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ABSTRACT 

The development of new packaging materials offering new functionalities, less environmental 

impact, and economical benefits is nowadays an urgent necessity. The advent of nanotechnology 

opened new possibilities toward this goal, e.g. by the generation of a new class of 

bionanocomposite films or coatings for “greener” packaging structures with same or even better 

overall performance compared to the conventional materials. This PhD thesis has been conceived 

as an effective and promising strategy for the development of biopolymer nanocomposites based on 

graphene specifically intended for food packaging applications. Within this context, the use of 

graphene aims to prompt new research on this unexplored inorganic filler in the food packaging 

sector as a potential alternative to the currently used solutions. The overall project has been divided 

into four parts.  

In the first part, the use of pullulan to produce graphene oxide (GO)-bionanocomposites was 

investigated for the first time in terms of oxygen barrier, tensile, thermal, and optical properties. To 

get deep understanding on the physical arrangement of the newly generated biopolymer 

nanocomposites, both oxygen permeability and elastic modulus experimental data were compared 

with predictive models (Nielsen and Cussler models, and Halpin–Tsai model, respectively). These 

models, complemented by morphological observations, suggested that the simultaneous 

improvement of mechanical and oxygen barrier properties was attributed to three main effects: i) 

chemical affinity between GO and pullulan, which significantly enhanced the interfacial adhesion 

between the two phases; ii) prevalent unidirectional alignment of GO sheets in the pullulan matrix, 

parallel to the surface of nanocomposite films; and iii) high specific surface area and 2D geometry 

of GO. 

The results obtained in the first part disclosed the great potential of graphene-based pullulan 

bionanocomposites as oxygen barrier even at high relative humidity (70% RH) values. However, 

high cost of pullulan may limit its applications in food packaging. Therefore, in the second part, 

GO-enhanced pullulan/chitosan and pullulan/alginate blend systems were prepared using the same 

technique used in part 1. Compared to pure pullulan films, optimized bionanocomposite blend films 

exhibited enhanced mechanical and thermal properties and comparable oxygen performance while 

keeping the haze formation within the 3% threshold and transmittance below 90% at 550 nm, 

which are adequate values for most applications in the food packaging sector. These optimized 

formulations allowed achieving a well-balanced performance/cost ratio. 

The third part of the project was aimed to design bionanocoatings combining pullulan and 

GO to be applied on polyethylene terephthalate (PET). The rationale behind this approach lies in 

the fact that most examples on the use of nanosized fillers concern bulky biopolymers. Only very 

recently it has been proposed the use of fillers within coatings made of biopolymers to produce 

bionanocomposite coatings to improve the properties of a plastic substrate without jeopardizing its 

original attributes and optimize cost efficiency. Full exfoliation of GO platelets during preparation 

of the coating water dispersions was mediated by ultrasonic treatment, which turned out to be a 

pivotal factor in the oxygen barrier performance of the final material at 0 and 30% RH condition as 

well as in its stiffness, elongation, and friction properties.  

The fourth and last part of the PhD project focused on the graphene production. Specifically, 

the capability of three different biopolymers (the positively charged polyelectrolyte chitosan, the 

uncharged pullulan, and the anionic polyelectrolyte alginate) was evaluated to promote the direct 

exfoliation of graphite into graphene sheets in an aqueous medium by means of high-intensity 

ultrasonication. Findings arising from this work suggest that non-ionic pullulan and cationic 

chitosan are more effective to exfoliate graphite into graphene under ultrasonication than anionic 

alginate, which was attributed to thermodynamic reasons. This approach provides an economical, 

solvent-free, high-yield, and industrially scalable route for new applications of graphene-based 

nanocomposites, e.g. in the food packaging industry.  
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RIASSUNTO 

 
Potenziale impiego del grafene per lo sviluppo di materiali bionanocompositi 

per applicazioni nel settore dell’imballaggio alimentare 

Lo sviluppo di nuovi materiali multifunzionali, a minore impatto ambientale e con benefici 

economici, rappresenta una impellente necessità. L’avvento delle nanotecnologie ha aperto la 

strada a nuove possibilità, ad esempio attraverso lo sviluppo di materiali biopolimerici 

nanostrutturati. Questa tesi di dottorato si propone di illustrare nuove strategie per lo sviluppo di 

bionanocompositi a base di grafene per specifiche applicazioni nel settore dell’imballaggio 

alimentare. L’uso del grafene mira ad approfondire le conoscenze circa la potenziale applicazione 

di tale filler inorganico come alternativa alle attuali soluzioni. Il progetto è stato suddiviso in 

quattro parti. 

Nella prima parte è stato valutato l’uso del pullulano per la produzione di bionanocompositi 

a base di ossido di grafene (GO), con particolare riferimento alle proprietà di barriera all’ossigeno, 

proprietà meccaniche, termiche ed ottiche. I dati sperimentali di barriera all’ossigeno e quelli 

meccanici, inoltre, sono stati confrontati con quelli ottenuti mediante l’uso di tre modelli predittivi, 

ovvero Nielsen e Cussler per le barriere, Halpi-Tsai per le prove meccaniche. La modellazione ha 

indicato come il miglioramento delle proprietà di barriera e di quelle meccaniche fosse dovuto a tre 

effetti principali: i) affinità chimica tra GO e pullulano, con conseguente miglioramento delle forze 

di adesione all’interfaccia tra le due fasi; ii) prevalente allineamento unidirezionale del filler 

inorganico; iii) elevata area superficiale e bidimensionalita del GO. 

I risultati ottenuti nella prima parte del progetto hanno evidenziato l’enorme potenzialità dei 

bionanocompositi a base di pullulano e grafene ad agire da barriera all’ossigeno anche ad elevate 

umidità (70% RH). Tuttavia, i costi elevati possono limitarne l’applicazione nel settore 

dell’imballaggio alimentare. Per tale motivo, nella seconda parte del progetto si è deciso di valutare 

la possibilità di utilizzare altri biopolimeri in combinazione col pullulano. Sono stati pertanto 

sviluppati film a base di pullulano e chitosano e pullulano e alginato. Questi films hanno 

evidenziato proprietà meccaniche e termiche superiori ai film di solo pullulano mantenendo le 

proprietà barriera. Inoltre, i valori di opacità e trasmittanza sono stati mantenuti entro i valori 

‘limite’ del 3% e del 90% (a 550 nm) comunemente accettati per le applicazioni nell’imballaggio 

alimentare. Non meno importante, l’ottenimento di tali blend ha permesso una maggiore efficienza 

in termini di performance/costi. 

La terza parte del progetto ha avuto come obiettivo lo sviluppo di sottili strati 

bionanocompositi a base di pullulano e GO. Tali strati sono stati depositati su polietilene tereftalato 

(PET), al fine di migliorarne specifiche proprietà, senza compromenetterne la funzionalità. 

L’esfoliazione del GO è avvenuta mediante ultrasonicazione, che è risultato essere un trattamento 

‘chiave’ al fine di ottenere specifiche proprietà di barriera e meccaniche del coating finale. 

La quarta ed ultima parte del progetto si è incentrata su nuove strategie per la produzione di 

grafene, con particolare riferimento all’uso dell’ultrasonicazione facilitare l’esfoliazione di grafite 

in grafene mediatada dalla presenza di polisaccaridi. I risultati ottenuti in quest’ultima fase del 

progetto hanno evidenziato la possibilità di ottenere grafene mediante un processo pulito, efficiente 

e a basso costo. 
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1. INTRODUCTION 

1.1. (Bio)Nanocomposites: Overview 

Since the first milestone mentioned by Richard Feynman in 1959 (Feynman, 1961), the concept of 

nanotechnology has developed into a multidisciplinary field of fundamental and applied science 

and technology and has become one of the most appealing topics within the research programs of 

both public agencies (e.g., universities) and private companies.  

The food industry seems to receive the largest benefits from nanotechnology, with potential 

uses already identified in virtually every segment of the sector (i.e., agriculture, food processing, 

food packaging, and nutrient supplements) (Duncan, 2011). Moreover, a number of the world’s 

largest food companies are actively exploring the potential of nanomaterials for use in food 

applications (Chaudhry et al., 2008). Within the food industry, however, packaging applications 

form the largest share of the current and short-term predicted market for nano-enabled products 

(Cientifica, 2006), with an estimated annual growth rate of ~ 12% by 2014 (IRAP, 2009). One of 

the reasons for this trend is the consumers’ willingness to embrace nanotechnology in “out-of-

food” applications more than direct addition of nanoparticles directly into the food (Siegrist et al., 

2007; Siegrist et al., 2008). This is also why most nanotechnology applications for food and 

beverages are lagging behind applications for food packaging, which are already becoming a 

commercial reality (Chaudhry et al., 2010). 

One of the most successful applications of the nanotechnology in the field of packaging 

concerns the development of “nanocomposites” (Lagaron et al., 2005). In polymer science, while 

the term “composites” generally refers to mixtures of polymers with inorganic or organic additives 

having micron-length scale and certain geometries (fibers, flakes, spheres, and particulates), the use 

of nano-length-scale fillers (at least one dimension  ≤  100nm) can be more specifically referred to 

as “nanocomposites” (Sanguansri & Augustin, 2006). Nanocomposites represent a radical 

alternative to conventional polymer composites, because if properly manipulated, they can offer 

extra benefits such as low density, transparency, good flow, better surface properties, and 

recyclability even at very low filler contents (generally lower than 5 wt%) (Sinha Ray & Okamoto, 

2003; Sorrentino et al., 2007). 

A new subclass of nanocomposite materials has recently stemmed from the increasing 

endeavor to replace oil-based polymers with polymers partially or totally obtained from renewable 

resources. The term “bionanocomposites” refers to those materials in which the polymer matrix 

carrying the nano-sized fillers is a biopolymer (e.g., polysaccharides and proteins) or by a polymer 

of natural origin obtained by synthetic (e.g. poly-lactic acid, PLA) or biotechnological (pullulan, 

poly-hydroxyalkanoates–PHA) routes (Uysal Unalan et al., 2014). Among the biopolymers 

pullulan is have attracted much attention over recent years due to its peculiar characteristics. 

 

1.1.1. Pullulan: structure, properties and applications 

This non-ionic exopolysaccharide is obtained from the fermentation medium of the fungus-like 

yeast Aureobasidium pullulans (originally called Pullularia pullulans) under limiting conditions 

(e.g., nitrogen), with media composition and culture conditions highly affecting the final yield 

(Leathers, 2002). The production of pullulan by A. pullulans was first discovered by Bauer in 1938 

(Bauer, 1938), although isolation and characterization of pullulan were described by Bernier 20 

years later (Bernier, 1958). The basic structure of pullulan was first provided by Wallenfels, 
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Bender, Keilich, and Bechtler, who also coined the name “pullulan” (Bender et al., 1959; 

Wallenfells et al., 1961). Large-scale production of pullulan was started in 1976 by Hayashibara 

Company Limited (Okayama, Japan); pullulan films from the same company appeared on the 

market in 1982 (Tsujisaka & Mitsuhashi, 1993). 

 

The chemical formula of pullulan has been suggested to be (C6H10O5)n (Singh & Saini, 

2008). Its chemical structure can be viewed as a maltotriose trimer given by the succession of α-

(16)-linked (14)-α-D-triglucosides (Gibbs & Seviour, 1996; Leathers, 2003) (Figure 1.1). This 

peculiar structure is also reflected in the lack of crystalline regions within the polymer: pullulan has 

a completely amorphous organization, as experimentally confirmed by recent studies (Kristo & 

Biliaderis, 2007; Fuentes-Alventosa et al., 2013). 

 

 

Figure 1.1. Representive chemical structure of pullulan as repeating units of maltotriose (Source 

Farris et al., 2014). 

Early attempts to employ pullulan in the food packaging industry lagged behind the 

established use as a food additive (e.g., thickening agent, binder, stabilizer), the first works dating 

back to the beginning of the ’90s. At that time, it was understood that great benefits would have 

arisen from certain peculiar properties of pullulan, such as its high water solubility and the barrier 

property against oxygen and carbon dioxide. At the beginning, water-soluble edible films of 

pullulan were proposed as edible pouches for premeasured portions that could be gradually 

dissolved in water or in hot food (Labell, 1991).  

 

In very recent studies, pullulan nanocomposite films and coating have been investidated in 

terms of their oxygen, mechanical and thermal performance (Trovatti et al., 2012; Introzzi et al., 

2012, Cozzolino et al., 2014). 
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Although it has many fascinating properties, pullulan has not been as adequately exploited 

as it deserves. The main reason for such commercial underdevelopment is its high price. Pullulan 

cost ranges between 25 and 30 US$/kg, which is much higher than most biopolymers of both 

polysaccharides and protein origin. The high cost of pullulan is mainly linked to its production 

(Farris et al., 2014). 

 

The use of inorganic nano-sized particles as fillers in the preparation of polymer/inorganic 

nanocomposites has attracted increasing interest in recent years, owing to their unique properties 

that find numerous applications in many industrial fields. As shown in Chart 1.1, a first arbitrary 

classification of inorganic fillers, primarily based on chemical composition and crystal structure, is 

between silicate and non-silicate minerals. Both families include several classes and many groups 

that, in turn, comprise different mineral species potentially suitable to produce nanocomposites. 

Among inorganic fillers, due to the promising properties of graphene more recently it has become 

more interest to develop graphene based nanocomposites for wide range applications (Uysal 

Unalan et al., 2014). 

 

 

Chart 1.1. Classification of inorganic fillers based on chemical composition and crystal structure 

(Source: Uysal Unalan et al., 2014). 

 



4 

 

1.1.2. Graphene 

1.1.2.1 Graphene: structure and properties 

Graphene is the building unit of graphite, a three-dimensional layered mineral allotrope of carbon 

composed of several stacked layers of graphene (Terrones et al., 2010) (Figure 1.2). More 

specifically, graphene is a two-dimensional material composed of a single planar sheet of sp2-

bonded carbon atoms packed in a honeycomb crystal lattice with large specific surface area 

although the first reported method for production of graphene nanosheets dates back to 1970 

(Eizenberg & Blakely, 1979), its individual layered form was first discovered in 2004 through a 

micromechanical cleavage method using flake graphite as a starting material (Novoselov et al., 

2004). Graphene nanosheets have extremely high Young modulus values (~1000 GPa) (Lee et al., 

2008) fracture strength (~125 GPa) (Lee et al., 2008), thermal conductivity (~5000 W m-1 K-1) 

(Balandin et al., 2008), mobility of charge carriers (~200 000 cm2 V-1 s-1) (Bolotin et al., 2008), 

specific surface area (calculated value, ~2630 m2 g-1) (Stoller et al., 2008), fascinating transport 

phenomena (e.g., the quantum Hall effect) (Zhang et al., 2005), and gas impermeability (Bunch et 

al., 2008). These properties make graphene one of today’s most exciting materials, as it represents 

the best candidate for the enhancement of electrical, mechanical, thermal and gas barrier properties 

for advantageous exploitation in many areas, such as photovoltaics, biosensors, supercapacitors, 

super adsorbents and fuel cells (Imperiali et al., 2014), just to provide some examples. 

 

 

Figure 1.2. Graphite structure 
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More recently, graphene has been suggested as a potential filler for food packaging 

materials due to the expected enhancement of mechanical (Lee et al., 2012; Ashori, 2013; Lee et 

al., 2013; Pinto et al., 2013; Yang et al., 2013), thermal (Al-Jabareen et al., 2013; Ashori, 2013; Lee 

et al., 2013; Yang et al., 2013;), and barrier properties against O2 (Al-Jabareen et al., 2013; Lee et 

al., 2012; Lee et al., 2013; Pinto et al., 2013; Yang et al., 2013), N2 (Pinto et al., 2013) and water 

vapour (Ashori, 2013) of the final materials (e.g., films and coatings). However, there are still 

many challenges for graphene to reach its full potential. Among others, production costs represent 

the main limitation to large scale utilization, mainly due to the highly expensive and low yielding 

methods and procedures to obtain graphene monolayers from graphite (Uysal Unalan et al., 2014). 

1.1.2.2. Graphene: production methods 

Several approaches have been pursued so far to address this issue. Besides bottom-up strategies 

based on the organic synthesis of graphene starting from small precursors (e.g. atoms, molecules, 

and so on), more affordable procedures fall within top-down strategies, which are based on the 

progressive reduction of macro-sized graphite (e.g., powder or flakes) into nano-sized sheets of 

graphene. With this regard, micromechanical cleavage of graphite, also known as ‘Scotch tape 

method’, was the first method to provide large and high-quality graphene sheets, but it enables only 

limited production, which makes this method suitable exclusively for fundamental studies 

(Novoselov et al., 2004). Chemical modification of graphene oxide, which is generated from 

graphite, has been a promising route to achieve mass production (Dreyer et al., 2010). Graphene 

oxide (GO) derived from graphene are a quasi-two-dimensional honeycomb lattice material with 

oxygen containing functional groups attached on the it basal planes and edges, such as hydroxyl, 

epoxide, carbonyl and carboxyl, significantly alter the van der Waals interactions between the 

layers of graphene and impart the desired solubility in water and some organic solvents (Rozada et 

al., 2013). Meanwhile, these polar functional groups modify surface of graphene to promote 

interfacial interaction between GO and a hydrophilic polymer, which provides a convenient access 

to fabrication of graphene-based materials by solution casting. In addition, some concerns point to 

the excessive use of harsh and aggressive reagents (e.g. H2SO4/KMnO4), and organic solvents (e.g. 

dimethylformamide or tetrahydrofuran), which make these top-down routes not environmentally 

benign (Park & Ruoff, 2009). Of late, great attention has been paid to ultrasonication methods for 

the production of graphene layers starting from graphite flakes or particles based on its reported 

high quality and environmentally friendly process. 

