

D= -24.7 (c=0.5, CHCl3);
1
H NMR (300 MHz, CDCl3): δ = 2.27 (m, 2H), 2.45 (s, 3H), 

4.04 (m, 2H), 5.34 (dd, 1H, J = 2.93, 9.53 Hz), 7.23-7.37 (m, 7H), 7.94 (d, 2H, J = 8.43Hz) 

ppm; 
13

C NMR (75 MHz, CDCl3): δ = 145.44, 137.61, 135.37, 129.68, 129.16, 129.06, 

129.03, 125.75, 79.67, 44.22, 29.89, 21.93 ppm; IR ν = 3436, 2976, 2923, 1709, 1354, 1174, 

1148, cm
-1

; MS (ESI) of C17H17NO4S m/z 354.1 [M+Na]
+
. 
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3.2.1.8 Synthesis of (R)-N-(3-(diphenylphosphanyl)-3-phenylpropyl)-4 

methyl benzene sulphonamide (R-7) 

 

 

 

 

Compound  R-7 was synthesised according to the procedure reported for S-7 ( Section 

3.2.1.5)  starting from S-5 (100 mg, 0.3 mmol). R-7 was obtained as a white solid (68 mg, 48 

% yield). All characterization data are in agreement with previously reported for S-7. 

[α]
20

D= + 124.9 (c=0.25, CHCl3).
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3.2.2  Synthesis of chiral 1,3 Tosyl Diamines ligands 
 

General schemes of synthesis 

Scheme 2 

 

Scheme 3 
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Scheme 4 

 

Scheme 5 
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3.2.2.1 Synthesis of (S)-3-ammino-1-phenylpropan-1-ol (S-3) 

 

 

 

 

To a solution of 3-hydroxy-3-phenylpropanenitrile S-2 (250 mg, 1.72 mmol) in anhydrous TH

F (10 mL), LiAlH4 was added (100 mg, 2.6 mmol) and the resulting mixture was stirred under 

nitrogen atmosphere at 0°C. After 1 hour, some water was carefully added in order to quench 

the excess of LiAlH4 and the solution was then reduced in volume and extracted with dichloro

methane (3x15mL). The organic layers were dried on Na2SO4, filtered and evaporated to give 

the product as a pale yellow oil (200 mg, 77% yield).  

All characterization data are in agreement with previously reported in section 3.2.1.2 
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3.2.2.2 Synthesis of (S)-6-phenyl-1,3-oxazinan-2-one (S-6) 

 

 

 

 

 

N,N’-Carbonyldiimidazole (218 mg, 1.35 mmol) was added to a solution of S-6 ( 204 mg, 

1.23 mmol) in CH2Cl2 at room temperature and the resulting mixture was stirred for 12 h. 

Then, the solvent was evaporated and the residue solved in ethylacetate and washed with 

aqueous HCl (0.1 M) and water. After drying and elimination of the solvent, crystallization by 

diffusion of hexane into the acetone solution afforded the product as a white solid (179 mg, 

75% yield).  

All characterization data are in agreement with previously reported in section 3.2.1.6 
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3.2.2.3 Synthesis of (R)-N-(3-azido-3-phenylpropyl)-4-methylbenzene 

sulfonamide (R-8) 

 

 

 

 

 

 

To a solution of S-5, synthesised as reported in section 3.2.1.7, in anhydrous DMF (50 mg, 

0.30 mmol), NaN3 was added (98.2 mg, 1.51 mmol). The solution was refluxed at 120°C for 

3.5 h under N2 atmosphere. After cooling to room temperature, water was added and the 

solution was extracted with diethyl ether (3x10mL). The collected organic layers were dried 

on Na2SO4, filtered and evaporated to give the product as an orange oil (50 mg, quantitative 

yield).  

 

[α]
20

D= +61.2 (c=0.5, CHCl3),
 1

H NMR (300 MHz, CDCl3): δ = 1.88 (m, 2H), 2.42 (s, 3H), 

3.03 (m, 2H), 4.52 (t, J = 7.33 Hz, 1H), 5.16 (t, 1H) 7.19-7.37 (m, 7H) 7.73 (d, J = 8.43Hz, 

2H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 143.79, 138.96, 137.02, 130.01, 129.15, 128.74, 

127.34, 127.03, 63.78, 40.47, 36.24, 21.73, 1.26 ppm;
 
IR ν = 3283, 3063, 3032, 2927, 2876, 

2099, 1663, 1598, 1454, 1326, 1160, 1093, 909, 815 cm
-1

;
 
MS (ESI) of C16H18N4O2S m/z 

353.2 [M+Na]
+
. 
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3.2.2.4 Synthesis of (R)-N-(3-amino-3-phenylpropyl)-4-methylbenzen  

sulfonamide (R-9) 

 

 

 

 

 

In a stainless steel autoclave (20 ml), equipped with temperature control and a magnetic 

stirrer, purged five times with hydrogen, a solution of R-8 (50 mg, 0.303 mmol) in methanol 

with 1% of Pd/C was transferred. The autoclave was pressurised at 20 atm and kept under 

stirring at room temperature for four hours. The mixture was then filtered on Celite and the 

solvent was evaporated in vacuo to give the product as a yellow oil, without any further 

purification step (44 mg, 95% yield). 

 

[α]
20

D= +8.0 (c=0.4, CHCl3);
 1

H NMR (300 MHz, CDCl3): δ = 1.89 (dd, J = 5.87, 12.09 Hz, 

2H), 2.42 (s, 3H), 2.94 (m, 2H), 3.76 (br, 2H), 4.04 (t, J = 5.87 Hz, 1H) 7.29-7.17 (m, 

7H),7.72 (d, J = 8.07 Hz, 2H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 143.10, 142.74, 136.82, 

129.60, 128.73, 127.64, 127.05, 126.29, 54.34, 40.71, 36.43, 21.42 ppm; IR ν = 3350, 3293, 

2917, 2099, 1650, 1598, 1454, 1323, 1156, 1094, 951, 815 cm
-1

; MS (ESI) of C16H20N2O2S 

m/z 305.2 [M+H]
+
. 
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3.2.2.5 Synthesis of (S)-N-(3-azido-3-phenylpropyl)-4-methylbenzen 

sulfonamide (S-8) 

 

 

 

 

 

This intermediate was synthesised according to the procedure reported for R-8 ( section 

3.2.2.3) starting from R-5 (48 mg, 0.145 mmol). S-8 was obtained as an orange oil (24.6 mg, 

51% yield). All characterization data are in agreement with previously reported for R-8. 

[α]
20

D= -75.0 (c=0.25, CHCl3).
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3.2.2.6 Synthesis of (S)-N-(3-amino-3-phenylpropyl)-4-methylbenzen 

sulfonamide (S-9) 

 

 

 

 

 

This product was synthesised according to the procedure reported for R-9 (section 3.2.2.4)  

starting from S-8 (24 mg, 0.07 mmol). S-9 was obtained as a pale yellow oil (24 mg, 

quantitative yield). All characterization data are in agreement with previously reported for R-

9. 

 [α]
20

D= -7.6 (c=0.24, CHCl3).
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3.2.2.7 Synthesis of 2-(trimethylsilyl)ethyl(S)-(3-hydroxy-3 

phenylpropyl) carbamate (S-10) 

 

 

 

The synthesis proceeded according to methodology reported in literature.
3
 S-10 was obtained 

as a colourless oil (405 mg, 93% yield). 

