
MEMOIRS
of the

American Mathematical Society

Volume 233 • Number 1095 (first of 6 numbers) • January 2015

Analysis of the Hodge Laplacian on
the Heisenberg Group

Detlef Müller
Marco M. Peloso

Fulvio Ricci

ISSN 0065-9266 (print) ISSN 1947-6221 (online)

American Mathematical Society
Licensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



MEMOIRS
of the

American Mathematical Society

Volume 233 • Number 1095 (first of 6 numbers) • January 2015

Analysis of the Hodge Laplacian on
the Heisenberg Group

Detlef Müller
Marco M. Peloso

Fulvio Ricci

ISSN 0065-9266 (print) ISSN 1947-6221 (online)

American Mathematical Society
Providence, Rhode IslandLicensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Library of Congress Cataloging-in-Publication Data

Müller, Detlef, 1954- author.
Analysis of the Hodge Laplacian on the Heisenberg group / Detlef Müller, Marco M. Peloso,

Fulvio Ricci.
pages cm. – (Memoirs of the American Mathematical Society, ISSN 0065-9266 ; number 1095)
“January 2015, volume 233, number 1095 (first of 6 numbers).”
Includes bibliographical references.
ISBN 978-1-4704-0939-5 (alk. paper) 1. Harmonic analysis. I. Peloso, Marco M., author. II.

Ricci, Fulvio, 1948- author. III. Title.
QA403.M85 2015

515′.785–dc23 2014033061

DOI: http://dx.doi.org/10.1090/memo/1095

Memoirs of the American Mathematical Society

This journal is devoted entirely to research in pure and applied mathematics.

Subscription information. Beginning with the January 2010 issue, Memoirs is accessible
from www.ams.org/journals. The 2015 subscription begins with volume 233 and consists of six
mailings, each containing one or more numbers. Subscription prices for 2015 are as follows: for
paper delivery, US$860 list, US$688.00 institutional member; for electronic delivery, US$757 list,
US$605.60 institutional member. Upon request, subscribers to paper delivery of this journal are
also entitled to receive electronic delivery. If ordering the paper version, add US$10 for delivery
within the United States; US$69 for outside the United States. Subscription renewals are subject
to late fees. See www.ams.org/help-faq for more journal subscription information. Each number
may be ordered separately; please specify number when ordering an individual number.

Back number information. For back issues see www.ams.org/bookstore.
Subscriptions and orders should be addressed to the American Mathematical Society, P.O.

Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other
correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2294 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy select pages for
use in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Permissions to reuse
portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink�
service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.
Excluded from these provisions is material for which the author holds copyright. In such cases,

requests for permission to reuse or reprint material should be addressed directly to the author(s).
Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the
first page of each article within proceedings volumes.

Memoirs of the American Mathematical Society (ISSN 0065-9266 (print); 1947-6221 (online))
is published bimonthly (each volume consisting usually of more than one number) by the American
Mathematical Society at 201 Charles Street, Providence, RI 02904-2294 USA. Periodicals postage
paid at Providence, RI. Postmaster: Send address changes to Memoirs, American Mathematical
Society, 201 Charles Street, Providence, RI 02904-2294 USA.

c© 2014 by the American Mathematical Society. All rights reserved.

Copyright of individual articles may revert to the public domain 28 years
after publication. Contact the AMS for copyright status of individual articles.

This publication is indexed in Mathematical Reviews R©, Zentralblatt MATH, Science Citation
Index R©, Science Citation IndexTM -Expanded, ISI Alerting ServicesSM , SciSearch R©, Research

Alert R©, CompuMath Citation Index R©, Current Contents R©/Physical, Chemical & Earth
Sciences. This publication is archived in Portico and CLOCKSS.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15

Licensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

http://dx.doi.org/10.1090/memo/1095
http://www.ams.org/rightslink


Contents

Introduction 1

Chapter 1. Differential forms and the Hodge Laplacian on Hn 7

Chapter 2. Bargmann representations and sections of homogeneous bundles 11

Chapter 3. Cores, domains and self-adjoint extensions 15

Chapter 4. First properties of Δk; exact and closed forms 23

Chapter 5. A decomposition of L2Λk
H related to the ∂ and ∂̄ complexes 29

5.1. The subspaces 30
5.2. The action of Δk 36
5.3. Lifting by Φ 38

Chapter 6. Intertwining operators and different scalar forms for Δk 41
6.1. The case of V p,q

0 41
6.2. The case of V p,q

2,� 41

6.3. The case of V p,q
1,� 42

Chapter 7. Unitary intertwining operators and projections 47
7.1. A unitary intertwining operator for V p,q

0 50

7.2. Unitary intertwining operators for V p,q,±
1,� 50

7.3. A unitary intertwining operator for V p,q
2,� 54

Chapter 8. Decomposition of L2Λk 59
8.1. The ∗-Hodge operator and the case n < k ≤ 2n+ 1 59

Chapter 9. Lp-multipliers 65
9.1. The multiplier theorem 65
9.2. Some classes of multipliers 66

Chapter 10. Decomposition of LpΛk and boundedness of the Riesz transforms 69
10.1. Lp- boundedness of the intertwining operators U±

1,� 71
10.2. Lp- boundedness of the intertwining operators U2,� 74

Chapter 11. Applications 77
11.1. Multipliers of Δk 77
11.2. Exact Lp-forms 78
11.3. The Dirac operator 78

Chapter 12. Appendix 81

iii

Licensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



iv CONTENTS

Bibliography 89

Licensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Abstract

We consider the Hodge Laplacian Δ on the Heisenberg group Hn, endowed
with a left-invariant and U(n)-invariant Riemannian metric. For 0 ≤ k ≤ 2n + 1,
let Δk denote the Hodge Laplacian restricted to k-forms.

In this paper we address three main, related questions:

(1) whether the L2 and Lp-Hodge decompositions, 1 < p < ∞, hold on Hn;

(2) whether the Riesz transforms dΔ
− 1

2

k are Lp-bounded, for 1 < p < ∞;

(3) to prove a sharp Mihilin–Hörmander multiplier theorem for Δk, 0 ≤ k ≤
2n+ 1.

Our first main result shows that the L2-Hodge decomposition holds on Hn,
for 0 ≤ k ≤ 2n + 1. Moreover, we prove that L2Λk(Hn) further decomposes into
finitely many mutually orthogonal subspaces Vν with the properties:

• domΔk splits along the Vν ’s as
∑

ν(domΔk ∩ Vν);
• Δk : (domΔk ∩ Vν) −→ Vν for every ν;
• for each ν, there is a Hilbert spaceHν of L2-sections of a U(n)-homogeneous
vector bundle over Hn such that the restriction of Δk to Vν is unitarily
equivalent to an explicit scalar operator acting componentwise on Hν .

Next, we consider LpΛk, 1 < p < ∞. We prove that the Lp-Hodge decom-
position holds on Hn, for the full range of p and 0 ≤ k ≤ 2n + 1. Moreover, we
prove that the same kind of finer decomposition as in the L2-case holds true. More
precisely we show that:

• the Riesz transforms dΔ
− 1

2

k are Lp-bounded;

• the orthogonal projection onto Vν extends from (L2∩Lp)Λk to a bounded
operator from LpΛk to the the Lp-closure Vp

ν of Vν ∩ LpΛk.

We then use this decomposition to prove a sharp Mihlin–Hörmander multiplier
theorem for each Δk. We show that the operator m(Δk) is bounded on LpΛk(Hn)
for all p ∈ (1,∞) and all k = 0, . . . , 2n+1, provided m satisfies a Mihlin–Hörmander
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vi ABSTRACT

condition of order ρ > (2n+ 1)/2 and prove that this restriction on ρ is optimal.
Finally, we extend this multiplier theorem to the Dirac operator.
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Introduction

The theory of the Hodge Laplacian Δ on a complete Riemannian manifold M
shows deep connections between geometry, topology and analysis on M . While
this theory is well developed in the case of functions, i.e., for the Laplace–Beltrami
operator, much less is known for forms of higher degree on a non-compact manifold.

A question of fundamental importance is whether, on a given complete non-
compact Riemannian manifold M , the L2 and Lp-Hodge decomposition holds, 1 <
p < ∞, that is,

LpΛk(M) = dC∞
0 Λk−1(M)⊕ d∗C∞

0 Λk+1(M)⊕ H
p
k ,

where H
p
k denotes the space of harmonic Lp-forms.

A related, basic question that one would like to answer is whether the Riesz

transform dΔ− 1
2 is Lp-bounded in the range 1 < p < ∞. In fact, in [St] it was

proved that the boundedness of dΔ− 1
2 on LqΛ�(M) for � = k, k + 1 and q = p, p′,

where p′ denotes the conjugate exponent of p, imply the Lp-Hodge decomposition
of the space of k-forms. See also [Li3,Loh] and references therein. For the case
k = 1 we also mention the papers [ACDH,Li1].

In an earlier work [D] it was proved that on a complete non-compact manifold
the existence of a spectral gap for Δk implies the so-called strong L2-decomposition,
that is,

L2Λk(M) = dW 1Λk−1(M)⊕ d∗W 1Λk+1(M)⊕ H
2
k ,

where W s denotes the classical Sobolev space. Concerning the strong Lp-Hodge
decomposition, in [Li2] it was shown that it holds if the Riesz transform dΔ− 1

2

is bounded on Lp and Lp′
on k and k + 1-forms and the Riesz potential Δ− 1

2 is
bounded on LpΛk(M).

We refer the reader to recent paper [Li3] for a discussion of the connections
between the Hodge decompositions, the boundedness of the Riesz transforms, and
geometric properties of the underlying manifold, as well as an extended bibliography
on this topic.

In a similar way, functional calculus on self-adjoint, left-invariant Laplacians
and sublaplacians L on Lie groups and more general manifolds has been widely
studied, cf. [A,An,AnLoh,Ch,ChM,ClS,CoKSi,He,HeZ,Hu,Mar,LuM,
LuMS,MauMe,MS, Si,Ta]. A key question concerns the possibility that, for
a given L, a Mihlin–Hörmander condition of finite order on the multiplier m(λ)
implies that the operator m(L) is bounded on Lp for 1 < p < ∞. A second
fundamental question is the Lp-boundedness, in the same range of p, of the Riesz
trasforms XL− 1

2 for appropriate left-invariant vector fields X [CD,CMZ,GSj,
Loh2,LohMu].

1
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2 D. MÜLLER, M. M. PELOSO, and F. RICCI

Also in these situations, not much is known for operators which act on sections
of some homogeneous linear bundle over a given group. The most notable case is
that of sublaplacians associated to the ∂̄b-complex on homogeneous CR-manifold
[CoKSi,FS]

In this paper we consider the Hodge Laplacian Δ on the Heisenberg group
Hn, endowed with a left-invariant and U(n)-invariant Riemannian metric, and give
answers to the above questions.

The rich structure of the Heisenberg group makes it a natural model to ex-
plore such questions in detail. First of all, it has a natural CR-structure, with a
well-understood Kohn Laplacian [FS], and nice interactions with the Riemannian
structure [MPR1].

For operators on Hn which act on scalar-valued functions and are left- and
U(n)-invariant, the methods of Fourier analysis are quite handy to study spectral
resolution, and sharp multiplier theorems for differential operators of this kind
are known [MRS1,MRS2]. This class of operators is based on two commuting
differential operators, namely the sublaplacian L and the central derivative T , in
the following sense:

– the left- and U(n)-invariant differential operators on Hn are the polyno-
mials in L and T ;

– the left- and U(n)-invariant self-adjoint operators on L2(Hn) containing
the Schwartz space in their domain are the operators m(L, i−1T ), with m
a real spectral multiplier.

The same methods also allow to study operators acting on differential forms,
like the Kohn Laplacian, which have the property of acting componentwise with
respect to a canonical basis of left-invariant forms, cf. (1.4).

On the other hand, the Hodge Laplacian restricted to k-forms, which we denote
by Δk and whose explicit expression is given in (1.22) below, is far from acting
componentwise.

Nevertheless, we are able to reduce the spectral analysis of Δk to that of a
finite family of explicit scalar operators. We call scalar an operator on some space
of differential forms which can be expressed as D⊗ I, i.e., which acts separately on
each scalar component of a given form by the same operator D.

In order to carry out this program, we first prove the L2-Hodge decomposition
on Hn, for 0 ≤ k ≤ 2n + 1. Next, we show that L2Λk(Hn) admits a finer decom-
position into finitely many mutually orthogonal subspaces Vν with the following
properties:

(i) domΔk splits along the Vν ’s as
∑

ν(domΔk ∩ Vν);
(ii) Δk : (domΔk ∩ Vν) −→ Vν for every ν;
(iii) for each ν, there is a Hilbert spaceHν of L2-sections of a U(n)-homogeneous

vector bundle over Hn such that the restriction of Δk to Vν is unitarily
equivalent to a scalar operator mν(L, i

−1T ) acting componentwise on Hν ;
(iv) there exist unitary operators Uν : Hν −→ Vν intertwining mν(L, i

−1T )
and Δk which are either bounded multiplier operators uν(L, i

−1T ), or
compositions of such operators with the Riesz transforms

R = dΔ− 1
2 , R = ∂�− 1

2 , R̄ = ∂̄�− 1
2 .
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INTRODUCTION 3

This is done in the first part of the paper (Chapters 3-8), and we refer to this
part as to the “L2-theory”. The main results in this context are Theorems 8.1
and 8.6, resp., where we obtain the decomposition of L2Λk into the Δk-invariant
subspaces Vν , respectively for 0 ≤ k ≤ n and n+ 1 ≤ k ≤ 2n+ 1.

This decomposition is fundamental for all the second part of the paper, which
we are going to describe next. A quick description of the logic and the basic ideas
in the construction of the Vν is postponed to the last part of this introduction.

In Chapters 9-12, we develop the “Lp-theory”1. We prove that, for 1 < p < ∞,
the same kind of decomposition also takes place in LpΛk. Precisely:

(a) the intertwining operators Uν in (iv) have Lp-bounded extensions;
(b) consequently, the orthogonal projections U∗

νUν from L2Λk to Vν extend
to bounded operators from LpΛk to the the Lp-closure Vp

ν of Vν ∩ LpΛk;

(c) the Riesz transforms Rk = dΔ
− 1

2

k are Lp-bounded;
(d) the Lp-Hodge decomposition holds true for k = 0, . . . , 2n + 1, and more

precisely LpΛk is direct sums of the subspaces V p
ν ’s.

The (much simpler) case of 1-forms was already considered in [MPR1]. We
expect that our results can be applied to the study on conformal invariants on
quotients of Hn, along the lines of [MPR2], cf. [Lot,Lü].

In our last main result, as consequence of the Lp-theory we develop, we prove
a sharp Mihlin–Hörmander multiplier theorem for Δk, for all k = 0, . . . , 2n+1. We
show that, if m : R → C is a bounded, continuous function satisfying a Mihlin–
Hörmander condition of order ρ > (2n + 1)/2, then, for 1 < p < ∞, the operator
m(Δk) is bounded on Lp(Hn)Λ

k, with norm bounded by the appropriate norm of
m (cf. Theorem 11.1), and that the condition ρ > (2n+ 1)/2 cannot be relaxed.

We briefly comment on some interesting aspects of the proof and on some
consequences and applications. It is always assumed that 1 < p < ∞.

• Our inductive strategy requires that two statements be proved simultane-
ously at each step: property (a) above for the given k and Lp-boundedness

of the Riesz transform Rk = dΔ
−1/2
k . Precisely, the validity of (a) for a

given k implies Lp-boundedness of Rk, and this, in turn, is required to
prove (a) for k + 1.

• In order to handle the complicated expressions of the intertwining opera-
tors Uν , we identify certain symbol classes, denoted by Ψρ,σ

τ , which satisfy
simple composition properties, contain all the scalar components of the
Uν , and, when bounded, give Lp-bounded operators (cf. Chapter 9.2).

• Taking as the initial definition of “exact Lp-form” a form ω which is the
Lp-limit of a sequence of exact test forms (cf. Proposition 4.5 for p = 2),
we prove in Chapter 11.2 that this condition is equivalent to saying that
ω is in Lp and a differential in the sense of distributions. Incidentally, this
allows to prove that the reduced Lp-cohomology of Hn is trivial for every
k.

1There is an unfortunate notational conflict, due to the fact that the letter p is the commonly
used symbol for both Lebesgue spaces and bi-degrees of forms. In this introduction and in the
titles of chapters we keep the notation Lp, while in the body of the paper we will denote by Lr

the generic Lebesgue space.
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4 D. MÜLLER, M. M. PELOSO, and F. RICCI

• The Mihlin–Hörmander theorem for spectral multipliers of Δk, proved in
[MPR1] for k = 1, extends to every k.

• Our analysis of Δ easily yields analogous results for the Dirac operator
d+ d∗. Studying the Hodge laplacian first has the advantage of isolating
one order of forms at a time. Corollary 11.5 is a multiplier theorem for
the Dirac operator completely analogous to Theorem 11.1.

Outline of the decomposition of L2Λk.

We go back now to the construction of the subspaces Vν of L2Λk(Hn).

First of all, by Hodge duality, we may restrict ourselves to form of degree k ≤ n.
We start from the primary decomposition into exact and d∗-closed forms:

L2Λk(Hn) = (L2Λk)d-ex ⊕ (L2Λk)d∗-cl ,

where each summand is Δk-invariant.

Since the Riesz transform Rk−1 = dΔ
− 1

2

k−1 commutes with Δ and transforms

(L2Λk−1)d∗-cl onto (L
2Λk)d-ex unitarily, any Δ-invariant subspace Vν of (L2Λk−1)d∗-cl

has a twin Δ-invariant subspace Rk−1Vν inside (L2Λk)d-ex.
The analysis is so reduced to the space of d∗-closed forms. Associated with the

CR-structure of Hn, there is a natural notion of horizontal (p, q)-form as a section
of the bundle

Λp,q = Λp,qT ∗
CHn ,

and of horizontal k-form as a section of Λk
H =

∑⊕
p+q=k Λ

p,q.
Every differential form ω decomposes uniquely as

ω = ω1 + θ ∧ ω2 ,

where ω1, ω2 are horizontal and θ is the contact form. Moreover, a d∗-closed form
ω is uniquely determined by its horizontal component ω1.

From now on it is very convenient to introduce a special “test space” S0, con-
tained in the Schwartz space, together with its corresponding spaces of forms, S0Λ

k,
S0Λ

p,q etc., which are cores for Δk and the other self-adjoint operators that will
appear.

For forms in the core, we have enough flexibility to perform all the required
operations in a rather formal way, leaving the extensions to L2-closures for the very
end. For instance, we can say that to every horizontal form ω1 in the core we can
associate a “vertical component” θ ∧ ω2, also in the core, to form a d∗-closed form
ω1 + θ ∧ ω2 in the core.

Setting Φ(ω1) = ω1 + θ ∧ ω2, we can replace Δk by the conjugated (but no
longer differential) operator Dk = Φ−1 ◦ Δk ◦ Φ, which acts now on the space of
horizontal k-forms in the core and globally defined.

Here comes into play another invariance property of Δk, which is easily read
as a property of Dk and involves the horizontal symplectic form dθ. The following
identity holds (cf. Lemma 5.11) for a horizontal form ω of degree k:

(0.1) Dk(dθ ∧ ω) = dθ ∧ (Dk−2 + n− k + 1)ω .

This brings in the Lefschetz decomposition of the space of horizontal forms, as
adapted in [MPR1] from the classical context of Kähler manifolds [W]. Denoting
by e(dθ) the operator of exterior multiplication by dθ and by i(dθ) its adjoint, it is
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INTRODUCTION 5

then natural to think of the core S0Λ
p,q in the space of horizontal (p, q)-forms as

the direct sum

S0Λ
p,q =

min{p,q}∑
j=0

e(dθ)j ker i(dθ) .

Here each summand is Dk-invariant, and the conjugation formula (0.1) allows
us to focus our attention on ker i(dθ).

Nevertheless, ker i(dθ) still is too big a space to allow a reduction of Dk to
scalar operators. It is however easy to identify, for each pair (p, q) with p+ q = k,
a proper Dk-invariant subspace of ker i(dθ) ∩ S0Λ

p,q, namely

W p,q
0 = {ω ∈ S0Λ

p,q : ∂∗ω = ∂̄∗ω = 0} .

It turns out that Dk acts as a scalar operator on W p,q
0 , so that the L2-closure

Vp,q
0 of Φ(W p,q

0

)
will be one of the spaces Vν we are looking for.2

Next, we take to the orthogonal complement of

W k
0 =

∑⊕

p+q=k

W p,q
0

in S0Λ
k
H . We have

(W k
0 )

⊥ =
{
∂ξ + ∂̄η : ξ, η ∈ S0Λ

k−1
H

}
,

and we can telescopically expand this splitting to obtain that

S0Λ
k
H = W k

0 ⊕
{
∂ξ + ∂̄η : ξ, η ∈ S0Λ

k−1
H

}
= W k

0 ⊕
{
∂ξ + ∂̄η : ξ, η ∈ W k−1

0

}
⊕

{
∂̄∂ξ + ∂∂̄η : ξ, η ∈ S0Λ

k−2
H

}
= W k

0 ⊕
{
∂ξ + ∂̄η : ξ, η ∈ W k−1

0

}
⊕

{
∂̄∂ξ + ∂∂̄η : ξ, η ∈ W k−2

0

}
⊕ · · ·

=
∑⊕

p+q=k

W p,q
0 ⊕

∑⊕

p+q=k−1

{
∂ξ + ∂̄η : ξ, η ∈ W p,q

0

}
⊕

∑⊕

p+q=k−2

{
∂̄∂ξ + ∂∂̄η : ξ, η ∈ W p,q

0

}
⊕ · · ·

The subspaces

W p,q
1 =

{
∂ξ + ∂̄η : ξ, η ∈ W p,q

0

}
(p+ q = k − 1)

W p,q
2 =

{
∂̄∂ξ + ∂∂̄η : ξ, η ∈ W p,q

0

}
(p+ q = k − 2)

etc.

generated in this way are Dk-invariant and mutually orthogonal.
Matters are simplified by the fact that, for j ≥ 1,

W p,q
j+2 = e(dθ)W p,q

j .

So only W p,q
0 , W p,q

1 and part of W p,q
2 are contained in ker i(dθ). Setting

W p,q
1,� = e(dθ)�W p,q

1 , W p,q
2,� = e(dθ)�W p,q

2 ,

we obtain that

S0Λ
k
H =

∑⊕

p+q=k

W p,q
0 ⊕

∑⊕

p+q+2�=k−1

W p,q
1,� ⊕

∑⊕

p+q+2�=k−2

W p,q
2,� .

2W p,q
0 is nontrivial, unless p+ q = n and 0 < p < n, cf. Proposition 5.3.
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6 D. MÜLLER, M. M. PELOSO, and F. RICCI

On each W p,q
0 and W p,q

2 , Dk acts as a scalar operator, as required.
The situation is not so simple with W p,q

1 , because the best one can obtain is a
representation of Dk as a 2× 2 matrix of scalar operators, after parametrizing the
elements of W p,q

1 with pairs (ξ, η) of forms in W p,q
0 :(

ξ′

η′

)
=

(
m11(L, i

−1T ) m12(L, i
−1T )

m21(L, i
−1T ) m22(L, i

−1T )

)(
ξ
η

)
.

A formal computation can be used on the core to produce “eigenvalues”
λ±(L, i

−1T ) and the splitting of W p,q
1 as the sum of the two “eigenspaces” W p,q,±

1 .
The final decomposition is in formula (8.1).
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CHAPTER 1

Differential forms and the Hodge Laplacian on Hn

The Heisenberg group Hn is Cn × R with product

(1.2) (z, t)(z′, t′) =
(
z + z′, t+ t′ − 1

2
�m 〈z, z′〉

)
.

On its Lie algebra, also identified with Cn × R, we introduce the standard
Euclidean inner product, and we consider the left-invariant Riemannian metric on
Hn induced by it. The complex vector fields

Zj =
√
2
(
∂zj −

i

4
z̄j∂t

)
, Z̄j =

√
2
(
∂z̄j +

i

4
zj∂t

)
, T = ∂t

(with 1 ≤ j ≤ n) form an orthonormal basis of the complexified tangent space at
each point, and the only nontrivial commutators involving the basis elements are

(1.3) [Zj , Z̄j ] = iT .

The dual basis of complex 1-forms is

(1.4) ζj =
1√
2
dzj , ζ̄j =

1√
2
dz̄j , θ = dt+

i

4

n∑
j=1

(z̄jdzj − zjdz̄j) .

The differential of a function f is therefore

df =
n∑

j=1

(
Zjfζj + Z̄jf ζ̄j

)
+ Tfθ .

This formula extends to forms, once we observe that dζj = dζ̄j = 0 and the
differential of the contact form θ is the symplectic form on Cn,

(1.5) dθ = −i
n∑

j=1

ζj ∧ ζ̄j .

A differential form ω is horizontal if θ�ω = 0, i.e. if

(1.6) ω =
∑
I,I′

fI,I′ζI ∧ ζ̄I
′
.

Every form ω decomposes as

(1.7) ω = ω1 + θ ∧ ω2 ,

with ω1, ω2 horizontal.
A differential operator D acting on scalar-valued functions is extended to forms

by letting D act separately on each scalar component (1.6) of each horizontal com-
ponent (1.7). Such operators will be called scalar operators.

7
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8 D. MÜLLER, M. M. PELOSO, and F. RICCI

The partial differentials ∂, ∂̄, dH (resp. holomorphic, antiholomorphic, hori-
zontal differential) of a form ω are defined as

(1.8) ∂ω =

n∑
j=1

ζj ∧ Zjω , ∂̄ω =

n∑
j=1

ζ̄j ∧ Z̄jω , dHω = ∂ω + ∂̄ω .

As in [MPR1], Prop. 2.2, for ω = fζI ∧ ζ̄I
′
,

(1.9) ∂ω =
∑
�,J

εJ�,I(Z�f)ζ
J ∧ ζ̄I

′
, ∂̄ω = (−1)|I|

∑
�,J′

εJ
′

�,I′(Z̄�f)ζ
I ∧ ζ̄J

′
,

where εJ�,I = 0 unless � �∈ I and {�} ∪ I = J , in which case

εJ�,I =
∏
i∈I

sgn (i− �) .

Obviously, they act separately on each horizontal component (1.7) of ω, and
the same is true for their adjoints ∂∗, ∂̄∗, d∗H , where

(1.10) ∂∗ω = −
∑
�,J

εI�,J (Z̄�f)ζ
J ∧ ζ̄I

′
, ∂̄∗ω = (−1)|I|+1

∑
�,J′

εI
′

�,J′(Z�f)ζ
I ∧ ζ̄J

′
.

Moreover, ∂2 = ∂̄2 = ∂∗2 = ∂̄
∗2

= 0.
Two operators that will play a fundamental role in this paper are

(1.11) e(dθ)ω = dθ ∧ ω and i(dθ)ω = e(dθ)∗ω = dθ�ω .

Together with ∂ and ∂̄, they satisfy the following identities:

(1.12)
∂∂̄ + ∂̄∂ = d2H = −Te(dθ) ,

∂∗∂̄∗ + ∂̄∗∂∗ = d∗H
2 = Ti(dθ) ,

and

(1.13) ∂∂̄∗ = −∂̄∗∂ and ∂∗∂̄ = −∂̄∂∗ .

Other formulas involving ∂, ∂̄, e(dθ) and their adjoints are

(1.14)

[
i(dθ), ∂

]
= −i∂̄∗ ,

[
i(dθ), ∂̄

]
= i∂∗ ,[

∂∗, e(dθ)
]
= i∂̄ ,

[
∂̄∗, e(dθ)

]
= −i∂ ,

(1.15)
[
i(dθ), ∂∗] = [

i(dθ), ∂̄∗] = 0 =
[
e(dθ), ∂

]
=

[
e(dθ), ∂̄

]
and

(1.16)
[
i(dθ), e(dθ)

]
= (n− k)I .

For these formulas and the following in this chapter, we refer to [MPR1].
We define the holomorphic, antiholomorphic and horizontal Laplacians as

(1.17)

� = ∂∂∗ + ∂∗∂ ,

� = ∂̄∂̄∗ + ∂̄∗∂̄ ,

ΔH = dHd∗H + d∗HdH = � + � .
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1. DIFFERENTIAL FORMS AND THE HODGE LAPLACIAN ON Hn 9

Each of these Laplacians acts componentwise. Calling (p, q)-form a horizontal
form of type

ω =
∑

|I|=p , |I′|=q

fI,I′ζI ∧ ζ̄I
′
,

and introducing the sublaplacian

(1.18) L = −
n∑

j=1

(ZjZ̄j + Z̄jZj) ,

the operators �,�,ΔH coincide on (p, q)-forms with the following scalar operators:

(1.19)

� =
1

2
L+ i

(n
2
− p

)
T ,

� =
1

2
L− i

(n
2
− q

)
T ,

ΔH = L+ i(q − p)T .

To be more explicit, we shall occasionally denote the “box”’ operators by �p

and �q when they act on (p, s) and (r, q)-forms, respectively. Some commutation
relations that we will use are (see [MPR1])

(1.20)
�∂̄ = ∂̄(� − iT ) , �∂̄∗ = ∂̄∗(� + iT ) ,

�∂ = ∂(� + iT ) , �∂∗ = ∂∗(� − iT ) .

