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We explore the connection between two recently introduced notions of non-Markovian quantum dynamics
and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics
has been defined looking at the behaviour in time of the statistical operator, which determines the evolution
of mean values, the quantum regression theorem makes statements about the behaviour of system correlation
functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression
hypothesis, which can be obtained exactly evaluating two points correlation functions. To this aim we consider
a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the non-
Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities.
We further study a photonic dephasing model, recently exploited for the experimental measurement of non-
Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself
violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.

PACS numbers: 03.65.Yz,42.50.Lc,03.67.-a

I. INTRODUCTION

In recent times there has been a revival in the study of
the characterization of non-Markovianity for an open quan-
tum system dynamics. While the subject was naturally born
together with the introduction of the first milestones in the
description of the time evolution of a quantum system inter-
acting with an environment [} [2]], the difficulty inherent in
the treatment led to very few general results, and the very
definition of a convenient notion of Markovian open quan-
tum dynamics was not agreed upon. The focus initially was
on finding the closest quantum counterpart of the classical no-
tion of Markovianity for a stochastic process, so that reference
was made to correlation functions of all order for the process.
Recent work was rather focused on proposals of a notion of
Markovian quantum dynamics based on an analysis of the be-
haviour of the statistical operator describing the system of in-
terest only, thus concentrating on features of the dynamical
evolution map, which only determines mean values. Different
properties of the time evolution map have been considered in
this respect [3H11]. In particular two viewpoints [4} 6] appear
to have captured important aspects in the characterization of
a dynamics which can be termed non-Markovian in the sense
that it relates to memory effects.

The aim of our work is to analyse the relationship between
these approaches and the validity of the so-called quantum re-
gression theorem [12, |13], according to which the behaviour
in time of higher order correlation functions can be predicted
building on the knowledge of the dynamics of the mean val-
ues for a generic observable. The analysis can be performed
introducing a suitable quantifier for the violation of the quan-
tum regression hypothesis, which in turn requires knowledge
of the exact two-time correlation functions. We therefore con-
sider a two-level system coupled to a bosonic bath through
a decoherence interaction, exactly estimating for a general
class of spectral densities the predictions of different criteria

for non-Markovianity of a dynamics and the violation of the
regression theorem. We further apply this analysis to a de-
phasing model, whose realization has been recently exploited
to experimentally observe quantum non-Markovianity [14].
In both cases we show that the quantum regression theorem
can be violated even in the presence of a quantum dynamics
which, according to either criteria, is considered Markovian.

The paper is organized as follows. In Sect. [II] we recall
two recently introduced notions of Markovianity for a quan-
tum dynamics and the associated measures, while in Sect.
we address the formulation of the quantum regression theo-
rem and introduce a simple estimator for its violation. We
apply this formalism to the pure dephasing spin Boson model
in Sect. [[V] discussing the relationship between the two ap-
proaches, and extend the analysis to a photonic dephasing
model in Sect. We finally comment on our results in
Sect.

II. NON-MARKOVIANITY DEFINITIONS AND
MEASURES

Let us start by briefly recalling the main features of the
notion of non-Markovian quantum dynamics which will be
exploited in the following analysis. In the classical theory
of stochastic processes, the definition of Markov process in-
volves the entire hierarchy of n—point joint probability distri-
butions associated with the process. Since such a definition
cannot be directly transposed to the quantum realm [[15} [16]],
different and non-equivalent notions of quantum Markovian-
ity have been introduced [3H11], along with different mea-
sures to quantify the degree of non-Markovianity of a given
dynamics (see [17, 18] for a very recent comparison). These
definitions all convey the idea that the occurrence of mem-
ory effects is the proper attribute of non-Markovian dynamics,
relying on different properties of the dynamical maps which



describe the evolution of the open quantum system. In the ab-
sence of initial correlations between the open system and its
environment, i.e.,

pse(0) = ps(0) @ pp(0) (1

with pg(0) assumed to be fixed, the evolution of an open
quantum system is characterized by a one parameter fam-
ily of completely positive and trace preserving (CPT) maps
{A(t)},>0> such that [12]

ps(t) = A(t)ps, 2

where ps = pg(0) is the state of the open system at the ini-
tial time tg = 0. A relevant class of open quantum system’s
dynamics is provided by the semigroup ones, which are char-
acterized by the composition law

A@)A(s) = A(t+ s) Vt, s > 0. 3)
The generator of a semigroup of CPT maps is fixed by
the Gorini-Kossakowski-Sudarshan-Lindblad theorem [/1,,/19],
which implies that the dynamics of the system is given by the
Lindblad equation

d
_ t) =
dtpS()

+ Xk:% (Lkps(t)LzTC - % {LLLk’pS(t)}) )

—ilH, ps(t)]

with 5, > 0. The semigroups of CPT maps are identified with
the Markovian time-homogeneous dynamics according to all
the previously mentioned definitions of Markovianity, so that
the differences between them actually concern the notion of
time-inhomogeneous Markovian dynamics.

In the following, we will take into account two defini-
tions of Markovianity and the corresponding measures of non-
Markovianity. One definition [4] is related with the contrac-
tivity of the trace distance under the action of the dynamical
maps, while the other [6] relies on a divisibility property of
the dynamical maps, which reduces to the semigroup compo-
sition law in the time-homogeneous case.

