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Introduction

In this thesis is proposed a statistical study of the multitype Galton-

Watson trees in order to obtain data on their offspring distribution µ. The

investigation is motivated by some parametric simplified models, based on

particular two-type Galton-Watson trees, that we propose for the biological

process called angiogenesis, i.e. the growth of new blood vessels (Figure 1).

This process may occur both in the healthy body, i.e. for curing wounds, and

in the sick body. The normal, healthy body keeps a balance of angiogenesis

and controls it by some angiogenesis-stimulating growth factors and some

angiogenesis inhibitors; conversely, in serious diseases states, the body looses

control over angiogenesis.

Figure 1: Angiogenesis on a rat cornea (from [9]).

In particular, when new blood vessels grow excessively or insufficiently,

i



Introduction ii

angiogenesis-dependent diseases occur and moreover angiogenesis is very

widespread studied in relation with the growth of tumours.

The basic idea of the models proposed is to simplify the structure of a blood

vessel as union of its head and the body of the vessel itself. Moreover, the

body of the vessel is conceived as union of essential units, all with the same

size. Then, we apply the structure of certain two-type Galton-Watson trees

to the growth of a blood vessel, where the two-type particles are the heads

and the essential units of a blood vessel respectively.

Much has been done in literature concerning models of random trees and

multitype Galton-Watson trees, while the statistical point of view has been

less studied. The random trees are recently used for statistical mechanics

and mathematical physics models, for instance in [18], [22] a ferromagnetic

model is studied on locally tree-like random graphs. For more details on the

random graphs see [21]. In [19] and [20] are studied broadcasting problems on

random trees and there are found relations with some relevant mathematical

physics topics. Regarding the multitype Galton-Watson trees, they have

been used to achieve the Dawson-Watanabe superprocesses, that are called

more simply superprocesses (see for more details [5]). For instance, from the

one-type Galton-Watson trees, J.-F. Le Gall has defined the superprocesses

and deduced also a tree structure for them (see [1] and [2]). Moreover, in

reference to the subject of our models, the angiogenic system has been studied

profusely from the mathematical point of view and so several models have

been proposed for the growth of the blood vessels. For example, in the works

[14], [15] of M.J. Plank and B.D. Sleeman a blood vessel keeps its biological

structure and the growth is due to the movement of the endothelial cells (EC),

which composed the blood vessel. In the above mentioned works, a reinforced

random walk model and a circular random walk model are proposed for the

movement of the EC. Moreover, in the work [9] of V. Capasso and D. Morale

a blood vessel keeps its biological structure and, similarly to our models,

the vessels are modelled as the trajectories developed by the heads, while

the behavior of the heads of the vessels is modelled as a stochastic marked
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counting process.

Since our statistical study arises from angiogenesis models based on two-

type Galton-Watson trees, the main interest is oriented towards the contour

process, Cτ (s), related to a multitype Galton-Watson tree τ and introduced

by J.-F. Le Gall (see for instance [2]). In particular, we are interested in

the period of Cτ (s) and it can be defined as 2‖τ‖, where ‖τ‖ is the number

of edges of τ . Indeed, in our models such a period gives information on

the finiteness a.s. of an angiogenic process starting with the head of a new

blood vessel, i.e. a type 1 particle. In accordance with the literature of

the Galton-Watson processes, one main tool that we have proved and used

to investigate the statistical properties of the period of a contour process

related to a multitype Galton-Watson tree τi, which starts with a type i

particle, is the following characterization of the moment-generating function

of the period through the offspring distribution µ(i) of the tree τi, for every

i = 1, . . . , r,

Fi (s) = E
[
e2‖τi‖·s

]
=
∑
α∈Nr

(
µ(i) (α) · e2s|α| ·

r∏
k=1

Fk (s)αk

)
, (1)

where r is the number of the types of the particles and |α| = α1 + . . .+ αr.

In particular, the use of a certain scaling in the structure of the trees makes

the periods of the related contour processes triangular arrays, for which is

possible to apply a CLT that has a central rôle in the statistical study of the

parameters of the offspring distribution of the trees. Thus, from the equation

(1), here we achieve the following relevant result of weak convergence

n
1
2

[
n∑
j=1

(
Y

(i)
n,j

nα+1

)
− Ai +

o (nα+1)

nα+1

]
d−→ N (0, Bi) , n→ +∞, (2)

where Y
(i)
n,1, Y

(i)
n,2, . . . , Y

(i)
n,n are n i.i.d. copies of Y

(i)
n , which is the period of the

contour process of a multitype Galton-Watson tree starting from a type i

particle at the n-th step of a scaling deduced by the Feller’s one and with
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a certain offspring distribution µn. The parameters Ai ∈ R and Bi > 0

concern the expected value and the variance of Y
(i)
n , for every i = 1, . . . , r.

Moreover, to improve and simplify our models, we also have treated two-

type Galton-Watson trees with a particular offspring distribution µ such

that a type i particle may produce no particles, one particle of type i or two

particles, the first of type 1 and the second of type 2, for every i = 1, 2.

All these kind of trees are called full binary trees with survivals and, in the

particular case when a particle may produce none or two particles, we talk

about full binary trees. We have conducted a combinatorial investigation

on the full binary trees with survivals and a relevant family of integers has

appeared, the Narayana numbers N (k, l) (see for more details [12]),

N (k, l) =
1

k

(
k

l

)(
k

l − 1

)
, k ≥ 1, l = 1, . . . , k.

The Narayana numbers are a sort of generalization of the Catalan numbers

(see [10]), and from them we have obtained, in a non linear way and in the

a.s. finite case, the likelihood of the number of left and right vertices having

exactly two children,

L (P,Q|n,m) = N (n+m,m+ 1) · Pm+1 (1− P )nQn (1−Q)m , (3)

where n ≥ 1,m ≥ 0 are the number of the left and right vertices respectively,

and the paramters P,Q ∈ (0, 1) depend only on the offspring distribution

µ of the tree. Moreover, through the Narayana numbers, we have outlined

an interesting rappresentation of the full binary trees as two-dimensional

decompositions of the integers (see for more details [11]).

Now we present the structure of the thesis. In Chapter 1 we recall the

fundamental theory of the multitype Galton-Watson processes and the mul-

titype Galton-Watson trees. Then we give also a brief introduction to the

superprocesses. We generalize and use the scaling limit which forms a super-

process in Chapter 5. Chapter 2 presents some relevant theoretical results

on the period of the contour process related to the multitype Galton-Watson
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trees, like the fundamental equation (1), the proof of the weak convergence

illustred in (2), and the results on the full binary trees and the full binary

trees with survivals, one of which is the likelihood (3). In Chapter 3 we in-

troduce three stochastic models for the growth of the blood vessels, that is

the reinforecd random walk and the circular random walk models used by

M.J. Plank and B.D. Sleeman in [14] and [15], and the model proposed by

V. Capasso and D. Morale in [9]. Our first model is presented in Chapter 4.

It is based on particular two-type Galton-Watson processes, both in discrete

and in continuous time. Then, in Chapter 5 we present other models based

on the full binary trees and on the full binary trees with survivals introduced

above. Eventually, we apply the scaling of the particles system related to the

convergence (2) on the full binary trees with survivals model, that we will

call scaling model.
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Chapter 1

Galton-Watson trees and

Superprocesses

In this chapter we recall some basic notions about the multytipe Galton-

Watson processes both in discrete and in continuous time, the multitype

Galton-Watson trees and the construction of the superprocesses. In par-

ticular, in Section 1.1 we see the fundamental definitions and properties of

the Galton-Watson processes as they are presented in the classical literature

([13]). In Section 1.2 we introduce the multitype Galton-Watson trees, i.e.

the genealogical structure for the multitype Galton-Watson processes in the

discrete time. At first we see the defintions and the construction of the mul-

titype trees and then we consider the multitype Galton-Watson trees. For

Section 1.2 we refer to [8]. Further details on random trees and their appli-

cations are also presented by J.-F. Le Gall ([3]), and J.-F. Le Gall and G.

Miermont ([4]). Finally, in Section 1.3 we give a brief explanation of super-

processes, indeed their construction is due to a scaling from which we prove

a relevant weak-convergence theorem in Chapter 2. For the superprocesses

we will refer to the work of J.-F. Le Gall, [1], and L.G. Gorostiza - J.A.

Lopez-Mambela, [6].

1
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1.1 Multitype Galton-Watson processes

In this Section we report and use notations from the classical work about

the branching processes by K.B. Athreya - P.E. Ney (see [13, Chapter V, Sec.

1, 2 and 3 for Section 1.1.1, and Chapter V, Sec. 7 for Section 1.1.2]).

1.1.1 Discrete time case

Let r ≥ 1, and consider a r-type system of particles which have unit-

time lifetimes and every unit-time interval is called generation. At each

generation each particle makes children (i.e. offspring) according to its own

type. A multitype Galton-Watson process in discrete time counts the number

of particles, for each type, in each generation. As shown in [13, Chapter

V], it is well known that to completely define the offspring of the particles

we need a vector of r generating function. The j-th genereting function,

f (j), determines the offspring distribution of particles produced by a type j

particle. So, ∀ j = 1, . . . , r, we let

f (j) (s1, . . . , sr) =
∑

i1,...,ir≥0

p(j) (i1, . . . , ir) s
i1
1 · · · sirr , 0 ≤ sj ≤ 1, (1.1)

where p(j) (i1, . . . , ir) is the probability that a type j particle produces i1

particles of type 1,. . . , ir particles of type r, that is p(j) (i1, . . . , ir) is called

the offspring distribution of the type j particles. To lighten the notations,

we adopt the vectorial form

i = (i1, . . . , ir) ∈ Nr,

p (i) =
(
p(1) (i) , . . . , p(r) (i)

)
, with

∑
i∈Nr

p(j) (i) = 1, ∀ j = 1, . . . , r,

f (s) =
(
f (1) (s) , . . . , f (r) (s)

)
,
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and so we may write (1.1) in the following way

f (s) =
∑
i∈Nr

p (i) s i , s ∈ [0, 1]r . (1.2)

Now we give the definition of a multitype Galton-Watson process in discrete

time.

Definition 1.1.1. A process {Z n : N → Nr, n ≥ 0} is a r-type Galton-

Watson process if it is a Markov process , with transition function probabil-

ities

P (i , j ) = P (Z n+1 = j |Z n = i) = coefficient of s j in [f (s)]i , i , j ∈ Nr,

where i = (i1, . . . , ir) and

[f (s)]i =

(
i1∏
k=1

f (1) (s)

)
. . .

(
ir∏
k=1

f (r) (s)

)
=
(
f (1) (s)

)i1 · · · (f (r) (s)
)ir
.

When the process is initiated in state j , we will denote it by Z(j )
n and in

vectorial form we write

Zn = (Zn,1, . . . , Zn,r) and Z(j )
n =

(
Z

(j )
n,1, . . . , Z

(j )
n,r

)
,

where Z
(j )
n,k is the number of type k particles in the n-th generation for a

process with Z 0 = j . In particular when j = e i we write Z(ei)
n = Z(i)

n .

Remark 1. Note that, given the offspring distribution p (i), the whole process

Z n, or Z (j )
n , is completely described.

Remark 2. The process {Z(i)
n ;n ≥ 0} is equipped with the additive property,

that is {Z(i)
n ;n ≥ 0} is the sum of i1 + . . .+ ir independet process, ik of which

are initiated in state ek, k = 1, . . . , r.

Remark 3. Although most of the studies of the branching process are directly

in terms of the generating function f (s), it is important the probabilistic

structure underlying this analytical setting. From classic results (see [13,
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Chapter I, pag.3 and Chapter V, pag. 184]) we can make reference to the

basic probability space (Ω,F,Pj) for the process Z (j)
n (ω) : N × Ω → Nr, we

shall leave out ω throughout. Here Ω is the space of trees that begin from a

type j particle, i.e. ω ∈ Ω represents the generation number, the ancestors,

and the offspring of each type particle of a process initiated from a type j

particle. F is generated by the cylinder sets of Ω, and Pj is the probability

measure on (Ω,F) when the process is initiated with Z 0 = ej, j = 1, . . . , r.

As shown in [13, Chapter V], exists a r × r matrix M= {mjk; j, k =

1, . . . , r} such that

E [Z n|Z 0] = Z 0M
n (1.3)

where mjk is the expected number of type k particles from a type j particle

in one generation. So, by the definitions of the probabilities p(j) (i1, . . . , ir)

and the generating functions f (j) (s1, . . . , sr), we have

mjk =
∑

i1,...,ir≥0

p(j) (i1, . . . , ir) ik =
∂f (j) (s)

∂sk

∣∣∣∣
s=1

.

If M is stricly positive, then the process {Z n;n = 0, 1, . . .} is called positive

regular.

Moreover, if f (s) = MsT then each particle has exactly one-child offspring,

and so the branching process is called singular process. We assume nonsin-

gularity throughout.

Another important quantity to introduce is the extinction probability from

a type j particle

q(j) = P
(
Z (j)
n = 0 for some n

)
(1.4)

and we will denote q = (q1, . . . , qr).

Now we report the most important theorem about the extinction probability

(see [13, Chapter V, pag. 186, Theorem 2])

Theorem 1.1.1. Let {Zn;n = 0, 1, . . .} be an r-type Galton-Watson positive

regular and nonsingular process, and let ρ be the maximum eigenvalue of the

matrix M. Then
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(i) if ρ ≤ 1 then q = 1. If ρ > 1 then q < 1.

(ii) the only solution of f (s) = s in [0, 1[r is q.

Moreover, we shall call the process supercritical, critical, or subcritical ac-

cording as ρ >, = or < 1.

Remark 4. Since f (1) = 1, if the equation f (s) = s has no solution in

[0, 1[r, then q = 1.

1.1.2 Continuous time case

As in Section 1.1.1, here we consider a finite number, r, of particle types.

In continuous time case the particles have random lifetimes and so the con-

cept of generations does not make sense. According to the offspring distribu-

tion of the particles, a continuous time r-type Galton-Watson process counts

the number of particles, for each type, at time t ≥ 0. Moreover, in reference

to [13, Chapter V, Sec. 7] the lifetimes of the particles are exponentially dis-

tribuited and the process is a continuous time Markov process on Nr.

Let Zj (t) be the number of type j particles at time t, and set

Z (t) = (Z1 (t) , . . . , Zr (t)) : R+ → Nr.

Like in discrete time case, we can refer to the basic probability space (Ω,F,P)

for the process Z (t, ω) : R+×Ω→ Nr, we shall leave out ω throughout, and

Z (t) is equipped with the additive property seen in the previous section.

Now we give the definition of the continuous time Galton-Watson branching

process

Definition 1.1.2. A stochastic process {Z (t) ; t ≥ 0} is called r-dimensional

continuous Markov branching process (i.e. r-type continuous time Galton-

Watson branching process) if:

(i) its state space is Nr;



1.1 Multitype Galton-Watson processes 6

(ii) it is a stationary strong Markov process with respect to the filtration

Ft = σ{{Z (s) ; s ≤ t};

(iii) the transition function probabilities

P (i , j ; t) = P (Z (t+ h) = j |Z (h) = i) ,∀ h ≥ 0, t > 0

satisfy ∑
j∈Nr

P (i , j ; t) s j =
r∏

k=1

[∑
j∈Nr

P (ek, j ; t) s j

]ik
,

∀ i ∈ Nr and s ∈ [0, 1]r.

Remark 5. As in the discrete case, {Z (j ) (t) ; t ≥ 0} represents a process

initiated in the state j ; and when j = e i we write Z (ei) (t) ≡ Z (i) (t).

In accordance to [13, Chapter V, pag.200-201], we know that the transi-

tion probabilities in (iii) are solutions of the Kolmogorv forward and back-

ward equations, whose parameters are

a = (a1, . . . , ar) ∈ Rr
+, (1.5)

where ai is the strictly positive parameter of the exponential distribution of

lifetime of the type i particles and

p (j ) =
(
p(1) (j ) , . . . , p(r) (j )

)
, (1.6)

with

∀ i = 1, . . . , r,
∑
j∈Nr

p(i) (j ) = 1 and j = (j1, . . . , jr) ∈ Nr.

where p(i) (j ) is the probability that a type i particle produces j1 particles of

type 1,..., jr particles of type r at the end of its lifetime, and p (j ) is called

the offspring distribution.

In other words, the process Z (t) is completely determinated by the param-
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eters (1.5) and (1.6).

Remark 6. From the theory (see [13], Chapter V, pag.201) we know that a

sufficient condition to be sure that a.s. there cannot be an infinite number

of particles produced in a finite time is the following

∂f (i) (s)

∂sj

∣∣∣∣
s=1

<∞, ∀ i, j = 1, . . . , r,

where, as in the discrete case,

f (i) (s) =
∑
j∈Nr

p(i) (j ) s j , s ∈ [0, 1]r .

Then, from Remark 6, we know that the expected value of j type particles

produced by a single type i particle after an interval time t is finite a.s., and

so is well defined the mean matrix M (t) , t ≥ 0 (the analogous of the matrix

M n in (1.3))

M (t) = {mij (t) ; i, j = 1, . . . , r}, (1.7)

where

mij (t) := E
[
Z

(i)
j (t)

]
<∞.

It is well known that {M (t) ; t ≥ 0} is a semigroup ([13], Chapter V, pag.202)

and this implies the existence of a matrix A = {aij; i, j = 1, . . . , r}, called

the infinitesimal generator of {M (t) ; t ≥ 0}, such that

M (t) ≡ eAt =
+∞∑
k=0

tkAk

k!
, (1.8)

where

aij = ai

(
∂f (i) (s)

∂sj

∣∣∣∣
s=1

− δij
)
, ∀ i, j = 1, . . . , r. (1.9)

From classic results (see [13], chapter V, pag.202-203) we know that the

matrix A has r eigenvalues, λ1, . . . , λr, which can be arranged in the following
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way

λ1 > Re λ2 ≥ Re λ3 ≥ . . . ≥ Re λr,

and, likewise the discrete case (Theorem 1.1.1), we shall call the process Z (t)

supercritical, critical, or subcritical according as λ1 >, = or < 0.

Finally, as in Section 1.1.1, from [13, equation (25), Chapter 5, Section 7] we

have that the extinction probability vector q =
(
q(1), q(2), . . . , q(r)

)
, where

q(i) = P
(
Z (i) (t) = 0, for some t

)
,

is the unique solution of the equation

u (s) = 0, s ∈ [0, 1[r ,

where

u (s) =
(
u(1) (s) , . . . , u(r) (s)

)
=

=
(
a1

(
f (1) (s)− s1

)
, . . . , ar

(
f (r) (s)− sr

))
.

Remark 7. Remark 4 holds also in this case.

1.2 Multitype Galton-Watson trees

In this Section we add a genealogical structure to the discrete-time mul-

titype branching processes. We refer to G. Miermont [8, Sec. 1.3, 1.4] for

the notions of the multitype trees and the multitype Galton-Watson trees.

A complete dissertation and more details on the Galton-Watson trees can be

found in [23].

1.2.1 Multitype trees

For n ≥ 0, let U be the infinite-regular tree

U =
⋃
n≥0

Nn,
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where if u ∈ U , then u = (u1, . . . , un) ∈ Nn, ui ∈ N, i = 1, . . . , n. We use

the convention N0 = {∅} throughout.

For u = (u1, . . . , un) , v = (v1, . . . , vm) ∈ U , we let

uv = (u1, . . . , un, v1, . . . , vm) ∈ U

be their concatenation and |u | = n, |v | = m their length (with the convention

|∅| = 0).

Let u ∈ U and A ⊆ U , we let

uA = {uv |v ∈ A},

and say that u is a prefix of w if

w ∈ uU,

and we write u ` w .

Now we give the definition of a planar tree

Definition 1.2.1 (Planar tree). A planar tree is a finite subset τ of U such

that

(i) ∅ ∈ τ , and it is called the root of τ ,

(ii) ∀ u ∈ U and i ∈ N, if ui ∈ τ ⇒ u ∈ τ , and uj ∈ τ for every 1 ≤ j ≤ i.

