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Summary 

 
Introduction. Humans have always tried to move safely and faster in a variety of 

environment, even through the aid of passive tools that help to improve the limits imposed 

by the body characteristics. These means of locomotion, without supplying additional 

mechanical energy, are able to greatly improve the performance exploiting the use of 

muscular force alone. Bicycles are probably the passive tool most known and used in the 

world. The origin of this thesis comes from the interest to increase the knowledge about the 

features of a particular kind of bike: the Recumbent bicycle (RB). It is a high performance 

human powered vehicle where the cyclist is in a reclined position, with the back against a 

backrest. The peculiarity of the RB is that it allows to reach higher speeds than 

Normal/upright bicycles (NB), at the same metabolic power, principally due to aerodynamic 

advantages. Indeed, with the use of particular fairings that improve aerodynamics, these 

vehicles allow to exceed 130 km/h only with muscles power. The change in posture of the 

rider, consequent to the different characteristics and design of the bicycles, alters kinematics 

and energetics of cycling and could also affects muscle-tendon lengths and the operating 

range of the muscles length-tension curves. Despite the interest of the scientific community 

on the topic of cycling, some aspects still need to be investigated, especially with respect to 

the differences between traditional and recumbent bikes, which represent the most 

advanced evolution of that tool. 

Aim. The aim of this work is to analyze and compare the pedalling cycle on both bicycles 

from a biomechanical point of view. Indeed, with a comprehensive description of mechanical 

and metabolic consequences during cycling in both configuration, new vehicles could be 

designed with those technological changes that could increase the performance. Particular 

focus has been posed on the effect of the different position while riding the two bicycles: 

- on the muscle-tendon length of different muscle-tendon unit involved in cycling; 

- on the 3D displacement of the Body Centre of Mass (BCoM); 

- on the mechanical work (in particular the internal and the "additional" external mechanical 

work). 
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Methods. The issues have been investigated both experimentally and trough simulations. 

By using 3D kinematic data and a physical simulation program we measured muscles-tendon 

length, 3D Body Centre of Mass (BCoM) trajectory and its symmetries and the components 

of the total mechanical work necessary to sustain cycling during stationary cycling, at 

different pedalling cadences (50, 70, 90 and 110 rpm). This approach allows to investigate 

the biomechanics of riding the two bicycles both through direct measurements of 

mechanical work and indirect estimation performed with simulation models. 

Results and Discussion. Joint kinematics and muscle-tendon length were analyzed 

with the musculoskeletal modelling software Opensim®. This analysis showed that, 

differently from cadence, the two bicycles caused changes in joint angles and, consequently, 

in muscle-tendon length. As a results in RB, when compared to NB, some muscles are slightly 

stretched while other are shortened, making the propulsive effectiveness impossible to be 

assessed. This work confirms experimentally, for the first time, that the BCoM in cycling 

moves along all three spatial axes, while before this study an elliptical movement in the 

sagittal plane was appreciated only with a 2D simulation. BCoM trajectory, confined in a 15 

mm side cube, changed its orientation maintaining a similar pattern in both configurations, 

with advantages for RB: a smaller additional mechanical external power (on average 16.1 ± 

9.7 W on RB versus 20.3 ± 8.8 W on NB), a greater Symmetry Index on progression axis and 

no differences in the internal mechanical power (ranged from 7.90 W to 65.15 W in NB and 

from 7.25 W to 62.16 W in RB, increasing as function of the rpm).  

Conclusion. Despite the human physiological characteristics have remained almost 

unchanged over the last millennia, performance on bicycles has increased significantly. This 

has been possible thanks to the work of mechanical engineers, exercise physiologists and 

biomechanists. In this thesis the body centre of mass trajectory and the associated 

additional external mechanical work while pedalling on recumbent bicycle has been studied 

experimentally for the first time. It  is  thought  that the development of mechanisms 

reducing additional external power through a further containment of BCoM trajectory, 

together with additional studies on the effectiveness of propulsive muscles could be 

necessary to further refine design and improve performance of RB. 
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Prologue 

 
Humans have looked for ways to increase movement performance since civilization has 

existed and, more generally, they always aspire to save energy also when moving fast in 

order to keep low the energy cost of transport. During my doctoral studies in human 

physiology I focalized my research interest in the field of biomechanics of human locomotion 

and in this part of the thesis I want to briefly describe the work done in the last three years. 

My main project titled "Recumbent vs Upright Bicycles: operative range of propulsive 

muscles, 3D trajectory of Body Centre of Mass and limb mechanical work " is submitted on a 

peer reviewed journal. Chapter one is a general introduction to recumbent bicycles and a 

review of the literature with a general presentation of the main biomechanical variables 

analysed. Chapter two represents the explanation of the methods utilized during the 

experiments. Subjects characteristic, protocol, instrumentation together with modelling 

software utilized be presented in this section. Chapter three shows all the results obtained 

from both experimental trials and simulations. Chapter four explains the data previously 

reported in the two pedalling position and, where possible, compares the experimental 

results with the data that came from the simulations. This thesis ends with the Chapter five 

where final conclusions, limits and future developments  for the work are presented. 

In this study we investigated the mechanisms involved in two different pedalling positions, 

recumbent versus upright, with the aim to provide hints and suggestions to evaluate the 

determinants of the performance, and to refine bicycles in the perspective of design a 

standard model that, for recumbent, has not been found yet. Besides experimental 

kinematic analysis, physical simulation of pedalling cyclist and musculoskeletal modelling 

were exploited here to describe the non-aerodynamic components that affect the total 

mechanical work, the effects on the displacement of the body centre of mass and its 

symmetries, and the range of contraction of different muscle tendon units.  

Another part of my PhD period was spent to study the coordination between breathing 

rhythm and leg movements during running. While quadrupeds generally synchronize 

locomotor and respiratory cycles due to mechanical constraints, humans do not always show 

an alignment of the two frequencies. The aim of that work was to evaluate the locomotor-

respiratory coupling during downhill running, with the hypothesis that the increased impact 
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load of the foot with the ground due to the speed and gradient could affects the breathing 

rhythm, forcing the start of the expiratory cycle in a specific point of the step cycle. 

These two projects are not linked together, for this reason I decided to focus my thesis on 

the first study which involved many aspects of biomechanics of human locomotion. 

Moreover, it allowed me to learn experimental techniques for modelling the human body 

and simulate its interaction and movement with the environment.  
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CHAPTER ONE 

 

Recumbent vs Upright bicycles: a literature review 

 

1.1 Introduction 

Over the course of history, the need to get food, capture prey , escape in case of danger and 

adapt to climate changes forced humans to move faster and economically in all terrestrial 

environments. Generally, animals use different means of locomotion in accordance with the 

habitat in which they live: birds use wings, fish exploit the fins to maximize propulsion in the 

water while terrestrial mammals move using limbs. We can speculate that many animals 

evolved reaching an anatomical structure and a pattern of movement that increase 

maximum speed, allowing them to catch more prey or to escape from predators (Alexander, 

Principles of animal locomotion), but it is not true for all species. However, maximum speed 

of movement is only used in case of need, because the top speed cannot be maintained for a 

prolonged time. Moreover, some animals (and also humans) can adapt their gait to the 

environment by challenging the combination of different locomotion modes while other 

have specialized their motion. Human locomotion is characterized principally by walking and 

running and, in some cases and particular condition, by skipping (a particular gait 

appreciable mostly in children). In many kind of locomotion is appreciable a typical pattern, 

defined by a rhythmic displacement of the body segment necessary to maintains the 

forward progression. In addition, the intelligence of which humans are equipped with 

allowed them to improve their speed of progression and their power even through the aid of 

passive tools. Humans developed a lot of means of transport trough the history but in thesis 

we will analyze only bicycles, a human powered vehicle that do not add extra mechanical 

energy to that generated by our own muscles. Indeed, as with skis (Formenti et al. 2005; 

Formenti & Minetti 2007), wheelchairs (Ardigo` et al. 2005) and halteres (Minetti & Ardigò 

2002) the evolution of the bicycles is an example of one of the external devices that 

improved locomotion capabilities and compensate to certain limitations imposed by the 

human machine. 
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Since its introduction, the invention of bicycle reduced the required metabolic energy 

necessary to sustain locomotion in different ways: 

_ by minimizing the vertical excursion of the body’s centre of mass, most of which is 

supported by the saddle and not by the limbs, allowing muscle power to be exploited mainly 

for propulsion rather than for posture maintenance;  

_ by reducing the speed oscillations because of the wheels; 

_ by allowing muscles to operate in an efficient range of the contraction velocity, because of 

gears, despite of the high progression speed (di Prampero 2000; Minetti et al. 2001). 

Since the Hobby Horse (figure 1) were introduced in 1820s, bicycles consented to move the 

lower limbs more slowly compared to the progression speed, differently from walking and 

running where the foot needs to be repositioned on the ground during each step (Saibene & 

Minetti, 2003). This bicycle consisted in two wooden wheels connected by a wooden beam 

on which a saddle, arm and chest support and a handlebar were fixed.  

 

 

Figure 1. A typical example of Hobby Horse Bicycle.   

 

This means of locomotion, differently from walking and running, supported some of the 

subject's  weight allowing to save energy. Also other advantages occurred during the 

twentieth century. Indeed, in order to increase progression speed the pedals were 

introduced and the rotary movement also contributed to reduce the mechanical work. 

Muscles efficiency was optimized by using gears while rolling resistance and aerodynamic 

drag were reduced with the use of inflated tyres, lower mass and the design of new vehicles 

(Minetti et al. 2001) which also include the Recumbent Bicycle (RB). 
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1.2 History of Recumbent Bicycle 

Recumbent Bicycle is known as that vehicle where the rider is in a laid-back reclined 

position. The comfort advantages over Normal/upright Bicycle (NB) can be summarized in a 

less saddle soreness, neck strain could reduced and visibility increased due to the natural 

forward position of the head that could be further helped by a headrest. It is also assumed 

that the head is in a more protected situation compared to NB if a crash occurs (Wilson et 

al., 1984). Despite the common opinion that it is a recent invention, it was introduced in the 

late 1800s and maintained a reputation as a bicycle built for comfort instead of speed until 

the 1930s, when French inventor Charles Mochet's version began to win races and claim 

speed records against traditional upright bicycles. Indeed, his further supine bicycle named 

"velocar" allows reaching higher speed at the same metabolic power compared to the NB 

principally due to aerodynamic advantages (Gross, Kyle & Malewicki, 1984). Thus, on 1933, 

Francis Faure, while riding the Velocar (Figure 2), broke the 20 year-old hour record of 

44.247 km by going 45.055 km.  

 

Figure 2. The French bicycle racer Francis Faure riding a Mochet “Velocar” recumbent during a 1933 

speed record attempt. 

 

Unfortunately, the record of Faure's created a dispute amongst the Union Cycliste 

Internationale (U.C.I.), the governing body for bicycle races. In February 1934, the U.C.I. 

decided not to validate his record and banned all recumbents and aerodynamic devices from 

official competitions. After the decision if the UCI, the International Human Powered Vehicle 
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Association (IHPVA) was founded. The IHPVA serves as the sanctioning body for new World 

Records in human powered land, water and air vehicles established in accordance with the 

Rules of the IHPVA. It can also act as a sanctioning body for races and other sporting events 

and records in non-stored-fuel land, water and air vehicles. To further these goals, the IHPVA 

organizes and promotes periodic competitions on land, water and in the air. Each year, the 

IHPVA holds or sanctions a human powered speed championships. The principal goal of this 

sporting event is to combine the best in technology and in athletic performance to get the 

fastest and most efficient human powered in different environmental conditions. Moreover 

it is an important moment to showcase ongoing technological development for speed and 

for practical human powered vehicles. The philosophy and policy of the association is to 

stimulate and promote competition and creativity. In order to promote competition and 

creativity, only few and simple restrictions have been created on bicycles design. For this 

reason there is not a single model of RB: this HPV is typically foot-powered, but some 

models use hand-crank in addition to foot pedals. The steering can be positioned above or 

under the seat, with the radius of the wheels that vary from model to model, with the front 

wheel that is generally smaller than the rear.  