A. Trace-Distance measure

The basic idea behind the definition of non-Markovianity
introduced by Breuer, Laine and Piilo (BLP) [4] is that a
change in the distinguishability between the reduced states
can be read in terms of an information flow between the open
system and the environment. The distinguishability between
quantum states is quantified through the trace distance [20],
which is the metric on the space of states induced by the trace
norm:

1 1
D(plvpz)z§le—P2||1=§Z|a?k|> )
k

where the x, are the eigenvalues of the traceless hermitian op-
erator p! — p2. The trace distance takes values between 0 and

1 and, most importantly, it is a contraction under the action of
CPT maps. By investigating the evolution of the trace distance
between two states of the open system coupled to the same en-
vironment but evolved from different initial conditions,

D(t,pg?) = D(ps(t), p3(t), pk(t) = At)pl,  (6)

one can thus describe the exchange of information between
the open system and the environment. A decrease of the trace
distance D(t, pé’z) means a lower ability to discriminate be-
tween the two initial conditions p§ and p%, which can be ex-
pressed by saying that some information has flown out of the
open system. On the same ground, an increase of the trace
distance can be ascribed to a back-flow of information to the
open system and then represents a memory effect in its evolu-
tion. Non-Markovian quantum dynamics can be thus defined
as those dynamics which present a non-monotonic behaviour
of the trace distance, i.e. such that there are time intervals €2
in which

d
olt,pg®) = 2 D(t,pg") > 0. (7)

Consequently, the non-Markovianity of an open quantum sys-

tem’s dynamics {A(t)}, is quantified by the measure

N :max/ a(t,pif)dt. 8)
1,2 a,

Ps

The maximization involved in the definition of this measure
can be greatly simplified since the optimal states must be or-
thogonal [21]] and, even more, one can determine ./#” by means
of a local maximization over one state only [22]. This mea-
sure of non-Markovianity has been also investigated experi-
mentally in all-optical settings [14} 23}, [24]].

B. Divisibility measure

The definition given by Rivas, Huelga and Plenio (RHP)
[6] identifies Markovian dynamics with those dynamics which
are described by a CP-divisible family of quantum dynamical
maps {A(t)}+>0 (CP standing for completely positive), i.e.
such that

A(t2) = A(ta, t1)A(t1) Vito >t >0, 9
A(to,t1) being itself a completely positive map. Indeed, if
A(ta,t1) = A(t2 —t1) the composition law in Eq.(9) is equiv-
alent to the semigroup composition law. An important prop-
erty of this definition is that, provided that the evolution of the
reduced state can be formulated by a time-local master equa-
tion

d

375 = K(t)[ps(?)]

= —i[H(D), ps(0)]
+ X0 (Lal0psOLL0) - 3 {ELOL0.ps(0)} )
k

(10)



the positivity of the coefficients, v, (¢) > 0 for any ¢ > 0, is
equivalent to the CP-divisibility of the corresponding dynam-
ics. This can be shown by taking into account the family of
propagators A(t, t1) associated with Eq.(10),

ta
A(ta,t1) = T exp (/ /C(s)ds) , an
t1

where T denotes the time ordering and A(¢,0) = A(¢). By
construction, the propagators A(tz,t1) satisfy Eq.@]), but, in
general, they are not CP maps. One can show [25] [26] that
the propagators are actually CP if and only if the coefficients
~i(t) are positive functions of time.

The corresponding measure of non-Markovianity is given
by

I:/ dt g(t) (12)
R+
with
LN Achoi (E, -1
o) = lim MAChah RO =L g
e—0t €

where Acyo; is the Choi matrix associated with A. Given a
maximally entangled state between the system and an ancilla,

) = \/% SO Juk) © |ug), one has [27]

Achoi = N (A @ 1) ([9) (¥]) - (14)

The positivity of the Choi matrix corresponds to the complete
positivity of the map A and it is equivalent to the condition
[Achoill1 = N, so that the quantity g(¢) is different from zero
if and only if the CP-divisibility of the dynamics is broken.
Finally, since the trace distance is contractive under CPT
maps, if a dynamics is Markovian according to the RHP defi-
nition, then it is so also according to the BLP definition, i.e.,

I=0= A =0, 15)

while the opposite implication does not hold [25} 28| [29].

III. THE QUANTUM REGRESSION THEOREM

As recalled in the Introduction, the quantum regression the-
orem provides a benchmark structure in order to study the
multi-time correlation functions of an open quantum system.
For the sake of simplicity, we focus on the two-time corre-
lation functions only. Given two open system’s operators,
A® 1g and B ® 1, where 1 denotes the identity on the
Hilbert space associated with the environment, their two-time
correlation function is defined as