Moreover, an element u ∈ τ is called a vertex of τ , and ‖τ‖ is the number

of edges of the tree τ .

We let T be the set of all planar trees, which we refer to as trees in the

sequel. Now we give some important definitions about trees.

Definition 1.2.2 (Number of children of a vertex). Let τ ∈ T and u ∈ τ ,

the number

cτ (u) = max{i ∈ N+|ui ∈ τ}, with u0 = u ,
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is the number of children of u .

Definition 1.2.3 (Leaves). Let τ ∈ T then

{u ∈ τ |cτ (u) = 0}

is the set of the leaves of τ .

Definition 1.2.4 (Ancestors). Let τ ∈ T and u , v ∈ τ , then u is an ancestor

of v if u ` v .

Any tree τ ∈ T is endowed with the depth-first order,

Definition 1.2.5 (Depth-first order ≺). Let τ ∈ T and u , v ∈ τ , then

u ≺ v if u ` v or u = wu
′
, v = wv

′
,where u

′

1 < v
′

1.

Now we show an example of the depth-first order for a planar tree, in

which we use the left-right notation to label the children of each vertex from

the holder one to the younger one.

∅

1

11 12

121

2

21 22

221 222

23

Figure 1.1: A planar tree.

Example 1.2.1. The tree τ ∈ T in Figure 1.1 can be written according to

the depth-first order in the following way

τ = {∅, 1, 11, 12, 121, 2, 21, 22, 221, 222, 23}.
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For instance, we write 2 ≺ 221 because if we denote u = 2 and v = 221,

then we have that

v = u21⇒ v ∈ uU,

so u is a prefix of v , i.e. u ` v and, by the Defintion 1.2.5, u ≺ v . Moreover,

we write 12 ≺ 221 because if we denote u = 12 and v = 221, then we have

that

u = wu
′

and v = wv
′
,

where

w = ∅, u ′ = u = 12, v
′
= v = 221,

and so

u
′

1 = 1 < v
′

1 = 2,

and, by the Defintion 1.2.5, u ≺ v .

Remark 8. From now on, we use the left-right order to represent the children

of each vertex from the holder one to the younger one.

Now we are able to introduce the r-type planar trees, or simply the r-type

trees.

Definition 1.2.6 (r-type planar trees). Let r ≥ 1, then a r-type planar tree

is a pair (τ, eτ ), where

1. τ ∈ T ,

2. eτ : τ −→ {1, . . . , r}, i.e. ∀ u ∈ τ, eτ (u) ∈ {1, . . . , r} is called the

type of the vertex u .

Moreover, let T (r) be the set of r-type trees and we let

T
(r)
i = {τ ∈ T (r)|eτ (∅) = i} ∀ i ∈ {1, . . . , r}.

Now the purpose is to count the children of a vertex, according to the

type. We use the following notation {1, . . . , r} = [r]. To do this, at first we

define the counter map.
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Definition 1.2.7 (Counter map). Let r ≥ 1 and

Wr =
⋃
n≥0

[r]n ,

be the set of finite, possibly empty, [r]-valued sequences, then the counter

map, p : Wr −→ Nr, is such that

p (w) = (p1 (w) , . . . , pr (w)) ∀ w ∈ Wr,

where pi (w) is the number of i in w , ∀ i = 1, . . . , r.

So, ∀ (τ, eτ ) ∈ T (r) and ∀ u ∈ τ we can define the following vector,

w τ (u) = (eτ (uj) , 1 ≤ j ≤ cτ (u)) ∈ Wr,

and then

p (w τ (u)) ∈ Nr

is the vector of the number of children of u for each type.

Remark 9. Note that if u is a leave (i.e. cτ (u) = 0), then w τ (u) = {∅} and

p (w τ (u)) = 0 ∈ Nr.

Remark 10. Note that the graphical representation of a multitype tree is the

same of a one-type planar tree (Figure 1.1). Indeed, neglecting the type of

the particles, it may be considered as one-type tree. Moreover, the set of the

vertices of a multitype tree is ordered according to the first-depth order.

1.2.2 Galton-Watson trees

In this section we treat the multitype planar trees where each vertex has

a number of children of certain type according to the offspring distribution.

Definition 1.2.8 (Offspring distribution). Let r ≥ 1 and ξ =
(
ξ(1), . . . , ξ(r)

)
be a family of probabilities on the σ-algebra σ (Wr).
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We say that the family of probabilities

µ = p ∗ ξ =
(
p ∗ ξ(1), . . . ,p ∗ ξ(r)

)
,

is an offspring distribution on the σ-algebra σ (N r)

Wr
p //

ξ
��

Nr

µ=p∗ξ}}zz
zz
zz
zz
z

[0, 1]

where p is the counter map defined in Definition 1.2.7 and p ∗ ξ(i) ≡
ξ(i) ◦ p−1 (i.e. p ∗ ξ(i) is the push-forward of ξ(i) by p). Now, we build a

distribution on T
(r)
i , ∀ i ∈ [r], such that

1. different vertices have independent offspring

2. type j vertices have a set of children with types given by a sequence

w ∈ Wr with probability ξ(j) (w).

To do this, ∀ j ∈ [r] and ∀ u ∈ U , let C u ,j = (Cu ,j (l) , 1 ≤ l ≤ |C u ,j|) be a

family of independent random variables , such that C u ,j has law ξ(j). Now,

recursively, we construct a subset τ ⊂ U and a mark-map eτ : τ → [r] in the

following way

1. ∅ ∈ τ

2. eτ (∅) = i

3. if u ∈ τ , e (u) = j, then, with probability ξ(j) (C u ,j), u l ∈ τ if and

only if 1 ≤ l ≤ |C u ,j| and then e (u l) = Cu ,j (l).

A pair (τ, eτ ) ∈ T (r) thus defined is called a Galton-Watson multitype trees.

Remark 11. It is easy to check that the subset τ ⊂ U has the properties of a

planar tree (it might be infinite). Moreover, from the construction we have

that

Z n (τ) = (#{u ∈ τ : |u | = n, e (u) = i}, i ∈ [r]) , n ≥ 0, (1.10)
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is a multitype Galton-Watson process (with discrete time) with offspring

distribution µ = p ∗ ξ.

From now on, we call µ-GW tree a Galton-Watson multitype tree that

induces a multitype Galton-Watson process, in discrete time, with offspring

distribution µ = p ∗ ξ.

1.3 Superprocesses

A part of our statistical results in Chapter 2 is related to a scaling limit

from which the superprocesses arise. In this Section we briefly introduce both

the one-type and the multi-type superprocesses. In particular, in Section

1.3.1 we see how J.-F. Le Gall deduce the one-type superprocesses (we refer

to [1, Sec. 1.2, 1.3 and 2.1]). In Section 1.3.2 we introduce the multitype

superprocesses and we refer to L.G. Gorostiza - J.A. Lopez-Mimbela ([6, Sec.

3 and 4]). Because our interest is focused on the scaling limit, we refer to

the above mentioned works for further details.

1.3.1 One type superprocesses

We start with the definition of spatial branching processes. A spatial

branching process is a combination of a branching process with a spatial mo-

tion, which is usually a E-valued Markov process W , where E is a Polish

space. In the discrete-time case, the branching process is a Galton-Watson

process and so the particles alive at time (generation) n move from time

n to time n + 1 according to the law of W . At time n + 1 the new born

particles start from the final position of they parents, and so on. In this

section we show the approximation of the continuous-state spatial branch-

ing process. We begin introducing the continuous-state branching processes

(CSBP). A CSBP is the continuous-time analogue of the Galton-Watson pro-

cess, i.e. a CSBP describes the behavior in continuous time of a particles sys-

tem with values in R+. Now consider a sequence of Galton-Watson processes
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(
Z

(h)
n , n ≥ 0

)
h≥1

, with initial value zh and offspring distribution ph. We know

from literature (see [1]) that if there exists a sequence ah ↗∞, h→∞, such

that the scaled process (
1

ah
Z

(h)
bhtc, t ≥ 0

)
(1.11)

converge to a process (Yt, t ≥ 0), at least in the sense of weak convergence of

the finite-dimensional marginals, then Y must be a continuous-state branch-

ing process (CSBP). The process in (1.11) is called the scaled process at the

step h, and moreover, at the h-th step of the scaling each particles has “mass”

equal to 1/ah.

A very interesting case is when ph = p, ∀ h, with
∑
n · p (n) = 1. Then

the convergence above holds with ah = h and h−1zh −→ x ≥ 0, and this

is called the Feller approximation for banching processes. Now we show

an approximation method to construct a continuous-state spatial branch-

ing process. Like in (1.11), consider a sequence of Galton-Watson process(
Z

(h)
n , n ≥ 0

)
h≥1

such that

(
1

ah
Z

(h)
bhtc, t ≥ 0

)
f.d.−→ (Yt, t ≥ 0) , (1.12)

where (Yt, t ≥ 0) is a CSBP.

Then, if Z
(h)
0 = zh, we consider zh points xh1 , . . . , x

h
zh

in the space E, and

we assume that the zh initial particles start respectively at xh1 , . . . , x
h
zh

and

then move according to the law of W between times t = 0 and t = 1/h. At

time t = 1/h each particles is replaced by its children, which also move from

t = 1/h to t = 2/h according to the law of W , indipendently of each other,

and so on. Then, for every t ≥ 0 consider ξh,it the position in the space E

of the i-th particle alive at time t, i = 1, . . . , Z
(h)
bhtc, and the random measure

N
(h)
t

N
(h)
t =

1

ah

Z
(h)
bhtc∑
i=1

δξh,it
. (1.13)
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If Mf (E) is the space of the finite measures on E, then N
(h)
t ∈ Mf (E),

which is equipped with the topology of weak convergence. From the (1.13),

we have that the total mass of N
(h)
t is

N
(h)
t (E) =

1

ah
Z

(h)
bhtc,

which, from (1.12), converges to a CSBP. Now, if we suppose that

N
(h)
0 =

1

ah

zh∑
i=1

δxhi −→ θ ∈Mf (E) , h→∞,

and that the spatial motion W has certain regularity properties (satisfied

if W is the Brownian motion in Rd), then exists an Mf (E)-valued Markov

process Nt such that(
N

(h)
t , t ≥ 0

)
f.d.−→ (Nt, t ≥ 0) , h→∞,

and the the process (Nt, t ≥ 0) is called (ph, ξ)-superprocess. When ξ is the

Browian motion in Rd and we use the Feller approximation, then Nt is called

super-Browian motion.

Remark 12. Note that Z
(1)
0 = Z0. According to the Feller approximation, if

Z
(1)
0 = 1 then N

(1)
0 (E) = 1. Moreover, since the initial mass is conserved in

the scaling, at the h-th step we have that

N
(1)
0 (E) = N

(h)
0 (E) =

1

h
zh. (1.14)

Thus, if Z
(1)
0 = Z0 = 1 then

zh = h,

that is, if the process begins with one particle in x ∈ Rd, then at the h-th

step of the scaling, in t = 0, we have h particles in x, each of which has

“mass” 1/h.
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1.3.2 Multitype superprocesses

Let r > 1 and, with same settings of the system particles of the previous

Section, consider a sequence of multitype Galton-Watson process(
Z (h)
n , n ≥ 0

)
,

with initial value z h and offspring distribution ph such that
m
h,(1)
i (k) = δik + h−1 · dhik, with lim

h→∞
dhik = dik,

lim
h→∞

m
h,(2)
i (k, l) = m

(2)
i (k, l) ,

sup
h≥1

m
h,(3)
i (k, l, n) <∞, i, k, l, n = 1, . . . , r,

(1.15)

where 

m
h,(1)
i (k) =

∑
j∈Nr

p
(i)
h (j ) jk,

m
h,(2)
i (k, l) =

∑
j∈Nr

p
(i)
h (j ) jk (jl − δlk) ,

m
h,(3)
i (k, l, n) =

∑
j∈Nr

p
(i)
h (j ) jk (jl − δlk) (jn − δnk − δnl)

Consider the process (
1

h
Z

(h)
bhtc, t ≥ 0

)
,

it is the scaled process at the step h, in which every particle has mass equal

to 1/h. Now we define the following random measures,

N
(h)
t =

(
N

(h)
t,1 , . . . , N

(h)
t,r

)
,

with

N
(h)
t,i =

1

h

Zhbhtc,i∑
l=1

δξh,lt
, ∀i = 1, . . . , r , (1.16)
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where ξh,lt is the position in Rd of the l-th particle of type i alive at time t,

according to the law of the spatial motion of type i particles, Wi. Moreover,

suppose that

N
(h)
0 −→ θ ∈Mf

(
Rd
)r
,

then, under certain regularity proporties of the spatial motions Wi, we know,

from the main result proved in L.G. Gorostiza - J.A. Lopez-Mimbela [6]

(Theorem 4.1, (a), Sec. 4), that

N
(h)
t −→ N t,

where N t is called multitype superprocess and it is also the unique continuous

solution of a martingale problem (L.G. Gorostiza - J.A. Lopez-Mimbela, [6],

Theorem 4.1, (b), Sec. 4) and it can be characterized by its Laplace functional

(L.G. Gorostiza - J.A. Lopez-Mimbela, [6], Theorem 4.1, (c), Sec. 4)

Remark 13. Note that the (1.14) holds also for the multitype Galton-Watson

processes, i.e. if Z
(1)
0 = e i then z h = h ·e i, ∀i = 1, . . . , r, and all the h initial

particles have “mass” equal to 1/h.



Chapter 2

Theoretical results on µ-GW

trees and scaling limit

weak-convergence

In this chapter we propose our statistical study of the µ-GW trees and

we introduce our results concerning the period of the contour process of

such trees, the scaling limit of suitable scaled periods and the full binary

trees with survivals and the full binary trees. In Section 2.1 we recall the

important notion of the contour process of the one-type Galton-Watson trees

and, because we are interested in a scaling limit in the multitype case, we give

the main example on the scaling limits of the contuor process, i.e. the Aldous’

Theorem. We refer to J.-F. Le Gall ([2]) both for the defintion of the contour

process related to the one-type Galton-Watson trees and for the Aldous’

Theorem. Then, we apply the idea of the contour process also to the µ-GW

trees and we deduce some important results about the period of the contour

process. In particular, in accordance with the literature of the Galton-Watson

processes, we give an iterative definition of the period of the contour process

and there are shown results on its moment-generating function and relations

between it and the extinction probability of a µ-GW tree. Then, from Feller’s

idea (see Section 1.3), in Section 2.2 we present a scaling for the µ-GW

19
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trees. In particular, at the step n of the scaling we consider n µn-GW trees

accelerated (µn is the offspring distribution at the step n), and we prove the

weak convergence of the total period of the contour processes of the n trees

for n→∞. To prove that, we essentially apply the well known Lyapounovs

Theorem to a particular triangular arrays family, that is a sequence of suitable

scaled periods of contour process of the µn-GW trees at the step n of the

scaling. For the Lyapounovs Theorem on triangular arrays we refer to [24,

Section 27], and for the scaling adopted used in the proof we refer to [5,

Chapter 3, Sec. 3.2]. Then, in Section 2.3 we consider two particular kind of

multitype Galton-Watson trees, the full binary trees and the full binary trees

with survivals, and we see interesting relations with the Narayana numbers

(see [12]) and the two-dimensional decompositions of the integers (see [11]

and [10]). In particular, we show relevant statistical results, as the maximum-

likelihood estimator of parameters of a particular distribution related to the

full binary trees and the estimation of the probability to have full binary

trees still alive at the generation M ≥ 1.

2.1 On the period of the contour process of

the µ-GW trees

Let (τ, eτ ) ∈ T (r)
i and consider the following order for the offspring of a

vertex, according to the type.



2.1 On the period of the contour process of the µ-GW trees 21

Definition 2.1.1 (Type-ordering offspring). Let (τ, eτ ) ∈ T (r)
i . Then

e (u l) = 1, 1 ≤ l ≤ p1 (w τ (u))

· · ·

e (u l) = k,
k−1∑
i=1

pi (w τ (u)) + 1 ≤ l ≤
k∑
i=1

pi (w τ (u))

· · ·

e (u l) = r,

r−1∑
i=1

pi (w τ (u)) + 1 ≤ l ≤ cτ (u) ,

(2.1)

where p = (p1, . . . , pr) is the counter map introduced in Chapter 1 and u ∈ τ .

Note that if pj (w τ (u)) = 0 for some j ∈ [r], then {u l ∈ τ |e (u l) = j} =

{∅}.

Remark 14. In other words, we order the offspring of a vertex u ∈ τ , with

τ ∈ (τ, eτ ), from the older one to the younger one (left-right order) according

to p (w τ (u))

From now on, a µ-GW tree is equipped with the Type-ordering offspring.

Now, remembering that, in the graphical point of view, a multitype tree is

like a one-type planar tree (Figure 1.1), we can derive the contour process

Cτ (s) : [0, 2‖τ‖] −→ N

of (τ, eτ ) ∈ T
(r)
i (Figure 2.1). We recall, from J.-F. Le Gall ([2, Sec. 1.1]),

that the contour process of a one-type tree is easy to visualize: imagine a

particle on the root of the planar tree at time 0 and then it moves on the

tree according to the following rules. The particle jumps from a vertex to

its first not yet visited child, if any, and if none to the father of the vertex.

Eventually, the particle comes back to the root of the tree after having visited

all the vertices of the tree. The value Cτ (n) at the time n is the generation of

the vertex visited at the step n in this evolution. Because we are interested

in the scaling limit of the period of the contuor process of a µ-GW tree,
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Figure 2.1: A planar tree (a) and its contour process (b)

consider, as an important example, the Aldous’ Theorem about the scaling

limit of the contour function related to a one-type Galton-Watson tree ([2])

Theorem 2.1.1 (Aldous’ Theorem). Let τp a one-type Galton-Watson tree,

with offspring distribution µ, conditioned to have p edges. Then

(
1√
2p

Cτp (2ps)

)
0≤s≤1

d−→

(√
2

σ
βs

)
0≤s≤1

, p→∞,

where σ2 = V ar [µ] and (βs, 0 ≤ s ≤ 1) is a normalized Brownian excursion.

Remark 15. Note that ‖τ‖ is a non negative-integer-valued r.v. .
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Now, in the next Theorem we prove an iterative definition of the period

of the contour process Cτ (s) of a µ-GW tree.

Definition 2.1.2 (Number of edges from a vertex of a µ-GW tree). Let

(τ, eτ ) ∈ T (r) be a µ-GW tree. We define

L(j) (u)

the r.v. that represents the number of edges from the vertex u , eτ (u) = j.

Note that

L(i) (∅) = ‖τ‖,

where τ is a µ-GW tree rooted in a type i vertex.

Theorem 2.1.2. Let (τ, eτ ) ∈ T (r) be a µ-GW tree, then, for every u ∈ τ ,

1. ∀ l1, . . . , lr, L(1) (ul1) , . . . , L(r) (ulr) are independent,

2. ∀ l = 1, . . . , pk (Cu,j), L(k) (ul) are i.i.d. and L(k) (ul)
d
= L(k) (∅),

3. ∀ l, k, L(k)(ul) and pk (Cu,j) are independent,

4.

L(j) (u) =
r∑

k=1

pk (Cu,j) +

pk(Cu,j)∑
l=1

L(k) (ul)

 . (2.2)

Proof. Note that, in accordance with the literature of the Galton-Watson

processes, 1, 2 and 3 are verified. In other words, they represent the prop-

erty that different particles have independent offspring in the Galton-Watson

prodesses. 4 can be proved for recursion on the vertices and on the vertices

type.