Despite the UCI decision and that the best model still remains to be designed, the quest for 

the maximal human speed on land received further impulse with these vehicles and the 

currents records on faired RB (reported in Table 1) exceed 130 km/h for men and 110 km/h  

for women riders, while the top speeds in a full faired NB is just below 83 km/h. 

 

Rider Location Date Competition Speed (km/h) 

Sebastian 
Bowier 

Battle 
Mountain, NV 

09/14/2013 
200 m flying 
start speed trial, 
Men 

133.78 (top 
speed) 

Barbara Buatois 
Battle 
Mountain, NV 

09/15/2010 
200 m flying 
start speed trial 
- Women  

121.81 (top 
speed) 

Sam 
Whittingham 

Romeo, MI 07/19/2009 
1 hour record 
standing start, 
Men 

90.60 (average 
speed) 

Barbara Buatois Romeo, MI 04/07/2007 
1 hour record 
standing start, 
Women 

69.63 (average 
speed) 

Table 1. Currents world speed record on full faired recumbent bicycles on two different categories.  

 

http://www.ihpva.org/hpvarec3.htm#nom01
http://www.ihpva.org/hpvarec3.htm#nom01
http://www.ihpva.org/hpvarec3.htm#nom01
http://www.ihpva.org/hpvarec3.htm#nom02
http://www.ihpva.org/hpvarec3.htm#nom02
http://www.ihpva.org/hpvarec3.htm#nom02
http://www.ihpva.org/hpvarec3.htm#nom27
http://www.ihpva.org/hpvarec3.htm#nom27
http://www.ihpva.org/hpvarec3.htm#nom27
http://www.ihpva.org/hpvarec3.htm#nom26a
http://www.ihpva.org/hpvarec3.htm#nom26a
http://www.ihpva.org/hpvarec3.htm#nom26a
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1.3 Muscle properties 

Human locomotion is allowed by striated muscles, which can be considered the muscles that 

powers locomotion. They are actuators  generating  force which can respond with positive or 

negative work, characterized respectively by concentric or eccentric contraction (Hull & 

Awkins, 1990). A contraction is done when the muscle generate force, but it can be 

concentric (the muscle shortens while under contraction), eccentric (when it lengthens) or 

isometric (when it generate force without changing length). 

 The functional unit of the fibre is the sarcomere, principally formed by protein filaments, 

built up from myosin thick myofibril and actin thin myofibril. The force-length relationship of 

sarcomeres may be explained, to a large degree, by the sliding filament and the cross-bridge 

theories. The first assumes that length changes in sarcomeres, fibres and muscles are 

accomplished by relative sliding of myofilaments. The cross-bridge theory suggests that the 

myosin head has enzymatic properties that allows to hydrolyze ATP into ADP, permitting a 

conformational change allowing the cross bridges to interact with the thin filament of actin 

and pull toward the midpoint of the thick filament. Each cross bridge attach, pull, detach 

with "an action like people pulling in a rope hand over hand" (Alexander Principles of animal 

locomotion). This allows the generation of force. The product of phosphorilation and 

contraction efficiency (respectively 0.6 and 0.5), is named muscle efficiency and can be at 

most 0.3. 

Due to the fact that cross bridges have a limited attachment range, the attachments only 

occur in the actin-myosin overlap zone of a sarcomere (Figure 3). 

 

 

Figure 3. Schematic representation of a sarcomere. 
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The  ability  to  generate  force  depends  on  the length of both the sarcomere and the 

muscle, and is maximum at intermediate length. The active force generated by a maximally 

activated single fiber, is maximal when the filament overlap is optimized and is 

proportionally decreased when overlap is diminished Figure 4. 

 

 

Figure 4. Force-length relationship of frog and human skeletal muscle sarcomere (Adapted from 

Raissier, 1999). 

 

A similar relation can be shown analyzing the whole muscle even if attention must be paid to 

taking into account the bias resulting from the passive force contribution given by the 

muscular elastic components. However, the force/length characteristic of muscle does not 

penalize our daily activities because muscles are naturally built in order to operate along the 

optimal range. Movement is extremely important in animal kingdom, thus force is applied 

through a range of movement and velocity that gives origin to another important 

characteristic of the muscle contraction: the force-velocity relation. The  ability  to  generate  

force  depends  also on the speed at which the muscle shortens: i.e. high contraction speeds 

are associated with low force production and vice versa (Hill, 1938).In sport competition, or 

when speed is a key element to any kind of performance, the capability to produce force 

over time, the power, is often more important than force and also a power-velocity relation 

can be established. Because the power is the product of force and velocity, at the extremes 

of the force-velocity curve the power generated is 0 while its highest value are placed at 
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about 1/3 of the maximum speed of the muscle. Also muscle efficiency, as well muscle force 

and power, depends on the velocity of contraction (Figure 5). Indeed, for a given 

temperature and fibre length, muscle force, power and efficiency are function of the ratio 

between V and Vmax (velocity of shortening and maximal velocity of shortening 

respectively).  

 

 

Figure 5. Muscle Force, Power and Efficiency as function of velocity of contraction. Both Force and 

Velocity are in percent of the maximum. Maximum efficiency is achieved at approximately 20% of 

the maximal shortening velocity (20 % of max), whereas maximal power is developed at 

approximately 30% of max. Adapted from Neptune et al., (2009). 

 

Therefore, when muscles are closer or further to their optimal length, their ability to 

produce force is altered in accordance with the length-tension relationships (Rassier, 1999). 

Because alterations in cycling posture may elicit a favourable change in this relationship, 

allowing for greater force to be produced by a given muscle without additional energy 

expenditure, it is important to investigate how muscle length is altered when aspects of 

cycling are perturbed. The direct measure of the operating length of muscle tendon unit 

during locomotion is difficult to achieve, for this reason they will be estimated in this work 

with the OpenSim musculoskeletal modelling software. 
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1.4 Effect of Posture on Muscle Activity 

In complex movement such in cycling, it is important to understand how the muscles were 

used to generate the forces needed to move the joints in order to generate and direct the 

power from the body to the pedal (Raasch & Zajac, 1999). The functional role of the muscles 

has been investigated in different ways like as EMG, force transducer and through 

computational modelling (Baum & Li, 2003; Brown et al., 1996; Neptune et al., 1997; 

Neptune et al., 2000; Raasch & Zajac, 1999; Raymond, 2005; Sanderson et al., 2006).  

During ‘downstroke’ (from higher to lower position of the pedal), hip, knee and ankle joints 

extend to propel the bicycle, whilst in the recovery phase or ‘upstroke’ (from lower to higher 

position), they flex to pull the pedal back (Raymond 2005) (figure 6). Gregor and Conconi 

(2000) stated that during the recovery phase, the active flexion is useful to reduce the 

resistance and assist the contra-lateral limb in propulsion. In general, is well-accepted that 

uni-articulate muscles serve to generate energy for propulsion, while bi-articulate muscles 

serve to both transfer energy between segments as well as  generate energy (Raymond 

2005).   

 

 

Figure 6. Schematic representation of de pedalling cycle (Adapted from Raymold et al., 2005) 

It is reported that some muscles have a twice function depending on the phase of pedalling 

cycle: i.e. the rectus femoris assisted the hip flexion during the recovery phase, but in the 

propulsive one he is a knee extensor  (Eisner et al., 1999). Hamstrings, that are considered 

knee flexors and have an important role in the recovery phase, are also active during the 

propulsive phase to extend the hip (Gregor et al., 1991).  



15 
 

The study of the muscles coordination in cycling in upright posture has received large 

attention, but it is not the same for recumbent position. Only one study of Hakansson and 

Hull (2005) has investigated the patterns of muscle activation over the crank cycle to 

compare the functional roles of muscles both in upright and recumbent posture. The authors 

reported that, when the crank cycle was adjusted for orientation in the gravity, the 

activation patterns for the two positions were similar.  

 

Figure 7. Mean onset, offset and duration of EMG activity phase indicated by horizontal bars for 10 

lower limb muscles, displayed as function of crank position. TDC, top dead center (0°); BDC, bottom 

dead center (180°). GMax, Gluteus maximus; SM, Semimembranosus; BF, Biceps femoris (long head); 

VM, Vastus medialis; RF, Rectus femoris; VL, Vastus lateralis; GM, Gastrocnemius medialis; GL, 

Gastrocnemius lateralis; SOL, Soleus; TA, Tibialis anterior. Adapted from Dorel et al. 2007. 

When  muscles shorten more quickly or are closer or further to their optimal length, their 

ability to produce force is altered in accordance with the length-tension-velocity 

relationships (Rassier, 1999).  Alterations in cycling posture and technique may elicit a 

favourable change in these relationships, allowing for greater force to be produced by a 

given muscle without additional energy expenditure. Therefore, it is important to investigate 

how muscle length is altered when aspects of cycling are perturbed. Because the direct 

measure of the operating length of muscle tendon unit during locomotion is difficult to 

achieve, they will be estimated with a musculoskeletal modelling software named OpenSim. 
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1.5 Effect of Posture on Performance 

Engineers have principally been based on the bicycles characteristics while designing human 

powered vehicles. But when the minimal aerodynamic drag is reached, which will be the 

position of the riders on the bicycles? To further improve the speed of RB it is necessary to 

find the equilibrium between bicycle aerodynamics and the position of the riders that allows 

to optimize the performance of the human machine. Indeed, by changing the position of the 

subject on a bicycles alters both energetics and biomechanics of pedalling, and the effects of 

different posture in terms of seat tube angle, crank length and seat-to-pedal distance have 

been investigated both in upright (Faria et al., 2005) and recumbent cycling (Too, 1990). As 

reported by the authors, changes in these variables affect kinematics of cycling, joint angles 

and consequently muscle length and muscle moment arm length; therefore also the length-

tension, force-velocity relationship and the efficiency of muscles could be altered. The 

characteristic of a bicycle and the position of the riders could affect the ability of cycle-rider 

system to generate power during pedalling cycle. 

Upright standard position allows greater maximal power output and VO2max compared with 

aero or racing position (where the rider is in a crouched position using handlebars) (Ashe et 

al., 2003; Evangelisti et al., 1995) while in other two studies no differences were founded 

between standard and aero upright posture (Origenes et al., 1993; Hubenig et al., 2011). 

Furthermore the effect of different bicycles characteristics have been widely investigated in 

detail altering seat tube angle (Price & Donne, 1997 ; Silder et al., 2011; Heil et al., 1995; Bisi 

et al., 2012; Diaz et al., 1978), crank length (Inbar et al., 1983; Too & Landwer 2000; Martin 

& Spirduso 2001; Zamparo et al., 2002) and seat height (Price & Donne, 1997; Nordeen-

Snyder, 1977; Shennum & Devries, 1976; Burke & Pruitt,2003; Gregor et al., 1991; Hamley & 

Thomas, 1967). Seat tube angle could alter biomechanical and metabolic responses in both 

aerobic and anaerobic condition in NB (Price & Donne, 1997; Silder et al 2011 ; Heil et al., 

1995; Bisi et al., 2012) and in RB (Diaz et al., 1978), but results in literature are conflicting 

and the optimal seat tube angle remain still to be determined (Faria, 2005).  