[α]
20

D= -12.3 (c=1.5, CHCl3). 
1
H NMR (300 MHz, CDCl3): δ = 0.02 (s, 9H), 0.89 (t, J = 8.43 

Hz, 2H), 1.75 (q, J = 6.6 Hz, 2H), 3.11-3.27 (m, 2H), 4.05 (t, J = 8.43 Hz, 2H), 4.60-4.66 (dd, 

J = 5.50 Hz, 1H), 5.42 (br, 1H), 7.14-7.26 (m, 5H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 

157.59, 144.79, 125.89-128.61, 71.98, 70.67, 63.15, 39.32, 25.60, 17.95, -1.27 ppm; IR ν = 

3403, 2953, 1743, 1694, 1525, 1251, 1062, 860, 838 cm
-1

;MS (ESI) of C15H25NO3Si m/z 

318.2 [M+Na]
+
. 
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3.2.2.8 Synthesis of (R)- 6-phenyl-1,3-oxazinan-2-one (R-6) 

 

 

 

 

A solution of S-10 (405 mg, 1.37 mmol) and triethylamine (380 µl, 2.74 mmol) in anhydrous 

THF (10 ml), was cooled to 0°C. Mesyl chloride (130 µl, 1.64 mmol) in THF (2 ml) was 

added dropwise. The reaction was stirred for 2 h, filtrated and the solvent evaporated in 

vacuo. R-6 was obtained as a white solid (179 mg, 74% yield). [α]
20

D= +40.0 (c=0.5, CHCl3).
 
  

All characterization data are in agreement with previously reported in section 3.2.1.6 
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3.2.2.9 Synthesis of (S)-3-chloro-1-phenylpropan-1-amine (S-11) 

 

 

 

 

A solution of (R)-(+)-3-chloro-1-phenyl-1-propanol (115 mg, 0.68 mmol) and triethylamine 

(190 µl, 1.36 mmol) in anhydrous THF (5 ml), was cooled to 0°C. Mesyl chloride (65 µl, 0.81 

mmol) in THF (1 ml) was added dropwise. The reaction was stirred for 2h, filtrated and the 

solvent evaporated in vacuo. The mesylated intermediate was used without any other 

purification step. The compound was dissolved in dry DMF (5 ml) and NaN3 (65 mg, 1 

mmol) was added. After stirring for 12 h at room temperature, water (2 ml) was added and the 

solution was extracted with diethyl ether (3x10 ml). The collected organic layers were washed 

with an aqueous solution of NaHCO3, dried on Na2SO4, filtered and evaporated to give the 

azido compound (130 mg, 97% yield).  

[α]
20

D= -123.8 (c=0.5, CHCl3). 
1
H NMR (300 MHz, CDCl3): δ = 7.81 – 6.99 (m, 5H), 4.95 – 

4.59 (dd, J = 8.4, 6.0 Hz,1H), 3.82 – 3.35 (m, 2H), 2.45 – 1.99 (m, 2H).
13

C NMR (75 MHz, 

CDCl3): δ = 138.80, 129.24, 128.86, 127.15, 63.33, 41.57, 39.16. ppm; IR ν = 3032, 2964, 

2919, 2098, 1678, 1454, 1244, 760, 700 cm
-1

; MS (ESI) of C9H10ClN3 m/z 196.7 [M+H].  

In a stainless steel autoclave (20 ml), equipped with temperature control and a magnetic 

stirrer, purged five times with hydrogen, a solution azido intermediate (130 mg, 0.67 mmol) 

in methanol with 1% of Pd/C was transferred. The autoclave was pressurised at 20 atm and 

kept under stirring at room temperature for four hours. The mixture was then filtered on Celite 

and the solvent was evaporated in vacuo to give the product S-11 as a yellow pale oil.
 
(100 

mg, 89% yield).  

[α]
20

D= +5.4 (c=1.0, CH3OH). 
1
H NMR (300 MHz, CDCl3): δ = 2.12 (dd, J = 13.5, 7.0, 3.1 

Hz, 2H), 3.01 (br, 2H), 3.35-3.65 (m, 2H), δ 4.15 (t, J = 7.0 Hz, 1H), 7.21-7.39 (m, 5H) ppm; 
13

C NMR (75 MHz, CD3OD): δ = 143.80, 128.64, 127.82, 127.49, 126.78, 126.48, 126.24, 

57.51, 53.38, 41.56, 41.15, 30.01, 9.77. ppm; IR ν = 3352, 3270, 2933, 1602, 1453, 1348, 

1072, cm
-1

; MS (ESI) of C9H10ClN m/z 170 [M+H]
+
. 
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3.2.2.10 Synthesis of (S)-N-(3-chloro-1-phenylpropyl)-4-methylbenzene 

sulfonamide (S-12) 

 

 

 

 

 

To a solution of S-11 (90 mg, 0.53 mmol) in fresh-distilled dichloromethane, triethylamine 

(112 µL, 0.79 mmol) was added. The reaction mixture was then cooled to 4°C and stirred for 

half an hour. A solution of tosyl chloride (126 mg, 0.66 mmol) in dichloromethane was then 

dropped into the former solution and stirred overnight allowing the reaction mixture to reach 

room temperature. The reaction was monitored by TLC using EtOAc/hexane 1:1 as eluent. 

The desired product was obtained as a white solid by slow diffusion of hexane into the 

chloroform solution (80 mg, 50%yield).  

 

[α]
20

D= -6.5 (c=0.25, CHCl3).
 1

H NMR (300 MHz, CDCl3): δ = 2.57 – 1.92 (m, 2H), 2.35 (s, 

3H), 3.62 – 3.19 (m, 2H), 4.52 (q, J = 7.4 Hz, 1H), 5.55 (d, J = 7.6 Hz, 1H), 7.00-7.16 

(m,7H), 7.57 (d, J = 8.2 Hz, 2H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 143.39, 139.81, 

137.62, 129.95, 129.47, 128.88, 128.56, 127.96, 127.30, 126.79, 126.68, 126.36, 55.98, 41.31, 

40.16, 21.64 ppm; IR ν = 3436, 3265, 2965, 1600, 1458, 1325, 1161, cm
-1

;MS (ESI) of 

C16H18ClNO2S m/z 346.3 [M+Na]
+
.
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3.2.2.11 Synthesis of (S)-N-(3-azido-1-phenylpropyl)-4-methylbenzene 

sulfonamide (S-13)  

 

 

 

 

 

Compound S-12 (40 mg, 0.124 mmol) was dissolved in dry DMSO (5 ml) and NaN3 (80 mg, 

1.24 mmol) was added. After stirring for five days at room temperature, water (2 ml) was 

added and the solution was extracted with diethyl ether (3x5 ml). The collected organic layers 

were washed with an aqueous solution of NaHCO3, dried on Na2SO4, filtered and evaporated 

to give the product S-13 as white solid (40 mg, 97% yield).  

 

[α]
20

D= -14.3 (c=0.4, CHCl3).
 1

H NMR (300 MHz, CDCl3): δ =1.8-2.10 (m,2H), 2.57 (s, 3H), 

3.01-3.33 (m, 2H), 4.31 (dd, J = 14.8,8.1Hz,1H), 6.65 (d, J = 8.2, 1H), 6.98-7.16 (m, 7H), 

7.46 (d, J = 7.8, 2H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 143.43, 140.02, 137.72, 129.60, 

129.45, 128.90, 128.57, 127.95, 127.28, 126.77, 126.56, 126.29, 56.12, 48.28, 36.59, 21.59 

ppm; IR ν = 3232, 2963, 2091, 1599, 1455, 1323, 1156, 1088 cm
-1

;MS (ESI) of C16H18N4O2S 

m/z 353.3 [M+Na]
+
.
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3.2.2.12 Synthesis of (R)-N-(3-amino-1-phenylpropyl)-4-methylbenzene 

sulfonamide (S-14) 

 

 

 

 

 

 

In a stainless steel autoclave (20 ml), equipped with temperature control and a magnetic 

stirrer, purged five times with hydrogen, a solution of S-13 (40 mg, 0.121 mmol) in methanol 

with 1% of Pd/C was transferred. The autoclave was pressurised at 20 atm and kept under 

stirring at room temperature for four hours. The mixture was then filtered on Celite and the 

solvent was evaporated in vacuo to give the product S-14 as a yellow pale oil.
 