In the next Theorem we show a characterization of the moment-generating

function of the period of Cτ (s), i.e. of 2L(i) (∅).
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Theorem 2.1.3. ∀i ∈ [r], let Fi (s) = E
[
es·2L

(i)(∅)
]

be the moment-generating

function of 2L(i) (∅), s ∈ R. Then

Fi (s) =
∑
α∈Nr

(
µ(i) (α) · e2s|α| ·

r∏
k=1

Fk (s)αk

)
, with |α| =

r∑
i=1

αi. (2.3)

Proof. Let fk (s) = E
[
es·L

(i)
(∅)
]
. For the law of total probability we have,

fi (s) =
∑
α∈Nr

E
[
exp

(
s · L(i) (∅)

)
|p (C∅,i) = α

]
· µ(i) (α)

(2.2)
=

=
∑
α∈Nr

E

[
exp

(
s ·

r∑
k=1

(
αk +

αk∑
l=1

L(k) (l)

))]
· µ(i) (α) =

=
∑
α∈Nr

µ(i) (α) · E

[
r∏

k=1

exp

(
s ·

(
αk +

αk∑
l=1

L(k) (l)

))]
.

Using 1 of Theorem 2.1.2 we get

fi (s) =
∑
α∈Nr

µ(i) (α) ·
r∏

k=1

E

[
exp

(
s ·

(
αk +

αk∑
l=1

L(k) (l)

))]
=

=
∑
α∈Nr

µ(i) (α) ·
r∏

k=1

(
exp (s · αk)E

[
exp

(
s ·

αk∑
l=1

L(k) (l)

)])
=

=
∑
α∈Nr

µ(i) (α) ·
r∏

k=1

(
exp (s · αk)E

[
αk∏
l=1

exp
(
s · L(k) (l)

)])
.

Now, from 2 of Theorem 2.1.2 we obtain

fi (s) =
∑
α∈Nr

µ(i) (α) ·
r∏

k=1

(
exp (s · αk)

αk∏
l=1

E
[
exp

(
s · L(k) (l)

)])
=

=
∑
α∈Nr

µ(i) (α) ·
r∏

k=1

(
exp (s · αk)

αk∏
l=1

fk (s)

)
=
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=
∑
α∈Nr

µ(i) (α) ·
r∏

k=1

(exp (s · αk) fk (s)αk) =

=
∑
α∈Nr

(
µ(i) (α) · es|α| ·

r∏
k=1

fk (s)αk

)
And so

fi (2s) = Fi (s) =
∑
α∈Nr

(
µ(i) (α) · e2s|α| ·

r∏
k=1

Fk (s)αk

)
.

From Theorem 2.1.3 we can give a property of the moment-generating

function Fi (s) ,∀i ∈ [r].

Lemma 2.1.4. Define Fi (0
−) := lim

s→0−
Fi (s), ∀i ∈ [r], then

Fi
(
0−
)

= P
(
2L(i) (∅) <∞

)
.

Proof. Let i ∈ [r] and {
(
p

(i)
2n

)
n≥0
∪ p

(i)
∞} be the distribution of proba-

bility of 2L(i) (∅), that is p
(i)
2n = P

(
2L(i) (∅) = 2n

)
, n ≥ 0, and p

(i)
∞ =

P
(
2L(i) (∅) =∞

)
, with p(i)

∞ +
∑
n≥0

p
(i)
2n = 1. Then

Fi (s) = E
[
es·2L

(i)(∅)
]

= p(i)
∞ · es·∞ +

∑
n≥0

p
(i)
2n · e2sn, s ∈ R.

So, ∀s < 0 we have

Fi (s) =
∑
n≥0

p
(i)
2n · e2sn, (2.4)

and ∀n ≥ 0 ∣∣e2sn
∣∣ = e2sn ≤ 1.
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Then, from the Dominated Convergence Theorem, we obtain

lim
s→0−

Fi (s) =
∑
n≥0

p
(i)
2n = P

(
2L(i) (∅) <∞

)
.

As corollary of the Lemma 2.1.4, we get a connection between Fi (s) ,∀i ∈
[r], and the extinction probability q (see (1.4), in Section 1.1.1).

Corollary 1. Denote F (0−) =
(
P
(
2L(1) (∅) <∞

)
, . . . ,P

(
2L(r) (∅) <∞

))
,

then

F
(
0−
)

= f
(
F
(
0−
))
,

where f (s) is the generating function (1.2) related to the offspring distribution

µ. Moreover, F (0−) = q.

Proof. Note that ∀i ∈ [r] ,∀s < 0 and from (2.4) we have that

|Fi (s)| = Fi (s) =
∑
n≥0

p
(i)
2n · e2sn ≤

∑
n≥0

p
(i)
2n ≤ 1,

and so∣∣∣∣∣µ(i) (α) · e2s|α| ·
r∏

k=1

Fk (s)αk

∣∣∣∣∣ = µ(i) (α) · e2s|α| ·
r∏

k=1

Fk (s)αk ≤ 1.

Thus, from the Theorem (2.1.3) and the Theorem of Dominated Convergnce,

we have that

Fi
(
0−
)

=
∑
α∈Nr

(
µ(i) (α) ·

r∏
k=1

Fk
(
0−
)αk) , ∀i ∈ [r] ,

and so

F
(
0−
)

= f
(
F
(
0−
))
.
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To proof the second part of the Corollary it’s enough to note that ∀i ∈ [r],

2L(i) (∅) <∞⇐⇒ Z n (τ) = 0 , for some n ≥ 0,

where (τ, eτ ) ∈ T (r)
i is a µ-GW tree, and Z n (τ) is the Galton-Watson process

related to the tree (1.10). Then, by the Lemma 2.1.4 and the defintion of

the extinction probability q (see (1.4), in Section 1.1.1) we get

Fi
(
0−
)

= P
(
2L(i) (∅) <∞

)
= P (Z n (τ) = 0 , for some n ≥ 0) = q(i),

and so

F
(
0−
)

= q .

We consider two interesting examples concerning the results seen above.

Example 2.1.1 (One type geometric distribution). Let be r = 1, p ∈ [0, 1)

and use the notation µ(1) (n) = µn. Consider the geometric offspring distri-

bution 
µn = b · pn−1, n ≥ 1,

µ0 =
1− p− b

1− p
,

(2.5)

with 0 ≤ b ≤ 1− p. Two cases are examined, p = 0 and p ∈ (0, 1).

a) Let p = 0 and so 0 ≤ b ≤ 1. The distribution (2.5) becomes

µ0 = 1− b, µ1 = b

and, from the Theorem 2.1.3, we have that

F (s) =
∑
n≥0

µn
(
e2sF (s)

)n
= (1− b) + e2sF (s) b, (2.6)

and so

(1− b)F
(
0−
)

= 1− b
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Then, from the Lemma 2.1.4, we have

• if 0 ≤ b < 1⇒ P (2L (∅) <∞) = 1,

• if b = 1, from (2.6), we have that F (s) = e2sF (s) and so, for

every s < 0, F (s) = 0 and P (2L (∅) <∞) = 0 (according to the

offspring distribution µ1 = 1).

b) Let p ∈ (0, 1) and so 0 ≤ b ≤ 1− p.

F (s) =
∑
n≥0

µn
(
e2sF (s)

)n
=

=
1− p− b

1− p
+ e2sF (s) b

∑
n≥1

(
e2sF (s) p

)n−1
. (2.7)

For every s < 0, |e2sF (s) p| = e2sF (s) p < 1 and so (2.7) becomes

F (s) =
1− p− b

1− p
+

e2sF (s) b

1− e2sF (s) p
.

Thus we obtain the following equation

p (1− p)F
(
0−
)2

+ F
(
0−
) (
p2 + b− 1

)
+ (1− p− b) = 0

that has two solutions, 1 and
1− p− b
p (1− p)

, and so

• if 0 ≤ b ≤ (1− p)2, then

1− p− b
p (1− p)

≥ 1,

and from the Lemma 2.1.4,

P (2L (∅) <∞) = 1,
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• if (1− p)2 < b ≤ (1− p), then

0 ≤ 1− p− b
p (1− p)

< 1,

and from the Corollary 1 we can use the Theorem 1.1.1 ((ii)) to

conclude that

P (2L (∅) <∞) =
1− p− b
p (1− p)

.

Example 2.1.2 (A particular two type distribution). Let r = 2, p, q ∈ (0, 1).

Consider the following offspring distribution µ =
(
µ(1), µ(2)

)
,µ(1) (0, 0) = p

µ(1) (1, 1) = 1− p
,

µ(2) (0, 0) = q

µ(2) (0, 2) = 1− q
.

Thus, from the Theorem 2.1.3 we haveF1 (s) = (1− p) e4sF1 (s)F2 (s) + p

F2 (s) = q + (1− q) e4sF2 (s)2
,

and so we obtain the systemF1 (0−) = (1− p)F1 (0−)F2 (0−) + p

F2 (0−) = q + (1− q)F2 (0−)
2

,

which has two solutions

a = (1, 1) , b =

(
p (1− q)

1− q (2− p)
,

q

1− q

)
.

Now, from Lemma 2.1.4 we know that each solution must have non-negative
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components, and so we need the following condition

1− q (2− p) > 0⇔ p >
2q − 1

q
, (2.8)

which is verified for every p ∈ (0, 1) if 0 < q < 1/2.

With the condition (2.8) we have

p (1− q)
1− q (2− p)

R 1⇐⇒ q R (1− q) , ∀p ∈ (0, 1) .

Thus, if 0 < q < 1/2 then

2q − 1

q
< 0 and q < 1− q,

and we obtain that the solution b is strictly less than 1, and if 1/2 ≤ q < 1

then

q ≥ 1− q,

and with the condition (2.8) we obtain that b ≥ 1.

Thus, we can conclude that

• 0 < q < 1/2⇒ b < (1, 1)⇒ F
(
0−
)

= b =

(
p (1− q)

1− q (2− p)
,

q

1− q

)

•


1/2 ≤ q < 1

p >
2q − 1

q

⇒ b ≥ (1, 1)⇒ F (0−) = (1, 1)

where F (0−) =
(
P
(
2L(1) (∅) <∞

)
,P
(
2L(2) (∅) <∞

))
.

2.2 Weak convergence of the period of a scaled

contour process

From Theorem 2.1.3 we deduce that the moment-generating function

Fi (s) depends only on the offspring distribution µ, for every i = 1, . . . , r.
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Thus, we consider a scaling based on the one seen in Section 1.3.2, in par-

ticular, at the n-th step, the particles lifetimes in equal to 1/n, each particle

has “mass” 1/n and

µn =
(
µ(1)
n , . . . , µ(r)

n

)
is the offspring distribution.

Let i ∈ [r] and (τ, eτ ) ∈ T (r)
i be a µ-GW tree. Thus, according to the Remark

13 in Section 1.3.2, at the step n of the scaling there will be n µn-GW trees,

each of which starts with a type i particle. So, from the effects of the Feller

scaling on to the contour process treated by A.M. Etheridge [5, Chapter 3,

Sec. 3.2], we have to consider the concatenation of n contour processes and

the total period of the concatenation is the sum of n i.i.d. periods. Thus, at

the step n, we denote with 2L
(i)
n (∅) the period of the contour process relative

to a µn-GW tree starting with a type i particle and so the total period of

the concatenation is equal to

n∑
j=1

2L
(i)
n,j (∅) , (2.9)

where

2L
(i)
n,j (∅) , j = 1, . . . , n,

are n i.i.d. copies of 2L
(i)
n (∅).

Remark 16. Note that here, as in A.M. Etheridge [5, Sec. 3.2], the time of the

contour process played no rôle because we are only interested in the period

finiteness.

Now, we explain a result of weak convergence of (2.9) suitably scaled.

Theorem 2.2.1 (Weak convergence of a scaled contour process). Let i ∈ [r]

and µn be an offspring distribution at the n-th step of the scaling seen above

and let α ≥ 1. Use the notation Y
(i)
n = 2L

(i)
n (∅) and let(

Y
(i)
n,j

)
j≥0
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be i.i.d. copies of Y
(i)
n . If

1.

E
[
Y

(i)
n

]
= ν

(i)
n = Ai · nα + o (nα) ,

V ar
[
Y

(i)
n

]
=
(
σ

(i)
n

)2

= Bi · nγ + o (nγ) ,

with Ai ∈ R, Bi > 0, γ ≥ 0,

2. ∃ δ > 0 such that

E
[∣∣Y (i)

n − ν(i)
n

∣∣2+δ
]

= o
(
n
δ+γ(2+δ)

2

)
,

then
nα · Z(i)

n√
V ar

[
Y

(i)
n

] d−→ N (0, 1), n→∞,

where

Z(i)
n = n

1
2

[
n∑
j=1

(
Y

(i)
n,j

nα+1

)
− Ai +

o(nα+1)

nα+1

]
,

is called the α-scaling for the (2.9).

Moreover, if γ = 2α, applying the Slutsky’s theorem (see [25, Theorem 11.4]),

we obtain

Z(i)
n

d−→ N (0, Bi) , n→ +∞.

Proof. The idea is to apply the Lyapounov’s Theorem ([24, Section 27]) to

the following triangular array T
(i)
n,1, . . . , T

(i)
n,n, for every i = 1, . . . , r and n ≥ 1,

T
(i)
n,j :=

Y
(i)
n,j − ν

(i)
n

nα+1
, ∀j = 1, . . . , n.

Now we normalize T
(i)
n,j in such a way

1. E
[
T

(i)
n,j

]
= 0, for all n, j,

2.
n∑
j=1

E
[(
T

(i)
n,j

)2
]

= 1, for all n.
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By the definition, T
(i)
n,j satisfies the condition (1). Thus, the condition (2)

becomes
n∑
j=1

E
[(
T

(i)
n,j

)2
]

=
n∑
j=1

V ar
[
T

(i)
n,j

]
= 1.

From the defintion of the array T
(i)
n,j we have that

n∑
j=1

V ar
[
T

(i)
n,j

]
=

n∑
j=1

1

n2α+2
V ar

[
Y

(i)
n,j

]
=

=
1

n2α+1
V ar

[
Y

(i)
n,j

]
=

1

n2α+1
V ar

[
Y (i)
n

]
,

and we obtain
n∑
j=1

E

 n2α+1

V ar
[
Y

(i)
n

] (T (i)
n,j

)2

 = 1.

Thus, if we define

T̃
(i)
n,j :=

nα+ 1
2 · T (i)

n,j√
V ar

[
Y

(i)
n

]
then the triangular array T̃

(i)
n,j satisfies the conditions 1 and 2.

Now, for the triangular array T̃
(i)
n,j the Lyapounov’s condition in [24, Section

27] becomes

∃ δ > 0 such that lim
n→+∞

(
n∑
j=1

E
[∣∣∣T̃ (i)

n,j

∣∣∣2+δ
])

= 0. (2.10)

We have that ∣∣∣T̃ (i)
n,j

∣∣∣2+δ

=

∣∣∣Y (i)
n,j − ν

(i)
n

∣∣∣2+δ

(Bi · nγ+1 + o(nγ+1))
2+δ
2

,

and the condition (2.10) becomes

∃ δ > 0 such that lim
n→+∞

n · E
[∣∣∣Y (i)

n − ν(i)
n

∣∣∣2+δ
]

(Bi · nγ+1 + o(nγ+1))
2+δ
2

= 0. (2.11)



2.2 Weak convergence of the period of a scaled contour process 34

By the hypothesis 2 we know that ∃ δ > 0 such that

n · E
[∣∣∣Y (i)

n − ν(i)
n

∣∣∣2+δ
]

(Bi · nγ+1 + o(nγ+1))
2+δ
2

=
o
(
n
δ+γ(2+δ)

2

)
n
δ+γ(2+δ)

2

(
Bi + o(nγ+1)

nγ+1

) 2+δ
2

,

and so the condition (2.11) is satisfied and, by the Lyapounov’s theorem ([24,

Section 27]), we obtain that

n∑
j=1

T̃
(i)
n,j

d−→ N (0, 1), n→ +∞. (2.12)

Note that
n∑
j=1

T̃
(i)
n,j =

nα√
V ar

[
Y

(i)
n

]
(
n

1
2

n∑
j=1

T
(i)
n,j

)
=

=
nα√

V ar
[
Y

(i)
n

]
(
n

1
2

n∑
j=1

(
Y

(i)
n,j − ν

(i)
n

nα+1

))
=

nα · Z(i)
n√

V ar
[
Y

(i)
n

] ,
and so the (2.12) can be written in the following way

nα · Z(i)
n√

V ar
[
Y

(i)
n

] d−→ N (0, 1), n→ +∞.

Moreover, if γ = 2α, then lim
n→∞

√
V ar

[
Y

(i)
n

]
nα

=
√
Bi, and so we can apply

the Slutsky’s theorem ([25], Theorem 11.4) and we obtain

Z(i)
n =

nα · Z(i)
n√

V ar
[
Y

(i)
n

] ·
√
V ar

[
Y

(i)
n

]
nα

d−→ N (0, Bi), n→ +∞.
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2.3 Full binary trees and full binary trees with

survivals

In this section we conduce a combinatorial investigation on two kind of

µ-GW trees, the full binary trees and the full binary trees with survivals.

Important relations arise between particular distributions of these trees and

the Narayana numbers (see [12, Abstract and Section 1.1]) and the two-

dimensional decomposition of integers (see [11, Vol.2, Section IX, Chapter

II, Paragraph 429] and [10, Chapter 24, Example 24.3]). Now, we report the

defintions of the Narayana numbers and the full binary trees and the full

binary trees with survivals.

Definition 2.3.1 (Narayana numbers). The Narayana numbers N (n, k),

n ≥ 1 and k = 1, . . . , n are defined in the followinf way

N (n, k) =
1

n

(
n

k

)(
n

k − 1

)
, (2.13)

and they are expecially usefull for the counting problems. For example from

[12, Section 1.1], it is known that the Narayana numberN (n, k) is the number

of expressions containing n pairs of parentheses which are correctly matched

and which contain k distinct nestings. For instance, N (4, 3) = 6 counts all

the following expressions with 4 pairs of parentheses, which each contains

three times the sub-pattern ( ),

( ()()() ), ( ()() )(), ( () )()(), ()( ()() ), ()()( () ), ()( () )().

We now define the full binary trees with survivals and the full binary

trees.

Definition 2.3.2 (Full binary trees and full binary trees with survivals).

A full binary tree with survivals is a µ-GW tree (τ, eτ ) ∈ T
(2)
i , i = 1, 2,

equipped with the Type-ordering offspring (Definition 2.1.1), and such that
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the offspring distribution µ is the following
µ(1) (0, 0) = p0

µ(1) (1, 0) = p1

µ(1) (1, 1) = p2

,


µ(2) (0, 0) = q0

µ(2) (0, 1) = q1

µ(2) (1, 1) = q2

where pi, qi ∈ (0, 1) , i = 0, 1, 2 and
∑
pi =

∑
qi = 1.

The vertices which produce only one vertex is called the survivals and the

vertices which produced two vertices are called fathers.

Moreover, a full binary tree is a full binary tree with survivals such that there

aren’t survivals, i.e.

µ(1) (1, 0) = µ(2) (0, 1) = 0.

Remark 17. Note that, according to the Type-ordering offspring defined in

(2.1) in Section 2.1, when a vertex of type i produces two vertices then the

first one (the left one) is a type 1 vertex and the second one (the right one)

is a type 2 vertex. This holds both for the full binary trees and for the full

binary trees with survivals.

Remark 18. From now on, if a full binary tree with survivals (or without

survivals) starts with a type j vertex, then the root is considered a left

vertex or a right vertex respectively if j = 1 or j = 2. Morevoer, in the

following sections we consider trees starting with a type 1 vertex (the same

arguments are verified with a type 2 root).

2.3.1 Number of fathers of full binary trees with sur-

vivals

Now, we consider the full binary trees with survivals. Our purpose is to

find the likelihood of the number of type 1 and type 2 fathers, conditioning

to the a.s. finiteness of the tree. In the next Corollary we give the condition

for the a.s. finiteness of full binary trees with survivals.
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Corollary 2. Let (τ, eτ ) ∈ T (2) be a full binary tree with survivals, then

if p0q0 − p2q2 ≥ 0, then τ is finite a.s. ,

else

if p0q0 − p2q2 < 0, then τ is finite with a probability less than 1.