Regarding the effect of crank length, it was established that a crank length about 20% of the 

leg length or 41% of the tibia length is optimal for power production (Martin & Spirduso, 

2001). More recently Zamparo et al found a lower VO2 consumption and a greater efficiency 

using a new pedal crank prototype, where the crank length changes as function of crank 

http://www.ncbi.nlm.nih.gov/pubmed?term=Diaz%20FJ%5BAuthor%5D&cauthor=true&cauthor_uid=723514
http://www.ncbi.nlm.nih.gov/pubmed?term=Hamley%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=6050117
http://www.ncbi.nlm.nih.gov/pubmed?term=Thomas%20V%5BAuthor%5D&cauthor=true&cauthor_uid=6050117
http://www.ncbi.nlm.nih.gov/pubmed?term=Diaz%20FJ%5BAuthor%5D&cauthor=true&cauthor_uid=723514
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angle increasing the torque exerted during pushing phase and decreasing the counter torque 

caused by the contra-lateral recovering phase. The difference between new and standard 

pedal crank was present only when the exercise intensities were between 250-300 W 

(Zamparo et al., 2002). The oxygen consumption in cycling is minimized with a seat to pedal 

distance (or seat height) of 100% of trochanteric leg length or at about 105% of symphysis 

pubic height (Burke & Pruitt, 2003) and a decreases in seat to pedal distance is accompanied 

to an increase in quadriceps and hamstring muscle groups activity (Gregor, et al., 1991). A 

value of 109% of symphysis pubis height is optimal for an anaerobic performance (Hamley & 

Thomas, 1967) while a 100% of the trochanteric leg length is recommended for aerobic 

performance (Nordeen-Snyder, 1977). Moreover is recently reported that modifications in 

bicycle setting could affect the racer position and motion during pedalling; also small 

changes in saddle height (2%) affect significantly lower leg kinematics and gross efficiency 

during sub-maximal pedalling (Ferrer-Roca et al., 2014). 

Performance while cycling in recumbent posture is reduced only when the recumbent trunk 

rest angle is 15° or lower (Egana et al., 2010; Egana et al., 2013). Moreover, studies on the 

metabolic effects of different cycling positions stated that the upright posture allows the 

subjects to sustain exercise longer than the supine one (Terkelsen et al., 1999; Leyk et al., 

1994; Egana et al., 2006) with advantages in terms of lactate production and oxygen uptake 

kinetics (Koga et al., 1999; Convertino et al., 1984; Hughson et al., 1991; Leyk et al., 1994). 

This is probably due to the fact that endurance and fatigue during exercise are sensitive to 

the vertical distance between the heart and the active muscles because of the gravitational 

effect acting across the involved muscles (Eiken, 1988; Egana & Green, 2005). 

There are many factors affecting performance during human locomotion and some, like as 

metabolic expenditure, oxygen consumption, and lactate threshold, can be improved 

through physical training. But in modern cycling it is not enough to win a race or to reach 

speed record. As we have just seen, bicycles characteristics and biomechanical aspects 

should be also taken into account because cycling performance depends to various factors, 

each of which may play an important role. 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hamley%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=6050117
http://www.ncbi.nlm.nih.gov/pubmed?term=Thomas%20V%5BAuthor%5D&cauthor=true&cauthor_uid=6050117
http://www.ncbi.nlm.nih.gov/pubmed?term=Nordeen-Snyder%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=895427
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1.6 Body Centre of Mass and Locomotion 

The Body Centre of Mass (BCoM) is a physical imaginary point and can represents a relevant 

gait analysis variable. Indeed, by describing the BCoM it is possible to summarize the whole 

body  movement  and  the  translational  vector  for  the  momentum  of  the  body  mass.  

The  three-dimensional (3D) trajectory of BCoM could represent a sort of ‘locomotor 

signature’ capable to reflect any significant change in the motion pattern and its description 

would summarise the general aspect of the gait and the individual characteristics of 

movement. In order to fully describe and quantify the individual behaviour of the BCoM 

during locomotion, a mathematical method has been recently proposed (Minetti et al., 

2011), allowing to evaluate quantitatively its displacement and the dynamical symmetry 

between right and left steps along the three spatial axes.  

Symmetry received much attention in the last two decades and played an important role in 

legged locomotion. This topic was introduced more than 80 years ago by Lund who showed 

the effects of structural/anatomical asymmetry on lateral drift in human locomotion. Body 

symmetry can be further modulated in sports: depending on the discipline, relevant muscles 

become asymmetrically different (tennis, fencing, throwing, etc.), or they are required to 

reach similar hypertrophy (ice-skating, downhill skiing, front crawl, etc.) on the two sides of 

the sagittal plane. Thus, body changes towards or from symmetry are not just the 

consequence of genetics and laterality, being also caused by specific training protocols. 

Several authors studied symmetry not only in human walking and running (Nardello et al. 

2009; Seminati et al. 2013) but also in cycling (Smak et al., 1999). The analysis of the 

symmetry in cycling has been linked to the possibility to identify an optimal pedalling rate 

which more evenly distributes pedalling forces during pedalling cycle, with the hypothesis to 

reduce the risk of overuse injury (Smak et al., 1999). In this work the analysis of symmetry is 

related to the 3D trajectory of the body centre of mass. The analysis of the BCoM is also 

important to calculate the energies associated with it and to its relatives segments, allowing 

to investigate the mechanical work necessary to move. 
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1.7 Mechanical Work 

Locomotion is the result of coordinated activity of muscles, that exerts force via tendons and 

allows to produce the movement of bones and, consequently, of body segments. More 

generally, all forms of locomotion are linked to the concept of mechanical energy required 

for contraction and relaxation of skeletal muscles and the associated mechanical and 

metabolic energy. The changes of mechanical energy over time (mechanical work) necessary 

to maintain body movement have been extensively studied since the first half of 1900 (Fenn 

1930; Elftman 1939) and is needful for the analysis of the total mechanical work (
totW ) which 

has been classically divided (particularly in legged locomotion) into the mechanical external 

work to raise and accelerate the Body Centre of Mass within the environment, and the 

internal work defined as the work necessary to reciprocally accelerate body segments with 

respect to the BCoM (Cavagna et al., 1964, 1976; Cavagna & Kaneko 1977; Winter, 1979; 

Willems et al., 1995; Minetti and Saibene 1992; Minetti 1998) but it also include the work to 

overcome internal friction in body tissues (Fenn, 1930; Minetti, 2011). This approach is 

based on König’s Theorem, which states that the total kinetic energy of a multisegment body 

is the sum of the kinetic energy of body centre of mass and the kinetic energy (translational 

and rotational) of all the segments relative to the BCoM (Saibene and Minetti 2003). The 

kinematical model has been adapted through the years in an attempt to accurately calculate 

the mechanical work during walking and running (Cavagna e Kaneko 1977; Winter 1979; 

Minetti et al., 1993; Willems et al.,1995). 

In cycling, the external mechanical work (
EXTW ) is referred to the work due to overcome 

rolling and air resistance and the metabolic energy spent against these components were 

studied by Di Prampero and collaborators (1979; Minetti et al., 2001). The mechanical 

external power ( ) in cycling represents the rate of energy applied to the pedal needed 

to win external forces (rolling and air) opposing to movement and is generally measured 

with commercial bicycle power meters (figure 8) such as PowerTap (CycleOps, WI, USA) and 

SRM Powermeter (Powermeter, SRM, Germany). In this work the external power will be 

considered only to check that the same power is reached, at the same pedalling frequency, 

in both bicycles. 

EXTW
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Figure 8. Pictures show two instruments for the measure of the  in cycling, the SRM  

powermeter (a) and the PowerTap (b).  

However, the common belief of the purely translational pattern of the BCoM in cycling was 

suggested not to be the case (Minetti, 2011). Rather, the small BCoM movements described 

an elliptical trajectory in the sagittal plane that could be responsible of a slight additional 

mechanical external work (
*EXTW ) necessary to sustain the periodic lift and acceleration of 

the BCoM, even when pedalling seated on a saddle.  

Particularly, mechanical external work in walking and running, proposed as 
*EXTW  in cycling, 

accounts for the changes in potential (PE) and kinetic (KE) energies of the BCOM with 

respect to the environment (Minetti 2011). The mechanical external work can be divided 

into:  

1.  


*EXTW   : positive mechanical work necessary to raises and accelerates the BCOM 

(Minetti et al., 1993) and corresponding  to  an  increase  in  total  mechanical  energy;  

2.  


*EXTW    : negative mechanical work needed to lowers and  decelerates the  BCOM  

and corresponding to a decrease in total mechanical energy (Minetti  et  al.,  1993). Negative 

work in cycling is represented principally by aerodynamic drag and rolling resistance. 

*EXTW  can be obtained both using dynamometric platforms through direct dynamic, which is 

considered the gold standard, and  cinematographic  data  through the inverse  dynamics. In 

both cases, in order to study the "additional" external mechanical work, is necessary to start 

from the analysis of the BCoM. On this basis we decided to investigate the differences in the 

BCoM trajectories in the two cycling conditions with an experimental and theoretical 

approach. Studies regarding the metabolic equivalent of internal power ( INTW ) focused only 

on upright bicycles (Francescato et al., 1995; Tokui & Hirakoba, 2008). INTW
 
was modelled to 

EXTW
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depend on the third power of the pedalling frequency (di Prampero, et al., 1979; Minetti et 

al., 2001). More recently Capelli et al. (2008) investigated the mechanical efficiency of RB, 

i.e. the ability to convert metabolic energy in mechanical work, by dividing the mechanical 

work per unit of distance and the corresponding cost of locomotion.  They concluded that 

the change of position did not affect muscles efficiency. 

 

1.8 Cost of Transport 

As mentioned above, humans try to move faster and more economically during the course of 

history, even in sport competition. Velocity can be considered the critical measure to 

determinate performance in many sports and it is known that the maximal speed reached 

during locomotion depends primarily on the locomotion modes. Indeed, the world speed 

record achieved in 100 m frontal crawl is about 8 km/h, in running in near to 35 km/h, in 

normal cycling is more than 75 km/h while in full faired RB the velocity of 200 m speed trial 

can exceed 130 km/h. Because the maximal muscular power is similar in all athletes, the 

great difference of velocity is due to the locomotion type and to the metabolic energy spent 

per unit distance covered, a paramemeter introduced by Margaria (1938) and further called 

"cost of transport" (C) (Schmidt-Nielsen, 1972). C can be defined as the quotient of net 

metabolic power divided by speed of progression: 

EQ
s

OVOV
C rest 
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where 
2OV  is the oxygen consumption during exercise and restOV 2

  the oxygen consumed at 

rest. The difference between 
2OV and restOV 2

 is the net metabolic power.  EQ is the energetic 

equivalent related to the respiratory quotient and correspond to the energy burned per litre 

of oxygen consumed, s is the speed of progression. 

It can be considered a parameter that characterises any type of locomotion because the 

velocity during locomotion is related to the rate of energy expenditure (or metabolic power) 

and C according to the following equation: 

C

E
v   
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where v is the velocity (m/s), E is the rate of total energy expenditure (J/s), and C is the 

metabolic cost of locomotion  (J/m)  (di  Prampero, 1986). Applying maximal condition it 

results that, in speed independent locomotion: 

C

E
v max

max   

Because the 
maxE  is similar in all elite athletes in a specific discipline, this relation explain 

why the maximal speed attained (
maxv ) in the different locomotion modes is set by C.  

In the specificity of our research area, enhancements in cycling performance could be 

attained both trough athlete training, that influence 
maxE , and by commercial product 

development, improving  bicycles with a consequent reduction of C. It is well known that the 

C of bicycling (ranged from 0.3 to 4 J/kg/m depending on speed) is lower than walking 

(ranged from 1.5 to 4 J/kg/m depending on speed) and running (4 J/kg/m and speed 

independent) (Figure 9).  

 

Figure 9. Metabolic cost versus progression speed of a typical subject of 70 kg and 175 cm height for 

different gaits: walking (m), race-walking (m*), running (c), cross-country skiing (s), ice skating (p) and 

cycling with racing bicycle in aerodynamic posture (b). Lower line represents non aerodynamic 
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energy cost, upper curves are the total cost of transport. (di Prampero, 1985. La locomozione umana 

su terra, in acqua, in aria. Edi Ermes - Milano 1985). 