(35 mg, 95% 

yield). 

 

[α]
20

D= +5.4 (c=1.5, CH3OH). 
1
H NMR (300 MHz, CDCl3): δ =1.85 – 2.05 (m,2H), 2.30 (s, 

3H), 2.77-2.9. (m, 2H), 4.25-4.6 (br, 4H), 6.97-7.16 (m, 7H), 7.46 (d, J = 7.8) ppm.
 13

C NMR 

(75 MHz, CDCl3): δ = 142.82, 141.22, 138.12, 129.89, 129.36, 128.45, 127.21, 126.77, 

126.56, 57.69, 38.89, 38.47, 21.57 ppm; IR ν = 3352, 3270, 2933, 2103, 1652, 1453, 1328, 

1152, 1091, 953, 817 cm
-1

;MS (ESI) of C16H20N2O2S m/z 305.4 [M+H]
+
. 
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3.2.2.13 Enzymatic synthesis of rac-2-benzoylbutanenitrile (1b) 

 

 

 

 

 

 

Commercial Baker’s yeast (50 g L
-1

) was suspended in a phosphate buffer (200 mL, 0.1 M, 

pH 7) containing 50 g L
-1

 of glucose and 5 g L
-1

 of the substrate 1. The biotransformation 

system was shaken with mechanic stirrer at 28°C. When the total conversion was achieved, 

the cells were separated by centrifugation. Both the aqueous phases and the cells mixture were 

extracted with diethyl ether (3x50 mL), dried with Na2SO4 and the solvent was removed in 

vacuo. The crude product was purified by flash chromatography (CH2Cl2/hexane/ethyl acetate 

= 4:1:1) to give 860 mg of 1b (86% yield). 

 

 
1
H NMR (300 MHz, CDCl3): δ = 1.16 (t, J = 7.7 Hz, 3H), 2.02-2.15 (m, 2H), 4.30 (dd, J = 

6.2, 4.3 Hz, 1H), 7.49-7.56 (m, 2H), 7.65 (d, J = 7.6 Hz, 1H) 7.95 (d, J = 6.7 Hz, 2H) ppm;
13

C 

NMR (75 MHz, CDCl3): δ = 190.97, 170.91, 128.92-134.63, 117.41, 41.69, 23.77, 11.71, 

ppm. IR ν = 3467, 2975, 2936, 2249, 1694, 1597, 1449, 1265, 1233, 1208, 1000, 696 cm
-1

. 

MS (ESI) of C11H11NO (m/z) : 196.1 [M+Na
+
]. 
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3.2.2.14 (S)-2-((S)-hydroxy(phenyl)methyl)butanenitrile (S,S-2b) 

 

 

 

 

 

 

Rhodotorula rubra MIM 147 was routinely maintained on malt extract slants (8 g L
−1

, yeast 

extract 5 g L
−1

, agar 15 g L
−1

, pH 5.6). The strain, grown on malt extract slants for 72 h at 28 

°C, was inoculated into 1000-mL Erlenmeyer flasks containing 150 mL of the same liquid 

medium and incubated on a reciprocal shaker (100 spm) for 48 h at 28°C. Cells obtained by 

centrifugation (4000×g for 15 min at 4 ◦C) of the culture broth (1L) were washed with tap 

water (3x200 mL) and re-suspended in 500 mL of 0,1M phosphate buffer pH = 7 containing 

50 g L
-1

 of glucose. The substrate (1b) dissolved in DMSO was added to the 

biotransformation system in 1 g L
-1

 of substrate concentration and 1% of solvent. The 

biotransformation system was shaken with mechanic stirrer at 28°C for 24 h. The cells were 

separated by centrifugation and both were extracted  with diethyl ether (3x150 mL), dried 

with Na2SO4 and the solvent was removed in vacuo. The crude product was purified by flash 

chromatography (ethyl acetate/cyclohexane = 7:3) to give 287 mg of S,S-2b  (57% yield). 

 

1
H NMR (CDCl3, 300 MHz, 25°C): δ = 1.09 (t, J = 7.7 Hz, 3H), 1.51-1.69 (m, 2H), 2.76-2.83 

(m, 2H), 4.79 (d, J = 6.2 Hz, 1H), 7.33-7.56 (m, 5H) ppm;
 13

C NMR (CDCl3, 75 MHz, 25°C): 

δ = 145.05, 128.58, 128.32, 128.07, 127.14, 126.73, 126.55, 79.45, 47.11, 43.42, 22.36, 11.79 

ppm. IR ν = 3390, 2964, 1494, 1453, 160, 1103, 1038, 702 cm
-1

. MS (ESI) of C11H11NO 

(m/z): 198.3 [M+Na
+
]. [α]

20
D= -46.4 (c=0.5, CHCl3). HPLC data: OD-H Chiralcel, eluent: 

hexane: 2-propanol = 95:5, flow = 0.8 mL/min, λ = 216 nm; rt: (R,S) = 26.9 min, (S,S) = 28.6 

min, (S,R) = 34.2 min, (R,R) = 36.4 min. 
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3.2.2.15 Synthesis of (1S,2S)-2-(aminomethyl)-1-phenylbutan-1-ol  

(S,S-16) 

 

 

 

 

 

 

To a solution of  S,S-2b (250 mg, 1.43 mmol) in anhydrous THF (10 mL), LiAlH4 was added 

(550 mg, 14.3 mmol) and the resulting mixture was stirred under nitrogen atmosphere at 0°C. 

After 1 hour, some water was carefully added in order to quench the excess of LiAlH4 and the 

solution was then reduced in volume and extracted with dichloromethane (3x15mL). The 

organic layers were dried on Na2SO4, filtered and evaporated to give the product as a pale 

yellow oil (215 mg, 84% yield). 

 

 

[α]
20

D= -18.3 (c=2.0, CHCl3); 
1
H NMR (300MHz, CDCl3): δ = 0.88 (m, 3H); 1.28 (m, 2H); 

2.88 (m, 2H); 2.96 (m, 1H); 3.09 (s, 2H); 4.71(d, J = 6.59 Hz, 1H); 7.38-7.23 (m, 5H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 145.05, 128.58, 128.31, 128.07, 127.14, 126.73, 126.55, 

79.45, 47.11, 43.42, 22.36, 11.79 ppm; IR ν=3367, 3305, 2960, 2929, 2874, 1601, 1493, 

1453, 1043, 1026, 701cm
-1

. MS (ESI) of C11H17NO m/z 180.1 [M+H]
+
.   
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3.2.2.16 Synthesis of (5S,6S)-5-ethyl-6-phenyl-1,3-oxazinan-2-one   

(S,S-17) 

 

 

 

 

 

This intermediate was synthesised according to the procedure reported for S-6 ( Section 

3.2.2.2) starting from S,S-16 (215 mg, 1.20 mmol). S,S-17 was obtained as a white solid (177 

mg, 72% yield).  

 

 

[α]
20

D= -7.0 (c=0.7, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 0.84 (t, J = 7.33Hz, 3H); 1.24 

(m, 2H); 2.04 (m, 1H); 3.12 (t, J = 9.89 Hz, 2H); 3.46 (m, 1H); 4.97(d, J = 8.79 Hz, 1H); 5.27 

(s, 1H); 7.36-7.29 (m, 5H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 155.38, 138.14, 128.86, 

128.75, 128.55, 127.15, 126.05, 84.04, 43.81, 38.79, 22.31, 11.09 ppm; IR ν= 3435, 2961, 

2925, 2854, 1698, 1457, 1355, 802, 761 cm
-1

. MS (ESI) of C12H15NO2 m/z 206.1 [M+H]
+
.  
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3.2.2.17 Synthesis of (5S,6S)-5-ethyl-6-phenyl-3-tosyl-1,3-oxazinan-2-

one (S,S-18)  

 

 

 

 

This intermediate was synthesised according to the procedure reported for S-5 ( Section 

3.2.1.7) starting from S,S-17 (76 mg, 0.37 mmol). S,S-18 was obtained as a white solid (71 

mg, 58% yield). 