The full differential d of a form ω = ω1+θ∧ω2 and its adjoint d∗ are represented,
in terms of the pair (ω1, ω2), by the matrices

(1.21) d =

(
dH e(dθ)
T −dH

)
, d∗ =

(
d∗H −T
i(dθ) −d∗H

)
,

and the Hodge Laplacian Δ = dd∗ + d∗d by the matrix

(1.22)

Δ =

⎛⎝ΔH − T 2 + e(dθ)i(dθ)
[
d∗H , e(dθ)

]
[
i(dθ), dH

]
ΔH − T 2 + i(dθ)e(dθ)

⎞⎠

=

⎛⎝ΔH − T 2 + e(dθ)i(dθ) i∂̄ − i∂

i∂∗ − i∂̄∗ ΔH − T 2 + i(dθ)e(dθ)

⎞⎠ .

When Δ acts on k-forms, it will be denoted by Δk. In particular,

Δ0 = L− T 2 .

We denote by Λk the k-th exterior product of the dual h∗n of the Lie algebra
of Hn (identified with the linear span of ζ1, . . . , ζn, ζ̄1, . . . , ζ̄n, θ), by Λk

H the k-th
exterior product of the horizontal distribution (i.e. the linear span of the ζj , ζ̄j),
and by Λp,q the space of elements of bidegree (p, q) in Λk

H . Symbols like LpΛk,
SΛp,q etc., denote the space of Lp-sections, S-sections etc., of the corresponding
bundle over Hn. Clearly, L

pΛk ∼= Lp ⊗ Λk etc.
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CHAPTER 2

Bargmann representations and sections of
homogeneous bundles

The L2-Fourier analysis on the Heisenberg group involves the family of infinite
dimensional irreducible unitary representations {πλ}λ �=0 such that πλ(0, t) = eiλtI.
These representations are most conveniently realized for our purposes in a modified
version of the Bargmann form [F].

Let F = F(Cn) be the space of entire functions F on Cn such that

‖F‖2F =

∫
Cn

|F (w)|2e− 1
2 |w|2 dw < ∞ .

The family of Bargmann representations πλ on F is defined, for λ �= 0, as
follows:

(i) for λ = 1,

(2.1)
(
π1(z, t)F

)
(w) = eite−

1
2 〈w,z〉− 1

4 |z|
2

F (w + z) .

(ii) For λ > 0,

(2.2) πλ(z, t) = π1(λ
1
2 z, λt) ;

(iii) for λ < 0,

(2.3) πλ(z, t) = π−λ(z̄,−t) .

The unitary group U(n) acts on Hn through the automorphisms

(z, t) �−→ (z, t)g = (gz, t) ,
(
g ∈ U(n)

)
,

and on L2(Hn) through the representation(
α(g)f

)
(z, t) = f

(
(z, t)g

−1)
.

We also consider the pair of contragradient representations U, Ū of U(n) on F ,
given by

(2.4) UgF = F ◦ g−1 , Ūg = Uḡ .

Then

(2.5)
πλ(gz, t) = Ug πλ(z, t)Ug−1 , for λ > 0 ,

πλ(gz, t) = Ūg πλ(z, t) Ūg−1 , for λ < 0 .

The representation U in (2.4) splits into irreducibles according to the decom-
position of F

(2.6) F =
∑
j≥0

Pj ,

11
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12 D. MÜLLER, M. M. PELOSO, and F. RICCI

where Pj denotes the space of homogeneous polynomials of degree j.
We denote by Pj the orthogonal projection of F on Pj , and by F∞ the space

of functions F ∈ F such that

(2.7) ‖PjF‖F = o(j−N ) , ∀N ∈ N .

Then F∞ is the space of C∞-vectors for all representations πλ.
The differential of πλ is given by1 πλ(T ) = iλ and

(2.8) πλ(Z�) =

{√
2λ∂w�

if λ > 0

−
√

|λ|
2 w� if λ < 0 ;

πλ(Z̄�) =

{
−
√

λ
2 w� if λ > 0√

2|λ| ∂w�
if λ < 0 .

We adopt the following definition of πλ(f):

(2.9) πλ(f) =

∫
Hn

f(x)πλ(x)
−1 dx ∈ L(F ,F) .

Notice that πλ(f ∗ g) = πλ(g)πλ(f), but this disadvantage is compensated by a
simpler formalism when dealing with forms or more general vector-valued functions.

The Plancherel formula for f ∈ L2 is

‖f‖22 = cn

∫ +∞

−∞
‖πλ(f)‖2HS |λ|n dλ = cn

∫ +∞

−∞

∑
j,j′

‖Pjπλ(f)Pj′‖2HS |λ|n dλ .

Let V be a finite dimensional Hilbert space. Defining πλ(f) for V -valued func-
tions f by (2.9), we have

πλ(f) ∈ L(F ,F)⊗ V ∼= L(F ,F ⊗ V ) .

Suppose now that V is the representation space of a unitary representation ρ of
U(n), and consider the two representations U ⊗ρ, Ū ⊗ρ of U(n) on F ⊗V . Denote

by Σ+ = Σρ,+ (resp. Σ− = Σρ,−) the set of irreducible representations σ ∈ Û(n)
contained in U ⊗ ρ (resp. in Ū ⊗ ρ), and let

(2.10) F ⊗ V =
⊕
σ∈Σ±

E±
σ

be the corresponding orthogonal decompositions into U(n)-types. When V = C,
the decomposition (2.10) reduces to (2.6). To indicate the dependence on ρ, we
shall sometime also write E±

σ = Eρ,±
σ .

Lemma 2.1. Each E±
σ is finite dimensional and decomposes into U(n)-invariant

subspaces

E±
σ =

⊕
j

E±
σ ∩

(
Pj ⊗ V

)
.

In particular E±
σ ⊂ F ⊗ V . More precisely, E±

σ ⊂ F∞ ⊗ V , where F∞ is defined in
(2.7).

1Even though dπλ(D) is the more standard notation, we prefer to reduce the number of d’s
around.
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2. BARGMANN REPRESENTATIONS AND SECTIONS OF HOMOGENEOUS BUNDLES 13

Proof. We only discuss the case of U ⊗ ρ. For every j, Pj ⊗V is an invariant

subspace. Therefore, for σ ∈ Û(n), E+
σ =

∑
j E+

σ ∩ (Pj ⊗ V ). Let χj , χρ, χσ be the
characters of U|Pj

, ρ, σ respectively. The multiplicity of σ in Pj ⊗ V is then given

by ∫
U(n)

χj(g)χρ(g)χσ(g) dg = 〈χj , χρχσ〉 ,

which is the multiplicity of U|Pj
in ρ̄⊗ σ (with ρ̄ denoting the contragredient of ρ).

Since this representation is finite dimensional, the multiplicity can be positive only
for a finite number of j. It follows that E+

σ has finite dimension.
Since E±

σ consists of V -valued polynomials, it is obviously contained in G⊗ V .
Q.E.D.

The decomposition of F ⊗ V given above leads to the following form of the
Plancherel formula for L2V , with P±

σ denoting the orthogonal projection of F ⊗ V
onto E±

σ :

(2.11)

‖f‖22 = cn

∫ +∞

−∞

∑
j∈N , σ∈Σsgnλ

‖P sgnλ
σ πλ(f)Pj‖2HS |λ|n dλ

= cn

∫ +∞

−∞

∑
σ∈Σsgnλ

‖P sgnλ
σ πλ(f)‖2HS |λ|n dλ .

Let ρ′ be another unitary representation of U(n) on a finite dimensional Hilbert
space V ′. The convolution

f ∗K(x) =

∫
Hn

K(y−1x)f(y) dy

of integrable functions f with values in V and K with values in L(V, V ′) produces
a function taking values in V ′. In the representations πλ, λ �= 0,

πλ(K) ∈ L(F ,F)⊗ L(V, V ′) ∼= L(F ⊗ V,F ⊗ V ′) ,

and
πλ(f ∗K) = πλ(K)πλ(f) ∈ L(F ,F ⊗ V ′) .

Let ρ̃ (resp. ρ̃′) be the representation α⊗ ρ on L2V (resp. α ⊗ ρ′ on L2V ′) of
U(n) and suppose that convolution by K is an equivariant operator, i.e.

(2.12) ρ̃′(g)(f ∗K) =
(
ρ̃(g)f

)
∗K

for g ∈ U(n) and f ∈ SV . Since for f ∈ SV and ξ ∈ F , with λ > 0,

πλ

(
ρ̃′(g)(f ∗K)

)
ξ =

∫∫
ρ′(g)K(y−1x)f(y)Ugπλ(x

−1)Ug−1ξ dydx,

πλ

(
(ρ̃(g)f) ∗K)

)
ξ =

∫∫
K(y−1x)ρ(g)f(yg

−1

)πλ(x
−1)ξ dydx,

by letting f tend weakly to δ0 ⊗ v, with v ∈ V, we see that (2.12) implies∫
ρ′(g)K(x)v Ugπλ(x

−1)Ug−1ξ dx =

∫
K(x)ρ(g)v πλ(x

−1)ξ dx.

Replacing ξ by Ugξ, we obtain

Ug ⊗ ρ′(g)
(
πλ(K)(ξ ⊗ v)

)
= πλ(K)(Ug ξ ⊗ ρ(g)v)
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14 D. MÜLLER, M. M. PELOSO, and F. RICCI

for every ξ ∈ F , v ∈ V. A similar formula holds for λ < 0 with Ū in place of U . Thus
(2.12) implies the following identities, for K defining an equivariant convolution
operator:

(2.13)
(U ⊗ ρ′)(g)πλ(K) = πλ(K)(U ⊗ ρ)(g) , λ > 0

(Ū ⊗ ρ′)(g)πλ(K) = πλ(K)(Ū ⊗ ρ)(g) , λ < 0

for g ∈ U(n), i.e. πλ(K) intertwines U⊗ρ and U⊗ρ′, or Ū⊗ρ and Ū⊗ρ′ depending
on the sign of λ. The following is an immediate consequence.

Lemma 2.2. Assume that convolution by K ∈ L1 ⊗ L(V, V ′) is an equivariant

operator. Then, setting Σρ,ρ′,sgnλ = Σρ,sgnλ ∩ Σρ′,sgnλ,

πλ(K) =
⊕

σ∈Σρ,ρ′,sgnλ

πλ,σ(K) ,

with πλ,σ(K) : Eρ,sgnλ
σ → Eρ′,sgnλ

σ .

By a variant of Schwartz’s Kernel Theorem, the convolution operators D with
kernels K ∈ S ′(Hn)⊗ L(V, V ′) are characterized as the continuous operators from
S(Hn) ⊗ V to S ′(Hn) ⊗ V ′ that commute with left translations on Hn. Lemma
2.2 applies to operators of this kind, provided that the Fourier transform πλ(K) is
well defined for λ �= 0. This is surely the case if K has compact support, and in
particular for a left-invariant differential operator Df = f ∗ (Dδ0). We then have

πλ(Df) = πλ(Dδ0)πλ(f) = πλ(D)πλ(f) .

We apply these remarks to the differentials and Laplacians introduced in Chap-
ter 1.

With ρk denoting the representation of U(n) on Λk induced from its action on
Hn by automorphisms, and, as before let ρ̃k = α⊗ ρk be the tensor product acting
on L2Λk. Then d, d∗,Δk are equivariant operators. The same applies to ∂, ∂̄, dH
etc. on the appropriate L2-subbundles.

Notice that �,� and ΔH have the special property of acting scalarly on (p, q)-
forms, by (1.19). Since the sublaplacian L has the property that πλ(L) acts as a
scalar multiple of the identity (namely, as |λ|(2m + n)I) on Pm ⊂ F , the same is
true for the image of �,�,ΔH under πλ.
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CHAPTER 3

Cores, domains and self-adjoint extensions

For 0 < δ < R and N ∈ N, denote by Sδ,R,N (Hn) the space of functions f
satisfying the following properties:

(i) f ∈ S(Hn);
(ii) πλ(f) = 0 for |λ| ≤ δ and |λ| ≥ R;
(iii) for δ < |λ| < R, Pjπλ(f) = 0 for j > N .

We set S0 =
⋃

δ,R,N Sδ,R,N .

Lemma 3.1. S0 is invariant under left translations, and dense in L2.

Proof. The first statement follows from the identity πλ(L(z,t)f) =

πλ(f)πλ(z, t)
−1, where L(z,t)f is the left translate of f ∈ S0 by (z, t)−1. Take

now f ∈ S. For δ, R > 0, fix a C∞-function uδ,R(λ) on R, with values in [0, 1],
supported where δ ≤ |λ| ≤ R and equal to 1 where 2δ ≤ |λ| ≤ R/2.

Given ε > 0, by Plancherel’s formula it is possible to find δ, R > 0 and N ∈ N

such that the L2- function g such that πλ(g) = uδ,R(λ)
∑

j≤N Pjπλ(f) approximates

f in L2 by less than ε.
We claim that g is in S, hence in S0, and this will conclude the proof, by the

density of S in L2.
By definition, g = f ∗h, where h is the function with πλ(h) = uδ,R(λ)

∑
j≤N Pj .

By explicit computation of the matrix entries of the representations of Hn [Th],

the Fourier transform h(z, λ̂) of h in the t-variable equals

h(z, λ̂) = uδ,R(λ)
∑
j≤N

ψj(|λ|
1
2 z) ,

where the ψj are Schwartz functions on Cn. Hence h ∈ S(Hn) and so is g. Q.E.D.

We regard S0 as the inductive limit of the spaces Sδ,R,N , each with the topology
induced from S.

Obviously, S0V = S0 ⊗ V is contained in SV and dense in L2V . Assume,
as in Chapter 2, that V is a finite dimensional Hilbert space on which U(n) acts
unitarily by the representation ρ. Taking into account the action of U(n), one can
then introduce a different chain of subspaces filling up S0V . Given 0 < δ < R,
N ∈ N and finite subsets X± of Σ±, define Sδ,R,X±V as the space of functions f
such that

(i’) f ∈ S(Hn)⊗ V ;
(ii’) πλ(f) = 0 for |λ| ≤ δ and |λ| ≥ R;
(iii’) for δ < |λ| < R, P sgnλ

σ πλ(f) = 0 for σ �∈ Xsgnλ;

15
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16 D. MÜLLER, M. M. PELOSO, and F. RICCI

It follows from Lemma 2.1 that finite unions of the Sδ,R,X±V exhaust finite
unions of the Sδ,R,NV and viceversa.

In order to develop the L2-analysis of differentials and Laplacians, we establish
some general facts about densely defined operators from L2V to L2V ′, wih (V, ρ),
(V ′, ρ′) finite-dimensional representation spaces of U(n). Precisely, we consider
operators whose initial domain is S0V and which map S0V into S0V

′, continuously
with respect to the Schwartz topologies. Most of the operators to be considered in
this paper will belong to this class.

Lemma 3.2.

(i) Let (V, ρ), (V ′, ρ′) be finite-dimensional representation spaces of U(n),
and let

B : S0V −→ S0V
′ ,

be a left-invariant linear operator, U(n)-equivariant and continuous with
respect to the S0-topologies. Then there exists a family of linear operators
Bλ,σ : Eρ,sgnλ

σ −→ Eρ′,sgnλ
σ , depending smoothly on λ �= 0, such that

(3.1) πλ(Bf) =
⊕

σ∈Σρ,ρ′,sgnλ

Bλ,σP
sgnλ
σ πλ(f) ,

(ii) Conversely, given any family of linear operators Bλ,σ : Eρ,sgnλ
σ −→ Eρ′,sgnλ

σ ,
depending smoothly on λ �= 0, there is a unique left-invariant operator
B : S0V −→ S0V

′, U(n)-equivariant and continuous with respect to the
S0-topologies, such that (3.1) holds for every f ∈ S0V . We set

πλ,σ(B) = Bλ,σ , Bλ =
∑

σ∈Σρ,ρ′,sgnλ

Bλ,σP
sgnλ
σ , πλ(B) = Bλ .

(iii) The closure of B as an operator from L2V to L2V ′ has domain dom (B)
consisting of those f ∈ L2V such that

(3.2)

∫ +∞

−∞

∑
σ

‖Bλ,σP
sgnλ
σ πλ(f)‖2HS |λ|n dλ < ∞ .

(iv) If (V, ρ) = (V ′, ρ′) and B is symmetric (equivalently, Bλ,σ is symmetric
for every λ, σ), then B is essentially self-adjoint.

(v) If B is symmetric and m is a Borel function on the real line such that
m(Bλ,σ) is well defined for every λ, σ, the domain of m(B) is the space
of those f ∈ L2V such that∫ +∞

−∞

∑
σ

∥∥m(Bλ,σ)P
sgnλ
σ πλ(f)

∥∥2

HS
|λ|n dλ < ∞ .

Moreover, the space S0V ∩ dom
(
m(B)

)
is a core for m(B) and the

identity

〈m(B)f, g〉 = cn

∫ +∞

−∞

∑
σ

tr
(
m(Bλ,σ)P

sgnλ
σ πλ(f)πλ(g)

∗) |λ|n dλ
holds for f ∈ dom

(
m(B)

)
and g ∈ L2V .
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3. CORES, DOMAINS AND SELF-ADJOINT EXTENSIONS 17

Proof. To prove (i), let {Φ�}�∈N be an enumeration of the orthonormal basis
of monomials in F . Define linear operators E�,�′ : F → F by setting E�,�′F =
〈F,Φ�′〉FΦ�. Let also {ei} and {e′j} be (finite) bases of V and V ′ respectively.

Given two compact intervals [a, b] and [a′, b′] such that [a, b] ⊂ [a′, b′]0, with
a′ > 0 (for intervals contained in R− the proof is similar) and � ∈ N, there exists
g� ∈ S0 such that πλ(g�) = E�,� for λ ∈ [a, b] and πλ(g�) = 0 for λ �∈ [a′, b′] (cf. the
proof of Lemma 3.1 and [Th]).

Then B(g� ⊗ ei) ∈ S0V
′ and

(3.3) πλ

(
B(g� ⊗ ei)

)
=

∑
j

(∑
h,k

c�,ih,k,j(λ)Eh,k

)
⊗ e′j ,

where the sum in h ranges over a fixed finite set of indices independent of λ. The

coefficients c�,i�,�′,j are smooth in λ and, since B is left-invariant, supported in [a′, b′].

Take now f =
∑

i fi ⊗ ei ∈ S0V , with πλ(f) = 0 for λ �∈ [a, b]. Then

f =
∑
i,�

(fi ∗ g� ∗ g�)⊗ ei ,

where the sum is finite. Hence, by the continuity assumption on B,

Bf =
∑
i,�

(fi ∗ g�) ∗B(g� ⊗ ei) .

Introducing the notation

f̂i(λ, �, �
′) = 〈πλ(fi)Φ�′ ,Φ�〉F ,

we have
πλ(fi ∗ g�) = E�,� πλ(fi) =

∑
�′

f̂i(λ, �, �
′)E�,�′ .

The composition πλ

(
B(g� ⊗ ei)

)
πλ(fi ∗ g�) is well defined, because the second

factor has the one-dimensional range CΦ�. Therefore the index k in (3.3) can only
assume the value �, and

πλ(Bf) =
∑
j

(∑
i,�

∑
h

c�,ih,�,j(λ)Eh,�

∑
�′

f̂i(λ, �, �
′)E�,�′

)
⊗ e′j

=
∑
j

(∑
i

∑
h,�′

(∑
�

c�,ih,�,j(λ)f̂i(λ, �, �
′)
)
Eh,�′

)
⊗ e′j .

The infinite matrix Ci,j(λ) =
(
c�,ih,�,j(λ)

)
h,�

has only a finite number of nonzero

entries, hence it defines a linear operator Bλ
i,j from the linear span of the Φ� (i.e.

the space of polynomials inside F) into itself, by setting

Bλ
i,jΦ� =

∑
h

c�,ih,�,j(λ)Φh.

Notice that Bλ
i,jE�,�′ =

∑
h c

�,i
h,�,j(λ)Eh,�′ . Then, setting E

′
j,i = 〈·, ei〉V e′j ∈ L(V, V ′),

one easily verifies that

(3.4) Bλ =
∑
i,j

Bλ
i,j ⊗ E′

j,i ,

maps V -valued polynomials into V ′-valued polynomials and

(3.5) πλ(Bf) = Bλπλ(f) ,
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18 D. MÜLLER, M. M. PELOSO, and F. RICCI

for every f ∈ S0V with πλ(f) = 0 for λ �∈ [a, b].
It is now easy to prove that for λ ∈ [a, b], Bλ is uniquely defined by the identity

(3.5), which shows that it does not depend on the choice of the functions g�, and
that if we repeat the same argument starting with a larger interval [a#, b#] ⊃ [a, b]

contained in R+, the new operators B#
λ coincide with Bλ for λ ∈ [a, b]. Covering

the positive half-line by compact intervals of this type and repeating the same
argument on the negative half-line, we find a unique map λ �−→ Bλ defined for
λ �= 0 and for which (3.5) holds for every f ∈ S0V .

Since B is U(n)-equivariant, a repetition of the proof of Lemma 2.2 shows

that Bλ maps Eρ,sgnλ
σ into Eρ′,sgnλ

σ for every σ ∈ Σρ,ρ′,sgnλ. It is obvious from

the smoothness of the coefficients c�,ih,�,j that the restricted operators Bλ,σ depend
smoothly on λ.

The proof of (ii) is quite obvious.

To prove (iii), denote by B̃ be the operator on dom (B), defined in (3.2), such

that πλ(B̃f) = Bλπλ(f). It is easy to verify that B̃ is closed and that S0V is dense

in dom (B) in the graph norm of B̃. Since B̃ coincides with B on S0V ⊂ SV , B̃ is
the closure of B.

To prove (iv), assume that B is symmetric. Then each operator Bλ,σ is self-
adjoint, hence so is πλ(B). If B′ is the adjoint of B, taking g in the domain of B′

and f ∈ S0V , we have

〈B′g, f〉 = 〈g,Bf〉

= cn

∫ +∞

−∞

∑
σ

tr
(
πλ(f)

∗πλ(B)P sgnλ
σ πλ(g)

)
|λ|n dλ

= cn

∫ +∞

−∞

∑
σ

tr
(
πλ(f)

∗Bλ,σP
sgnλ
σ πλ(g)

)
|λ|n dλ .

By the arbitrariness of πλ(f) subject to conditions (i’)-(iii’), we conclude that∫ +∞

−∞

∑
σ

‖Bλ,σP
sgnλ
σ πλ(g)‖2HS |λ|n dλ < ∞ ,

i.e. g ∈ dom (B), and that πλ(B
′g) = πλ(B)πλ(g), i.e. B

′g = B̃g.
Finally, (v) is proved in a similar way. Q.E.D.

Consistently with the identity πλ

(
m(B)

)
= m

(
πλ(B)

)
, we write πλ,σ

(
m(B)

)
for m

(
πλ,σ(B)

)
.

Remark 3.3. As a typical instance of operations that will be done in the sequel,
consider an expression like dΔ−1

k . As soon as we find out that the finite-dimensional
operators πλ,σ(Δk) are invertible and depend smoothly on λ (see the next Chapter),
an operator Ψ satisfying the identity ΨΔk = d is automatically defined on S0Λ

k

with values in S0Λ
k+1 by imposing that

πλ(Ψω) =
∑
σ

πλ,σ(d)πλ,σ(Δk)
−1Pλ

σ πλ(ω) .

Its closure Ψ̄ is defined on the space consists of the ω ∈ L2Λk such that∫ +∞

−∞

∑
σ

‖πλ,σ(d)πλ,σ(Δk)
−1Pλ

σ πλ(ω)‖2HS |λ|n dλ < ∞ .
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3. CORES, DOMAINS AND SELF-ADJOINT EXTENSIONS 19

Notice that formal identities, like

(i) dΔ−1
k = (dΔ

− 1
2

k )Δ
− 1

2

k ;

(ii) πλ(dΔ
−1
k ) = πλ(d)πλ(Δ

−1
k );

(iii) πλ,σ(dΔ
−1
k ) = πλ,σ(d)πλ,σ(Δ

−1
k );

are fully justified on S0Λ
k.

In many instances we will make use of homogeneity properties of operators B
as those considered in Lemma 3.2. As before, we assume that (V, ρ), (V ′, ρ′) are
finite dimensional representations of U(n).

We assume that the multiplicative group R+ acts on V by means of the linear
representation γ : R+ → L(V ) and on V ′ by means of the linear representation
γ′ : R+ → L(V ′) such that the operators γ(r) and γ′(r) are self-adjoint, and in
such a way that each of these actions commutes with the corresponding action of
U(n) (on V given by ρ and on V ′ given by ρ′).

We also denote by δr the dilating automorphism of Hn defined by

δr(z, t) := (r1/2z, rt), r > 0 ,

and let R+ act on functions on Hn by the representation

β(r)f := f ◦ δr−1 .

Then B is said to be homogeneous of degree a if

(3.6) B ◦ (β ⊗ γ)(r) = r−a (β ⊗ γ′)(r) ◦B on S0V, for every r > 0 .

We shall repeatedly use the following lemma, which applies in particular to
operators such as ∂, ∂̄, dH etc.

Lemma 3.4. Let (V, ρ), (V ′, ρ′) be finite dimensional unitary representations of
U(n) and let β, γ, γ′ be as above.

If B is a U(n)- equivariant, left-invariant operator as in Lemma 3.2 (i), ho-
mogeneous in the sense of (3.6) for some a ∈ R, then

ranB ∩ S0V
′ = B(S0V ).

Proof. We just have to verify that

ranB ∩ S0V
′ ⊆ B(S0V ) ,

the other implication being contained in the assumptions.
The homogeneity of B implies that

(3.7) πλ(B) = |λ|a (I ⊗ γ′(|λ|−1)) πsgnλ(B) (I ⊗ γ(|λ|)) .
Assume in fact that f ∈ S0V . For λ �= 0, πλ(f) ∈ L(F ,F ⊗ V ) and, by (2.2)

and (2.3),

(I ⊗ γ(|λ|)) πλ(f) = (I ⊗ γ(|λ|)) πsgnλ

(
β(λ)f

)
= πsgnλ

(
(β ⊗ γ)(|λ|)f

)
.

Similarly,

(I ⊗ γ′(|λ|)) πλ(Bf) = πsgnλ((β ⊗ γ′)(|λ|)(Bf)),

and thus, by the homogeneity (3.6) of B,

(I⊗γ′(|λ|)) πλ(Bf) = |λ|a πsgnλ(B ((β⊗γ)(|λ|)f) ) = |λ|a πsgnλ(B)(I⊗γ(|λ|)) πλ(f).

This yields (3.7).
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20 D. MÜLLER, M. M. PELOSO, and F. RICCI

Since γ and γ′ commute with ρ and ρ′, I ⊗ γ respects the decomposition

F ⊗ V =
⊕

σ∈Σρ,±

E±
σ ,

in (2.10), we have

(3.8) Bλ,σ = |λ|a
(
I ⊗ γ′(|λ|−1)

)
Bsgnλ,σ

(
I ⊗ γ(|λ|)

)
,

where Bλ,σ = πλ,σ(B) : Eρ,sgnλ
σ −→ Eρ′,sgnλ

σ is the operator defined in (3.1).
We restrict now our attention to λ = ±1 and write, for simplicity, B±

σ instead
of B±1,σ.

Since domain and codomain are finite dimensional, we have an inverse Q±
σ :

ranB±
σ −→ (kerB±

σ )⊥ of B±
σ |

(ker B
±
σ )⊥

. Denote by Q̃±
σ the extension of Q±

σ to Eρ,±
σ

equal to 0 on (ranB±
σ )⊥. If f ∈ S0V

′, define the function Jf by requiring that

P sgnλ
σ πλ(Jf) = |λ|−a(I ⊗ γ(|λ|−1))Q̃±

σ (I ⊗ γ′(|λ|))P sgnλ
σ πλ(f).

If f ∈ ranB ∩ S0V
′, then the range of P sgnλ

σ πλ(f) is contained in the range of
πλ,σ(B).

Choose 0 < δ < R such that (i) in the definition of S0V holds for f. Since for
δ ≤ |λ| ≤ R the functions γ′(|λ|) and γ(|λ|−1) are smooth in λ, it is easy to see that
Jf ∈ S0V. Moreover, applying (3.8) to g := Jf, we see that πλ(B(Jf)) = πλ(f),
hence f = B(Jf) ∈ B(S0V ). Q.E.D.

Proposition 3.5. Let (V, ρ), (V ′, ρ′), β, γ, γ′ be as above. Then the following
hold.

(i) If B is a U(n)- equivariant, left-invariant linear operator, homogeneous
in the sense of (3.6), and bounded from L2V to L2V ′, then B satisfies the
assumptions of Lemma 3.2 (i).

(ii) Assume that H ⊂ L2V is a closed subspace, which is invariant under left-
translation by elements of Hn, under the action of U(n) and invariant
under the dilations (β ⊗ γ)(r), r > 0. Then

S0V = (S0V ∩H)⊕ (S0V ∩H⊥) ,

where S0V ∩H is dense in H and S0V ∩H⊥ is dense in H⊥.

Proof. As in the proof of Lemma 3.2, let {Φ�}�∈N be an enumeration of the
orthonormal basis of monomials in F and set E�,�′F = 〈F,Φ�′〉FΦ�. Let also {ei}
and {e′j} be (finite) bases of V and V ′ respectively.