The increase of energy associated to the increasing speed during cycling is principally due to 

aerodynamic factor, as results from figure 9. Moreover, the evolution of the bicycles led to a 

progressive decrease of the metabolic cost during the history (Minetti et al., 2001) as shown 

in figure 10, where C is expressed in J/kg/m. Differently to running, cycling and skipping, C 

during walking shows a minimum at intermediate speed, generally the self selected speed, 

which is also called optimal walking speed. It is interesting to note that, similarly to walking, 

also C of the first invented bicycle (i.e. the Hobby Horse) can be empirically described by a 

quadratic equation: this is due to the fact that this kind of bike was not equipped with 

pedals.  

 

 

 

Figure 10. Metabolic cost of transport versus speed for different locomotion: walking, running and 

cycling different bicycle models. Dashed lines represent isometabolic power hyperbolas (power = 

cost X speed) (Wm represent metabolic watt) (Minetti et al., 2001). 
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In addition there is an optimal step frequency at each speed of progression, generally 

corresponding to the freely chosen, which minimize C both in walking (Zarrugh & Radeliffe, 

1978; Zarrugh et al., 1974; Cavagna & Franzetti, 1986) and running (Hogberg, 1952; Kaneko  

et al., 1987; Morgan et al., 1994). It is well known that also in cycling there is an optimal 

pedal frequency, which increases with the mechanical power output, that minimizes C (di 

Prampero 1986). 

Most researches on cycling focused principally on the metabolic aspects of performance, but 

the ability to increasing performances passes through the knowledge of the determinants of 

the energy expenditure of riding a bicycle. Di Prampero was the first investigator to divide 

the energy expenditure of cycling in the metabolic equivalent of the different forms of 

mechanical work done. He split the total external mechanical work into three components: 

the energy spent to overcome rolling resistance and other mechanisms of energy dissipation 

of the bicycle (Wev), the air drag (Wer) and the effect of inclined terrain (Weg). These 

aspects, together with the C of different modes of human locomotion, were investigated in 

depth (di Prampero, 1986). 
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1.9 Aim of the study 

The purpose of this study is to investigate the mechanisms involved in the two different kind 

of pedalling. It is reasonable to assume that the change in posture of the rider affecting 

kinematics and energetics of cycling, could affect muscle-tendon lengths and the operating 

range of the muscles length-tension curves. For this reason we will compute also muscles-

tendon length (MTL) in order to complete our analysis with the hypothesis that different 

cycling posture could be related to different behaviours of the human machine especially in 

term of performance. The 3D displacement of the Body Centre of Mass together with its 

associated energies will be calculated in order to successively evaluate the components of 

the total mechanical work necessary to sustain cycling, with the goal to highlight the 

differences between NB and RB at various cadence and corresponding external power (

). Internal power ( ) will be considered as well as the additional external work rate 

( ) related to the BCoM displacement. 

A whole evaluation of the determinants of the total mechanical work will provide hints and 

suggestions to refine RB in the perspective of design a standard model that, differently from 

NB, has not been reached.  

  

EXTW INTW

*EXTW
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CHAPTER TWO 

 

 

Methods 

 

2.1 Participants 

Four healthy male subjects (age 28.25 ± 2.63 years; body height 1.77 ± 0.06 m; body mass 

66.75 ± 4.11 kg) were recruited. All participants were not professional cyclists and they were 

free from any musculoskeletal injury. The institutional ethics committee of the University of 

Milan had approved all methods and procedures, and subjects, fully informed about the aim 

of the study, gave their written informed consent prior to the start of testing. Sample size 

has been chosen considering that this work consist on preliminary comparison between RB 

and NB and the range of variability of the analyzed parameters still remains to be 

determined. In addition cycling is a constrained stereotyped movement giving origin to a 

repeatable kinematics.  

 

2.2 Experimental set-up and Protocol 

After a period of familiarization with the rhythm imposed by a metronome, monitored also 

with the visual feedback given from the SRM Powermeter, subjects performed one minute 

of pedalling for each of the different cadences (50-70-90-110 rpm) in randomized order on 

NB and RB. In addition, subjects performed one minute of freewheel pedalling in order to 

measure the time course of pedal crank angular velocity at self-selected pedalling frequency. 

Bicycles were stationary placed on rollers and instrumented with an SRM powermeter 

(Powermeter, SRM®, Germany) in order to keep constant the external power for each of the 

four cadences. During each test, subjects had not to balance due to the rolls that prevents 

from bicycles movements (Figure 11). Seat to pedal distance was adjusted to 100% of 

trochanteric leg length in both bicycles.  
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Figure 11. One typical subject during the experimental protocol.   

3D kinematic data were obtained with a motion analysis system with 8 infrared cameras 

(Vicon MX, Oxford Metrics, UK) at a sampling rate of 100 Hz. 35 reflective markers (Ø  =  14  

mm) were positioned on subject's body landmarks according to Plug-In-Gate model like in 

figure 13 (Davis et al., 1991; Kadaba et al., 1990) in order to perform successively 

musculoskeletal modelling and two additional markers were placed in correspondence of 

the right and left greater trochanter for the computation of the BCoM. This protocol allowed 

us to analyze more than 2500 pedalling cycles. 

 

Figure 12. Sagittal view of a acquisition of VICON motion capture system with the plug in gate marker 

set. In This view the two marker in correspondence of the great trochanter, necessary for the BCoM 

analysis, are omitted.  
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Figure 13. This image describes where the Plug-in-Gait markers should be placed on the subject. Here 

only the left side markers are listed, the positioning is similar for the right side. LFHD Left front head; 

RFHD Right front head; LBHD Left back head; RBHD Right back head; LSHO Left shoulder; LELB Left 

elbow; LWRA Left wrist; LWRB Left wrist; LFIN Left fingers; LASI Left ASIS; LPSI Left PSIS;  KNE Left 

knee; LTHI Left thigh; LANK Left ankle; LTIB Left tibia; LTOE Left toe; LHEE Left heel; C7 7th Cervical 

Vertebrae; T10 10th Thoracic Vertebrae; CLAV Clavicle; STRN Sternum; RBAK Right Back. LUPA Left 

upper arm and and LFRA Left forearm were not used.  

Two other markers are not reported here but were attached in correspondence of the great 

trochanter for further analysis. The reference system we used is also reported: x for forward, y for 

lateral and z for vertical direction. 
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2.3 Bicycles technical data 

The experiments were performed with a slyway hyper recumbent bicycle (SlyWay®; Slyway 

Project, Cremona, Italy) whose geometry is reported in Figure 14. Whereas on traditional 

recumbents the seat and back support are close to road level, on this chassis the rider sits 

higher (saddle height is 0.37 m from the ground).  

 

Figure 14. Main dimensions of the recumbent bicycle used during the experiments. Front wheel size 

0.508 m; rear wheel size 0.660 m; wheel base (A): 1.23 m; head tube angle (B): 72°; seat angle (C): 

30°; medium bottom bracket (D): 0.585 m; seat height (E): 0.370 m. 

The experiments while riding a NB were performed with a velo route tribian 300 (B'Twin®; 

Dechatlon) whose geometry is reported in Figure 15. 

 

Figure 15. Main dimensions of the recumbent bicycle used during the experiments. wheel size 0.620 

m. Wheel base (A): 1.42 m; head tube angle (B): 68°; seat tube angle (C): 75°; medium bottom 

bracket (D): 0.30 m; seat height (E): depending on the trochanteric le length of the subjects. 
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2.4 Position of the subjects  

According to the nomenclature proposed in literature (Reiser, Peterson, & Broker, 2002) we 

evaluated the posture of the riders on the bicycles (figure 16). The angle with origin at the 

hip joint, formed by the trunk and the segment connecting the hip joint and the crank, called 

Body Configuration Angle (BC), was, on average, 123° ± 4° in NB and 143° ± 1°in RB. The Hip 

Orientation (HO), the angle of hip joint centre to bottom bracket relative to horizontal, was 

75° ± 0° in NB and 0° ± 1° in RB while the Torso Angle (TA), referred to the angle between 

hip-shoulder segment and the horizontal line passing through the hip joint, was 133° ± 4 in 

NB and 36° ± 2° in RB. Thus, the change in posture in RB is not a homogeneous backward 

rotation of the whole body, resulting (for our bicycle model) a -75º rotation of the lower 

limbs with a further -20º backward rotation of the trunk, with a total range approximately of 

100°. Seat to pedal distance (SPD) was adjusted to 100% of trochanteric le length as 

previously said. In this new bicycle configuration we could expect some changes of operative 

length of muscles crossing the hip joint. 

 

 

 

Figure 16. Geometrical variables describing the position of the riders on a bicycle are reported. HO: 

Hip Orientation; BC: Body Configuration Angle; SPD: seat to pedal distance; TA: Torso Angle. adapted 

from Reiser & Peterson, 1998. 
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2.5 Muscolo-Scheletal Modelling with OpenSim® 

Movement is natural for most of us, it is necessary to meet people, go to work, play sport. 

Opensim® (Simbios, Stanford University) can help scientist allowing them to create very 

accurate human or animal models useful to understand the way they move. It is know that 

each muscle in the body generate a force pooling the bones connected to close together. 

Moreover, when activated, other muscles generate other forces and, consequently, may 

provide movement.  

Using the knowledge of anatomy, physics and physiology it is possible to estimate all the 

forces generated by muscles and their activation and deactivation. In this way it is possible 

to reproduce and study kinetic and kinematics of movement. Opensim is wild used in 

different fields: clinicians may be interested in the diseases that affects muscles, bones and 

nerves making normal activity such running, walking or cycling not so simple. For example, 

some researchers are studying cerebral palsy patients (Steele et al., 2010, 2013) where the 

common movement pattern is called crouch gait, defined as excess flexion or bending of the 

knee joint during walking. The results of this works may help doctors that can analyze this 

gait and evaluate how to intervene. Planning treatment is just one of the application of 

Opensim, indeed it is used in biomechanics research, ergonomic analysis and design, sports 

science,  robotics research, biology, and education.  

In locomotion field it allowed to analyze muscles coordination, forces and function during 

walking (Xiao & Higginson, 2007, 2010; Liu et al., 2008) and running (Hamner et al., 2010). 

Simulating motions may have different objectives, in this study our interest is to analyze the 

cyclist course of motions to evaluate differences between two cycling condition and to lead 

him to better results in competitions. 

Summarizing, OpenSim is an open-source software that enables users to build and analyze 

computer models of the musculoskeletal system and dynamic simulations of movement. In 

this thesis Opensim will be used to create subject-specific models of motion, analyze the 

experimental data captured from the VICON motion capture system and estimate the 

muscle tendon length with a purely kinematic analysis, whose validity is a function of the 

model biofidelity. 
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2.6 Model Scaling 

The first step to do when using Opensim is to alter the anthropometry of the generic model 

so that it matches a particular subject characteristics as closely as possible by using the Scale 

Tool. Scaling can be performed using a combination of two methods: 

- Measurement-based Scaling: the "scale factor" is determined by the relative distance 

between two specified experimental marker (blue marker on figure 17) and the 

corresponding virtual markers (pink marker of figure 17) position. For each body segment, a 

single scale factor is computed using one or more marker pairs. The pairs of markers 

selected for this purpose are presented in figure 18. 

- Manual Scaling: the  scale factor of this kind of scaling is predetermined by the user. This 

methods can be necessary when marker data are not available. 

In addition, the masses of the segments are adjusted so that the total mass of the body 

equals the specified subject mass.  

 

 

Figure 17. The experimental (blue) and virtual (pink) markers  are used to scale the generic model. 
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Figure 18. Pairs of markers used to scale the different body segment of the general model. The 

nomenclature of the different markers is in line with the Plug-In-Gate markerset. 

 

The Scale Tool needs mainly three file to finish the process and generate the scaled model 

(figure 19), and  is essential for getting good results from Inverse Kinematics:  

Subject01_static.trc: "experimental marker" trajectories for a static trial containing several 

seconds of data with the subject posed in a known static position.  

