
A microscopic model beyond mean-field:

from giant resonances properties to the fit of new effective interactions

M. Brenna1,2,a, G. Colò1,2, X. Roca-Maza1,2, P. F. Bortignon1,2, K. Moghrabi3, and M. Grasso3

1Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133, Milano, Italy
2INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano, Italy
3Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex, France

Abstract. A completely microscopic beyond mean-field approach has been elaborated
to overcome some intrinsic limitations of self-consistent mean-field schemes applied to
nuclear systems, such as the incapability to produce some properties of single-particle
states (e.g. spectroscopic factors), as well as of collective states (e.g. their damping
width and their gamma decay to the ground state or to low lying states). Since commonly
used effective interactions are fitted at the mean-field level, one should aim at refitting
them including the desired beyond mean-field contributions in the refitting procedure. If
zero-range interactions are used, divergences arise. We present some steps towards the
refitting of Skyrme interactions, for its application in finite nuclei.

1 Introduction

Self-consistent mean-field (SCMF) models have become increasingly sophisticated and reliable in
the overall description of bulk nuclear properties (e.g. masses, radii and deformations), as well as of
collective excitation, like giant resonances (GR) [1]. These are described as a coherent superposition
of one particle-one hole excitations, and are located in the energy range between 10 and 30 MeV.
Thus, they can decay through the emission of particles: this process is associated with the so-called
escape width Γ↑. However, the most probable damping mechanism is the coupling to progressively
more complicated states (of 2p-2h, 3p-3h, ..., np-nh character). The associated contribution to the total
width, called spreading width (Γ↓), is the dominant one. Eventually, the γ-decay width (Γγ), given by
the coupling to the electromagnetic field is a small fraction (≤ 10−2) of the total width. Despite this,
the study of the γ decay of GRs has been considered a valuable tool for about 30 years [2, 3].

Nevertheless, the SCMF approachs present well-known limitations. For instance, it does not re-
produce, as a rule, the level density around the Fermi energy. Moreover, the fragmentation of single
particle states and the GR spreading widths are outside the framework of these models.

One way to overcome these issues is the introduction of an interplay between single particle and
collective degrees of freedom, like vibrations. The basic ideas of the so-called particle-vibration
coupling (PVC) models have been discussed in Ref. [4]. Including these couplings, the standard shell
model acquires a dynamical content: the average potential becomes non-local in time or, which is the
same, energy dependent [5]. Recently, some of us has developed a fully microscopic self-consistent
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Figure 1. (Color online) Probability P to find the
IVGQR state at an energy E. Different curves are
obtained when the phonons listed in the legend are
used as intermediate states. The label RPA
[black-dashed line] refers to the curve calculated in
the RPA with a Lorentzian width of 1 MeV.

model, based on Skyrme functionals, to treat properly single particle states [6]. In this contribution
we report on the application of this model to the calculation of inclusive (strength function) as well as
exclusive (γ-decay width) GRs properties.

If theories beyond mean-field are necessary, a problem of overcounting may arise since, so far,
effective forces have been fitted at mean-field, thus including in an effective way a class of higher
order correlations. Therefore, we should expect to be obliged to re-fit the interactions at the required
level of approximation. Moreover, if zero-range forces are used, like the Skyrme one, divergences
arise when they are employed at beyond mean-field level. In the second part of this contribution, we
present some preliminary results on the way to reabsorb these divergences in a simplified Skyrme
interaction applied to finite nuclei.

2 The giant resonances widths within the PVC approach

In this section we present the results obtained for two observables: the line shape of isovector giant
quadrupole resonance (IVGQR) in 208Pb, and the width associated with the γ decay of the isoscalar
giant quadrupole resonance (ISGQR) in 208Pb to the ground state and to the first collective octupole
state. Details about the formalism used and a more accurate discussion of the results can be found in
[7] and [8].