We fix an interval I = [a, b] with 0 < a < b and, for every � ∈ N, a function
g� ∈ S0 such that πλ(g�) = E�,� for λ ∈ I. Then B(g� ⊗ ei) ∈ L2V ′ and

(3.9) πλ

(
B(g� ⊗ ei)

)
=

∑
j

(∑
h,k

c�,ih,k,j(λ)Eh,k

)
⊗ e′j ,

with c�,ih,k,j ∈ L2(I) for every choice of the indices. Then almost every point λ ∈ I

is a Lebesgue point for all c�,ih,k,j and for
∑

h,k |c
�,i
h,k,j(λ)|2.

For every f =
∑

i fi ⊗ ei ∈ S0V and for a.e. λ ∈ I,

πλ(f) =
∑
i,�

πλ

(
(fi ∗ g�) ∗ (g� ⊗ ei)

)
,
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3. CORES, DOMAINS AND SELF-ADJOINT EXTENSIONS 21

where the sum is finite (say over � ≤ N). The invariance of B under translations
by elements (0, t) of the center of Hn implies that B preserves the λ-support of the
group Fourier transform. Therefore, we also have

πλ(Bf) =
∑
i,�

πλ

(
B((fi ∗ g�) ∗ (g� ⊗ ei))

)
,

for a.e. λ ∈ I. On the other hand, B
(
(fi ∗ g�) ∗ (g� ⊗ ei)

)
= (fi ∗ g�) ∗ B(g� ⊗ ei).

Hence, for a.e. λ ∈ I (say, λ ∈ Λ),

πλ(Bf) =
∑
i,�

πλ

(
B(g� ⊗ ei)

)
πλ(fi ∗ g�) .

The same computations in the proof of Lemma 3.2 produce an infinite matrix

Ci,j(λ) =
(
c�,ih,�,j(λ)

)
h,�

with at most N nonzero entries on each row, defined for

λ ∈ Λ. Defining Bλ by (3.4), we have that

(3.10) πλ(Bf) = Bλπλ(f) ,

for λ ∈ Λ.
Now, the homogeneity of B easily implies that, for λ, λ′ ∈ Λ,

Bλ = (λ/λ′)a
(
I ⊗ γ′(λ′/λ)

)
Bλ′

(
I ⊗ γ(λ/λ′)

)
.

This identity allows to extend Bλ as a smooth function of λ to every λ > 0.
Obviously, the same construction can be made for λ < 0. Then, for every f ∈

S0V , the identity (3.10) holds for every λ �= 0, which shows that B(S0V ) ⊂ S0V
′.

Then Lemma 2.2 and the following remarks imply that we are in the hypotheses of
Lemma 3.2 (ii).

In order to prove (ii), let us denote by P the orthogonal projection from L2V
onto H. Since H is invariant under left-translations, U(n)-invariant and dilation
invariant, P is a left-invariant operator which is U(n)-equivariant and homogeneous
of degree 0. Moreover, by the Schwartz kernel theorem, it is given by the convolution
Pf = f ∗ K with a tempered distribution kernel K taking values in L(V, V ). We
may therefore apply (i) to B := P and conclude by means of Lemma 3.4 that
P (S0V ) ⊂ S0V , and similarly, (I − P )(S0V ) ⊂ S0V . Q.E.D.
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CHAPTER 4

First properties of Δk; exact and closed forms

The domain dom (Δ0), defined according to Lemma 3.2, is the “left-invariant
Sobolev space” H2 consisting of those f ∈ L2 such that Xf,XY f ∈ L2 for every

X,Y ∈ hn. This follows from the L2 boundedness of the operators X(1 + Δ0)
− 1

2 ,

XY (1 + Δ0)
−1 [MPR1]. We also recall that the operators XYΔ−1

0 , XΔ
− 1

2
0 are

bounded on L2 for every X,Y ∈ hn.

For k ≥ 1, we have the analogous description of dom (Δk).

Lemma 4.1. For every k, dom (Δk) = H2Λk.

Proof. It is evident from (1.22) that H2Λk ⊂ dom (Δk).
Since Δ0 = L− T 2, identifying Δk with the matrix (1.22) we have

Δk =

(
Δ0 0
0 Δ0

)
+

⎛⎝ΔH − L+ e(dθ)i(dθ) i∂̄ − i∂

i∂∗ − i∂̄∗ ΔH − L+ i(dθ)e(dθ)

⎞⎠
= Δ0 + P .

where P is symmetric on H2Λk. By (1.19), each entry in P involves at most
first-order derivatives in the left-invariant vector fields. Therefore, for ω ∈ H2Λk,

‖Pω‖2 ≤ C
(
‖ω‖2 + ‖Δ

1
2
0 ω‖2

)
≤ C

(
‖ω‖2 + ‖Δ0ω‖

1
2
2 ‖ω‖

1
2
2

)
≤ C(1 + ε−1)‖ω‖2 + Cε‖Δ0ω‖2 ,

for every ε > 0. By the Kato-Rellich theorem [Ka], Δ0 + P is self-adjoint on
dom (Δ0) = H2Λk. Q.E.D.

The following statement is an immediate consequence.

Proposition 4.2. Δk is injective on its domain.

Proof. Let ω = ω1 + θ ∧ ω2 ∈ dom (Δk), with ω1, ω2 horizontal. Then

〈Δkω, ω〉 = 〈ΔHω1, ω1〉+ ‖Tω1‖22 + ‖i(dθ)ω1‖22 +
〈[
d∗H , e(dθ)

]
ω2, ω1

〉
+

〈[
i(dθ), dH

]
ω1, ω2

〉
+ 〈ΔHω2, ω2〉+ ‖Tω2‖22 + ‖e(dθ)ω2‖22 .

Notice that

〈ΔHω1, ω1〉 = ‖dHω1‖22 + ‖d∗Hω1‖22 ,

23
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24 D. MÜLLER, M. M. PELOSO, and F. RICCI

and the same holds for ω2. Moreover,〈[
d∗H , e(dθ)

]
ω2, ω1

〉
+

〈[
i(dθ), dH

]
ω1, ω2

〉
= 2�e

〈[
i(dθ), dH

]
ω1, ω2

〉
= 2�e

〈
dHω1, e(dθ)ω2

〉
− 2�e

〈
i(dθ)ω1, d

∗
Hω2

〉
≥ −‖dHω1‖22 − ‖e(dθ)ω2‖22 − ‖i(dθ)ω1‖22 − ‖d∗Hω2‖22 .

It follows that

(4.1) 〈Δkω, ω〉 ≥ ‖d∗Hω1‖22 + ‖dHω2‖22 + ‖Tω1‖22 + ‖Tω2‖22 .

Therefore, if Δkω = 0, then Tω = 0. Since πλ(T ) = iλ I, this implies that
πλ(ω) = 0 for almost every λ, and finally that ω = 0. Q.E.D.

Corollary 4.3. For every λ > 0 and σ ∈ Σ±, dπ±λ,σ(Δk) is invertible and
for every pair of elements u, v ∈ E±

σ , 〈π±λ,σ(Δk)u, v〉 is a polynomial in λ. For
every α > 0, Δ−α

k maps S0Λ
k into itself.

Proof. By (4.1), ‖Δ
1
2

k ω‖2 ≥ ‖Tω‖2 for every ω ∈ S0Λ
k. This implies that

‖πλ,σ(Δk)
1
2 ξ‖ ≥ |λ|‖ξ‖, ξ ∈ Esgnλ

σ ,

for every λ, σ with λ �= 0. The rest is obvious. Q.E.D.

We call Riesz transforms the operators

Rk = dΔ
− 1

2

k : S0Λ
k −→ S0Λ

k+1 ,

and their adjoints

R∗
k = Δ

− 1
2

k d∗ : S0Λ
k+1 −→ S0Λ

k .

Lemma 4.4. The following identities hold (with the convention that R−1 =
R2n+1 = 0):

Rk = Δ
− 1

2

k+1d , R∗
k = d∗Δ

− 1
2

k+1 ,(4.2)

Rk+1Rk = R∗
kR

∗
k+1 = 0 ,(4.3)

R∗
kRk +Rk−1R

∗
k−1 = I .(4.4)

In particular, RkRk−1 = 0.
Moreover, if 1 ≤ k ≤ 2n, Rk−1R

∗
k−1, R∗

kRk are orthogonal projections on

complementary orthogonal subspaces of L2Λk and Rk and R∗
k are partial isometries.

Proof. From the identity dΔk = Δk+1d on test functions we derive that

πλ,σ(d)πλ,σ(Δk) = πλ,σ(Δk+1)πλ,σ(d)

for all λ, σ. Hence

πλ,σ(d)πλ,σ(Δk)
− 1

2 = πλ,σ(Δk+1)
− 1

2 πλ,σ(d)

by finite-dimensional linear algebra. In turn, this gives the first identity of (4.2) on
S0Λ

k. The second identity is proved in the same way.
Then (4.3) follows from (4.2) and the identity d2 = 0.
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On S0Λ
k, by applying again πλ,σ to each term,

R∗
kRk +Rk−1R

∗
k−1 = Δ

− 1
2

k d∗dΔ
− 1

2

k +Δ
− 1

2

k dd∗Δ
− 1

2

k

= Δ
− 1

2

k ΔkΔ
− 1

2

k

= I ,

which gives (4.4).
Since the two summands on the left-hand side of (4.4) are positive operators,

they are L2-contractions. Since their sum is the identity and their product is zero
by (4.3), they are idempotent. This proves that they are orthogonal projections. It
follows that Rk and R∗

k−1 are partial isometries. Q.E.D.

The following statement gives the L2-Hodge decomposition of L2Λk, and in
particular that the cohomology groups of the De Rham complex are trivial.

Proposition 4.5. Let 1 ≤ k ≤ 2n. The following subspaces of L2Λk are the
same:

(i) the range of Rk−1R
∗
k−1;

(ii) the range of Rk−1;
(iii) kerRk;
(iv) ker d;

(v) d(S0Λk−1);

(vi) d(DΛk−1);
(vii) {ω ∈ L2Λk : ω = du in the sense of distributions for some u ∈ D′Λk−1}.

We call this space (L2Λk)d-ex or (L2Λk)d-cl. Similarly, the following spaces

(i’) the range of R∗
kRk;

(ii’) the range of R∗
k;

(iii’) kerR∗
k−1;

(iv’) ker d∗;

(v’) d∗(S0Λk+1);

(vi’) d∗(DΛk+1);
(vii’) {ω ∈ L2Λk : ω = d∗v in the sense of distributions for some v ∈ D′Λk+1}

are the same; we call them (L2Λk)d∗-ex or (L2Λk)d∗-cl.

Proof. Since Rk−1 is a partial isometry, its range is closed, and

ranRk−1 = (kerR∗
k−1)

⊥ = (kerRk−1R
∗
k−1)

⊥ = ranRk−1R
∗
k−1 .

This proves the identity of the spaces in (i) and (ii). In the same way one
proves the same for (i’) and (ii’). From Lemma 4.4 we then obtain the orthogonal
decomposition

L2Λk = ranRk−1 ⊕ ranR∗
k .

But ranR∗
k = (kerRk)

⊥, so that ranRk−1 = kerRk, i.e. (ii)=(iii).
By Plancherel’s formula and Lemma 3.2, ω ∈ ker d if and only if πλ,σ(d)πλ,σ(ω) =

0 for a.e. λ and every σ. By Corollary 4.3 and (4.2), this is equivalent to saying
that πλ,σ(Rk)πλ,σ(ω) = 0 for a.e. λ and every σ, i.e. that Rkω = 0. So (iii)=(iv).
By Corollary 4.3, d(S0Λ

k−1) = Rk−1(S0Λ
k−1) and this implies that (v)=(ii).

We thus have shown that the spaces (i) - (v) are the same, and the equality of
the spaces (i’)- (v’) are proved in the same way.
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26 D. MÜLLER, M. M. PELOSO, and F. RICCI

In order to prove that the spaces (i) - (v) agree also with the space (vi), we first

observe that d(DΛk−1) ⊂ ker d, since d2 = 0 on DΛk−1. We thus have d(DΛk−1) ⊂
Rk−1(L

2Λk−1). To prove that these spaces are indeed the same, it will suffice to
prove that σ ⊥ Rk−1(L

2Λk−1) whenever σ ∈ L2Λk satisfies σ ⊥ d(DΛk−1). But, the
latter condition means that d∗σ = 0 in the sense of distributions. So, by Lemma
3.2, σ ∈ dom d∗, and since (iv’)=(ii’), we see that σ = R∗

kξ for some ξ ∈ L2Λk+1.
This implies that for every Rk−1μ ∈ Rk−1(L

2Λk−1)

〈σ,Rk−1μ〉 = 〈R∗
kξ, Rk−1μ〉 = 〈ξ, RkRk−1μ〉 = 0.

We have thus seen that the spaces (i) - (vi) all agree, and in a similar way one
proves that the spaces (i’) - (vi’) are all the same.

The proof that these spaces also do agree with the space (vii) respectively (vii’)
will require deeper Lp-methods, and will therefore be postponed to Chapter 11 (see
Corollary 11.3).

Q.E.D.

Working out the same program for ∂, ∂̄, their adjoints and the box-operators
one encounters some differences. One simplification comes from the fact that �
and � act as scalar operators on horizontal forms of a given bi-degree.

On the other hand, a complication comes from the fact they have a non-trivial
null space in L2 for certain values of p or q. It is well known since [FS] that L+iαT
is injective on L2 if and only if α �= ±(n + 2j), j ∈ N, and that it is hypoelliptic
under the same restriction. It follows from (1.19) that � (resp. �) is injective, and
hypoelliptic, on (p, q)-forms provided that p �= 0, n (resp. q �= 0, n).

For p = 0, �0 = ∂∗∂ and ker� = ker ∂, while, for p = n, � = ∂∂∗ and
ker� = ker ∂∗. Similarly, ker� = ker ∂̄ for q = 0, and ker� = ker ∂̄∗ for q = n.

For these values of p (resp. q), we shall denote by �′ (resp. �′
) the unprimed

operator with domain and range restricted to the orthogonal complement of the
corresponding null space. Notice that the core S0Λ

p,q splits according to the de-
compositions ker ∂ ⊕ (ker ∂)⊥, ker ∂̄ ⊕ (ker ∂̄)⊥. The negative powers �′−α

(resp.

�′−α
) are then well defined on S0Λ

p,q ∩ (ker ∂)⊥ (resp. S0Λ
p,q ∩ (ker ∂̄)⊥).

By (1.19)

�0 = �n =
1

2
(L+ inT ) , �n = �0 =

1

2
(L− inT ) .

We denote by C (resp. C̄) the orthogonal projection from scalar L2 onto ker(L+
inT ) (resp. ker(L− inT )). The same symbols will be used to denote the extension
to forms by componentwise application.

Thus, C is the orthogonal projection onto ker ∂ when acting on (0, q)-forms as
well as onto ker ∂∗ when acting on (n, q)-forms, and C̄ is the orthogonal projection
onto ker ∂̄ when acting on (p, 0)-forms as well as onto ker ∂̄∗ when acting on (p, n)-
forms.

Regard ∂ as a closed operator from L2Λp,q to L2Λp+1,q. The holomorphic Riesz
transforms are defined on S0Λ

p,q (with values in S0Λ
p+1,q) by

(4.5) Rp =

⎧⎪⎨⎪⎩
∂�− 1

2
p = �− 1

2
p+1∂ for 1 ≤ p ≤ n− 2 ,

∂�′
0
− 1

2 (I − C) = �− 1
2

1 ∂ for p = 0 ,

∂�− 1
2

n−1 = �′− 1
2

n ∂ for p = n− 1 .
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4. FIRST PROPERTIES OF Δk; EXACT AND CLOSED FORMS 27

We observe that, is all cases,

(4.6) Rp�
1
2
p = �

1
2
p+1Rp = ∂ .

The adjoint operators R∗
p from S0Λ

p+1,q to S0Λ
p,q are

(4.7) R∗
p =

⎧⎪⎨⎪⎩
�− 1

2
p ∂∗ = ∂∗�− 1

2
p+1 for 1 ≤ p ≤ n− 2 ,

�′
0
− 1

2 ∂∗ = ∂∗�− 1
2

1 for p = 0 ,

�− 1
2

n−1∂
∗ = ∂∗�′− 1

2
n (I − C̄) for p = n− 1 .

The analogues of (4.3) and (4.4) are

(4.8)

Rp+1Rp = R∗
pR∗

p+1 = 0 ,

R∗
pRp +Rp−1R∗

p−1 = I , (1 ≤ p ≤ n− 1)

R∗
0R0 = I − C , Rn−1R∗

n−1 = I − C̄ .

Proposition 4.5 has the following analogue.

Proposition 4.6. For 0 ≤ p ≤ n − 1, the following subspaces of L2Λp,q are
the same:

(i) kerRp;
(ii) ker ∂;

We call this space (L2Λp,q)∂-cl.
For 1 ≤ p ≤ n, the following subspaces of L2Λp,q are the same:

(iii) the range of Rp−1R∗
p−1;

(iv) the range of Rp−1;

(v) ∂(S0Λp−1,q).

We call this subspace (L2Λp,q)∂-ex.
For 1 ≤ p ≤ n− 1, (L2Λp,q)∂-cl = (L2Λp,q)∂-ex.

Similarly, for 1 ≤ p ≤ n, the following subspaces of L2Λp,q are the same:

(i’) kerR∗
p−1;

(ii’) ker ∂∗;

and we call this subspace (L2Λp,q)∂∗-cl.
For 0 ≤ p ≤ n− 1, the following subspaces of L2Λp,q are the same:

(iii’) the range of R∗
pRp;

(iv’) the range of R∗
p;

(v’) ∂∗(S0Λp+1,q);

and we call this subspace (L2Λp,q)∂∗-ex.
Finally, for 1 ≤ p ≤ n− 1, (L2Λp,q)∂∗-cl = (L2Λp,q)∂∗-ex.

We also set (L2Λk
H)∂-ex =

∑
p+q=k(L

2Λp,q)∂-ex etc.

The antiholomorphic Riesz transforms Rq and their adjoints R∗
q are defined

by conjugating all terms in (4.5) and (4.7) respectively, and replacing p by q. The
analogue of formula (10.3) also holds true for all q

(4.9) Rp�
1
2

q = �
1
2

q+1Rq = ∂̄ .

The rest goes in perfect analogy with the holomorphic case.
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28 D. MÜLLER, M. M. PELOSO, and F. RICCI

Definition 4.7. On (p, q)-forms, we also define the operators

(4.10)
Cp = I −R∗

pRp , Cq = I −R∗
qRq , for 0 ≤ p, q ≤ n− 1 ,

Cn = I = Cn.

Notice that, by (4.8), Cp = Rp−1R∗
p−1 for 1 ≤ p ≤ n − 1, and similarly Cq =

Rq−1R
∗
q−1 for 1 ≤ q ≤ n− 1.

The following statements are obvious in view of Proposition 4.6.

Lemma 4.8. Cp is the orthogonal projection of L2Λp,q onto the kernel of ∂, and

Cp is the orthogonal projection of L2Λp,q onto the kernel of ∂,
Moreover, if ω ∈ S0Λ

p,q, with 1 ≤ p ≤ n− 1, then

Cpω = 0 if and only if ω ∈ ∂∗(S0Λp+1,q) if and only if ∂∗ω = 0,

whereas for p = 0,

C0 ω = 0 if and only if ω ∈ ∂∗(S0Λ1,q),

and for p = n,
Cn ω = 0 if and only if ω = 0.

Analogous statements hold for the operators Cq, if we replace p by q and conjugate

all terms. In particular, C0 = C, C0 = C, and ∂∗ω = 0 whenever Cpω = 0, and

∂
∗
ω = 0 whenever Cqω = 0.

Given a horizontal k-form ω =
∑

p+q=k ωpq we finally set

(4.11) Cω =
∑

p+q=k

Cpωpq , and Cω =
∑

p+q=k

Cqωpq .
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CHAPTER 5

A decomposition of L2Λk
H related to the ∂ and ∂̄

complexes

In this chapter, we shall work under the assumption that 0 ≤ k ≤ n, as this
turns out to be more convenient in view of the Lefschetz decomposition described
in Prop. 2.1 of [MPR1]. The case where k > n can be reduced to the case k ≤ n
by means of Hodge duality, as will be shown later in Chapter 8.

Our starting point in the spectral analysis of Δk is the decomposition obtained
in Proposition 4.5

(5.1) L2Λk = (L2Λk)d-ex ⊕ (L2Λk)d∗-cl .

Since dΔk−1 = Δkd for all k ≥ 1, using the results from [MPR1] for Δ1,
we can lift the decomposition of L2Λ1 into Δ1-invariant subspaces and the related
spectral properties to (L2Λ2)d-ex. Therefore, inductively we analyse the (L2Λk)d-ex-
component in the decomposition of L2Λk by means of the preceeding step.

Thus, we are led to study the (L2Λk)d∗-cl-component in the decomposition of
L2Λk.

By (1.21) we can characterize the d∗-closed forms. Notice that, if ω ∈ S0Λ
k,

ω = ω1 + θ ∧ ω2 with ω1, ω2 horizontal, then

ω ∈
(
S0Λ

k
)
d∗-cl

if and only if ω2 = T−1d∗Hω1 .

In fact, if ω2 = T−1d∗Hω1, then the second equation i(dθ)ω1 − d∗Hω2 = 0 arising
from in (1.21) follows from the first one.

Hence, if we set

(5.2) Φ(ω) = ω + θ ∧ T−1d∗Hω

we obtain an isomorphism

Φ : S0Λ
k
H −→

(
S0Λ

k
)
d∗-cl

.

Notice that, because of the invariance of θ and the equivariance of d∗H , Φ commutes
with the action of U(n).

Clearly, Δk maps a subspace V of (S0Λ
k)d∗-cl into itself if and only if the

(non-differential, see (5.17) below) operator

(5.3) Dk := Φ−1ΔkΦ ,

maps W = Φ−1V ⊂ S0Λ
k
H into itself.

For this reason, we begin by decomposing S0Λ
k
H into orthogonal subspaces

which are invariant under Dk and on which Dk takes a simple form.

29
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30 D. MÜLLER, M. M. PELOSO, and F. RICCI

5.1. The subspaces

The decomposition is based on the following lemma.

Lemma 5.1. Every ω ∈ S0Λ
k
H decomposes as

(5.4) ω = ω′ + ∂ξ + ∂̄η ,

where ξ, η ∈ S0Λ
k−1
H , and ω′ ∈ S0Λ

k satisfies the condition

(5.5) ∂∗ω′ = ∂̄∗ω′ = 0 .

The term ω′ is uniquely determined, and we can assume, in addition, that

(5.6) Cp−1ξ = C̄q−1η = 0 .

Notice that, even with the extra assumption (5.6), ξ and η are not uniquely
determined.

Proof. Assume that ω is a (p, q)-form. If p = 0, we obviously have the
decomposition ω = ω′ + ∂̄η, with ∂̄∗ω′ = 0, and ∂∗ω′ = 0 holds tivially, since ω′ is
a (0, q)- form. A similar argument applies if q = 0.

We therefore assume that p, q ≥ 1. Consider the homogeneous U(n)-equivariant
differential operator

(∂ ∂̄) :

(
ξ
η

)
�→ ∂ξ + ∂̄η ,

acting from L2(Λp−1,q)⊕ L2(Λp,q−1) to L2Λp,q and its adjoint

(
∂∗

∂̄∗

)
.

In L2Λp,q , we have

ran (∂ ∂̄) = ran ∂ + ran ∂̄ , ker

(
∂∗

∂̄∗

)
= ker ∂∗ ∩ ker ∂̄∗ ,

so that

L2Λp,q = (ker ∂∗ ∩ ker ∂̄∗)⊕ (ran ∂ + ran ∂̄) .

Moreover,

(∂ ∂̄)(S0Λ
p−1,q ⊕ S0Λ

p,q−1) = ∂S0Λ
p−1,q + ∂̄S0Λ

p,q−1 ,

so that, by Lemma 3.4,

S0Λ
p,q = (ker ∂∗ ∩ ker ∂̄∗ ∩ S0Λ

p,q)⊕ (∂S0Λ
p−1,q + ∂̄S0Λ

p,q−1) .

This gives the decomposition (5.4). By orthogonality, the two terms ω′ and
∂ξ + ∂̄η are uniquely determined. Since Cp−1 and C̄q−1 preserve S0-forms, we can
replace ξ by (I − Cp−1)ξ and η by (I − C̄q−1)η, without changing the equality.

Q.E.D.

Observe that the decomposition (5.4), without the extra assumptions on ξ and
η, can be iterated, so to obtain in a next step that

ω = ω′ + ∂(ξ′ + ∂α1 + ∂̄β1) + ∂̄(η′ + ∂α2 + ∂̄β2)

= ω′ + ∂ξ′ + ∂̄η′ + ∂∂̄β1 + ∂̄∂β2 ,

where now each of the primed symbols represents a form satisfying (5.5). If ω is a
horizontal k-form, the iteration stops after k steps, leaving no “remainder terms”.
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We are so led to introduce, for each m ≤ k the spaces of forms

(5.7) ω = · · · ∂∂̄∂︸ ︷︷ ︸
m-terms

ξ + · · · ∂̄∂∂̄︸ ︷︷ ︸
m-terms

η ,

with ξ, η ∈ S0Λ
k−m
H and ∂∗ξ = ∂̄∗ξ = ∂∗η = ∂̄∗η = 0.

It is convenient to observe that in a sequence of at least three alternating ∂’s
and ∂̄’s, we can replace a product ∂∂̄ or ∂̄∂ by d2H = −T−1e(dθ). Since T−1

preserves S0-forms, the form ω in (5.7) can thus be written as

ω =

{
e(dθ)�(∂ξ + ∂̄η) if m = 2�+ 1 ,

e(dθ)�(∂̄∂ξ + ∂∂̄η) if m = 2�+ 2 .

Definition 5.2. We set

W p,q
0 =

{
ω ∈ S0Λ

p,q : ∂∗ω = ∂̄∗ω = 0
}
,

W p,q
1 =

{
ω = ∂ξ + ∂̄η : ξ, η ∈ W p,q

0

}
,

W p,q
2 =

{
ω = ∂̄∂ξ + ∂∂̄η : ξ, η ∈ W p,q

0

}
.

For � ∈ N and j = 1, 2, we set

W p,q
j,� = e(dθ)�W p,q

j .

We also set

W k
0 =

∑
p+q=k

W p,q
0 =

{
ω ∈ S0Λ

k
H : ∂∗ω = ∂̄∗ω = 0

}
,

and, for j = 1, 2 and � ∈ N,

W k
j =

∑
p+q+j=k

W p,q
j

and

W k
j,� =

∑
p+q+j+2�=k

W p,q
j,� = e(dθ)�W k−2�

j ,

whenever k ≥ j + 2�.
The symbols Wk

j ,W
p,q
j , etc. denote the L2-closures of the corresponding spaces

W k
j , W p,q

j , etc.

We wish to characterize which spaces among the W p,q
0 and W p,q

j,� are non-trivial.

Proposition 5.3. Let 0 ≤ k ≤ n and p + q = k. Then W p,q
0 is trivial if and

only if k = n and 1 ≤ p, q ≤ n− 1.

Proof. We show first that W p,q
0 is non-trivial for p + q ≤ n − 1. In order

to do so, it is sufficient to prove that, under this assumption, there is a non-zero
β ∈ P1 ⊗ Λp,q , with P1 = span {w1, . . . , wn} as in (2.6), such that

π1(∂
∗)β = π1(∂̄

∗)β = 0 .

From this it will easily follow from (1.10) and (2.8) that πλ(∂
∗)β = πλ(∂̄

∗)β = 0
for every λ > 0.

Let ω ∈ Λp,q be such that πλ(ω) = χ(λ)Pβ, where χ is a smooth cut-off function
with compact support in (0,+∞) and Pβ is the orthogonal projection of F ⊗ Λp,q

onto Cβ. Then ω ∈ S0Λ
p,q and ∂∗ω = ∂̄∗ω = 0.
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Take

β =

(p+1∑
j=1

(−1)jwj ζ ∧ · · · ∧ ζ̂j ∧ · · · ∧ ζp+1

)
∧ ζ̄I

′
,

where I ′ = (p+ 2, . . . , p+ q + 1). Then, writing I
̂j = (1, . . . , ĵ, . . . , p+ 1) we have

π1(∂
∗)(β) =

1√
2

∑
�,J

p+1∑
j=1

(−1)jε
I
̂j

�Jw�wj ζ
J ∧ ζ̄I

′

=
1√
2

p+1∑
j=1

(−1)j
[ j−1∑

�=1

(−1)�−1w�wj ζ1 ∧ · · · ∧ ζ̂� ∧ · · · ∧ ζ̂j ∧ · · · ∧ ζp+1

+

p+1∑
�=j+1

(−1)�w�wj ζ1 ∧ · · · ∧ ζ̂j ∧ · · · ∧ ζ̂� ∧ · · · ∧ ζp+1

]
∧ ζ̄I

′

= 0 .

Next, since π1(Z�) =
√
2∂w�

we have

π1(∂̄
∗)(β) = (−1)p+1

√
2
∑
�, J′

εI
′

�J′
(
∂w�

wj

)
ζÎj ∧ ζ

J′

= 0 ,

since j �∈ I ′, so that ∂w�
wj = 0.

This shows that W p.q
0 �= {0} when p+ q ≤ n− 1.