Subject_model.osim: OpenSim musculoskeletal model selected for the experiments. This 

generic model will be scaled to match the subjects anthropometry.  

Subject_markerSet.xml: contain the markerset used in the experimental protocol and 

correspond to the "virtual markers". 

 

Figure 19. Required inputs and output for the Scale Tool.  

 

2.7 Inverse Kinematic 

With the Inverse Kinematics Tools the experimental markers are matched by model markers 

throughout the motion by varying the joint angles (generalized coordinates) through time 

(figure20). This allow to find the coordinate for the model  that  “best  matches” 

experimental marker position and coordinate data recorded during each experimental trial. 

This “best match” is the pose  that minimizes a sum of weighted squared errors of markers 

and/or coordinates. In other words it minimizes the difference between the experimental 
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marker location and the model’s virtual marker locations. Therefore, in each frame of the 

experimental data, the weighted squared error is minimized. 

The operator can differently weight the markers during the weighted least squares 

minimization operation: larger weightings  penalize  errors  for  that  marker  or  coordinate  

more  heavily  and  thus  should match  the  experimental  value  more  closely. For example, 

bony landmarks (i.e. knees, ankles, anterior superior iliac spine) had greater weightings than 

fleshy landmarks (i.e. thighs or calves) because the degree of certainty for correct marker 

placement is higher. When the weighted squared error is minimized, the coordinate values 

which produced this error are reported for the frame. The required inputs and outputs for 

the Inverse Kinematic Tool is reported in figure 21.  

 

Figure 20. The Inverse Kinematic Tool is necessary to build and analyze computer models of the 

musculoskeletal system starting from the experimental markers applied on the subject.  

 

Figure 21. Inverse Kinematic Tool (ik) needs 3 input to be completed: "Subject_scaled_model.osim": 

a subject-specific OpenSim model generated by scaling a generic model with the Scale Tool; 

"Subject_gate.trc": experimental marker trajectories for a trial obtained from our VICON motion 

capture system; "Subject_Setup": a file containing all the settings information for the IK tool, 

including marker weightings (IK tasks). When inverse kinematic tool is completed a motion file 

containing the generalized coordinate trajectories (joint angles and/or translations) will be computed 

" Subject_gate.mot:". 
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The results of Scaling and Inverse Kinematic Tools were evaluated following the guideline of 

OpenSim: maximum marker error and RMS error were always less than 2 and 1 cm 

respectively during the Scaling and less than 4 and 2 cm during the Inverse Kinematic Tools.  

 

2.8 Estimation of Muscle-Tendon Length and Joint Angle 

Muscle–tendon lengths are determined solely by the positions of muscle origins, insertions, 

and any path defining waypoint or wrapping surfaces. That is, it is a purely kinematic 

analysis, whose validity is a function of the model biofidelity. For this reason lower limbs 

muscle-tendon length (MTL) were estimated with the musculoskeletal modelling software 

OpenSim 2.4. (Delp et al., 2007) because this software include a algorithm well-accepted in 

the biomechanics community for computing muscle-tendon length. 

Subject’s body mass together with the 3D markers coordinates of the static trial obtained 

from kinematical recordings were used to match the specific subject's anthropometry and 

scale the Gait2392_Simbody model which includes 23 degrees of freedom and 92 muscle–

tendon units. Successively, the inverse kinematics tool of OpenSim was used to compute 

joint angles of the scaled model that best reproduced subject's motion. For one trial each of 

cycling in NB and RB, approximately 60 s of marker position data were used to drive the 

inverse kinematic analysis. We analyzed the most involved muscle-tendon units (MTU) in 

pedalling cycles: gluteus maximus, vastus lateralis, medialis and intermedius, rectus femoris, 

soleus, medial and lateral gastrocnemius, tibialis anterior, biceps femoris longus and brevis, 

iliacus, psoas. Data where exported in .txt file from the OpenSim plot tool. All MTL were 

computed but, similarly to other studies (Sanderson et al., 2006; Austin et al., 2010) we have 

analyzed only one side. The MTL data presented in this thesis are normalized to the standing 

length (MTL of the same muscle during the static trial, when the subject was in a standing 

position).  

We analyzed different joint angles computed with OpensSim including: lumbar extension, 

lumbar bending, lumbar rotation, hip flexion, hip adduction, knee angle and ankle angle. 

Lumbar extension, bending and rotation are the angle between the pelvis and the trunk.  

The transformation between the pelvic and femoral reference frame is determined by 

successive rotations of the femoral frame about three orthogonal axes fixed in the femoral 
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head. The angle between pelvis and femur frame gives origin to Opensim hip_flexion that 

have a value of zero when the subject is in the anatomical position and ranges from -120 to 

+120 when the leg is extended or flexed respectively. Opensim knee_angle is the angle 

between shank and thigh and ranges from -120 (knee flexed) to +10 (knee extended), while 

Opensim ankle_angle have a value of 0 in neutral position and ranges from -90 (full plantar-

flexion) to +90 (full dorsi-flexion).  

In this work these angles have been changed as proposed in figure 22: Hip Angle was set 

with a value of 180° in standing position and varies from 60° when flexed (60° between 

pelvis and femour and corresponding to a value of -120° when using Opensim hip_flexion) to 

300° (corresponding to a value of +120° when using Opensim hip_flexion) when extended. 

Knee Angle have a value of 180° when extended, 190° in the in model maximal extension 

(hyperextension), and 60° at the model maximal flexion (corresponding respectively to +10° 

and -120° when using Opensim reference values). 

Ankle Angle ranges from 0° (full dorsi flexion) to 180° (full plantar flexion) and is 90° in 

standing position. 

Starting from the data exported from the plot tool, we elaborated a custom program written 

in Labview in order to calculate the maximum, minimum and the range of movement of the 

computed muscles and joint angles.  

 

Figure 22. Joint angle definition proposed in this thesis. In the left side was reported the standing 

position where Hip, Knee and Ankle angle had a value od 180°, 180° and 90° respectively. In the right 

side we reported a different position to show how varying the joint angles. 
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2.9 Body Centre of Mass analysis 

According to previous studies on different locomotion types (Minetti et al.,1993; Minetti et 

al., 2012; Seminati et al., 2013) we selected 18 of the 37 markers in order to detect 12 body 

segments. Their fractional mass, Centre of Mass and the moment of inertia (Winter, 1979) 

were used to determine the 3D position of the BCoM and the linear and angular speed of 

segments at each frame. The trajectory of the BCoM has been described with a Lissajous 

contour, a convoluted loop showing its 3D displacement with respect to the average 

position. This parametric representation of BCoM trajectory allows to obtain closed loops for 

the body centre of mass showing some characteristics typical of the locomotion. Indeed, this 

path describes both its kinematical and dynamical features and was obtained by applying the 

mathematical framework proposed by Minetti et al. (2011) based on Fourier analysis. This 

procedure allows computing also the Symmetry Indices (SI) of the BCoM along the 3 spatial 

axes and they are expected to be equal to 1 in case of perfect symmetry between right and 

left pedalling.  

Starting from the body segments and the 3D position of the BCoM we could evaluate the 

mechanical work done associated to their movement (Wext* and INTW ). To do that, it is 

necessary to calculate the total mechanical energy of the BCoM (TE), which is the sum of the 

potential energy (PE), directly proportional to vertical position of BCoM, and kinetic energy 

(KE), directly proportional to the square of speed. In this work, PE and Kinetic Energy on 

antero-posterior (KEx), vertical (KEz) and medio-lateral (KEy) axes were measured with a 

custom program written in LabView (ver. 8.6 National Instruments) (Minetti, 1998). 

 *EXTW  was computed as the ratio between the sum of positive changes of the total 

mechanical energy (TE=PE+KEx+KEz+KEy) of BCoM (when the speed of progression is 

considered 0) during the pedalling cycle and the time of pedal revolution. Since our subjects 

cycled on rollers their speed of progression was 0, this allowed us study the Wext* of BCoM 

by excluding the velocity. 

INTW
 was calculated as the sum of kinetic linear and angular energies of the segments 

relative to the BCoM (Cavagna & Kaneko 1977; Minetti, 1998) and EXTW  was directly 

measured from the SRM. 
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2.10 Physical simulation of pedalling cyclist 

As previously mentioned, this study is conducted by means of double approach: 

experimental and theoretical. In this paragraph will be presented a dynamical simulation of a 

pedalling cyclist (Working Model 2D, Design Simulation, US). The subject (75 kg body mass) 

was modelled with rectangular segments, with a mass of 51, 7.5 and 4.5 kg respectively for 

trunk, thigh and shank. The first segment represent the Trunk-Head-Arm segment and is 

about the 68% of the total mass (the sum of Total Arm, Head and Neck and Trunk segment 

as reported in table 2). The Thigh and Shank segments are respectively 10 and 6 % of the 

total mass in accordance to the anthropometric data present in literature (DA Winter, 

Biomechanics and Motor Control of Human Movement, 3rd edition) and are connected 

together by frictionless pin joints. The distal portion of the tibias was attached to a chain ring 

where a motor allowed the movement with imposed angular speed corresponding to 50, 70, 

90 and 110 rpm. This simulation allowed us to calculate the velocity and trajectory of BCoM 

in sagittal plane, , INTW  and the angular speed of pedal. The gait cycle started when the 

pedals were perpendicular (in NB) or parallel (in RB) to the ground. 

 

Table 2. In the table are reported different anthropometric characteristics used to model our 

subjects. We relied on data in the second column (Segment Mass / Total Body Mass) to calculate the 

specific mass for each single segment of the pedalling cyclist model. 

*EXTW
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Figure 23 shows all the output of the model that we have analyzed. Clockwise from upper 

left, the output windows show instant values of variables related to: 

- the position of the BCoM 

- the energies associated to the BCoM and the crank 

- the velocity of BCoM 

- the velocity of each segment respect to the velocity of BCoM 

- the power needed to the motor to rotate the system 

- the angular velocity of the crank 

 

 

Figure 23. Working Model Simulation of pedalling cyclist. 
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2.11 Statistical analysis 

To evaluate the effect of different pedalling cadence (independent variable) a one-way 

ANOVA for repeated measures with a post-hoc Bonferroni test was performed on the 

following parameters: BCoM excursion, symmetry indices on tree different spatial axes (SIx, 

SIy, SIz respectively for antero-posterior, medio-lateral and vertical direction), INTW
 

and

*EXTW . The test has been performed both for NB and RB separately. In addition, differences 

between the two bicycles were analyzed using a paired t-test at each of the selected 

cadences for each of the previously listed parameter. With the hypothesis that cadence has 

no effects on MTL, we compared the behaviour of each analysed muscles in the different 

bicycles with a paired t-test without taking into account the different rpm. Statistical 

significance was accepted when p<0.05. 
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CHAPTER THREE 

 

Results 

 

3.1 Joint Angle and Muscle-Tendon Length 

The comparison of hip, knee and ankle angles, averaged for all the pedalling frequencies 

highlights the differences in movement of these joints. hip, knee and ankle joints motion 

during the pedal cycle (from 0° to 360°), together with lumbar bending, are reported in 

figure 24. Full joint extension correspond to an angle of 180° for the first three angles but 

not for lumbar bending.  

 

 

Figure 24. Comparison between Joint angles (°) of the left lower leg and of the trunk over a complete 

crank cycle in NB and RB. In this graphs the black and grey lines represent the average value for all 

the pedalling frequencies.  
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Table 3 indicate maximum (Max), minimum (Min) and range of motion (Exc) of different joint 

for all pedalling cadences and bicycle position. The range of motion of the left ankle (23.1 in 

NB and 36.2 in RB) is lower than heather the left hip (48.2 in NB and 46.9 in RB) and knee 

(78.2 in NB and 81.7 in RB). Similar values are reported also in the right joints. 