Proof. From Theorem 2.1.3 we have thatF1 (s) = µ(1) (0, 0) + µ(1) (1, 0) e2sF1 (s) + µ(1) (1, 1) e4sF1 (s)F2 (s)

F2 (s) = µ(2) (0, 0) + µ(2) (0, 1) e2sF2 (s) + µ(2) (1, 1) e4sF1 (s)F2 (s)
,

and so, passing to the limit s→ 0−, we obtainF1 (0−) = p0 + p1F1 (0−) + p2F1 (0−)F2 (0−)

F2 (0−) = q0 + q1F2 (0−) + q2F1 (0−)F2 (0−)
.

The system above has two solutions

F 1

(
0−
)

= (1, 1) and F 2

(
0−
)

=

(
p0 (q0 + q2)

q2 (p0 + p2)
,
q0 (p0 + p2)

p2 (q0 + q2)

)
Note that if p0q0 > p2q2 then

p0 (q0 + q2)

q2 (p0 + p2)
>
p2q2 + p0q2

q2 (p0 + p2)
= 1

q0 (p0 + p2)

p2 (q0 + q2)
>
p2q2 + q0p2

p2 (q0 + q2)
= 1

,

and, by the Lemma 2.1.4, we have that F 2 (0−) is not acceptable, then the

only solution is (1, 1) and so

F
(
0−
)

=
(
P
(
2L(1) (∅) <∞

)
,P
(
2L(2) (∅) <∞

))
= (1, 1) .
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If p0q0 = p2q2 then 

p0 (q0 + q2)

q2 (p0 + p2)
=
p2q2 + p0q2

q2 (p0 + p2)
= 1

q0 (p0 + p2)

p2 (q0 + q2)
=
p2q2 + q0p2

p2 (q0 + q2)
= 1

,

so F 1 (0−) = F 2 (0−) and then we have that

F
(
0−
)

=
(
P
(
2L(1) (∅) <∞

)
,P
(
2L(2) (∅) <∞

))
= (1, 1) .

Finally, if p0q0 < p2q2 then

p0 (q0 + q2)

q2 (p0 + p2)
<
p2q2 + p0q2

q2 (p0 + p2)
= 1

q0 (p0 + p2)

p2 (q0 + q2)
<
p2q2 + q0p2

p2 (q0 + q2)
= 1

,

and, from the Corollary 1, we can use the Theorem 1.1.1 (ii) obtaining that

F
(
0−
)

= F 2

(
0−
)

=
(
P
(
2L(1) (∅) <∞

)
,P
(
2L(2) (∅) <∞

))
=

=

(
p0 (q0 + q2)

q2 (p0 + p2)
,
q0 (p0 + p2)

p2 (q0 + q2)

)
< (1, 1) .

Suppose that (τ, eτ ) ∈ T (2)
1 is an a.s. finite full binary trees with survivals

starting with a type 1 vertex and use the following notations

D1 = number of type 1 fathers in τ,

D2 = number of type 2 fathers in τ,

S1 = number of type 1 survivals in τ,
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S2 = number of type 2 survivals in τ.

At first, we want to compute the joint distribution of the number of fathers

and survivals for each type,

P (D1 = n,D2 = m,S1 = s1, S2 = s2) , (2.14)

where n ≥ 1 and m, s1, s2 ≥ 0.

The case n = 0 is not included for the Remark 18 (there couldn’t be type

2 vertices in the tree). To compute the probability (2.14) we need the

probability that an a.s. finite full binary tree with survivals has exactly

D1 = n,D2 = m,S1 = s1, S2 = s2 and the number of such trees. It’s easy to

check that in this case the number of the type 1 leaves is equal to m+ 1 and

the number of the type 2 leaves is equal to n, so the probability that a finite

full binary tree with survivals has exactly D1 = n, D2 = m, S1 = s1, S2 = s2

is

pm+1
0 · ps11 · pn2 · qn0 · q

s2
1 · qm2 . (2.15)

Remark 19. Note that the total number of type 1 and type 2 vertices are

m+ 1 + s1 + n and n+ s2 +m respectively.

Now we have to count such trees. To make this, we at first consider the

case in which s1 = s2 = 0 and we add the survivals later. Now, starting from

the root, we walk the trees in this way, as presented by R.P. Grimaldi in [10,

Chapter 24, Example 24.3]: if we are in a vertex with children we at first

visit the left one, if we are in a left leaf we visit its right brother and if we are

in a right leaf we visit the older not visited right vertex having the youngest

last ancestor in common. Now we write L or R for each left or right vertex

visited, and note that the number of L and R is the same and it’s equal to

the number of the father vertices. This is what we call the “LR” encoding

of the tree. Now, we substitute each L with an open parenthesis (, and each

R with close one ), and note that each couple of consecutive parentheses ()

(i.e. “LR”) represents a left leaf. This is the “parentheses” encoding of the

tree. Thus, the total number of ( or ), is the number of the fathers and the
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number of couple ”()” is equal to the exponent of p0 in (2.15), i.e. m+ 1.

Remark 20. Note that each full binary tree has an unique “LR”, and so

“parentheses”, encoding.

Consider now an example of these encodings.

Example 2.3.1. Consider the full binary tree, with a type 1 root, in Figure

2.2. It has 5 left fathers (including the root) and 4 right fathers. The “LR”

∅

L

L

L R

R

L R

L R

R

L

L R

L

L R

R

R

Figure 2.2: A full-binary tree with 5 left fathers (including the root) and 4
right fathers.

encoding is L, L, L, R, R, L, R, L, R, R, L, L, R, L, L, R, R, R, and its

related “parentheses” encoding is (( () ) () () )( () ( () )).

Now, using the “parentheses” encoding seen above, we know that the

number of full binary trees having n left fathers and m right fathers is the

number of expressions containing n + m pairs of parentheses which are cor-

rectly matched and which contain m + 1 distinct nestings “()”. Thus, from

the Defintion 2.3.1, this counting problem can be solved by the Narayana
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numbers seen above and the solution is the following number

N (n+m,m+ 1) =
1

n+m

(
n+m

m+ 1

)(
n+m

m

)
, n ≥ 1,m ≥ 0.

Now we insert the survivals, i.e. s1, s2 ≥ 0. From Remark 19, we can choose

the s1 survivals type 1 vertices in m + n + s1 ways (i.e. the total number

of type 1 vertices of the tree, in the depth-first order, excluded the last one

that is certainly a leaf), and, for the same reason, s2 can be choosen in

m+ n+ s2 − 1 ways. Thus, the probability (2.14) becomes

P (D1 = n,D2 = m,S1 = s1, S2 = s2) =

= N (n+m,m+ 1)

(
m+ n+ s1

s1

)(
m+ n+ s2 − 1

s2

)
pm+1

0 ·ps11 ·pn2 ·qn0 ·q
s2
1 ·qm2
(2.16)

where n ≥ 1 and m, s1, s2 ≥ 0.

Now, for the law of total probability and from the (2.16), we have that

P (D1 = n,D2 = m) =
∑
s1≥0
s2≥0

P (D1 = n,D2 = m,S1 = s1, S2 = s2) =

= N (n+m,m+ 1) pm+1
0 pn2q

n
0 q

m
2 ·
∑
s1≥0
s2≥0

(
m+ n+ s1

s1

)(
m+ n+ s2 − 1

s2

)
ps11 q

s2
1

(2.17)

Note that the number of the not survivals type 1 vertices is n+m+ 1, and

so we can say that

∑
s1≥0

(
m+ n+ s1

s1

)
ps11 (1− p1)n+m+1 = 1,

from which we obtain that

∑
s1≥0

(
m+ n+ s1

s1

)
ps11 =

1

(1− p1)n+m+1 =
1

(p0 + p2)n+m+1 .
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Thus, the (2.17) becomes

P (D1 = n,D2 = m) =

= N (n+m,m+ 1)
pm+1

0 pn2
(p0 + p2)n+m+1 q

n
0 q

m
2 ·
∑
s2≥0

(
m+ n+ s2 − 1

s2

)
qs21 .

Note again that the number of the not survivals type 2 vertices is n+m, and

so we have that

∑
s2≥0

(
m+ n+ s2 − 1

s2

)
qs21 (1− q1)n+m = 1,

from which we obtain that

∑
s2≥0

(
m+ n+ s2 − 1

s2

)
qs21 =

1

(1− q1)n+m =
1

(q0 + q2)n+m .

Finally, from the (2.17) we have that

P (D1 = n,D2 = m) =

= N (n+m,m+ 1) · pm+1
0 pn2

(p0 + p2)n+m+1 ·
qn0 q

m
2

(q0 + q2)n+m . (2.18)

If we denote

P =
p0

p0 + p2

and Q =
q0

q0 + q2

,

from the (2.18), we finally get the likelihood of the fathers of tha a.s. full

binary trees with survivals.

Theorem 2.3.1. Let (τ, eτ ) ∈ T (2)
1 be an a.s. finite binary tree with survivals

with n left fathers and m right fathers, with n ≥ 1 and m ≥ 0. Then

L (P,Q|n,m) = N (n+m,m+ 1) · Pm+1 (1− P )nQn (1−Q)m , (2.19)

where parameters P,Q ∈ (0, 1) and depending only from the offspring distri-
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bution µ of the tree.

From the theory of the MLE (Maximum-Likelihood Estimation) (see for

instance [7]), now we are able to find the maximum-likelihood estimators of

the parameters P,Q.

Consider the related log-likelihood

ln (L (P,Q|n,m)) = ln (N (n+m,m+ 1)) + (m+ 1) · ln (P ) +

+n · ln (1− P ) + n · ln (Q) +m · ln (1−Q) .

To find the maximum-likelihood estimators P̃ , Q̃ of the parameters P,Q, we

have to solve the following system

∂ ln
(
L
(
P̃ , Q̃|n,m

))
∂P̃

= 0

∂ ln
(
L
(
P̃ , Q̃|n,m

))
∂Q̃

= 0

,

and thus obtain


m+ 1

P̃
− n

1− P̃
= 0

n

Q̃
− m

1− Q̃
= 0

⇒



(
1− P̃

)
(m+ 1)− n · P̃

P̃
(

1− P̃
) = 0

(
1− Q̃

)
n−m · Q̃

Q̃
(

1− Q̃
) = 0

⇒


P̃ =

m+ 1

m+ n+ 1

Q̃ =
n

m+ n

, where P̃ , Q̃ ∈ (0, 1) and n ≥ 1, m ≥ 0. (2.20)

Note that the maximum-likelihood estimators of the parameters P and Q are
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the number of the tipe i leaves over the sum of the type i leaves and fathers,

respectively for i = 1, 2.

2.3.2 Relation between full binary trees and two di-

mensional decompositions of integers

In this section we outline, through the Narayana numbers, a particular

relation between the full binary trees and the two-dimensional decomposition

of the integers, conditioning to the a.s. finiteness of the trees, i.e. p0q0 ≥ p2q2.

For the decompositions we will refer to P.A. Macmahon [11, Vol.2, Section

IX, Chapter II, Paragraph 429]. Note that in the case of the full binary trees

the a.s. finite condition p0q0 ≥ p2q2 is equivalent to say p2 + q2 ≤ 1, indeed

p0q0 ≥ p2q2 ⇒ (1− p2) (1− q2) ≥ p2q2 ⇒ 1− q2 − p2 + p2q2 ≥ p2q2 ⇒

⇒ p2 + q2 ≤ 1.

From the previous section we know that the number of the full binary trees

with exactly n left fathers vertices (included the root) and m right fathers

vertices is the Narayana number N (n+m,m+ 1), with n ≥ 1, m ≥ 0. It is

obvious that for every l ≥ 1 and k = 1, . . . , l, the Narayana number N (l, k)

counts the number of full binary trees with exactly l−k+1 left fathers vertices

and k − 1 right fathers vertices. Now, we introduce the notion of the two-

dimensional decomposition of intgers as it is presented in P.A. Macmahon

[11, Vol.2, Section IX, Chapter II, Paragraph 429].

Definition 2.3.3 (Two-dimensional decompostion of integers). Let d ≥ 1,

b ≥ 1, c ≥ 0 and w ≥ 0 be integers. Consider a matrix b × d with elements

limited in magnitude to c (zero being included) and in descending order in

each row and column, and such that the sum of all the elements is exactly

w (see Figure 2.3). Then, each of these matrices is called a two-dimensional

decomposition of w with parameters d, b, c.

In this section our interest is for the case b = 2. It is known from [11]
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a1,1 ≥ · · · ≥ a1,d≥ ≥ ≥

· · · · · · · · ·≥ ≥ ≥

ab,1 ≥ · · · ≥ ab,d

 ,
with ∀ i = 1, . . . , b, j = 1, . . . , d, ai,j ∈ {0, . . . , c} and

∑
ai,j = w

Figure 2.3: A two-dimensional decomposition with parameters a, b, c.

that, given the following function

GFd,c (x) =
(1− xc+2) · · ·

(
1− xc+d+1

)
· (1− xc+1) · · ·

(
1− xc+d

)
(1− x2) · · · (1− xd+1) · (1− x) · · · (1− xd)

, (2.21)

the number of two-dimensional decomposition of w is the coefficient Cw of

xw in GFd,c (x), written in the power series form. Note that we can only

represent integers in the set {0, 1, . . . , 2dc}, and so we have that

GFd,c (1) =
2dc∑
w=0

Cw, (2.22)

and moreover, using the equality

(1− x) (1 + x+ · · ·+ xn) = 1− xn+1, ∀n ≥ 0,

the function (2.21) becomes

GFd,c (x) =

d∏
i=1

(
1 + · · ·+ xc+i

)
·
d−1∏
i=0

(
1 + · · ·+ xc+i

)
d∏
i=1

(
1 + · · ·+ xi

)
·
d−1∏
i=0

(
1 + · · ·+ xi

) . (2.23)
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Now, we compute (2.23) for x = 1 and get

GFd,c (1) =
(c+ 2) · · · (c+ d+ 1) · (c+ 1) · · · (c+ d)

(2) · · · (d+ 1) · (1) · · · (d)
=

=
(c+ d+ 1)! (c+ d)!

(c+ 1)! (c)! (d+ 1)! (d)!
=

(
c+ d+ 1

d+ 1

)
(c+ d)!

(c+ 1)! (d)!
.

Then, multipling the term on the right by
c+ d+ 1

c+ d+ 1
, we obtain

GFd,c (1) =

(
c+ d+ 1

d+ 1

)
(c+ d)!

(c+ 1)! (d)!
· c+ d+ 1

c+ d+ 1
=

=

(
c+ d+ 1

d+ 1

)
(c+ d+ 1)!

(c+ 1)! (d)!
· 1

c+ d+ 1
=

=

(
c+ d+ 1

d+ 1

)(
c+ d+ 1

d

)
1

c+ d+ 1
=

= N (c+ d+ 1, d+ 1) . (2.24)

In this way we can include the special case of decomposition with d = 0,

indeed it’s sufficient to fix GF0,c (1) = N (c+ 1, 1) = 1. So, we have found

an important relation between the a.s. finite full binary trees and the two-

dimensional decompositions, i.e. fixed d ≥ 0 and c ≥ 0, let be GFd,c (x) the

function in (2.21) and Cw the number of the two-dimensional decompositions

of the integer w ∈ {0, . . . , 2dc} then, from (2.22) and (2.24), we have

2dc∑
w=0

Cw = (2.25)

= number of a.s. finite full binary trees with (c+ 1) left fathers (included

the root) and d right fathers.

Moreover, extending the result expressed by (2.25), we are also able to pass

from a full binary tree to a two-dimensional decompostion and vice versa.

Theorem 2.3.2. Let d ≥ 1, c ≥ 0. Denote with Rdc and FBTd,c+1 the
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set of the two-dimensional decompositions with parameters d, c of integers

{0, . . . , 2dc} and the set of the full binary trees with c+1 left fathers (including

the root) and d right fathers, respectively.

Then, exists an unique representation for each element of Rdc in FBTd,c+1

and vice versa.

Proof. To pass from a full binary tree with c+1 left fathers and d right fathers

to its related two-dimensional decomposition we have to compute the “LR”

and the “parentheses”” encodings of the tree (see Section 2.3.1), i.e. a string

of d+ c+1 couples of parentheses ( , ) with exactly d+1 distinct nestings ().

Therefore there are c separated couples ( , ) in the string. Then we consider

the following defintions: a1,i is the number of ) of the separated couples (,)

that stay after the (i + 1)-th nesting (), for every i = 1, . . . , d. If a1,1 < c

then the remaining c− a1,1 ) are all between the first and second nesting ().

Similarly, the element a2,i is the number of ( between the separated couples

(,) that stay after the i-th nesting (), for every i = 1, . . . , d and if a2,1 < c

then the remaining c− a2,1 ( are all before the first nesting (). So, according

to the defintions of ai,j, the two-dimensional decomposition related to the

tree is 
a1,1 ≥ · · · ≥ a1,d
≥ ≥ ≥

a2,1 ≥ · · · ≥ a2,d

 .
Note that the descending order of the rows is verified from the definitions of

elements ai,j and, because the number of the open parentheses ( can not be

greater than the closed one, even the descending order of the columns is also

verified.

To pass from a two dimensional decomposition with parameters d and c to

its related full binary tree with c + 1 left fathers (including the root) and

d right fathers it is enough to consider the definitions of the elements ai,j

given above and write the related string of parentheses which encode a full

binary tree with c+ 1 left fathers and d right fathers. The uniqueness of the

representations is given respectively by the definitions of the elements of the
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decompositions and the uniqueness of the “LR” encoding of the trees (see

Remark 20).

Example 2.3.2. Let d = 2, c = 1, so by (2.25) we have that

4∑
w=0

Cw = N (4, 3) = 6.

[
0 0
0 0

]
, w = 0

[
1 0
0 0

]
, w = 1

[
1 1
0 0

]
, w = 2

∅

L

L R

R

L

R

L R

∅

L

L R

L R

R

L R

∅

L

L
R

L

R

L R

R

LLRRLRLR LLRLRRLR LLRLRLRR
(()) () () (() ()) () (() () ())

Table 2.1: (a)-Representations of finite full binary trees with 2 left fathers
(including the root) and 2 right fathers as two-dimensional decompositions
of integers
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[
1 1
1 1

]
, w = 4

[
1 0
1 0

]
, w = 2

[
1 1
1 0

]
, w = 3

∅

L R

L R

L

L R

R

∅

L

R

L

L R

R

L R

∅

L R

L

L R

L R

R

LRLRLLRR LRLLRRLR LRLLRLRR
() () (()) () (()) () () (() ())

Table 2.2: (b)-Representations of finite full binary trees with 2 left fathers
(including the root) and 2 right fathers as two-dimensional decompositions
of integers

In Tables 2.1 and 2.2 you can see the rappresentations of all the 6 full

binary trees with 2 left fathers and 2 right fathers, in accordance with the

algorithm seen above. For each tree is shown the “LR” encoding, the related

“parentheses” encoding (see Section 2.1) and the two-dimensional decompos-

tion related and moreover the integer w rappresented in such decomposition.
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2.3.3 Upper and lower bounds for the full binary trees

still alive in the M-th generation

In this section we make a statistical investigation on full binary trees that

have some vertices at the generation M , i.e. we want to find the probability

that a full binary tree has vertices in the generation M , M ≥ 1. We define

such trees in the following way

Definition 2.3.4 (Full binary trees still alive at the M -th generation). A

full binary tree that has at least one vertex in the generation M is called a

full binary tree still alive in the M -th generation.

It is elaborate to count exactly all the full binary trees that are still alive

at the generation M , so what we are going to do is an estimation of that.

At first, we compute the minimum and maximum generations reached by a

full binary tree with n left fathers and m right fathers, where n ≥ 1, m ≥ 0.

It’s easy to check that the maximum generation is reached when there’s one

and only one vertex in each generation and so it’s equal to n+m. To find the

minimum generation, we define the Triangular Configuration of a full binary

tree

Definition 2.3.5 (Triangular Configuration). A full binary tree verifies the

triangular configuration at the generation T if every vertex of the generation

K is a father, for K = 0, . . . , T −1. Moreover, in the triangular configuration

at the generation T , the full binary tree has

T−1∑
k=0

2k = 2T − 1 fathers.