Next, consider Wn,0
0 . Take β = ζ1 ∧ · · · ∧ ζn ∈ P0 ⊗ Λn,0. Clearly πλ(∂̄

∗)β = 0
for every λ �= 0, while πλ(∂̄

∗)β = 0 for λ < 0 by (1.10) and (2.8). As before, this

implies that Wn,0
0 �= {0}.

Finally, consider Wn−s,s
0 , with 1 ≤ s ≤ n − 1 and let ω ∈ Wn−s,s

0 . Since � is
injective on this space and ∂∗ω = 0 we have

ω = ∂∗(∂�−1
)
ω =: ∂∗ν .

Similarly, since ∂̄∗ω = 0,

ω = ∂̄∗∂̄�−1
ω = ∂̄∗∂̄�−1

∂∗ν

= ∂̄∗∂̄∂∗(� − iT )−1ν = ∂̄∗∂∗(− ∂̄(� − iT )−1ν
)
,

i.e.

(5.8) ω = ∂̄∗∂∗μ ,

for some μ. But ∂̄∗ω = 0 if and only if

0 = ∂∗∂̄∗(∂∗μ) = (∂̄∗∂∗ + ∂∗∂̄∗)(∂∗μ) = Ti(dθ)(∂∗μ) .

It follows that, if μ is as in (5.8), then ω = ∂̄∗∂∗μ ∈ W s,n−s
0 if and only if

(5.9) i(dθ)(∂∗μ) = 0 ,

i.e. ∂∗μ ∈ ker i(dθ).

Therefore, ∂∗μ ∈ S0

(
kerΛs,n−s+1 i(dθ)

)
. Since max{0, s + (n − s + 1) − n} =

max{0, 1} = 1 > 0, according to Prop. 2.1 in in [MPR1], we have kerΛs,n−s+1 i(dθ) =
{0}, that is, ∂∗μ = 0; hence ω = 0. Q.E.D.
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Proposition 5.4. Assume that j = 1, 2. Then the space W p,q
j,� is non-trivial if

and only if �+ j + p+ q ≤ n. In this case, e(dθ)� is bijective from W p,q
j onto W p,q

j,� .

Proof. We first prove the “only if” part. Observe that W p,q
0 and W p,q

1 are in
the kernel of i(dθ), which is immediate from (1.12) and (1.14).

In order to prove the statement for j = 1, we set (p̃, q̃) = (p+1, q) or (p, q+1). By
Prop. 2.1 in [MPR1] we know that e(dθ)�

(
ker i(dθ)|

L2Λp̃,q̃

)
is non-trivial if and only

if max(0, p̃+ q̃+2�−n) ≤ �, that is, � ≤ n−p̃− q̃. Since W p,q
1 ⊆ L2Λp+1,q+L2Λp,q+1

it follows that W p,q
1,� can be non-trivial only when � ≤ n− p− q − 1.

To prove that e(dθ)� is injective on W p,q
1 under this condition, we show by

induction on � that e(dθ)� is injective on ker i(dθ)|Λp̃,q̃
when � ≤ n − p̃ − q̃ =

n− p− q − 1. The case � = 0 is trivial. And, by (1.16) we see that for � ≥ 1 when
acting on (p̃, q̃)-forms

(5.10)

[i(dθ), e(dθ)�] =
�−1∑
ν=0

e(dθ)ν [i(dθ), e(dθ)]e(dθ)�−1−ν

=
�−1∑
ν=0

(n− p̃− q̃ − 2�+ 2 + 2ν)e(dθ)�−1

= �(n− p̃− q̃ − �+ 1)e(dθ)�−1

= �(n− p− q − �)e(dθ)�−1 ,

which allows to prove injectivity of e(dθ)� on ker i(dθ)|Λp̃,q̃
from injectivity of e(dθ)�−1

under the assumption on �.

We now turn to the case j = 2, which requires a more refined discussion. Let
us set

Kp,q
2 = W p,q

2 ∩ ker i(dθ)|L2Λp+q+2
H

.

We claim that W p,q
2 decomposes as an orthogonal sum

(5.11) W p,q
2 = Kp,q

2 ⊕ e(dθ)W p,q
0 .

It is obvious by (1.12) that e(dθ)W p,q
0 ⊂ W p,q

2 , and clearly the two subspaces on
the right-hand side are orthogonal.

Assume that ω = ∂∂̄ξ + ∂̄∂η ∈ W p,q
2 , with ξ, η ∈ W p,q

0 . Then

i(dθ)ω = i(�η − �ξ) ∈ W p,q
0 .

Indeed, by (1.13) and (1.20) we have

i(dθ)
(
∂∂̄ξ + ∂̄∂η

)
= T−1d∗H

2(∂∂̄ξ + ∂̄∂η
)

= T−1
(
−∂∗∂�ξ + ∂̄∗�∂̄ξ + ∂∗�∂η − ∂̄∗∂̄�η

)
= T−1

(
−��ξ + (� − iT )�ξ + (� + iT )�η − ��η

)
= i(�η − �ξ) .

We have seen that i(dθ)W p,q
2 ⊂ W p,q

0 , and therefore ω ∈ W p,q
2 ∩ (e(dθ)W p,q

0 )⊥ if
and only if ω ∈ Kp,q

2 . This proves (5.11). Let us set Kp,q
2,� = e(dθ)�Kp,q

2 . Then

(5.12) W p,q
2,� = Kp,q

2,� ⊕ e(dθ)�+1W p,q
0 ,

and this decomposition is again orthogonal.
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Indeed, if ω ∈ ker(i(dθ)) and σ is a form orthogonal to ω, then for every � ≥ 1

〈e(dθ)�ω, e(dθ)�σ〉 = 0.

For, by (5.10), we have

i(dθ)e(dθ)�ω = c�e(dθ)
�−1ω ,

which implies, by induction on �, that

〈e(dθ)�ω, e(dθ)�σ〉 = 〈i(dθ)e(dθ)�ω, e(dθ)�−1σ〉 = 0 .

In order to prove the statement in the lemma for j = 2, using the orthogonal
decomposition in (5.12) we may now argue as before by means of Prop. 2.1 in
[MPR1] in order to see that W p,q

2,� can be non-trivial only if � ≤ n − p − q − 2.

Moreover, to verify that e(dθ)� is injective on W p,q
2 under this condition, it suffices

to check injectivity on each of the subspaces on the right-hand side of (5.11). But
this can be done by the same reasoning that we used for the case j = 1.

For the “if” part, assume again that p + q + j + � ≤ n and j = 1, 2. Then,
p + q ≤ n − 1, so that W p,q

0 �= {0} by Proposition 5.3. Then W p,q
j �= {0}, and by

the first part W p,q
�,j �= {0}. Q.E.D.

Lemma 5.5. For ξ ∈ W p,q
0 ,

(5.13)

∂∗e(dθ)�∂ξ = e(dθ)��ξ + i�e(dθ)�−1∂̄∂ξ

∂∗e(dθ)�∂̄ξ = 0

∂̄∗e(dθ)�∂̄ξ = e(dθ)��ξ − i�e(dθ)�−1∂∂̄ξ

∂̄∗e(dθ)�∂ξ = 0 ,

and

(5.14)

∂∗e(dθ)�∂̄∂ξ = −e(dθ)�∂̄�ξ

∂∗e(dθ)�∂∂̄ξ = e(dθ)�∂̄
(
�ξ − i(�+ 1)T

)
ξ

∂̄∗e(dθ)�∂∂̄ξ = −e(dθ)�∂�ξ

∂̄∗e(dθ)�∂̄∂ξ = e(dθ)�∂
(
�ξ + i(�+ 1)T

)
ξ .

Proof. Since [∂∗, e(dθ)] = i∂̄ commutes with e(dθ) (compare (1.14), (1.15))
and similarly for ∂̄∗, we obtain by induction that

(5.15) [∂∗, e(dθ)�] = i�∂̄e(dθ)�−1 , [∂̄∗, e(dθ)�] = −i�∂e(dθ)�−1 .

We verify the first identity in (5.13), the others being similar and following by
invoking also (1.12) and (1.20):

∂∗e(dθ)�∂ξ = e(dθ)�∂∗∂ξ + i�∂̄e(dθ)�−1∂ξ

= e(dθ)��ξ + i�e(dθ)�−1∂̄∂ξ .

Q.E.D.

This immediately gives the following inclusions.

Licensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



5. A DECOMPOSITION OF L2Λk
H RELATED TO THE ∂ AND ∂̄ COMPLEXES 35

Corollary 5.6. For � ≥ 1,

∂∗W p,q
1,� ⊂ W p,q

2,�−1 , ∂∗W p,q
2,� ⊂ W p,q

1,� ,

and similarly for ∂̄∗.

Proposition 5.7. L2Λk
H decomposes as the orthogonal sum

L2Λk
H =

∑⊕

p+q=k

Wp,q
0 ⊕

∑⊕

j,�,p,q
j=1,2

p+q+j+2�=k

Wp,q
j,�

= Wk
0 ⊕

∑⊕

1+2�≤k

Wk
1,� ⊕

∑⊕

2+2�≤k

Wk
2,�.

We recall that Wp,q
0 is non-trivial for p+q ≤ n−1, and if p+q = n for pq = 0.

Proof. We have already shown that S0Λ
k
H is contained in the sum of the

subspaces on the right-hand side. It is then sufficient to show that any two S0-
forms belonging to two different subspaces are orthogonal.

It is quite obvious that W p,q
0 is orthogonal to W p′,q′

0 if (p, q) �= (p′, q′).
The fact that W k

0 is orthogonal to W k
j,� for j = 1, 2 is a consequence of the fact

that W k
0 ⊂ ker ∂∗ ∩ ker ∂̄∗, whereas W k

j,� ⊂ ran ∂ + ran ∂̄.
To prove the remaining orthogonality relations, we shall proceed inductively.

For this purpose, it will be convenient to represent the elements of W k
j,� in the form

(5.7) with m = j + 2�, and rename, for the purpose of this proof, W p,q
j,� as W p,q

m if

m = j+2�. Given m ≥ m′ ≥ 1, there are three kinds of scalar products to consider,

〈 ∂∂̄ · · ·︸ ︷︷ ︸
m-terms

σ, ∂∂̄ · · ·︸ ︷︷ ︸
m′-terms

σ′〉 , 〈 ∂̄∂ · · ·︸ ︷︷ ︸
m-terms

σ, ∂∂̄ · · ·︸ ︷︷ ︸
m′-terms

σ′〉 , 〈 ∂̄∂ · · ·︸ ︷︷ ︸
m-terms

σ, ∂̄∂ · · ·︸ ︷︷ ︸
m′-terms

σ′〉 ,

with σ ∈ W p,q
0 and σ′ ∈ W p′,q′

0 . In the first case we have

〈∂∂̄ · · ·︸ ︷︷ ︸
m

σ, ∂∂̄ · · ·︸ ︷︷ ︸
m′

σ′〉 = 〈∂̄ · · ·︸︷︷︸
m−1

σ, ∂∗ ∂∂̄ · · ·︸ ︷︷ ︸
m′

σ′〉 .

By Corollary 5.6, this is the scalar product of an element of W p,q
m−1 with an

element of W p′,q′

m′−1.

By induction on m′, this shows that W p,q
m ⊥ W p′,q′

m′ unless p = p′, q = q′,
m = m′. Q.E.D.

We discuss now to what extent the pairs (ξ, η) ∈ W p,q
0 × W p,q

0 provide a
parametrization of the spaces W p,q

j,� for j = 1, 2.

Lemma 5.8. Given ξ ∈ W p,q
0 , there exists a unique ξ′ ∈ W p,q

0 such that ∂ξ = ∂ξ′

and Cpξ
′ = 0. An analogous statement holds for ∂̄ in place of ∂.

Proof. The case p = n is trivial - here ξ′ = 0. If 1 ≤ p ≤ n − 1, then by
Lemma 4.8 we have ξ′ = ξ.

There only remains the case p = 0, where C0 = C is the orthogonal projection
onto the kernel of � (which in this case agrees with ker ∂). This is a self-adjoint
operator, so that, by Lemma 3.4, S0Λ

0,q = (ker� ∩ S0Λ
0,q) ⊕ (ran� ∩ S0Λ

0,q).
The commutation relation ∂̄∗� = (�− iT )∂̄∗ from (1.20) then implies that the two
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subspaces in this decomposition are mapped under ∂̄∗ to ker(�− iT )∩ S0Λ
0,q and

ran (� − iT ) ∩ S0Λ
0,q, respectively. This shows that

∂̄∗Cξ = P ∂̄∗ξ = 0 ,

where P denotes the orthogonal projection onto the kernel of � − iT. Then ξ′ =
(I − C)ξ has the desired properties. Q.E.D.

Set
(5.16)
Xp,q = {ξ ∈ W p,q

0 : Cpξ = 0} , Y p,q = {η ∈ W p,q
0 : C̄qη = 0} , Zp,q = Xp,q×Y p,q .

In combination with Proposition 5.4 the previous lemma implies that the spaces
Zp,q provide parametrisations for the spaces W p,q

j,� :

Corollary 5.9. Assume that j = 1, 2 and p+ q + j + � ≤ n. Then the maps

e(dθ)�(∂ ∂̄) : Zp,q −→ W p,q
1,� , (ξ, η) �→ ∂ξ + ∂̄η,

e(dθ)�(∂̄∂ ∂∂̄) : Zp,q −→ W p,q
2,� , (ξ, η) �→ ∂̄∂ξ + ∂∂̄η

are bijections. Notice that this applies in particular to the spaces W p,q
j,� appearing

in the orthogonal decomposition of L2Λk
H in Proposition 5.7 under the assumption

k ≤ n.

Remark 5.10. Recall that, by Lemma 4.8,

Xp,q =

⎧⎪⎨⎪⎩
W p,q

0 if 1 ≤ p ≤ n− 1 ,

{0} if p = n ,{
ξ ∈ S0Λ

0,q : Cξ = 0, ∂̄∗ξ = 0
}

if p = 0 .

By the proof of Lemma 5.8, the latter space is indeed nothing but (I − C)W 0,q
0 .

Analogous statements hold true for Y p,q. Finally, notice that the spaces Zp,q

are non-trivial if p+ q ≤ n− 1.

5.2. The action of Δk

Let Φ be the bijection (5.2) from S0Λ
k
H onto (S0Λ

k)d∗-cl, and let Dk = Φ−1ΔkΦ
be the operator in (5.3).

For ω ∈ S0Λ
k
H , by (1.22) we have

(5.17)
Dkω =

(
ΔH − T 2 + e(dθ)i(dθ)

)
ω +

(
T−1[d∗H , e(dθ)]d∗H

)
ω

=
(
ΔH − T 2 + T−1d∗He(dθ)d∗H

)
ω .

The following identities are easily derived from (1.12), (1.14) and (1.15):

(5.18)

�e(dθ) = e(dθ)(� − iT ) ,

�e(dθ) = e(dθ)(� + iT ) ,

[ΔH , e(dθ)] = 0 .

It follows from (1.19) that, when acting on k-forms,

(5.19) � − � = i(n− k)T .

Lemma 5.11. The following identities hold
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(i) Dke(dθ) = e(dθ)(Dk−2 + n− k + 1);

(ii) Dke(dθ)
� = e(dθ)�

(
Dk−2� + �(n− k + �)

)
, for � ≥ 1.

Proof. By (1.14), (1.15) and (5.17), (5.18), when applied to a horizontal (k−
2)-form,
(5.20)

Dke(dθ) = e(dθ)(ΔH − T 2) + T−1
(
d∗He(dθ)

)2
= e(dθ)(ΔH − T 2) + T−1

(
e(dθ)d∗H + i(∂̄ − ∂)

)2
= e(dθ)Dk−2 + iT−1e(dθ)

(
d∗H(∂̄ − ∂) + (∂̄ − ∂)d∗H

)
− T−1(∂̄ − ∂)2

= e(dθ)Dk−2 + iT−1e(dθ)(� − �)− e(dθ)

= e(dθ)(Dk−2 + n− k + 1) .

Identity (ii) now follows by induction. Q.E.D.

Proposition 5.12. The subspaces W p,q
0 , W p,q

1,� , W
p,q
2,� are invariant under the

action of Dk.

Proof. If ω ∈ W p,q
0 , then d∗Hω = 0 and therefore

(5.21) Dkω = (ΔH − T 2)ω = (Δ0 + i(q − p)T )ω ,

by (1.19), where Δ0 denotes the scalar operator L− T 2. The last expression shows
that Dkω is a (p, q)-form, and the previous one that d∗HDkω = 0, by (1.20).

By Lemma 5.11, when j = 1, 2, it suffices to take � = 0.

Take now ω ∈ W k
1 , ω = ∂ξ + ∂̄η, with ∂∗ξ = ∂̄∗ξ = ∂∗η = ∂̄∗η = 0. We have

(5.22)
Dkω =

(
ΔH − T 2 + T−1d∗He(dθ)d∗H

)
(∂ξ + ∂̄η)

= ∂(ΔH − T 2 + iT )ξ + ∂̄(ΔH − T 2 − iT )η + T−1d∗He(dθ)d∗H(∂ξ + ∂̄η)

= ∂(ΔH − T 2 + iT )ξ + ∂̄(ΔH − T 2 − iT )η

+ T−1d∗He(dθ)�ξ + T−1d∗He(dθ)�η

= ∂(ΔH − T 2 + iT )ξ + ∂̄(ΔH − T 2 − iT )η + T−1(i∂̄ − i∂)(�ξ + �η)

= ∂
(
(ΔH − T 2 + iT − iT−1�)ξ − iT−1�η

)
+ ∂̄

(
(ΔH − T 2 − iT + iT−1�)η + iT−1�ξ

)
.

Therefore, Dk(∂ξ + ∂̄η) = ∂ξ′ + ∂̄η′, where

ξ′ = (ΔH − T 2 + iT − iT−1�)ξ − iT−1�η

η′ = (ΔH − T 2 − iT + iT−1�)η + iT−1�ξ ,

that is,
(5.23)

Dk

(
∂ ∂̄

)
=

(
∂ ∂̄

)(ΔH − T 2 + iT − iT−1� −iT−1�
iT−1� ΔH − T 2 − iT + iT−1�

)
=

(
∂ ∂̄

) [
(ΔH − T 2)I − iT−1

(
� − T 2 �
−� −� + T 2

)]
.

Using the commutation relations (1.20) we see that

∂∗ξ′ = ∂̄∗ξ′ = ∂∗η′ = ∂̄∗η′ = 0.
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Therefore, also W k
1 is Dk-invariant. Moreover, if ξ and η are (p, q)-forms, so are ξ′

and η′, hence each W p,q
1 is Dk-invariant.

Finally, take ω ∈ W k
2 , ω = ∂̄∂ξ + ∂∂̄η, with ∂∗ξ = ∂̄∗ξ = ∂∗η = ∂̄∗η = 0. We

first compute

d∗He(dθ)d∗H ∂̄∂ξ = d∗He(dθ)(−∂̄�ξ + �∂ξ)

= e(dθ)d∗H(−∂̄�ξ + �∂ξ) + i(∂̄ − ∂)(−∂̄�ξ + �∂ξ)

= e(dθ)(−��ξ + ∂∗�∂ξ) + i(∂∂̄�ξ + ∂̄�∂ξ)

= e(dθ)
(
− ��ξ + (� + iT )�ξ

)
+ i

(
∂∂̄�ξ + ∂̄∂(� + iT )ξ

)
= iTe(dθ)�ξ + i∂∂̄�ξ + i∂̄∂(� + iT )ξ

= i∂̄∂(−� + � + iT )ξ

= (n− k + 1)T ∂̄∂ξ ,

by (5.19), since ξ is a (k − 2)-form. Similarly,

d∗He(dθ)d∗H∂∂̄η = (n− k + 1)T∂∂̄η .

Therefore,

(5.24) Dkω = (ΔH − T 2 + n− k + 1)ω .

As before, (1.20) implies that Dkω ∈ W k
2 , and each subspace W p,q

2 is mapped
into itself. Q.E.D.

5.3. Lifting by Φ

Denote by V p,q
0 , V p,q

1,� , etc., the subspaces Φ(W
p,q
0 ), Φ(W p,q

1,� ), etc., of (L
2Λk)d∗-cl.

We want to show that their closures Vp,q
0 , Vp,q

1,� , etc. give an orthogonal decompo-

sition of (L2Λk)d∗-cl.
In a way, this is not a priori obvious, because Φ is not an orthogonal map.

The fact that it preserves the orthogonality of the subspaces we are working with is
quite peculiar. On the other hand, the reader may have noticed already an instance
of this peculiarity in the fact that a non-symmetric operator such as Dk admits a
rather fine decomposition into invariant subspaces which are orthogonal.

Proposition 5.13. For 0 ≤ k ≤ n we have the orthogonal decompositions

(5.25)
(
L2Λk

)
d∗-cl

=
∑⊕

p+q=k<n
p+q=n, pq=0

Vp,q
0 ⊕

∑⊕

j,�,p,q
j=1,2

p+q+j+2�=k

Vp,q
j,� ,

where each of the subspaces Vp,q
0 ,Vp,q

j,� is non-trivial and Δk-invariant.

Proof. Since Φ is a bijection from S0Λ
k
H onto (S0Λ

k)d∗-cl, it follows from
Proposition 5.7 that(

S0Λ
k
)
d∗-cl

=
∑⊕

p+q=k<n
p+q=n, pq=0

V p,q
0 ⊕

∑⊕

j,�,p,q
j=1,2

p+q+j+2�=k

V p,q
j,� .
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Hence it remains to show that this decomposition is orthogonal. By (5.2), this
amounts to proving that

d∗H(W p,q
j,� ) ⊥ d∗H(W p′,q′

j′,�′ ) whenever W
p,q
j,� �= W p′,q′

j′,�′ .

This, in turn, is an immediate consequence of Corollary 5.6 and Proposition 5.7.
Notice that d∗HW p,q

0 = {0}. Q.E.D.
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CHAPTER 6

Intertwining operators and different scalar forms
for Δk

Following the decomposition of L2Λk described in the previous chapter, we
continue assuming 0 ≤ k ≤ n.

In this chapter we describe the form that Δk attains on each of the subspaces
of the decomposition (5.25) of (L2Λk)d∗-cl. In particular, we will show that, up to
conjugation with invertible operators, Δk acts on V p,q

0 and on each V p,q
2,� as a scalar

operator. For V p,q
1,� instead, a further splitting will be necessary in order to reduce

Δk to a scalar form in a similar way.
In the process, we will also describe the intertwining operators that reduce Δk

to such scalar forms.

6.1. The case of V p,q
0

The simplest case is the one of V p,q
0 , because Φ acts on this space as the identity

map and we already know by (5.21) that Dk

∣∣
Wp,q

0
= Δ0 + i(q− p)T . Hence, in this

case Δk is itself a scalar operator and we simply have the following

Proposition 6.1. Let p+ q ≤ n− 1 or, pq = 0 if p+ q = n. Then, on V p,q
0 ,

(6.1) Δk = Δ0 + i(q − p)T .

When we pass to j = 1, 2 we want to express Δk in terms of the parameters
(ξ, η) in the definition of W p,q

j,� which we can choose from the parameter spaces
Zp,q = Xp,q × Y p,q .

6.2. The case of V p,q
2,�

According to Corollary 5.9, we can write

(6.2) W p,q
2,� =

{
ω = e(dθ)�(∂̄∂ξ + ∂∂̄η) : (ξ, η) ∈ Zp,q

}
.

Recall from the discussion in Chapter 4 and the definitions of Xp,q and Y p,q (see
(5.16)) that � is injective when restricted to Xp,q and � is injective when restricted
to Y p,q.

41
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42 D. MÜLLER, M. M. PELOSO, and F. RICCI

Proposition 6.2. Let A2,� = Φe(dθ)�
(
∂∂̄ ∂̄∂

)
: Zp,q → V p,q

2,� . Then, A2,� is
injective on Zp,q.

The operator Δk restricted to the subspace V p,q
2,� is given by the following ex-

pression:

(6.3) Δk
∣∣
V

p,q
2,�

= A2,�

(
Δ0 + i(q − p)T + (�+ 1)(n− k + �+ 1)

)
A−1

2,� .

Proof. By Corollary 5.9 it follows at once that A2,� is injective on Zp,q .
When k = p+ q + 2 + 2�, from Lemma 5.11 we have

Dke(dθ)
� = e(dθ)�

(
Dk−2� + �(n− k + �)

)
.

Moreover, by (5.24) we know that Dk−2�, when acting on W p,q
2 , is given by Δ0 +

i(q − p)T + n− (k − 2�) + 1, so that on W p,q
2

(6.4) Dke(dθ)
� = e(dθ)�

(
Δ0 + i(q − p)T + (�+ 1)(n− k + �+ 1)

)
.

By the definitions of Φ and V p,q
2,� , and the commutation relations (1.20), this

proves (6.3). Q.E.D.

6.3. The case of V p,q
1,�

We now turn to the case j = 1. In this case the situation is quite more involved,
as we already observed in the case of 1-forms, see [MPR1]. Let us begin by recalling
that according to Corollary 5.9, we can write

(6.5) W p,q
1,� =

{
ω = e(dθ)�(∂ξ + ∂̄η) : (ξ, η) ∈ Zp,q

}
.

Consider the subspace V p,q
1,� = Φ(W p,q

1,� ).

Our next goal will be to formally diagonalize the matrix

(
� − T 2 �
−� −� + T 2

)
appearing in formula (5.23). This matrix operator is acting on column vectors

(
ξ
η

)
corresponding to pairs (ξ, η) ∈ Xp,q × Y p,q = Zp,q , where p + q + 1 + 2� = k. We
put

(6.6) s := p+ q = k − 2�− 1 .

Notice that 0 ≤ s ≤ n− 1.

We define the operator matrix Q acting on

(
ξ
η

)
by

(6.7) Q =

(
−Q+

− −Q−
+

Q+
+ Q−

−

)
,

where, for ε, δ = ±, the expression of Qε
δ is

Qε
δ = Γ + εm− δiT ,

where

(6.8)
m =

n− s

2
,

Γ =
√
ΔH − T 2 +m2 .
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6. INTERTWINING OPERATORS AND DIFFERENT SCALAR FORMS FOR Δk 43

Observe here that the operator ΔH −T 2+m2 satisfies the estimate ΔH −T 2+
m2 ≥ m2 ≥ 1/4, so that it has a unique positive square root.

The following identities are easily verified:

(6.9)

Q+
+Q

−
− = 2�

Q+
−Q

−
+ = 2�

Q+
+Q

−
+ = 2

[
� − T 2 − iT (m+ Γ)

]
= 2

[
� − T 2 + iT (m− Γ)

]
Q−

−Q
+
− = 2

[
� − T 2 − iT (m− Γ)

]
= 2

[
� − T 2 + iT (m+ Γ)

]
,

since

(6.10) � − imT = � + imT =
1

2
ΔH .

Lemma 6.3. If p+ q ≤ n− 1, then the following properties hold true:

(i) The operator matrix Q : S0Λ
p,q × S0Λ

p,q → S0Λ
p,q × S0Λ

p,q is invertible,
with inverse

Q−1 =
1

4iTΓ

(
−Q−

− −Q−
+

Q+
+ Q+

−

)
.

Moreover, Q maps the subspace W p,q
0 ×W p,q

0 bijectively onto itself.
(ii) If p = 0, then Q−

−C = CQ−
− = 0, and if q = 0, then Q−

+C̄ = C̄Q−
+ = 0.

Proof. To prove (i), we compute formally the determinant of Q and find by
(6.9) that detQ = −4iTΓ . The formula for Q−1 is now obvious. Notice also that
the operators Qε

δ leave the space W p,q
0 invariant. The remaining statement in (i) is

now clear.

As for (ii), notice that if p = 0 then C projects onto the kernel of ∂, which
coincides with the kernel of �. And, on ker�, by (6.10) we have ΔH = −2imT ≥ 0,

so that Γ =
√
−2imT − T 2 +m2 = m−iT , and hence Q−

− = 0 on ker ∂. This implies

CQ−
− = Q−

−C = 0. The remaining identities in (ii) are proved analogously. Q.E.D.

We set

(6.11) Ξp,q = Xp,q∩Y p,q = {ξ ∈ W p,q
0 : Cpξ = C̄qξ = 0} , Z̃p,q = W p,q

0 ×Ξp,q .

Lemma 6.4. (
I − Cp 0

0 I − C̄q

)
Q(Z̃p,q) = Zp,q.

Proof. It suffices to show that(
I − Cp 0

0 I − C̄q

)
Q(Z̃p,q) =

(
I − Cp 0

0 I − C̄q

)
Q(W p,q

0 ×W p,q
0 ),

since Q(W p,q
0 ×W p,q

0 ) = W p,q
0 ×W p,q

0 .
We have Ξp,q = (I − Cp − C̄q)W

p,q
0 , which means that it suffices to show that(

I − Cp 0
0 I − C̄q

)
Q

(
0
η

)
=

(
−(I − Cp)Q

−
+η

(I − C̄q)Q
−
−η

)
is zero for every η = (Cp + C̄q)η

′. This follows from the identities

(I − Cp)(Cp + C̄q) = C̄q , (I − C̄q)(Cp + C̄q) = Cp ,
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44 D. MÜLLER, M. M. PELOSO, and F. RICCI

and from (ii) of Lemma 6.3. Q.E.D.