 

    50 RPM 70 RPM 90 RPM 110 RPM 

    NB RB NB RB NB RB NB RB 

L_ext 

Max -45.7±8.9 -26.7±3.0 -45.7±9.0 -26.7±4.2 -45.7±8.4 -27.4±4.1 -45.7±11. -27.4±4.4 

Min -46.7±9.1 -27.8±2.0 -46.8±8.9 -27.5±4.3 -46.7±8.1 -28.3±4.5 -46.7±11. -28.3±3.7 

Exc 1.1±0.4 1.1±0.2 1.1±0.5 0.8±0.3 1.0±0.3 0.9±0.2 1.0±0.4 0.8±0.2 

L_bend 

Max 4.2±1.6 6.7±3.5 3.7±1.2 4.0±1.7 4.8±1.3 5.4±1.6 4.8±2.1 5.4±3.4 

Min -5.2±0.6 -5.0±1.8 -6.0±1.2 -5.7±1.9 -6.0±0.9 -6.4±1.7 -6.0±1.1 -6.4±1.4 

Exc 9.5±0.8 11.9±1.1 9.8±0.7 9.8±0.9 10.9±0.5 11.9±0.8 11.4±0.6 13.3±0.9 

L_rot 

Max 1.4±0.6 5.8±3.5 1.5±1.9 2.5±1.9 0.7±0.7 1.7±3.2 0.7±1.5 1.7±2.5 

Min -2.5±2.0 2.9±3.1 -1.9±2.7 0.95±1.9 -2.9±3.3 -0.0±4.6 -2.9±2.5 -0.0±2.2 

Exc 3.9±0.6 2.9±0.5 3.5±0.9 1.6±0.7 3.7±0.4 1.8±0.5 6.7±0.6 2.5±0.5 

Hip L 

Max 142.7±5.8 148.4±3.0 142.1±7.0 148.4±4.9 141.5±6.4 146.6±4.4 141.5±9.1 146.6±3.3 

Min 94.5±6.7 101.5±3.3 94.5±6.3 100.9±4.0 94.5±6.1 100.5±4.6 94.5±7.4 100.2±3.4 

Exc 48.2±4.1 46.9±4.2 47.6±4.1 47.6±3.9 46.9±4.3 46.1±4.0 45.6±4.5 46.3±3.6 

Knee L 

Max 145.8±6.7 151.8±3.3 144.7±8.8 153.4±3.1 143.8±6.3 150.3±3.9 143.8±9.9 150.3±1.5 

Min 66.7±5.1 71.4±2.3 66.5±5.9 71.6±2.5 66.4±5.3 70.6±1.4 66.4±8.9 70.6±1.2 

Exc 79.1±5.6 80.3±5.1 78.2±5.7 81.7±4.7 77.5±5.2 79.7±4.6 77.8±5.6 79.3±5.6 

Ank L 

Max 98.8±2.6 114.1±4.1 102.5±2.8 112.7±3.2 102.9±2.3 112.1±4.1 102.9±2.3 112.1±4.1 

Min 75.7±4.7 77.9±3.5 75.8±3.7 78.6±4.1 74.3±3.5 77.8±4.8 74.3±6.0 77.8±5.0 

Exc 23.1±2.2 36.2±3.5 26.7±2.5 34.1±3.2 28.7±2.8 34.3±3.7 33.9±2.7 34.9±3.2 

Hip R 

Max 144.2±5.9 149.2±2.1 142.9±6.7 148.6±5.2 141.8±5.1 148.2±4.6 141.8±8.6 148.2±3.5 

Min 94.6±7.9 101.6±2.4 94.2±8.4 99.8±5.6 94.1±7.4 100.±3.4 94.1±8.8 100.±2.7 

Exc 49.6±3.4 47.6±3.3 48.7±3.2 48.8±3.6 47.7±3.2 48.2±3.4 48.0±3.3 47.8±3.4 

Knee R 

Max 148.4±5.7 154.3±3.3 146.0±6.8 154.2±3.2 145.0±4.5 153.2±2.9 145.0±9.7 153.2±2.0 

Min 65.9±4.7 70.5±1.7 65.2±5.3 70.5±2.1 65.3±4.1 69.6±2.0 65.3±8.9 69.6±0.9 

Exc 82.6±5.4 83.8±4.8 80.7±5.3 83.8±4.9 79.6±5.6 83.6±4.8 79.7±5.6 82.7±5.8 

Ankle R 

Max 99.1±3.5 115.4±4.0 102.±3.0 114.3±3.3 104.±3.1 114.3±4.9 104.±3.2 114.3±5.1 

Min 75.6±7.0 78.5±4.8 77.0±6.1 80.2±3.3 76.6±3.4 79.2±3.3 76.6±7.0 79.2±3.8 

Exc 23.5±2.3 36.9±3.6 25.2±2.3 34.0±3.2 27.4±2.6 35.1±3.4 32.8±2.5 36.1±3.3 

 

Table 3. Maximum, minimum and range of motion (°) of different joint angle L_ext, lumbar 

extension; L_bend, lumbar bending; L_rot, lumbar rotation; Hip L, left hip angle; Knee L, left knee 

angle; Ankle L, left ankle angle; Hip R, right hip angle; Knee R, right knee angle; Ankle R, right ankle 

angle for both bicycle and all pedalling cadences analyzed. 
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Results regarding MTU estimated with Opensim simulations are reported in term of 

percentage of the standing length (Table 4).  

Normal Bicycle 

MTU Max DS Min DS Excursion DS 

Biceps Femoris Longus 107.0 1.7 102.3 1.0 4.7 0.7 

Biceps Femoris Brevis * 91.9 2.5 76.7 0.7 15.2 2.0 

Gluteus Maximus * 129.2 1.2 116.9 2.3 12.4 1.7 

Iliacus * 85.9 3.0 71.1 1.1 14.7 1.7 

Lateral Gastrocnemius 96.3 1.0 93.4 0.9 2.9 1.2 

Medial Gastrocnemius 96.3 1.1 93.3 1.0 3.0 1.3 

Psoas * 88.9 2.2 77.9 0.9 11.0 1.3 

Rectus Femoris  103.9 1.9 98.5 1.9 5.4 1.0 

Sartorius * 91.7 1.9 77.3 0.7 14.4 1.8 

Semimembranosus 103.9 2.2 97.8 1.0 6.1 0.8 

Semitendinosus 104.5 2.3 98.3 1.0 6.2 0.8 

Soleus * 102.2 1.0 95.8 1.6 6.4 1.5 

Tibialis Antirior * 105.0 1.4 97.6 1.5 7.4 1.3 

Vastus Intermedius * 137.2 2.0 114.6 3.4 22.7 3.7 

Vastus Lateralis * 133.0 1.8 112.8 3.0 20.2 3.2 

Vastus Medialis * 138.2 2.1 114.5 3.3 23.7 3.5 

Recumbent Bicycle 

MTU Max DS Min DS Excursion DS 

Biceps Femoris Longus 106.3 1.2 101.6 1.3 4.7 0.4 

Biceps Femoris Brevis 94.2 1.8 77.1 0.6 17.1 2.0 

Gluteus Maximus 128.2 1.7 114.3 2.4 13.9 1.2 

Iliacus 88.8 2.2 73.4 2.1 15.4 1.3 

Lateral Gastrocnemius 95.6 1.4 92.4 1.7 3.2 1.4 

Medial Gastrocnemius 95.6 1.4 92.3 1.7 3.2 1.4 

Psoas 91.1 1.7 79.6 1.8 11.5 1.0 

Rectus Femoris 104.5 1.5 98.5 1.3 6.0 0.7 

Sartorius 93.7 1.4 79.0 1.3 14.7 1.3 

Semimembranosus 103.9 1.3 97.5 0.9 6.4 0.8 

Semitendinosus 104.4 1.5 97.9 1.1 6.5 0.7 

Soleus 101.5 1.7 93.3 1.5 8.2 1.3 

Tibialis Antirior 107.6 1.4 98.8 0.8 8.8 1.4 

Vastus Intermedius 136.7 1.5 111.5 1.9 25.2 2.4 

Vastus Lateralis 132.5 1.3 110.2 1.6 22.3 2.1 

Vastus Medialis 137.6 1.6 111.5 1.9 26.0 2.4 

Table 4. Maximal and Minimal MTL (% of resting length) reached by different Muscle Tendon Unit 

(MTU) in RB and NB; the difference between maximal and minimal MTL reached is the range of 

contraction of the MTU and is reported as 'excursion'. * indicate significant difference between 

bicycles (p<0.05). 
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The middle point of contraction was also calculated (the average between maximal and 

minimal length reached during pedalling cycles) for each MTL, in order to understand 

whether that muscle was (on average) more elongated or shortened in one of the two 

positions. In RB, when compared to NB, Short Biceps Femoris (+1.3%), Iliacus (+2.6%), soleus 

(+1.6%) and Psoas (+1.9%) were more stretched; Gluteus Maximus (-1.8%), tibialis antirior(-

1.9%) and the three Vasti (-1.8%) were shortened, while other muscles showed no 

differences (table 5).  

 

MTU 
Mean 

NB 
Mean 

RB 
NB-RB 

Biceps Femoris Longus 104.6 104.0 0.7 

Biceps Femoris Brevis * 84.3 85.7 -1.3 

Gluteus Maximus * 123.1 121.2 1.8 

Iliacus * 78.5 81.1 -2.6 

Lateral Gastrocnemius 94.9 94.0 0.9 

Medial Gastrocnemius 94.8 94.0 0.9 

Psoas * 83.4 85.4 -1.9 

Rectus Femoris 101.2 101.5 -0.3 

Sartorius 84.5 86.4 -1.9 

Semimembranosus 100.8 100.7 0.2 

Semitendinosus 101.4 101.1 0.2 

Soleus * 99.0 97.4 1.6 

Tibialis Antirior * 101.3 103.2 -1.9 

Vastus Intermedius * 125.9 124.1 1.8 

Vastus Lateralis * 122.9 121.3 1.6 

Vastus Medialis * 126.4 124.5 1.8 

Table 5. Middle point of contraction reported as mean between Max and Min  % of resting 

length reached by each MTU. 
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3.2 Dynamical Simulation of Pedalling Cyclist 

As mentioned above, the pedalling task was due to the motor activity, but the chain ring 

continued to revolve even when the motor was switched off, showing a passive endless 

dynamics that occurred at fluctuating angular speed of the pedals (detail of Figure 25), in 

agreement with a previous work (Minetti, 2011). In this condition we identified two typical 

limbs configurations named P and λ, where the boundary of the major axis of the ellipse 

described by the BCoM are reached regardless the position of the subject. The analysis of 

freewheel cycling on NB at self selected pedalling cadence showed similarity with Working 

Model (WM) simulation: in the fluctuation of pedal crank angular velocity, higher speed 

values were recorded in P limbs configuration on both cases. 

 

 

Figure 25. Working Model Simulation (WM) of pedalling cyclist on NB with limbs in P (on the left) 

and λ (on the right) configuration. Details regarding BCoM contour (sagittal plane) and velocity of the 

pedal are also appreciable in the left side of the figure. 
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3.3 Body Centre of Mass analysis 

From 2D WM simulation we obtained also results regarding the 2D BCoM trajectory in 

sagittal plane, which described an elliptical profile with different major axis inclinations for 

the two bicycles. A similar behaviour was observed in the real path of the BCoM obtained 

from experimental sessions recordings (Figure 3). When one of the two lower limb segments 

in WorkingModel simulation (WM) is shortened replicating a common asymmetry in human 

body characteristics, the BCoM profile changes his shape (Figure 26A vs Figure 26B). We also 

reported examples of Lissajous contours of the BCoM of a typical subject while pedalling at 

90 RPM on normal and recumbent bicycle (Figure 26D and 26E respectively). 

 

 

Figure 26. BCoM trajectories in the sagittal plane from Working Model symmetrical (A) and 

asymmetrical (B) simulation (one of the two tibia segments was shortened by 15 mm).  The 

experimental contour in the same plane is also reported for a typical subject (C). Boxes D and E 

represent the 3D BCoM trajectories of the same subject respectively in NB (thick black line) and RB 

(thick grey line). Projections of the BCoM on the different planes (thin lines) are shown on the walls 

of the cube (side length 20 mm). The black arrow indicates the progression axis.  
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Even if the 3D BCoM trajectories described different paths for the two bicycles, a greater 

excursion was observed in the medio-lateral (y) axis (compared to the antero-posterior (x) 

and vertical (z), both for NB and RB. However the oscillation in forward direction seems to 

be smaller in NB compared to RB, in which we observed lower oscillation in the vertical axis. 