 

1.1.2.2.1. Ultrasonication process 

Sonication is increasingly used in the top-down generation of nanoparticles. This is achieved 

through deagglomeration and reduction of microsized particles by means of sound waves (more 

frequently, ultrasound waves) as a result of the mechanical effects of the phenomenon called 

cavitation, which refers to the formation, growth, and implosive collapse of bubbles in a liquid 

(Hielscher, 2005) (Figure 1.3). After bubbles collapse, a number of major local events prompt the 

deagglomeration of microsized particles dispersed in the medium: heating (~5000 K), high pressure 

(~1000 atm), huge heating−cooling rates (>109 K·s−1), and abrupt liquid jet streams (~400 km·h−1) 

(Suslick, 1990; Suslick, 1998; Suslick & Flannigan, 2008)  The speed of sound in a typical liquid is 

1000 to 1500 m s-1, and ultrasonic wavelengths will vary from roughly 10 cm down to 100 mm 

over a frequency range of 20 kHz to 15 MHz, much larger than the molecular size scale. The 

chemical and physical effects of ultrasound therefore arise not from a direct interaction between 

chemical species and sound waves, but rather from the physical phenomenon of acoustic cavitation: 
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the formation, growth, and implosive collapse of bubbles (Suslick, 1989; Leighton, 1994; Brenner, 

1995) 

Exfoliation of defect-free graphene in a liquid phase was first demonstrated using non-

aqueous conditions in dimethylformamide (DMF) (Blake et al., 2008) and in a number of organic 

solvents (Hernandez et., 2008). Due to the significant advantages of aqueous systems over non-

aqueous systems (e.g., lower costs and fewer potential health risks and environmental issues), the 

use of water-based systems has been attracting much attention over the recent years. Lotya et al. 

(2009) reported the first sonication-based exfoliation of graphite in an aqueous system using the 

cationic surfactant, sodium dodecyl benzene sulfonate (SDBS). The results arising from these few 

works make the ultrasonication an extremely promising thechnique for large-scale production of 

good quality and cheap graphene.  

 

 

Figure 1.3. Schematic illustration of the ultrasonication method based on the acoustic cavitation. 

(Source: Uysal Unalan et al., 2014). 

1.1.2.3. Graphene based nanocomposites  

The use of graphene even at low loading makes obtainable nanocomposite polymer systems with 

highly improved properties, such as tensile strength and elastic modulus, electrical and thermal 

conductivity, thermal stability, gas barrier, and flame retardance. Due to this broad 

multifunctionality, graphene/polymer nanocomposites can find application in various fields, 

including: advanced biochemical and electrochemical applications, thermal interface applications, 
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electric and electronic engineering materials, automotive engineering, biomedical applications 

piezoelectric applications, aerospace and radar evasion applications (Uysal Unalan et al., 2014). 

However, only few works have clearly addressed the potential impact of graphene/polymer 

nanocomposites in the food packaging area (Compton et al., 2010; Gao et al., 2011; Lee et al., 

2012; Al-Jabareen et al., 2013; Pinto et al., 2013).  

However, most examples concern the incorporation of the inorganic phase directly into the 

bulky biopolymer. Only very recently it has been proposed the use of fillers within coatings made 

of biopolymers to produce bionanocomposite coatings (i.e., thin layers of a biopolymer matrix 

loaded with a nanoparticle filler) to improve the properties of a plastic substrate without 

jeopardizing its original attributes and optimize cost efficiency (Farris et al., 2012; Introzzi et al., 

2012). 

1.1.3. Bionaocomposite coatings in food packaging 

The success of (bio)nanocomposite materials strongly depends on some important factors during 

the design and development steps. Besides significant costs, technological aspects may act as the 

“go-no go” gate before market applications. These aspects concern the coating system both before 

and after the deposition on the selected substrate. 

From an industrial perspective, the development of (bio)nanocomposite coatings has aimed 

at improving three main properties of the base resin: mechanical (stiffness, impact, and wear 

resistance), flame-retardance (anti-flammable materials), and barrier properties (against gases, 

vapors, and radiation). In the food and beverage packaging sector, however, considerable industrial 

and research developments of nanocomposite coatings have focused on improving the barrier 

properties, which has led to several applications in recent years. Several nanocomposite coatings 

intended for food packaging applications are available in the market. InMat Inc. developed 

Nanolok™, a high barrier, water-based, environmentally friendly nanocomposite oxygen barrier 

coating for transparent packaging applications (In Mat, 2009). Recently, NanoPack Inc. has 

developed a water-based coating made of poly vinyl alcohol (PVOH) and vermiculite. This coating, 

sold under the NanoSeal™ trade name, is specifically intended for food packaging applications 

where protection of food against oxygen and aromas is required (NanoPack, 2013). 

Besides advantages directly linked to their functional properties, the use of 

(bio)nanocomposite coatings may indirectly provide additional benefits, often underestimated or 

neglected. For example, the weight advantage could present a significant impact on environmental 

concerns. According to the “packaging optimization” principle (Farris et al., 2009), the use of high-

performance thin layers may be a valuable approach to down-gauging current packaging structures, 

e.g. laminates and/or co-extruded materials (Figure 1.4). 
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Figure 1.4. Schematic illustration of the ‘packaging lightweighting’ concept: the use of 

multifunctional nanocomposite coatings makes possible avoiding multiple layers packages (Source: 

Uysal Unalan et al., 2014). 

1.1.4. Fabrication of (bio)nanocomposites 

To take full advantage of the great potential of (bio)nanocomposites for real applications, the 

integration of the selected nano building blocks in the polymer matrices is of primary importance. 

Many factors, including the exfoliation degree of the fillers, their spatial arrangement (wrinkling or 

stretched), the morphology of the composite, and the dispersion state in the polymer matrix 

(stacked or agglomerated)—hence the extent of the interfacial interactions between filler and 

polymer—may dictate the final performance of the nanocomposite packaging material (Prolongo et 

al., 2014). Accordingly, for example, the ultimate barrier properties of nanocomposite polymers 

will be affected by nanosized fillers in two specific ways: (i) a more tortuous path for diffusion of 

the permeant and (ii) local changes in the polymer matrix properties (e.g., molecular mobility) at 

the interfacial (polymer nanoparticle) regions (Duncan, 2011). Historically, the nanofiller 

incorporation into the polymer matrix takes place through three main methods, i.e. (i) the in situ 

polymerization, (ii) the solution casting or (iii) the melt processing (Chivrac et al., 2009; Li et al., 

2010) (Figure 1.5). 
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Figure 1.5. Schematic representation of (a) in situ polymerization, (b) melt processing, and (c) 

solution casting (Source: Uysal Unalan et al., 2014). 

Among these three methods, the solution casting method has been adopted for the 

generation of bionanocomposites, for which both in situ polymerization and melt intercalation are 

often unsuitable due to the inherent characteristics of most biopolymers. 

1.1.4.1. Solution casting method 

The solution casting method is based on a solvent system in which the polymer (or pre-polymer, in 

case of insoluble polymers) and any other component of the mixture (e.g., surfactants) is soluble. 

The polymer is usually dissolved in a suitable solvent while the nano-fillers are dispersed in the 

same or a different solvent before the two are mixed together to generate a homogeneous dispersion 

(Figure 1.5c). The main advantage of this method is the relatively rapid exfoliation of the stacked 

layers by the use of an appropriate solvent (Sinha Ray & Okamoto, 2003). The successive addition 

of polymer solution to the dispersion of the complete delaminated nanoparticles (e.g., platelets) 

leads to the strong interaction between macromolecules and individual layers. The driving force for 



10 

 

the intercalation of the biopolymer into the clay galleries from solution is the entropy gained from 

desorption of solvent molecules, which compensates for the decreased entropy of the confined, 

intercalated chains. When the solvent is evaporated, the intercalated structure remains which results 

in the final nanocomposites (Ojijo & Sinha Raya, 2013). Due to the large amount of the solvent 

required, this method is perceived as un safe and non-environmentally benign when organic 

solvents are required (e.g., for non-polar or highly hydrophobic polymers) (Reddy et al., 2013). 

Conversely, this method has gained increasing attention for water-soluble polymers such as PVOH 

especially in the form of thin coatings, which reduces the amount of water used throughout the 

process. 
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2. AIMS OF THE THESIS 

The general aim of this PhD project was the development of a novel high oxygen barrier graphene 

based pullulan bionanocomposite materials with better mechanical and thermal properties owing to 

graphene`s promising and attractive properties for the next generation of materials for packaging 

applications. Keeping suitable optical appearance of the final films for most applications in the 

food packaging sector was also included in this goal. In other words, the aim was to develop 

multifunctional “green” alternatives to the synthetic polymer solutions in food packaging sector.  

 

In the final section, special attention has been paid to the production of graphene layers 

starting from graphite flakes by using one of recent top-down strategies so-called ultrasonication 

method.  The target of this final part was to assess the capability of three different biopolymers (the 

positively charged polyelectrolyte chitosan, the uncharged pullulan, and the anionic polyelectrolyte 

alginate) to promote the direct exfoliation of graphite into graphene sheets in an aqueous medium 

by means of high-intensity ultrasound waves as a result of the mechanical effects of cavitation. We 

paid special attention to key parameters of the obtained graphene sheets, such as the yield of the 

overall process and the quality of the graphene dispersions. 
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3. TOPIC 1 

Transparent pullulan/graphene oxide bionanocomposites with 

high oxygen barrier 

 

This part investigated the potential of a novel bionanocomposite film based on graphene oxide and 

pullulan for food packaging applications is investigated in terms of oxygen barrier, tensile, thermal 

and optical properties. The excellent water solubility of graphene oxide imparts it feasibility as new 

filler for reinforcing hydrophilic biopolymer pullulan. The Nielsen and Cussler models, and the 

Halpin–Tsai model were built to predict the oxygen and mechanical properties of 

bionanocomposite films, respectively. Morphological characterization of the bionanocomposite 

films is also reported. To best our knowledge, it is the first work envisaging the use of pull as a 

bulk biopolymer to produce graphene oxide-bionanocomposites. This could pave the way for a new 

alternative to petrol-based films currently available on the market of food packaging.  
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3.1. Materials and Methods 

 

3.1.1. Materials 

Pullulan (PF-20 grade, Mw~200 000 DA) was obtained from Hayashibara Biochemical 

Laboratories Inc., Okayama, Japan. Graphene flakes were purchased from Sigma Aldrich, UK. 

Hydrogen peroxide aqueous solution (H2O2, 20-35 wt%), hydrochloric acid (HCl), potassium 

permanganate (KMnO4 > 95 wt%), sodium nitrate (NaNO3 > 95 wt%), and sulfuric acid (H2SO4 > 

95 wt%) were all analytical grade and purchased from Fisher Scientific, UK. 

 

3.1.2. Methods 

3.1.2.1. Chemical synthesis of graphene oxide 

Graphite oxide was prepared following a modified Hummers method (Hummers & Offeman, 1958; 

Wan & Chen, 2012). Briefly, graphite (2.5 g), NaNO3 (1.5 g) and concentrated H2SO4 (60 mL) 

were mixed and kept stirring in an ice-water bath for 30 min, and then KMnO4 (7.5 g) was slowly 

added over 1 h to keep the temperature of the mixture below 5 °C. The mixture was kept stirring 

for 24 h at room temperature, and then H2SO4 aqueous solution (300 mL, 5 wt%) was gradually 

added to allow the temperature to increase up to 98 °C. The resultant mixture was further stirred for 

2 h at 98 °C. After that the temperature was reduced to 60 °C, and H2O2 (25 mL, 30 wt%) was 

added to the mixture solution under continuous stirring for 2 h. The obtained graphite oxide 

solution was repeatedly washed with diluted HCl solution and distilled water several times, and 

vacuum-dried at 40 °C to obtain graphite oxide powder. The graphite oxide was dispersed in water 

(0.15 wt%) under continuous stirring and ultrasonicated for 10 min using an ultrasonic processor 

UP200S (maximum power = 200 W, frequency = 24 kHz, Hielscher, Teltow, Germany) equipped 

with a cone frustum titanium sonotrode (model micro tip S3, tip diameter = 3 mm, maximum 

amplitude = 210 μm, acoustic power density or surface intensity = 460 W·cm−2) under the 

following conditions: 0.5 cycle and 50% amplitude. 

 

3.1.2.2. Preparation of pullulan/GO bionanocomposite films 

Biopolymer solutions (5 wt%) were prepared by dissolving pullulan in water under gentle stirring 

for 1 h at ambient temperature. Pullulan solutions were then mixed with different amounts of the 

original GO/water dispersion (0.15 wt%) to obtain pullulan/GO water dispersions at different GO 

concentrations (0, 0.05, 0.1, 0.2, 0.3, 0.5 and 1 wt%). The resultant pullulan/GO solutions were cast 

onto Petri dishes and dried at ambient temperature for 3 days. The dried films were kept at sealed 

anhydrous desiccators for at least one week before analysis. Pullulan/graphene oxide films were 

indicated as pull/GO. 

3.1.2.3. Atomic force microscopy  

Atomic Force Microscopy (AFM) measurements were carried out in intermittent-contact mode 

with a Nanoscope V Multimode (Bruker, Germany) on diluted GO water dispersion (0.02 mg/ml). 

The images were collected with a resolution of 512 x 512 pixels with silicon tips (force constant 40 

N/m, resonance frequency 300 kHz). The analyses performed on the acquired images were 

conducted with Nanoscope software (versions 5.12 and 7.30). 
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3.1.2.4. Transmission electron microscopy  

Transmission electron microscope (TEM) (JEOL 2000FX) at an operating voltage of 200 kV was 

used for the analysis of graphene oxide structure. Digital images were captured with a GATAN 

ORIUS 11 megapixel digital camera. Samples for TEM analyses were prepared by drop-casting a 

few milliliters of dispersion onto holey carbon grids and letting the samples to rest for 24 hours at 

room temperature to allow water evaporation. 

3.1.2.5. X-ray photoelectron spectroscopy  

X-ray photoelectron spectroscopy (XPS) measurements were performed in an XM1000 instrument 

(Omicron NanoTechnology GmbH, Germany) equipped with a monochromatic Al K source. 

Samples were first mounted on circular plates using electrically conducting carbon tape and then 

loaded in a vacuum chamber (base pressure 2 x 10-11 mbar). Data analysis was carried out using the 

CasaXPS package, using Shirley backgrounds, mixed Gaussian-Lorentzian (Voigt) line shapes and 

asymmetry parameters for the sp2 graphitic components.  

3.1.2.6. X-ray diffraction  

X-ray diffraction (XRD) measurements of graphite and graphene oxide were performed in the form 

of powder on a Empyrean X-ray diffractometer (Panalytical Inc., Netherlands) equipped with a 

detector by use of a CoKα1 (0.178901 nm) monochromatic X-ray beam. The following operating 

conditions were applied: 40 kV, 40 mA, 2θ range 5–40°, step size 0.01, time per step 99 s.  

 

3.1.2.7. Thermogravimetric analysis 

Thermogravimetric analysis (TGA) of pristine pullulan and bionanocomposite films was carried by 

using a TGA/DSC 2 instrument (Mettler Toledo, Switzerland) in an inert environment (50 mL min-

1 N2). Film samples (~ 5 mg) were placed in alumina pans (70 µL) and heated from 25 °C to 600 °C 

at a linear heating rate of 10 °C min-1.  

3.1.2.8. Raman spectroscopy 

Raman spectra were recorded at ambient temperature by a Renishaw inViaRaman spectrometer 

with an Ar-ion laser at an excitation wavelength of 514.5 nm.  