(A(t2)B(t1)) = Tr [UT (t2) A @ 15U (t2)
xUT(t1) (B@1p)U(t1)pse(0)],  (16)

where U (t) is the overall unitary evolution operator and we
set to > t; > 0. In the following, we assume an initial state

as in Eq.(I), as well as a time-independent total Hamiltonian
Hr =Hs®1p +15® Hg + Hy, so that U(t) = e~ 7t
The condition of an initial product state with a fixed envi-
ronmental state guarantees the existence of a reduced dynam-
ics, see Egs.(I)) and (2). This means that all the one-time prob-
abilities associated with the observables of the open systems
and, as a consequence, their mean values can be evaluated by
means of the family of reduced dynamical maps only, without
need for any further reference to the overall unitary dynam-
ics. An analogous result holds for the two-time correlation
functions, if one can apply the so-called quantum regression
theorem. The latter essentially states that under proper condi-
tions the dynamics of the two-time correlation functions can
be reconstructed from the dynamics of the mean values, or,
equivalently, of the statistical operator. Indeed, if the quantum
regression theorem cannot be applied, one needs to come back
to the full unitary dynamics in order to determine the evolu-
tion of the two-time correlation functions. We will not repeat
here the detailed derivation of the quantum regression theo-
rem, which can be found in [12, 13} 30]]. Nevertheless, let us
recall the basic ideas. First, by introducing the operator

X(ta, t1) = e HT ") B @ 1 ppgp(ty)e!Tt2=t) - (17)

the two-time correlation function in Eq.(I6) can be rewritten
as

<A(t2)B(t1)> = TI‘S ATTE X(t27t1)- (18)

Now, suppose that we can describe the evolution of x(t2,t1)
with respect to to with the same dynamical maps which fix the
evolution of the statistical operator, i.e.,

X(t2,t1) = A(t2, t1)[x(t1, 1)), (19)

where A(t2,t1) is the propagator introduced in Eq.(L1). Then,
Eq.(T8) directly provides

(A(t2)B(t1))qrt = Trs AA(t2,t1)[Bps(t1)]- (20

The two-time correlation functions can be fully determined by
the dynamical maps which fix the evolution of the statistical
operator: the validity of Eq.(20) can be identified with the
validity of the quantum regression theorem and we will use
the subscript grt to denote the two-time correlation functions
evaluated through Eq.(20). Indeed, all the procedure relies on
Eq.(19), which requires that the same assumptions made in
order to derive the dynamics of pg(t) can be made also to get
the evolution of x(t3,¢1) with respect to to [L3]]. Especially,
the hypothesis of an initial total product state in Eq.(T) turns
into the hypothesis of a product state at any intermediate time
t1,

pse(ti) = ps(t) ® pe. 21)

The physical idea is that the quantum regression theorem
holds when the system-environment correlations due to the in-
teraction can be neglected [31]. Note that this condition will
never be strictly satisfied, as long as the system and the en-
vironment mutually interact, but it should be understood as a



guideline to detect the regimes in which Eq.(20) provides a
satisfying description of the evolution of the two-time corre-
lation functions. More precisely, Diimcke [32]] demonstrated
that the exact expression of the two-time (multi-time) corre-
lation functions, see Eq.@, converges to the expression in
Eq.(20) in the weak coupling limit and in the singular coupling
limit. As well-known, in these limits the reduced dynamics
converges to a semigroup dynamics [33] [34]. Nevertheless,
the correctness of a semigroup description of the reduced dy-
namics is not always enough to guarantee the accuracy of the
quantum regression theorem [35} [36]. More in general, the
precise link between a sharply defined notion of Markovian-
ity of quantum dynamics and the quantum regression theorem
has still to be investigated.

The quantum regression theorem provided by Eq.(20) can
be equivalently formulated in terms of the differential equa-
tions satisfied by mean values and two-time correlation func-
tions, as was originally done in [37]. For the sake of simplic-
ity, let us restrict to the finite dimensional case, i.e., the Hilbert
space associated with the open system is C*V. Consider a re-
duced dynamics fixed by the family of maps {A(¢)},-, and

a basis {E;},,._n2 of linear operators on CV, such that the
corresponding mean values fulfill the coupled linear equations
of motion [30]

SEO) =Y GiOE®), )

with the initial condition (E;(t))|+=0 = (F;(0)). In this case,
the quantum regression theorem is said to hold if the two-time
correlation functions satisfy [12} [13]]

d

@(Ei(b)Ek(tl))qrt = ZGz‘j(t2)<Ej(t2)Ek(t1)>qrt7

(23)
with the initial condition

(Ei(t2) Bk (t1))ta=t, = (Ei(t1) Ex(t1)).

In the following, we will compare the evolution of the ex-
act two-time correlation functions obtained from the full uni-
tary evolution (E;(t2)Ej(t1)), see Eq.(16), with those pre-
dicted by the quantum regression theorem (E; (t2) Ey (1)) grt-
To quantify the error made by using the latter, we exploit the
relative error, i.e., we use the following figure of merit:

(Alt2) B(t1)) gre
(A(t2) B(t1)) |’

which depends on the chosen couple of open system’s opera-
tors. Hence, in general, one should consider different estima-
tors, one for each couple of operators in the basis {E;}1 w2,
and a maximization over them could be taken. Nevertheless,
in the following analysis it will be enough to deal with a sin-
gle couple of system’s operators, which fully encloses the vi-
olations of the quantum regression theorem for the models at
hand.