2.1 The strength function

The calculation that we report on here follows closely Ref. [9]. In that paper, calculations of the
GRs strength functions were based on the use of a phenomenological separable force in the surface
coupling model. The main novelty of this work is the consistent use of the Skyrme force in both
HF+RPA diagonalization and in the PVC vertex, added on top of the former. In Fig. 1 the probability
per unit energy of finding the isovector quadrupole resonance state is plotted, calculated adopting the
recent SAMi [10] parametrization of the Skyrme force. Phonons with multipolarity L = 0, 1, 2, 3
and natural parity are included in the model space. The RPA peak, after the introduction of beyond
mean-field correlations, is divided into two parts. Although it decreases in magnitude, the centroid of
the higher energy one is basically not affected by the introduction of intermediate states of different
multipolarity. On the other hand, the other peak broadens and is shifted to lower energies. Eventually,
the energy centroid can be set at 21 MeV and the spreading width is about 3.8 MeV, in good agreement
with the experimental findings (see inset in Fig. 1).
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Table 1. γ-decay widths Γγ. The first four rows are from this work, with no adjustable parameters. The
following three are previous theoretical calculations. The last one refers to the experiment. See text and
Ref. [8].

Interaction EISGQR [MeV] ΓGS
γ (eV) E3− [MeV] Γ3−

γ (eV)
SLy5 [11] 12.28 231.54 3.62 3.39
SGII [12] 11.72 163.22 3.14 29.18
SkP [13] 10.28 119.18 3.29 8.34
LNS [14] 12.10 176.57 3.19 39.87
Ref. [15] 11.20 175 – –
Ref. [16] 11.20 142 2.61 3.5
Ref. [17] 10.60 112 2.61 4
Ref. [2] 10.60 130 ± 40 2.61 5±5

2.2 The γ-decay width

In the model described in Ref. [8], the γ decay of the GRs to the ground state is evaluated at the
RPA level, while the decay to low-lying collective states is accounted for at the first contributing
order beyond the mean-field. It should be noted that only the direct decay can be computed in this
model [15]. In this contribution we focus on the ISGQR in 208Pb and its decay to the ground state and
to the first 3− state, using different Skyrme interactions. In Tab. 1, the obtained decay widths (Γγ) are
listed, together with some results present in the literature and with the experimental outcome.

For the decay to the ground state the main issue is the overestimation of the energy of the res-
onance: the decay width is proportional to the energy raised to 2λ + 1, being λ the multipolarity of
the transition. If we rescale the energy to the experimental value, all the interactions can reproduce
the experimental decay width within the experimental error. On the other hand, concerning the decay
to the 3− state, only two interactions are in agreement with the experiment. Actually, it should be
recognized that it is just remarkable that Skyrme interactions can reproduce the order of magnitude
(few eV) of this exclusive observable, provided with the fact that this functional form are fitted to
reproduce basically macroscopic properties of nuclei at the scale of hundreds of keV.

3 The problem of the divergences beyond mean-field
As recalled in the Introduction, several beyond the mean-field quantities diverge if zero-range in-
teractions are employed. Until now, the problem is circumvented by imposing a truncation to the
model space with a somewhat arbitrary recipe, and this is clearly unsatisfactory. In Refs. [18, 19], the
problem of the renormalization of the whole Skyrme interaction was faced in an infinite system with
different degrees of neutron-proton asymmetry (from uniform to pure neutron matter): a new param-
eter, namely the maximum value of the transferred momentum, was introduced among the Skyrme
forces parameters. In a finite system, like the nucleus, because of the absence of translational in-
variance, the transferred momentum is not defined, opposite to what happens in the infinite system.
However, we can write the velocity-independent part of the Skyrme interaction as
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and we use this new truncated interaction vλλ
′

(r′, r) to compute the matrix elements relevant for the
total energy of the system or the single particle energy, both computed at the second order on the
many body theory. The analysis of the results are currently undergoing.

4 Conclusion

We have seen that beyond mean-field correlations are really important to overcome some intrinsic
limitations of the SCMF approach in nuclei. A completely microscopic model, based on the idea that
single particle states can couple to collective degrees of freedom (the so-called PVC), was recently
developed. This model has been so far applied to single particle observables, like the self-energy, and,
as reported here, to inclusive (strength and energy) and exclusive (γ decay) properties of the GRs. The
results obtained for the strength function of the IVGQR and the γ decay of the ISGQR in 208Pb are in
fairly good agreement with the experimental findings.

Anyhow, the employment of interactions fitted at mean-field level in a higher order framework
is the main limitation of these works. Moreover, zero-range forces cause the divergence of beyond
mean-field quantities. We presented here a first attempt to treat this problem in finite systems.
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