Lemma 6.5. Let

(6.12) G =

(
� − T 2 �
−� −� + T 2

)
be the matrix appearing in formula (5.23). Then, −iT−1G admits the diagonaliza-
tion

−iT−1G = Q

(
m+ Γ 0

0 m− Γ

)
Q−1 .

Proof. In order to formally compute the eigenvalues λ± of −iTG, observe
that the characteristic equation for G is

τ2 − τ
[
� − �

]
+ T 2

[
� + � − T 2

]
= 0 ,

which has roots

τ± = imT ±
√
−T 2

[
� + � − T 2 +m2

]
= iT (m± Γ) .

Therefore,

G− τ±I =

(
� − T 2 − iT (m± Γ) �

−� −� + T 2 − iT (m± Γ)

)
,

and, by (6.9),

G− τ+I =
1

2

(
Q+

+Q
−
+ Q+

−Q
−
+

−Q+
+Q

−
− −Q+

−Q
−
−

)
=

1

2

(
Q−

+

−Q−
−

)(
Q+

+ Q+
−
)
,

and analogously,

G− τ−I =
1

2

(
Q+

−
−Q+

+

)(
Q−

− Q−
+

)
.

These equations show that eigenvectors of G of eigenvalues τ± are given, re-
spectively, by

(6.13) Q+ =

(
−Q+

−
Q+

+

)
, Q− =

(
−Q−

+

Q−
−

)
,

so that
Q =

(
Q+|Q−)

is indeed a matrix which formally diagonalizes −iT−1G as claimed. Q.E.D.

Recall now from (6.5) and the definition of V p,q
1,� that if we define the operator

A1,� : (W
p,q
0 )2 → L2Λk as

(6.14)

A1,�

(
ξ
η

)
:= Φe(dθ)�

(
∂ ∂̄

)(ξ
η

)
=

(
I

T−1d∗H

)
e(dθ)�

(
∂ ∂̄

)(ξ
η

)
,

then A1,�(Z
p,q) = V p,q

1,� . Observe also that Lemma 6.4 shows that we may realize

Zp,q in this identity as the space Q(Z̃p,q) and use Z̃p,q as a parameter space for
V p,q
1,� . This has the advantage of reducing the operator Dk in (5.23) to diagonal

form.
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6. INTERTWINING OPERATORS AND DIFFERENT SCALAR FORMS FOR Δk 45

We therefore define the modified intertwining operator A1,� by

(6.15) A1,� := A1,�Q∣∣
˜Zp,q

: Z̃p,q → V p,q
1,� .

By (5.23), Lemma 5.11 and Lemma 6.5, we have

(6.16) ΔkA1,� = A1,�

(
Δh − T 2 + �(n− k + �) +

(
m+ Γ 0

0 m− Γ

))
.

This suggests to further introduce the operators A±
1,� acting by

(6.17) A+
1,�ξ = A1,�

(
ξ
0

)
= A1,�Q

+ξ , A−
1,�η = A1,�

(
0
η

)
= A1,�Q

−η ,

with Q± as in (6.13). The following proposition is then immediate.

Proposition 6.6. The space V p,q
1,� decomposes as the direct sum

V p,q
1,� = A+

1,�(W
p,q
0 ) +A−

1,�(Ξ
p,q) .

Moreover, the linear mappings

A+
1,� : W

p,q
0 → A+

1,�(W
p,q
0 ), A−

1,� : Ξ
p,q → A−

1,�(Ξ
p,q)

are bijective, and the following identities hold, on W p,q
0 and Ξp,q respectively:

(6.18)

(A+
1,�)

−1ΔkA+
1,� = L− T 2 + i(q − p)T + �(n− k + �) +m

+
√
L− T 2 + i(q − p)T +m2 ,

(A−
1,�)

−1ΔkA−
1,� = L− T 2 + i(q − p)T + �(n− k + �) +m

−
√
L− T 2 + i(q − p)T +m2 .

Define

(6.19) V p,q,+
1,� = A+

1,�(W
p,q
0 ) , V p,q,−

1,� = A−
1,�(Ξ

p,q).

It should be stressed that up to this point we have not yet shown that the sub-
spaces V p,q,+

1,� and V p,q,−
1,� are mutually orthogonal. This fact will be a consequence

of the analysis of the intertwining operators of the next chapter, see Lemma 7.6.
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CHAPTER 7

Unitary intertwining operators and projections

The intertwining operators for Δk that we have defined in the previous chapter
were non-unitary and unbounded. In order to verify that the forms to which Δk,
when restricted to the subspaces V p,q

0 , V p,q,±
1,� and V p,q

2,� , had been reduced on the

corresponding parameter spaces by means of the formulas (6.1), (6.18) and (6.3) are
indeed describing the spectral theory of Δ on these subspaces, we need to replace
the previous intertwining operators by unitary ones. Our next tasks will therefore
be the following ones:

(1) replace these intertwining operators with unitary ones;

(2) determine the orthogonal projections from L2Λk onto Vp,q
0 ,Vp,q,±

1,� and

Vp,q
2,� , the L2-closures of the invariant subspaces V p,q

0 , V p,q,±
1,� and V p,q

2,� .

These two tasks can be accomplished simultaneously by making use of the polar
decomposition of the intertwining operators.

We shall repeatedly use the following basic fact from spectral theory (compare
[RS] for the case H = K).

Proposition 7.1. Let H,K be Hilbert spaces and A : domA ⊂ H → K be a
densely defined, closed operator. Then there exist a positive self-adjoint operator
|A| : domA ⊂ H → H, with dom |A| = domA, and a partial isometry U : H → K
with kerU = kerA and ranU = ranA, so that A = U |A|. |A| and U are uniquely de-
termined by these properties together with the additional condition ker |A| = kerA.

Moreover, |A| =
√
A∗A, U∗U is the orthogonal projection from H onto (kerA)⊥

= ranA∗, and UU∗ is the orthogonal projection from K onto ranA = (kerA∗)⊥.

In order to pass from a possibly unbounded intertwining operator to a unitary
one, we also need the following general principle.

Proposition 7.2. Let H1, H2 be Hilbert spaces and let D1 ⊂ H1, D2 ⊂ H2

be dense subspaces. Assume that for j = 1, 2, Sj : domSj ⊂ Hj → Hj is a self-
adjoint operator on Hj for which Dj is a core such that Sj(Dj) ⊂ Dj . Moreover,
let A : domA ⊂ H1 → H2 be a closed operator such that the following properties
hold true:

(i) D1 ⊂ domA and A(D1) ⊆ D2;
(ii) A intertwines S1 and S2 on the core D1, i.e.,

(7.1) AS1ξ = S2Aξ for all ξ ∈ D1 .

Consider the polar decomposition A = U |A| from Proposition7.1, where |A| =√
A∗A, and where U : H1 → H2 is a partial isometry, and assume furthermore that

D1 ⊂ dom |A|, and that

(iii) |A|(D1) = D1;

47
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48 D. MÜLLER, M. M. PELOSO, and F. RICCI

(iv) the commutation relation

(7.2) S1|A|ξ = |A|S1ξ for all ξ ∈ D1

holds true on the core D1.

Then, also U intertwines S1 and S2 on the core D1, i.e., U(D1) = A(D1) ⊂ D2,
and

(7.3) US1ξ = S2Uξ for all ξ ∈ D1 .

Moreover, we have ranA = A(D1) = U(H1), kerA = ker |A| = kerU, and

P := UU∗ is the orthogonal projection from H2 onto A(D1).

Let us finally denote by Sr
2 = S2

∣∣
A(D1)

the restriction of S2 to A(D1), with

domain domSr
2 := domS2 ∩ A(D1). If we assume in addition that

(v) ker |A| = {0} ;
(vi) (I − iS1)

−1(D1) ⊆ D1 ;
(vii) P (D2) = A(D1) ,

then U is injective, and we even have that U(domS1) = domSr
2 , and

Sr
2 = US1U

−1 on domSr
2 .

Proof. Let us re-write (7.1) as

U |A|S1ξ = S2U |A|ξ for all ξ ∈ D1 .

Applying (7.2), we find that

US1(|A|ξ) = S2U(|A|ξ) for all ξ ∈ D1 ,

which implies (7.3) because of (iii). Note that U(D1) = A(D1) ⊂ D2 in view of
(iii).

Since A is closed and D1 is a core for A, we have ranA = A(D1), and the
remaining statements about ranA, kerA and UU∗ are obvious by Proposition 7.1.

If we assume in addition that (v) and (vi) hold true, then clearly U is injective.
Moreover, (7.3) implies that

U(I − iS1)ξ = (I − iS2)Uξ for all ξ ∈ D1.

Since U(D1) ⊆ D1, by (vi) we then obtain that U(I − iS1)
−1ξ = (I − iS2)

−1Uξ for
every ξ ∈ D1, hence

(7.4) U(I − iS1)
−1 = (I − iS2)

−1U

on H1. Noticing that domSj = ran (I − iSj)
−1, (7.4) implies that U(domS1) ⊆

domS2, so that U(domS1) ⊆ domSr
2 , and that (7.3) holds true even for every

ξ ∈ domS1 :

If x = (I − iS1)
−1y ∈ domS1 (with y ∈ H1), then Ux = (I − iS2)

−1Uy ∈
domS2, and

(I − iS2)Ux = Uy = U(I − iS1)x.

It therefore only remains to show that domSr
2 ⊆ U(domS1).

To this end, we first observe that, because of (vii) and (7.1),

S2P (D2) ⊆ S2A(D1) ⊆ AS1(D1) ⊆ A(D1) = P (D2).

Since S2 is self-adjoint, this implies

S2P (D2) ⊆ P (D2) and (S2(I − P )(D2) ⊆ (I − P )(H2).
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7. UNITARY INTERTWINING OPERATORS AND PROJECTIONS 49

Assume now that x ∈ domS2 ∩ ranU. Then x = Uy for some unique y ∈ H1.
Choose a sequence {xn}n in D2 such that

xn → x and S2xn → S2x.

Since S2xn = S2(Pxn) + S2((I − P )xn)), where the components in this decom-
position lie in mutually orthogonal spaces, we see that there is some z = Uw ∈
P (D2) ⊂ U(H2) such that

Pxn → x = Uy and S2(Pxn) → z = Uw.

We can write Pxn in a unique way as Pxn = Uyn, with yn ∈ D1, since U(D1) =
A(D1) = P (D2). Since U is isometric on H1, we then must have that yn → y.
Moreover, by (7.3), US1yn = S2Uyn = S2(Pxn) → z, so that S1yn → w. This
shows that y ∈ domS1, hence x = Uy ∈ U(domS1). Q.E.D.

Remark 7.3. If we do not require that the crucial commutation relation in (iv)
is satisfied, but that in addition to the conditions (i) to (iii) the natural assumptions
D2 ⊂ domA∗ and A∗(D2) ⊂ D1 hold true, then one can conclude that

(7.5) S1|A|2ξ = |A|2S1ξ for all ξ ∈ D1 .

Indeed, then for ξ ∈ D1 and η ∈ D2, (7.1) and (i) imply that 〈ξ, S1A
∗η〉 =

〈ξ, A∗S2η〉, hence
S1A

∗η = A∗S2η for all η ∈ D2 .

Combining this with (7.1), we obtain S1A
∗Aξ = A∗AS1 for every ξ ∈ D1 , which

verifies (7.5).

One might hope that (7.2) would follow from (7.5) by means of general spectral
theory. However, this hope is destroyed by a classical example due to Nelson (cf.
[RS]), which shows that condition (7.5) will in general not suffice to conclude that
the operators S1 and |A|2 commute, in the sense that their respective spectral
resolutions commute. This, however, would be needed in order to derive (7.2).

However, in our applications, S1 will turn out to be a scalar operator on the
Heisenberg group, and A a positive square matrix whose entries are scalar operators
too, so that (7.2) will easily follow from formula (12.7) for the square root of such
a matrix.

In the sequel, by PH1
: H → H1 we shall denote the orthogonal projection from

the Hilbert space H onto its closed subspace H1.
In our later applications of Proposition 7.1, the next observation will often

facilitate the computation of the corresponding operators A∗A.

Lemma 7.4. Let H,K be Hilbert spaces and H1 ⊆ H and K1 ⊆ K be closed
subspaces. Let A : domA ⊂ H → K be a densely defined, closed operator, and
assume that D ⊂ domA is a core for A. Assume furthermore that D1 := D ∩H1 is
dense in H1 and that domA1 := domA∩H1 is mapped under A into K1, so that the
operator A1 : domA1 ⊂ H1 → K1, given by restricting A to domA1 := domA∩H1,
is densely defined and closed.

Under these conditions, also A∗ is densely defined, and domA∗∩K1 ⊂ domA∗
1.

We shall further assume that E ⊂ K is a subspace of domA∗ such that A(D) ⊂ E
and A∗(E) ⊂ D (so that, in particular, E1 := E ∩K1 is contained in domA∗

1). Then
we have

A∗
1A1ξ = PH1

A∗Aξ for all ξ ∈ D1 .
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50 D. MÜLLER, M. M. PELOSO, and F. RICCI

In particular, if we know that A∗A maps D1 into H1, then A∗
1A1ξ = A∗Aξ for every

ξ ∈ D1.

Proof. Since A(D1) ⊂ E1, it suffices to prove that A∗
1 = PH1

A∗ on E1. But, if
x ∈ D1 ⊂ domA1, ξ ∈ E1 ⊂ domA∗

1, then

〈x,A∗
1ξ〉 = 〈A1x, ξ〉 = 〈Ax, ξ〉 = 〈x,A∗ξ〉 = 〈x, PH1

A∗ξ〉.
This implies that A∗

1ξ = PH1
A∗ξ, since D1 is dense in H1. Q.E.D.

7.1. A unitary intertwining operator for V p,q
0

We recall from the preceding discussion that the intertwining operator on Vp,q
0

is Φ, which reduces to the identity on this space. Hence, this case is trivial.

7.2. Unitary intertwining operators for V p,q,±
1,�

Our next goal is to replace the intertwining operators A±
1,� from Proposition

6.6 by unitary ones. Recall from Proposition 6.6 and (6.17) that

A±
1,� = A1,�Q

± , domA+
1,� = W p,q

0 , domA−
1,� = Ξp,q ,

where, according to (6.14),

(7.6)

A1,� =

(
e(dθ)�∂ e(dθ)�∂̄

i�T−1e(dθ)�−1∂̄∂ + T−1e(dθ)�� −i�T−1e(dθ)�−1∂∂̄ + T−1e(dθ)��

)
.

According to Proposition 7.2, we seek to define unitary intertwining operators
U±
1,� by defining

(7.7) U±
1,� := Up,q,±

1,� := A±
1,�

(
(A±

1,�)
∗A±

1,�

)− 1
2

,

which are expected to be isometries from the closed subspaces W p,q
0 = Wp,q, resp.

Ξp,q, onto their ranges Vp,q,±
1,� . Recall, however, that we have not shown yet that

the latter spaces are mutually orthogonal; this will in fact follow easily from the
subsequent discussions.

Now, since

(A±
1,�)

∗A±
1,� = Q±∗

(A∗
1,�A1,�)Q

±,

we shall begin by computing A∗
1,�A1,�.

Subsequently, we will compute the product Q∗A∗
1,�A1,�Q, showing, in particu-

lar, that it is a diagonal matrix. The diagonal terms will give the explicit forms of
(A±

1,�)
∗A±

1,�, whereas the vanishing of the off-diagonal terms will prove the orthogo-

nality of the spaces Vp,q,±
1,� . Since these computations are tedious and unenlighten-

ing, we shall only state here the relevant identities, postponing their proofs to the
Appendix.
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Let us set, for s+ j ≤ n,

(7.8) cs,j =
j!(n− s)!

(n− s− j)!
.

Lemma 7.5. We have that A∗
1,�A1,� = −cs+1,�T

−2N , where

(7.9) N =

(
�(� − i�T − T 2) ��

�� �(� + i�T − T 2)

)
.

Lemma 7.6. Let R = −T−2Q∗NQ on (W p,q
0 )2. Then

R =

(
R11 0
0 R22

)
,

where

R11 = (Γ +m)2
(
ΔH + 2m(2m− �)

)
+ 2(Γ +m)

(
(2m− �)ΔH − 2mT 2

)
+ΔH(ΔH − T 2) + 2m�T 2 ,

maps W p,q
0 bijectively onto itself, and

R22 = (Γ−m)2
(
ΔH + 2m(2m− �)

)
− 2(Γ−m)

(
(2m− �)ΔH − 2mT 2

)
+ΔH(ΔH − T 2) + 2m�T 2 ,

maps Ξp,q bijectively onto itself, and is zero on CpW
p,q
0 ⊕ C̄qW

p,q
0 , the orthogonal

complement of Ξp,q in W p,q
0 .

Proof. The proof of the formulas for the components of R is postponed to
the Appendix. Given these formulas, we prove here the mapping properties of R11

and R22.
On W p,q

0 , R11 acts as a symmetric scalar operator. Since ΔH = L+ i(q − p)T ,
Γ and −T 2 are positive operators, we have

R11 ≥ (Γ +m)2
(
ΔH + 2m(2m− �)

)
− 4m2T 2 + 2m�T 2

= (Γ +m)2
(
ΔH + 2m(2m− �)

)
− 2m(2m− �)T 2

≥ 2m3(2m− �) > 0 .

It follows that the operators (R11)λ,σ in (3.1) also satisfy the same inequality
from below, and hence are invertible. Applying Lemma 3.2 (ii), we obtain that R11

admits an inverse R−1
11 : S0 −→ S0.

We tensor with Λp,q and restrictR−1
11 toW p,q

0 . By (1.20), the composition ∂∗R11

can be expressed as R′
11∂

∗, with R′
11 differing from R11 in that ΔH is replaced by

ΔH − iT (also in the expression of Γ), and similarly for ∂̄∗R11, ∂
∗R−1

11 and ∂̄∗R−1
11 .

Therefore, R11 maps W p,q
0 bijectively onto itself.

As to R22, we first observe that

(7.10)

R11R22 = detR

= T−4(detQ)2 detN

= T−4(−4iTΓ)2(−T 2)
(
ΔH − T 2 + �(2m− �)

)
��

= 16(ΔH − T 2 +m2)
(
ΔH − T 2 + �(2m− �)

)
�� ,
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so that

(7.11) R22 = 16(ΔH − T 2 +m2)
(
ΔH − T 2 + �(2m− �)

)
��R−1

11 .

Moreover, by the injectivity of R11,

kerR22 = kerR11R22 = ker� ⊕ ker� .

In order to repeat the same argument used above for R11, we start from the

operator R̃22 = R22 + δp,0C + δq,0C̄ (with δ denoting the Kronecker symbol) acting

on scalar-valued functions. By (7.11), R̃22 in invertible on S0 and, after tensoring
and restricting, it is also invertible on W p,q

0 . For ξ ∈ Ξp,q,

R̃−1
22 R22ξ = R̃−1

22 R̃22ξ = ξ .

The conclusion now follows at once. Q.E.D.

Corollary 7.7. We have that

A∗
1,�A1,� = cs+1,�R|

˜Zp,q
.

In particular,

(A+
1,�)

∗A+
1,� = cs+1,�R11 , (A−

1,�)
∗A−

1,� = cs+1,�R22|Ξp,q ,

and the subspaces Vp,q,+
1,� and Vp,q,−

1,� are orthogonal.

Proof. Obviously, R maps the subspace Z̃p,q of (W p,q
0 )2 into itself, so that

the identities follow from Lemma 7.6 and Lemma 7.4. The first statements are
obvious. And, since the matrix Q∗NQ is diagonal, so is A∗

1,�A1,�. Thus, the

map A1,� preserves the orthogonality of the coordinate subspaces W p,q
0 × {0} and

{0} × Ξp,q
0 . Q.E.D.

Let us finally compute U±
1,� more explicitly. To this end, notice that if we

combine the column-vectors of operators U±
1,� to form a square matrix, then

(7.12) U1,� :=
(
U+
1,� U−

1,�

)
= A1,�(A∗

1,�A1,�)
− 1

2 .

Recall that we have set s = p+ q and m = (n− s)/2.

Proposition 7.8. We have that

(7.13) U1,� = c
− 1

2

s+1,� e(dθ)
�−1

(
S11 S12

S21 S22

)(
Σ11 0
0 Σ22

)
,

where

(7.14)

S11 = e(dθ)(−∂Q+
− + ∂̄Q+

+)

S12 = e(dθ)(−∂Q−
+ + ∂̄Q−

−)

S21 = �(∂̄∂ − ∂∂̄)− ie(dθ)
[
ΔH + (Γ +m)(2m− �)

]
S22 = −�(∂̄∂ − ∂∂̄) + ie(dθ)

[
ΔH − (Γ−m)(2m− �)

]
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7. UNITARY INTERTWINING OPERATORS AND PROJECTIONS 53

and Σ11,Σ22 are given by
(7.15)

Σ11 = R
− 1

2
11 =

[
(Γ +m)2

(
ΔH + 2m(2m− �)

)
+ 2(Γ +m)

(
(2m− �)ΔH − 2mT 2

)
+ΔH(ΔH − T 2) + 2m�T 2

]− 1
2

Σ22 = R
− 1

2
22 =

[
(Γ−m)2

(
ΔH + 2m(2m− �)

)
− 2(Γ−m)

(
(2m− �)ΔH − 2mT 2

)
+ΔH(ΔH − T 2) + 2m�T 2

]− 1
2

.

Proof. From Corollary 7.7, we have

(A∗
1,�A1,�)

− 1
2 = c

− 1
2

s+1,�R
− 1

2 ,

so that

U1,� = A1,�Q(A∗
1,�A1,�)

− 1
2 = c

− 1
2

s+1,�A1,�QR− 1
2

= c
− 1

2

s+1,�

(
I

T−1d∗H

)
e(dθ)�

(
∂ ∂̄

)(−Q+
− −Q−

+

Q+
+ Q−

−

)(
(R+)−

1
2 0

0 (R−)−
1
2

)
.

We verify that the factor T−1 in the second row is going to disappear. From
Lemma 5.5, we have

T−1d∗He(dθ)�(∂ ∂̄) = T−1e(dθ)�
(
� �

)
+ i�T−1e(dθ)�−1

(
∂̄∂ −∂∂̄

)
.

Let us define the matrix S by requiring that

e(dθ)�−1S =

(
I

T−1d∗H

)
e(dθ)�

(
∂ ∂̄

)(−Q+
− −Q−

+

Q+
+ Q−

−

)
.

Then

S =

(
e(dθ)∂ e(dθ)∂̄

i�T−1∂̄∂ + T−1e(dθ)� −i�T−1∂∂̄ + T−1e(dθ)�

)(
−Q+

− −Q−
+

Q+
+ Q−

−

)
.

In particular,
S11 = e(dθ)(−∂Q+

− + ∂̄Q+
+)

S12 = e(dθ)(−∂Q−
+ + ∂̄Q−

−) .

Moreover,

S21 =
[
i�T−1∂̄∂ + T−1e(dθ)�

]
(−Q+

−) +
[
− i�T−1∂∂̄ + T−1e(dθ)�

]
Q+

+

= �(∂̄∂ − ∂∂̄)− ie(dθ)ΔH − (Γ +m)
[
i�T−1(∂̄∂ + ∂∂̄) + T−1e(dθ)(� − �)

]
= �(∂̄∂ − ∂∂̄)− ie(dθ)

[
ΔH + (Γ +m)(2m− �)

]
.

Finally, a similar computation shows that

S22 = −�(∂̄∂ − ∂∂̄) + ie(dθ)
[
ΔH − (Γ−m)(2m− �)

]
,

as we claimed.

In order to conclude the proof, it suffice to notice that Σjj = R
− 1

2
jj , j = 1, 2,

where Rjj are given in Lemma 7.6. Q.E.D.

We wish now to apply Proposition 7.2 to A±
1,�. We restrict ourselves to A−

1,�,
the other case being simpler.
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We set

D1 = Ξp,q, H1 = Ξp,q,

D2 = S0Λ
k, H2 = L2Λk,

S1 = D−, S2 = Δk,

where

(7.16) D± := L−T 2+ i(q− p)T + �(n− k+ �)+m±
√
L− T 2 + i(q − p)T +m2,

and denote by A the closure ofA−
1,�. The commutation relation (7.1) is then satisfied

because of (6.18). Moreover, clearly S2(D2) ⊂ D2.

Notice also that A maps D1 bijectively onto V p,q,−
1,� ⊆ D2.

Next, according to Corollary 7.7, A∗A is a positive scalar operator, and so is

S1. But then also |A| =
√
A∗A =

√
cs+1,� R

1
2
22 is a scalar operator, hence commutes

with S1, so that condition (iv) in Proposition 7.2 is satisfied too.
Conditions (iii) and (v) of Proposition 7.2 follow from Lemma 7.6 and condition

(vi) is obvious.
Finally, our explicit formulas for U = U−

1,� in Proposition 7.8 show that here U

maps the space Ξp.q into S0Λ
k, so that U∗ maps S0Λ

k into Ξp.q, and we see that

P (D2) = P (S0Λ
k) = U(Ξp,q) = A

(
|A|−1(Ξp,q)

)
= A(Ξp,q) = A(D1). This shows

that also condition (vii) is satisfied. Q.E.D.

In the same way, we see that all the hypotheses of Proposition 7.2 are satisfied
by U−

1,�, and as a consequence we obtain

Proposition 7.9. U±
1,� defined by (7.7) maps W p,q

0 , respectively Ξp,q, onto

V p,q,±
1,� and intertwines D± with Δk on the core.

Moreover, U+
1,� : Wp,q

0 → L2Λk and U−
1,� : Ξp,q → L2Λk are linear isometries

onto their ranges Vp,q,+
1,� and Vp,q,−

1,� , respectively, which intertwine D+ resp. D−

with the restriction of Δk to Vp,q,±
1,� , i.e.,

(7.17) Δk
∣∣
Vp,q,±
1,�

= U±
1,� D

± (U±
1,�)

−1 on domΔk
∣∣
Vp,q,±
1,�

.

Here, (U±
1,�)

−1 denotes the inverse of U±
1,� when viewed as an operator into its

range Vp,q,±
1,� .

Finally, if we regard of U±
1,� as an operator mapping into L2Λk, then P±

1,� :=

P p,q,±
1,� := U±

1,�(U
±
1,�)

∗ is the orthogonal projection from L2Λk onto Vp,q,±
1,� .

7.3. A unitary intertwining operator for V p,q
2,�

We next wish to replace the intertwining operator A2,� from Proposition 6.2
by a unitary one, denoted by U2,� = Up,q

2,� , which, according to Proposition 7.2,

should be given by A2,�(A
∗
2,�A2,�)

− 1
2 . In fact, it will be convenient to modify this

expression introducing the unitary central factor σ(T ) = i−1T/|T |.
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Recall that the non-unitary intertwining operator A2,� from Zp,q to Vp,q
2,� is

(7.18)

A2,� = Φe(dθ)�
(
∂̄∂ ∂∂̄

)
=

(
I

T−1d∗H

)
e(dθ)�

(
∂̄∂ ∂∂̄

)
=

(
e(dθ)�∂̄∂ e(dθ)�∂∂̄

T−1d∗He(dθ)�∂̄∂ T−1d∗He(dθ)�∂∂̄

)
.

Since A2,� acts on Zp,q, the identities in Lemma 5.5 in combination with (1.20)
imply that

d∗He(dθ)�∂̄∂ = e(dθ)�
[
(� + i�T )∂ − (� + iT )∂̄

]
.

Analogously,

d∗He(dθ)�∂∂̄ = e(dθ)�
[
(� − i�T )∂̄ − (� − iT )∂

]
.

Therefore,
(7.19)

A2,� = e(dθ)�
(

∂̄∂ ∂∂̄
T−1

[
(� + i�T )∂ − (� + iT )∂̄

]
T−1

[
(� − i�T )∂̄ − (� − iT )∂

]) .

Lemma 7.10. We have

(i)

A∗
2,�A2,� = −cs+1,�T

−2E =: −cs+1,�T
−2

(
E11 E12

E21 E22

)
,

where

(7.20)

E11 = ��(ΔH − T 2) + i(�+ 1)T�
[
ΔH − T 2 − i(n− s− �− 1)T

]
,

E12 = E21 = −��(ΔH − T 2) ,

E22 = ��(ΔH − T 2)− i(�+ 1)T�
[
ΔH − T 2 + i(n− s− �− 1)T

]
;

(ii) (
A∗

2,�A2,�

) 1
2 =

√
cs+1,�

|T |
√
Δ′

[
E − T 2

√
c��Δ′Δ′′ I

]
,

with E as above.

Moreover,
(
A∗

2,�A2,�

) 1
2 maps Zp,q bijectively onto itself, and, on Zp,q,(

A∗
2,�A2,�

)− 1
2 =

1
√
cs+1,� c|T |

√
��Δ′Δ′′

M̃ ,

where M̃ and Δ′ are given by

M̃ = ��(ΔH − T 2)

(
1 1
1 1

)
+

(
M11 0
0 M22

)
,

with

(7.21)
M11 = −i(�+ 1)T�

(
ΔH − T 2

)
− T 2

(
c� +

√
c��Δ′′

)
,

M22 = i(�+ 1)T�
(
ΔH − T 2

)
− T 2

(
c� +

√
c��Δ′′

)
,

(7.22)
Δ′ :=

(
2�� − (�+ 1)2T 2

)
(ΔH − T 2)− T 2

(
− cT 2 + 2

√
c��Δ′′

)
,

Δ′′ := ΔH − T 2 + c ,
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56 D. MÜLLER, M. M. PELOSO, and F. RICCI

and
c := (�+ 1)(n− s− �− 1) .