Z=1- 4)

IV. PURE-DEPHASING SPIN BOSON MODEL

In this section, we take into account a model whose full uni-
tary evolution can be exactly evaluated [[12,138], so as to obtain
the exact expression of the two-time correlation functions, to
be compared with the expression provided by the quantum re-
gression theorem. This model is a pure-decoherence model,
in which the decay of the coherences occurs without a decay
of the corresponding populations. Indeed, this is due to the
fact that the free Hamiltonian of the open system Hg ® 1g
commutes with the total Hamiltonian Hr [12].

A. The model

Let us consider a two-level system linearly interacting with
a bath of harmonic oscillators, so that the total Hamiltonian is

_Ws T T *
Hr= 702®1E+15®; kakkaF; 0.® (gkbk + gkbk>

(25)
The unitary evolution operator of the overall system in the
interaction picture is given by [12]]

U(t) = ™), (26)

where the first factor is an irrelevant global phase and the sec-
ond factor is the unitary operator

1
V(t) = exp §az®zk: (ak(t)b; —aZ(t)bk)] . Q@)
with
1— wwyt
a(t) = 295 ———. (28)
Wi

The reduced dynamics is readily calculated to give

P00 pory(t)e~ st
t ) 29
pS( ) <p107*(t)62w5t P11 ) ( )

where the function ~y(t) is given by
~v(t) =Trg pE Hexp [ak(t)bl - a,*v(t)b;g}
k
=Trp pi | [ Alax(t), (30)
k

A(«) being the displacement operator of argument o [39].
The associated master equation reads

L pstt) = i o ps(0] + 20 (. ps(t)a — ps(e)
(31)
where

e(t) =ws — Im {d’y(t%dt] (32)



and the so-called dephasing function D(t) is

dy(t)/dt] _ d
DO — - Gwhol 6

In the following, we will focus on the case of an initial ther-
mal state of the bath, pp = exp(—fHEg)/Z with Z =
Trg exp(—BHEg) and 8 = (kgT)~! the inverse temperature.
We also consider the continuum limit: given a frequency dis-
tribution f(w) of the bath modes, we introduce the spectral
density J(w) = 4f(w)|g(w)|?, so that one has [12]

Y(t) = exp { /000 dw J(w) coth (&U) ms(m] g
34

Dlt) = ~Fe |

w

and hence €(t) = w; and

D(t) = /0 " J(w) coth (62“) Smfd Do 33

B. Measures of non-Markovianity
1. General expressions

For this specific model, the two definitions of Markovianity
are actually equivalent [40], i.e. not only Eq.(T5) holds, but
also the opposite does so. This is due to the fact that there is
only one operator contribution in the time-local master equa-
tion (3I)), corresponding to the dephasing interaction. Nev-
ertheless, the numerical values of the two measures of non-
Markovianity are in general different and, more importantly,
they depend in a different way on the parameters of the model.

Let us start by evaluating the BLP measure, see Sec.
The trace distance between two reduced states evolved
through Eq.(29) is given by

D(t, pg*) = /6% + |62 (1)]?, (36)
where &, = p}, — p3, and 6. = pl, — p?; are the differences
between, respectively, the populations and the coherences of
the two initial conditions p} and p%. The couple of initial
states that maximizes the growth of the trace distance is given
by the pure orthogonal states pg” = [1h+) (1|, where [¢)4) =

(\O) + 1)), and the corresponding trace distance at time ¢

is 51mply |7(t)|. The BLP measure therefore reads
A =2 (b

where Q. = J,, (am,bpn) is the union of the time inter-
vals in which |y(¢)| increases. The BLP measure is differ-
ent from zero if and only if d|y(¢)|/d¢ > 0 for some interval
of time, which is equivalent to the requirement that the de-
phasing function D(t) in Eq.(31) is not a positive function of
time, i.e., that the CP-divisibility of the dynamics is broken,
Sec. As anticipated, for this model A" > 0 <= .# > 0.
Furthermore, given a pure dephasing master equation as in

)= v(am)l) 37

Eq.(31), one has [6] g(t) = 0if D(t) > 0 and g(t) = —D(t)
if D(t) < 0, so that, see Eq.(33),
S = Z (I [y (bin)| = In [y (am)]), (38)

where the a,,, and b,,, are defined as for the BLP measure.

2. Zero-temperature environment

In order to evaluate explicitly the non-Markovianity mea-

sures, we need to specify the spectral density J(w). In the
following, we assume a spectral density of the form
w® e
J(w) = )\Qs_l e 9 (39)

where A is the coupling strength, the parameter s fixes the
low frequency behaviour and {2 is a cut-off frequency. The
non-Markovianity for the pure dephasing spin model with a
spectral density as in Eq.(39) has been considered in [17, 41]
for the case A = 1. We are now interested in the compari-
son between non-Markovianity and violations of the quantum
regression theorem, so that, as will become clear in the next
section, the dependence on A plays a crucial role. In partic-
ular, we consider the case of low temperature, i.e., § > 1,

so that coth %‘J

reads, see Eq.(33),

~ 1. The dephasing function in this case

AQL(s)

PO = T

sin (s arctan (t)), (40)

with I'(s) the Euler gamma function, which can be expressed
in the equivalent, but more compact form, see Appendix [A]