3.1.2.9. Scanning electron microscopy 

Field-emission scanning electron microscopy (FE-SEM) micrographs were obtained to acquire 

more detailed information on the morphology of GO loaded pullulan films. Cross sections were 

examined on a Hitachi S-4800 FE-SEM (Schaumburg, IL). Surface test specimens were mounted 

with carbon tape on stubs. Cross-sectioned samples were cut into thin pieces with a scalpel and 

mounted on a Hitachi thin specimen split mount holder, M4 (product 15335-4). Before insertion 

into the microscope, the samples were sputter-coated with gold to a thickness of approximately 10 

nm (to avoid charging the samples) by use of an Agar high-resolution sputter coater (model 

208RH) equipped with a gold target/Agar thickness monitor controller. 
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3.1.2.10. Oxygen barrier properties 

The oxygen barrier properties of pullulan and pull/GO nanocomposite films were assessed on a 2 

cm2 surface sample using a Multiperm permeability analyzer (Extrasolution Srl, Capannori, Italy) 

equipped with an electrochemical sensor. Oxygen transmission rate (O2TR) data were determined 

according to the standard method of ASTM F2622-08, with a carrier flow (N2) of 10 ml min-1 at 23 

°C, 70% relative humidity (RH), 1 atm pressure difference on the two sides of specimen. Each 

O2TR value was from three replicates. Final oxygen permeability coefficients (PʹO2) were 

calculated according to the following equation (Svagan et al., 2012): 
 

t
p

TRO
tPOOP 


 2

22                 (3.1) 

In eq. 3.1, PʹO2 is the oxygen permeability coefficient [ml µm m-2 (24h)-1 atm-1], PO2 is the 

permeance (defined as the ratio of O2TR to the difference between partial pressure of the gas on the 

two sides of film, Δp), t is total thickness of the film. 

 

3.1.2.11. Tensile properties 

Tensile test of films (dimension 15 mm × 3.2 mm with varying thickness) were performed on 

a Instron 5800R testing machine (Instron, UK) with a 500 N load cell and a crosshead speed of 2 

mm min-1 at room temperature and relative humidity was 45–50%. Young modulus, tensile strength 

and elongation at break were determined in accordance with the ASTM 638-10 standard. To ensure 

data accuracy and repeatability, at least 5 measurements were carried out for each film and the 

average values are reported 

3.1.2.12. Optical properties 

Total transmittance and haze were measured by Haze-Gard Dual-Transparency meter (BYK-

Gardner GmbH, Germany) according to ASTM D 1003 standard. Three replicates were performed 

for each type of film. 

3.1.2.13. Statistical analysis 

 

When necessary, the statistical significance of differences was determined by one-way analysis of 

variance (ANOVA), using Minitab 17 software (Minitab Inc., State College, PA, USA). Where 

appropriate, the mean values were compared through a Fisher's least significant 

difference (LSD) test with a significance level of P < 0.05. 
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3.2. Results and discussion 

3.2.1. Exfoliation and dispersion of graphene oxide 

GO obtained by the Hummers method can be readily dispersed in water by ultrasonic treatment, 

which allows keeping full exfoliation of GO sheet and the formation of transparent and stable 

suspensions (no precipitation occurred after several months) (Figure 3.1).  

 

 

Figure 3.1. GO water dispersion (0.15 wt%) after 6 months. 

Information about the morphology of the as-prepared GO sheets was obtained by AFM and 

TEM (Figure 3.2a-c). A GO sheet is supposed to be thicker than an ideal atomically flat graphene 

sheet which has a well-known thickness of 0.34 nm, due to the oxygen-containing functional 

groups on the basal plane and their defects introduced by the oxidation process. In some cases, the 

thickness of a GO sheet is even larger than 0.8 nm as predicted by the theory (Schniepp et al., 

2006). As shown in Figure 3.2a and b, the measured thickness of the GO sheets ranged uniformly 

around 1.0 nm (more specifically, 1.12 ± 0.18 nm), suggesting the complete exfoliation of GO 

sheets down to individual layers. GO sheets width ranged between 1.5 and 4.0 µm (mean of 2.5 µm 

± 0.3), although individual sheets as large as 12 µm were also observed. 

The TEM results also verified the existence of fully exfoliated individual GO sheet in water 

with a wrinked structure (Figure 3.2c) resulting from reaction sites involved in oxidation (Schniepp 

et al., 2006). 
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Figure 3.2. (a) 30 × 30 µm2 AFM height image of GO nanosheets (both individual and overlapping 

sheets are clearly visible); (b) thickness determination of GO sheets by height profile of a 10 × 10 

µm2 AFM image; (c) TEM image of GO nanosheets. 

 

 

The information on the functionalized groups on GO surface due to the oxidation process 

can be obtained from FTIR (Figure 3.3). In the GO spectrum, dominant peaks appear at 3318 cm−1, 

1714 cm−1, 1623 cm−1 and 1164 cm−1 - 1045 cm−1 are assigned to OH stretching vibration, C=O 

stretching vibration of the carboxylic group, C=C stretching mode of the remaining sp2 network, C-

O stretching vibration of epoxy or alkoxy group, respectively (Li et al., 2012). This information in 

equivocally proved the successful oxidation of graphite. 

 

a) b) 

c) 

c) 
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Figure 3.3. FT-IR spectra of GO. 

  The high degree of functionalization on GO was confirmed by XPS. The survey spectra of 

for graphite and GO (Figure 3.4a) yielded C/O atomic ratios of 14.5 and 2.2, respectively as a result 

of the oxidation process. As displayed in Figure 3.4b, the C 1s band can be fitted to three 

components corresponding of carbon atoms in different functional groups: C-C/C=C in aromatic 

rings, (284.4 eV) C-0 (epoxy and alkoxy) (286.6 eV) and C=0 (288.3 eV), (Stankovic et al., 2007; 

Gao et al., 2009) respectively. The ratios of C-C, C-O, and C=O were determined to be 55.33%, 

34.07% and 9.46%, respectively. 
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Figure 3.4. (a) XPS survey spectra of graphite and GO; (b) deconvolution of the C 1s peak of GO. 

XRD patterns of graphite and GO powders are shown in Figure 3.5a and b. It can be seen 

that the crystallinity was sharply decreased after the oxidization. According to the Bragg equation, 

the interlayer distance of graphite oxide was expanded from 0.334 to 1.256 nm, giving the evidence 

of the presence of oxygen-containing functional groups. The diffraction peak observed at 30.33° of 

natural graphite was shifted to 8.17°, which was a clear indication of the complete transformation 

from graphite to GO.  
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Figure 3.5. XRD diffractogram of (a) graphite; (b) GO powder. 

Raman spectroscopy is widely used to characterize crystal structure, disorder and defects in 

graphene-based materials (Ferrari, 2007). As shown in Figure 3.6, GO showed two broad bands: 

the D band at 1355 cm-1 and G band at 1603 cm-1. The prominent D band for GO clearly indicates 

the presence of structural defects induced by the attachment of hyrodxyl and epoxide groups on the 

carbon basal plane. A weak and broad 2D peak was appeared at 2719 cm-1 indicating disorder as 

the result of an out-of-plane vibration mode after oxidation (Eda et al. 2008). These G, D, and 2D 

bands agree with previous characterizations of GO (Stankovich et al. 2007; Guo et al. 2010).  

1000 1500 2000 2500 3000 3500

GO 2D

G

 
 

In
te

n
s
it
y
 (

a
.u

.)

Wavenumber (cm
-1
)

D

Graphite

  

Figure 3.6. Raman spectra of graphite and GO. 
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TGA results confirmed that GO was less stable than graphite from a thermal point of view 

(Figure 3.7), undergoing degradation at ~170 °C with 50% mass loss due to the decomposition of 

labile oxygen functional groups (Chen et al., 2010). 
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Figure 3.7. TGA and DTG curves of GO. 

 

3.2.2. Characterization and pullulan/GO nanocomposite films 

By employing casting technique well-dispersed pull/GO nanocomposite films were fabricated. 

Because of the abundant oxygen containing functional groups on the surface of the GO sheets that 

endow it with higher polarity, they were dispersed in pull water solutions at the level of individual 

sheets.  

3.2.2.1. Thermal stability 

 
The results arising from thermal gravimetric analysis are summarized in Table 3.1, in which only 4 

representative samples are shown. Figure 3.8 depicts the traces obtained from the samples exposed 

to nitrogen atmosphere along with the first-order derivatives. The temperature at which the weight 

loss is 50% (Td50) increased by about 16 °C in the case of the bionanocomposites with the highest 

amount of GO. 

 

Accordingly, the residual weight of the bionanocomposites at 600 °C is higher than that of 

pristine pull, which can be attributed that most part of GO remained in the nanocomposites at high 

temperature and showed the good thermal stability over the process temperature. In Figure 3.8b, the 

different peak intensity reflects the increasing amount of the inorganic phase in samples 0.05, 0.2 



26 

 

and 1.0 wt%, respectively, which are degraded less upon heating. It can also be observed that the 

maximum decrease in mass occurred between 293.1 and 300.6 °C for all the four materials.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. (a) TGA traces; b) their first-order derivatives of four representative bionanocomposite 

films exposed to N2 atmosphere. 
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Table 3.1. Main parameters drawn from the TGA analysis of pull and pull/GO bionanocomposites. 

 

Film type Onset (°C) Tmax (°C) Td50 (°C)  Char yield (%)  

at 600 °C 

Pull 283.3 300.6 312.5 12.1 

Pull/GO 0.05% 273.9 293.1 307.6 12.3 

Pull/GO 0.2% 271.3 293.8 317.2 22.9 

Pull/GO 1 % 270.4 297.2 328.6 23.6 

 

 

More specifically, pull films was subjected one-step degradation with maximum degradation 

rate at 300.6 °C (Tmax). Tmax shifted to lower temperature (~ 293 °C) for the samples pull/GO 0.05 

wt% and pull/GO 0.2 wt%, whereas a higher value (Tmax ~ 297 °C) was recorded for the sample 

pull/GO 1.0 wt%, (Table 3.1). This observation (i.e., the higher Tmax for the sample pull/GO 1.0 

wt%) can be plausibly explained by the segregation of the polymer matrix and the filler at high GO 

concentrations (thus the ‘protective’ effect of the filler was partially lost). 

 

This seems to be supported by the presence of two additional peaks for the pull films loaded 

with 0.2 wt% and 1.0 wt% GO at, respectively, 229.7 and 165.5 °C. The peak at 165.5 °C, in 

particular, can be associated with the decomposition temperature of GO, which is ~ 170 °C (Figure 

3.7). Therefore, less interfacial effect between stacked GO at 1.0 wt% and pull most likely resulted 

in the clear detection of GO decomposition temperature. Further confirmation of this can be 

gathered by the SEM images (Figure 3.9). At low filler volume fraction (e.g.,  = 0.002, 0.05 wt%) 

there is no evidence of GO aggregates throughout the scanned cross-sectional area of the 

films―the morphology in Figure 3.9b looks like that one of Figure 3.9a for pristine pull films. As 

the filler concentration increased (e.g.,  = 0.01, 1 wt%), GO sheets stacking on top one of another 

were more often detected, indicating the tendency of exfoliated layers to re-aggregate (Figure 3.9c). 
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Figure 3.9. Cross-sectional SEM images of (a) pristine pull film; (b) pull/GO film ( 0.002); (c) 

pull/GO film ( 0.01). 

 

 

3.2.2.2. Oxygen barrier performance 

 
Experimental O2TR values are reported in Table 3.2. However, to get a more realistic interpretation 

of the oxygen barrier performance, these values have been converted to oxygen permeability 

(P′O2), which allows resetting any influence arising from a different thickness of final films.  

 

Table 3.2. GO content, GO volume fraction (), thickness (l), oxygen transmission rate (O2TR), 

and oxygen permeability coefficient (PʹO2) of bionanocomposite films at 70% RH and 23 °C. 

GO 

content 

(wt%) 

* 
l 

(µm) 

O2TR 

[mL m-2 (24h-1)] 

P′O2 

[mL µm m-2 (24h-1) atm-1] 

0 0 35±2.22c 181.04±20.05a 6337±285a 

0.05 0.00051 43±2.10a 60.79±5.97c 2614±180b 

0.1 0.00102 26±2.88d 98.18±11.04b 2553±191b 

0.2 0.00204 35±1.84c 56.93±4.87c 2277±251c 

0.3 0.00305 41±2.38ab 33.09±2.94d 1357±162d 

1.0 0.01009 40±2.26ab 46.47±3.98cd 1812±149cd 

* Calculated for a given GO density (ρ) = 0.981 g·cm−3. 

Different superscripts within a group (i.e. within each parameter) denote a statistically significant difference 

(P < 0.05). 

d) 

exfoliated GO layers 
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As shown in Figure 3.10, O2 gas permeability of pristine pull film is sharply decreased with 

addition of very low concentration of GO (0.05 wt%), which yielded ~ 59% reduction in P′O2 

(from 6337 to 2614 mL µm m-2 (24h-1) atm-1).  
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Figure 3.10. Oxygen permeability value at 70% RH as a function of GO concentration. 

For GO content >0.05 wt% (>0.0051) a further increase in the barrier performance was 

obtained. For example, the addition of 0.3 wt% GO (i.e.,  = 0.00305) led to 79% decrease in P′O2 

(1357 mL µm m-2 (24h-1) atm-1). Unexpectedly, a break in this trend was observed at 0.5 wt% 

loading (P′O2 = 4904 mL µm m-2 (24h-1) atm-1) and, even though to a lesser extent, at 1.0 wt% 

loading (P′O2 = 1812 mL µm m-2 (24h-1) atm-1), which can be attributed to poor dispersion and/or 

inefficient orientation of GO sheets in the pullulan matrix. Based on these results, the addition of 

GO even at low concentrations endows pullulan matrix with outstanding gas barrier capability, 

which in turn makes it more competitive that petroleum based polymers in the packaging industry. 

For example: P′O2 values of PET [1560 mL µm m-2 (24h-1) atm-1] at 70% RH, 23 °C (Introzzi et al., 

2012); P′O2 values of PET, OPP, and LDPE (0% RH, 23 °C): 1381 mL µm m-2 (24h-1) atm-1, 33627 

mL µm m-2 (24h-1) atm-1, and 124624 mL µm m-2 (24h-1) atm-1, respectively (Farris et al., 2009). 

Modelling of P′O2 data may provide information about the distribution of the inorganic 

platelets and the interphase organization in the final bionanocomposites, to the advantage of a more 

detailed interpretation of the ultimate O2-barrier performance. Figure 3.11 displays the 

experimental P′O2 data of the bionanocomposite films at 70% RH and 23 °C, together with 

theoretical predictions based on Nielsen’s (eq. 3.2) and Cussler’s permeation theoretical models 

(eq. 3.3a and 3.3b), which describe the permeation phenomenon for impermeable square platelets 

dispersed in a continuous matrix (Nielsen, 1967; Lape et al., 2004; Takashi et al., 2006): 

 

    2/110  PP      (3.2) 

    4/11
2

0  PP      (3.3a) 

   20 3/11  PP      (3.3b) 
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Figure 3.11. Oxygen permeability of bionanocomposite films. Experimental values ( ), and values 

predicted by Nielsen’s model (panel a, eq. 3.2 in the text) and Cussler’s models (panels b and c, 

eqs. 3.3a and 3.3 ) are depicted. 

 

P′O2 experimental data well fitted with Nielsen’s prediction for α = 500 (Figure 3.11a). 

However, a clear deviation was observed for the highest  value, which can be reasonably due to 

the aggregation of GO at high loading, which reduces the effective aspect ratio of GO sheets. It 

should be here noted that the prediction by Nielsen’s model applies for a regular array (also called 

“bricks-and-mortar”, i.e. regularly spaced flake “bricks” held together by polymer “mortar”) 

distribution of non-overlapping, fully intercalated platelets perpendicular to the gas diffusion 

direction (Lape et al., 2004;  Choudalakis et al., 2009). In practice, Nielsen’s model is accurate in 

the dilute regime, i.e. for low values of the volume fraction ( << 1) and the aspect ratio (<< 1) of 

the nanoplatelets (thus when << 1) (Picard et al., 2007). Because in our study α ~1500 and 

0.0005 <  < 0.01, the product α varies from 0.8-15.1, which locates our system between dilute 

and semi-dilute regimes, the latter being verified when the flake concentration is small but the 

flakes overlap. This means that ( << 1,  >> 1, and >> 1) (DeRocher et al., 2005).  

 

Due to the inadequacy of the Nielsen’s model in the semi-dilute regime, we also took into 

consideration Cussler’s models (Lape et al., 2004) for regular (eq. 3.3a) and random (eq. 3.3b) 

arrays of ribbons in a semi-dilute regime, where permeability varies linearly with the square of the 

factor α [i.e., (α)2], contrary to the Nielsen’s model.  

 

The most relevant observation is that both Cussler’s models approached the best fitting of 

experimental data for  between 1000 and 2000 (Figure 3.11b and c), in line with our experimental 

values gained by AFM. On one hand, this suggests an underestimation of the GO aspect ratio 

provided by the Nielsen’s model compared to Cussler’s models. On the other hand, the model 

simulation strongly support the higher aspect ratio of 2D GO compared to widely used inorganic 

clays, e.g. montmorillonite, which have been reported to have aspect ratios (α) between 10 and 100 

for a similar pullulan-based system (Introzzi et al., 2012; Fuentes-Alventosa et al., 2013). This 
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aspect turns to be of great importance during the design of high performance barrier materials (e.g., 

films and coatings), as the performance provided by GO is in principle much more effective over 

clays due to the longer pathway offered to the permeant (eg., oxygen molecules). 