 

 

 [α]
20

D= -5.8 (c=0.6, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 0.87 (m, 3H), 1.32 (m, 2H), 

2.1 (m, 1H), 2.46 (s, 3H), 3.65 (dd, J = 9.53, 2.19Hz, 1H), 4.11 (dd, 1H, J = 5.13, 6.59 Hz), 

4.96 (d, J = 8.43 Hz, 1H), 7.43-7.19 (m, 7H) 7.97-7.91 (m, 2H ) ppm; 
13

C NMR (75 MHz, 

CDCl3): δ = 148.89, 145.33, 136.82, 135.52, 129.66, 129.28, 129.12, 128.97, 126.89, 84.63, 

48.41, 40.31, 22.39, 21.85, 11.06 ppm. IR ν= 3426, 2964, 2882, 2101, 1719, 1353, 1175, 

1158, 885, 700 cm
-1

. MS (ESI) of C19H21NO4S m/z 360.2 [M+H]
+
. 
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3.2.2.18 Synthesis of N-((S)-2-((R)-azido(phenyl)methyl)butyl)-4methyl 

benzene sulfonamide (S,R-19)  

 

 

 

This intermediate was synthesised according to the procedure reported for R-8 (Section 

3.2.2.3) starting from S,S-18 (59 mg, 0.164 mmol). S,R-19 was obtained as a pale yellow oil 

(40.1 mg, 68% yield).  

 

 

[α]
20

D= +103.5 (c=0.4, CHCl3);
 
 
1
H NMR (300 MHz, CDCl3): δ = 0.84 (m, 3H), 1.27 (m, 2H), 

1.75 (m, 1H), 2.44 (s, 3H), 2.89 (t, J = 6.23 Hz, 2H), 4.61 (m, 2H), 7.36-7.13 (m, 7H), 7.69 (d, 

J = 6.59 Hz, 2H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 146.76, 138.25, 136.95, 131.09, 

130.71, 130.55, 130.40, 128.32, 86.06, 49.84, 41.75, 23.82, 21.43, 12.49 ppm; IR ν= 3282, 

2964, 2933, 2101, 1711, 1666, 1328, 1160, 1093, 911 cm
-1

. MS (ESI) of C18H22N4O2S m/z 

359.3 [M+H]
+
.  
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3.2.2.19 Synthesis of N-((S)-2-((R)-amino(phenyl)methyl)butyl)-4-

methyl benzene sulfonamide (S,R -20) 

 

 

 

This product was synthesised according to the procedure reported for R-9 (Section 3.2.2.4) 

starting from S,R-19 (40.1 mg, 0.11 mmol). S,R-20 was obtained as a white solid (32.7 mg, 

89% yield).  

 

 

[α]
20

D= +4 (c=0.3, CH3OH).
 1

H NMR (300 MHz, CD3OD): δ = 0.86 (m, 3H), 1.21 (m, 2H), 

1.74 (m, 1H), 2.45 (s, 3H), 2.89 (m, 2H), 4.15 (d, J = 3.29 Hz, 1H), 7.33-7.05 (m, 7H), 7.75 

(d, J = 8.06 Hz, 2H) ppm; 
13

C NMR (75 MHz, CD3OD): δ = 143.51, 140.92, 136.64, 129.53, 

128.54, 127.68, 126.96, 55.94, 45.51, 42.45, 20.27, 19.18, 9.75 ppm; IR ν= 3436, 3292, 2963, 

2925, 1631, 1320, 1151, 1093, 803, 704 cm
-1

. MS (ESI) of C18H24N2O2S m/z 333.0 [M+H]
+
. 
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3.2.2.20 Synthesis of 2-(trimethylsilyl)ethyl ((S)-2-((S)-hydroxyl 

(phenyl) methyl) butyl) carbamate (S,S-21) 

 

 

 

The synthesis proceeded as reported for S-10 (section 3.2.2.7). Product S,S-21 was recovered 

as a white oil (374 mg, 1.16 mmol, 82% yield).  

 

 

[α]
20

D= -9.5 (c=0.5, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ= 0.09 (s, 9H), 0.93 (t, J = 4.03 

Hz, 3H), 0.97-1.02 (m, 2H), 1.17-1.28 (m, 2H), 1.69-1.75 (m, 1H), 3.18-3.25 (m, 2H), 4.15 (t, 

J = 9.16 Hz, 2H), 4.48 (d, J = 7.7 Hz, 1H), 4.85 (d, J = 3.67 Hz, 1H), 5.10 (br, 1H), 7.24-7.34 

(m, 5H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 157.93, 143.54, 129.25, 128.60, 127.79, 

126.77, 74.23, 63.44, 63.39, 47.73, 41.74, 21.61, 19.16, 17.99, 12.13, 1.24 ppm; IR ν = 3391, 

2958, 1694, 1519, 1251, 1064, 1041, 860, 837 cm
-1

; MS (ESI) of C17H29NO3Si m/z 346.3 

[M+Na]
+
.  
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3.2.2.21 Synthesis of 2-(trimethylsilyl)ethyl ((S)-2-((R)-amino(phenyl) 

methyl)butyl)carbamate (S,R-22) 

 

 

 

 

 

The synthesis proceeded as reported for S-11 (section 3.2.2.9). Product was recovered as 

colourless oil (130 mg, 35% total yield for three steps).  

Intermediate 2-(trimethylsilyl)ethyl ((S)-2-((R)-azido(phenyl)methyl)butyl)carbamate 

[α]
20

D= +51.8 (c=1.2, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 0.07 (s, 9H), 0.92 (t, J = 7.70 

Hz, 3H), 1.25-1.39 (m, 2H), 1.43-1.50 (m, 2H), 1.83-1.86 (m, 1H), 3.08-3.14 (t, J = 6.23 Hz, 

2H), 4.13 (t, J = 9.89 Hz, 2H), 4.54 (d, J = 6.6 Hz, 1H), 7.28-7.40 (m, 5H) ppm; 
13

C NMR 

(75 MHz, CDCl3): δ = 156.98, 138.29, 129.03, 128.72, 128.48, 128.25, 127.44, 126.65, 77.89, 

77.26, 76.62, 68.22, 63.25, 45.93, 41.33, 20.67, 17.98, 11.36, -1.25 ppm; IR ν = 3339, 2956, 

2100, 1704, 1524, 1250, 1176, 860, 838 cm
-1

; MS (ESI) of C17H28N4O2Si m/z 374.3 [M+Na]
+
.  

Product S,R-22: [α]
20

D= +6.46 (c=1.3, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 0.08 (s, 9H), 

0.95 (t, J = 8.03 Hz, 3H), 1.15-1.42 (m, 4H), 1.63-1.74 (m, 1H), 2.85 (br, 2H), 3.88-3.21 (m, 

2H), 4.12 (m, 3H), 5.85 (br, 1H), 7.21-7.38 (m, 5H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 

157.19, 143.25, 128.60, 128.25, 127.41, 127.03, 126.65, 126.17, 62.99, 57.91, 45.98, 41.94, 

20.10, 17.99, 11.90, -1.25 ppm; IR ν = 3339, 2596, 1704, 1519, 1250, 860, 837 cm
-1

; MS 

(ESI) of C17H30N2O2Si m/z 323.2 [M+H]
+
. 
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3.2.2.22 Synthesis of 2-(trimethylsilyl)ethyl ((S)-2-((R)-((4-methyl 

phenyl) sulfonamido)(phenyl)methyl) butyl)carbamate  (S,R-23) 

 

 

 

 

The synthesis proceeded as reported for S-12 (section 3.2.2.10). The product was recovered 

as colourless oil (50 mg, 40% yield).  