Im[(1+iQt)°]
(1+(Q)?)°
Correspondingly, the decoherence function can be written as

Re[(1 +i0t)* 1] )}
1+ Q)2 /]

Dy(t) = ML (s) (41)

74(t) = exp [—)\F(s ) (1 _

As before, let {2, be the union of the time intervals for
which D(¢) < 0, i.e., equivalently, |y(¢)| increases. The num-
ber of solutions of the equation D(¢t) = 0 grows with the
parameter s: for s = 1,2 the dephasing function is always
strictly positive, while for s = 3 and s = 4 there is one zero
atty = @ and ] = é respectively. Indeed, if the number
of zeros is odd, D(t) is negative from its last zero to infin-
ity, while if the number of zeros is even, it approaches zero
asymptotically from above. As a consequence, the two mea-
sures of non-Markovianity are equal to zero for s = 1,2 and,
to give an example, one has for s = 3

(N = Jim py(1)] — ()] = e — e

Z5(0) = Jim In|y(0)] — In 7 (55)] =



and, analogously, for s = 4

M(N) = e — e 5, TN =2 44

In Fig.|l|(a) and (b), we report, respectively, the BLP and the
RHP measures of non-Markovianity as a function of A, for
different values of s.
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Figure 1. (Color online) (a) BLP measure of non-Markovianity

A5 (X), see Eq.(37), and (b) RHP measure of non-Markovianity
Z5(X), see Eq.(38), as a function of the coupling strength A for in-
creasing values of the parameter s. In both panels the curves are
evaluated for s = 3 (black thick solid line), s = 3.5 (blue solid line),
s = 4 (magenta dashed line), s = 4.5 (green dashed thick line),
s = 5 (red dot-dashed line) and s = 5.5 (orange dotted line).

The behaviour of the two measures is clearly different. The
RHP measure is a monotonically increasing function of both
A and s: the increase is linear with respect to the former pa-
rameter and exponential with respect to the latter. On the
other hand, for every fixed s, there is a critical value of the
coupling strength A*(s), which is smaller for increasing s,
that separates two different regimes of the BLP measure: for
A < A*(s), the non-Markovianity measure increases with
the increase of the system-environment coupling, while for
A > A*(s) it decreases with the increase of the coupling.
Analogously, there is a threshold value s*(\) of the parameter
s, which is higher for smaller values of A, such that the BLP
measure increases for s < s*(\) and decreases for s > s*(\),
see also Fig.[2](a). Incidentally, the maximum value as a func-
tion of A, maxy 45 (\), is a monotonically increasing function

of the parameter s. Indeed, the different behaviour of the non-
Markovianity measures traces back to their different func-
tional dependence of the decoherence function ,(t), which
is plotted in Fig. |2 (b) and (c) for different values of s and A.
One can see how 74(t) takes on smaller values within [0, 1]
for growing values of A\, while its global minimum decreases
with increasing s. Now, while the BLP measure is fixed by
the difference between the values of -y, (¢) at the edges of the
time intervals [a,, b,,] in which ~,(t) increases, see Eq. (37),
the RHP measure is fixed by the ratio between the same val-
ues, see Eq.(38). Hence, as the coupling strength grows over
the threshold A*(s) or the parameter s overcomes the thresh-
old s*(\), the difference between b,,, and a,, is increasingly
smaller, and therefore .#;(\) is so. However, the ratio be-
tween b,, and a,, always increases with A and s, as witnessed
by the corresponding monotonic increase of .7 ().

C. Validity of regression hypothesis
1. Exact expression versus quantum regression theorem

The exact unitary evolution, Eq.(26), directly provides us
with the average values, as well as the two-time correlation
functions of the observables of the system. In view of the
comparison with the description given by the quantum regres-
sion theorem, see Sec. let us focus on the basis of lin-
ear operators on C2, orthonormal with respect to the Hilbert-
Schmidt scalar product, given by {1/v2,0_,04,0./v2}.
Indeed, the first and the last element of the basis are constant
of motion, see Eq.@l), while the mean values of o_ and o
evolve according to, respectively,

(o (1)) =v(t)e ™ (a_(0)) (45)

and the complex conjugate relation. In a similar way, all the
two-time correlation functions involving 1/ V2 or o,/ V2 sat-
isfy the condition of the quantum regression theorem in a triv-
ial way, as at most one operator within the two-time correla-
tion function actually evolves. The only non-trivial expres-
sions are thus the following:

(- ()0 (B =€~ ==t )= (-1 ) (1)
= e (g, 1)e 0 (040 ) (1))

(46)
where
Yta,t1) = Trg pe | [ Alan(tz) — ax(t))  (47)
k
and
Hta,t1) =D Im[af(ta)on(tr)] - (48)

k

Here, to derive (#6) we used the properties of the displacement
operator [39]

A(@)A(B) = Ala+ B)e!™@F)  Af(a) = A(—a),
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Figure 2. (a) BLP measure of non-Markovianity .45 (\), see Eq.,
as a function of the parameter s, for A = 1. (b) and (c¢) Decoherence
function ~y, (¢) as a function of time for A = 0.5 and different values
of s (b), and for s = 4 and different values of X (c).

and the equality ((o10_) (t)) = (o40_).