 

3.2.2.3. Tensile properties 

Figure 3.12 shows the typical stress–strain curves of pristine pullulan films and pullulan/GO 

nanocomposites, whereas tensile strength, Young modulus, and elongation at break for the different 

formulations are summarized in Table 3.3. 
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Figure 3.12. Typical stress–strain curves for pristine pull and pull nanocomposite films with with 

various contents of GO. 

 

Pristine pull film had tensile strength of ~ 57 MPa, Young modulus of ~ 1500 MPa, and an 

elongation at break of ~ 6.7%, in line with the values found in literature (Fernandes et al., 2014). 

However, the addition of GO led to a significant improvement of the tensile strength and Young 

modulus. The tensile strength and Young modulus increased sharply by 49% from 50 MPa to 74 

MPa and by 104% from 1556 MPa to 3178 MPa, respectively, upon an increase of GO from 0 to 

1.0 wt%, respectively. Interestingly, up to 0.2 wt% GO the elongation at break of the 

nanocomposite films gradually increases by 52% but unfortunately, more GO loading could not 

provide any further enhancement in elongation of biocomposites. 
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Table 3.3. Tensile properties of pristine pull and pull nanocomposite films with various contents of 

GO. 

Different superscripts within a group (i.e. within each parameter) denote a statistically significant difference 

(P < 0.05). 
 

Arising from these results, GO acted as a reinforcement of the main biopolymer phase, 

plausibly due to the enhanced interface effect resulting from the nano-scale dispersion of aligned 

GO sheets within the pull matrix. In particular, chemical affinity between GO and pull may 

contribute to extensive interactions (e.g., hydrogen bonding) at the polymer/filler interface, which 

in turn improve the interfacial adhesion, thus the stiffness of final films. Concurrently, the 

compatibility between phases greatly enhances the unidirectional dispersion of the large aspect 

ratio GO sheets on molecular scale. This leads to a more uniform stress distribution and minimizes 

the presence of stress concentration centers thus significantly increasing the mechanical properties 

of the nanocomposite films (Coleman et al., 2006; Yang et al., 2010). 

 

Analogously to permeability data, Young modulus experimental values were compared to 

the prediction made by the well-established Halpin–Tsai’s models with the goal of acquiring more 

details about the distribution pattern of the filler within the main polymer matrix. In particular, the 

Halpin-Tsai’s models allow distinguishing between unidirectional and randomly distributed filler-

reinforced nanocomposites (Gao et al., 2005; Schaefer & Justice, 2007; Zhao et al., 2010) 

according to eqs. 3.4a and 3.4b, respectively (Affdl  et al., 1976):  
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GO content 

(wt%) 

Tensile Strength 

(MPa) 

Young Modulus 

(MPa) 

Elongation                  

(%) 

0 
50.05±4.01c 1556±92c 4.36±0.76b 

0.05 
57.49±4.55abc 1819±164c 5.65±1.54ab 

0.1 
  54.65±16.89bc 1940±605bc 5.85±2.77ab 

0.2 
70.10±7.77ab 2246±811bc 6.62±1.69a 

0.3 
  59.48±10.09abc 2184±552bc 4.33±0.59ab 

0.5 
  69.57±18.92ab 2647±717ab 4.72±1.01ab 

1   74.30±13.89a 3178±538a 4.44±1.07b 
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where Er and Eu represent the Young modulus of the composites with randomly distributed GO 

sheets and aligned GO sheets parallel to the surface of the sample, respectively. Eg and Em are the 

Young modulus of GO (207600 MPa) (Suk et al., 2010) and pullulan (1556 MPa) (Table 3.3), 

respectively. l and d refer to the average length and thickness of an individual GO sheet, which 

were 2.5 m and 1.12 nm, respectively, as determined by AFM analysis. Vg is the volume fraction 

of GO in the composites (see Table 3.2). As shown in Figure 3.13, the experimental Young 

modulus values of the bionanocompoistes fit very well with the theoretically calculated values for 

the ‘unidirectional orientation’ model. This finding further supports previous indications that the 

GO sheets are unidirectionally aligned and parallel within the main biopolymer matrix, which 

would also explain the impressive mechanical performance of final films. 
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Figure 3.13. Experimental Young modulus values of bionanocomposite films and theoretical 

simulation for both random orientation and unidirectional distribution of GO sheets in the pullulan 

matrix according to Halpin–Tsai theoretical models (eqs. 3.4a and 3.4b in the text).  
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3.2.2.4. Optical properties 

Optical properties of materials are particularly important in certain sectors, where they can impact 

either the performance of the final material or the consumer`s choice. In the food packaging field, 

both aspects are relevant and worth high consideration when designing a new (bio)nanocomposite 

materials (Uysal Unalan et al., 2014). In particular, high transmittance of visible light (wavelengths 

between 340 nm and 800 nm) should be guaranteed, as it allows consumers to see through the 

package (visual inspection of the packaged food). Haze, defined as the percentage of transmitted 

light deviating by more than an angle of 2.5 from the direction of the incident beam, is an important 

optical property for packaging applications (Farris et al., 2009). 

As confirmed by both the transmittance and haze values reported in Table 3.4, all the 

pull/GO binanocomposite films were fully comparable with pristine pullulan samples, with the 

exception of the transmittance value for the nanocomposite film at the highest GO concentration 

(1.0 wt%). 

Table 3.4 Optical properties of pristine pull and pull nanocomposite 

films with various contents of GO. 

 

 

 

 

 

 

 

 

 

 

Different superscripts within a group (i.e. within each parameter) denote 

a statistically significant difference (P < 0.05). 
 

For example, the light transmittance of pristine pullulan was found 93.1% and loading GO 

up to 0.5 wt% does not show any significant effect on the light transmittance, while the 

transmittance significantly decreases to 90% at the highest GO concentration (1.0 wt%). However, 

these bionanocomposite films still maintain favorable optical transparency. 

Haze values, in particular, were below the 3% threshold, which is generally judged adequate 

in food packaging for a proper display of the products (Introzzi et al., 2012), although some plastics 

have haze values slightly higher (e.g., low-density polyethylene) (Cozzolino et al., 2014).  

GO content 

 (wt%) 

Transmittance 

(%) 

Haze 

(%) 

0 
93.1±0.68a 0.40±0.01a 

0.05 
93.4±0.30a 0.39±0.03a 

0.1 
93.4±0.35a 0.38±0.03a 

0.2 
92.3±0.17a 0.39±0.02a 

0.3 
92.5±0.75a 0.37±0.08a 

0.5 
91.9±0.15a 0.36±0.05a 

1 
90.1±0.96b 0.47±0.09a 
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Overall, final films had smooth, uniform and transparent appearance, although the color of 

composite films gradually shifted from colorless to yellow-brown with increasing the GO content, 

as displayed in Figure 3.14. Based on these results, the pull/GO nanocomposite films exhibited 

acceptable optical properties for exploring new packaging applications. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Image of a) pristine pullulan film and pull/GO films with different GO concentrations 

b) 0.05 wt%, c) 0.1 wt%, d) 0.2 wt%, e) 0.3 wt%, f) 0.5 wt% and g) 1 wt%. 

 

 

 

 

 

 

 

 

 

 

 

a) b) c) d) e) f) g) 



37 

 

3.3. Conclusions 

Novel high-performance pull/GO nanocomposite films have been successfully prepared using a 

simple solution casting method. The high compatibility between GO sheets and pull allowed 

obtaining homogeneous and stable dispersions in water. Chemical affinity between GO and pull, 

which significantly enhanced the interfacial adhesion between the two phases was the main reason 

for the observed excellent oxygen, mechanical and thermal properties of the final nanocomposites. 

By comparing the experimental oxygen permeability and tensile modulus values with the values 

predicted by theoretical models it has been possible to understand that GO sheets are randomly 

arranged and aligned parallel to the surface of the main biopolymer matrix, as also suggested by the 

SEM images. Findings arising from this work reflect convincingly the fact that pull nanocomposite 

materials represent a promising alternative to the currently available synthetic polymer films, 

especially as far as their oxygen barrier and mechanical properties are concerned. Nonetheless, the 

optical transparency of all the nanocomposites was kept adequate for most packaging applications. 

It is thus expected that the pull/GO nanocomposite films and coatings may find important 

applications in the food packaging sector that increasingly requires largely improved barrier and 

tensile properties while trying to reduce the overall amount of plastics used. 
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4. TOPIC 2 

 

High performance pullulan/chitosan or pullulan/alginate blend 

systems with graphene oxide for food packaging applications 
 

The results obtained in the first part allowed highlighting the great potential of graphene-based 

pullulan bionanocomposites as oxygen barrier even at high relative humidity (70% RH) values. 

Although pullulan/GO bionanocomposites showed highly desirable oxygen barrier performance, 

the use of pullulan is currently limited due to its high cost. One approach used to overcome this 

problem is blending pullulan with other relatively cheap compatible polysaccharides such as 

alginate and chitosan. Polymer blending continue to attract much attention both academically and 

industrially due to their potential for producing new polymeric material with tailored properties 

without having to synthesize totally new material. The advantages also include simplicity, 

versatility and cost efficiency.  

 

Therefore, the present study was initiated to compare the thermal, mechanical and barrier 

properties of pullulan, GO enhanced pullulan/chitosan and pullulan/alginate blend systems 

prepared using the same technique used in part 1. Not less important, the optimized formulations 

may allow achieving a well-balanced performance/cost ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

4.1. Materials and methods 

 

4.1.1. Materials 

Pullulan (PF-20 grade, Mw~200 000 DA) was obtained from Hayashibara Biochemical 

Laboratories Inc., Okayama, Japan. Chitosan (viscosity < 200 mPa s, degree of deacetylation: 85–

95%) was purchased from Shanglong Aokang Bio Ltd., China. Sodium alginate (medium viscosity; 

viscosity of 2% solution in water at 25°C ≥ 2000 cps) and graphene flakes were purchased from 

Sigma Aldrich, UK. Hydrogen peroxide aqueous solution (H2O2, 20-35 wt%), hydrochloric acid 

(HCl), potassium permanganate (KMnO4, > 95 wt%), sodium nitrate (NaNO3, > 95 wt%), and 

sulfuric acid (H2SO4, > 95 wt%) were all analytical grade and purchased from Fisher Scientific, 

UK. 

 

4.1.2 Methods 

4.1.2.1. Chemical synthesis of graphene oxide 

Please refer the section 3.1.2.1. 

 

4.1.2.2. Preparation of blend systems 

Pullulan and alginate film solutions (5 wt%) were prepared in water whereas chitosan film solution 

(2 wt%) was dissolved in water with 1 wt% acetic acid with a continuous 1 h stirring at ambient 

temperature. Then, the obtained polymer solutions were mixed to prepare pullulan:chitosan 

(80:20), pullulan:chitosan (60:40), pullulan:alginate (80:20) and pullulan:alginate (60:40) for 1 h. 

Resulting polymer blend film solutions were mixed GO/water dispersion with a continuous 1 h 

stirring at ambient temperature to prepare bionanocomposite solutions with GO concentrations of 

0.2 wt%. The resultant blend polymer/GO solutions were cast onto Petri dishes and dried at 

ambient temperature for 3 days. The dried films were kept at sealed anhydrous desiccators for at 

least one week before analysis.  

 

4.1.2.3. Thermogravimetric analysis  

Please refer the section 3.1.2.7. 

4.1.2.4. Oxygen barrier properties 

Please refer the section 3.1.2.10. 

4.1.2.5. Tensile properties 

Please refer the section 3.1.2.11. 

4.1.2.6. Optical properties 

Please refer the section 3.1.2.12. 

 

4.1.2.7. Statistical analysis 

 

Please refer the section 3.1.2.13. 
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4.2. Results and discussions 

 

4.2.1. Blend systems 

 

Morphology of GO nanosheets were characterized by different characterization techniques in the 

first part of thesis. As characterized by AFM, thickness of the GO sheets ranged uniformly around 

1.0 nm (more specifically, 1.12 ± 0.18 nm), suggesting the complete exfoliation of GO sheets down 

to individual layers. GO sheets width ranged between 1.5 and 4.0 µm (mean of 2.5 µm ± 0.3), 

although individual sheets as large as 12 µm were also observed. 

 

Blend property and morphologies depend mainly on the degree of miscibility of individual 

components. A literature survey revealed that miscibility studies of pullulan/chitosan (Wu et al., 

2013) and pullulan/sodium alginate (Prasad et al., 2012; Xiao et al., 2012) have been carried out by 

various techniques in different percentage of blend components and the finding of those studies 

have suggested that the blends are miscible and showed the enhanced film-forming properties. 

Therefore, in this part GO enhanced pullulan/chitosan and pullulan/alginate blend systems were 

prepared and investigated in terms of the thermal, mechanical and barrier properties. 

 

4.2.2. Thermal stability 

 

The results arising from thermal gravimetric analysis are summarized in Table 4.1.  

 

Table 4.1. Main parameters drawn from the TGA analysis of blend systems. 

 

Film type Tmax (°C) Td50 (°C)  Char yield (%)  

at 600 °C 

pull 300.6 312.5 12.1 

pull GO 0.2 wt% 293.1 307.6 12.3 

pull:chit (80:20) 318.2 321.1 23.4 

pull:chit (80:20) GO 0.2 wt% 311.9 316.1 24.5 

pull:chit (60:40) 305.5 326.4 30.4 

pull:chit (60:40) GO 0.2 wt% 308.6 319.4 27.3 

pull:alg (80:20) 299.9 302.4 22.3 

pull:alg (80:20) GO 0.2 wt% 295.0 304.4 22.5 

pull:alg (60:40) 282.6 292.1 25.2 

pull:alg (60:40) GO 0.2 wt% 296.8 292.7 20.9 
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Figure 4.1 depicts the traces obtained from the samples exposed to nitrogen atmosphere 

along with the first-order derivatives. As shown in Figure 4.1b, the TGA tracings of pull:chit 

nanocomposites are quite similar to that of pistine pull matrice, however ~ 18 and ~ 5  °C  

increments on the maximum degradation temperatures (Tmax) and ~ 8 and ~ 14  °C increaments on 

the temperature at which the weight loss is 50% (Td50) were observed for pull:chit (80:20) and 

pull:chit (60:40) blend films, respectively. On contrary, for pull:alg systems this behavior was not 

observed (Figure 4.2b). In particular, blending pull with alg led to two step degradation process and 

the reduction at Tmax and Td50. In other words, pull itself displayed a higher Tmax and Td50 than the 

pull:alg blends as already referred. 

 

Accordingly, the residual weight of the pull-chit blend films at 600 °C is considerably 

higher than that of pristine pull, which can be attributed that most part of GO remained in the 

nanocomposites at high temperature and showed the good thermal stability over the process 

temperature. 

 

Contrary to the beneficial effect of chit addition, blending pull with alg didn’t enhance 

thermal properties. Only the residual weights of the pull/alg blend films are higher than that of 

pristine pull and pull/GO 0.2 wt% films. 
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Figure 4.1. (a) TGA traces and (b) their first-order derivatives of pull and pull:chit blend systems 

exposed to an N2 atmosphere. 
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Figure 4.2. (a) TGA traces and (b) their first-order derivatives of pull and pull:alg blend systems 

exposed to an N2 atmosphere. 

 

 

4.2.3. Oxygen barrier performance 

 

Experimental O2TR values of pristine pull and pull blend sytems are reported in Table 4.2. 

However, to get a more realistic interpretation of the oxygen barrier performance, these values have 

been converted to oxygen permeability (P′O2), which allows resetting any influence arising from a 

different thickness of final films.  
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Table 4.2. GO content, GO volume fraction (), thickness (l), oxygen transmission rate (O2TR), 

and oxygen permeability coefficient (PʹO2) of blend systems at 70% relative humidity and 23 °C. 

GO content 

(wt%) 
 

l 

(µm) 

O2TR 

[mL m-2 (24h-1)] 

P′O2 

[mL µm m-2 (24h-1) atm-1] 

pull 0 35±2.22c 
181.04±20.05a 

6337±118.09b 

pull                       

GO 0.2wt% 
0.00204 35±1.84c 

56.93±4.87c 
1993±88.10d 

pull:chit (80:20) 0 44±2.22b 96.08±11.71b 4227±154.09c 

pull:chit (80:20) 

GO 0.2 wt% 
0.00216 45±1.20b 60.24±8.74c 2711±78.49d 

pull:chit (60:40) 0 49±1.36a 185.36±18.09a               9082±124.09a 

pull:chit (60:40) 

GO 0.2 wt% 
0.00231 47±3.36ab 59.367±6.74c 2790±63.88d 

pull 0 35±2.22b 
181.04±20.05a 

6337±118.09a 

pull                       

GO 0.2wt% 
0.00204 35±1.84b 

56.93±4.87e 
1993±88.10d 

pull:alg (80:20)  0 44±4.25a 105.75±16.7c 4230±115.25b 

pull:alg (80:20) 

GO 0.2 wt% 
0.00204 35±1.66b 82.53±10.77d 2888±44.16c 

pull:alg (60:40) 0 36±1.49b 157.21±16.11b 5660±101.11a 

pull:alg (60:40) 

GO 0.2 wt% 
0.00204 37±1.47b 114.70±13.70c 4244±55.19b 

* Calculated for a given GO density (ρ) = 0.981 g·cm−3, pull (ρ) = 1 g·cm−3, chit (ρ) = 1.3 g·cm−3 

alg (ρ) = 1 g·cm−3 

Different superscripts within a group (i.e. within each parameter) denote a statistically significant difference  

(P < 0.05). 

pull:chit and pull:alg blend systems was statistically analyzed within its own sytems. 