Proof. The proof of the formulas is postponed to the Appendix, where we
also prove the identity

(7.23) detE = cT 4��(ΔH − T 2 + c) .

Hence we only prove here that
(
A∗

2,�A2,�

) 1
2 maps Zp,q bijectively onto itself,

assuming the validity of (7.20) and (7.23).
We can factor E as

E = −T 2

(
� 0
0 �

)
E′

where
detE′ = cΔ′′ ≥ c2 > 0 .

Applying Lemma 3.2 as in the proof of Lemma 7.6, we can conclude that the
operator

Ẽ = −T 2

(
� + δp,0C 0

0 � + δq,0C̄

)
E′

maps bijectively (W p,q
0 )2 onto itself. Restricting to Zp,q, we obtain the conclusion.

Q.E.D.

Some cancellations occur when we proceed to computing the matrix product
A2,�M̃ , as the next lemma shows.

Lemma 7.11. We have that

A2,�M̃ =: e(dθ)�TP = e(dθ)�T

(
P11 P12

P21 P22

)
,

where

(7.24)

P11 = P12 = −∂̄∂
[
i(�+ 1)�

(
ΔH − T 2

)
+ T

(
c� +

√
c��Δ′′)] − e(dθ)��(ΔH − T 2) ,

P21 = P22 = −∂
[
c�(ΔH − T 2) + (� + i(�+ 1)T )(c� +

√
c��Δ′′)] + ∂̄�(c� +

√
c��Δ′′) .

Proof. Let A =

(
A11 A12

A21 A22

)
denote the matrix on the right hand side of

(7.19), and set P = T−1AM̃ . Then

AM̃ =

(
∂∂̄ + ∂̄∂ ∂∂̄ + ∂̄∂

i(�+ 1)(∂ − ∂̄) −i(�+ 1)(∂̄ − ∂)

)
��(ΔH − T 2)

+

(
∂̄∂M11 ∂∂̄M22

T−1
[
(� + i�T )∂ − (� + iT )∂̄

]
M11 T−1

[
(� − i�T )∂̄ − (� − iT )∂

]
M22,

)

where by (1.12) ∂∂̄ + ∂̄∂ = −Te(dθ). This implies that

P11 = −∂̄∂
[
i(�+ 1)�

(
ΔH − T 2

)
+ T

(
c� +

√
c��Δ′′

)]
− e(dθ)��(ΔH − T 2)

and P12 = P11, which proves the statements about P11 and P12, and

P21 = iT−1(�+ 1)(∂ − ∂̄)��(ΔH − T 2)

+ T−2
[
(� + i�T )∂ − (� + iT )∂̄

][
− i(�+ 1)T�

(
ΔH − T 2

)
− T 2

(
c� +

√
c��Δ′′)]
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where P22 = P21.
Next, using (1.20) and the identity (5.19), with s = p+ q in place of k, we have

P21 = iT−1(�+ 1)(∂ − ∂̄)��(ΔH − T 2)

+ T−1
[
∂(� + i(�+ 1)T )− ∂̄�

][
− i(�+ 1)�

(
ΔH − T 2) − T

(
c� +

√
c��Δ′′

)]
=

[
iT−1(∂ − ∂̄)� − iT−1∂� + (�+ 1)∂ + iT−1∂̄�

]
(�+ 1)�(ΔH − T 2)

−
[
∂(� + i(�+ 1)T )− ∂̄�

](
c� +

√
c��Δ′′

)
= −c∂�(ΔH − T 2)−

[
∂(� + i(�+ 1)T )− ∂̄�

](
c� +

√
c��Δ′′

)
= −∂

[
c�(ΔH − T 2) + (� + i(�+ 1)T )(c� +

√
c��Δ′′

)]
+ ∂̄�(c� +

√
c��Δ′′

)
.

This proves the lemma. Q.E.D.

From the previous results we immediately get an explicit formula for U2,�, at
least when p �= 0 and q �= 0. However, if p = 0 or q = 0, our formulas, when properly
interpreted, persist, and we obtain the following result:

Recall that if p = 0, then Xp,q = (I − C)Xp,q, and if q = 0, then Y p,q =
(I − C)Y p,q. Let us correspondingly put

�r =

{
� if p ≥ 1,

�′ if p = 0,
�r =

{
� if q ≥ 1,

�′
if q = 0,

so that �r is always invertible on Xp,q, and �r on Y p,q.

Proposition 7.12. The operator U2,�, which acts on Zp,q, is given by

(7.25) U2,� =
e(dθ)�

√
cs+1,� c

H
1√

Δ′Δ′′
,

where the operator matrix H =

(
H11 H12

H21 H22

)
is defined by

(7.26)

H11 = H12 = −R̄R(� + iT )
1
2

[
i(�+ 1)�

1
2
(
ΔH − T 2

)
+ T

(
c�

1
2 + � 1

2

√
cΔ′′

)]
− e(dθ)� 1

2 �
1
2 (ΔH − T 2) ,

H21 = H22 = −R
[
c�

1
2 (ΔH − T 2) + (� + i(�+ 1)T )(c�

1
2 + � 1

2

√
cΔ′′

)]
+ R̄(c�� 1

2 + ��
1
2
√
cΔ′′

)
,

and where Δ′,Δ′′ and c are given by Lemma 7.10.

Finally, we have the following analogue of Proposition 7.9.

Proposition 7.13. The operator U2,� in Proposition 7.12 maps the space Zp,q

onto V p,q
2,� and intertwines D := Δ0 + i(q − p)T + (� + 1)(n − k + � + 1) with Δk

on the core. Moreover U2,� : Zp,q → L2Λk is a linear isometry onto Vp,q
2,� which

intertwines D with the restriction of Δk to Vp,q
2,� , i.e.,

(7.27) Δk
∣∣
Vp,q
2,�

= U2,� D (U2,�)
−1 on domΔk

∣∣
Vp,q
2,�

.

Licensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



58 D. MÜLLER, M. M. PELOSO, and F. RICCI

Here, (U2,�)
−1 denotes the inverse of U2,� when viewed as an operator into its

range Vp,q
2,� .

Finally, if we regard of U2,� as an operator mapping into L2Λk, then P2,� :=
P p,q
2,� := U2,�(U2,�)

∗ is the orthogonal projection from L2Λk onto Vp,q
2,� .

Proof. This will follow by applying Proposition 7.2 to A2,�. To this end, we
set

D1 = Zp,q , H1 = Zp,q,

D2 = S0Λ
k, H2 = L2Λk,

S1 = D, S2 = Δk,

and denote by A the closure of A2,� on Zp,q. The commutation relation (7.1) is
then satisfied because of (6.3). Moreover, clearly S2(D2) ⊂ D2, and A maps D1

bijectively onto V p,q
2,� ⊆ D2.

Next, according to Lemma 7.10, A∗A is a positive matrix with scalar operator
entries, and S1 = S1I is a scalar operator. But then also |A| =

√
A∗A is a matrix

with scalar operator entries, hence commutes with S1I, so that condition (iv) in
Proposition 7.2 is satisfied too.

In order to verify conditions (iii), (v) and (vi), we can make use of the joint
spectral theory of L and i−1T described in Chapter 9. Indeed, it is immediate by
means of the spectral decomposition of S1 that (vi) is satisfied.

Moreover, |A| maps Zp,q into itself; this can be verified as follows:

The formula for |A| =
(
A∗

2,�A2,�

) 1
2 in Lemma 7.10 shows that it suffices to prove

that the operator matrix E maps Zp,q into itself. This in return will be verified
if we can show that E12 maps Y p,q into Xp,q, and E21 maps Xp,q into Y p,q. But,
according to Lemma 12.3 in the Appendix, �� maps W p,q

0 into Ξp,q, so that the
latter claims are immediate.

And, the formula for A∗
2,�A2,� in Lemma 7.10 in combination with Lemma 10.9

and Plancherel’s theorem shows that A∗
2,�A2,� = |A|2 has a trivial kernel in L2, and

then the same applies to |A|, which proves (v).

Finally, our explicit formulas for U = U2,� in Proposition 7.12 show that U
maps the space Zp.q into S0Λ

k, so that U∗ maps S0Λ
k into Zp.q , and we see that

P (D2) = P (S0Λ
k) = U(Zp,q) = A

(
|A|−1(Zp,q)

)
= A(Zp,q) = A(D1), where P =

UU∗. This shows that also condition (vii) is satisfied, which concludes the proof of
Proposition 7.13.

Q.E.D.
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CHAPTER 8

Decomposition of L2Λk

We are now in the position to completely describe the orthogonal decomposition
of L2Λk into Δk-invariant subspaces and the unitary intertwining operators that
reduce Δk into scalar form.

Theorem 8.1. Let 0 ≤ k ≤ n. Then L2Λk admits the orthogonal decomposition

(8.1) L2Λk =
∑⊕

p+q=k<n
p+q=n, pq=0

Vp,q
0 ⊕

∑⊕

ε=±

∑⊕

p+q+2�=k−1

Vp,q,ε
1,� ⊕

∑⊕

p+q+2�=k−2

Vp,q
2,�

⊕
∑⊕

p+q=k−1

RVp,q
0 ⊕

∑⊕

ε=±

∑⊕

p+q+2�=k−2

RVp,q,ε
1,� ⊕

∑⊕

p+q+2�=k−3

RVp,q
2,� ,

where R = Rk−1 denotes the Riesz transform.

Proof. This follows immediately from (5.1), Proposition 5.13 and Proposition
4.5, since, according to Lemma 4.4, Rk−1Rk−2 = 0. Q.E.D.

The Hodge Laplacian Δk leaves all the subspaces in this decomposition in-
variant, and we have seen that, after applying the unitary intertwining operators
derived in the previous chapters, it will assume a scalar form on each of the corre-
sponding parameter spaces.

In Table 1, we list these subspaces, the corresponding scalar forms of Δk, the
associated unitary intertwining operators as well as the orthogonal projections onto
these subspaces.

By J, we denote the inclusion the operator of a given subspace into L2Λk.

8.1. The ∗-Hodge operator and the case n < k ≤ 2n+ 1

We now remove the condition 0 ≤ k ≤ n and prove a decomposition theorem
for L2Λk also in the case n < k ≤ 2n+ 1.

We are going to use the ∗-Hodge operator defined on an arbitrary Riemannian
d-manifold M, acting for each point m ∈ M as a linear mapping

∗ : Λk
m → Λd−k

m ,

where Λk
m denotes the k-th exterior product of the dual of the tangent space at m.

It will be viewed also as a linear mapping acting on forms on M. For its definition
and basic properties we refer to [Ra]. We summarize the main properties in the
following statement.

59
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8. DECOMPOSITION OF L2Λk 61

Proposition 8.2. The ∗-Hodge operator is almost involutive, i.e., , ∗(∗ω) =
(−1)k(d−k)ω, and the following properties hold true:

(1) for ω1, ω2 ∈ L2Λk(M),∫
M

ω1 ∧ ∗ω2 = 〈ω1, ω2〉L2Λk ;

(2) as a mapping ∗ : L2Λk → L2Λd−k, the operator ∗ is unitary;

(3) d∗ = − ∗ d∗;
(4) ∗Δk = Δd−k∗.
In our situation, M = Hn and d = 2n+ 1.
It follows from property (4) above that a subspace V ⊆ L2Λk is Δk-invariant

if and only if ∗V ⊆ L2Λd−k is Δd−k-invariant. Thus, we wish to describe the
Δk-invariant subspaces of L

2Λk, when n < k ≤ 2n+ 1.

We denote by Λk
V the space of vertical k-forms, that is, the forms ω = θ ∧ ω2,

with ω2 ∈ Λk−1
H , and by μ = θ ∧ dθ ∧ · · · ∧ dθ the volume element on Hn. Similarly,

μH = dθ ∧ · · · ∧ dθ will denote the corresponding volume element on the horizontal
structure. In the same way as the ∗-Hodge operator on Hn is determined by the
relations σ ∧ ∗ω = 〈σ, ω〉μ for all σ, ω ∈ Λk, we can introduce the ∗-Hodge operator
∗H acting on the horizontal structure, by requiring that σ ∧∗Hω = 〈σ, ω〉μH for all
σ, ω ∈ Λk

H .
The following results are easy consequences of these defining relations.

Lemma 8.3. Let ω ∈ S0Λ
k
H . Then the following hold true:

(i) if we put ω′ := (−1)k ∗H ω, then ∗ω = θ ∧ ω′;
(ii) ∗Hω = ∗(θ ∧ ω).

We set

(8.2)
∗
W

r,s

0 =
{
ω′ ∈ S0Λ

r,s : ∂ω′ = ∂̄ω′ = 0
}

and define

(8.3)

Zr,s
0 =

{
ω = θ ∧ ω′ ∈ S0Λ

k
V : ω′ ∈

∗
W

r,s

0

}
,

Zr,s
1 =

{
ω = θ ∧ ω′ ∈ S0Λ

k
V : ω′ = ∂∗σ + ∂̄∗τ, σ, τ ∈

∗
W

r,s

0

}
,

Zr,s
2 =

{
ω = θ ∧ ω′ ∈ S0Λ

k
V : ω′ = ∂̄∗∂∗σ + ∂∗∂̄∗τ, σ, τ ∈

∗
W

r,s

0

}
.

We also set

(8.4) Zr,s
j,� = i(dθ)�Zr,s

1 , j = 1, 2.

Notice that Zr,s
0 is a subspace of S0Λ

k
V , where k = r+ s+1, Zr,s

1 ⊆ S0Λ
k
V with

k = r + s, and Zr,s
2 ⊆ S0Λ

k
V with k = r + s − 1. Therefore, Zr,s

j,� ⊆ S0Λ
k
V where

k = r + s+ 1− j − 2�, j = 1, 2.

Observe also that from (1.21) it follows that ω ∈ S0Λ
k, ω = ω1 + θ ∧ ω2 is

d-closed if and only if ω1 = T−1dHω2.

The mapping
∗
Φ: S0Λ

k
V → (S0Λ

d−k)d-cl defined by
∗
Φ (θ ∧ ω′) = T−1dHω′ + θ ∧ ω′ ,

where ω′ ∈ S0Λ
k
H , is an isomorphism.
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62 D. MÜLLER, M. M. PELOSO, and F. RICCI

Lemma 8.4. The following properties hold true:

(i) ∗(L2Λk)d-ex = (L2Λd−k)d∗-ex and ∗(L2Λk)d∗-cl = (L2Λd−k)d-cl;

(ii) if ω ∈ S0Λ
k
H , then ∗Φ(ω) =

∗
Φ (∗ω) .

Moreover, if for given p, q we put r = n− q and s = n− p, then

(iii) ∗(W p,q
0 ) = Zr,s

0 , hence ∗(V p,q
0 ) =

∗
Φ (Zr,s

0 );

(iv) ∗(W p,q
1,� ) = Zr,s

1,� , hence ∗(V p,q
1,� ) =

∗
Φ (Zr,s

1,� );

(v) ∗(W p,q
2,� ) = Zr,s

2,� , hence ∗(V p,q
2,� ) =

∗
Φ (Zr,s

2,� ).

Finally, the spaces Zr,s
j,� , j = 1, 2 are non-trivial, and Zr,s

0 are non-trivial if and
only if r + s > n or, if r + s = n, rs = 0.

Proof. Property (i) follows from Proposition 8.2 (3).
If ω ∈ Λk, we shall put

ω′ := (−1)k ∗H ω,

so that according to Lemma 8.3, ∗ω = θ ∧ ω′.
Then

∗Φ(ω) = ∗ω + ∗
(
θ ∧ T−1d∗Hω

)
= ∗ω + T−1 ∗H d∗Hω

= ∗ω + (−1)(2n−k+1)(k−1)+1T−1dH ∗H ω

= θ ∧ ω′ + T−1dHω′ ,

which proves (ii).
Using Lemma 8.3, the fact that (on horizontal forms) ∂∗ = − ∗H ∂∗H and the

analogous formula for ∂̄∗, for ω ∈ W p,q
0 we obtain

∗ω = θ ∧ (−1)p+q ∗H ω = θ ∧ ω′,

where here ω′ ∈ S0Λ
r,s and ∂ω′ = ∂̄ω′ = 0.

This shows that ∗(W p,q
0 ) ⊂ Zr,s

0 , and in a similar way one proves that ∗(Zr,s
0 ) ⊂

W p,q
0 . Combining this with (ii), we obtain (iii).

Next, if ω = ∂ξ + ∂̄η, with ξ, η ∈ W p,q
0 , then

(8.5)
∗ω = (−1)kθ ∧ ∗H(∂ξ + ∂̄η)

= θ ∧ (∂∗ ∗H ξ + ∂̄∗ ∗H η) =: θ ∧ (∂∗σ + ∂̄∗τ )

where σ, τ ∈
∗
W

r,s

0 , hence θ ∧ (∂∗σ + ∂̄∗τ ) ∈ Zr,s
1 . This shows that ∗(W p,q

1 ) ⊂ Zr,s
1 ,

and in a similar way one proves that ∗(Zr,s
1 ) ⊂ W p,q

1 , and we obtain (iv) in the case
� = 0.

For the general case, we observe that, for all test forms ω and σ,∫
σ ∧ ∗H i(dθ)ω = 〈σ, i(dθ)ω〉 = 〈e(dθ)σ, ω〉

=

∫
e(dθ)σ ∧ ∗Hω =

∫
σ ∧ e(dθ)(∗Hω) .

It follows that

∗H i(dθ) = e(dθ)∗H , and ∗H e(dθ) = i(dθ) ∗H .
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8. DECOMPOSITION OF L2Λk 63

Hence, if ω = ∂ξ + ∂̄η, with ξ, η ∈ W p,q
0 ,

∗Φ
(
e(dθ)�ω) =

∗
Φ

(
∗ e(dθ)�ω

)
= (−1)kθ ∧ ∗He(dθ)�ω + (−1)kT−1dH ∗H (e(dθ)�ω)

= (−1)kθ ∧ i(dθ)� ∗H ω + (−1)kT−1dH i(dθ)� ∗H ω

=
∗
Φ

(
i(dθ)�θ ∧ ω′)

where θ ∧ ω′ = θ ∧ (∂∗σ + ∂̄∗τ ) ∈ Zr,s
1 , with σ, τ as in (8.5). This shows that

∗(W p,q
1,� ) ⊂ Zr,s

1,� , and in a similar way one proves that ∗(Zr,s
1,� ) ⊂ W p,q

1,� , and we

obtain (iv).
The proof of (v) follows along the same lines and is therefore omitted.

The proof about the non-triviality of these subspaces follows from Propositions
5.3 and 5.4. Q.E.D.

Definition 8.5. When r + s ≥ n we set

Y r,s
0 =

∗
Φ (Zr,s

0 ) = Zr,s
0 , Y r,s,±

1,� =
∗
Φ (Zr,s,±

1,� ) , Y r,s
2,� =

∗
Φ (Zr,s

2,� ) ,

and denote by Υr,s
0 ,Υr,s,±

1,� respectively Υr,s
2,� the closures of these spaces in L2Λk.

Let us finally observe that, in view of Lemmas 4.4 and 8.2, the Riesz transforms
on Hn satisfy

∗R2n−k(ω) = −R∗
k+1(∗ω).

Then, from Theorem 8.1, Lemma 8.4 and Proposition 8.2 we immediately obtain the
following decomposition of L2Λk into Δk-invariant subspaces when n < k ≤ 2n+1.

Theorem 8.6. Let n < k ≤ 2n+ 1. Then L2Λk admits the orthogonal decom-
position

(8.6) L2Λk =
∑⊕

r+s=k−1>n
r+s=n, rs=0

Υr,s
0 ⊕

∑⊕

ε=±

∑⊕

r+s−2�=k

Υr,s,ε
1,� ⊕

∑⊕

r+s−2�=k+1

Υr,s
2,�

⊕
∑⊕

r+s=k

R∗ Υr,s
0 ⊕

∑⊕

ε=±

∑⊕

r+s−2�=k+1

R∗ Υr,s,ε
1,� ⊕

∑⊕

r+s−2�=k+2

R∗ Υr,s
2,� ,

where R∗ = R∗
k+1.

Moreover, since the ∗-Hodge operator transform the subspaces in this decompo-
sition into the corresponding subspaces in the decomposition given by Theorem 8.1,
with p := n− s and q := n− r, the unitary intertwining operators which transform
Δk on each of these subspaces into scalar forms are simply given by those from
Table 1 at the end of Chapter 8, composed on the right hand side by the ∗-Hodge
operator, and similar remarks apply to the orthogonal projections and scalar forms.
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CHAPTER 9

Lp-multipliers

The decomposition of L2Λk presented in the previous chapters, together with
the description of the action of Δk on the various subspaces, can be used for the Lp-
functional calculus of Δk. For this purpose, we are going to show that LpΛk admits
the same decomposition when 1 < p < ∞. Concretely, this means proving that
the orthogonal projections on the various invariant subspaces and the intertwining
operators that reduce Δk to scalar forms are Lp-bounded.

9.1. The multiplier theorem

The joint spectrum of L and i−1T is the Heisenberg fan F ⊂ R2 defined as
follows. If

�k,± = {(λ, ξ) : ξ = ±(n+ 2k)λ, λ ∈ R∗
+} ,

then

F =
⋃
k∈N

(�k,+ ∪ �k,−) .

The variable λ corresponds to i−1T and ξ to L, i.e., calling dE(λ, ξ) the spectral
measure on F , then

i−1T =

∫
F

λ dE(λ, ξ) , L =

∫
F

ξ dE(λ, ξ) .

If m is any bounded, continuous function on R × R∗
+, we can then define the

associated multiplier operator m(i−1T, L) by

m(i−1T, L) :=

∫
F

m(λ, ξ) dE(λ, ξ),

which is clearly bounded on L2(Hn).
It follows from Plancherel’s formula that the spectral measure of the vertical

half-line {(0, ξ) : ξ ≥ 0} ⊂ F is zero. A spectral multiplier is therefore a function
m(λ, ξ) on F whose restriction to each �k is measurable w.r. to dλ for every k.

We shall use the following results from [MRS1,MRS2] concerning Lp-bounded-
ness of spectral multipliers, see also Section 5 in [MPR1].

Given ρ, σ > 0, we say that a measurable function f(λ, ξ) is in the mixed
Sobolev space L2

ρ,σ = L2
ρ,σ(R

2) if

(9.1)
‖f‖2L2

ρ,σ
: =

∫
R2

(1 + |ξ′|)2ρ(1 + |λ′|+ |ξ′|)2σ|f̂(λ′, ξ′)|2 dλ′ dξ′

= c‖(1 + |∂ξ|)ρ(1 + |∂λ|+ |∂ξ|)σf‖22 < ∞ .

65
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66 D. MÜLLER, M. M. PELOSO, and F. RICCI

Let η0 ∈ C∞
0 (R) be a non-trivial, non-negative, smooth bump function sup-

ported in R∗
+ := (0,∞), put η1(x) := η0(x) + η0(−x) and set χ := η1 ⊗ η0. If

f(λ, ξ) is a continuous, bounded function on R × R∗
+, then we put fr(λ, ξ) =

f(r1λ, r2ξ), r = (r1, r2) ∈ (R∗
+)

2, and say that f lies in L2
ρ,σ,sloc

(
R × R∗

+

)
if for

every r = (r1, r2) ∈ (R∗
+)

2, the function frχ lies in L2
ρ,σ and

(9.2) ‖f‖L2
ρ,σ,sloc

:= sup
r

‖frχ‖L2
ρ,σ

< ∞ .

Definition 9.1. A function m satisfying (9.2) is called a Marcinkiewicz mul-
tiplier of class (ρ, σ). A smooth Marcinkiewicz multiplier is a Marcinkiewicz multi-
plier of every class (ρ, σ), i.e., satisfying the pointwise estimates

(9.3)
∣∣∂j

λ∂
k
ξm(λ, ξ)

∣∣ ≤ Cjk|λ|−j |ξ|−k ,

for every j, k.

Theorem 9.2. ([MRS2]) Let m be a Marcinkiewicz multiplier of class (ρ, σ)
for some ρ > n and σ > 1

2 . Then m(i−1T, L) is bounded on Lp(Hn) for 1 < p < ∞,
with norm controlled by ‖m‖L2

ρ,σ,sloc
.

9.2. Some classes of multipliers

We introduce the classes Ψρ,σ
τ of (possibly unbounded) smooth multipliers, in

terms of which we will understand the behavior of the projections and intertwining
operators presenteded in the previous chapters.

These classes are defined by pointwise estimates on all derivatives, in analogy
to (9.3), which must be satisfied on some open angle Γn−ε := {(λ, ξ) ∈ R2 : ξ >
(n− ε)|λ|} containing the Heisenberg fan F taken away the origin.

Definition 9.3. We say that m ∈ Ψρ,σ
τ (ρ, σ, τ ∈ R) if

(9.4)
∣∣∂j

λ∂
k
ξm(λ, ξ)

∣∣ �
{
ξτ−j−k for ξ ≤ 1

(ξ + λ2)ρ−
j
2 ξσ−k for ξ > 1 .

for every j, k ∈ N. We also say that m ∈ ∗Ψρ,σ
τ if m ∈ Ψρ,σ

τ and, moreover,

(9.5) m(λ, ξ) �
{
ξτ for ξ < 1

(ξ + λ2)ρξσ for ξ > 1 .

Prototypes are given by the smooth functions m such that

m(λ, ξ) =

{
(ξ + pλ+ aλ2)τ for ξ < 1

(ξ + λ2)ρ(ξ + qλ)σ for ξ > 2 ,

with |p|, |q| < n. The following properties are easy to prove.

Lemma 9.4. The classes Ψρ,σ
τ satisfy the following properties:

(i) ∂λΨ
ρ,σ
τ ⊂ Ψ

ρ− 1
2 ,σ

τ−1 , ∂ξΨ
ρ,σ
τ ⊂ Ψρ,σ−1

τ−1 ;

(ii) Ψρ,σ
τ Ψρ′,σ′

τ ′ ⊂ Ψρ+ρ′,σ+σ′

τ+τ ′ ;
(iii) if m ∈ ∗Ψρ,σ

τ and then ms ∈ Ψsρ,sσ
sτ for every s ∈ R (for s ∈ N, m ∈ Ψρ,σ

τ

is sufficient);

(iv) if ρ+ σ ≤ ρ′ + σ′, 2ρ+ σ ≤ 2ρ′ + σ′ and τ ≥ τ ′, then Ψρ,σ
τ ⊂ Ψρ′,σ′

τ ′ .
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9. Lp-MULTIPLIERS 67

(v) In particular, if ρ+ σ ≤ 0, 2ρ+ σ ≤ 0 and τ ≥ 0, then Ψρ,σ
τ ⊂ Ψ0,0

0 , and
Ψρ,σ

τ consists of Marcinkiewicz multipliers.

Remark 9.5.

(i) Observe that if χ is a smooth cut-off function on R, compactly supported

on R \ {0} and with 0 ≤ χ ≤ 1, then η = χ(ξ/|λ|) and 1 − η are in Ψ0,0
0 .

By Lemma 9.4 (ii), multiplication by η or 1−η preserves the classes Ψρ,σ
τ .

This property provides a certain amount of flexibility, of which we give
two examples.

(ii) If we are given a multiplier m, which satisfies the inequalities (9.4), but
is only defined on an angle Γ leaving out a finite number of half-lines
�k,± of F , we can easily extend m to a multiplier in Ψρ,σ

τ which vanishes
identically on the missing lines.

(iii) Property (iii) in Lemma 9.4 also applies to the situation where s > 0,
(9.5) only holds on an angle omitting a finite number of half-lines in F ,
and m vanishes identically on these half-lines.

We denote by the same symbol Ψρ,σ
τ the class of operators defined by the

multipliers in this class. For notational convenience, we shall often use the same
symbol to denote an operator M ∈ Ψρ,σ

τ and (a convenient choice of) its multiplier
M(λ, ξ).
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CHAPTER 10

Decomposition of LpΛk and boundedness of the
Riesz transforms

Since the letter p is already used to denote degrees of differential forms, the
summability exponent will be denoted by r.

If V is any of the spaces Vp,q
0 , Vp,q

1,� , Υ
p,q
1,� , etc., by

rV we shall denote the closure

of this space in LrΛk. Our goal will be to prove the following theorem, whose parts
(i) and (ii) extend Theorems 8.1 and 5.13 and in particular give the Lp-Hodge
decomposition of LpΛk(Hn).

Theorem 10.1. Let 1 < r < ∞.

(i)k For 0 ≤ k ≤ n, LrΛk admits the direct sum decomposition

(10.1) LrΛk =
∑⊕

p+q=k<n
p+q=n, pq=0

rVp,q
0 ⊕

∑⊕

ε=±

∑⊕

p+q+2�=k−1

rVp,q,ε
1,� ⊕

∑⊕

p+q+2�=k−2

rVp,q
2,�

⊕
∑⊕

p+q=k−1

Rk−1
rVp,q

0 ⊕
∑⊕

ε=±

∑⊕

p+q+2�=k−2

Rk−1
rVp,q,ε

1,� ⊕
∑⊕

p+q+2�=k−3

Rk−1
rVp,q

2,� ,

where Rk−1 = dΔ
− 1

2

k−1 is the Riesz transform;

(ii)k For n+ 1 ≤ k ≤ 2n+ 1, LrΛk admits the direct sum decomposition

(10.2) L2Λk =
∑⊕

r+s=k−1>n
r+s=n, rs=0

rΥr,s
0 ⊕

∑⊕

ε=±

∑⊕

r+s−2�=k

rΥr,s,ε
1,� ⊕

∑⊕

r+s−2�=k+1

rΥr,s
2,�

⊕
∑⊕

r+s=k

R∗rΥr,s
0 ⊕

∑⊕

ε=±

∑⊕

r+s−2�=k+1

R∗rΥr,s,ε
1,� ⊕

∑⊕

r+s−2�=k+2

R∗rΥr,s
2,� ,

where R∗ = R∗
k+1.