Thus, if a full binary tree verifies the Triangular Configuration at the gen-

eration T then the minimum generation is equal to T . If there are remaining

fathers then they are located in the vertices of the generation T .

Remark 21. Note that the remaining fathers are located not in all the vertices

of the generation T , otherwise the tree verifies the Triangular Configuration



2.3 Full binary trees and full binary trees with survivals 51

at the generation T + 1).

So, we consider a full binary tree with n ≥ 1 left fathers and m ≥ 0 right

fathers such that it verifies the Traingular Configuration at the generation T

then, denoting with x the number of the remaining fathers, we have that

n+m =
T−1∑
k=0

2k + x = 2T − 1 + x, (2.26)

where x = 0, . . . , 2T − 1.

Remark 22. Note, from the Definition of the Triangular Configuration, that

if x = 0 then the minimum generation is T , and if x = 1, . . . , 2T − 1 the

minimum generation is T + 1.

From the (2.26) we get

log2 (n+m+ 1) = log2

(
2T + x

)
, (2.27)

where T ≤ log2

(
2T + x

)
< T + 1, for x = 0, . . . , 2T − 1.

Finally from the (2.27) and the Remark 22, we have that the minimum

generation is

dlog2 (n+m+ 1)e.

We can sumarize the results on the maximum and minimum generation of

the full binary trees. Let (τ, eτ ) ∈ T (2)
1 be a full binary tree with n left fathers

(including the root) and m right fathers, n ≥ 1, m ≥ 0, then the minimum

generation reached by the tree is equal to

dlog2 (n+m+ 1)e,

and the maximum generation is equal to

n+m.
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Because the minimum and the maximum generations of a full binary tree de-

pend on the total number of fathers, we consider this changing of parametersk = n+m ≥ 1, the total number of the fathers of the tree

m ≥ 0, the number of the right fathers
.

Now, we want to compute a lower bound for the probability that a full binary

tree is still alive at the generation M ≥ 1. Consider all the binary trees with

k total fathers (for every m = 0, . . . , k−1) that reach at least the generation

M , i.e. with the minimum generation

dlog2 (k + 1)e ≥M. (2.28)

From the theory of the number of digits in a certain base, we have that the

condition (2.28) becomes

dlog2 (k + 1)e = blog2 (k)c+ 1 ≥M,

and so

blog2 (k)c ≥M − 1⇒ k ≥ 2M−1.

Note that this is a lower bound because we don’t consider, for example, the

full binary trees such that

M ≤ k ≤ 2M−1 − 1.

For instance, if we consider M = 4, we count all the full binary trees with

a total number of fathers k ≥ 8, i.e. all the Narayana numbers N (k,m+ 1)

with k ≥ 8 and m = 0, . . . , k − 1, but we don’t consider the full binary tree

in the first column of the Table 2.2 that has 4 total fathers and is still alive

at the generation 4.

So, if we denote with

Pτ (M)
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the probability that a full binary tree τ is still alive in the generation M , we

get the following lower bound

∑
k≥2M−1

k−1∑
m=0

N (k,m+ 1) pm+1
0 pk−m2 qk−m0 qm2 < Pτ (M) .

Now, for the upper bound of the probability that a full binary tree is still

alive in the generation M ≥ 1, we consider the full binary trees with k total

fathers (for every m = 0, . . . , k − 1) that reach the generation M with the

maximum generation, i.e.

k ≥M.

Note that this is an upper bound becasue we consider, for example, also the

full binary trees with a total number of fathers k ≥M but such that they do

not reach the generation M . For instance, if we consider M = 4, we count

all the full binary trees with a total number of fathers k ≥ 4, i.e. all the

Narayana numbers N (k,m+ 1) with k ≥ 4 and m = 0, . . . , k − 1, but we

consider also the full binary trees in the first two columns of the Table 2.1.

So, we get the following upper bound of Pτ (M)

∑
k≥M

k−1∑
m=0

N (k,m+ 1) pm+1
0 pk−m2 qk−m0 qm2 > Pτ (M) .

Finally, using the computational software program Wolfram Mathematica,

we can simplify the bounds of Pτ (M) as follows

∑
k≥2M−1

p0p
k
2q
k
0

(
2F1

(
1− k,−k; 2;

p0q2

p2q0

))
<

< Pτ (M) < (2.29)

<
∑
k≥M

p0p
k
2q
k
0

(
2F1

(
1− k,−k; 2;

p0q2

p2q0

))
, ∀M ≥ 1,
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where

2F1 (a, b; c; d) =
∑
n≥0

(a)n (b)n
(c)n

· z
n

n!
,

with

(q)n =

1, n = 0

q (q + 1) · · · (q + n− 1) , n > 0
,

is the hypergeometric function, defined for |z| < 1.

Note that the condition
p0q2

p2q0

< 1

is equal to

p2 > q2, (2.30)

indeed
p0q2

p2q0

< 1⇔ (1− p2) q2 − p2 (1− q2)

p2 (1− q2)
< 0⇔ p2 > q2.

So, combining the condition (2.30) with the a.s. finite condition seen above

p2 + q2 ≤ 1, we get the following conditionp2 > q2, 0 < p2 < 1/2

p2 ≤ 1− q2, 1/2 ≤ p2 < 1
.
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Chapter 3

Selected topics about

angiogenesis from literature

In literature we may find many mathematical models dealing with some

of the features of the angiogenic process, and in particular there are relevant

model used to describe the growth of the blood vessels. The purpose of most

of these models is to describe the network of the blood vessels, by the coupling

of the stochastic movement of the blood vessels and the biological structure of

the tissue in which the vessel move. Otherwise, in our models we are focused

on the statistical behavior of the blood vessels. Thus, in Chapters 4 and 5

we propose some parametric simplified models based on two-type Galton-

Watson processes and trees which allow us to obtain statistical information

on the offspring distribution µ, i.e. the branching mechanism of the blood

vessels. In this Chapter, neglecting the biological point of view, we present

three relevant stochastic models from literature and relate our approach to

them.

3.1 A Geometrical Model

We start with the model presented in [9] by V. Capasso and D. Morale. It

is a geometrical model whose discrete approximation is a branching process
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and so, when the bifurcation/death rates are homogeneous (time indepen-

dent), it can be considered as a superprocess, i.e. the weak limit of processes

that we have treated and that we use in our models. Thus, our study can be

considered as statistics on the trees generated by the processes of V. Capasso

and D. Morale. Relative to the model presented in [9], one of the strengths of

our approach for the angiogenesis modelling is to be a parametric statistical

model, while one of its weakness is the homogeneity request (at least in this

thesis). Now we have a look to the settings of the model proposed. The

blood vessels are modelled as the trajectories developed by the heads of the

vessels, while the behavior of the heads is modeled as a stochastic marked

counting process. Specifically, as regards the vessels network, let N (t) be

the jump process that counts the number of heads at the time t ≥ 0, and

X i (t) ∈ Rd the location at time t of the i-th head. Then, denoting with Ti

the birth time of the i-th head, i.e. the time when an existing vessel branches

and i-th blood vessel springs up, the trajectory-set

{X i (s) , Ti ≤ s ≤ t}, ∀i = 1, . . . , N (t) ,

represents the blood vessel starting at time Ti from the i-th head, at time t,

and so

X (t) =

N(t)⋃
i=1

{X i (s) , Ti ≤ s ≤ t}

is the blood vessels network, i.e. the union of the trajectories of the heads

of the vessels. The counting jump process N (t) is defined starting from the

following marked point process

Φ =
∑
n

δ(Tn,Y n),

where T n and Y n are the birth time and location, respectively, of the n-th

head. Indeed, from the process Φ is determinated the random measure Φ (A)
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on BR+×Rd

Φ (A) :=
∑
n

δ(Tn,Y n) (A) , A ⊆ BR+×Rd ,

and so the process N (t) is defined by

N (t) = Φ
(
[0, t]× Rd

)
.

Then, starting from this stochastic settings, the vessels extension is treated by

SDEs, depending on the biological structure and the nature of the angiogenic

process.

3.2 Random Walk Models

In this section we consider two models presented by M.J. Plank and B.D.

Sleeman in [14] and in [15]. They are both geometrical models whose discrete

approximations are given by particular random walks, i.e. the movements of

the blood vessels are considered random walks in suitable spaces. Thus, also

our work can be seen as a statistical investigation on the multytipe Galton-

Watson trees based on particular random walks (i.e. the contour processes)

and their limit, with the difference that M.J. Plank and B.D. Sleeman use

random walks in a geometrical way, whereas we do it from a statistical point

of view. Relative to the models presented in [14] and [15], one of the strengths

of our approach for the angiogenesis modelling is parametric statistical use of

particular random walks, while one of its weakness is the lack of geometrical

point of view.

3.2.1 A Reinforced Random Walk Model

Now, we explain a lattice model based on the reinforced random walk

(RRW) for the movement of the heads of the blood vessel. This model has

been presented by M.J. Plank and B.D. Sleeman in [14]. The purpose of this

short presentation is to show the main importance of the RRW to determine
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the probability density function for the movement of the heads. At first we

give a theoretical introduction of the RRW and then we expose the model.

For the theory of the RRW we refer to [16]. Essentially a RRW is a classic

random walk in which the transition probability from time n to time n + 1

depends on some random quantities called weigths regarding the history of

the process until the time n.

Definition 3.2.1 (Reinforced Random Walk). A reinforced random walk is

a couple (X ,W ), where X is a sequence X = {Xi, i ≥ 0} of integer random

variables and W = {w (n, j) , n ≥ 0, j ∈ Z} is a matrix of positive random

variables, all defined on the same probability space, such that if Fn is the

σ-field defined as follows

Fn = σ ({Xi, 0 ≤ i ≤ n;w (i, j) , j ∈ Z, 0 ≤ i ≤ n}) ,

then

i) w (n+ 1, j)− w (n, j) ≥ 0,

ii) P (Xn+1 = j + 1|Xn = j, Fn) = 1− P (Xn+1 = j − 1|Xn = j, Fn) =

=
w (n, j)

w (n, j) + w (n, j − 1)
. (3.1)

The element w (n, j) of the matrix W is the weigth at time n of the

interval (j, j + 1), for every j ∈ Z, and so i) means that the map n 7→ w (n, j)

is increasing, in particular it is strictly increasing if the walk crosses the

interval (j, j + 1) between times n and n+ 1, i.e.

Xn = j + 1, Xn+1 = j or Xn = j, Xn+1 = j + 1,

otherwise w (n, j) = w (n+ 1, j).

Moreover, we say that (X ,W ) is initially fair if the initial weights w (0, j),

∀j ∈ Z, are all equal to 1.

Condition ii) means that if at the time n we have Xn = j then the probability



3.2 Random Walk Models 60

that Xn+1 = j + 1 (or j − 1) is equal to the weight of the interval (j, j + 1)

(or (j − 1, j)) at the time n over the total weight of the interval (j − 1, j + 1)

at the time n.

In [14], M.J. Plank and B.D. Sleeman introduce an one dimensional lattice

model in which the heads of the blood vessels move on a regular mesh and

their density at mesh point n at time t, pn (t), is such that

∂pn (t)

∂t
= τ̂+

n−1 · pn−1 (t) + τ̂−n+1 · pn+1 (t)−
(
τ̂+
n + τ̂−n

)
· pn (t) , (3.2)

where τ̂+
n and τ̂−n are the transition rates of the heads moving from mesh

point n to mesh point n+ 1 and n−1 respectively (i.e. a sort of infinitesimal

transistion probabilities from mesh point n to mesh point n + 1 or n − 1).

At this point, in accordance with the (3.1), the transition rates are defined

in the following way

τ̂±n (w) = 2λ
τ
(
wn±1/2

)
τ
(
wn−1/2

)
+ τ

(
wn+1/2

) , λ > 0,

where w is the vector of control substances related to the angiogenic process

and the transition probabilities τ (·) depend only on w .

3.2.2 A Circular Random Walk Model

Here we explain another model proposed by M.J. Plank and B.D. Sleeman

for the movement of the heads of the blood vessels. It is a non-lattice model

introduced in [15] and based on the circular random walk. In [15], M.J. Plank

and B.D. Sleeman refer to one of the first work on the circular random walk

[17] by N. A. Hill and D.-P. Häder. As RRW model, our aim is to show the

main importance of the circular random walk in determining the probability

density function for the movement of the heads. In this model each head of

a blood vessel performs a random walk on the unit circle, described by the

random variable Θ (t), whose value θ (t) is the direction of the head at time

t ≥ 0. Denoting with k the lenght of the time step, at each step a head of
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a blood vessel has a probability, a (θ), of turning clockwise through an angle

δ, a probability, b (θ), of turning anti-clockwise through an angle δ, and a

probability, 1− a (θ)− b (θ), of continuing in the same direction,

P (Θ (t+ k)−Θ (t) = δ) = a (θ) ,

P (Θ (t+ k)−Θ (t) = −δ) = b (θ) ,

P (Θ (t+ k)−Θ (t) = 0) = 1− a (θ)− b (θ) ,

where a (θ) and b (θ) are functions.

The probability density function, f (θ, t), for Θ (t) is defined in the usual way

f (θ, t) dθ = P (θ ≤ Θ (t) < θ + dθ) ,

indeed, from the Mean Value Theorem of Integration, we have that exists γ

in [α, α + β] such that, ∀α, β ∈ [0, 2π[ with α + β ∈ [0, 2π[,

f (γ, t) =
1

β

∫ α+β

α

f (ξ, t) dξ,

and thus

f (θ, t) =
1

dθ

∫ θ+dθ

θ

f (ξ, t) dξ =
1

dθ
· P (θ ≤ Θ (t) < θ + dθ) .

It is shown in [17] that, in the limit k → 0, δ → 0 (such that δ2/k = A, for

some fixed constant A), f (θ, t) satisfies the following equation

∂

∂t
f (θ, t) = − ∂

∂θ
(µ (θ) f (θ, t)) +

1

2

∂2

∂θ2

(
σ2 (θ) f (θ, t)

)
, (3.3)

where

µ (θ) = lim
k→0,δ→0

(
1

k
· E [Θ (t+ k)−Θ (t)]

)
,

σ2 (θ) = lim
k→0,δ→0

(
1

k
· V ar [Θ (t+ k)−Θ (t)]

)
.
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Moreover, M.J. Plank and B.D. Sleeman in [15] prove that the equation (3.3)

is the continuous limit, k → 0, δ → 0, of the reinforced random walk equation

(3.2).



Chapter 4

Models based on Two-Type

Galton-Watson Processes

Our approach to model the growth of the blood vessels is the following.

Consider a blood vessel, at the time t ≥ 0, as the composition of two-type

objects, the head of the blood vessel, i.e. the material point that could grow

up while the time is running and the body of the blood vessel itself (Figure

4.1). In this way, the body of a blood vessel can be seen as the result of the

Figure 4.1: Tip and body of a blood vessel

growth of a head, if it happens, i.e. the body of a blood vessel represents

the trajectory of the head, conditionally to the growth. In the following
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model we consider the body of a vessel blood as union of parts, each one

with the same dimensions and produced by the growth of a tip in a unit time

interval. Now, considering the heads and the parts of the blood vessels as two-

type particles, each of which has an appropriate offspring distribution, the

model of the growth of the blood vessels is given by the two-type branching

processes, where type 1 particles are the heads of the blood vessels (tips) and

the type 2 particles are the essential units of the body of the blood vessels

(branches) (see Figure 4.2). In this Chapter we start with a model based

Figure 4.2: Tip and branches of a blood vessel

on a discrete time two-type Galton-Watson process, where the two-types

particles are defined as above and with a particular offspring distribution.

Thus, we are able to compute all the fundamental quantities that describe

the process. Then, we present a model based on a continuous time two-

type Galton-Watson process, where particular definitions of the lifetimes of

the particles are used and the fundamental quantities are deduced using a

technique of inverse problem.

4.1 The Discrete Time Model

We consider a discrete time two-type Galton-Watson process

(Z n;n ≥ 0) = (Z1,n,Z2,n;n ≥ 0) ,
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where Z1,n and Z2,n are the number of tips and branches alive at the n-

th generation. From the Section 1.1.1, we know that with the offspring

distribution p(i) (j1, j2) we are able to describe the whole process. Now, we

introduce the marginal distributions of the tips and the branches respectively

and then we deduce the joint distributions p(i) (j1, j2).

4.1.1 Tips distribution

For an alive tip at the generation n we consider the following marginal

distribution

1) the tip dies and produces no particles (i.e. the blood vessel stops grow-

ing, for example by the chemotherapy, and the last branch created dies

too), with probability p0, i.e. at the generation n+ 1 there are no tips

or branches alive,

2) the tip grows up, creating a branch behind itself (i.e. the blood vessel

grows and creates a branch), with probability p1, i.e. at the generation

n+ 1 there are the survived tip and the branch created by its growth,

3) the tip splits itself in two new tips (i.e. the blood vessel splits itself in

new two others), with probability p2, i.e. at the generation n+ 1 there

are the two new tips created by the ancestor tip,

4) the tip survives (i.e. the blood vessel does not grow but it is still alive),

with probability p3, i.e. at the generation n+1 there is only the survived

tip.

where p0, p1, p2, p3 ≥ 0 and p0 + p1 + p2 + p3 = 1.

4.1.2 Branches distribution

For an alive branch at the generation n we introduce the following marginal

distribution
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1) the branch dies and produces no particles (i.e. the last branch of an

existing blood vessel dies, for instance by fibrinoid necrosis of the blood

vessel induced by chemioterapy), with probability q0, i.e. at the gener-

ation n+ 1 there are no tips or branches alive,

2) the branch survives (i.e. the last branch of an existing blood vessel

doesn’t die), with probability q1, i.e. at the generation n + 1 there is

only the survived branch,

3) the branch survives and produces a new tip from itself (i.e. the last

branch of an existing blood vessel doesn’t die and a new one could

born from it), with probability q2, i.e. at the generation n+ 1 there are

the survived branch and the new tip born from it,

where q0, q1, q2 ≥ 0 and q0 + q1 + q2 = 1.

Remark 23. When a particle produces only a particle of its same type, we

say that the particle survives.

4.1.3 Joint distribution

Now, we deduce the joint distribution of tips and branches. In general,

in accordance with Section 1.1.1, the distributions in Sections 4.1.1 and 4.1.2

can be considered the really offspring distributions p(1) (j1, j2), p(2) (j1, j2) of

the process Z n, but in this model it is partially true. Indeed, as regards the

branches, we assume that the new tip born from a branch at the generation n,

with probability q2, is visible in the generation n+ 1 and so we have that the

marginal distribution of the branches in Section 4.1.2 is exactly the offspring

distribution p(2) (j1, j2). As regards the tips, on the contrary, we assume

that if a tip grows up (with probability p1) at the generation n, then at the

generation n + 1 we consider, in addition to the survived tip, the offspring

of the new branch created. Thus, if a tip grows up at the generation n, then

at the generation n+ 1 we count the sum of the tip with the offspring of the

new branch created from the growth of the tip.
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So, from the marginal distributions seen above, we obtain the following joint

distribution from an alive tip at the generation n, for every n ≥ 0 (see Table

4.1). Thus, we can write the offspring distribution of the process Z n,

Z n Z n+1 Probability
(1, 0) (0, 0) p0

(1, 0) (1, 0) p1q0 + p3

(1, 0) (1, 1) p1q1

(1, 0) (2, 1) p1q2

(1, 0) (2, 0) p2

Table 4.1: Joint distribution from an alive tip at the generation n, for every
n ≥ 0.



p(1) (0, 0) = p0

p(1) (1, 0) = p1q0 + p3

p(1) (1, 1) = p1q1

p(1) (2, 1) = p1q2

p(1) (2, 0) = p2

,


p(2) (0, 0) = q0

p(2) (0, 1) = q1

p(2) (1, 1) = q2

. (4.1)

Before introducing the generating functions f (1) (s1, s2), f (2) (s1, s2) and the

mean matrix M , we summarize in Table 4.2 the meaning of the offspring

distribution shown in (4.1) concerning the growth of the blood vessels, i.e.

we explain how we model angiogenesis by the offspring distribution (4.1).