 

As given, P′O2 of pristine pull film was 6337 mL µm m-2 (24h-1) atm-1
. Adding chit or alg to 

pull matrix resulted in a sharp decrease of P′O2 at the blend ratio (80:20). However, upon the 

increase of alg and chit in the pull matrix caused to increase in P′O2, probably due to the increased 

free-volume of the composite matrix caused by the bulkier anionic and cationic side groups of alg 

and chit (Tong et al., 2008). As shown in Table 4.2, O2 gas permeabilities of GO/pull:chit and 

GO/pull:alg blend systems are sharply decreased with addition of very low concentration of GO 



47 

 

(0.2 wt%), however, this improvement was not enough to provide better performance than pull/GO 

(0.2 wt%) films.  

 

4.2.4. Mechanical properties 

Tensile strength, Young modulus and elongation at the break of the pull, pull blend sytems with or 

without GO were measured and given in Table 4.3. Tensile strength, Young modulus and 

elongation of pristine pullulan films were found 50 MPa, 1556 MPa, and 4.7% at break, in line with 

the values found in literature (Fernandes et al., 2014). The tensile strength from 50 to 76 MPa, 

Young modulus from 1556 to 2967 MPa and elongation from 4.7 to 20% for pull:chit(80:20) blend 

films significantly increased when compared to pristine pullulan (Table 4.3).  

 

Table 4.3. Tensile properties of pristine pull and blend systems with various contents of GO 

Different superscripts within a group (i.e. within each parameter) denote a statistically significant difference  

(P < 0.05). 

pull:chit and pull:alg blend systems was statistically analyzed within its own sytems. 

Film Type 
Tensile Strength 

(MPa) 

Young Modulus 

(MPa) 

Elongation                  

(%) 

pull 50.05±4.01d 1556±92d 4.36±0.76c 

Pull GO 0.2 wt% 70.10±7.77c 2246±811c 6.62±1.64c 

pull:chit(80:20) 76.36±7.19c 2967±348b 20.11±6.51ab 

pull:chit(80:20) GO 0.2 wt% 97.80±19.54b 3722±340a 15.76±2.39b 

pull:chit(60:40) 74.73±0.09bc 2713±83bc 26.77±5.92a 

pull:chit(60:40) GO 0.2 wt% 91.13±9.03b 3084±352b 21.73±6.52ab 

pull 50.05±4.01b 1556±92c 4.36±0.76b 

Pull GO 0.2 wt% 70.10±7.77ab 2246±811b 6.62±1.64a 

pull:alg(80:20)  75.34±18.56a 3213±284a 5.37±0.54ab 

pull:alg(80:20) GO 0.2 wt% 77.14±14.63a 3732±353a 3.76±0.43b 

pull:alg(60:40) 83.50±15.66a 3793±622a 4.44±1.94b 

pull:alg(60:40) GO 0.2 wt% 78.47±16.68a 3542±359a 3.74±1.06b 
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The similar improvement was also observed for pull:chit(60:40) blend film. This may have 

been related to a raising level of the chitosan in the film would increase the number of amino 

groups, resulting into the strengthening of the inter-molecular hydrogen bonds and consequently, 

led to an improved tensile strength and modulus (Wu et al., 2013). As displayed in Figure 4.3, upon 

an addition of chit elongation dramatically increased by 360% for pull:chit(80:20) and by 500% for 

pull:chit(60:40) compared to pristine pull film. Strongly enhanced flexibilty of pull films with 

addition of chit could be ascribed to the properties of the chit, which has good elongation at break 

(Pan et al., 2011). 

 

Incorporation of GO into pull:chit blend films significantly enhanced the tensile and Young 

modulus. It is an indicator of homogeneous dispersion of GO sheets in the blend matrix and strong 

interfacial adhesion between them through the formation of amide linkages between GO’s 

abundant carboxylic acid groups and chitosan's amine group in blend systems (Zuo et al., 2013). 
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Figure 4.3. Typical stress–strain curves for pristine pull and pull:chit blend systems with various 

contents of GO 

 

 

Incorporation of alg to pull matrix markedly increased tensile strength and Young modulus 

at both blend ratio. This strongly supports the idea that a hydrogen bonding can form between the 

hydroxyl groups of pullulan and carbonyl groups of NaAlg (Prasad et al., 2012). Interestingly, 

addition of GO did not provide any further beneficial in the tensile properties of pull:alg blend 

films (Figure 4.4), which can be attributed to poor dispersion and/or inefficient orientation of GO 

sheets in the pull:alg blend matrix. This needs further investigation. 
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Figure 4.4. Typical stress–strain curves for pristine pull and pull:alg blend systems with various 

contents of GO. 

 

4.2.5. Optical properties 

As it is well explained in part 1, optical properties of materials (haze and transmittance) are 

considerably important in the food packaging field, both aspects are relevant and worth high 

consideration when designing a new (bio)nanocomposite materials (Uysal Unalan et al., 2014). 
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Table 4.4. Optical properties of pristine pull and blend systems with various contents of GO 

Different superscripts within a group (i.e. within each parameter) denote a statistically significant 

difference (P < 0.05). 

pull:chit and pull:alg blend systems were statistically analyzed within their own sytems. 

 

As confirmed by both the transmittance and haze values reported in Table 4.4 pull-chit and 

pull-alg blending systems in absence of GO were fully comparable with pristine pull samples. 

Although the addition of GO led to a significant increase in transparency and haze, the values were 

maintained within the 90% and 3% threshold for transparency and haze, respectively (Introzzi et al. 

2012).  

 

The differences in film color were shown in Figure 4.5. The existing blended films were 

uniform, smooth and transparent but they became slightly yellowish following the incorporation of 

GO. This observation was in agreement with the findings of part 1. 

 

Film Type 
Transmittance 

(%) 

Haze 

(%) 

pull 93.1±0.68ab 0.40±0.01b 

pull GO 0.2 wt% 92.3±0.17b 0.39±0.02b 

pull:chit(80:20) 93.4±0.15a 0.40±0.03b 

pull:chit(80:20) GO 0.2 wt% 89.9±0.90c 2.69±0.41a 

pull:chit(60:40) 93.2±0.00ab 0.69±0.13b 

pull:chit(60:40) GO 0.2 wt% 89.2±0.31c 2.61±0.14a 

pull 93.1±0.68a 0.40±0.01d 

pull GO 0.2 wt% 92.3±0.17b 0.39±0.02d 

pull:alg(80:20)  93.7±0.17a 0.56±0.13c 

pull:alg(80:20) GO 0.2 wt% 92.3±0.17b 0.93±0.06b 

pull:alg(60:40) 93.5±0.23a 0.65±0.06c 

pull:alg(60:40) GO 0.2 wt% 92.5±0.23b 1.25±0.04a 
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Figure 4.5. Image of a) pristine pullulan film; b) pull:chit(80:20); c) pull:chit(60:40); d) 

pull:chit(80:20) GO 0.2 wt%; e) pull:chit(60:40) GO 0.2 wt%; f) pull:alg(80:20); g) 

pull:alg(60:40); h) pull:alg(80:20) GO 0.2 wt%; i) pull:alg(60:40) GO 0.2 wt%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) c) d) e) f) g) h) i) 
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4.3. Conclusions 

Findings arising from this work reflect that compared to pristine pullulan, GO enhanced pullulan-

chitosan and pullulan-alginate blend sytems have considerably provided improved mechanical 

properties and thermal stability, and comparable oxygen barrier performance. Nonetheless, the 

optical transparency of all the nanocomposites was kept adequate for most packaging applications 

in food sector. Considering that alginate and chitosan are less costly than pullulan, these 

biopolymers may be useful to reduce the cost of pullulan based bionanocomposites and enhance 

materials properties. 
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5. TOPIC 3 

 

Pullulan/graphene oxide bionanocomposite coatings with high 

oxygen barrier properties 
 

 

The third part of the project was aimed to design bionanocoatings combining pullulan and GO to be 

applied on polyethylene terephthalate (PET). The rationale behind this approach lies in the fact that 

most examples on the use of nanosized fillers concern the incorporation of the inorganic phase 

directly into the bulky biopolymer. Only very recently it has been proposed the use of fillers within 

coatings made of biopolymers to produce bionanocomposite coatings (i.e., thin layers of a 

biopolymer matrix loaded with a nanoparticle filler) to improve the properties of a plastic substrate 

without jeopardizing its original attributes and optimize cost efficiency. Full exfoliation of GO 

platelets during preparation of the coating water dispersions was mediated by ultrasonic treatment, 

which turned out to be a pivotal factor in the oxygen barrier performance of the final material at 0 

and 30% RH condition as well as in its low friction coefficient and better tensile properties. 
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5.1. Materials and Methods 

5.1.1. Materials  

 

Pullulan (PF-20 grade, Mw~200,000 DA) was obtained from Hayashibara Biochemical 

Laboratories Inc., Okayama, Japan. Poly(ethylene terephthalate) (PET) films (12.0 ± 0.5 μm thick) 

was provided by Toray (Saehan, Kyungbuk, South Korea). 

 

PET is a thermoplastic polymer of the polyester family, commonly used in the food packaging field 

for different purposes, such as liquids container, thermoforming applications, as a layer for flexible 

packaging solutions. Figure 5.1 shows the molecular structure of this polymer. 

 

 
Figure 5.1. Molecular structure and plastic identification code of PET. 

 

5.1.2. Methods 

 

5.1.2.1. Chemical synthesis of graphene oxide 

Please refer to section 3.1.2.1. 

 

5.1.2.2. Preparation of bionanocomposite coatings 

 

A fixed amount of pullulan (10 wt %, wet basis) was dissolved in distilled water at 25 °C for 1 h 

under gentle stirring (500 rpm). Afterward, 50 mL of the GO dispersion (0.2 wt % on wet basis) 

was ultrasonicated by means of an UP400S (powermax = 400 W; frequency = 24 kHz) ultrasonic 

device (Hielscher, Teltow, Germany) equipped with a cylindrical titanium sonotrode (mod. H14, 

tip Ø 14 mm, amplitudemax = 125 μm; surface intensity = 105 W·cm−2) under the following 

conditions: 0.5 cycle and 50% amplitude for 2 min. In parallel, the resulting GO were diluted in 

distilled water (18.3 MΩ·cm) under vigorous stirring (500 rpm) for 15 min. The organic pullulan 

solution and the inorganic dispersion were then mixed together under gentle stirring (300 rpm) for 

an additional 60 min. More specifically, the quantity of GO in pullulan-water solution was 0.002, 

0.004, 0.006, 0.008, 0.01 and 0.02% (wet basis). After drying, the concentrations of GO 

corresponded to 0.2, 0.1, 0.08, 0.06, 0.04 and 0.02 wt% on dry basis. PET films were treated with 

high frequency corona treatment (Arcotec, Ülm, Germany). As it is shown in Figure 5.2 an aliquot 

of each bionanocomposite water dispersion was then placed on the corona treated side of 

rectangular (24 × 18 cm2). The deposition of the coating was carried out by using an automatic film 

applicator (ref 1137, Sheen Instruments, Kingston, UK) at a constant speed of 2.5 mm s-1 was used, 

according to ASTM D823-07— Practice C. The deposition was performed using a horizontal steel 

rod with an engraved pattern, which yielded final coatings of comparable nominal thickness of 1 

µm after water evaporation. Water evaporation was performed using a constant and perpendicular 

flux of mild air (25.0 ± 0.3 °C for 2 min) at a distance of 40 cm from the applicator. Coated films 

were then stored under controlled conditions (23.0 ± 0.5 °C in a desiccator) for 48 h before 

measurements. 
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Figure 5.2. Coating preparation process (a) corona treatment; (b) automatic film applicator. 

5.1.2.3. Thickness determination 

A 10 × 10 cm sample (pristine pullulan coated PET) was cut and weighed (M1, grams). The coating 

was then mechanically removed by immersion in hot water (80 °C) and the resulting PET film was 

weighed (M2, grams). The apparent thickness (micrometers) of the coating was obtained 

according to the following equation (Brown, 1992): 

 



21100
MM

l


         (5.1) 

 

where ρ (g cm-3) is the density of the aqueous dispersion. Three replicates were analyzed for each 

biopolymer composition. 

 

5.1.2.4. Variable-angle spectroscopic ellipsometry 

Variable-angle spectroscopic ellipsometry (VASE) measurements were performed in the spectral 

range from 400 nm to 800 nm (with steps of 2 nm) at different angles of incidence (from 40° to 

70°) using the ellipsometer (J.A. Woollam Co. Inc.). The ratio between the elements of the Jones 

matrix (rpp / rss) = tan() ei were acquired through  and , which depend on the wavelength of 

the incident polarized light. 

The measured () and () data were analyzed with the software WVASE 32 by describing the 

sample using the following model. The fitting of the experimental data was performed by 

minimizing the mean-squared-error defined as 
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where N is the number of measured  and  pairs and M is the total number of model fit 

parameters. 

5.1.2.5. Transmittance measurements  

Transmittance measurements were performed at normal incidence with unpolarized light in the 

spectral range from 300 nm to 800 nm (with steps of 1 nm) using the spectrophotometer Perkin 

Elmer Lambda 900. Simulations of transmittance and reflectance spectra were performed with the 

software WVASE32. 

5.1.2.6. Haze measurements 

 

Haze was measured within the wavelength range 780−380 nm, in accordance with ASTM D 1003-

00, by use of a UV−vis high performance spectrophotometer (Lambda 650, PerkinElmer, Waltham, 

MA) coupled with a 150 mm integrating sphere, which allows the trapping of the diffuse 

transmitted light. Three replicates were made for each uncoated and coated film sample. 

 

5.1.2.7. Friction measurements 

Both static (µs) and kinetic (µk) friction coefficients were measured. The former represents the 

friction opposing the onset on relative motion (impending motion), whereas the latter can be 

considered as the friction opposing the continuance of relative motion once that motion has started. 

In the case of solid-on-solid friction (with or without lubricants), these two types of friction 

coefficients are conventionally defined as follows: 

 

μs = Fs P                     (5.3a) 

  

μk = Fk P                    (5.3b)  

 

where  

 

Fs = force just sufficient to prevent the relative motion between two bodies;  

 

Fk = force needed to maintain relative motion between two bodies;  

 

P = force normal to the interface between the sliding bodies. 

 

Both friction coefficients were measured using a dynamometer (model Z005, Zwick Roell, Ulm, 

Germany), in accordance with the standard method ASTM D 1894-87. The software TestXpert 

V10.11 (Zwick Roell, Ulm, Germany) Master was used for data analysis. Two types of analyses 

were carried out. In the first, friction opposing the motion of each type of film (coated and 

uncoated) against itself was evaluated. In the second, the motion of each type of film (coated and 

uncoated) on a metallic rigid surface (a polished stainless steel 150 × 450 × 3 mm) was considered. 

This surface, other than acting as a supporting base to guarantee a firm position between the 

moving crosshead and the force-measuring device, served the purpose of simulating the friction 

between the plastic web and the metallic parts of the equipments used during the manufacturing 

process. 
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5.1.2.8. Tensile testing 

Tensile properties of films were measured according to the ASTM D882-02 by means of a 

dynamometer (mod. Z005, Zwick Roell, Ulm, Germany) fitted with a 5 kN load cell and connected 

with two clamps placed at a distance of 125 mm apart. For each parameter, final results are the 

mean of at least five replicates. 

 

5.1.2.9. Oxygen barrier measurements 

The oxygen barrier properties of films were assessed on a 50 cm2 surface sample using a 

Multiperm permeability analyzer (Extrasolution Srl, Capannori, Italy) equipped with an 

electrochemical sensor. Oxygen transmission rate (O2TR) data were determined according to the 

standard method of ASTM F2622-08, with a carrier flow (N2) of 10 ml min-1 at 23 °C at 0, 30, 60 

and 90% relative humidity (RH), 1 atm pressure difference on the two sides of specimen. Each 

O2TR value was from three replicates. 