(iii)k For 0 ≤ k ≤ 2n, the Riesz transform Rk is bounded from LrΛk to LrΛk+1.

By Lr-boundedness of the ∗-Hodge operator, we can restrict ourselves to the
case 0 ≤ k ≤ n.

The proof is based on the following lemma.

Lemma 10.2. Let U =

(
U11 U12

U21 U22

)
denote any of the operators Up,q

1,� in (7.13)

or Up,q
2,� in (7.25). Then each component Uij of U consists of a multiplier operator

in Ψ0,0
0 , possibly composed with powers of e(dθ) and the holomorphic and antiholo-

morphic Riesz transforms R, R̄.

69
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70 D. MÜLLER, M. M. PELOSO, and F. RICCI

In particular, for 1 < r < ∞, all these operators are Lr-bounded on the spaces
of differential forms of the appropriate (bi-)degrees.

This lemma will be proved in the last part of this chapter. Taking it for granted,
we give the proof of the theorem.

Proof of Theorem 10.1. We prove the two parts of the theorem simultane-
ously, via the inductive steps

(
(i)k−1 + (ii)k−1

)
=⇒ (i)k =⇒ (ii)k. The statement

(i)0 is trivial, and (ii)0 and (i)1 are proved in [MPR1].
Assume that (i)k−1 and (ii)k−1 hold, and consider anyone of the orthogonal

projections in the last column of Table 1. This is a product (or a sum of products)
of factors, each of which can be either Rk−1, or its adjoint R∗

k−1, or P = UU∗, U
being one of the operators in Lemma 10.2. Then (i)k follows easily.

We prove now the implication (i)k =⇒ (ii)k. Factoring

Rk = dΔ
− 1

2

k = R0Δ
1
2
0 Δ

− 1
2

k ,

and using (ii)0, it suffices to prove the boundedness of Δ
1
2
0 Δ

− 1
2

k on LrΛk.
Referring to the decomposition (10.1), we disregard the d-exact components of

LrΛk (i.e., those with Rk−1), on which Rk = 0, and adopt the simplified notation

(LrΛk)d∗−cl =
∑
β

⊕
rVβ .

Denote by Uβ :rZβ −→rVβ the Lr-closure of the unitary intertwining operator
in Table 1, with rZβ denoting the Lr-closure of the appropriate space Xp,q, Y p,q or
Zp,q in (5.16). Let Pβ = UβU

∗
β be the projection of LrΛk onto rVβ.

Decomposing ω ∈ LrΛk as

ω =
∑
β

ωβ =
∑
β

Uβσβ ,

with σβ ∈rZβ , we have

Δ
1
2
0 Δ

− 1
2

k ω =
∑
β

Δ
1
2
0 UβD

− 1
2

β σβ ,

where Dβ = U∗
βΔkUβ is the scalar operator appearing in (6.1), (6.3), (6.18). Ex-

plicitely,

Dβ=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ0 + i(q − p)T if rVβ =rVp,q

0

Δ0 + i(q − p)T + �(n− k + �) +m±
√
Δ0 + i(q − p)T +m2(

m = n−p−q
2

)
if rVβ =rVp,q,±

1,�

Δ0 + i(q − p)T + (�+ 1)(n− k + �+ 1) if rVβ =rVp,q
2,� .

Denote by mβ be the spectral multiplier of Dβ . Then, for each of the above
cases,

mβ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξ + λ2 + (p− q)λ ∈ ∗Ψ1,0
1

ξ + λ2 + (p− q)λ+ �(n− k + �) +m+
√
ξ + λ2 + (p− q)λ+m2 ∈ ∗Ψ1,0

0

ξ + λ2 + (p− q)λ+ �(n− k + �) +m−
√
ξ + λ2 + (p− q)λ+m2

∈ ∗Ψ1,0
1 if � = 0 , ∗Ψ1,0

0 otherwise

ξ + λ2 + (p− q)λ+ (�+ 1)(n− k + �+ 1) ∈ ∗Ψ1,0
0 ,
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10. DECOMPOSITION OF LpΛk AND BOUNDEDNESS OF THE RIESZ TRANSFORMS 71

respectively. By Lemma 9.4 (iii), D
− 1

2

β is in Ψ
− 1

2 ,0

− 1
2

or in Ψ
− 1

2 ,0
0 , depending on the

case. Combining together Lemma 10.2, Lemma 9.4 (ii) and (v), and the fact that

the multiplier ξ+λ2 of Δ0 is in ∗Ψ1,0
1 , we conclude that the composition Δ

1
2
0 UβD

− 1
2

β

has all its components in Ψ0,0
0 .

Therefore,

‖Δ
1
2
0 Δ

− 1
2

k ω‖r ≤
∑
β

‖Δ
1
2
0 UβD

− 1
2

β σβ‖r

≤ C
∑
β

‖σβ‖r

≤ C‖ω‖r .

Q.E.D.

10.1. Lp- boundedness of the intertwining operators U±
1,�

Our next goal will be to prove

Proposition 10.3. Assume that p+q+1+2� ≤ n and 1 < r < ∞. Then there
is a constant Cr so that

‖U+
1,� ξ‖Lr ≤ Cr‖ξ‖Lr for every ξ ∈ W p,q

0 ,

‖U−
1,� η‖Lr ≤ Cr‖η‖Lr for every η ∈ Ξp,q.

Proof. According to Proposition 7.8, we have to prove the Lr-boundedness
of the operators:

(i) ∂Q+
−Σ11, ∂̄Q

+
+Σ11,

(ii) (∂̄∂ − ∂∂̄)Σ11, when � ≥ 1,
(iii)

[
ΔH + (2m− �)(Γ +m)

]
Σ11,

defined on W p,q
0 , with p+ q + 2�+ 1 ≤ n in (i) and (iii), and p+ q + 2� ≤ n in (ii),

and of the operators:

(i’) ∂Q−
+Σ22, ∂̄Q

−
−Σ22,

(ii’) (∂̄∂ − ∂∂̄)Σ22, when � ≥ 1,
(iii’)

[
ΔH − (2m− �)(Γ−m)

]
Σ22.

defined on Ξp,q, with p+ q + 2�+ 1 ≤ n in (i’) and (iii’), and p+ q + 2� ≤ n in
(ii’).

Recall that if p = 0, then ∂ = ∂(I − C), and if q = 0, then ∂̄ = ∂̄(I − C̄), so
that, putting again

�r =

{
�, if p ≥ 1,

�′, if p = 0,
�r =

{
�, if q ≥ 1,

�′
, if q = 0,

we have

(10.3) ∂ = R� 1
2 , ∂̄ = R�

1
2 ,
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72 D. MÜLLER, M. M. PELOSO, and F. RICCI

where R and R are the holomorphic and antiholomorphic Riesz transforms of (4.5),
which are known to be Calderón-Zygmund type singular integral operators, and
consequently are Lr- bounded for 1 < r < ∞.

Moreover, observe that ∂̄∂ − ∂∂̄ = 2∂̄∂ + Te(dθ). Since this term appears only
when � ≥ 1 and p + q + 2� ≤ n, we have p + q ≤ n − 2, which easily implies that
the operator � + iT is injective on its domain in L2Λp,q , so that we can factorize

(10.4) ∂̄∂ = R̄�
1
2 ∂ = R̄∂(� + iT )

1
2 = R̄R (� + iT )

1
2 � 1

2 on W p,q,

since, on the core, �∂ = ∂(� + iT ), hence �
1
2 ∂ = ∂(� + iT )

1
2 .

Observe also that Ξp,q = (I − Cp − C̄q)(W
p,q
0 ).

Thus it will suffice to prove that the following scalar operators are in Ψ0,0
0 :

(I) � 1
2Q+

−Σ11, �
1
2Q+

+Σ11,
[
ΔH + (2m− �)(Γ +m)

]
Σ11, for � ≥ 0;

(II) (� + iT )
1
2 � 1

2Σ11, i
−1TΣ11, for � ≥ 1;

(I’) � 1
2Q−

+Σ22, �
1
2Q−

−Σ22,
[
ΔH − (2m− �)(Γ−m)

]
Σ22, for � ≥ 0;

(II’) (� + iT )
1
2 � 1

2Σ22, i
−1TΣ22, for � ≥ 1.

This will be a direct consequence of the following Lemmas 10.4, 10.5, 10.6, on
the basis of Lemma 9.4. Q.E.D.

Observe that m = (n − p − q)/2 ≥ 1/2, 2m − � ≥ 1 in (I) and (I’), and
m ≥ 1, 2m− � ≥ 1 in (II) and (II’).

Lemma 10.4. Assume that p+ q + 1 ≤ n. Then the following hold true:

(a) i−1T ∈ Ψ
1
2 ,0
1 ;

(b) � 1
2 ,�

1
2 ∈ Ψ

0, 12
1
2

, and (� + iT )
1
2 ∈ Ψ

0, 12
1
2

;

(c) ΔH ∈ Ψ0,1
1 ⊂ Ψ1,0

1 , ΔH−aT 2 ∈ Ψ1,0
1 for every a ∈ C, and (ΔH−T 2+c)α ∈

Ψα,0
0 for every c > 0.

Proof. (a) is obvious.
As for (b), note that

(2�)
1
2 (λ, ξ) = (ξ − (n− 2p)λ)

1
2 . We have

ξ − (n− 2p)λ ∼ ξ ,

on an angle containing the whole fan if p ≥ 1, and, if p = 0, on an angle avoiding

just the half-line ξ = nλ, λ > 0. By Lemma 9.4 (iii), � 1
2 ∈ Ψ

0, 12
1
2

, and a similar

argument applies to �
1
2 and (�+ iT )

1
2 . Remark 9.5 (iii) must be used for � 1

2 when

p = 0 and for (� + iT )
1
2 when q = n− 1.

Moreover, (2(�+ iT ))
1
2 (λ, ξ) = (ξ+(n−2q−2)λ)

1
2 , where p+q+2 ≤ n, hence

2(q + 1) ≤ 2n− 2, i.e., |n− 2(q + 1)| ≤ n− 2. This implies that (� + iT )
1
2 ∈ Ψ

0, 12
1
2

.

Finally,

(10.5) ΔH(λ, ξ) = ξ + (p− q)λ ∼ ξ ,

on an angle containing the full fan, which shows that ΔH ∈ Ψ0,1
1 . In combination

with (a) and Lemma 9.4, this easily yields (c). Q.E.D.
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10. DECOMPOSITION OF LpΛk AND BOUNDEDNESS OF THE RIESZ TRANSFORMS 73

According to (10.5), the quantity ξ + (p− q)λ, which we will also denote by ξ̃,
is comparable to ξ. We then set

(10.6) Γ(λ, ξ) = (ξ̃ + λ2 +m2)
1
2 .

Let R11 be as in Lemma 7.6, so that, according to (7.15), Σ11 = R
− 1

2
11 .

Lemma 10.5. For p+ q + 2�+ 1 ≤ n, the following hold true:

(a) Γ +m, Q+
+ , Q+

− ∈ ∗Ψ
1
2 ,0
0 ;

(b) R11 ∈ ∗Ψ1,1
0 , consequently Σ11 = R

− 1
2

11 ∈ Ψ
− 1

2 ,−
1
2

0

Proof. We have
Γ(λ, ξ) = (ξ̃ + λ2 +m2)

1
2 ,

and, since ξ̃ ∼ ξ, this shows that Γ ∈ ∗Ψ
1
2 ,0
0 . Then (a) follows easily.

As for R11, recall that

(10.7)
R11 = (Γ +m)2

(
ΔH + 2m(2m− �)

)
+ 2(Γ +m)

(
(2m− �)ΔH − 2mT 2

)
+ΔH(ΔH − T 2) + 2m�T 2 .

By Lemma 9.4, and in view of what has been shown already, we find that

R11 ∈ Ψ
1
2 ,0
0 Ψ

1
2 ,0
0 Ψ0,1

0 +Ψ
1
2 ,0
0 Ψ1,0

1 +Ψ0,1
1 Ψ1,0

1 +Ψ1,0
2 ⊆ Ψ1,1

0 .

Moreover, since here Γ ≥ 0, we have

R11 ≥ Γ2(ΔH + 2m(2m− �)) + 2m(−2mT 2) + 2m�T 2

= (ξ̃ + λ2 +m2)(ξ̃ + 2m(2m− �)) + 2m(2m− �)|T |2

� (ξ + λ2 + 1)(ξ + 1),

which shows that also the estimates from below for R11 hold true, so that R
− 1

2
11 ∈

Ψ
− 1

2 ,−
1
2

0 . This concludes the proof of (b). Q.E.D.

Lemma 10.6. For p+ q + 2�+ 1 ≤ n, the following hold true:

(a) Γ−m, Q−
+ , Q−

− ∈ Ψ
1
2 ,0
1 ;

(b) R22 ∈ Ψ1,1
2 and Σ22(I − Cp − C̄q) = R

− 1
2

22 (I − Cp − C̄q) ∈ Ψ
− 1

2 ,−
1
2

−1 ;

Proof. We have

Γ(λ, ξ)−m = (ξ̃ + λ2)
(
Γ(λ, ξ) +m

)−1 ∈ Ψ1,0
1 Ψ

− 1
2 ,0

0 ⊂ Ψ
1
2 ,0
1 .

By (7.11), on W p,q
0 we have the identity

R22 = 16(ΔH − T 2 +m2)
(
ΔH − T 2 + �(2m− �)

)
��R−1

11 ,

where

(10.8) (ΔH − T 2 +m2)
(
ΔH − T 2 + �(2m− �)

)
�� ∈

{
Ψ2,2

2 if � �= 0

Ψ2,2
3 if � = 0

⊂ Ψ2,2
2 .

Applying Lemma 10.5 (b), we obtain that R22 ∈ Ψ1,1
2 .

To prove the last part of the statement, observe that the presence of the factor
I − Cp − C̄q allows us, on the basis of Remark 9.5 (ii), to restrict, if necessary,
our analysis to an angle omitting one of the external half-lines of F , where the
multipliers of � and � are non-zero, and their reciprocal satisfy (9.5) with ρ = 0
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and σ, τ = −1. Each of remaining factors in (10.8) is in ∗Ψ1,0
0 , and this, together

with Lemma 10.5 (b), gives the conclusion.

Q.E.D.

10.2. Lp- boundedness of the intertwining operators U2,�

We next turn to the intertwining operator U2,�. Our goal will be to prove

Proposition 10.7. Assume that p+q+2+2� ≤ n and 1 < r < ∞. Then there
is a constant Cr so that

‖U2,� (ξ, η)‖Lr ≤ Cr‖(ξ, η)‖Lr for every (ξ, η) ∈ Zp,q .

In view of the explicit expression for U2,� in Proposition 7.12, it will suffice

to prove that the operators H11√
Δ′Δ′′ and H21√

Δ′Δ′′ are Lr-bounded on Xp,q, and the

operators H12√
Δ′Δ′′ and H22√

Δ′Δ′′ on Y p,q (notice the the multiplier σ(T ) corresponds

essentially to the Hilbert transform along the center of the Heisenberg group, which
is Lr-bounded).

We shall prove the estimates on Xp,q only, since the estimates on Y p,q follow
along the same lines.

Using again the factorizations (10.3), (10.4) by means of Riesz transforms, we
see that we are reduced to estimating the following scalar operators on Xp,q with
respect to the Lr- norm:

(III)
(� + iT )

1
2 �

1
2 (ΔH − T 2)√

Δ′Δ′′
,

T (� + iT )
1
2 �

1
2

√
Δ′Δ′′

,
�

1
2
r �

1
2 (ΔH − T 2)√
Δ′Δ′′

,

T�
1
2
r (� + iT )

1
2

√
Δ′

,

(IV)
�

1
2 (ΔH − T 2)√

Δ′Δ′′
,

(� + i(�+ 1)T )�
1
2

√
Δ′Δ′′

,
�

1
2
r �√
Δ′Δ′′

,
�r�

1
2

√
Δ′

,

(� + i(�+ 1)T )�
1
2
r√

Δ′
.

Lemma 10.8. Let Δ′,Δ′′ be as in Lemma 7.10. Then, the following properties
hold:

(a) (Δ′′)α ∈ Ψα,0
0 for every α ∈ R;

(b) if q ≥ 1, then (Δ′)α ∈ Ψα,2α
3α for every α ∈ R;

(b) if q ≥ 1, then
(
Δ′Δ′′)− 1

2 ∈ Ψ−1,−1

− 3
2

.

Proof. (a) is immediate from Lemma 10.4 (c).
As for (b), we first recall that c > 0. Moreover, Δ′ has multiplier[1

2

(
ξ − (n− 2p)λ

)(
ξ + (n− 2q)λ

)
+ (�+ 1)2λ2

](
ξ + (p− q)λ+ λ2

)
+λ2

[
cλ2 +

√
c
(
ξ − (n− 2p)λ

)(
ξ + (n− 2q)λ

)(
ξ + (p− q)λ+ λ2 + c

)
.
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10. DECOMPOSITION OF LpΛk AND BOUNDEDNESS OF THE RIESZ TRANSFORMS 75

Here, ξ = (n+ 2k)λ, k ∈ N, and k ≥ 1, if λ > 0 and p = 0, since we are acting on
Xp,q. Since we are also assuming that q ≥ 1, this shows that

(10.9) ξ − (n− 2p)λ ∼ ξ, ξ + (n− 2q)λ ∼ ξ .

By means of Lemma 10.4 and Lemma 9.4, we thus easily see that

Δ′ ∈ Ψ0,1
1 Ψ0,1

1 Ψ1,0
1 +Ψ1,0

2

(
Ψ1,0

2 +Ψ
1
2 ,1
3
2

)
⊆ Ψ1,2

3 +Ψ2,0
4 +Ψ

3
2 ,1
7
2

⊆ Ψ1,2
3 .

Moreover, the inverse estimate (9.5) holds true for ρ = 1, σ = 2 and τ = 3 because
of (10.9), which yields (b). Finally, (c) is a direct consequence of (a) and (b).

Q.E.D.

The lemmata 10.8 and 10.4 now easily imply that

(III)
(� + iT )

1
2 �

1
2 (ΔH − T 2)

√
Δ′Δ′′

∈ Ψ0,0
1
2

,
T (� + iT )

1
2 �

1
2

√
Δ′Δ′′

∈ Ψ
− 1

2
,0

1
2

,
�

1
2
r �

1
2 (ΔH − T 2)
√
Δ′Δ′′

∈ Ψ0,0
1
2

,

T�
1
2
r (� + iT )

1
2

√
Δ′

∈ Ψ0,0
1
2

;

(IV)
�

1
2 (ΔH − T 2)
√
Δ′Δ′′

∈ Ψ
0,− 1

2
0 ,

(� + i(� + 1)T )�
1
2

√
Δ′Δ′′

∈ Ψ
−1, 1

2
0 ,

�
1
2
r �

√
Δ′Δ′′

∈ Ψ
−1, 1

2
0 ,

�r�
1
2

√
Δ′

∈ Ψ
− 1

2
, 1
2

0 ,
(� + i(� + 1)T )�

1
2
r√

Δ′
∈ Ψ

− 1
2
, 1
2

0 .

All these classes are contained in Ψ0,0
0 , so that all these operators are Lr-

bounded Marcinkiewic type operators, for 1 < r < ∞. This proves Proposition 10.7
when q ≥ 1.

The situation is slightly more complicated when q = 0. The problem is that
the second relation in (10.9) will fail to be true in this case on the ray

ρ := {(λ, ξ) : λ < 0 and ξ = n|λ|} ⊆ F

of the Heisenberg fan, on which the multiplier of � will vanish identically. If we
remove this ray, the preceding arguments remain valid and we get Lr- boundedness
of the restrictions of our operators to the orthogonal complement of the kernel
of �, i.e., on (I − C̄)(Xp,q). So, what remains is the restriction on C̄(Xp,q). This
corresponds to the restrictions of our multipliers to the ray ρ. However, all of the

multipliers listed in (III) and (IV) which contain a factor � or �
1
2 vanish identically

on this ray, so what remains are the operators

T�
1
2
r (� + iT )

1
2

√
Δ′

and
(� + i(�+ 1)T )�

1
2
r√

Δ′
.

On the ray ρ, the multipliers of these operators are given, up to multiplicative
constants, by

μ1 =
λ2√(

c+ (�+ 1)2
)
λ4 + (�+ 1)2(n− p)|λ|3

and

μ2 =
|λ| 32√(

c+ (�+ 1)2
)
λ4 + (�+ 1)2(n− p)|λ|3

.
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76 D. MÜLLER, M. M. PELOSO, and F. RICCI

It is easy to see that these are Mihlin–Hörmander multipliers in λ, so that

T�
1
2
r (� + iT )

1
2

√
Δ′

C̄ and
(� + i(�+ 1)T )�

1
2
r√

Δ′
C̄ are compositions of Calderón-Zygmund

operators acting in the central variable of the Heisenberg group with the singular
integral operator C̄, which shows that they are Lr-bounded, for 1 < r < ∞, too.

This completes the proof of Proposition 10.7.

Finally, let us denote by ρ± the rays

ρ± := {(λ, ξ) : ξ = ±λ, λ > 0 ⊆ F

of the Heisenberg fan F, and define for (λ, ξ) ∈ F the spaces

Xp,q(λ, ξ) :=

{
{0}, if p = 0 and (λ, ξ) ∈ ρ+,

C, if p = 0 and (λ, ξ) /∈ ρ+, or if p > 0 ,

Y p,q(λ, ξ) :=

{
{0}, if q = 0 and (λ, ξ) ∈ ρ−,

C, if q = 0 and (λ, ξ) /∈ ρ−, or if q > 0 ,

and

Zp,q(λ, ξ) =
{(

μ
ν

)
: μ ∈ Xp,q(λ, ξ), ν ∈ Y p,q(λ, ξ)

}
.

Lemma 10.9. For (λ, ξ) ∈ F let E(λ, ξ) =

(
E11(λ, ξ) E12(λ, ξ)
E21(λ, ξ) E22(λ, ξ)

)
, where the

Eij are given in Lemma 7.10. Then, when viewed as a linear mapping from the
space Zp,q(λ, ξ) into itself, E(λ, ξ) is invertible for almost every (λ, ξ) with respect
to the Plancherel measure on F.

Proof. When (λ, ξ) ∈ F \ (ρ+ ∪ ρ−), then �(λ, ξ) �= 0,�(λ, ξ) �= 0, and since,
according to (7.23), detE = cT 4��Δ′′, the claim is immediate.

Assume next that (λ, ξ) ∈ ρ+. Then, if p > 0, we can argue as before. So,

assume that p = 0. In this case, �(λ, ξ) = 0, Zp,q(λ, ξ) =
{(

0
ν

)
: ν ∈ C

}
, and

E(λ, ξ) =

(
0 0
0 E22(λ, ξ)

)
, where E22(λ, ξ) = −i(�+1)(n−q)λ(λ−n+�+2). Since

p+ q + 2�+ 2 ≤ n, the factor (n− q) is non-zero, and the claim follows.
Finally, the case where (λ, ξ) ∈ ρ− can be dealt with in a very similar way.

Q.E.D.
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CHAPTER 11

Applications

11.1. Multipliers of Δk

We are in a position now to extend Theorem 6.8 of [MPR1] to forms of any
degree. A function μ definied on the positive half-line is a Mihlin–Hörmander
multiplier of class ρ > 0 if, given a smooth function χ supported on [ 12 , 4] and equal
to 1 on [1, 2],

‖μ‖ρ,sloc := sup
t>0

∥∥μ(t·)χ∥∥
L2

ρ
< ∞ .

Theorem 11.1. Let m : R → C be a bounded, continuous function in L2
ρ,sloc(R)

for some ρ > (2n+ 1)/2. Then, for every k = 0, . . . , 2n+ 1, the operator m(Δk) is
bounded on Lp(Hn)Λ

k for 1 < p < ∞, with norm controlled by ‖m‖ρ,sloc. Moreover,
the condition ρ > (2n+ 1)/2 is sharp.

Proof. The proof of the sufficient condition follows the same lines as in
[MPR1]. Here we show that the condition ρ > (2n+ 1)/2 is sharp.

We wish to apply (the argument in the proof of) Theorem 2 in [KST].1 Consider
the operator (of order 2) Δk acting on L2Λk. For f ∈ L2Λk set

SRf(z, t) = R− 2n+1
2 f

(
R−1z,R−1t

)
,

and

DR = R−2SRΔkSR−1 .

Identify f = ω1 + θ ∧ ω2 with (ω1, ω2) ∈ L2Λk
H × L2Λk−1

H . For (ω1, ω2) ∈ C∞
0 Λk

H ×
C∞

0 Λk−1
H , by (1.22) we have that

DRω →
(
Δe 0
0 Δe

)
ω in L2Λk

H × L2Λk−1
H as R → ∞ ,

where Δe denotes the euclidean Laplacian.
The proof of Theorem 2 in [KST] shows that if m(DR) are uniformly bounded

in LpΛk for all R > 0, then m

(
Δe 0
0 Δe

)
is bounded on LpΛk

H × LpΛk−1
H , i.e.

m(Δe) is bounded on Lp(R2n+1), that is, m(|ξ|2) is an Lp-multiplier on Lp(R2n+1).
The conclusion now follows by classical results on radial Fourier multipliers. Q.E.D.

1We wish to thank A. Martini for bringing this reference to our attention.
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78 D. MÜLLER, M. M. PELOSO, and F. RICCI

11.2. Exact Lp-forms

As a corollary to Theorem 10.1 and its proof, we can derive the following
extension of Lemma 4.2 in [MPR1].

Lemma 11.2. Let r be such that 1/2 − 1/r = 1/(2n + 2). If ω ∈ L2Λk is
such that ω = du in the distributional sense for some u ∈ D′Λk−1, then there
is some v ∈ LrΛk−1 such that ω = dv in the sense of distributions. Moreover,
ω ∈ Rk−1(L

2Λk−1).

Proof. Define

v := L− 1
2 (L

1
2Δ

− 1
2

k−1)R
∗
k−1ω.

We have seen that the operator Δ
1
2
0 Δ

− 1
2

k−1 is Lp-bounded for 1 < p < ∞, which

implies that the same is true for L
1
2Δ

− 1
2

k−1 = (L
1
2Δ

− 1
2

0 )(Δ
1
2
0 Δ

− 1
2

k−1). As in the proof of

Lemma 4.2 in [MPR1], we can thus conclude that v ∈ LrΛk−1. And, if ξ ∈ SΛk,
then

〈dv, ξ〉 = 〈ω,Rk−1(Δ
− 1

2

k−1L
1
2 )L− 1

2 d∗ξ〉 = 〈ω,Rk−1R
∗
k−1ξ〉 = 〈Rk−1R

∗
k−1ω, ξ〉,

so that dv = Rk−1R
∗
k−1ω ∈ L2Λk. By Lemma 4.4, this implies that

ω = dv +R∗
kRkω,

and by the same lemma Rkω = Δ
− 1

2

k+1dω, where dω = d2u = 0 in the sense of

distributions. This implies that ω = dv, and thus also that ω ∈ Rk−1(L
2Λk−1).

Q.E.D.

Corollary 11.3. If ω ∈ L2Λk, then ω ∈ Rk−1(L
2Λk−1) if and only if there is

some u ∈ D′Λk−1 such that ω = du in the sense of distributions.

Proof. One implication is immediate by Lemma 11.2. To prove the converse
implication, let us assume that ω ∈ Rk−1(L

2Λk−1). Then, according to Lemma 4.4
and Proposition 4.5, ω = Rk−1R

∗
k−1ω. Moreover, if we define v as in the proof of

Lemma 11.2, then v ∈ LrΛk−1 and dv = Rk−1R
∗
k−1ω, hence dv = ω. We may thus

choose u = v. Q.E.D.

11.3. The Dirac operator

Let us denote by Λ =
2n+1∑⊕

k=0

Λk the Grassmann algebra of h∗n, and by LpΛ =

Lp(Hn)Λ =
2n+1∑⊕

k=0

LpΛk,SΛ etc. the space of Lp-section, S-sections etc. of the

corresponding bundle over Hn.

The Dirac operator acting on SΛ is given by

(11.1) D := d+ d∗ .

Notice that D2 = Δ on dom (Δ), that is, the Dirac operator D and the Hodge
Laplacian Δ commute as differential operators.
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11. APPLICATIONS 79

However, in order to reduce the spectral theory ofD to that one of Δ we need to
show that D and Δ strongly commute, in the sense that the all spectral projections
in the spectral decompositions of D and Δ commute.

Proposition 11.4. We have that D
2
= Δ. In particular, D and Δ strongly

commute.

Proof. Recall from the previous chapter that the Riesz transform R = dΔ− 1
2

and its adjoint R∗ = Δ− 1
2 d∗ = d∗Δ− 1

2 are Lp-bounded for 1 < p < ∞. Let us put

P± :=
1√
2

(
I ±DΔ− 1

2

)
=

1√
2

(
I ± (R+R∗)

)
.