Remark 24. Remark that the probability p(i) (j1, j2) represents the probabil-

ity that are j1 type 1 particles and j2 type 2 particles at the generation n+ 1

from a single alive type i particle at the generation n ≥ 0, for every i = 1, 2.
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Probability Angiogenesis

p(1) (0, 0) The head of a blood vessel dies. So the vessel stops
growing and the last branch created
dies, i.e. by a chemioterapy action

p(1) (1, 0) The head of a blood vessel survives and
no branches are created

p(1) (1, 1) The head of a blood vessel grows creating
a new branch of the blood vessel

p(1) (2, 1) The head of a blood vessel grows creating
a new branch of the blood vessel

from which is already born a new head
of a blood vessel

p(1) (2, 0) The head of a blood vessel splits itself in other two
and so two new blood vessels are born

from the croosroad

p(2) (0, 0) A branch of a blood vessel dies and so
no one else is born from it

p(2) (0, 1) A branch of a blood vessel survives but
no one else is born from it

p(2) (1, 1) A branch of a blood vessel survives and
a new one is born from it

Table 4.2: Meaning of the offspring distribution of tips and branches.

Remark 25. Remark that when we say that a new blood vessel is born from

a branch of a blood vessel we mean that the head of a new blood vessel is

born from the branch.

The probabilities p(1) (0, 0), p(1) (1, 0), p(2) (0, 0) and p(2) (0, 1) can be

called chemotherapic probabilities, i.e. they can be considered respectively

• the probability that a chemotherapic action (CA) kills the last part

created of a blood vessel (branch) and stops the growth of the blood

vessel,

• the probability that a CA allows the growth of a blood vessel killing

the last branch created or stops the growth of the vessel without killing

the head,
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• the probability a CA kills a branch of a blood vessel,

• the probability a CA may keep alive a branch of a blood vessel but it

does not allow the creation of new blood vessels from it.

Similarly, the probabilities p(1) (1, 1), p(1) (2, 1), p(1) (2, 0) and p(2) (1, 1) can

be called proliferation probabiliies, i.e. they can be considered respectively

• the probability that a head of a blood vessel grows, producing a new

branch,

• the probability that a head of a blood vessel grows and another blood

vessel is born from the last branch created,

• the probability that a head of a blood vessel splits in two,

• the probability that a branch of a blood vessel produces a new blood

vessel from it.

4.1.4 Generating functions and mean matrix M

Now, we are able to write the generating functions f (1) (s1, s2), f (2) (s1, s2)

with s1, s2 ∈ [0, 1], and the mean matrix M . From the offspring distributions

(4.1) and the definitions of f (1) (s1, s2), f (2) (s1, s2) and M (see Section 1.1.1),

we get

f (1) (s1, s2) = p0 + (p1q0 + p3) s1 + (p1q1) s1s2 + (p1q2) s2
1s2 + p2s

2
1,

f (2) (s1, s2) = q0 + q1s2 + q2s1s2,

and

M =

(
p1q2 + 2p2 + p1 + p3 p1 (q1 + q2)

q2 q1 + q2

)
.

Thus, the process Z n is positive regular and no singular. Moreover, the
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maximal eigenvalue of the mean matrix M is

ρ =
p1q2 + 2p2 + p1 + p3 + q1 + q2

2
+

+

√
4q2p1 (q1 + q2) + (p1q2 + 2p2 + p1 + p3 − q1 − q2)2

2
,

and so, by the Theorem 1.1.1, we obtain the following theoretical classifica-

tion of process Z n,

p0 + q0 ≤ p1q2 + p2 or

p0 + q0 > p1q2 + p2

q0 (p0 − p2) < p1q2

=⇒ SuperCritical, (4.2)

p0 + q0 > p1q2 + p2

q0 (p0 − p2) = p1q2

=⇒ Critical,

and p0 + q0 > p1q2 + p2

q0 (p0 − p2) > p1q2

=⇒ SubCritical.

Thus, we can make some considerations. By the offspring distribution (4.1)

shown in the Section 4.1.3, p0 + q0 and p1q2 + p2 may be considered respec-

tively the death probability (i.e. the probability of minimum production) and

the probability of maximum production. Moreover, p1q2 is the probability of

maximum production from a tip and the sign of q0 (p0 − p2) is related to the

death/procution rate of a tip. Moreover, note that with probability p2 a tip

splits itself in other two and so the effect of the growth of the tips is ampli-

fied. Finally in the Exapmle 4.1.1 we explain that this model is unbalanced

to the SuperCrital case, i.e. if tips and branches have the same marginal

distributions then the process Z n is SuperCritical.

Remark 26. Note that the extinction probability q =
(
q(1), q(2)

)
, defined in

Section 1.1.1, represents the probability that an angiogenic process starting

from a tip (q(1)) or a branch (q(1)) ends.
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Example 4.1.1 (Equiprobable marginal distributions). Consider the follow-

ing equiprobable marginal distributions,

pi =
1

4
, ∀i = 0, 1, 2, 3,

and

qi =
1

3
, ∀i = 0, 1, 2.

The offspring distributions (4.1) become

p(1) (0, 0) = 1/4

p(1) (1, 0) = 1/3

p(1) (1, 1) = 1/12

p(1) (2, 1) = 1/12

p(1) (2, 0) = 1/4

,


p(2) (0, 0) = 1/3

p(2) (0, 1) = 1/3

p(2) (1, 1) = 1/3

.

So, the generating functions f (1) (s1, s2) , f (2) (s1, s2) and the mean matrix M

are

f (1) (s1, s2) =
1

4
+

1

3
s1 +

1

12
s1s2 +

1

12
s2

1s2 +
1

4
s2

1,

f (2) (s1, s2) =
1

3
+

1

3
s2 +

1

3
s1s2,

M =


13

12

1

6

1

3

2

3

 .

The maximum eigenvalue of the mean matrix M is equal to

21 +
√

57

24
>

21 + 7

24
> 1,

and so the process is SuperCritical. The same result is obtained considering
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the following quantities

p0 + q0 =
7

12
, p1q2 + p2 =

1

3
, q0 (p0 − p2) = 0, p1q2 =

1

12
,

indeed they satisfy the (4.2) and so the process is SuperCritical.

Moreover, from the Theorem 1.1.1 in the Section 1.1.1, we know that the

extinction probability q of the process is the only solution of f (s) = s in

[0, 1[2. This is equivalent to solve in [0, 1[2 the following system
1

4
+

1

3
s1 +

1

12
s1s2 +

1

12
s2

1s2 +
1

4
s2

1 = s1

1

3
+

1

3
s2 +

1

3
s1s2 = s2

. (4.3)

The system (4.3) has three solutions

(1, 1) ,

(
2−
√

2,

√
2

2

)
,

(
2 +
√

2,−
√

2

2

)
.

Note that (
2 +
√

2,−
√

2

2

)
is not acceptable and that

(0, 0) <

(
2−
√

2,

√
2

2

)
< (1, 1) ,

and so q =

(
2−
√

2,

√
2

2

)
.

Moreover, since

2−
√

2 <

√
2

2
,

then the probability that an angiogenic process starting from a branch ends

is greater than the probability that an angiogenic process starting from a tip
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ends.

4.2 The Continuous Time Model

In this Section we introduce a discrete approximation of a two-type con-

tinuous time Galton-Watson process, Z (t) = (Z1 (t) , Z2 (t) , t ≥ 0), where

the two-type particles are the same of Section 4.1, i.e. tips and branches

respectively. In particular, we propose a discrete model with time interval

∆t > 0 and then we pass to the limit ∆t→ 0.

Moreover, using a technique of inverse problem, we compute the mean matrix

M (t), for every t ≥ 0, and from that we show the theoretical classification

of the process (see Section 4.1.4).

Remembering, from Section 1.1.2, that a two-type continuous time Galton-

Watson process is totally described by the stricly positive parameters of the

exponential distributions of the particles lifetimes

a = (a1, a2) ∈ R2
+,

and the offspring distribution

p (j ) =
(
p(1) (j1, j2) , p(2) (j1, j2)

)
,

we at first define the lifetimes and the infinitesimal marginal and joint distri-

butions of the particles, then we are able to compute the parameters a1, a2

and the offspring distribution p (j ).

4.2.1 Lifetimes

In this model we consider a different defintion of the usual lifetimes of the

particles, i.e. the lifetime Γi of the type i particles is the first time in which

a process Z(t) starting from a single type i particle changes state. Thus, we
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define the following lifetimes for the two-type particles, for every i = 1, 2,

Γi := inf{τ > t|Z(τ) 6= ei}, conditioning to Z(t) = ei. (4.4)

When Γi occurs, we say that the type i particle jumps.

Remark 27. The definitions of lifetimes outline that our interest is focused

when the particles do something and not when they survive.

Like the usual defintions of the lifetimes, we suppose the memoryless

property for Γ1,Γ2 and so we know, from Section 1.1.2, that they are expo-

nentially distributed, with parameters a1, a2 > 0 respectively.

Finally, the offspring distribution of the particles

p (j ) =
(
p(1) (j1, j2) , p(2) (j1, j2)

)
,

are the production probabilities of each particles when the lifetimes Γ1,Γ2

occur, i.e. the probability that a type i particles jumps and produces j1 type

1 particles and j2 type 2 particles.

Remark 28. Note that from definitions of lifetimes Γ1,Γ2, we get p(i) (e i) = 0,

for every i = 1, 2.

4.2.2 The Infinitesimal Marginal and Joint Distribu-

tions

The idea is to consider the marginal distributions seen in the Sections

4.1.1 and 4.1.2 not in a unit time interval but in the time interval ∆t.

Thus, we replace the probabilities pi, i = 0, . . . , 3 and qi, i = 0, . . . , 2, of

Section 4.1.1 and 4.1.2, like in Table 4.3. Moreover, in this model we assume

that a CA operates in the same way on the tips and on the branches, i.e. we

get

q0 = p0.
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Probability in [n, n+ 1] Probability in [t, t+ ∆t]
p0 p0 ·∆t+ o (∆t)
p1 p1 ·∆t+ o (∆t)
p2 p2 ·∆t+ o (∆t)
p3 1− (p0 + p1 + p2) ∆t+ o (∆t)
q0 p0 ·∆t+ o (∆t)
q1 1− (p0 + q2) ·∆t+ o (∆t)
q2 q2 ·∆t+ o (∆t)

Table 4.3: Marginal distribution in [t, t+ ∆t]

Now, according to Section 4.1.1, we introduce the infinitesimal marginal dis-

tribution of a tip alive at the time t ≥ 0:

1) the tip jumps, producing no particles (the blood vessel stops growing,

for example by a CA, and the last part branch of the blood vessel

created dies too), with probability p0 ·∆t + o (∆t), i.e. at time t + ∆t

there are no tips or branches alive.

2) the tip jumps, growing up and creating a branch behind itself (the blood

vessel grows and creates a branch), with probability p1 · ∆t + o (∆t),

i.e. at time t+ ∆t there are the survived tip and the branch created by

its growth.

3) the tip jumps, spliting itself in two new tips (the blood vessel splits

itself in new two others), with probability p2 · ∆t, i.e. at time t + ∆t

there are the two new tips created by the ancestor tip.

4) the tip does not jump and survives (the blood vessel does not grow but

it is still alive), with probability 1 − (p0 + p1 + p2) ∆t + o (∆t), i.e. at

the time t+ ∆t there is only the survived tip.

Then, according to Section 4.1.2, we consider a branch alive at the time

t ≥ 0:

1) the branch jumps, producing no particles (an existing branch of a blood

vessel dies, for instance by fibrinoid necrosis of the blood vessel induced
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by chemioterapy), with probability p0 ·∆t, i.e. at time t+ ∆t there are

no tips or branches alive,

2) the branch does not jumps (an existing branch of a blood vessel doesn’t

die), with probability 1− (p0 + q2) ·∆t, i.e. at time t+ ∆t there is only

the survived branch,

3) the branch jumps, surviving and producing a new tip from itself (an

existing branch of a blood vessel doesn’t die and a new one could born

from it), with probability q2 · ∆t, i.e. at time t + ∆t there are the

survived branch and the new tip born from it.

Event Probability
A tip jumps, producing no particles p0 ·∆t+ o (∆t)
A tip jumps, growing up and producing a branch p1 ·∆t+ o (∆t)
A tip jumps, spliting in two other tips p2 ·∆t+ o (∆t)
A tip does not jump and survives 1− (p0 + p1 + p2) ∆t

+o (∆t)

Table 4.4: Infinitesimal marginal distribution of the tips

In Tables 4.4 and 4.5 we summarize the infinitesimal marginal distributions

of the two-type particles, where p0, p2, p1, q2 ≥ 0, p0 + p1 + p2 < 1 and

p0 + q2 < 1.

Event Probability
A branch jumps, producing no particles p0 ·∆t+ o (∆t)
A branch does not jump, surviving 1− (p0 + q2) ·∆t+ o (∆t)
A branch jumps, surviving and
creating a new tip from it q2 ·∆t+ o (∆t)

Table 4.5: Infinitesimal marginal distribution of the branches

Remark 29. Note that, at limit ∆t → 0, both the probabilities of tips and

branches have sum equal to 1.
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Now, in accordance with the joint distribution in the discrete model shown

in Section 4.1.3 (see Table 4.1), we can write the following infinitesimal joint

distributions for tips and branches respectively

P ((1, 0) , (0, 0) ,∆t) = p0 ·∆t+ o (∆t)

P ((1, 0) , (1, 0) ,∆t) = 1− (p0 + p1 + p2) ·∆t+ o (∆t)

P ((1, 0) , (1, 1) ,∆t) = p1 ·∆t+ o (∆t)

P ((1, 0) , (2, 1) ,∆t) = o (∆t)

P ((1, 0) , (2, 0) ,∆t) = p2 ·∆t+ o (∆t)

, (4.5)

and 
P ((0, 1) , (0, 0) ,∆t) = p0 ·∆t+ o (∆t)

P ((0, 1) , (0, 1) ,∆t) = 1− (p0 + q2) ·∆t+ o (∆t)

P ((0, 1) , (1, 1) ,∆t) = q2 ·∆t+ o (∆t)

. (4.6)

Remark 30. Note that the infinitesimal joint distributions (4.5) and (4.6)

represent the transition probabilities, introduced in Section 1.1.2, calculated

in the time interval ∆t.

4.2.3 Exponential parameters

In this Section, from the probabilities (4.5), (4.6), we are able to find out

the parameters a1 and a2 of the exponential distribuited lifetimes Γ1 Γ2.

We start with the parameter a2. From the definition (4.4), we know that

P (Γ2 ≤ T ) =

∫ T

0

a2e
−a2·tdt = 1− e−a2·T , ∀ T ≥ 0.

Thus, when T = ∆t, the probability P (Γ2 ≤ ∆t) is equal to the right term

in the equation above written in Taylor series, and we get

P (Γ2 ≤ ∆t) = a2 ·∆t+ o (∆t) . (4.7)
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From the probabilities (4.6), we have another way to exprime P (Γ2 ≤ ∆t),

indeed in the interval t+ ∆t a branch can change the state of the process in

two ways, when it produces no paticles and when it produces two. So we get

P (Γ2 ≤ ∆t) = 1− P ((0, 1) , (0, 1) ,∆t) =

= (p0 + q2) ∆t+ o (∆t) . (4.8)

Thus, from (4.7) and (4.8), we obtain the value of a2,

a2∆t+ o (∆t) = (p0 + q2) ∆t+ o (∆t)⇒

⇒ a2 +
o (∆t)

∆t
= p0 + q2 +

o (∆t)

∆t
⇒

⇒ a2 = p0 + q2, for ∆t→ 0.

Now consider the parameter a1. From the definition of Γ1, we have that

P (Γ1 ≤ ∆t) = a1∆t+ o (∆t) .

According to (4.5), we have that and we get

P (Γ1 ≤ dt) = 1− P ((1, 0) , (1, 0) ,∆t) =

= (p0 + p1 + p2) ∆t+ o (∆t) ,

and so in accordance to a2, we obtain that

a1 = p0 + p1 + p2.

4.2.4 Inverse Technique for the Mean Matrix M (t)

From (1.8) and (1.9) in Section 1.1.2, we know that

M (t) := et·A =
∑
i≥0

(t ·A)i

i!
= I + t ·A + o (t) , ∀t ≥ 0,
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where the elements aij of the matrix A are defined in the following way

aij := ai

(
∂f (i) (s1, s2)

∂sj

∣∣∣∣
s1=1,s2=1

− δij

)
, i, j = 1, 2,

and

o (t) =

(
o11 (t) o12 (t)

o21 (t) o22 (t)

)
.

In this section, using a technique of inverse problem and from (4.5), (4.6)

and parameters a1, a2, we show that is possible to compute the mean ma-

trix M (t), for every t ≥ 0, without the generating functions f (1) (s1, s2),

f (2) (s1, s2).

From the infinitesimal transition probabilities (4.6) and (4.5) we can write

the following expected values

E[Z
(1)
1 (∆t)] = p1∆t+ 1− (p0 + p1 + p2) ∆t+ 2p2∆t+ o (∆t) =

= 1− (p0 − p2) ∆t+ o (∆t)

E[Z
(1)
2 (∆t)] = p1∆t+ o (∆t)

E[Z
(2)
1 (∆t)] = q2∆t+ o (∆t)

E[Z
(2)
2 (∆t)] = 1− (p0 + q2) ∆t+ q2∆t+ o (∆t) =

= 1− p0∆t+ o (∆t)

, (4.9)

and so, from (4.9) and (1.7) (see Section 1.1.2), we can write

M (∆t) =

(
1− (p0 − p2) ∆t+ o (∆t) p1∆t+ o (∆t)

q2∆t+ o (∆t) 1− p0∆t+ o (∆t)

)
. (4.10)

From (1.8) in Section 1.1.2, we know that exists a matrix A such that

A = lim
∆t→0

M (∆t)− I

∆t
, (4.11)
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and so, from (4.10) and (4.11), we get the matrix A

A =

(
− (p0 − p2) p1

q2 −p0

)
. (4.12)

Finally, from (1.8) and (4.12), we can write the mean matrix M (t)

M (t) = e
1
2

(−2p0+p2)t (H (t) + E (t)) ,

where

H (t) = cosh

(
t

2

√
p2

2 + 4p1q2

)(
1 0

0 1

)
+

+

p2 sinh

(
t

2

√
p2

2 + 4p1q2

)
√
p2

2 + 4p1q2

(
1 0

0 −1

)
,

and

E (t) =
e−

t
2

√
p22+4p1q2√

p2
2 + 4p1q2

 0 p1

(
−1 + et

√
p22+4p1q2

)
q2

(
−1 + et

√
p22+4p1q2

)
0

 .

Remark 31. Recall that the mean matrix M (t), for every t ≥ 0, as the

matrix M n in the discrete time case (see the equation (1.3) in Section 1.1.1),

is such that

E [Z (t) |Z (0)] = Z (0) ·M (t) .

4.2.5 Theoretical Classification and Growth-Speed of

Tips

Now, from Section 1.1.2, we know that the matrix A gives basic infor-

mation about the process Z (t). Indeed, denoting with λ the maximum

eigenvalue of A, we have the following theoretical classification

• λ < 0 ⇒ the process is SubCritical, i.e. exists a finite and strictly

positive t such that Z (t) = 0 a.s. ,
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• λ = 0⇒ the process is Critical, i.e. exists a finite and strictly positive

t such that Z (t) = 0 a.s. ,

• λ > 0 ⇒ the process is SuperCritical, i.e. with a positive probability

exists a finite and strictly positive t such that Z (t) = 0 a.s. .