[α]
20

D = + 20.4 (c = 0.9, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 0.05 (s, 9H), 0.88 (t, J = 

8.06 Hz, 3H), 0.96 (t, J = 8.06 Hz, 2H), 1.44-1.62 (m, 2H), 2.30 (s, 3H), 3.18-3.24 (m, 2H), 

4.18 (t, J = 6.78 Hz, 2H), 4.49-4.56 (m, 1H), 5.29 (br, 1H), 6.89-6.98 (m, 2H), 7.04-7.14 (m, 

5H), 7.53 (d, J = 8.43, 2H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 157.13, 143.34, 139.22, 

137.52, 129.49, 128.44, 127.17, 126.56, 63.26, 58.20, 47.04, 41.22, 29.90, 21.63, 18.00, 

11.82, -1.23 ppm; IR ν = 3382, 2597, 1694, 1532, 1251, 1160, 860, 838, 702 cm
-1

; MS (ESI) 

of C24H36N2O4SSi m/z 477.3 [M+H]
+
. 
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3.2.2.23 Synthesis of N-((1R,2S)-2-(aminomethyl)-1-phenylbutyl)-4-

methyl benzenesulfonamide (R,S-24)  

 

 

 

 

The synthesis proceeded as reported in literature
[4]

. The product was recovered as colourless 

oil (29 mg, 87% yield). 

 

[α]
20

D= +6.5 (c=1.3, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 0.86 (t, J = 7.33 Hz, 3H), 

1.37-1.43 (m, 2H), 2.25 (s, 3H), 2.46 (d, J = 6.97 Hz, 1H), 3.73-3.82 (m, 2H), 4.50 (d, J = 

5.50 Hz, 1H), 7.01-7.10 (m, 5H), 7.43-7.51 (m, 4H) ppm; 
13

C NMR (75 MHz, CDCl3): δ = 

143.16, 138.47, 138.03, 129.02, 128.21, 127.12, 126.84, 126.76, 65.67, 58.19, 44.69, 20.10, 

19.71, 10.32 ppm; IR ν = 3252, 3063, 2968, 2353, 1661, 1598, 1455, 1325, 1159, 1091, 969, 

814 cm
-1

; MS (ESI) of C18H24N2O2S m/z 333.4 [M+H]
+
. 

 

 

 

 

 

 

 

 



Chapter 3: Experimental Section 
 

115 

 

3.2.3  Synthesis of biotynilated ligands 

 

General scheme of synthesis 

 

 

Scheme 6 
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3.2.3.1 Synthesis of (R)-3-azido-1-phenylpropan-1-ol (R-25) 

 

 

 

 

 

To a solution of (R)-(+)-3-chloro-1-phenyl-1-propanol (500 mg, 2.94 mmol), in anhydrous 

DMSO, NaN3 was added (1912 mg, 29.4 mmol). The solution was refluxed at 100°C for 5 h 

under N2 atmosphere. After cooling to room temperature, water was added and the solution 

was extracted with diethyl ether (3x10mL). The collected organic layers were washed with 

NaHCO3 saturated solution, dried on Na2SO4, filtered and evaporated to give the product R-25 

as a pale yellow oil (456 mg, 88%).  

 

 

[α]
20

D= + 10.5 (c= 0.2 CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 1.86-2.10 (m,3H), 3.37-3.61 

(m, 2H), 4.82 (q, 1H), 7.31-7.40 (m, 5H), 
13

C NMR (75 MHz, CDCl3): δ = 144.07, 128.87, 

128.09, 125.98, 71.89, 48.55, 38.02 ppm; IR ν = 3392, 2927, 2097, 1454, 1262, 1068 cm
-1

; 

MS (ESI) of C9H11N3O m/z 178.8. [M+H]
+
, 200 [M+Na]

+
. 
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3.2.3.2 Synthesis of (R)-3-amino-1-phenylpropan-1-ol (R-3) 

 

 

 

 

This intermediate was synthesised according to the procedure reported for R-3 ( Section 

3.2.1.2) starting from R-25 (456 mg, 2.58 mmol). R-3 was obtained as a pale oil (390 mg, 

quantitative yield). [α]
20

D= +44.5 (c=0.3, CHCl3); 

 

All characterization data are in agreement with previously reported in section 3.2.1.2 
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3.2.3.3 Synthesis of (R)-N-(3-hydroxy-3-phenylpropyl)-(n)-nitro 

benzene sulfonamide (R-26n) 

 

 

 

To a solution of R-3 (390 mg, 2.58 mmol) in fresh-distilled dichloromethane, triethylamine 

(0.705 mL, 5.16 mmol) was added. The reaction mixture was then cooled to 5°C and stirred 

for half an hour. A solution of 4-nitrobenzenesulfonyl chloride (679 mg, 3.09 mmol) in 

dichloromethane was then dropped into the former solution and stirred for 3h allowing the 

reaction mixture to reach room temperature. The reaction was monitored by TLC using 

EtOAc/hexane 1:1. Reaction solution was washed with water (3x 10 mL), dried, filtered and 

evaporated to give the product  R-26a. (694 mg, 80% yield).  

[α]
20

D= + 22.22 (c=0.3, CHCl3); 
1
H NMR (300 MHz, CDCl3): δ= 1.90 (m, 2H), 3.00 – 3.38 

(m, 2H), 4.83 (t, J = 6.1 Hz, 1H), 5.67 (t, J = 5.3 Hz, 1H), 7.10–7.49 (m, 5H), 8.05 (d, J = 8.8 

Hz, 2H), 8.36 (d, J = 8.8 Hz, 2H). 
13

C NMR (75 MHz, CDCl3): δ = 150.22, 146.10, 143.62, 

128.88, 128.55, 128.119, 125.66, 124.59,73.52, 41.33, 37.69 ppm; IR ν = 3513, 3305, 2923, 

2874, 1703, 1530, 1350, 1163, 1093 cm
-1

; MS (ESI) of C15H16N2O5S m/z 359 [M+Na]
+
. 

Compound R-26b was obtained as yellow solid using the same procedure. (370mg, 60% 

yield). 

[α]
20

D= + 12.00 (c= 0.3 CHCl3); 
1
H NMR (300 MHz, CDCl3): δ = 1.90 (dd, J = 11.6, 5.8 Hz, 

2H), 3.19-3.35 (m, 3H), 4.83 (t, J = 5.8 Hz, 1H), 5.8 (br, 1H), 7.11–7.54 (m, 5H), 7.74 (t, J = 

8.0 Hz, 1H), 8.20 (d, J = 8 Hz, 1H), 8.43 (d, J = 6.9, Hz, 1H), 8.71 (s,1H). 
13

C NMR (75 MHz, 

CDCl3): δ = 148.61, 143.62, 124.70, 132.86-122.52, 73.73, 41.39, 37.65 ppm; IR ν = 3522, 

3166, 2964, 1606, 1532, 1351, 1261, 1091, 1019, 798 cm
-1

; MS (ESI) of C15H16N2O5S m/z 

335 [M-H]. 
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3.2.3.4 Synthesis of(S)-N-(3-azido-3-phenylpropyl)-(n)-nitro benzene 

sulfonamide (S-27n) 

 

 

 

A solution of R-26a (200 mg, 0.60 mmol) and triethylamine (168 µl, 1.2 mmol) in anhydrous 

THF (5 ml), was cooled to 0°C. Mesyl chloride (56 µl, 0.72 mmol) in THF (1 ml) was added 

dropwise. The reaction was stirred for 2h, filtrated and the solvent evaporated in vacuo. The 

mesylated intermediate was used without any other purification step. The compound was 

dissolved in dry DMF (5 ml) and NaN3 (58 mg, 0.9 mmol) was added. After stirring for 12 h 

at room temperature, water (2 ml) was added and the solution was extracted with diethyl ether 

(3x10 ml). The collected organic layers were washed with an aqueous solution of NaHCO3, 

dried on Na2SO4, filtered and evaporated to give the azido compound S-27a as pale oil (193 

mg, 78% yield).  