5.1.2.10. Water vapor barrier measurements 

The water vapor barrier properties of PET film and binanocomposites were assessed on a 50 cm2 

surface sample using a Multiperm permeability analyzer (Extrasolution Srl, Capannori, Italy) 

equipped with an electrochemical sensor. Water vapor transmission rate (WVTR) was assessed on 

a 50 cm2 surface sample according to the standard method ASTM F1249-05, with a carrier flow 

(N2) of 10 mL min-1. Measurements were performed at 38 °C and 90 % relative humidity (RH), 

which is the humidity gradient between the two semi-chambers between which the sample was 

mounted. Final WVTR values were expressed as g m-2 24 h-1.  

 

5.1.2.11. Statistical analysis 

 

Please refer to part 3.1.2.13. 
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5.2. Results and discussion 

5.2.1. Ellipsometry  

 

Morphology of GO nanosheets were characterized by different characterization techniques in the 

first part of thesis. As characterized by AFM, thickness of the GO sheets ranged uniformly around 

1.0 nm (more specifically, 1.12 ± 0.18 nm), suggesting the complete exfoliation of GO sheets down 

to individual layers. GO sheets width ranged between 1.5 and 4.0 µm (mean of 2.5 µm ± 0.3), 

although individual sheets as large as 12 µm were also observed. 

 

The first step has been the characterization of the PET substrate by ellipsometry 

measurements to deduce a proper model to simulate its optical properties. The ellipsometry results 

were fitted by assuming a semi-infinite bulk of a transparent material with refractive index 

described by the Cauchy model (n() = nA + nB / 
2), nA and nB being free parameters for the fitting. 

Experimental evidence of interference fringes due to a possible thin layer on top of the PET 

substrate was found. However, this layer was neglected in the model since its effects were not 

critical and a reliable fitting of the ellipsometry data were obtained with the simpler model of a 

semi-infinite bulk material. The fitting procedure provided nA = 1.8564 and nB = 0.0019896, 

corresponding to a mean refractive index of the PET substrate in the visible range (400-700 nm) 

equal to 1.864.  

 

The obtained model of a PET semi-infinite substrate was used as substrate for the following 

characterizations. First of all, pristine pullulan coated PET sample was studied. The stack for the 

simulation was built by adding a transparent layer on top of the PET semi-infinite substrate. The 

PET optical properties were assumed known, as previously deduced from ellipsometry. The fitting 

of the ellispometry data was performed with four free parameters, namely nA and nB, the thickness 

(l) of the added layer, and its thickness non-uniformity tn-u. The results of the fitting are reported in 

Table 5.1, together with the corresponding MSE value of the fitting and the refractive index of the 

top layer. The mean refractive index is in reasonable agreement with data reported in the literature 

for pullulan (Gradwell, 2004).  

The same procedure and model were adopted for other samples with different 

concentrations of GO in the pullulan layer (Table 5.1). We notice that the refractive index and the 

thickness non-uniformity of the top layer increase as a function of the GO concentration. The 

correlation factors (not shown) are found negligible due to not being large correlation values. 
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Table 5.1. Parameters nA, nB, t, and tn-u of the top layer obtained by fitting the ellipsometry () 

and () experimental data, MSE of the fitting, and deduced refractive index of the top layer either 

at 589 nm (n589) or averaged in the visible range from 400 to 700 nm (nmean).  

GO content 

(wt%)  

nA nB (m2) l (nm) tn-u(%) MSE n589 nmean  

0 1.5593 0.0020923 470.50 20.6 4.71 1.559 1.569 ± 0.002 

0.04 1.6611 0.012045 472.29 49.0 1.91 1.696 1.704 ± 0.014 

0.2 1.7174 0.027529 511.75 41.4 2.80 1.797 1.816 ± 0.033 

 

 

5.2.2. Transmittance  

 

Transmittance measurements were also performed at normal incidence on different GO samples 

(Figure 5.3). The PET substrate was found to show a relatively low transmittance, while a clear 

increase was detected for the sample pristine pullulan coated PET (0 wt% GO content), due to the 

anti-reflection behavior of the pullulan layer. Indeed, the refractive index of pullulan is 

intermediate between air and PET. When increasing the GO concentration, the refractive index of 

the top layer was found to increase approaching the PET refracting index value, thus reducing its 

anti-reflection behavior. For this reason, the transmittance of the GO samples is intermediate 

between the two extremes, towards the transmittance of the simple PET substrate for the highest 

GO concentration (0.2 wt%).  

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Measured transmittance spectra of PET, pristine pull coated PET and pull/GO coated 

PET films. 
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The mean value of the measured transmittance in the visible region is reported in Table 5.2. 

Transmittance was also simulated taking into consideration the model and parameters obtained by 

ellipsometry for each sample (Table 5.2). A good agreement was found between measured and 

simulated values. The lowest transmittance was found for the PET substrate, while the largest one 

was found for the pristine pullulan coated PET film. The presence of GO in the top layer 

determined a monotonous decrease of the transmittance, down to values close to the simple PET 

for the 0.2 wt% sample. Even if reflectance was not measured, the spectra were calculated for near-

normal incidence (20°, polarization s), based on the ellipsometry models. The mean values in the 

visible range are also reported in Table 5.2. As expected, (i) the minimum reflectance was 

calculated for the pristine pullulan coated PET film due to the anti-reflection behavior of the 

pullulan layer and (ii) a monotonous increase was found when increasing the GO concentration, 

reaching a similar reflectance value as the PET substrate for GO concentration equal to 0.2 wt%.  

Table 5.2. Measured transmittance (Tmean ± std dev) and simulated transmittance and reflectance 

(Tsimul ± std dev, Rsimul ± std dev), averaged in the visible range from 400 to 700 nm. 

GO content 

(wt%)  
Tmean ± std dev (%) Tsimul ± std dev (%) Rsimul ± std dev (%) 

uncoated PET 83.4 ± 1.3 83.3 ± 0.1 10.4 ± 0.1 

0 85.9 ± 1.0 86.4 ± 1.2 6.4 ± 1.6 

0.04 85.4 ± 1.1 85.1 ± 0.3 8.1 ± 0.3 

0.1 84.1 ± 1.3  not available* not available* 

0.2 84.4 ± 1.3 83.9 ± 0.5 9.6 ± 0.5 
* ellipsometry measurements were not performed. 

 

5.2.3. Haze  

Haze values were reported in Table 5.3. All GO based binanocomposite coatings were fully 

comparable with pristine PET film, with the exception of the value for the nanocomposite at the 

highest GO concentration (0.2 wt%). 
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Table 5.3. Haze value of uncoated PET and bionanocomposite coatings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Different superscripts within a group (i.e. within each parameter) 

denote a statistically significant difference (P < 0.05). 

 

 

However, as we have discussed in previous parts since the haze values as high as 3 % are 

generally judged adequate for a proper display of the products in food packaging (Introzzi et al., 

2012), haze value of pullulan coated PET film with 0.2 wt% GO content is still favorable. The 

increase in haze observed for film and coating samples can be explained in terms of surface 

roughness (Tilley, 2011) rather than presence of scattering centers (Introzzi et al., 2012). As 

highlighted by the AFM analysis on 10 × 10 μm2 areas, the pristine pullulan coatings showed 

highly smooth topographies, with an average roughness of ~1.2 nm (Figure 5.4a). Addition of the 

GO with 0.06 wt% led to a slightly increase in roughness of the coating’s surface (1.43 nm, Figure 

5.4b). However, the highest GO content (0.2 wt%) yielded a relatively high roughness value (3.1 

nm) which was in line with its significantly increased haze value. As observed in previous works, 

the addition of the other fillers, for example, micro-fibrillated cellulose and montmorillonite to 

pullulan coatings leads to an increase in surface roughness as measured by AFM (Introzzi et al., 

2012; Cozzolino et al., 2014). 

 

             GO content 

                 (wt%) 

Haze 

(%) 

uncoated PET 2.72±0.08bc  

0 2.63±0.22cd  

0.02 2.49±0.10d  

0.04 2.74±0.02bc  

0.06 2.70±0.13bc  

0.08 2.61±0.04cd  

0.1 2.87±0.04ab  

0.2 3.03±0.11a  
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Figure 5.4. AFM height images (10 × 10 μm2) of (a) pristine pullulan coating and (b) pullulan/GO 

nanocomposite coating with 0.06 wt% GO content. 

 
 

Color change with loading the highest amount of GO (0.2 wt%) was not clearly detectable 

as shown by the images inset in Figure 5.5.  

 

 

 

Figure 5.5. Image of (a) uncoated PET (b) pristine pullulan coated PET and (c) GO/pullulan coated 

PET with 0.2 wt% of GO content. 

 

5.2.4. Mechanical properties 

 

5.2.4.1. Friction behaviors 

 

Graphitic carbon has previously been found to have outstanding tribological properties. Therefore, 

they were generally used as solid lubricant to improve the tribological properties for the matrix. 

Most of the researchers, have however, focused on the study of the frictional properties of pristine 

a) b) c) 

b) 50 nm 
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graphene, whereas few studies have been devoted to the friction behaviors of the GO/polymer 

nanocomposites (Li et al., 2012; Liu et al., 2012). 

 

In order to simulate the practical situation often occurring at industrial level, two different 

analyses of the same test were performed in this work: the sliding of parallel film surfaces over 

each other and the sliding of film surfaces over a metal substrate. Significant differences were 

observed after the deposition of the thin pullulan coating with different GO content on PET film 

(Table 5.4).  

 

Table 5.4. Friction coefficients of uncoated PET and bionanocomposite coatings. 

                               Frictions coefficient   

GO content 

(wt%) 
coating-to-coating coating-to-metal 

 μs μk μs μk 

uncoated PET 0.67±0.08d 0.46±0.05b 0.35±0.01d 0.26±0.02ab 

0 0.84±0.11cd 0.50±0.03b 0.42±0.02ab 0.27±0.01a 

0.02 1.28±0.25a 0.62±0.18a 0.43±0.02a 0.26±0.02ab 

0.04 1.23±0.18a 0.57±0.03ab 0.41±0.02ab 0.25±0.01bc 

0.06 0.89±0.18bc 0.49±0.07b 0.42±0.02ab 0.26±0.01ab 

0.08 0.94±0.14bc  0.54±0.07ab 0.39±0.01c 0.25±0.01bc 

0.1 0.80±0.07cd 0.54±0.03ab 0.40±0.05bc 0.24±0.01cd 

0.2 1.11±0.11ab 0.63±0.02a 0.33±0.02c 0.23±0.00d 

Different superscripts within a group (i.e. within each parameter) denote a statistically 

significant difference (P < 0.05). 

 

The obtained results appear interesting from a practical point of view, especially considering 

the potential industrial application. Whether this change is positive or negative strongly depends on 

the final application. For example, low coefficient of friction values aid the unwinding operations 

of plastic films on industrial lines, to avoid the “blocking effect” on the reels and decreasing overall 

throughput. Conversely, lower coefficient of friction values are problematic if the final packages 

(e.g., plastic bags) have to be stacked on top one of another; high coefficients of friction can keep 

the stack from collapsing (Uysal Unalan et al., 2014). 

 

Overall, the findings indicated that coefficient values of pull/GO coatings on PET at the 

highest GO content (0.2 wt%) for coating to metal measurements was found significantly different 

compared to uncoated PET and pristine pullulan coated PET because the fundamental graphite 

lattices of GO consisted of loosely bound layers which intrinsically possess low shear strength (Lee 
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et al., 2009). This may be explained due to the homogenous dispersion of GO and the excellent 

tribological properties of multilayered GO (Liu et al., 2012). When coefficient values are 

considered for coating to coating measurements it was shown that the friction coefficients of 

bionanocomposite coatings with the addition of the highest GO content increased significantly 

compared to uncoated PET and pristine pullulan coated PET. If the final packages (e.g., plastic 

bags) have to be stacked on top one of another; this higher coefficient of friction can keep the stack 

from collapsing. 

 

Using such GO based coatings allows a layer of film to slide easily over another layer of 

film (e.g. on a roll), or over machine surfaces during film manufacture and packing, reducing the 

coefficient of friction. Therefore, the final result will be the increased line speed in the 

manufacturing process and the enhancement of the packaging machine operations, resulting in an 

increased output. 

 

5.2.4.2. Tensile properties 

 

Mechanical properties of uncoated PET, pristine pullulan coated PET and bionanocomposite films 

with different amounts of GO were studied by tensile experiments, and their main properties are 

summarized in Table 5.5. There was a considerable enhancement in the tensile properties for the 

0.1 and 0.2 wt% GO loadings compared with plastic film. For instance, bionanocomposites with 

0.2% showed a rise in tensile strength, Young modulus and elongation of ~17, 8.5 and 42%, 

respectively, compared to PET film. 

 

Table 5.5. Tensile properties of uncoated PET and bionanocomposite coatings. 

GO content 

(wt%)  

Tensile Strength 

(MPa) 

Young Modulus 

(MPa) 

Elongation                  

(%) 

uncoated PET 112.05±4.10b 3652±196cd 17.40±0.91b 

0 115.88±3.38b 3793±98abcd 17.08±3.87b 

0.02 97.10±6.96c 3630±237d 7.00±1.36c 

0.04 107.22±11.66b 3726±199bcd 13.55±3.84b 

0.06 106.37±10.28bc 3750±147abcd 13.77±2.48b 

0.08 110.58±2.23b 3876±145ab 15.52±3.50b 

0.1 129.03±5.47a 3868±186abc 23.70±3.92a 

0.2 131.05±7.13a 3958±47a 24.72±6.00a 

Different superscripts within a group (i.e. within each parameter) denote a statistically 

significant difference (P < 0.05). 
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In this study, the significant improvement of the mechanical properties of bionanocomposite 

films at the highest GO concentration (0.2 wt%)  can be ascribed to the uniform dispersion of GO 

within the biopolymer matrix, good GO–pullulan interactions, and high aspect ratio of GO, which 

were discussed in the first part of the thesis. When the amount of filler reaches a critical content 

and the distance between two sheets is so small that they may be apt to stack together easily due to 

the van der Waals force, then it turns to the restacked form (Balandin et al., 2008), weakening the 

efficiency of the mechanical improvement. This phenomenon is called as mechanical percolation 

(Zhao et al., 2010). However, since the exfoliated graphene nanosheets at even at its highest 

concentration (0.2 wt%) is well-dispersed in the polymer matrix, further loading may possibly lead 

to further mechanical improvements.  

 

5.2.5. Barrier performance 

 

Results from permeability measurements are reported in Table 5.6.  

 

Table 5.6. GO content (wt%, on dry basis), thickness (l), oxygen transmission rate (O2TR) and 

water vapor transmission rate (WVTR) of uncoated PET and bionanocomposite coatings. 

*Thickness of total material (PET + coating) 

a-f: Different superscripts within each group ( relative humidity or thickness) denote a statistically significant 

difference (P < 0.05), A-D: Different superscripts within each group (GO content) denote a statistically 

significant difference (P < 0.05) 

 The oxygen barrier performance of the tested samples improved after pullulan coating was 

deposited on PET under dry, and 30 and 60% relative humidity conditions (Table 5.6). The O2 

barrier performance further improved by increasing GO content and turned to excellent for 

bionanocomposites with 0.2 wt% GO at both 0 and 30% RH (Figure 5.6). The ultrasound assisted 

procedure for exfoliation of GO resulted in an effective and efficient tool for the final performance 

of the PET/bionanocomposite material, as it allowed full exfoliation of the platelets during 

preparation of the coating water dispersions. This was reflected in the final oxygen barrier 

GO 

content 

(wt%) 

l* 

(µm) 

O2TR 

[mL m-2 (24h-1)] 
 

WVTR 

[g m-2 24 h-1] 

  0% RH 30% RH 60% RH 90% RH  90% RH 

uncoated 

PET 
12.00±0.50b 56.60±1.20a,A 57.38±1.10a,A 51.72±0.70a,B 51.47±3.19b,B  41.93±1.34a 

0 12.75±0.07a 1.68±0.11b,D 11.79±1.30bc,C 22.15±0.07cd,B 47.14±2.20b,A  41.09±2.55a 

0.02 12.63±0.0 a 0.97±0.05c,D 10.27±0.07d,C 25.76±1.27b,B 61.49±0.39a,A  38.61±0.27b 

0.04 12.67±0.05a 1.02±0.02c,D 10.39±0.98cd,C 23.90±0.54bc,B 45.29±1.40bd,A  33.88±0.21d 

0.06 12.72±0.00a 0.93±0.21c,D 12.43±0.14b,C 23.73±0.22bcd,B 43.13±1.29de,A  41.15±0.28a 

0.08 12.83±0.16a 0.91±0.13c,D 4.52±0.21e,C   21.07±2.62d,B 43.80±1.14ef,A  34.46±1.13cd 

0.1 12.77±0.05a 1.17±0.31c,D 4.03±1.27ef,C 22.29±1.31cd,B 44.51±0.17bd,A  36.60±0.14bc 

0.2 12.78±0.05a 0.23±0.01d,D 2.80±0.21f,C 22.97±0.21bcd,B 38.80±0.85f,A  34.49±0.22cd 
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properties of the bionanocomposite coatings, due to both the “tortuosity path” and 

“organic/inorganic interface” effects. As the relative humidity increased to 60%, the overall 

performance was not enhanced upon the addition of GO into pullulan coatings but it still showed 

better performance than uncoated PET. However, further increase in relative humidity to 90% 

caused the loss of pullulan coating efficiency on PET. This effect of humidity on the barrier 

properties of hydrophilic polymers is well-known (Zhang et al., 2001; Hu et al., 2005). It is 

ascribed to the plasticizing effect of water molecules adsorbed by the polymer surface and bulk, 

especially in correspondence with the amorphous regions (Aulin et al., 2010; Kurek et al., 2014). 