We can now obtain the corresponding two-time correlation
functions as predicted by the quantum regression theorem. By

Eq.(@3), one has

—(o_(t)) = <W - z‘ws) (o-(1))  (49)

and the complex conjugate relation for (o4 (t)). The specific
choice of the operator basis has lead us to a diagonal matrix

G in Eq.(22). Hence, one has immediately

(0 (t2)04 (t1))art = e—ws“rngﬂw 1)+ (1)
z’ws(trtl)’Y*(tZ) o o
7*(?)( +(t1)o_(t1)).

(50)

(o4 (t2)o—(t1))gre =€

The quantum regression theorem will be generally violated
within this model, compare Eq.(#6) and (50). We quantify
such a violation by means of the figure of merit introduced in
Eq.([24), which for the couple of operators o_ and o reads

‘1 — (o (t2)o+(t1))grt
<0— (t2)0'+(t1)>

‘1 _ Y(t2)
Y(t1)y(ta, tr)eid(t2rtn)

Z

. ShH

2. Quantitative analysis of the violations of the quantum
regression theorem

The expressions of the previous paragraph hold for generic
initial state of the bath and spectral density. Now, we come
back to the specific choice of an initial thermal bath. The re-
sults in Eq.(30) are in this case in agreement with those found
in [42], where the two-time correlation functions have been
evaluated focusing on a spectral density as in Eq.(39) with
s = 1, while keeping a generic temperature of the bath. In-
stead, we will focus on the case 7" = 0 and maintain a generic
value of s in order to compare the behaviour of the two-time
correlation functions with the measures of non-Markovianity.

First, note that by using the definition of the displacement
operator as well as Eq.(28), one can show the general identity

A(Oék(tg) — O[k(tl)) =A (Olk(tg — tl)eiwktl) . (52)

But then, since for a thermal state Trg A(a)pg is a function
of |a| only [12]l, Eq.(52) implies

Y(ta, t1) = y(t2 — t1), (53)

see Egs.@7) and (30). In addition we have in the continuum
limit, see Eq.(48),

J(w)

¢(t2,t1):/dw w2

so that, for J(w) as in Eq.(39) and using Eq.(33) in the zero
temperature limit, we get

¢s(t2,t1) = (Ds—1(t2) = Ds—1(t1) — Ds—1(t2 — t1)) /<2
(54
The identities in Eqs.(1) and [@2), along with Eqs. (53] and
(34), finally provide us with the explicit expression of the es-
timator for the violations of the quantum regression theorem,

see Eq.(51),
Zs(A) = |1 —exp [AT(s = 1) [1 = (1 + ity — t1))"~*
—(1+14iQt)" " + (1 + i) %)) |, (55)

[sin(wts) —sin(wty ) —sin(w(te — t1))]
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Figure 3. (a) Zs(\) as a function of the parameter s and of the cou-
pling strength A, see Eq.(33), for 21 = 1 and Qt> = 2. (b) Section
of (a) for s = 2, 3, 4.

whose behaviour as a function of A and s is shown in Fig.
(a) and (b). The violation of the quantum regression theo-
rem monotonically increases with increasing values of both
the coupling strength A\ and the parameter s. This behaviour
is clearly in agreement with that of the RHP measure of non-
Markovianity, see Sec. [VB?2|and in particular Fig. [T} From
a quantitative point of view there is, however, some differ-
ence as the estimator Z5(\), at variance with the RHP mea-
sure, grows linearly with A only for small values of s, while it
growths faster for s > 3; compare with Fig.[T|(b). In any case,
the RHP measure appears to be more directly related with
the strength of the violation to the quantum regression the-
orem, as compared with the BLP measure. This can be traced
back to the different influence of the system-environment cor-
relations on the two measures. As we recalled in Sec.
the hypothesis that the state of the total system at any time ¢
is well approximated by the product state between the state
of the open system and the initial state of the environment,
see Eq.(21), lies at the basis of the quantum regression theo-
rem. This hypothesis is expected to hold in the weak coupling
regime, while for an increasing value of )\, the interaction will
build stronger system-environment correlations, leading to a
strong violation of the quantum regression theorem. The es-
tablishment of correlations between the system and the envi-
ronment due to the interaction plays a significant role also in

the subsequent presence of memory effects in the dynamics of
the open system [43H45]]. Indeed, different signatures of the
memory effects can be affected by system-environment cor-
relations in different ways. In particular, the CP-divisibility
of the dynamical maps appears to be a more fragile property
than the contractivity of the trace distance and therefore it is
more sensitive to the violations of the quantum regression the-
orem. Furthermore, it is worth noting that the estimator Z4(\)
steadily increases with the coupling strength A even for values
of s such that the corresponding reduced dynamics is Marko-
vian according to either definitions. The validity of the quan-
tum regression theorem calls therefore for stricter conditions
than the Markovianity of quantum dynamics.