[α]
20

D= -63.4 (c=0.22, CHCl3). 
1
H NMR (300 MHz, CDCl3): δ = 1.95 (dt, J = 13.2, 4.2 Hz, 

2H), 2.99-3.22 (m, 2H), 4.56 (dd, J = 7.7, 6.4 Hz, 1H), 5.10 (t, J = 6.2 Hz, 1H), 7.11 – 7.49 

(m, 5H), 7.93-8.12 (m, 2H), 8.29-8.42 (m, 2H), 
13

C NMR (75 MHz, CDCl3): δ = 150.36, 

145.91, 138.48, 129.33, 129.04, 128.97, 128.55, 126.92, 124.69,124.61, 64.06, 40.83, 36.27 

ppm; IR ν = 3542, 3306, 3106, 2935, 2874, 2461, 2100,  1660, 1531, 1164 cm
-1

; MS (ESI) of 

C15H15N5O4S m/z 360 [M-H]  

Compound R-27b was obtained as yellow oil using the same procedure. (300 mg, 81% yield). 

[α]
20

D= -22.00 (c=0.1, CHCl3). 
1
H NMR (300 MHz, CDCl3): δ = 1.84-2.02 (m, 2H), 3.07 (m, 

2H), 4.53 – 4.64 (m, 1H), 6.1 (br, 1H), 7.2-7.4 (5H), 7.72 (t, J = 8.0 Hz, 1H), 8.18 (d, J = 7.8 

Hz, 1H), 8.41 (dd, J = 8.0, 2.0, Hz, 1H ), 8.69 (t, J = 2.0 Hz, 1H),), 
13

C NMR (75 MHz, 

CDCl3): δ = 162.84, 142.75, 138.77, 132.80-128.50, 63.78, 40.58, 36.32 ppm; IR ν = 3296, 

3089, 2932, 2875, 2100, 1661, 1532, 1352, 1168 cm
-1

;MS (ESI) of C15H15N5O4S m/z 360 [M-

H] 
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3.2.3.5 Synthesis of (S)-N-(3-amino-3-phenylpropyl)-(n)- nitro benzene 

sulfonamide (S-28n) 

 

 

 

To a solution of S-27a (150 mg, 0.41 mmol, in anhydrous THF (4 ml), PPh3 was added (120 

mg,0.46 mmol). The reaction was stirred for 2h at 48°C, then water (300µl) was added and 

the mixture was stirred overnight at 48°C. The reaction was monitored by TLC using 

EtOAc/cyclohexane 7:3. The solution was evaporated under vacum and compound S-28a 

used for next step without purification. 

1
H NMR (300 MHz, CDCl3): δ = 1.94 (m, 2H), 3.06 (m, 2H), 4.08 (t, J = 6.4 Hz, 1H), 7.11 – 

7.37 (m, 5H), 8.02 (d, J = 8.9 Hz, 2H), 8.33 (d, J = 8.9 Hz, 2H). 
13

C NMR (75 MHz, CDCl3): 

δ = 149.55, 143.38, 137.48, 129.33, 129.04, 128.97, 128.55, 126.92, 124.69,124.61, 52.50, 

40.53, 38.27 ppm; MS (ESI) of C15H17N3O4S m/z 334,38 [M-H] 

Compound R-28b was obtained as yellow oil using the same procedure.  

1
H NMR (300 MHz, CDCl3): δ = 1.96 – 1.87 (m, 2H), 3.05 (m, 2H), 4.05 (m, 1H), 7.40-7.72 

(5H), 8.17 (d, J = 7.8 Hz, 1H), 8.40 (dd, J = 8.0, 2.0, Hz, 1H), 8.69 (t, J = 2.0 Hz, 1H), 
13

C 

NMR (75 MHz, CDCl3): δ = 148.55, 142.55, 141.57, 134.15-128.47, 55.15, 41.22, 35.92. 

ppm; IR ν 3366, 3058, 2871, 1668, 1531, 1351, 1171, 1120 cm
-1

 MS (ESI) of C15H17N3O4S 

m/z 334,38 [M-H] 
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3.2.3.6 Synthesis of tert-butyl (S)-(3-(-(n)-nitrophenyl)sulfonamido)-1-

phenylpropyl)carbamate (S-29n) 

 

 

 

To a solution of compound S-28a (0.41mmol) and TEA ( 172µl, 1.23 mmol) in dry CH2Cl2 

(5ml), a solution of (BOC)2O (134 mg, 0.62mmol) in the same solvent, was added slowly 

with magnetic stirring. The reaction was monitored by TLC using EtOAc/cyclohexane 7:3. 

Organic layer was washed with water (3x10 mL), dried, filtered and evaporated under vacum. 

Compound S-29a was obtained as yellow solid after crystallization using CHCl3 and  hexane. 

(106 mg, 60 % yield for two step). 

 

[α]
20

D= -21.8 (c=0.23, CHCl3). 
1
H NMR (300 MHz, CDCl3): δ = 1.29 (s,9H), 1.89 (m, 2H), 

3.04 (m, 2H), 4.64 (m, 1H), 4.87 (m, 1H), 6.63 (m, 1H), 7.07 – 7.39 (m, 5H), 8.04 (d, J = 8.6 

Hz, 2H), 8.28 (d, J = 8.6 Hz, 2H). 
13

C NMR (75 MHz, CDCl3): δ = 156.41, 150.07, 146.65, 

141.3,  132.38-124.48, 80.44, 52.08, 40.51, 37.03, 28.45 ppm  IR ν = 3391, 2978, 2870, 1689, 

1530, 1349, 1164, 1092 cm
-1

; MS (ESI) of C20H25N3O6S m/z 458,15 [M+Na] 

Compound R-29b was obtained as yellow oil using the same procedure. (226 mg, 65 % yield 

for two step). 

[α]
20

D= -15.8 (c=0.18, CHCl3). 
1
H NMR (300 MHz, CDCl3): δ = 1.34 (s, 9H). 1.87 – 1.96 (m, 

2H), 2.8- 3.4 (m, 2H), 4.60-4.85 (m, 2H), 6.2 (br, 1H), 7.40-7.72 (m, 5H), 8.20 (d, J = 7.8 Hz, 

1H), 8.40 (d, J = 8.0, 1H), 8.69 (s, 1H), 
13

C NMR (75 MHz, CDCl3): δ = 156.18, 148.45, 

143.07, 142.20, 134.10-128.46, 79.96, 52.1, 40.68, 36.86, 28.46 ppm; IR ν = 3306, 3079, 

2978, 1682, 1532, 1351, 1166 cm
-1

; MS (ESI) of C20H25N3O6S m/z 458,15 [M+Na]
+
, 434 [M-

H]
- 
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3.2.3.7 Synthesis of tert-butyl (S)-(3-(((n)-aminophenyl)sulfonamido)-

1-phenylpropyl)carbamate (S-30n) 

 

 

 

In a stainless steel autoclave (20 ml), equipped with temperature control and a magnetic 

stirrer, purged five times with hydrogen, a solution of S-29a (106 mg, 0.24 mmol) in 

methanol with 3% of Pd/C was transferred. The autoclave was pressurised at 20 atm and kept 

under stirring at room temperature for four hours. The mixture was then filtered on Celite and 

the solvent was evaporated in vacuo to give the product S-30a as a yellow pale oil.
 
(96 mg, 

quantitative yield). 