Volume calculated as the product of the three excursions showed no significant differences 

between bicycles and rpm (Table 6). 

 

NB 

rpm x (mm) y (mm) z (mm) Vol (mm
3
) 

50 8.0 ± 2.9 14.0 ± 3.2 10.0 ± 0.6* 1177.2 ± 694.7 

70 6.8 ± 2.6* 15.0 ± 3.9 11.0 ± 1.1* 1144.8 ± 559.4 

90 5.2 ± 1.3* 15.3 ± 3.8 12.1 ± 1.4 996.9 ± 482.5 

110 5.9 ± 0.7 14.8 ± 6.4 13.4 ± 2.7 1221.2 ± 826 

M 6.5 ± 1.2 14.8 ± 0.5 11.6 ± 1.5 1135.0 ± 97.2 

RB 

rpm x (mm) y (mm) z (mm) Vol (mm
3
) 

50 10.2 ± 1.7 10.7 ± 7.1 6.9 ± 1.9* 830.5 ± 782.7 

70 11.6 ± 1.2* 15.6 ± 5.4 7.8 ± 1.8* 1511.9 ± 949.9 

90 9.0 ± 1.5* 17.5 ± 2.8 10.3 ± 2.4 1651.3 ± 653.5 

110 6.8 ± 2.5 16.8 ± 4.0 12.6 ± 2.8 1533.8 ± 912.8 

M 9.4 ± 2.0 15.1 ± 3.1 9.4 ± 2.6 1381.9 ± 372.6 

Table 6. BCoM excursion (in mm) in three axes and BCoM volume (in mm
3
) on both bicycles ± SD. 

* indicates significant difference between bicycles (p < 0.05). 

 

In figure 27 are presented Symmetry Indices in the three axis as mean ± standard deviation. 

The indices reached the highest value in the vertical axis (0.908 ± 0.046) for both bicycles. On 

the other directions we noticed a different trend for the two pedalling configurations. While 

for the NB the lowest values of symmetries regarded the antero-posterior direction, RB 

showed a minimum in the medio-lateral one. Statistical results also showed some 

differences between bicycles and rpm. 
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Figure 27. SIx (A),SIy (B) and SIz (C) at different rpm. Numbers 1,2,3,4 represent significant 

differences between 50,70,90,110 rpm respectively. * indicates difference between bicycles (p< 0.05). 
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In the following tables we reported the single Symmetry Indices  SIx ,  SIy  and  SIz. Every 

subject has eight different indices, one for each pedalling frequency, for each axes. Statistical 

analysis showed that NB and RB  

 

SIx NB RB 

Sogg 50 70 90 110 50 70 90 110 

S1 0.544 0.608 0.536 0.329 0.737 0.767 0.728 0.635 

S2 0.612 0.478 0.351 0.232 0.666 0.774 0.754 0.785 

S3 0.533 0.482 0.412 0.177 0.747 0.752 0.800 0.730 

S4 0.653 0.608 0.487 0.399 0.519 0.753 0.712 0.445 

MEAN 0.586 0.544 0.446 0.284 0.667 0.762 0.748 0.649 

SD 0.057 0.074 0.081 0.099 0.105 0.011 0.038 0.149 

 

SIy NB RB 

Sogg 50 70 90 110 50 70 90 110 

S1 0.770 0.793 0.785 0.809 0.652 0.719 0.741 0.767 

S2 0.791 0.869 0.792 0.833 0.520 0.675 0.710 0.736 

S3 0.723 0.762 0.788 0.797 0.668 0.642 0.699 0.792 

S4 0.774 0.682 0.682 0.673 0.418 0.579 0.636 0.707 

MEAN 0.765 0.776 0.762 0.778 0.565 0.654 0.696 0.750 

SD 0.029 0.077 0.053 0.072 0.118 0.059 0.044 0.037 

 

SIz NB RB 

Sogg 50 70 90 110 50 70 90 110 

S1 0.916 0.926 0.928 0.882 0.744 0.861 0.944 0.906 

S2 0.929 0.944 0.947 0.955 0.892 0.924 0.918 0.895 

S3 0.924 0.946 0.948 0.936 0.808 0.880 0.931 0.937 

S4 0.907 0.923 0.887 0.906 0.815 0.908 0.941 0.940 

MEAN 0.919 0.935 0.927 0.920 0.815 0.893 0.934 0.919 

SD 0.010 0.012 0.029 0.032 0.061 0.028 0.011 0.022 

 

Table 7. The symmetry indices along antero-posterior, medio-lateral and vertical axis (SIx, SIy, SIz 

respectively), derived from BCoM analysis during pedalling on NB and RB, for every subject and 

pedalling frequency. Also we reported the mean value and the SD for each rpm. 
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In the following two graphs we analysed differences between the symmetry indices in the 

three different directions, (SIx ,  SIy ,  SIz), for both bicycles. Results are presented as mean ± 

standard deviation (SD). 

 

 

Figure 28. SI in function of cadence for the three coordinates divided for the two kinds of bicycle, 

normal and recumbent. 
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3.4 Mechanical work 

As assumed  measured by the SRM for the same target pedalling frequency (RPM) 

could be considered constant, maintaining similar values for the two bicycles with a 

difference always lower than 5% between them (table 8). We have also reported the real 

pedalling frequency (rpm) measured by the instrument. 

 

BICYCLE RPM 
rpm 

 

mean SD mean SD 

NB 50 50 1.1 37 1.7 

NB 70 70 0.8 60 2.1 

NB 90 90 0.3 81 4.2 

NB 110 110 1.4 109 8.4 

RB 50 50 0.2 39 1.5 

RB 70 69 1.2 57 2.5 

RB 90 89 1.3 79 5.6 

RB 110 109 3.1 104 7.2 

Table 8. Real pedalling frequency (rpm) and mechanical external power ( ) at different target 

RPM for both bicycles. 

 

The  mechanical  internal  work  rate  has  been  modeled  for  bipeds  by  Minetti  and 

Saibene (1992), and then extended to quadrupeds (Minetti, 1998) and, more recently, for 

bicycling (Minetti et al., 2001). In our study the mechanical internal work rate, or internal 

power, ranged from 7.90 W to 65.15 W in NB and from 7.25 W to 62.16 W in RB, increasing 

as function of the rpm, with the following regression equation: 

3frmkWINT   

where k had a value of 0.176 and 0.161 respectively for RB and NB, m was the mass of a 

subject in kg and fr was the pedalling frequency in Hz. No significant difference was found 

between bicycles; likewise values obtained from the WM simulation were the same in 

upright (NBWM) and recumbent (RBWM) posture (Figure 29A).  

The additional external mechanical power was always higher in NB compared to RB in both 

real and simulated pedalling task, although we found significant differences between 

bicycles in real condition only at specific cadences (Figure 29B). 

EXTW

EXTW

EXTW
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Figure 29. Mechanical internal (A) and additional external (B) power as function of rpm in both real 

(NB and RB) and simulated (NB WM, RB WM) pedalling task. Numbers 1,2,3,4 indicate significant 

differences between 50,70,90,110 rpm respectively. * indicates significant difference between 

bicycles (p < 0.05). 
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CHAPTER FOUR 

 

Discussion 

 
The purpose of our study was to compare NB and RB through the investigation of the non-

aerodynamic factors affecting performance on both bicycles: MTL changes, BCoM 

trajectories and its symmetries and mechanical work rate. In addition to the comparison 

between the two bikes the effect of pedaling frequency was also analyzed. 

 

4.1 Joint Angle and Muscle-Tendon Length 

With the hypothesis that the change in posture alters joint angle, we analyzed this variable 

by comparing the two bicycles at different rpm. Sanderson et al. (2006) reported that, in a 

group of competitive cyclists, the range of motion at the knee decreases when pedalling 

cadence increases (an increase of 4° from 50 to 110 rpm), while the change in the range of 

motion at the ankle joint was higher (an increase of 10° from 50 to 110 rpm). In contrast to 

that work, we not found any difference due to the pedalling frequency. Our study evaluated 

recreational and not competitive cyclist. Joint angles vary between subjects due to 

anthropometry and pedalling technique but also may vary between the legs of a single 

subject due to anatomical asymmetry of the two legs and to asymmetry in pedalling 

mechanics (Lafortune et al., 1983). Skill level of the cyclist, anatomical differences and 

pedalling technique could be the reasons why no differences in joint angle at different rpm 

were founded in this work. 

Technical data and the position of the riders on the bicycles were reported in method 

section in order to give a general overview of the different posture when using a normal or 

recumbent bicycle. Hip and Knee angles are the included angles between the pelvis and the 

thigh and thigh and shank respectively when the joint is flexed. A full joint extension 

corresponds to 180° for both joints (i.e. when the subject is standing). The ankle angle is 

included between the shank and the foot. The paired T test highlights that different 

configuration due to the different bicycles cause changes in joint angle when riding the two 

bicycles. The comparison of hip, knee and ankle angles in NB and RB, which are plotted in 
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function of crank angle in figure 24, highlights the differences of these joints. By calculating 

the average angle (the mean between all maximum and minimum angles reached during the 

pedalling cycle at different rpm) it results that hip, knee and ankle are more extended in RB 

(+6° on average). 

In addition to the analysis of these three joints, we also evaluated the movements of the 

trunk during the pedal cycle. It is interesting to note that, when left hip joint extends, the 

trunk leans sideways to the right and vice versa (figure 30).  

 

 

Figure 30. Joint angle (°) of the left hip and lumbar bending over a complete crank cycle. Positive 

values of lumbar bending indicate that the trunk is tilted to the right, negative values indicate that 

the trunk is tilted to the left. 

 

The kinematics analysis of the joint angles was the starting point for the analysis of the 

muscle-tendon length changes in both configurations, which was one of the aims of this 

thesis.  Indeed, even if ultrasound can be considered an important tool for the analysis of in 

vivo skeletal muscle architecture in static and dynamic condition, it difficult to use in fast 

movement. For this reason kinematical data collected during pedalling were utilized also to 

estimate the effect of posture on muscle tendon length changes. Muscle-tendon kinematic 

was here obtained via a biomechanical model in conjunction with experimental data which 
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quantify both the position and orientations of body segments during the activity of interest. 

This allowed us to investigate the hypothesis that one of the two pedalling positions could 

be more advantageous than the other because of the range of contraction of different 

muscle-tendon units. It is know that cycling is an activity that involves different muscles: hip 

extensors and flexors, knee extensor and flexors, ankle plantar-flexors and dorsi-flexors. 

However the muscles involved in the pedalling task cannot be classified as propulsive or not: 

i.e. the Biceps Femoris is typically a knee flexor (movement that characterizes the recovery 

phase), but in cycling is active also during the hip extension (typical of the propulsive phase). 

Similar considerations can be made for the Rectus Femoris. 