In our model we have that

λ =
1

2

(
−2p0 + p2 +

√
p2

2 + 4q2p1

)
,

and we obtain the following theoretical classification of the process Z (t),

p0 ≤
p2

2
or

p0 >
p2

2

p2
0 < q2p1 + p0p2

⇒ SuperCritical

p0 >
p2

2

p2
0 = q2p1 + p0p2

⇒ Critical

p0 >
p2

2

p2
0 > q2p1 + p0p2

⇒ SubCritical

Finally, let us make a consideration about the growth-speed of the tips. If

we define ∆x the lenght of the branches created by the growth of the tips in

the interval [t, t+ ∆t], ∀t ≥ 0, then we have that the quantity

E[Z
(1)
2 (∆t)] ·∆x

is the average lenght of branches created by a tip in [t, t+ ∆t], and so it can

be considered the average growth-speed of a tip in [t, t+ ∆t]. Thus, we can

define the following average growth-speed of tips

v =
E[Z

(1)
2 (∆t)] ·∆x

∆t
=

(p1∆t+ o (∆t)) ·∆x
∆t

=
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= p1∆x+ ∆x · o (∆t)

∆t
.

So, the related instantaneous growth-speed of tips v is

v = lim
∆t→0

v = p1∆x.

4.2.6 Offspring Distribution, Generating Functions and

Extinction Probability

Let be fixed the matrix A and the parameters a1, a2, so exist different

offspring distributions p(1) (j1, j2), p(2) (j1, j2) that verify the condition (1.9)

(see Section 1.1.1) and the Remark 28, for instance the distributions

p(1) (0, 0) = p

p(1) (2, 0) =
p1 + 2p2

2 (p0 + p1 + p2)

p(1) (0, 1) =
p1

p0 + p1 + p2

,



p(2) (0, 0) = q

p(2) (1, 0) =
q2

p0 + q2

p(2) (0, 2) =
q2

2 (p0 + q2)

,

for every p, q ∈ [0, 1], produces the following generating functions
f (1) (s1, s2) = p+

p1 + 2p2

2 (p0 + p1 + p2)
· s2

1 +
p1

p0 + p1 + p2

· s2

f (2) (s1, s2) = q +
q2

p0 + q2

· s1 +
q2

2 (p0 + q2)
· s2

2

,

that verify (1.9).

For this model, we propose the most natural offspring distribution, i.e. for

p(1) (j1, j2) we choose the probabilities (4.5) where o (∆t) is omitted and ∆t

is replaced by

E [Γ1] =
1

a1

=
1

p0 + p1 + p2

,
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and for p(2) (j1, j2) we choose the probabilities (4.5) where o (∆t) is omitted

and ∆t is replaced by

E [Γ2] =
1

a2

=
1

p0 + q2

.

Thus, we obtain

p(1) (0, 0) =
p0

p0 + p1 + p2

p(1) (1, 1) =
p1

p0 + p1 + p2

p(1) (2, 0) =
p2

p0 + p1 + p2

,


p(2) (0, 0) =

p0

p0 + q2

p(2) (1, 1) =
q2

p0 + q2

. (4.13)

Remark 32. Note that, according to the Remark 28, we have that

p(2) (1, 0) = p(1) (1, 0) = 0.

Remark 33. Note that the offspring distributions (4.13) and probabilites

(4.5), (4.6) have the same meaning of the probabilities seen in Table 4.2.

Now, we prove that the offspring distributions (4.13) verify the equation

(1.9). Let f (1) (s1, s2) and f (2) (s1, s2) be the related generating finctions and

we get

f (1) (s1, s2) =
∑
j1,j2≥0

p(1) (j1, j2) sj11 s
j2
2 =

=
p0

p0 + p1 + p2

+
p1

p0 + p1 + p2

· s1s2 +
p2

p0 + p1 + p2

· s2
1, (4.14)

and

f (2) (s1, s2) =
∑
j1,j2≥0

p(2) (j1, j2) sj11 s
j2
2 =

=
p0

p0 + q2

+
q2

p0 + q2

· s1s2. (4.15)

Now, we see that applying (1.9) to the generating functions (4.14), (4.15),
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we get the elements of the matrix A in (4.12). Thus,

• a1

(
∂f (1)(s1, s2)

∂s1

∣∣∣∣
s1=1,s2=1

− 1

)
=

= (p0 + p1 + p2)

(
p1

p0 + p1 + p2

+
2p2

p0 + p1 + p2

− 1

)
=

= p1 + 2p2 − p0 − p1 − p2 = −p0 + p2 = a11,

• a1

(
∂f (1)(s1, s2)

∂s2

∣∣∣∣
s1=1,s2=1

)
= (p0 + p1 + p2)

(
p1

p0 + p1 + p2

)
=

= p1 = a12,

• a2

(
∂f (2)(s1, s2)

∂s1

∣∣∣∣
s1=1,s2=1

)
= (p0 + q2)

(
q2

p0 + q2

)
= q2 = a21,

• a2

(
∂f (2)(s1, s2)

∂s2

∣∣∣∣
s1=1,s2=1

− 1

)
= (p0 + q2)

(
q2

p0 + q2

− 1

)
=

= (p0 + q2)

(
q2 − p0 − q2

p0 + q2

)
= −p0 = a22.



Chapter 5

µ-GW trees and scaling model

In this Chapter we consider, as in Section 4.1, the phenomenon of the

angiogenesis as a system of two type particles that evolve according to a

multitype Galton-Watson process with discrete time. Moreover, we add a

genealogical structure to the branching process and so we consider a µ-GW

tree, in particular we treat the special cases of the full binary trees and the

full binary trees with survivals (see for more details Section 2.3).

In Section 5.1 we apply the theoretical results about the µ-GW tress seen in

Section 2.1, then we consider also the results about the full binary trees, ex-

posed in Section 2.3. From these results, we show important considerations

about the a.s. finished and the still alive angiogenesis processes, rapresented

by the full binary trees with survivals and and the full binary trees respec-

tively.

In Section 5.2 we propose a scaling model for angiogenesis, such that we can

apply the result of weak convergence seen in Section 2.2. In particular, un-

der the a.s. finite condition, the total period of contour processes related to

a system of n accelerated angiogenesis processes (described by µn-GW trees)

has a normal distribution at the limit n → ∞, i.e. we have informations on

the finiteness of the processes for n→∞.

85
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5.1 Full binary trees and full binary trees with

survivals

In this Section we model the biological process of the angiogenesis as a

µ-GW tree, defined in Section 1.2.2, with the same two-type particles intro-

duced for the discrete time model in Section 4.1 of the Chapter 4, i.e. the

tips and the branches of the blood vessels. The offspring distribution µ is the

binarization of (4.1) in Section 4.1.3, that is, using the notation µ for the off-

spring distribution p(i) (j1, j2) for every i = 1, 2, we simplify the production of

particles (4.1) by not considering p(1) (2, 1) and p(1) (2, 0). Moreover, instead

of the discrete time model, here we give directly the offspring distribution µ

of the two-types particles without passing by the marginal distributions, and

so we have the following offspring distribution
µ(1) (0, 0) = p0

µ(1) (1, 0) = p1

µ(1) (1, 1) = p2

and


µ(2) (0, 0) = q0

µ(2) (0, 1) = q1

µ(2) (1, 1) = q2

, (5.1)

with pi and qi ∈ [0, 1] , i = 0, 1, 2 and
∑

i pi =
∑

i qi = 1. In other words

in this model we will consider the angiogenesis process as a full binary tree

with survivals (see Section 2.3).

Remark 34. Before introducing the model, we recall that the offspring dis-

tribution µ, in the model of the angiogenesis, has the same meaning of the

probabilities in Table 4.2 of Section 4.1.

In this Section we recall all the definitions and results about the µ-GW

trees and the full binary trees with survivals seen in Section 1.2. In particular,

remember that the µ-GW trees are equipped with the type-ordering offspring

(see Defintion 2.1.1) and 2L(i) (∅) is the non-negative integer-valued r.v.

representing the period of the contour process Cτ (s) associated to a full

binary tree τ starting with a type i particle, for every i = 1, 2. Recall also

that in Corollary 2 of Section 2.3.1 we have proved the following theoretical
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classification of a binary tree with survivals τ ,

p0q0 − p2q2 ≥ 0 ⇐⇒ τ is finite a.s. (5.2)

5.1.1 Estimations of Biological Mass and Crossroads

of an Angiogenesis Process

In (5.2) we have recalled that if the product of the probabilites µ(1) (0, 0)

and µ(2) (0, 0) is more or equal to the product of µ(1) (1, 1) and µ(2) (1, 1) then

the process of angiogenesis starting with a new blood vessel (tip) or with a

branch by an existing blood vessel (branch) will stop in a finite time interval

a.s. . Otherwise, the process of angiogenesis will stop in a finite time interval

only with a probability striclky less than 1.

Remark 35. Note that the growth time of an angiogenesis process is equal

to the generations of the full binary tree with survivals corresponding to the

biological process.

Now, in the case of the a.s. finiteness of the angiogenesis process, suppose

that η is the time of extinction of the process (i.e. the last generation of the

tree), then we want to know which are the most representative quantity of

the process. From a picture of a finished process of growth of blood vessels,

the first two natural features that you can note are the total biological mass

produced (BMη) and the number of crossroads of bloos vessels (V Cη). The

total biological mass produced during the process is clearly composed of all

the blood vessels produced and it may represent the dimension of the hy-

pothetical tumor and so also the damege caused by it. The number of the

crossroads of the blood vessels can be used to study the diffusion way of the

process, for example if this number is sufficiently small we know that only

a few blood vessels have grown and so a chemotherapic action may be more

powerful than if there are a large number of crossroads of blood vessels. In

fact, a joint knowledge of these two quantities can be used to distinguish

angiogenesis processes like those in the Figure 5.1.
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In this model, a new branch of a blood vessel is produced only with the

Figure 5.1: Example of two angiogenesis processes that can be distinguished
by the total biological mass produced and the number of the crossroads of
the blood vessels.

profileration probability µ(1) (1, 1), corresponding to the tips that have ex-

actly two children and so the total biological mass produced is equal to the

a.s. finite number of type 1 vertices with two children. On the other hand,

each crossroad of blood vessels corresponds to the profileration probability

µ(2) (1, 1) and so the number of the croosroads of blood vessels is the a.s.

finite number of type 2 vertices with exactly two children.

Here we suppose that the process of the angiogenesis starts from a tip and

that at least one tip has two children (otherwise no blood vessel will be cre-

ated) and so, if we denote with Dη
1 and Dη

2 the r.v. that represent the number

of type 1 and type 2 vertices with two children respectivley at the time η,

the likelihood (2.19) seen in Section 2.3.1 is exactly the joint distribution of

the total biological mass produced and the number of crossroads of the blood

vessels, and so we get

P (Dη
1 = n,Dη

2 = m) = N (n+m,m+ 1) · Pm+1 (1− P )nQn (1−Q)m .
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where n ≥ 1, m ≥ 0 and

P =
p0

p0 + p2

and Q =
q0

q0 + q2

,

and N (·, ·) is a Narayana number (see (2.13) in Section 2.3).

Each tip generates a single tip and we may say that it remains in its own

state with probability p1. Eventually, it will change “its state” (1, 0) by

dying (0, 0) or by creating a branch (1, 1). Conditioned to this event, P is

the probability that a tip dies. The same holds for the branches and so Q

is the probability that a branch dies, conditioned to the change of its own

state.

We set K > 0 the length of the branch created by the growth of a tip, then

we have that

BMη = K ·Dη
1 and V Cη = Dη

2 .

From the theory of the Maximum-Likelihood Estimation (MLE) and the

equations (2.20) in Section 2.3.1, if we know the values of BMη and V Cη

of an a.s. finite process of angiogenesis modeled with a full binary tree with

survivals, then the maximum-likelihood estimators of the parameter P and

Q are the following quantitites

P̂ =
V Cη + 1

V Cη + 1 +
BMη

K

=
K · (V Cη + 1)

K · (V Cη + 1) +BMη

,

and

Q̂ =

BMη

K

V Cη +
BMη

K

=
BMη

K · V Cη +BMη

.

5.1.2 Estimations on still alive Full Binary Trees

Now we want to consider the case in which we investigate the growth of

the angiogenesis process in a generic time M . To further simplify this study,

we consider only the process of angiogenesis modeled on the full binary trees,
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i.e. µ(1) (1, 0) = µ(2) (0, 1) = 0. From the result (2.29) in Section 2.3.3, we

can compute a lower and an upper estimation of the probability to have a

process of angiogenesis, starting from a new blood vessel, in a generic time

M , denoted with PM .

∑
k≥2M−1

p0p
k
2q
k
0

(
2F1

(
1− k,−k; 2;

p0q2

p2q0

))
≤ PM ≤

∑
k≥M

p0p
k
2q
k
0

(
2F1

(
1− k,−k; 2;

p0q2

p2q0

))
.

where

2F1 (a, b; c; d) =
∑
n≥0

(a)n (b)n
(c)n

· z
n

n!
,

with

(q)n =

1, n = 0

q (q + 1) · · · (q + n− 1) , n > 0
,

is the hypergeometric function, defined for |z| < 1.

In the case fo the full binary trees the condition |z| < 1 is equal to p2 > q2,

indeed we have

p0q2

p2q0

< 1⇒ p0q2 < p2q0 ⇒ (1− p2) q2 < (1− q2) p2 ⇒ q2 < p2.

Rememebr that the a.s. finiteness condition for the full binary trees with

survivals p0q0− p2q2 ≥ 0 is more simple in the case without survivals, indeed

it becomes

0 ≤ p0q0 − p2q2 = (1− p2) (1− q2)− p2q2 = 1− p2 − q2 + p2q2 − p2q2

=⇒ p2 + q2 ≤ 1.

So, by combining the inequalities q2 < p2 and p2 +q2 ≤ 1, we obtain the final

parameters condition to get the upper and lower estimation of the probability
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that a process of angiogenesis is growing at the time M ,p2 > q2, 0 < p2 < 1/2

p2 ≤ q0, 1/2 ≤ p2 ≤ 1
,

where p0 + p2 = 1, q0 + q2 = 1.

5.2 Scaling Model

Here, starting with the model of the full binary trees with survivals seen

in the previous Section, we consider the scaling exposed in Section 1.3.2. In

particular at the n-th step of the scaling each particles has “mass” equal to

1/n and they produces other particles, according to an offspring distribution

µn, at time intervals equal to 1/n. Because for us an agiogenesis process

starts with a new blood vessel (i.e. from a tip), from the Remark 13 in Sec-

tion 1.3.2, we know that a the n-th step of the scaling, for t = 0, we have n

tips (with “mass” equal to 1/n). The scaled offspring distribution µn we use

is the following
µ

(1)
n (0, 0) = pn0 = (1−p)W1

nα

µ
(1)
n (1, 0) = pn1 = 1− W1

nα

µ
(1)
n (1, 1) = pn2 = pW1

nα

and


µ

(2)
n (0, 0) = qn0 = (1−q)W2

nα

µ
(2)
n (0, 1) = qn1 = 1− W2

nα

µ
(2)
n (1, 1) = qn2 = qW2

nα

, (5.3)

where p, q ∈ (0, 1) ,W1,W2 ∈ (0, 1) and α ≥ 1, n ≥ 1.

Before giving the results of this model, we explain the reason of such a choice

of µn and the meaning of the parameters p, q, W1, W2 and α. At first we

have searched a scaled offspring ditribution such that the conditions (1.15) of

Section 1.3.2 hold, in such a way we know that the random measures defined

in (1.16) converge to a superprocess.

The offspring distribution we have considered is the following
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µ

(1)
n (0, 0) = (1−p)W1

n

µ
(1)
n (1, 0) = 1− W1

n

µ
(1)
n (1, 1) = pW1

n

and


µ

(2)
n (0, 0) = (1−q)W2

n

µ
(2)
n (0, 1) = 1− W2

n

µ
(2)
n (1, 1) = qW2

n

, (5.4)

where p, q ∈ (0, 1), W1, W2 ∈ (0, 1) and n ≥ 1.

Remark 36. The offspring distributions (5.3) and (5.4), in the angiogenesis

process, have the same meaning of the probabilities seen in Tables 4.2 of the

Section 4.1 in Chapter 4.

We have defined the probabilities µ
(1)
n (1, 0) and µ

(2)
n (0, 1) to approximate

at the limit n→∞ a time continuous process, indeed for every i = 1, 2, we

have that (
1− Wi

n

)n
is the probability that a type i particle survives in the unit interval time

according to the offspring distribution (5.4), and so at the limit n → ∞ we

obtain

lim
n→∞

(
1− Wi

n

)n
= e−Wi .

Now, remembering the defintions (4.4) of the lifetimes Γ1, Γ2, if we consider

W1 and W2 the exponential parameters of the distributions of Γ1, Γ2, we

have that the probability that a type i particle survives in the unit interval

time according to the defintions (4.4) is equal to

P (Γi ≥ 1) =

∫ ∞
1

Wi · e−Witdt = e−Wi .

Thus, the paramters W1, W2 can be defined as the survival parameters, and

moreover we have the following estimations of the probability that a type i

particles, at the limit n→∞, may survive in a unit time interval, for every

i = 1, 2,

e−Wi −→
Wi→0+

1,
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and

e−Wi −→
Wi→1−

1

e
∼ 0.37.

From the biological point of view, the parameters W1 and W2 indicate the

strength of the angiogenesis process to the chemoterapic actions. Moreover,

p, q can be seen has a sort of parameters that estimate the probability of

death-proliferation of the process.

Now, using the notation h = n and p
(i)
n (j ) = µ

(i)
n (j ), we check that the

offspring distribution (5.4) satisfies the conditions (1.15),

m
n,(1)
1 (1) = µ(1)

n (1, 0) + µ(1)
n (1, 1) = 1 +

pW1 −W1

n
,

m
n,(1)
1 (2) = µ(1)

n (1, 1) =
pW1

n
,

m
n,(1)
2 (1) = µ(2)

n (1, 1) =
qW2

n
,

m
n,(1)
2 (2) = µ(2)

n (0, 1) + µ(2)
n (1, 1) = 1 +

qW2 −W2

n
,

and

lim
n→∞

m
n,(2)
1 (1, 1) = 0,

lim
n→∞

m
n,(2)
1 (1, 2) = lim

n→∞
µ(1) (1, 1) = lim

n→∞

pW1

n
= 0,

lim
n→∞

m
n,(2)
1 (2, 1) = lim

n→∞
µ(1) (1, 1) = lim

n→∞

pW1

n
= 0,

lim
n→∞

m
n,(2)
1 (2, 2) = 0,

lim
n→∞

m
n,(2)
2 (1, 1) = 0,

lim
n→∞

m
n,(2)
2 (1, 2) = lim

n→∞
µ(2) (1, 1) = lim

n→∞

qW2

n
= 0,

lim
n→∞

m
n,(2)
2 (2, 1) = lim

n→∞
µ(2) (1, 1) = lim

n→∞

qW2

n
= 0,

lim
n→∞

m
n,(2)
2 (2, 2) = 0,
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and finally it’s easy to see that

m
n,(3)
1 (k, l, h) = m

n,(3)
2 (k, l, h) = 0, ∀ k, l, n = 1, 2.

Then, the offspring distribution µn in (5.3), that we shall call α-scaled off-

spring distribution, is a generalization of the (5.4). A priori, we don’t know

anything about a convergence result to the superprocesses (maybe, even the

conditions (1.15) have to be generalized), but we can prove here that µn

satisfies the assumptions of the Theorem 2.2.1 of Section 2.2. Indeed, in the

next lemma we see that the hypothesis 1 of the Theorem (2.2.1) holds.