 

[α]
20

D= -16.6 (c=0,2 CH3OH). 
1
H NMR (300 MHz, CD3OD) δ = 1.35 (s, 9H), 1.65 – 1.97 (q, 

J = 7.3 6.9 Hz,  2H), 2.64 – 2.97 (t, J = 6.9 Hz, 2H), 4.56 (t, J = 7.3 Hz, 1H), 6.67  (d, 8.8 Hz, 

2H), 7.15 – 7.31 (m, 5H), 7.52  (d, 8.8 Hz, 2H). 
13

C NMR (75 MHz, CD3OD) δ = 156.74, 

155.76, 152.85, 143.45, 132.64-125.71, 113.43, 112.21,  79.8, 52.3, 40.12, 36.54, 27.64ppm; 

IR ν = 3371, 2977, 2930, 1688, 1597, 1504, 1310, 1151, cm
-1

; MS (ESI) of m/z C20H27N3O4S 

428.3 [M+Na] 

Compound R-30b was obtained as yellow oil using the same procedure. (210 mg, quantitative 

yield). 

 

1
H NMR (300 MHz, CD3OD): δ = 7.42 – 7.01 (m, 8H), 6.83 (dd, J = 8.4, 6.0 Hz,1H), 4.57 (q 

1H), 2.86 (t, 2H), 1.81 (q, 2H).
13

C NMR (75 MHz, CD3OD): δ = 156.73, 152.85, 149.13, 

140.98, 132.60-128.40, 118.43, 115.09, 112.34, 79.16, 52.47, 40.23, 36.60, 27.60 ppm; (ESI) 

of m/z C20H27N3O4S 428,17 [M+Na]
+
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3.2.3.8 Synthesis of tert-butyl ((1S)-3-((n-(5-((4R)-2-oxohexahydro -1H-

thieno[3,4-d]imidazol-4-yl)pentanamido)  phenyl)sulfonamido)-1-

phenylpropyl)carbamate (S-31n) 

 

Compounds S-31a and S-31b were synthesised according to the procedure reported in 

literature.
[5]

 

S-31a 

1
H NMR (300 MHz, CD3OD): δ = 1.33 (s, 9H), 1.45-1.94 (m. 6H), 2.38-2.42 (m, 2H),  2.70-

2.97 (m, 5H), 3.20-3.35 (m,2H), 3.78 (s, 4H), 4.31 – 4.33 (m, 1H), 4.45 – 4.57 (m, 2H), 7.15-

7.35 (m,5H), MS (ESI) of m/z C30H41N5O6S2 654.25[M+Na]; yield 40%. 

S-31b 

1
H NMR (300 MHz, CD3OD): δ = 1.35 (s, 9H), 1.45-1.94 (m, 6H) 2.38-2.42 (m, 2H), 2.70-

2.97 (m, 5H), 3.20(m,1H),  3.65-3.80 (m,2H), 4.31 – 4.33 (m, 1H), 4.20 – 4.65 (m, 2H), 7.10 

(m, 5H), 7.40-7.80 (m,4H). 
13

C NMR (75 MHz, CD3OD): δ = 173.47, 169.52, 164.92, 156.70, 

141.17, 139.74, 132.62-118.08, 79.17, 62.19, 60.48, 55.76, 55.01, 44.13, 40.27, 39.91, 36.50, 

28.60, 28.35, 27.62, 25.40 ppm; MS (ESI) of m/z C30H41N5O6S2 632.0 [M+Na], 

654.30[M+Na]; Yield 35%. 
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3.2.3.9 Synthesis of N-(n-(N-((S)-3-amino-3-phenylpropyl)sulfamoyl) 

phenyl)-5-((4R)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl) 

pentanamide (S-32n) 

 

 

Compound s S-32a and S-32b were synthesised according to the procedure reported in 

literature
[5]

.  

S-32a 

1
H NMR (300 MHz, CDCl3): δ = 7.81 – 6.99 (m, 5H), 4.95 – 4.59 (dd, J = 8.4, 6.0 Hz,1H), 

3.82 – 3.35 (m, 2H), 2.45 – 1.99 (m, 2H). MS (ESI) of m/z C25H33N5O4S2 554.5 [M+Na]; 

quantitative yield. 

S-32b 

1
H NMR (300 MHz, CD3OD): δ = 1.46-1.82 (m, 6H). 2.38-2.46 (t, J=6.8, 2H), 2.66-2.98 (m, 

4H), 3.20 (m,1H), 3.66-3.75 (m,1H), 3.88-3.97 (m,1H), 4.27 – 4.52 (m, 3H), 7.39-7.76 (m, 

9H), 
13

C NMR (75 MHz, CD3OD): δ = 173.62, 164.72,  140.67, 139.67, 136.07, 132.55-

118.21, 62.23, 60.53, 55.73, 53.12, 44.88, 39.84, 39.15, 36.39, 28.53, 28.31, 25.35 ppm; MS 

(ESI) of m/z C25H33N5O4S2 532.2[M+H]; quantitative yield. 
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3.3  Synthesis of P-N complexes 
 

 

3.3.1 Synthesis of [(S)-N-(3-(diphenylphosphanyl)-3-phenylpropyl)-4-

methylbenzenesulfonamide Ir (COD)]Cl complex (33) 

 

 

 

 

A 10 mL Schlenk tube was loaded with [Ir(COD)Cl]2 (1 eq.), S-7 ligand (2.2 eq.) and charged 

with distilled toluene(3 mL). The solution was stirred at RT for 12 h. Solvent was evaporated, 

and a yellow solid was obtained.. The complex was used in without other purification. 

1
H NMR (300 MHz, CDCl3): δ = 1.8- 2.1 (m, 8H), 2.45 (s, 3H), 2.59-2.84 (m, 2H), 3.09-

3.19(m, 2H), 5.40 (m, 1H),5.9 (m, 1H), 7.12-7.82 (m, 19H) ppm; 
13

C NMR: δ = 144.85, 

139.60, 136.01, 135.25-125.69, 96.82, 76.93, 55.15, 46.66, 41.06, 39.56, 33.41-29.70, 21.88 

ppm; 
31P

 NMR (75 MHz, CDCl3): δ = 26.32 ppm; MS (ESI) of m/z C36H40ClIrNO2PS 832,18 

[M+Na] 
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3.3.2 Synthesis of [(S)-N-(3-(diphenylphosphanyl)-3-phenylpropyl)-4-

methylbenzenesulfonamide Ru(p-cymene)Cl]Cl complex (34) 

 

 

 

 

A 10 mL Schlenk tube was loaded with [Ru(p-cymene)Cl2]Cl2 (1 eq.), S-7 ligand (2.2 eq.) and 

charged with distilled EtOH (0.5 mL) and toluene (1.5 mL). The solution was stirred at RT 

for 12 h. Solvent was evaporated, and a brown solid was obtained.. The complex was used in 

without other purification. 

1
H NMR (300 MHz, CDCl3): δ = 1.13-1.20 (m, 6H), 1.55 (m, 2H),  2.18 (s, 3H), 2.44 (s, 3H), 

2.73-3.20 (m, 3H), 3.75 (m, 1H), 5.8 (m, 1H), 5.24-5.51 (m, 4H), 6.95-7.82 (m, 19H)  ppm; 
13

C NMR: δ = 143.5, 140.33, 137.56, 136.13, 133.46-125.79, 111.21, 102.32, 98.15, 92.35, 

88.96, 87.52, 81.32, 80.56, 76.21, 36.74, 38.21, 29.69, 22.50, 21.53, 17.40, 11.17 ppm; 
31P

 

NMR (75 MHz, CDCl3): δ = 28.70 ppm; MS (ESI) of m/z C38H42Cl2NO2PRuS 848,14 

[M+3Na] 
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3.3.3 Synthesis of [(S)-N-(3-(diphenylphosphanyl)-3-phenylpropyl)-4-

methylbenzenesulfonamide Ru(PPh3)Cl2] complex (35) 

 

 

 

 

A 10 mL Schlenk tube was loaded with [RuCl2P(Ph3)3] (1 eq.), S-7 ligand (2.2 eq.) and 

charged with distilled diclorometane (3 mL). The solution was stirred at reflux for 12 h. 