Weakening of the hydrogen bonds at intramolecular and intermolecular level may occur in the long 

run. Eventually, both phenomena lead to an increase in chain mobility and free volume, which is 

reflected in a higher diffusion of the permeant (e.g., oxygen) across the polymer matrix. This 

observation is in line with the previous studies which were on pululan coated PET (Farris et al., 

2012; Cozzolino et al., 2014). 
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Figure 5.6. O2TR evolutions at different relative humidities (%RH) as a function of GO content. 
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 As summarized in Table 5.6, with respect to the WVTR values, it can be clearly seen that 

GO based pullulan coatings slightly enhanced water vapour barrier performance compared pristine 

pullulan coated PET due to the hydrophilic nature of these materials (thus the high affinity towards 

water molecules) (Cozzolino et al., 2014). 
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5.3. Conclusions 

Novel ‘‘green’’ nanocomposite coatings based on pullulan and GO were prepared and 

characterized. This study has demonstrated that pullulan, in combination with GO, can be 

profitably used to generate oxygen barrier hybrid coatings in dry or low relative humidty 

conditions. The low degree of haze and high transmittance of bionanocomposite coatings even at 

the highest GO content as well as their low friction and better tensile properties demonsrated that 

they are suitable for packaging applications, especially when clear display of objects through the 

films is required. The findings arising from this work reflect convincingly the fact that pullulan 

nanocomposite coatings are a promising alternative to the currently available synthetic oxygen 

barrier polymer coatings. Although this new application may be beneficial with regard to 

expanding the market penetration of pullulan, its inefficiency in terms of oxygen barrier 

performance at high humidity conditions still represents an obstacle.    
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6. TOPIC 4 

High-concentration, stable, and water dispersible graphene 

through polysaccharide-assisted rapid ultrasonication 

 

The aim of this work was to assess the capability of three different biopolymers (the positively 

charged polyelectrolyte chitosan, the uncharged pullulan, and the anionic polyelectrolyte alginate) 

to promote the direct exfoliation of graphite into graphene sheets in an aqueous medium by means 

of high intensity ultrasonication. To the best of our knowledge, this is the first time that the use of 

these biopolymers to exfoliate of graphite into graphene sheets by high intensity ultrasound waves 

is fully investigated. Special attention has specifically been paid to key parameters of the obtained 

graphene sheets, such as the yield of the overall process and the quality of the graphene 

dispersions. 
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6.1. Materials and Methods 

6.1.1. Materials 

Chitosan (viscosity < 200 mPa s, degree of deacetylation: 85–95%) was purchased from Shanglong 

Aokang Bio Ltd., China. Pullulan (PF-20 grade, Mw~200 000 DA) was obtained from Hayashibara 

Biochemical Laboratories Inc., Okayama, Japan. Sodium alginate (medium viscosity; viscosity of 

2% solution in water at 25°C ≥ 2000 cps), graphite powder of purity of 99%, and acetic acid were 

supplied by Sigma-Aldrich, UK. 

6.1.2. Methods 

6.1.2.1. Direct exfoliation of graphite into graphene nanosheets 

1.0 g of pullulan and alginate were separately dissolved in 20 ml of distilled water (DI), whereas 

chitosan (0.4 g) was dissolved in 20 ml of DI with 1 wt% acetic acid. Different amounts of graphite 

powder were then added to the aqueous biopolymer solutions contained in 50 ml glass vials and 

treated for 10, 20, 30, and 60 min using an ultrasonic processor UP200S (maximum power = 200 

W, frequency = 24 kHz, Hielscher, Teltow, Germany) equipped with a cone frustum titanium 

sonotrode (model micro tip S3, tip diameter = 3 mm, maximum amplitude = 210 μm, acoustic 

power density or surface intensity = 460 W·cm−2) under the following conditions: 0.5 cycle and 

50% amplitude. Subsequently, the mixtures were centrifuged at 1500 rpm for 60 min to separate 

the stable graphene dispersion from the unexfoliated graphite particles and macroscopic graphene 

flakes. Then, to remove the excess biopolymer, graphene sheets were washed with water and 

separated from top supernatants by centrifugation (5000 rpm for 20 min). This process was 

repeated five times. The resultant dark-gray solutions were dried at 40 °C in a vacuum oven for 

approximately 7 days until the mass no longer changed. The resulting polymer-graphene powders 

were redispersed in water (1 mg ml-1 for pullulan and chitosan; 0.18 mg ml-1 for alginate) for 

characterization. Graphene-pullulan, graphene-alginate, and graphene-chitosan sheets were 

indicated as pull-G, alg-G, and chit-G, respectively. 

6.1.2.2. UV Spectroscopy 

The yield of the overall process (i.e., the amount of exfoliated graphene sheets arising from the 

ultrasonication of graphite mediated by the polysaccharides) was determined gravimetrically, i.e. 

by weighing the dried graphene arising from the centrifugations and washing cycles. To this 

purpose, a Sartorius M-Power AZ214 (Göttingen, Germany) analytical balance was used. The final 

concentration was expressed in mg ml-1 as a mean of three replicates. The same dried graphene-

biopolymer samples were used to prepare a series of diluted dispersions, which allowed for the 

determination of the extinction coefficient using the Lambert-Beer law: 

A = ε l c   (6.1)    

where A is the absorbance of graphene water dispersions at 660 nm wavelength; ε is the extinction 

coefficient; l is the path length of the cuvette; and c is the concentration of graphene in water. 

Spectrophotometric measurements on five different diluted water dispersions were performed using 

a Varian Cary 50 UV-Vis spectrophotometer (Varian, Inc., Agilent Technology). 



73 

 

6.1.2.3. Transmission electron microscopy  

Transmission electron microscope (TEM) (JEOL 2000FX) at an operating voltage of 200 kV was 

used for the analysis of graphene structure. Digital images were captured with a GATAN ORIUS 

11 megapixel digital camera. Samples for TEM analyses were prepared by drop-casting a few 

millilitres of dispersion onto holey carbon grids (400 mesh), and letting the samples to rest for 24 

hours at room temperature to allow water evaporation. 

6.1.2.4. Atomic force microscopy 

Atomic force microscopy (AFM) measurements were carried out in air in intermittent-contact 

mode with a Nanoscope V Multimode (Bruker, Germany) on diluted (1:100) pull-G, chit-G, and 

alg-G water dispersions 1 hour after their preparation. The images were collected with a resolution 

of 512 x 512 pixels with silicon tips (force constant 40 N/m, resonance frequency 300 kHz). The 

analyses performed on the acquired images were conducted with Nanoscope software (versions 

5.12 and 7.30). 

6.1.2.5. Thermogravimetric analysis  

Thermogravimetric analysis (TGA) was carried out with the goal of quantifying the residual 

biopolymer on the exfoliated graphene sheets after the five washing cycles as described before. The 

analyses were run using a TGA/DSC 2 instrument (Mettler Toledo, Switzerland) in an inert 

environment (50 mL min-1 N2). Powder samples (~ 5 mg) were placed in alumina pans (70 µL) and 

heated from 25 °C to 1000 °C at a linear heating rate of 10 °C min-1. At least three replicates were 

used for each sample. 

6.1.2.6. Raman spectroscopy  

Raman spectra were recorded at ambient temperature by a Renishaw inViaRaman spectrometer 

with an Ar-ion laser at an excitation wavelength of 514.5 nm.  

6.1.2.7. X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) measurements were performed in an XM1000 instrument 

(Omicron NanoTechnology GmbH, Germany) equipped with a monochromatic Al K source. 

Samples were first mounted on circular plates using electrically conducting carbon tape and then 

loaded in a vacuum chamber (base pressure 2 x 10-11 mbar). Data analysis was carried out using the 

CasaXPS package, using Shirley backgrounds, mixed Gaussian-Lorentzian (Voigt) line shapes and 

asymmetry parameters for the sp2 graphitic components.  
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6.2. Results and discussion 

6.2.1. Yield and quality of the exfoliated graphene  

Graphene exfoliation was carried out by exposing a mixture of water-based pullulan solution and 

graphite flakes to ultrasonic waves. The efficiency of graphene exfoliation was investigated by 

varying the initial graphite concentration, polymer concentration in water, and ultrasonication time. 

The optimized protocol was then extended to exfoliate graphite by chitosan- and alginate-assisted 

ultrasonication. As shown in Figure 6.1, the final concentration of graphene increased linearly with 

the initial concentration of graphite. The initial concentration of the biopolymer played a role too. 

At a pullulan concentration of 10 mg ml-1and at an initial concentration of graphite of 10 mg ml-1, 

the amount of exfoliated graphene was 0.54 mg ml-1 (see the half square data point right downward 

in Figure 6.1). For the same graphite concentration (10 mg ml-1) and increasing the concentration of 

pullulan to 50 mg ml-1 the amount of exfoliated graphene obtained was 2.3 mg ml-1 (see the half 

square data point left upward in Figure 6.1). 

 

Figure 6.1. Effect of initial graphite concentration (full squared), and pullulan concentration (half 

squared) on the yield of graphene exfoliation.  

The effect of sonication time on the quality of graphene flakes in pullulan solution was 

observed by TEM. As shown in Figure 6.2a-d, the polysaccharide-assisted ultrasonication process 

yielded thin and semi-transparent graphene flakes consisting of both individual and few stacked 
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layers. After the observation of a reasonable number of graphene flakes for each sonication time, it 

was possible to consider the 30 minutes treatment as a good compromise between number of 

layers, lateral dimensions, and surface area of the sheets (Figure 6.2a–d).  

 

 

Figure 6.2. TEM images of pull-G for: (a) 10 min; (b) 20 min; (c) 30 min; (d) 60 min; (e) chit-G 

for 30 min; (f) alg-G for 30 min. 
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Chitosan- and alginate-assisted ultrasonicated graphene sheets were thus obtained 

according to the optimized conditions for pullulan-assisted graphite exfoliation (i.e.: initial graphite 

concentration = 10 mg ml-1; polymer concentration = 50 mg ml-1 for alginate and 20 mg ml-1 for 

chitosan, the latter due to the high viscosity of the resulting water dispersion; sonication time = 30 

min). It was possible to observe that 30 minutes sonication was more effective on chitosan rather 

than alginate, in terms of both number of stacked layers (visually detectable by the transparency of 

the flakes to electrons beam) and lateral dimensions (Figure 6.2e and 6.2f). The yield of the process 

was 0.18 mg ml-1 for alg-G and 5.50 mg ml-1 for chit-G.  

6.2.2. Stability of the graphene-polysaccharides water dispersions 

The exfoliation of graphite was further confirmed by visual inspection of the obtained water 

suspensions (Figure 6.3). The absence of both precipitation and macroscopic aggregates in the 

freshly-prepared samples confirmed the effect of acoustic cavitation of high frequency ultrasound 

in the formation, growth, and implosive collapse of bubbles in a liquid medium, which induces 

shock waves on the surface of the bulk material, causing the exfoliation (Hielscher, 2005; 

Vadukumpully et al., 2009). The exfoliated flakes in chitosan and pullulan solutions were stable for 

long periods (over 6 months), oppositely to the alginate-based water suspension that started to 

collapse after 24 h.  

 

 

Figure 6.3. Digital images of freshly-prepared graphene in alginate, chitosan, and pullulan water 

dispersions after (a) 24 h; (b) 7 days; and (c) 6 months storage at room temperature. 
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The possible behavior of graphene into water based polymer solutions was displayed in 

Figure 6.4. Preferential interaction between graphene and the polycationic chitosan can be 

explained in terms of affinity between the non-polar chain segments of chitosan and the surface of 

graphene. This is corroborated by the high dispersive (apolar) component of the surface free energy 

measured for chitosan (~ 47 mJ m-2) (Farris et al., 2011), very close to that of graphene (46.7 mJ m-

2) (Wang et al., 2009), which would give reason for the adsorption of chitosan molecules onto the 

surface of graphene through hydrophobic–hydrophobic interactions (Feng et al., 2014). The 

electrostatic repulsion between positively charged amino-groups exposed to the aqueous medium 

would instead prevent the re-stacking and agglomeration of the exfoliated flakes, thus leading to a 

stable dispersion.  

 

 

Figure 6.4. Representive image of graphene behavior in pullulan, alginate and chitosan water 

dispersions. 
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Analogously, pullulan-based dispersions were stable for a long time due to the affinity 

between the biopolymer and the surface of graphene. Although highly polar and yet largely 

hydrophilic in nature, this exopolysaccharide exhibits quite a high dispersive component (~ 44 mJ 

m-2) (Farris et al., 2011), which would ensure the adsorption on the surface of the graphene sheets. 

The final colloidal stability in water is eventually achieved by the high affinity with the 

surrounding aqueous medium as well as by steric or/and depletion stabilization (Bourlinos et al., 

2009), although the lack of charged functional group does not provide any electrostatic repulsion as 

seen for chitosan (indeed the pullulan-graphene dispersions started to precipitate earlier than those 

based on chitosan). 

Finally, the completely different behavior observed for the alginate dispersions can be again 

explained in terms of affinity between the biopolymer and the graphene sheets. It is plausible that 

the compatibility at the interface between the two entities (alginate and graphene) is 

thermodynamically unfavorable, so that the adsorption of the biopolymer on the graphene surface 

is somehow hindered, with subsequent re-stacking and precipitation of the graphene layers. This 

hypothesis is supported by the dispersive component of the surface free energy measured for 

alginate (~ 20 mJ m-2) (Çaykara et al., 2005), far lower compared to chitosan and pullulan. These 

considerations seem to confirm that good compatibility (e.g., solvents, surfactants, polymers) for 

graphite are characterized by surface tensions in the region of 40–50 mJ m-2 (Hernandez et al., 

2008). 

6.2.3. Adsorption of polysaccharides on the graphene surface 

The results arising from the TGA experiments are displayed in Figure 6.5. Graphite showed 

degradation starting after 700 °C. Therefore, if we consider the trend of the curves at 700 °C it is 

possible to get information about the residual biopolymer adsorbed on the graphene surfaces, as the 

contribution arising from the pristine graphene sheets would be excluded. The amount of pullulan, 

alginate, and chitosan polymers in graphene nanosheets was estimated to be approximately ~2.5%, 

~1.5%, and ~8.5 wt%, respectively (see the insets of Figure 6.5). These values are much lower if 

compared to guar gum-graphene sheets, for which the residual biopolymer amount was 23% at 

550° (Chabot et al., 2013), 48.7% at 750°C (Fan et al., 2013), and 56% at 800°C (Fan et al., 2012). 

Besides difference in the sample preparation procedures (e.g., centrifugation and washing steps), it 

is plausible an even stronger interaction between graphene and guar gum compared e.g. to chitosan. 

This is also supported by the work of Chabot et al. (2013) who adopted a strong acid hydrolysis 

procedure to completely remove the residual guar gum from the graphene surface. However, it 

should be noted here that the amount of biopolymer found on pull-G samples before the 5 washing 

steps ranged between 48% and 68%, in line with previous results on guar gum-graphene 

bionanocomposites.  
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Figure 6.5. TGA traces of graphite, pullulan, alginate, chitosan and pull-G, alg-G and chit-G 

exposed to a N2 atmosphere. The inset in each panel is a zoomed view of the traces within the 0–

700 °C range. 

These results confirm the preferential affinity of graphene for the three biopolymers 

according to the following decreasing order: chitosan > pullulan > alginate. The high amount of 

residual chitosan may have a practical impact because it would allow easy re-dispersibility of the 

particles in water. At the same time, the adsorbed chitosan would be of great advantage in the 
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preparation of chitosan-based graphene bionanocomposites according to the so-called ‘one-pot’ 

procedure (Ge et al., 2012; Zheng et al., 2012; Liu et al., 2013; Feng et al., 2014; Nuvoli et al., 

2014), because the affinity between polymer and filler is inherently achieved. This would represent 

the simplest, most efficient, and environmentally friendly strategy for the preparation of graphene-

based bionanocomposite materials (Nuvoli et al., 2014). On the other hand, the presence of the 

biopolymer on the surface of graphene can represent a problem if this will hamper the graphene 

properties. However, this aspect needs further investigation. 