V. PHOTONIC REALIZATION OF DEPHASING
INTERACTION

In the pure dephasing spin-boson model, there is no regime
in which the quantum regression theorem is strictly satisfied,
apart from the trivial case A = 0. In addition, we have shown
that the strength of the violations of this theorem has the same
qualitative behaviour of the RHP non-Markovianity measure,
as they increase with both A\ and the parameter s. In this sec-
tion, we take into account a different pure dephasing model,
which allows us to deepen our analysis on the relationship
between the quantum regression theorem and the Markovian-
ity of the reduced-system dynamics. In particular, we show
that in general these two notions should be considered as dif-
ferent since the quantum regression theorem may be strongly
violated, even if the open system’s dynamics is Markovian,
irrespective of the exploited definition.

A. The model

Let us deal with the pure-dephasing interaction considered
in Ref. [14]. The open system here is represented by the po-
larization degrees of freedom of a photon generated by spon-
taneous parametric down conversion, while the environment
consists in the corresponding frequency degrees of freedom.
The overall unitary evolution, which is realized via a quartz
plate that couples the polarization and frequency degrees of
freedom, can be described as

U)lj,w) =™ jw)  j=0,1, (56
where |0) = |H) and |1) = |V') are the two polarization states
(horizontal and vertical), with refractive indexes, respectively,
ng = ny and ny = ny, while |w) is the environmental state
with frequency w. If we consider an initial product state, see
Eq.(I), with a pure environmental state pp = [Vg)(Vg|,
where

W) = / d f(@)|w). (57)

we readily obtain that the reduced dynamics is given by
Eq.(9). Again, we are in the presence of a pure dephasing



dynamics, the only difference being the decoherence function,
which now reads

(1) = / d [f(w)[2 idnet (58)

with An = nj —ng. For the rest, the results of Secs. [TV Aland
directly apply also to this model: the master equation
is given by Eq.(31), with €(¢) and D(¢) as in, respectively,
Eq.(32) (for ws = 0) and Eq.(33)), while the non-Markovianity
measures are as in Eq.(37) and Eq.(38). Analogously, the two-
time correlation functions are given by Eq. (#6) with

Y(t2,t1) = y(t2 — t1) @(t2,t1) =0, (59)

while the application of the quantum regression theorem leads
to the expressions in Eq.(50) (with w, = 0). Hence, the vi-
olations of the quantum regression theorem can be quantified
by

v(t2)

N ‘ At (te —t) |
(60)

(o_(t2)oy (tl»qm

2= oo )

B. Lorentzian frequency distributions
1. Semigroup dynamics

Despite its great simplicity, this model allows to describe
the transition between Markovian and non-Markovian dynam-
ics in concrete experimental settings [14} 23]]. Different dy-
namics are obtained for different choices of the initial envi-
ronmental state, see Eq.(T)) and the related discussion, i.e., for
different initial frequency distributions, see Eq.(57). The latter
can be experimentally set, e.g., by properly rotating a Fabry-
Pérot cavity, through which a beam of photons generated by
spontaneous parametric down conversion passes [14]. A nat-
ural benchmark is represented by the Lorentzian distribution

2 ow

where dw is the width of the distribution and wy its central fre-
quency, as this provides a reduced semigroup dynamics [43].
The decoherence function, which is given by the Fourier trans-
form of the frequency distribution, see Eq.(58), is in fact

’Y(t) — efA’rL((;w*iwo)t' (62)

Thus, replacing this expression in Eqs. (@2) and (33),
one obtains a Lindblad equation, given by Eq. with
€(t) = —Anwg and D(t) = Andw. In addition, y(ty —
t1) = ~(t2)/~(t1) and hence, as one can immediately see
by Eq.(60), Z = 0. For this model, as long as the reduced
dynamics is determined by a completely positive semigroup,
the quantum regression theorem is strictly valid. Let us em-
phasize, that this is the case even if the total state is not a
product state at any time ¢. For example if the initial state of

the open system is the pure state [)g) = o|H) + 3|V), with
|a|? + | B]? = 1, the total state at time ¢ is

Wse(t) = / dw f (@) (0em 1 [ H,w) + BV, w)).

(63)
This is an entangled state, of course unless « = 0 or 5 = 0;
nevertheless, the quantum regression theorem does hold. This
clearly shows that for the quantum regression theorem, as for
the semigroup description of the dynamics [44-46], the ap-
proximation encoded in Eq.(21)) should be considered as an
effective description of the total state, which can be very dif-
ferent from its actual form, even when the theorem is valid.

2. Time-inhomogeneous Markovian and non-Markovian dynamics

Now, we consider a more general class of frequency dis-
tributions; namely, the linear combination of two Lorentzian
distributions,

f@) ="

T
j=1,2

Ajéwj
[(w —wo,5)% + (0w;)?]’