Since human vastus lateralis, a major knee extensor muscle (Narici et al 1989), works in the 

plateau and descending limb of the force-length relationship during cycling (Austin et al., 

2010; Muraoka et al., 2001) and this muscle was more shortened in RB in our simulation, it 

probably operates nearer its optimal length in RB than NB. For this reason we can speculate 

that recumbent riders take advantage of the plateau region of the Vastus Lateralis force-

length relationship, thus cycling in RB is better from a force-length perspective of this 

muscle. Differently, during upright cycling, medial and lateral gastrocnemius work only in the 

ascending part (Maganaris, 2003), while tibialis anterior and soleus in the ascending and 

plateau region too (Maganaris, 2001). Our results showed that soleus (+1.6%), Lateral 

(+0.9%) and medial gastrocnemius (+0.9%) are, on average, more elongated in the normal 

bicycle, while tibialis antirior is more stretched (+1.9) when pedalling in RB. Comparing our 

data with literature we can speculate that the firsts three muscles are in a better range of 

their force-length relationships in NB while the tibialis antirior is advantaged in RB. 

Unfortunately, data regarding the force-length relationship during cycling in the other 

muscles reported in Table 4 and 5 are not present in literature and we do not know if they 

are working in a portion closer or farther to their optimal length. Although we estimated the 

MTL (the distance between bone insertions of a muscle), this is not enough to simulate the 

muscle force-length behaviour and force velocity-properties, but this analysis could be the 

starting point for further investigations. Indeed, differently from the MTL estimation that 

need only kinematic data (Riley et al., 2010), muscle fibre length could be investigated with a 

forward dynamic analysis (Thelen et al., 2005; Chumanov, Heiderscheit & Thelen, 2007; 

Zajac, 1989), focusing the attention on the most important muscles of cycling. 
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4.2 Body Centre of Mass analysis 

Our experimental data confirmed that BCoM contour described a trajectory similar to an 

ellipse in the sagittal plane (figure 26C), similarly to a simulation of pedalling lower limbs 

(Minetti, 2011) with differences in the major axis inclination between the two bicycles. It 

was more perpendicular to the ground in NB compared to RB and this could explain the 

difference of excursions on x and z axes. 

In this study, the comparison between the two bicycles shows that the BCoM moved inside a 

cube with a side length smaller than 15 mm without significant differences in the two 

bicycles. Indeed the excursion of BCoM was greater in the progression axis in RB compared 

to NB while lower in the vertical one and, consequently, the volume occupied was not 

different (Table 6). In the frontal plane the BCoM trajectory was in the form of a "U" in NB 

(figure 26D) and of an inverted "U" in RB (figure 26E); while in the transverse one a figure of 

"8" was drawn in both bicycles. This means that the trajectory of BCoM is smaller when 

compared to human walking, where it has been widely demonstrated that it moves within a 

cube of  40  mm  side (Whittle, 1977).  

Despite the fact that the excursion of the centre of mass seemed to increase with pedalling 

frequency, no significant difference were found increasing rpm both for NB and RB (Table 1). 

Comparing the real BCOM paths obtained during experimental sessions with the 2D BCoM 

trajectories from WM simulation (figure 26), some similarities could be detected and 

differences between them can be attributed to the slight discrepancy in body segments 

length and to the small motion of the trunk. Looking at figure 25B, when one of the two 

shanks in WM simulation was shortened replicating a physiological and common anatomical 

asymmetry between limbs, the BCoM trajectories become similar to the experimental one 

(figure 26C), underling the hypothesis that anatomical asymmetry may cause dynamical and 

spatial asymmetry of the BCoM in locomotion (Gurney et al., 2001; Seeley et al., 2010; 

Seminati et al., 2013). 

Starting from the BCoM trajectory, its dynamical symmetries have been evaluated previously 

in different gaits and species (Biancardi et al., 2011; Minetti et al., 2011; Seminati et al., 

2013) but never in human cycling. Our data showed that the highest symmetries were 

reached in the vertical axis in both bicycles probably because the saddle could limit the 

movements along it. In the antero-posterior axis the RB showed higher symmetry values, 



57 
 

compared to NB, and this can be attributed to the backrest that stabilize the trunk and 

inhibit its movement in the progression axis. In NB, differently from RB, SIx was significantly 

lower decreasing with increasing rpm while in the medio-lateral axis the symmetry was not 

affected by the pedalling frequencies, showing SIy values always higher compared to RB. In 

both bicycles there are no constrain limiting the movements in the frontal plane, and this is 

more evident in the RB at low rpm, probably due to the fact that each subject was more 

accustomed with cycling on NB and less on RB. Skilled and trained cyclists could be more 

symmetrical than our untrained subjects, for this reasons further analysis should be done by 

comparing experienced riders on RB and NB, in order to understand which bicycle allows to 

reach higher dynamical symmetry and if the level of training could have effects on the level 

of symmetry and, possibly, to cycling economy. 

 

4.3 Mechanical work 

Moreover, the BCoM analysis allowed us to investigate the components of the total 

mechanical work necessary to sustain the pedalling task.  

It is reported that total mechanical work in cycling is partitioned into the work of the vehicle 

with respect to the external environment and the one related to the propelling machinery. 

The first includes the work to overcome air drag and rolling resistance which makes what is 

known as the mechanical external work that we have kept constant and monitored through 

an SRM (table 8). The work related to propelling machinery has two principal components: 

the additional mechanical external work due to a small residual movement of the body 

centre of mass and the mechanical internal work. We focalized on this two aspect of work 

that have never before been analyzed on RB. The internal work has to be considered when 

riding a bicycle (Francescato et al., 1995) because it is well known that, for the same external 

power output ( EXTW ), an increasing in rpm is associated to an increment of oxygen 

consumption due to a larger mechanical internal work (Coast et al., 1986). More recently, 

this metabolic equivalent of the 'kinetic' internal work has been questioned since the WM 

simulation of pedalling showed that the pedals rotation could occur indefinitely with no 

need of power input (Minetti, 2011), suggesting that the measurable (but negligible) 'kinetic' 

internal work could be proportional to the not-measurable 'viscous' internal one, that could 

be the real responsible of the VO2 increment due to high pedalling rate. The internal work 
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rate was related principally to the pedalling frequency (figure  29A) with no differences 

between NB and RB. In addition, our analysis showed that the internal power, depending on 

the 3rd power of pedalling frequency in Hz, have similar value for RB: indeed the relation 

between cadence and  in RB was in line with previously results (figure 31). Moreover, 

our data are in line with Francescato and collaborators (1995) that have quantified  

through a metabolic approach, which was related to lower limb mass and pedalling 

frequency. Indeed they have found amounts of 6, 28 and 86 W when frequency pedalling 

increased to 61, 88 and 115 RPM respectively. 

 

 

Figure 31. Values of internal power of each of our subjects as function of rpm while riding a NB (k= 

0.176), RB (k= 0.161) and data from Minetti et al., 2001 (k= 0.153) and Minetti 2011 (k=0.150). Values 

of k were calculated with the pedalling frequency in hz. 

  

In addition the recent observations of Minetti (2011) regarding the possible contribution of 

an supplementary component in the mechanical external power, led us to consider also the 

additional mechanical external power ( *EXTW ) necessary to lift and accelerate the BCoM 

even when the bicycle is stationary placed on rolls. Differences in cycling position affected 

only the potential energy associated to the BCoM and not the kinetic one, with effects on 

the total energy and on the additional mechanical external work *EXTW . Both in 

experimental session and in WM simulation  was found to be greater in NB than RB for 

INTW

INTW

*EXTW
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all cadences (Figure 29B) probably due to the changed orientation of BCoM profile while 

riding the two bicycles. Other differences in the additional external work could be due to the 

fact that, differently from the general belief that the BCoM travels parallel to the ground 

during bicycling on the sagittal plane, in our experimental sessions it moved along all three 

spatial axes, especially in the medio-lateral one (Table 6). This excursion on the y axis could 

be associated to the lumbar bending analyzed and reported in figure 30: despite a relatively 

small movement of the trunk of about 10°, this could significantly affect the trajectory of the 

body center of mass.  

In this work the external power increases with pedalling frequency due to the fact that the 

external force (represented by rolling resistance) was maintained constant (table 8). In 

absolute terms the contribution of  to the total mechanical power is not negligible, 

ranging from 11 to 31 W in NB and from 6 to 29 in RB. in this work). Also the relative 

contribution of  to the total mechanical power is always lower in RB when compared 

to NB (see figure 32) and this difference could be responsible for differences in mechanical 

efficiency (but not evaluated in this thesis). It  is  thought  that the 3D trajectory of body 

centre of mass could determine an increase of the total mechanical work, and as a 

consequence, the metabolic one could be greater as well. In order to improve cycling 

locomotion in term of metabolic cost,  should be limited, avoiding an excessive 

excursion of BCoM. 

 

Figure 32. Mechanical work partitioning for each pedalling cadence in normal (NB) and recumbent 

(RB) bicycle.  

*EXTW

*EXTW

*EXTW
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CHAPTER FIVE 

 

Conclusion 

 
5.1 Limits and further perspective 

Some limitations of the present study and further perspective need to be addressed.  

The seat to pedal distance has been carefully measured, but the lack of a saddle which 

prevents the movement of the pelvis (toward or away from the pedals) may cause in RB 

slight variations in this parameter, with impact on joints range of motion and muscle tendon 

length changes. 

Additionally, the muscle tendon length changes have been analyzed in this work, but to 

better understand muscle function during cycling in terms of the force–length and force–

velocity properties, it should be better to characterize the lengths of muscle fibres relative to 

their optimal length. However, it is difficult to direct measure the operating length of muscle 

fibres during complex and fast movement. Indeed their determination requires medical 

imaging of sarcomere length, i.e. laser diffraction or ultrasound measurement but these 

techniques are difficult to achieve on a bicycle. The use of a recent musculoskeletal model 

(Arnold et al., 2010), together with the force signal derived from force sensor applied to the 

pedals, could be useful to develop a dynamical simulation of pedalling cyclist with OpenSim, 

in order to calculate the fibre operative lengths of human lower limb muscles during cycling. 

With this method, differences in fibre lengths could be better understood, highlighting on 

which limbs of the force–length curve (ascending limb, descending limb and plateau) do 

lower limb muscles operate during the pedalling cycle. 

Moreover, the small sample size can influence the statistical significance of some variables 

due to the fact that changes that may be occurring can be deleted by variability between 

subjects when the pedalling position is altered. By increasing the number of subjects and 

comparing professional (skilled in pedalling on NB and RB) and recreational cyclists could be 

a useful way to better analyze the trajectory of BCoM and its features in order to 

mathematically describe kinematic variables related to the BCOM in both categories of 
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riders. In this way variations could be detected in locomotion dynamics such as those caused 

by training. 

A previous study reported that, while no correlations were found between anatomical and 

kinematic variables and the metabolic cost of transport in human running, the most trained 

subjects showed the highest level of kinematic symmetry during running (Seminati et al. 

2013). Since a certain level of asymmetry during cycling has been reported, it would be 

interesting to study its effect in terms of energy cost. 

 

5.2 Conclusion 

In the introduction of this thesis the characteristics of the recumbent bicycle have been 

analized highlighting the differences and analogies with NB. Our aim was to investigate the 

differences between the two pedalling positions that were not been studied yet. Results of 

this study confirm experimentally, for the first time, the existence of a 3D BCoM movement 

with its associated additional mechanical external work, previously evaluated only with a 

physical cycling simulation. The comparison of the two bicycles showed that the BCoM 

changed its orientation but maintained a similar pattern in both configurations, with 

consequently advantages for the RB: a smaller W EXT ∗   and a greater Symmetry Index on the 

progression axis. However, although the results reported that muscles were working at 

slightly different operative ranges of their length, the final propulsive effectiveness is 

difficult to assess, because the differences never exceeded the 4% of resting length. Looking 

at these bicycles from a kinematical perspective we could speculate that the RB position can  

be partially considered a 90° backward rotated NB. Therefore we could conclude that only 

small differences are appreciable between the two bicycles, and the principal benefit due to 

ride a RB still remains the aerodynamic factor. Suggestion that could be inferred from this 

work regards the development of mechanisms reducing the energy expenditure related to 

the W EXT ∗   and increasing the stability of the bicycle. 
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