One easily verifies that P 2
± = P± and P ∗

± = P±, so that P+ and P− are orthogonal
projections, which are in fact Lp-bounded for 1 < p < ∞. Moreover,

(11.2) DP± = ±Δ
1
2P±,

i.e.,

D = Δ
1
2P+ −Δ

1
2P− .

Let Δ =
∫ +∞
0

λ dE(λ), so that

Δ
1
2 =

∫ +∞

0

√
λ dE(λ) =

∫ +∞

0

s dẼ(s) ,

where Ẽ denotes the image of the spectral measure E under the mapping λ �→
√
λ.

Therefore,

D = Δ
1
2P+ −Δ

1
2P− =

∫ +∞

0

s d(ẼP+)(s)−
∫ +∞

0

s d(ẼsP−)(s)

Now, if A ⊂ R is a Borel set, let us put

(11.3) F (A) := Ẽ(A+)P+ + Ẽ(−A−)P− ,

where A+ := A ∩ [0,+∞) and A− := A ∩ (−∞, 0). Then F is a spectral measure
on R, and

D =

∫ +∞

−∞
s dF (s) on SΛ .

Indeed, notice that, since the operators R,R∗ are bounded and commute with Δ
on the core, they also commute with the spectral projections Ẽ(B), i.e.,

(11.4) Ẽ(B)P± = P±Ẽ(B) .

Moreover, we clearly have

F (A) = F (A+) + F (A−) ,

and P+P− = P−P+ = 0. This implies that F (A) is an orthogonal projection, and
that F is a spectral measure on R.

We set

(11.5) D̃ :=

∫ +∞

−∞
s dF (s) ,

as a closed operator, and claim that indeed D̃ = D.
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80 D. MÜLLER, M. M. PELOSO, and F. RICCI

To verify this, denote by D0 the restriction of D to S0Λ. Since D = D̃ on SΛ,
we then have D0 ⊂ D ⊂ D̃, and clearly

D̃2 =

∫ +∞

−∞
s2 dF (s) =

∫ +∞

0

λ dE(λ) = Δ .

Thus, it remains to show that D̃ ⊂ D0.
Let ξ ∈ dom D̃. It suffices to assume that there is an interval I = [a, b], with

0 < a < b, so that F (R \K)ξ = 0, where K = I ∪ (−I); hence D̃ξ =
∫
K
s dF (s)ξ.

Let ϕ be a smooth cut-off function, even, identically 1 on K and with support
contained in K ′ = I ′ ∪ (−I ′), where I ′ = [a′, b′] with 0 < a′ < a < b < b′. Then,

Δξ = D̃2ξ =

∫
K

s2 dF (s)ξ =

∫
K

s2ϕ(s) dF (s)ξ =

∫ ∞

0

λψ(λ) dE(λ)ξ ,

where ψ is a smooth function with compact support in K ′2 = {s2 : s ∈ K ′}.
Hence, if Q := ψ(Δ) =

∫∞
0

ψ(λ)dE(λ), we have that Δξ = ΔQξ. It is clear
that Q is given by right-convolution with a Schwartz function, and that Q is U(n)-
equivariant, hence it preserves the core S0Λ for Δ.

Choose a sequence {ξn} ⊂ S0Λ such that ξn → ξ and Δξn → Δξ.
Then {Qξn} ⊂ S0, Qξn → Qξ and ΔQξn → Δξ. Therefore, we may assume

that ξn = Qξn and ξ = Qξ. Then

Δ
1
2 ξ = Δ

1
2Qξ =

∫ ∞

0

λ
1
2ψ(λ) dE(λ)ξ

= lim
n→+∞

∫ ∞

0

λ
1
2ψ(λ) dE(λ)ξn

= lim
n→+∞

∫ ∞

0

sϕ(s) dF (s)ξn .

Hence, by (11.3) it follows that

D̃ξ = lim
n→+∞

D̃ξn = lim
n→+∞

D0ξn .

This implies that S0Λ is a core also for D̃; hence D̃ = D0. We have thus seen that

D =

∫ +∞

−∞
s dF (s) .

By (11.3) and (11.4) F (A) and E(B) commute; hence D and Δ strongly com-
mute. Q.E.D.

Moreover, if m is a bounded, Borel measurable spectral multiplier of R, then

(11.6) m(D) = m(Δ
1
2 )P+ +m(−Δ

1
2 )P−.

As an immediate consequence of Theorem 11.1 and Theorem 10.1 we therefore
obtain

Corollary 11.5. Let m : R → C be a bounded, continuous function in
L2
ρ,sloc(R) for some ρ > (2n + 1)/2. Then m(D) is bounded on Lp(Hn)Λ for

1 < p < ∞, with norm controlled by ‖m‖ρ,sloc.
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CHAPTER 12

Appendix

In this final chapter we collect some technical facts and proofs that we have
previously set aside.

We need some preliminary computations.

Recall first from Lemma 5.5 that

(12.1) [∂∗, e(dθ)�] = i�∂̄e(dθ)�−1 , [∂̄∗, e(dθ)�] = −i�∂e(dθ)�−1 .

Taking adjoints, this implies

(12.2) [∂, i(dθ)�] = i�∂̄∗i(dθ)�−1 , [∂̄, i(dθ)�] = −i�∂∗i(dθ)�−1 .

Lemma 12.1. If σ ∈ ker i(dθ) ⊂ Λs
H and s+ 2j ≤ n, then

i(dθ)je(dθ)jσ = cs,jσ ,

where the coefficients cs,j are defined in (7.8), i.e.,

cs,j =
j!(n− s)!

(n− s− j)!
.

Moreover, the following relations hold:

j2cs+1,j−1 = cs,j −cs+1,j , cs,j(n−s− j) = cs+1,j(n−s), jcs+1,j−1(n−s− j) = cs+1,j .

Proof. Use formula (2.8) in [MPR1] to compute i(dθ)e(dθ)jσ. Observe that
ωj there corresponds to our σ and the value k = p+q there is our s+2j. Therefore,

i(dθ)e(dθ)jσ = j(n− s− j + 1)e(dθ)j−1σ .

Consequently,

i(dθ)je(dθ)jσ = j(n− s− j + 1)i(dθ)j−1e(dθ)j−1σ ,

and the statement follows inductively. Q.E.D.

If ξ ∈ W s
0 , then ξ, ∂ξ, ∂̄ξ are in ker i(dθ), and consequently we see that

(12.3)
i(dθ)je(dθ)jξ = cs+1,jξ , i(dθ)je(dθ)j∂ξ = cs+1,j∂ξ , i(dθ)je(dθ)j ∂̄ξ = cs+1,j ∂̄ξ .

This is not necessarily the case for ∂∂̄ξ, ∂̄∂ξ. We therefore need some more
computations to simplify the expressions

∂∗∂̄∗i(dθ)�e(dθ)�∂̄∂ , i(dθ)�e(dθ)�−1∂̄∂ , etc. .

Lemma 12.2. For ξ ∈ W s
0 ,

∂∗∂̄∗i(dθ)je(dθ)j ∂̄∂ξ = cs+1,j

(
� + i(j + 1)T

)
�ξ ,

∂̄∗∂∗i(dθ)je(dθ)j∂∂̄ξ = cs+1,j

(
� − i(j + 1)T

)
�ξ ,

∂∗∂̄∗i(dθ)je(dθ)j∂∂̄ξ = ∂̄∗∂∗i(dθ)je(dθ)j ∂̄∂ξ = −cs+1,j��ξ .

81
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82 D. MÜLLER, M. M. PELOSO, and F. RICCI

Proof. We have, by (12.2)

∂∗∂̄∗i(dθ)je(dθ)j ∂̄∂ξ = ∂∗∂̄∗[i(dθ)j , ∂̄]e(dθ)j∂ξ + ∂∗∂̄∗∂̄i(dθ)je(dθ)j∂ξ

= ij∂∗∂̄∗∂∗i(dθ)j−1e(dθ)j∂ξ + cs+1,j∂
∗∂̄∗∂̄∂ξ

= ijT∂∗i(dθ)je(dθ)j∂ξ + cs+1,j∂
∗∂̄∗∂̄∂ξ

= cs+1,j∂
∗(� + ijT )∂ξ

= cs+1,j

(
� + i(j + 1)T

)
�ξ .

The second identity follows in a similar way. Finally, we have

∂∗∂̄∗i(dθ)je(dθ)j∂∂̄ξ = ∂∗∂̄∗[i(dθ)j , ∂]e(dθ)j ∂̄ξ + ∂∗∂̄∗∂i(dθ)je(dθ)j ∂̄ξ

= cs+1,j∂
∗∂̄∗∂∂̄ξ

= −cs+1,j∂
∗∂∂̄∗∂̄ξ

= −cs+1,j��ξ .

This proves the lemma. Q.E.D.

Lemma 12.3. The following properties hold true.

(i) For all p, q, �W p,q
0 = Xp,q and �W p,q

0 = Y p,q.

(ii) In particular, � maps Xp,q into itself, and � maps Y p,q into itself. We
therefore set

(12.4) �X = �|Xp,q : Xp,q → Xp,q , �Y = �|Y p,q : Y p,q → Y p,q .

Then �−1
X and �−1

Y are well defined on Xp,q and Y p,q, respectively.

Proof. (ii) is immediate from (i). To prove (i), we verify the statements
concerning the spaces Xp,q, the discussion of the spaces Y p,q being similar. Observe
first that � leaves W p,q

0 invariant because of (1.20).
Thus, in view of Remark 5.10, if 1 ≤ p ≤ n − 1, then Xp,q = W p,q

0 , and we

are done. And, if p = 0 and ξ ∈ W 0,q
0 , then �ξ = ∂∗∂ξ, so that by Lemma 4.8

C0�ξ = 0, hence �ξ ∈ Xp,q. Finally, if p = n and ξ ∈ Wn,q
0 , then �ξ = ∂∂∗ξ = 0.

Q.E.D.

Proof of Lemma 7.5. Define B1,� to be the unbounded operator from L2Λp,q

to (L2Λk)2 defined by the matrix on the right-hand side of (7.6), with core S0Λ
p,q,

and set

(12.5) B∗
1,�B1,�|(Wp,q

0 )2
=: B =

(
B11 B12

B21 B22

)
.

We will use Lemma 7.4 to see that

A∗
1,�A1,� = B∗

1,�B1,�|(Wp,q
0 )2

.
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Then, the matrix entries of B are:

B11 = ∂∗i(dθ)�e(dθ)�∂

+
(
i�T−1∂∗∂̄∗i(dθ)�−1 − T−1�i(dθ)�

)(
i�T−1e(dθ)�−1∂̄∂ + T−1e(dθ)��

)
B22 = ∂̄∗i(dθ)�e(dθ)�∂̄

+
(
− i�T−1∂̄∗∂∗i(dθ)�−1 − T−1�i(dθ)�

)(
− i�T−1e(dθ)�−1∂∂̄ + T−1e(dθ)��

)
B12 = B∗

21 = ∂∗i(dθ)�e(dθ)�∂̄

−
(
i�T−1∂∗∂̄∗i(dθ)�−1 − T−1�i(dθ)�

)(
i�T−1e(dθ)�−1∂∂̄ − T−1e(dθ)��

)
.

By (12.3) and Lemma 12.2 we have that
(12.6)

B11 = cs+1,�� + T−2
[
− �2∂∗∂̄∗i(dθ)�−1e(dθ)�−1∂̄∂ + i�∂∗∂̄∗i(dθ)�−1e(dθ)��

− i��i(dθ)�e(dθ)�−1∂̄∂ − �i(dθ)�e(dθ)��
]

= cs+1,�� + T−2
[
− �2cs+1,�−1(� + i�T )�

− i�T−1∂∗∂̄∗i(dθ)�−1e(dθ)�−1(∂∂̄ + ∂̄∂)�

− i�T−1�(∂∗∂̄∗ + ∂̄∗∂∗)i(dθ)�−1e(dθ)�−1∂̄∂ − cs,��2
]
.

Now notice that by Lemma 12.2

∂∗∂̄∗i(dθ)�−1e(dθ)�−1(∂∂̄ + ∂̄∂) = −cs+1,�−1�� + cs+1,�−1(� + i�T )�
= i�cs+1,�−1T� ,

and, by taking adjoints,

(∂∗∂̄∗ + ∂̄∗∂∗)i(dθ)�−1e(dθ)�−1∂̄∂ = i�cs+1,�−1T� .

Therefore, substituting into (12.6) and applying the identities from Lemma 12.1,
we obtain that

B11 = cs+1,�� + T−2
[
− �2cs+1,�−1(� + i�T )� + 2�2cs+1,�−1�2 − cs,��2

]
= T−2�

[
cs+1,�T

2 + �2cs+1,�−1(� − � − i�T ) + (−cs,� + �2cs−1,�−1)�
]

= T−2�
[
cs+1,�T

2 + i�2cs+1,�−1(n− s− �)T − cs+1,��
]

= cs+1,�T
−2�

[
T 2 + i�T − �

]
.

By conjugation, we also get

B22 = cs+1,�T
−2�

[
T 2 − i�T − �

]
.
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Finally, arguing in a similar way, we find that

B12 = T−2
[
�2∂∗∂̄∗i(dθ)�−1e(dθ)�−1∂∂̄ − cs,��� + i�∂∗∂̄∗i(dθ)�−1e(dθ)��

+ i��i(dθ)�e(dθ)�−1∂∂̄
]

= T−2
[
− (�2cs+1,�−1 + cs,�)�� − i�T−1∂∗∂̄∗i(dθ)�−1e(dθ)�−1(∂∂̄ + ∂̄∂)�

+ i�T−1�(∂∗∂̄∗ + ∂̄∗∂∗)i(dθ)�−1e(dθ)�−1∂∂̄
]

= T−2��
[
− �2cs+1,�−1 − cs,� + i�cs+1,�−1T

−1� − i�cs+1,�−1T
−1(� + i�T )

− i�cs+1,�−1T
−1� + i�cs+1,�−1T

−1(� − i�T )
]

= T−2��
[
− �2cs+1,�−1 − cs,� + 2�2cs+1,�−1

]
= −cs+1,�T

−2�� .

These computations show that

B = B∗
1,�B1,�|(Wp,q

0 )2
= −cs+1,�T

−2

(
�(� − i�T − T 2) ��

�� �(� + i�T − T 2)

)
.

It is obvious that B maps (W p,q
0 )2 into itself, so that, by Lemma 7.4, A∗

1,�A1,� =
B∗

1,�B1,�|(Wp,q
0 )2

. This proves the lemma. Q.E.D.

Completion of the proof of Lemma 7.6. Since Q maps the subspace
(W p,q

0 )2 into itself, we have that

R =

(
−Q+

− Q+
+

−Q−
+ Q−

−

)(
�(� − i�T − T 2) ��

�� �(� + i�T − T 2)

)(
−Q+

− −Q−
+

Q+
+ Q−

−

)
=

(
R11 R12

R21 R22

)
.

We compute first R11. Using the identity � − � = 2imT and (6.9), we have
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−T 2R11 = (Q∗NQ)11

=
(
−Q+

−�(� − i�T − T 2) +Q+
+��

)
(−Q+

−) +
(
−Q+

−�� +Q+
+�(� + i�T − T 2)

)
Q+

+

= (Q+
−)2�(� − i�T − T 2)− 2Q+

+Q+
−�� + (Q+

+)2�(� + i�T − T 2)

= (Γ +m+ iT )2�(� − i�T − T 2)− 2(Γ +m− iT )(Γ +m+ iT )��
+ (Γ +m− iT )2�(� + i�T − T 2)

= (Γ +m)2
[
�(� − i�T − T 2)− 2�� + �(� + i�T − T 2)

]

+ 2iT (Γ +m)
[
�(� − i�T − T 2)− �(� + i�T − T 2)

]

− T 2
[
�(� − i�T − T 2) + 2�� + �(� + i�T − T 2)

]

= (Γ +m)2
[
(� − �)2 − i�T (� − �)− T 2(� + �)

]

+ 2iT (Γ +m)
[
(� + �)(� − �)− i�T (� + �)− T 2(� − �)

]

− T 2
[
(� + �)2 − i�T (� − �)− T 2(� + �)

]

= −T 2
[
(Γ +m)2

(
ΔH + 2m(2m− �)

)
+ 2(Γ +m)

(
(2m− �)ΔH − 2mT 2

)

+
(
ΔH(ΔH − T 2) + 2m�T 2

)]
.

In the same way one finds that

−T 2R22 = (Q∗NQ)22

= −T 2
[
(Γ−m)2

(
ΔH + 2m(2m− �)

)
− 2(Γ−m)

(
(2m− �)ΔH − 2mT 2

)
+

(
ΔH(ΔH − T 2) + 2m�T 2

)]
.

Finally, using the formulas in (6.9) we see that

−T 2R12 = −T 2R21 = (Q∗NQ)12

=
(
−Q+

−�(� − i�T − T 2) +Q+
+��

)
(−Q−

+)

+
(
−Q+

−�� +Q+
+�(� + i�T − T 2)

)
Q−

−

= Q+
−Q

−
+�(� − i�T − T 2)−Q+

+Q
−
+�� −Q+

−Q
−
−��

+Q+
+Q

−
−�(� + i�T − T 2)

= 2��(� − i�T − T 2)− (ΔH − 2T 2 − 2iTΓ)��
− (ΔH − 2T 2 + 2iTΓ)�� + 2��(� + i�T − T 2)

= 0 .

Q.E.D.

Proof of Lemma 7.10 (i). In order to compute A∗
2,�A2,� we apply again

Lemma 7.4. We first define B2,� as the term on the right hand side of (7.19) acting

as an unbounded operator from
(
L2Λp,q

)2
to

(
L2Λp,q

)2
, with core

(
S0Λ

p,q
)2
, and

then we compute B := B∗
2,�B2,�|(Wp,q

0 )2
. If we then show that B maps Zp,q into it-

self, the equality A∗
2,�A2,� = B|Zp,q

, which in turn equals −cs+1,�T
−2E, will follow.
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We have that

B∗
2,�B2,� =

(
∂∗∂̄∗ −T−1

[
∂∗(� + i�T )− ∂̄∗(� + iT )

]
∂̄∗∂∗ −T−1

[
∂̄∗(� − i�T )− ∂∗(� − iT )

])
×i(dθ)�e(dθ)�

(
∂̄∂ ∂∂̄

T−1
[
(� + i�T )∂ − (� + iT )∂̄

]
T−1

[
(� − i�T )∂̄ − (� − iT )∂

]) .

Using Lemmas 12.2 and 12.1, and recalling that we are acting on elements in
W p,q

0 , we see that the matrix entries of B∗
2,�B2,� are

B11 = ∂∗∂̄∗i(dθ)�e(dθ)�∂̄∂

− T−2
[
∂∗(� + i�T )− ∂̄∗(� + iT )

]
i(dθ)�e(dθ)�

[
(� + i�T )∂ − (� + iT )∂̄

]
= cs+1,�

[
� + i(�+ 1)T

]
�

− cs+1,�T
−2

[
∂∗(� + i�T )− ∂̄∗(� + iT )

][
(� + i�T )∂ − (� + iT )∂̄

]
= cs+1,�

[
� + i(�+ 1)T

]
�

− cs+1,�T
−2

[
(� + i(�+ 1)T )∂∗ − �∂̄∗][(� + i�T )∂ − (� + iT )∂̄

]
= cs+1,�T

−2
[[

� + i(�+ 1)T
]
�T 2 − (� + i(�+ 1)T )2� − �2�

]
= cs+1,�T

−2�
[[

� + i(�+ 1)T
]
T 2 −

(
� + i(�+ 1)T

)2 − ��
]
.

From this it follows that

E11 = −�
[(

� + i(�+ 1)T
)
T 2 −

(
� + i(�+ 1)T

)2 − ��
]

= ��(ΔH − T 2) + i(�+ 1)T�
[
2� − T 2 + i(�+ 1)T

]
= ��(ΔH − T 2) + i(�+ 1)T�

[
ΔH − T 2 − i(n− s− �− 1)T

]
,

where we have used the the equality (1.19).
Thus, the statement for E11 follows. The term E22 is its complex conjugate

and thus it follows as well.
Finally, we compute E12, and hence E21 too. We have that

B12 = ∂∗∂̄∗i(dθ)�e(dθ)�∂∂̄

− T−2
[
∂∗(� + i�T )− ∂̄∗(� + iT )

]
i(dθ)�e(dθ)�

[
(� − i�T )∂̄ − (� − iT )∂

]
.

Therefore, using Lemmas 12.2 and 12.1,

B12 = −cs+1,��� + cs+1,�T
−2

[
(� + i(�+ 1)T )∂∗(� − iT )∂ + �∂∗(� − i�T )∂̄

]
= −cs+1,��� + cs+1,�T

−2
[(

� + i(�+ 1)T
)
�� +

(
� − i(�+ 1)T

)
��

]
= cs+1,�T

−2��(ΔH − T 2) .

Recalling that B12 = −cs+1,�T
−2E12, the assertion follows.

It is now easy to check that B maps Zp,q into itself. For, suppose that ξ ∈ Xp,q

and η ∈ Y p,q, and put σ = B11ξ + B12η. Observe that both B11 and B22 factor
as B1j = �D1j , j = 1, 2, where D1j leaves W p,q

0 invariant. Therefore Lemma 12.3
shows that σ ∈ Xp,q. In a similar way, one shows that B21ξ + B22η ∈ Y p,q, which
concludes the proof. Q.E.D.
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To compute the square root of a matrix, we shall make use of the following
formula, which is an application of Cayley-Hamilton’s theorem: For a positive
definite 2× 2 matrix A we have that

(12.7) A
1
2 =

A+
√
detAI√

trA+ 2
√
detA

.

Proof of Lemma 7.10 (ii). We have

(A∗
2,�A2,�)

1
2 =

√
cs+1,�

|T | E
1
2 , (A∗

2,�A2,�)
− 1

2 =
|T |

√
cs+1,�

E− 1
2 ,

where the matrix E is as in Lemma 7.10.
Then, recalling that we set c = (�+ 1)(n− s− �− 1),

trE = 2��(ΔH − T 2) + i(�+ 1)T (� − �)(ΔH − T 2) + cT 2ΔH

= 2��(ΔH − T 2)− (�+ 1)(n− s)T 2(ΔH − T 2) + cT 2ΔH

=
[
2�� − (�+ 1)2T 2

]
(ΔH − T 2) + cT 4 .

Moreover, using (1.19) and recalling that the operators are acting on s-forms,
we have

detE = ��(ΔH − T 2)
[
i(�+ 1)T�(ΔH − T 2 − i(n− s− �− 1)T )

− i(�+ 1)T�(ΔH − T 2 + i(n− s− �− 1)T )
]

+ (�+ 1)2T 2��
[
(ΔH − T 2)2 + (n− s− �− 1)2T 2

]
= ��(ΔH − T 2)

[
i(�+ 1)T (ΔH − T 2)(� − �) + cT 2ΔH

]
+ (�+ 1)2T 2��

[
(ΔH − T 2)2 + (n− s− �− 1)2T 2

]
= ��(ΔH − T 2)T 2

[
− (�+ 1)(n− s)(ΔH − T 2) + cΔH

]
+ (�+ 1)2T 2��

[
(ΔH − T 2)2 + (n− s− �− 1)2T 2

]
= c��T 4

[
ΔH − T 2 + c

]
= c��T 4Δ′′ .

This implies in particular that

Δ′ := trE + 2
√
detE

=
[
2�� − (�+ 1)2T 2

]
(ΔH − T 2) + cT 4 + 2

√
c��T 4Δ′′

=
[
2�� − (�+ 1)2T 2

]
(ΔH − T 2)− T 2

(
− cT 2 + 2

√
c��Δ′′

)
.

The formula for (A∗
2,�A2,�)

1
2 in Lemma 7.10 (ii) is now immediate.

And, if we write

E−1 =
1

detE
E(co)
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then we have

(A∗
2,�A2,�)

− 1
2 =

|T |
√
cs+1,�

√
detE

E(co)
1
2

=
|T |

√
cs+1,�

√
detE

1√
trE(co) + 2

√
detE(co)

(
E(co) +

√
detE(co)I

)
=

|T |
√
cs+1,�

√
detE

1√
trE + 2

√
detE

(
E(co) +

√
detEI

)
=

1
√
cs+1,�|T |

√
c��Δ′′

1√
Δ′

(
E(co) +

√
detEI

)
.

The result for (A∗
2,�A2,�)

− 1
2 now follows easily, since

E(co) +
√
detE I

= ��(ΔH − T 2)

(
1 1
1 1

)
+

(
�
[
− i(�+ 1)T

(
ΔH − T 2

)
− cT 2

]
0

0 �
[
i(�+ 1)T

(
ΔH − T 2

)
− cT 2

] )
− T 2

√
c��Δ′′ I

= ��(ΔH − T 2)

(
1 1
1 1

)
+

(
M11

M22

)
,

where M11 and M22 are as claimed in (7.21). Q.E.D.
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1079 Pascal Lambrechts and Ismar Volić, Formality of the Little N-disks Operad, 2013

1078 Milen Yakimov, On the Spectra of Quantum Groups, 2013

1077 Christopher P. Bendel, Daniel K. Nakano, Brian J. Parshall, and Cornelius

Pillen, Cohomology for Quantum Groups via the Geometry of the Nullcone, 2013

1076 Jaeyoung Byeon and Kazunaga Tanaka, Semiclassical Standing Waves with
Clustering Peaks for Nonlinear Schrödinger Equations, 2013

1075 Deguang Han, David R. Larson, Bei Liu, and Rui Liu, Operator-Valued
Measures, Dilations, and the Theory of Frames, 2013

1074 David Dos Santos Ferreira and Wolfgang Staubach, Global and Local Regularity
of Fourier Integral Operators on Weighted and Unweighted Spaces, 2013

1073 Hajime Koba, Nonlinear Stability of Ekman Boundary Layers in Rotating Stratified
Fluids, 2014

1072 Victor Reiner, Franco Saliola, and Volkmar Welker, Spectra of Symmetrized
Shuffling Operators, 2014

1071 Florin Diacu, Relative Equilibria in the 3-Dimensional Curved n-Body Problem, 2014

1070 Alejandro D. de Acosta and Peter Ney, Large Deviations for Additive Functionals

of Markov Chains, 2014

1069 Ioan Bejenaru and Daniel Tataru, Near Soliton Evolution for Equivariant
Schrödinger Maps in Two Spatial Dimensions, 2014

1068 Florica C. Cı̂rstea, A Complete Classification of the Isolated Singularities for
Nonlinear Elliptic Equations with Inverse Square Potentials, 2014

For a complete list of titles in this series, visit the
AMS Bookstore at www.ams.org/bookstore/memoseries/.

Licensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



ISBN978-1-4704-0939-5

9 781470 409395

MEMO/233/1095

M
em

o
irs

o
f

th
e

A
m

erican
M

ath
em

atical
S
o
ciety

N
u
m

b
er

1
0
9
5

•
J
an

u
ary

2
0
1
5

Licensed to University Degli Studi di Milano.  Prepared on Thu Feb 12 06:47:11 EST 2015for download from IP 159.149.197.190.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms


	Cover
	Title page
	Introduction
	Chapter 1. Differential forms and the Hodge Laplacian on 𝐻_{𝑛}
	Chapter 2. Bargmann representations and sections of homogeneous bundles
	Chapter 3. Cores, domains and self-adjoint extensions
	Chapter 4. First properties of Δ_{𝑘}; exact and closed forms
	Chapter 5. A decomposition of 𝐿²Λ_{𝐻}^{𝑘} related to the ∂ and ∂ complexes
	5.1. The subspaces
	5.2. The action of Δ_{𝑘}
	5.3. Lifting by Φ

	Chapter 6. Intertwining operators and different scalar forms for Δ_{𝑘}
	6.1. The case of 𝑉₀^{𝑝,𝑞}
	6.2. The case of 𝑉_{2,ℓ}^{𝑝,𝑞}
	6.3. The case of 𝑉_{1,ℓ}^{𝑝,𝑞}

	Chapter 7. Unitary intertwining operators and projections
	7.1. A unitary intertwining operator for 𝑉₀^{𝑝,𝑞}
	7.2. Unitary intertwining operators for 𝑉_{1,ℓ}^{𝑝,𝑞,±}
	7.3. A unitary intertwining operator for 𝑉^{𝑝,𝑞}_{2,ℓ}

	Chapter 8. Decomposition of 𝐿²Λ^{𝑘}
	8.1. The *-Hodge operator and the case 𝑛<𝑘\le2𝑛+1

	Chapter 9. 𝐿^{𝑝}-multipliers
	9.1. The multiplier theorem
	9.2. Some classes of multipliers

	Chapter 10. Decomposition of 𝐿^{𝑝}Λ^{𝑘} and boundedness of the Riesz transforms
	10.1. 𝐿^{𝑝}- boundedness of the intertwining operators 𝑈_{1,ℓ}^{±}
	10.2. 𝐿^{𝑝}- boundedness of the intertwining operators 𝑈_{2,ℓ}

	Chapter 11. Applications
	11.1. Multipliers of Δ_{𝑘}
	11.2. Exact 𝐿^{𝑝}-forms
	11.3. The Dirac operator

	Chapter 12. Appendix
	Bibliography
	Back Cover