(64)

with A; + A5 = 1. The decoherence function is in this
case

e*An(&dl 71‘&)0,1)15 + ,,,efAn((SwQ*in,g)t

A1) = o 69

with r = ﬁ—f, while the estimator of the violations of the
quantum regression theorem, see Eq.(60), can be written as
a function of the difference between the central frequencies,
Aw = wp,1 — wo,2, as well as of the difference between the
corresponding widths, Adw = dw; — dwq. If we assume that
the two central frequencies are equal, wp1 = w2 = wo,
the evolution of the two-level statistical operator is fixed by a
time-local master equation as in Eq.(31), with e(t) = —An wy
and

5w1€7An5w1t Ty 5w2€7An5th

e—Anéwlt +r e—An&ugt

D(t) = An (66)
The latter is a positive function of time: the reduced dynam-
ics is CP-divisible, see Sec. and hence it is Markovian
with respect to both the BLP and RHP definitions. Indeed,
now we are in the presence of a time-inhomogeneous Marko-
vian dynamics. Nevertheless, as y(to —t1) # Y(t2)/v(t1) the
quantum regression theorem is violated, see Eq.(60). This is
explicitly shown in Fig. [ (a), where Z is plotted as a function
of Adw = dwy — dwy and AnT, with 7 = to —t;. With grow-
ing difference between the two widths, as well as the length of
the time interval, the deviations from the quantum regression
theorem are increasingly strong, up to a saturation value of
the estimator Z. Contrary to the semigroup case, here, even if
the dynamics is Markovian according to both definitions, the
actual behaviour of the two-time correlation functions cannot
be reconstructed by the evolution of the mean values.

Finally, let us consider a frequency distribution as in Eq.
(64), but now with dw; = dws = dw and wp 1 # wg . This



(b)

Figure 4. Violation of the quantum regression theorem, as quantified
by the estimator Z in Eq.(60) (a) in the time-inhomogeneous Marko-
vian case, wo,1 = wo,2 = wo, as a function of Adw = dwi — dwa
and woT = wo(t2 — t1), for wot1 = 1 and r = 1; (b) in the
non-Markovian case, dwi = dws = dw, as a function of Awy =
wo,1 — wo,2 and dw T, for dwt1 = 1 and r = 2; in all the panels
An = 1.

frequency distribution has two peaks and the resulting reduced
dynamics is non-Markovian [14, |45]. In this case the BLP
non-Markovianity measure (8) increases with the increasing
of the distance between the two peaks, while the estimator Z
grows for small values of the distance and then it exhibits an
oscillating behaviour, see Fig. ] (b). Indeed, for Aw = 0 one
recovers the semigroup dynamics previously described and,
accordingly, Z goes to zero. Summarizing, by varying the
distance between the two peaks, one obtains a transition from
a Markovian (semigroup) dynamics to a non-Markovian one
and, correspondingly, the quantum regression theorem ceases
to be satisfied and is even strongly violated. Nevertheless, the
qualitative behaviour of, respectively, the non-Markovianity
of the reduced dynamics and the violation of the quantum re-
gression theorem appear to be different.

VI. CONCLUSIONS

We have explored the relationship between two criteria
for Markovianity of a quantum dynamics, namely the CP-
divisibility of the quantum dynamical map and the behaviour
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in time of the trace distance between two distinct initial states,
and the validity of the quantum regression theorem, which is
a statement relating the behaviour in time of the mean val-
ues and of the two-time correlation functions of system op-
erators. The first open system considered is a two-level sys-
tem affected by a bosonic environment through a dephasing
interaction. For a class of spectral densities with exponen-
tial cut-off and power law behaviour at low frequencies we
have studied the onset of non-Markovianity as a function of
the coupling strength and of the power determining the low
frequency behaviour, further giving an exact expression for
the corresponding non-Markovianity measures. The deviation
from the quantum regression theorem has been estimated eval-
uating the relative error made in replacing the exact two-time
correlation function for the system operators with the expres-
sion reconstructed by the evolution of the corresponding mean
values. It appears that the validity of the quantum regres-
sion theorem represents a stronger requirement than Marko-
vianity, according to either criteria, which in this case coin-
cide but quantify non-Markovianity in a different way and ex-
hibit distinct performances in their dependence on strength of
the coupling and low frequency behaviour. We have further
considered an all-optical realization of a dephasing interac-
tion, as recently exploited for the experimental investigation
of non-Markovianity, obtaining also in this case, for differ-
ent choices of the frequency distribution, significant violations
to the quantum regression theorem even in the presence of a
Markovian dynamics.

These results suggest that indeed the recently introduced
new approaches to quantum non-Markovianity provide a
weaker requirement with respect to the classical notion of
Markovian classical process. Further and more stringent no-
tion of Markovian quantum dynamics can therefore be intro-
duced, e.g. relying on validity of the quantum regression theo-
rem [16]. However, the usefulness of such criteria will heavily
depend on the possibility to verify their satisfaction directly by
means of experiments, as it is the case e.g. for the notion of
Markovianity based on trace distance, without asking for an
explicit exact knowledge of the dynamical equations.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support by
the EU projects COST Action MP 1006 and NANOQUEST-
FIT.

Appendix A: Alternative expression of the dephasing function

Starting from Eq. (0), namely
AQr
Ds(t) = 7(8)7 sin (s arctan (2t)) , (AD)
(1+(2)%)>
and exploiting the identities

x 1

——— ,cos (arctan(z)) =
V1422

sin (arctan(z)) =



together with
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we can come to the compact expression (1))

_ . A(s) S sk(s—k _(_g\sk
S 2i(1+ () LZ_O (k> e

AQ@(s s s
= 21(1+(§22)2)S [(1+408)° — (1 —iQt)°)
Im [(1 +iQt)®]

(1+ (2)%)°

Ds(t)

= AQL(s) (A4)
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