Lemma 5.2.1. Let Xn = 2L
(1)
n (∅) and Yn = 2L

(2)
n (∅) be respectively the

period of the contour process of a full binary tree at the n-th step of the scaling

and let µn defined in (5.3) be the offspring distribution. If pn0q
n
0 > pn2q

n
2 then

E [Xn] = 2

(
pW1 + (1− q)W2

(1− p− q)W1W2

nα − 1

)
E [Yn] = 2

(
qW2 + (1− p)W1

(1− p− q)W1W2

nα − 1

) (5.5)

and
V ar [Xn] = K1 · n2α +K2 · nα

V ar [Yn] = H1 · n2α +H2 · nα

where

K1 =
−4p (2− 2q − 3p+ 3pq + p2)W 2

1 + 8 (q − 1) (1 + q − p) pW1W2

(p+ q − 1)3W 2
1W

2
2

+
4 (q − 1)

(
(q − 1)2 + (3q − 1) p

)
W 2

2

(p+ q − 1)3W 2
1W

2
2

> 0, (5.6)

K2 =
4 (pW1 +W2 − qW2)

(−1 + p+ q)W1W2

, (5.7)

H1 =
−4q (2− 2p− 3q + 3pq + q2)W 2

2 + 8 (p− 1) (1 + p− q) qW1W2

(p+ q − 1)3W 2
1W

2
2

+

+
4 (p− 1)

(
(p− 1)2 + (3p− 1) q

)
W 2

1

(p+ q − 1)3W 2
1W

2
2

> 0,
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H2 =
4 (qW2 +W1 − pW1)

(−1 + p+ q)W1W2

.

Proof. At first, note that we have

pn0q
n
0 > pn2q

n
2 =⇒ (1− p)W1

nα
· (1− q)W2

nα
>
pW1

nα
· qW2

nα

=⇒ (1− p) (1− q) > pq

=⇒ 1− p− q > 0.

Define F1,n (s) = E
[
es·Xn

]
and F2,n (s) = E

[
es·Yn

]
respectively the moment-

generating functions of 2L
(1)
n (∅) and 2L

(2)
n (∅). Thus, from the Theorem

2.1.3 we have thatF1,n (s) = pn0 + pn1 · e2sF1,n (s) + pn2 · e4s · F1,n (s) · F2,n (s)

F2,n (s) = qn0 + qn1 · e2sF2,n (s) + qn2 · e4s · F1,n (s) · F2,n (s)
(5.8)

Denoting
dFi,n (s)

ds
= F

′

i,n (s) , ∀ i = 1, 2,

we get the following systemF
′
1,n (0) = pn1

(
2 + F

′
1,n (0)

)
+ pn2

(
4 + F

′
1,n (0) + F

′
2,n (0)

)
F
′
2,n (0) = qn1

(
2 + F

′
2,n (0)

)
+ qn2

(
4 + F

′
1,n (0) + F

′
2,n (0)

) .

Then, remembering that

dFi,n (s)

ds

∣∣∣∣
s=0

= F
′

i,n (0) = E [Xn] , ∀ i = 1, 2,

we obtain E [Xn] = pn1 (2 + E [Xn]) + pn2 (4 + E [Xn] + E [Yn])

E [Yn] = qn1 (2 + E [Yn]) + qn2 (4 + E [Xn] + E [Yn])



5.2 Scaling Model 96

=⇒


E [Xn] = 2

(
pW1 + (1− q)W2

(1− p− q)W1W2

nα − 1

)
E [Yn] = 2

(
qW2 + (1− p)W1

(1− p− q)W1W2

nα − 1

) (5.9)

Moreover, from the system (5.8) we have that

F
′′

1,n (0) = pn1

(
4 + 4F

′

1,n (0) + F
′′

1,n (0)
)

+ pn2

(
16 + 8F

′

1,n (0) + 8F
′

2,n (0) + 2F
′

1,n (0)F
′

2,n (0)
)

+ pn2

(
F
′′

1,n (0) + F
′′

2,n (0)
)

F
′′

2,n (0) = qn1

(
4 + 4F

′

2,n (0) + F
′′

2,n (0)
)

+ qn2

(
16 + 8F

′

1,n (0) + 8F
′

2,n (0) + 2F
′

1,n (0)F
′

2,n (0)
)

+ qn2

(
F
′′

1,n (0) + F
′′

2,n (0)
)

and from the values (5.9) we have thatF
′′
1,n (0) = 4 + nα · C1 + n2α ·D1

F
′′
2,n (0) = 4 + nα · C2 + n2α ·D2

,

where

C1 =
12 (pW1 +W2 − qW2)

(−1 + p+ q)W1W2

,

D1 =
8 (−1 + q) ((1− p) pW 2

1 + 2 (1− p) pW1W2)

(−1 + p+ q)3W 2
1W

2
2

+
8 (−1 + q)

(
(−1 + q)2 + p (−1 + 2q)

)
W 2

2

(−1 + p+ q)3W 2
1W

2
2

,

C2 =
12 (W1 + qW2 − pW1)

(−1 + p+ q)W1W2

,

D2 =
8 (−1 + p)

(
(−1 + p)2 + (−1 + 2p) q

)
W 2

1

(−1 + p+ q)3W 2
1W

2
2

+
8 (−1 + p) (2 (1− q) qW1W2 + (1− q) qW 2

2 )

(−1 + p+ q)3W 2
1W

2
2

.
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Then, remembering that

d2Fi,n (s)

ds2

∣∣∣∣
s=0

= F
′′

i,n (0) = E
[
X2
n

]
, ∀ i = 1, 2,

and that V ar [Xn] = F
′′
1,n (0)− E [Xn]2

V ar [Yn] = F
′′
2,n (0)− E [Yn]2

,

from the values (5.9), we obtain the (5.5).

Moreover, the constants K1 and H1 are strictly positive with the condition

p + q < 1. We prove that K1 > 0, for H1 > 0 the proof is the same. The

idea is to consider K1 as the sum of the following three quantites K11, K12

and K13

K11 :=
−4p (2− 2q − 3p+ 3pq + p2)W 2

1

(p+ q − 1)3W 2
1W

2
2

,

K12 :=
8 (q − 1) (1 + q − p) pW1W2

(p+ q − 1)3W 2
1W

2
2

,

and

K13 :=
4 (q − 1)

(
(q − 1)2 + (3q − 1) p

)
W 2

2

(p+ q − 1)3W 2
1W

2
2

,

and then to verify that are all strictly positive. We begin proving that

K11 > 0.

From the defintions of the parameters p, q, W1, W2 ∈ (0, 1) and the condition

p+ q < 1, we have that

−4p < 0,

and

(p+ q − 1)3 < 0,
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and so it is equal to prove that

2− 2q − 3p+ 3pq + p2 > 0, ∀ p, q ∈ (0, 1) .

We have that

2− 2q − 3p+ 3pq + p2 = 2 (1− q) + p (p− 3 + 3q) =

= 2 (1− q) + p (p+ q − 1) + 2p (q − 1) ,

and so, noting that p+ q − 1 < 0 and q − 1 < 0, we get

2− 2q − 3p+ 3pq + p2 > 0

2 (1− q) > p (1− p− q) + 2p (1− q)

2 (1− q) (1− p) > p (1− p− q)

2 (1− q) (1− p) > p (1− p− q + pq − pq)

2 (1− q) (1− p) > p (1− p− q + pq)− p2q

2 (1− q) (1− p) > p (1− q) (1− p)− p2q

(1− q) (1− p) (2− p) > −p2q,

and it holds for every p, q ∈ (0, 1).

Now we prove that

K12 > 0.

This is much easier that K11, because, from the defintions of the parameters

p, q, W1, W2 ∈ (0, 1) and the condition p+ q < 1, we have that

q − 1 < 0,

(p+ q − 1)3 < 0,

and

pW1W2 > 0,
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and so it is equal to prove that

1 + q − p > 0,

but it is always true for every p, q ∈ (0, 1).

Finally we have to prove that

K13 > 0.

From the defintions of the parameters p, q, W1, W2 ∈ (0, 1) and the condition

p+ q < 1, we have that

q − 1 < 0,

and

(p+ q − 1)3 < 0,

and so it is equal to prove that

(q − 1)2 + (3q − 1) p > 0.

We have that

(q − 1)2 + (3q − 1) p = (q − 1)2 + (2q + q − 1) p

= (q − 1)2 + p (q − 1) + 2pq = (q − 1) (q − 1 + p) + 2pq.

From the defintion of q and the condition p+ q < 1, we have that q− 1 < 0,

and q − 1 + p < 0, thus, we have that

(q − 1)2 + (3q − 1) p = (q − 1) (q − 1 + p) + 2pq > 0.
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So, we obtain that

K1 = K11 +K12 +K13 > 0.

Now, from Lemma 5.2.1, we can apply the weak-convergence Theorem

2.2.1 in the Section 2.2 to the full binary trees with offspring distribution µn

at the step n of the scaling. Because in our model the angiogenesis process

starts with the growth of a new blood vessel, in the next Theorem we show

the weak convergence to a normal distribution of the period of the contour

process of a full binary tree with survivals, with offspring distribution µn,

starting with a type 1 particle and the period is appropriately scaled.

Theorem 5.2.2. Consider a full binary tree with survivals at the n-th step

of the scaling, with offspring distribution µn, defined in (5.3). As in the

Lemma 5.2.1, we use the following notation

Xn = 2L(1)
n (∅) , Yn = 2L(2)

n (∅) .

Moreover, consider (Xn,j)j≥0 i.i.d. copies of Xn.

If pn0q
n
0 > pn2q

n
2 then

Z(1)
n

d−→ N (0, K1) , n→ +∞,

where K1 > 0 is the parameter defined in (5.6) in Lemma 5.2.1, and

Z(1)
n = n

1
2

[
n∑
j=1

(
Xn,j

nα+1

)
− 2

(
pW1 + (1− q)W2

(1− p− q)W1W2

)
− 2

nα+1

]
.

Proof. The idea is to apply the Theorem 2.2.1 when r = 2, i = 1 and the

offspring distribution is µn (5.3). From the Lemma 5.2.1, at the n-th step of

the scaling, we have that if pn0q
n
0 > pn2q

n
2 (i.e. p+ q < 1) then

E [Xn] = 2

(
pW1 + (1− q)W2

(1− p− q)W1W2

− 1

)
,
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and

V ar [Xn] = K1 · n2α +K2 · nα,

where p, q ∈ (0, 1), W1,W2 ∈ (0, 1), α ≥ 1 and the parameters K1, K2 are

defined from (5.6) and (5.7) respectively in the Lemma 5.2.1. Thus, the

condition 1 of the Theorem 2.2.1 is satisfied for Xn, where

A1 = 2 · pW1 + (1− q)W2

(1− p− q)W1W2

, B1 = K1, γ = 2 · α.

For the condition 2 of the same theorem we have to prove that

∃ δ > 0 such that E
[
|Xn − E [Xn]|2+δ

]
= o

(
n
δ+2α(2+δ)

2

)
. (5.10)

In general the system (5.8) has two solutions, but from the Corollary 2 we

know that if pn0q
n
0 > pn2q

n
2 then there’s only one solution (the one such that

F1,n (0−) = F2,n (0−) = 1):

F1,n (s) =
1

2e4s (−1 + e2spn1 ) qn2
·
((
pn1e

2s − 1
) (

1− qn1 e2s
)

+ e4s (pn2q
n
0 − pn0qn2 )

+
[((

1− pn1e2s
) (

1− qn1 e2s
)
− e4s (pn2q

n
0 − pn0qn2 )

)2

−4qn2 p
n
0e

4s
(
1− pn1e2s

) (
1− qn1 e2s

)]1/2)
,

F2,n (s) =
1

2e4s (−1 + e2sqn1 ) pn2
·
((
qn1 e

2s − 1
) (

1− pn1e2s
)

+ e4s (qn2 p
n
0 − qn0 pn2 )

+
[((

1− qn1 e2s
) (

1− pn1e2s
)
− e4s (qn2 p

n
0 − qn0 pn2 )

)2

−4pn2q
n
0 e

4s
(
1− qn1 e2s

) (
1− pn1e2s

)]1/2)
.

Note that

E
[
es·(Xn−E[Xn])

]
= F1,n (s) · e−s·E[Xn],

and so we can write

E
[
(Xn − E (Xn))4] =

d4

ds4

(
E
[
es·(Xn−E[Xn])

])∣∣∣∣
s=0

=
d4

ds4

(
F1,n (s) · e−s·E[Xn]

)∣∣∣∣
s=0

.
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The computation of the quantity

d4

ds4

(
F1,n (s) · e−s·E[Xn]

)∣∣∣∣
s=0

(5.11)

is very laborious and so, using the computational software program Wolfram

Mathematica (see Appendix A), we have that the maximum power with

which n appears in the expanded form of the expression (5.11) is 4α.

So we can conclude that the maximum degree of n of the following expression

E
[
|Xn − E (Xn)|4

]
= E

[
(Xn − E (Xn))4]

is 4α, and so for δ = 2 the condition (5.10) is verified, indeed

n4α = o
(
n

2+2α(2+2)
2

)
= o

(
n1+4α

)
.

Thus we can apply the Theorem 2.2.1 and, remebering that γ = 2 · α, we

have that

Z(1)
n

d−→ N (0, K1) , n→ +∞,

where K1 > 0 is the parameter defined in (5.6) in the Lemma 5.2.1, and

Z(1)
n = n

1
2

[
n∑
j=1

(
Xn,j

nα+1

)
− 2

(
pW1 + (1− q)W2

(1− p− q)W1W2

)
− 2

nα+1

]



Conclusions and further

perspectives

Essentially this work is a step through the statistical study of multi-

type Galton-Watson trees, in particular the full binary trees with two-type

vertices. Our main purpose has been to get informations of the offspring

distribution µ of the trees and important results have been proved, like the

characterization of the moment-generating function of the contour process

related to the full binary trees and the likelihood of the number of left and

right fathers of such trees. It is interesting to recall that we have found some

particular and interesting relations between arguments of Combinatorics (the

Narayana numbers and the two-dimensional decompositions of intgers) and

the full binary trees. Moreover, in this work has been shown also a scaling

limit result, i.e. we have proved the weak convergence of the period of the

contour process related to a full binary tree to a normal distribution.

As applications of this investigation, we have proposed also parametrical

models for the angiogenesis process. The main idea has been modelling

the process with a two-type Galton-Watson process, both in discrete and

continuous time case. Then, for more completeness, we have also considered

models based on the full binary trees with two-type vertices and so we could

use previous theoretical results.

A basic request that we have done through this work is the homogeneity

of the offspring distribution µ of the full binary trees. In other words, in the

models proposed it is equal to say that the branching of the blood vessels
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has the same distribution during the angiogenic process.

A further extension may be the use of a non-homogeneous offspring distri-

bution µ

µ = µ (t) , ∀t ≥ 0,

i.e. the offspring distribution (5.1) may be replaced with the following one
µ

(1)
t (0, 0) = p0 (t)

µ
(1)
t (1, 0) = p1 (t)

µ
(1)
t (1, 1) = p2 (t)

and


µ

(2)
t (0, 0) = q0 (t)

µ
(2)
t (0, 1) = q1 (t)

µ
(2)
t (1, 1) = q2 (t)

,

where ∑
i

pi (t) =
∑
i

qi (t) = 1, ∀t ≥ 0,

and pi (t) , qi (t) ∈ [0, 1] , ∀t ≥ 0.

In this way µ
(i)
t (k, l) is the probability that a type i particle produces respec-

tively k and l type 1 and type 2 particles at the time t ≥ 0, for every i = 1, 2

and k, l.

This choice may be very useful, indeed we can assume that during an an-

giogenic process the branching of the vessels may change its own behavior,

for instance by a chemioterapic action or the own nature of the biological

process. Note that in this case it is crucial the limit t → ∞ and perhaps

some quantities may need to be revised, like the moment-generating function

of the period of the contour process (2.3).

Another further extension may be the use of k-ary trees, with k ≥ 3. It could

be interesting verify and possibly revise the results that we have outlined for

full binary trees, the relations with the Narayana numbers and the decom-

positions of integers. The k-ary trees could be used also for modelling the

angiogenic process, indeed a blood vessel could be seen as union of k-types

particles each of which may produce other particles in acccordance to an
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offspring distribution

µ =
(
µ(1) (j1, . . . , jk) , . . . , µ

(k) (j1, . . . , jk)
)
,

where µ(i) (j1, . . . , jk) is the probability that a type i particles produces j1

type 1 particles,. . ., jk type k particles, for every i = 1, . . . , k and k ≥ 3.



Appendix A

Wolfram Mathematica Code

In accordance to the proof of Theorem 5.2.2, we report the commands of

the computational software program Wolfram Mathematica (see Figure A.1)

that we have used to prove that the maximum degree of n of the expression

(5.11)
d4

ds4

(
F1,n (s) · e−s·E[Xn]

)∣∣∣∣
s=0

is 4α.

In In [1] and Out [1] with F1n [s] we have denoted F1,n (s) when pn0q
n
0 > pn2q

n
2 ,

where p0, p1, p2, q0, q1 and q2 play the rôle of pn0 , pn1 , pn2 , qn0 , qn1 and qn2 .

In In [2] and Out [2] we have verified that F1n [s] is the right solution of the

system (5.8) when pn0q
n
0 > pn2q

n
2 . In In [3], with F [s] we have denoted

F1,n (s) · e−s·E[Xn],

where µ = E [Xn].

Then, in In [4], In [5] and In [6] we have computed in order the quantity

(5.11), we have imposed the condition
∑

i p
n
i =

∑
i q
n
i = 1 and then we have

replaced p0, p1, p2, q0, q1 and q2 with the values of pn0 , pn1 , pn2 , qn0 , qn1 and

qn2 defined in the (5.3). Finally, in In [7] and Out [7], we have computed the

maximum power of n in the simplified quatity (5.11).
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In[1]:= F1n@sD =
1

2 I-1 + ã2 s p1M q2
ã-4 s

J-1 + ã2 s Hp1 + q1L - ã4 s H-p2 q0 + p1 q1 + p0 q2L +

SqrtB-4 ã4 s p0 I-1 + ã2 s p1M I-1 + ã2 s q1M q2 +

I1 - ã2 s Hp1 + q1L + ã4 s H-p2 q0 + p1 q1 + p0 q2LM2FN

Out[1]=
1

2 I-1 + ã2 s p1M q2

ã-4 s J-1 + ã2 s Hp1 + q1L - ã4 s H-p2 q0 + p1 q1 + p0 q2L +- J-4 ã4 s
p0 I-1 + ã2 s

p1M I-1 + ã2 s
q1M q2 +

I1 - ã2 s Hp1 + q1L + ã4 s H-p2 q0 + p1 q1 + p0 q2LM2NN
In[2]:= Assuming@p0 q0 > p2 q2, FullSimplify@

Limit@F1n@sD, s ® 0, Assumptions ® s < 0D �.

8p1 ® 1 - p0 - p2, q1 ® 1 - q0 - q2<DD
Out[2]= 1

In[3]:= F@sD = ã -s Μ F1n@sD
In[4]:= G = D@F@sD, 8s, 4<D �. 8s ® 0<
In[5]:= H = Assuming@p0 q0 > p2 q2,

Simplify@G �. 8p1 ® 1 - p0 - p2, q1 ® 1 - q0 - q2<DD
In[6]:= L = AssumingBΑ ³ 1 && W1 > 0 && W1 < 1 && W2 > 0 &&

W2 < 1 && p > 0 && p < 1 && q > 0 && q < 1, SimplifyB

H �. :p0 ®
W1

nΑ
H1 - pL, p2 ®

W1

nΑ
p, q0 ®

W2

nΑ
H1 - qL,

q2 ®
W2

nΑ
q, Μ ® -2 -

2 nΑ Hp W1 + W2 - q W2L
H-1 + p + qL W1 W2

>FF

In[7]:= Exponent@L, nD
Out[7]= Max@Α, 2 Α, 3 Α, 4 ΑD

Figure A.1: Wolfram Mathematica commands showing that the maximum
degree of n in the expression (5.11) is exactly equal to 4α.
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organisms, N. A. Hill and D.-P. Häder, Journal of Theoretical Biology

(1997) 186, 503-526.

[18] Ising critical exponents on random trees and graphs, S. Dommers, C.
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