The same kind of information was acquired from the extinction coefficient values of a series 

of diluted water dispersions prepared for each graphene-biopolymer system after the 5-steps 

washing procedure. As can be seen from Figure 6.6, the absorbance unit values for the three 

systems increased monotonically with the concentration.  

 

Figure 6.6. Absorbance unit values for different concentrations of pull-G (), chit-G (), and alg-

G () water dispersions. 

The extrapolated extinction coefficent was 525 ml mg-1 m-1, 1240 ml mg-1 m-1, and 2287 ml 

mg-1 m-1 for alg-G, pull-G, and chit-G, respectively. As explained by Su et al. (2014), the different 

extinction coefficient calculated for the three systems can be explained considering the light 

absorption characteristics of mono- or multi-layers graphene, which depend on lateral size 

distribution, number of layers per flake, and number and type of functional groups. In particular, a 

higher content of small flakes and fewer layers per flake concurrently give smaller absorption 

coefficients (ε), which was ascribed to the shrinkage of the П-conjugated system at 660 nm. 

Contrary, high absorption coefficients are encountered for high content of functional groups 

because of the increase in the auxochromic effect. Therefore, the higher extinction coefficient 

calculated for the chitosan-coated graphene flakes compared to both pullulan- and alginate-
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graphene systems can be attributed to both a ‘surface chemistry’ effect (-COOH, -OH,–C-O-C-, 

and NH groups along its backbone) and a ‘mass’ effect, being the amount of chitosan per unit area 

adsorbed on the graphene flakes thicker compared to pullulan and, especially, alginate. 

6.2.4. Morphology and thickness of graphene sheets 

Information on both morphology and thickness of pull-G, alg-G, and chit-G nanosheets was 

gathered by AFM analyses. Representative AFM images are shown in Figure 6.7. Individual 

graphene sheets can be clearly detected in the pull-G sample (Figure 6.7a), whereas the alg-G 

sample apparently showed macroscopic aggragates (Figure 6.7b). Chit-G AFM images exhibited a 

peculiar pattern, with graphene sheets masked presumably by the polymer matrix (Figure 6.7c). 

These morphologies are reflected in the measured size of the graphene layers.  

 

Figure 6.7. AFM height images (5 × 5 µm2) of (a) pull-G, (b) alg-G and (c) chit-G nanosheets 

deposited on mica substrates. 
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As a general trend, it has been observed that the ultrasonication process mediated by 

pullulan yielded graphene sheets with a surface area mostly centered between 2.5 105 and 5.0 105 

nm2, with a thickness between 0.7 nm and 1.5 nm. The surface area and the thickness of alg-G 

samples increased to approximately 5.7 105 nm2 and 1.3 – 5.5 nm, respectively, confirming 

previous indication of the tendency of graphene sheets to re-stack. As for the chit-G samples, the 

surface area of the graphene sheets was of approximately 1.8 105 nm2, while the thickness 

dramatically increased to 10 – 15 nm, which can be attributed to the large amount of polymer 

adsorbed on the graphene sheets.  

  Considering that the intrinsic limits of AFM in tapping mode generate a thickness of 0.6 – 

0.9 nm for a single layer of graphene (the actual thickness of an individual graphene sheets is ~ 

0.34 nm) (Nemes-Incze et al., 2008) and in light of the residual polysaccharides adsorbed on the 

graphene sheets (~2,5%, ~1.5%, and ~8.5% for pull-G, alg-G, and chit-G, respectively) it can be 

concluded that pull-G sheets are single or few layers (≤ 5 layers); alg-G are few layers or quite 

thick sheets; chit-G are single or few layers with a high amount of polymer adsorbed. 

6.2.5. Raman spectroscopy 

The exfoliation of graphite into graphene was further demonstrated by Raman spectroscopy, which 

is one of the most useful tools to assess the quality of exfoliated graphene (Ferrari, 2007; Graf et 

al., 2007). Indeed, Raman spectroscopy allows clear identification of a single layer, few layers (≤ 

5), and multilayer (> 5) by taking into account some specific diagnostic parameters. Raman 

spectrum of pristine graphite is characterized by a dominant G band at 1582 cm-1 and two 

additional bands, D and 2D bands, located at 1350 cm-1 and 2700 cm-1, respectively (Graf et al., 

2007) (Figure 6.8a). After exfoliation, the D-band with a relatively strong intensity can be mainly 

ascribed to the increased fraction of graphene edges (Ferrari et al., 2006; Graf et al., 2007; 

Cassiraghi et al., 2009). Moreover, the intensity ratio of the D and G bands (ID/IG) reflects the 

structural defects and the indication of disorder (Ferrari, 2007). In this work, although the D-peak 

was present in all the three exfoliated graphene samples (Figure 6.8), the ID/IG ratio was reasonably 

low, as it increased from 0.08 for graphite to 0.18, 0.33, and 0.49 for alg-G, pull-G and chit-G, 

respectively (Figure 6.8a), in line with the values found for guar gum-assisted graphene sheets 

(0.29 and 0.25) (Fan et al., 2012; Chabot et al., 2013). This indicates that low-edge defects rather 

than basal plane defects arisen from the sonication process (Gayathri et al., 2014) supporting the 

unaltered graphitic character of the flake basal planes after ultrasonication (Chabot et al., 2013). 

Our results thus confirm that graphene sheets produced using polysaccharide-assisted ultrasound 

exfoliation are relatively defect-free (Fan et al., 2012; Chabot et al., 2013) compared to reduced 

GO, which is primarily due to the use of harsh oxidizing reagents used during the oxidation of 

graphene (the successive reducing process does not allow full recovery of the original graphitic 

structure) (Chabot et al., 2013). 

The (I2D/IG) ratio and the full width at half maximum (FWHM) of the 2D band provide 

information of the average thickness of graphene sheets (Graf et al., 2007; Green & Hersam, 2009). 

In particular, the I2D/IG ratio decreased from ~ 2.1 for single-layer graphene to ~ 0.8 for quadruple-
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layer samples (Green & Hersam, 2009). It was also found that FWHM is ~ 30-35 cm-1 for 

individual graphene layers and this value increases with increasing the graphene thickness (Graf et 

al., 2007; Green & Hersam, 2009). FWHM nearly doubles in two layers (Graf et al., 2007) and 

quadruple-layer samples (Green & Hersam, 2009) and gets almost constant (~ 65–70 cm-1) for 

multiple layers (Graf et al., 2007). The shape of the 2D peak is another important parameter (Figure 

6.8b). The 2D peak of graphite spectrum consists of two components, 2D1 and 2D2. These two 

peaks disappear in a single graphene layer, which exhibits a single, sharp and intense 2D peak at 

lower wavenumbers, roughly four times more intense than the G peak. Bi-layer graphene has much 

a wider peak compared to single layer graphene, whereas the peak of more than five layers 

graphene becomes hardly distinguishable from that of graphite due to similarity of the 2D-band in 

shape (Ferrari et al., 2006; Ferrari, 2007). In this work, the FWHM was found to be 53.34 cm-1, 

54.72 cm-1, and 70.99 cm-1 for pull-G, alg-G, and chit-G, respectively, while the value of the I2D/IG 

parameter was ~ 0.8 for all the three systems. Significant changes also occurred in the shape of the 

2D peak of the polysaccharides-graphene nanosheets compared to the pristine graphite powder, 

especially in terms of shifting toward lower wavenumbers (Figure 6.8b).  

 

a) 

b) 

 

Figure 6.8. (a) Raman spectra of graphite, pull-G, alg-G, and chit-G; (b) detail of the 2D Raman 

band. 
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These results confirmed that the polysaccharide-assisted ultrasonication of graphite powder 

was able to provide exfoliated graphene, most likely consisting of a mixture of mono-layer, bi-

layer, and few-layer sheets, in any case less than 5 layers, in particular for the pullulan-assisted 

ultrasonication, in agreement with the AFM results. The highest value of both ID/IG and FWHM for 

chitosan could be affected by the high amount of residual chitosan adsorbed on the surface of 

graphene as discussed before. 

6.2.6. XPS analyses 

To corroborate the presence of the polysaccharides on the surface of graphene we carried out XPS 

analyses on pristine graphite powder and exfoliated graphene samples. As shown by the XPS 

survey spectra in Figure 6.9., a dramatic increase in oxygen (peak at 531.9 eV) in pull-G, alg-G, 

and chit-G sheets and a new peak related to nitrogen (peak at 399.8 eV) in only alg-G and chit-G 

sheets were observed compared to pristine graphite, where a main peak at 284.4 eV (due to the 

presence of sp2 C-C bonds) was present.  

 

 

Figure 6.9. XPS survey spectra of pristine graphite powder, pull-G, alg-G, and chit-G. 
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Table 6.1. Elemental surface analysis of pristine graphite powder, pull-G, alg-G, and chit-G 

samples determined by XPS. 

Material Total Composition (%) C:O Ratio 

 C O N S Cl  

Graphite 97.14 2.86 - - - 33.97 

Pullulan-G 91.78 8.22 - - - 11.17 

Alginate-G 87.58 10.23 1.62 0.29 0.28 8.56 

Chitosan-G 80.97 16.03 3.00 - - 5.05 

 

The atomic composition of the polysaccharide-graphene samples (Table 6.1) reveals that the 

highest amount of oxygen (16.03%) was measured on chit-G samples, which also had a significant 

presence of nitrogen (3%) due to –NH2 and –OH containing units (Fang et al., 2010). This further 

supports our previous observations on the preferential interaction of graphene with chitosan. The 

higher amount of oxygen measured for alg-G sheets (10.23%) compared to pull-G sheets (8.22%) 

is somehow unexpected, as well as the slight amount of nitrogen (1.62%), which still is under 

investigation. 

6.2.7. Efficiency of the ultrasonication process 

It is important to comment on the efficacy and efficiency of the ultrasonication process, especially 

in light of previous studies where high intensity (interchangeably called ‘tip’ or ‘sonotrode’) or low 

intensity (e.g., ultrasound bath) ultrasonication methods were used.  
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Table 6.2. Direct exfoliated graphene by ultrasonication in different polymer systems. 

 

Polymer type / 

Solvent type 

CGmax 

(mg/ml) 

Sonication 

type 

Sonication 

time 

(h) 

CP 

(mg/ml) 

CGi 

(mg/ml) 

ε 

(ml/mg.m) 
Ref. 

Pullulan / Water 2.30 
Tip 

sonicator 
0.5 50 10 1240 

present 

study 

Alginate / Water 0.18 
Tip 

sonicator 
0.5 50 10 525 

present 

study 

Chitosan / 

Water 
5.50 

Tip 

sonicator 
0.5 20 10 2287 

present 

study 

Gum Arabic / Water 0.69 
Bath 

sonicator 
8 140 10 1390 

Fan et 

al., 2012 

GMA-Gum Arabic / 

Water 
1.12 

Bath 

sonicator 
5 30 80 1390 

Fan et 

al., 2013 

Gelatin / Water 0.60 
Bath 

sonicator 
8 20 200 1390 

Ge et al., 

2012 

Pyrene-functionalised 

block copolymer / 

Water 

0.39 
Bath 

sonicator 
6 20 0.5 - 

Liu et 

al., 2013 

Acrylate polymer / 

Ethanol 
4.00 

Bath 

sonicator 
24 20 200 2607 

Sun et 

al., 2013 

Gum Arabic / Water 0.60 
Bath 

sonicator 
100 50 10 5422 

Chabot 

et al., 

2013 

PVP / Water 0.42 
Tip  

sonicator 
1 20 40 1293 

Wajid et 

al., 2012 

PVP / Water 0.10 
Bath 

sonicator 
9 20 5 - 

Bourlino

s et al., 

2009 

CGmax: maximum achieved graphene concentration; CP: polymer concentartion; CGi: initial graphene 

concentration;  = extinction coefficient; GMA-gum arabic: glycidyl methacrylate-functionalized gum arabic; 

PVP: polyvinylpyrrolidone. 
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Table 6.2 summarizes the most relevant results reported in the literature on the ultrasound-

assisted exfoliation of graphite in polymer-water mixtures. At first glance, it can be seen that our 

procedure involving chitosan as the ultrasonication-assisting biopolymer led to the highest yield 

never reached so far (5.50 mg ml-1). Of course, this cannot be taken as an absolute value, as many 

parameters differ from one study to another (for example the sonication time may vary from 30 

minutes to 100 hours). However, this work has demonstrated that pinpointing the best factors 

combination is of utmost importance to optimize the final yield and to define a reproducible 

protocol for the liquid phase exfoliation process. As much important is the type of ultrasound wave 

used to promote the exfoliation. Indisputably, high intensity ultrasounds are by far more effective 

compared to the low intensity ultrasound waves, e.g. those generated by the ultrasound bath, 

basically because of the greatly higher energy input involved, especially at local level. This is the 

reason for the 430 h needed to disperse graphene by bath sonication in both non-aqueous N-methyl-

pyrrolidone (NMP) (Khan et al., 2010) and sodium cholate water based solutions (Lotya et al., 

2010), which yielded at most 1.2 mg/ml and 0.3 mg/ml graphene concentration, respectively. A 

higher yield value (4 mg ml-1) by bath sonication was achieved after 24 hours sonication of 

graphite in ethanol assisted by an acrylate polymer (Sun et al., 2013). We found only one work 

where tip sonicator was used to exfoliate graphite in an aqueous medium containing PVP as a non-

ionic polymer. However, after 1 h sonication, the yield was 0.42 mg ml-1 of single-to-few layers 

graphene (Wajid et al., 2012). Bourlinos et al. (2009) only obtained 0.10 mg/ml single layer 

graphene after 9 h bath soncation using the same polymer.  

More recently, Guardia et al. (2014) pointed out that the power intensity of the 

ultrasonication process may have a great impact on the amount of exfoliated graphene analogues, 

MoS2 and WS2, with a remarkable increase with increasing the power intensity. Within our work, 

we have used a power of 16.25 W for 30 minutes of sonication, with energy consumption (in terms 

of energy output per unit volume) of 731 Ws ml-1. It should also be noted that while high energy 

inputs may provide higher exfoliation, smaller lateral dimensions of the graphene sheets can be a 

concomitant undesired side effect (Guardia et al., 2014). In addition, it has been reported that 

prolonged sonication times do not provide any additional benefit in terms of yields rather they can 

lead to a more intense damage of the graphene lattice (Hernandez et al., 2008) besides higher and 

worthless energy input, confirming what was already demonstrated for the ultrasound-assisted 

exfoliation of clays (Introzzi et al., 2012). Therefore, to make ultrasonication an effective and 

efficient approach for mass production of high quality graphene sheets, a thoughtful balance 

between yield, quality of the graphene sheets, and overall costs involved is necessary. 
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6.3. Conclusions 

The capability of non-ionic pullulan, anionic alginate, and cationic chitosan to assist the 

ultrasonication-mediated exfoliation of graphite into graphene nanosheets in an aqueous medium 

was investigated in this work. Out of the three systems, pullulan and chitosan were demonstrated to 

be effective biopolymers for the preparation of stable water dispersions of graphene sheets after 

only 30 minutes ultrasonication. The long lasting stability (more than 6 months), in particular, was 

attributed to the biopolymer adsorbed onto the graphene surface, which prevented re-aggregation 

due to electrostatic repulsions and/or increased affinity to the surrounding medium. In addition, we 

demonstrated that this method yielded exfoliated mono-, bi-, and few-layer graphene sheets with 

only low lateral (edges) defects.  

Besides allowing new potential uses of biomass resources (e.g., chitin and algae), the 

proposed protocol could represent a high-throughput, high-yield, economical, and scalable route for 

new applications of graphene that hitherto lagged behind the latest and more sophisticated 

technologies (e.g., photovoltaics, biosensors, supercapacitors, super adsorbents, and fuel cells). For 

example, the biopolymer-coated graphene sheets may be suitable for the fabrication of a range of 

new graphene-based (bio)nanocomposite materials for packaging applications (e.g., food 

packaging), where intrinsic properties of graphene such as high elastic modulus and gas barrier 

properties are sought-after for many different uses. 
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7. GLOSSARY 

(most used acronym – alphabetical order) 

 

AFM:  Atomic force microscopy 

DMF:  Dimethylformamide 

EVOH:  Ethylene vinyl alcohol 

FE-SEM:  Field-emission scanning electron microscopy 

FWHM: Full width at half maximum 

GO:  Graphene oxide 

NMP:  N-methyl-pyrrolidone 

O2TR:  Oxygen transmission rate 

PET:  Poly(ethylene terephthalate) 

PHAs:  Poly-hydroxyalkanoates 

PLA:  Poly(lactic acid) 

PʹO2:  Permeability coefficients 

PVOH:  Poly vinyl alcohol 

RH:  Relative humidity 

SDBS:  Sodium dodecyl benzene sulfonate 

TEM:  Transmission electron microscope 

TGA:  Thermogravimetric analysis 

VASE:  Variable-angle spectroscopic ellipsometry 

WVTR:  Water vapor transmission rate 

XPS:  X-ray photoelectron spectroscopy 

XRD:  X-ray diffraction 
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