Solvent was evaporated, and a brown solid was obtained.  

1
H NMR (300 MHz, CDCl3): δ = 1.43 (m, 3H), 2.29-2.33 (m, 2H), 2.90-2.95  (m, 2H), 3.42-

3.46 (m, 1H), 7.28-7.88 (m, 24H)  ppm; 
13

C NMR: δ =  
31P

 NMR (75 MHz, CDCl3): δ = 61.65 

(d), 56.35(d), 52.85(d) ppm;  
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3.4  Synthesis of  N-N complexes 
 

3.4.1 General procedure for synthesis of [Ru(p-cymene)(diamine)Cl]Cl 

complexes:  

 

 

 

A 10 mL Schlenk tube was loaded with [RuCl2(p-cymene)]2 (1 eq.), diamine ligand (2.2 eq.) 

and charged with distilled toluene (3 mL). The solution was refluxed at 110°C for 18 h. After 

cooling an orange to red solid was obtained. The precipitate was completely separated from 

solution by filtration and washed with distilled toluene. The complexes were used in ATH 

without other purification. 

S-9a 

1
H NMR (300 MHz, DMSO): δ= 1.00 – 1.30 (m, 6H). 1.98 – 2.18 (m, 2H), 2.27 (s, 3H), 2.72 

(m,, 3H), 4.21 – 4.45 (m, 2H), 5.28 ( m, 2H ), 5.69 – 5.87 (m, 2H),), 7.15 (m, 7H), 7.39 – 7.54 

(m, 2H),  



Chapter 3: Experimental Section 
 

129 

 

S-14a 

1
H NMR (300 MHz, C6D6): δ = 0.91-1.22 (m, 6H). 2.06 (s, 3H), 2.22 (s, 3H), 2.80-3.21 (m, 

3H), 4.22 ( br, 1H), 4.79 -5.30 (m, 4H), 6.70 (d, J=7.2 Hz, 2H ), 6.93 -7.38 (m, 5H), 7.93 (d, 

J=7.2 Hz, 2H),  

S,R-20a 

1
H NMR (300 MHz,  DMSO): δ = 1.21 (m, 11H), 2.17 (s, 3H), 2.44 – 2.52 (m, 3H), 2.74 -

3.08 (m, 3H), 3.30 (br, 1H), 5.72 – 5.94 (m, 4H), 6.74 -7.51 (m, 9H),  

R,S-24a 

1
H NMR (300 MHz, CDCl3): δ = 0.78 (dt, J = 14.5, 6.9 Hz, 3H). 1.23 – 1.35 (m, 6H), 2.07 – 

2.24 (m, 5H), 2.42 (s, 3H), 2.72 -3.12 (m, 3H), 4.92 (dd, J = 15.6, 6.2 Hz, 2H), 5.40 (dd, J = 

27.7, 6.0 Hz, 4H), 7.29 – 7.55 (m, 7H), 7.75 (d, J = 8.3 Hz, 2H), 
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3.4.2 Synthesis of [Ir(Cp)(S-9)Cl] complex (S-9b)  

 

 

 

 

 

In a 10 mL Schlenk tube S-9 ligand (46mg, 0.16 mmol) and TEA (16.6 mg, 0.165 mmol) 

were dissolved in dry 5 mL of dichloromethane. Dimer [ɲ
5
-(C5Me5)IrCl2]2 ( 58 mg, 0.073 

mmol), was added to the solution, and the mixture was refluxed for 1h. After cooling an 

orange solid was obtained. The precipitate was completely separated from solution by 

filtration and washed with cold CH2Cl2. 

 

1
H NMR (300 MHz, CDCl3) δ 1.50- 1.62 (s, 18H). 1.88 (m, 2H), 2.82 (m, 2H), 4.40 (m, 1H), 

5.62 (br, 1H), 7.05 – 7.52 (m, 7H), 7.69 (d, J = 8.1 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H),  
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3.4.3 General procedure for synthesis of [Ir(Cp*) (diamine) Cl] 

biotynilated complexes: 

 

 

In a 10 mL Schlenk tube S-32a or S-32b ligands and Et3N (1.1eq) were dissolved in 5 mL of 

dry and degased isopropanol. The dimer [ɲ
5
-(C5Me5)IrCl2]2 (0.5 eq), was added and stirred for 

2 hours at room temperature. Then the red solution was refluxed for 1h and during this period 

the solution became orange. Solvent was evaporated under vacum and an orange/red solid 

was obtained. This precipitate was washed with water (3x1ml) and dry under vacum 

 

33a 

Chemical Formula: C35H46ClIrN5O4S2; MW: 891.59; ESI: m/z 856.4[M-Cl]; EA (C,H,N): 

C, 46.99; H, 5.41; N, 7.83; found C, 43.29; H, 5.55; N, 5.8 

33b  

Chemical Formula: C35H48ClIrN5O4S2; MW: 894.59; ESI: m/z 856.8[M-Cl]; EA (C,H,N): 

C, 46.99; H, 5.41; N, 7.83; found C, 45.51; H, 5.31; N, 5.38. 

1
H NMR (300 MHz, DMSO): δ = 1.40-1.82 (m, 21H), 2.10 (s, 2H), 2.35 (m,2H), 2.80 (m, 

4H), 3.02 (m, 2H), 4.12 (m, 1H), 4.25 (m,1H),  4.65(m, 1H), 6.40 (d, 2H), 7.21-7.62 (m,9H), 

10.4 (d,1H),  
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3.5 General procedure for asymmetric reduction. 
 

3.5.1 Asymmetric  hydrogenation 

 

In a Schlenk tube under nitrogen the substrate was added to the catalyst, followed by 10 ml of 

solvent (MetOH or iPrOH) and with or without t-BuOK. The solution was stirred for 15 

minutes at room temperature and then it was transferred with a cannula in an autoclave. The 

stainless steel autoclave, equipped with temperature control and magnetic stirrer, was purged 

5 times with hydrogen and then pressurized (pH2 = 20 atm).  

3.5.2 Asymmetric transfer hydrogenation using Ru diamine complexes 

 

To a solution of acetophenone (0.5 mmol) in water (2 mL), [Ru(p-cymene) (diamine)Cl]Cl 

(0.0025 mmol) in 20 μL DMSO and HCOONa as hydrogen donor (5 mmol, 10 equiv) were 

added. The reaction mixture was stirred at 40°C for 48 h and extracted with ethyl acetate (2x1 

mL). The combined organic layers were dried with Na2SO4 and analysed by GC. 

3.5.3 Asymmetric transfer hydrogenation of imines using Ir diamine 

complexes:  

To a 200 µl of buffer ( NaCOOH 3M, MOPS 0.4M, pH=7), substrate and catalyst dissolved in  

DMSO were added. The reaction mixture was stirred at 40°C for 48 h and extracted with 

ethyl acetate (2x5 mL). The combined organic layers were dried with Na2SO4 and filtered. 

Solvent was removed under vacum and analysed by HPLC. 

3.5.4 Asymmetric transfer hydrogenation using [biot-ligands-SAV] 

~3 mg of SAV (final concentration of free binding sites 0.69 mM) was dissolved in a 200µl of 

buffer (NaCOOH 3M, MOPS 1.2 M) and catalyst (0.9 eq) previously dissolved in degassed 

DMF was added. The solution was stirred for 20 minutes at defined temperature and imines 

was added. For the work up 10 µl of NaOH 10M was added and aqueous media was extracted 

with Et2O. The organic layers was dried with Na2SO4, filtered, removed under vacum and 

analysed by HPLC.
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