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Introduction

Mathematical models for multi-agent systems have attracted a lot of attention in re-
cent years and many papers in this framework have been published.
It is clear that one of the most interesting aspects regards the possible applications
to several fields and the beneficial outcomes in every day life. For example, a good
mathematical treatment of vehicular flows and crowd dynamics can have some pos-
itive effects, respectively, on the sustainability of traffic and evacuation problems.
Other significant features of collective motion [1] can be reproduced and analyzed,
such as swarming, flocking and synchronization, and models in different research
fields, like biology [2] and economy [3], can be proposed.
All these phenomena and scenarios can be modeled at different levels depending on
the number of agents in the group. Microscopic discrete descriptions following the
evolution of each agent are used when the number of agents is small. Mesoscopic
and macroscopic models seem more appropriate when the number increases and the
collection is more comparable to gases, fluids and granular media.
Mesoscopic approach is based on the study of the distribution function of agents
(probability density in the phase space) whose evolution is governed by an integro-
differential equation of Boltzmann type. Hydrodynamic equations for major macro-
scopic fields (for instance number density and mean velocity of the crowd) may be
consistently deduced from kinetic equations by suitable asymptotic limits.
Such different levels of description have been originally devised for ideal gases,
where the particles play the same role of agents in the previous case. One can follow
a more classical approach which analyzes a gas as a continuum and just involves the
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macroscopic global quantities. Otherwise, a different strategy at the mesoscopic level,
typical of kinetic theory, can be adopted [4]. In this last case one can bear in mind the
particle dynamics and this approach can combine the positive aspects of microscopic
and macroscopic levels. These tools may be generalized to mixtures of different gas
species (possibly undergoing also chemical reactions) [5, 6] and here these different
approaches will be proposed to analyze the so-called multi-temperature models. It is
indeed well-known that in thermally non-equilibrium conditions a single-temperature
model is not efficient to describe several physical situations in which a wide spec-
trum of temperatures appears in a natural way. A multi-temperature description arises
spontaneously when component masses are very disparate, for example in physics of
plasmas at high temperature [7] and for hypersonic vehicles at high altitude [8].
These arguments will be developed in this thesis which can be seen divided in two
parts: some results about collective dynamics will be discussed in the first part (chap-
ters 1–2) while multi-temperature descriptions for gas mixtures will be presented in
the second one (chapters 3–4).

• PART I - CROWD DYNAMICS

We are interested to propose a model able to correctly reproduce the dynamics of
a crowd in bounded domains (for example rooms and corridors) and in presence of
obstacles, and also to discuss the emergence of some behaviors induced by panic.
Starting from some models developed in last years ([9, 10]), we propose a very simple
description of the evolution of a small crowd of N agents governed by a set of ordinary
differential equations

ẋi = vi

vi =
v0

i e0
i −vi

τ
+

1
N ∑

j 6=i
∇U

(∥∥xi−x j
∥∥) i = 1, . . . ,N

(1)

where (xi,vi) denote position and velocity of the i−th agent, v0
i e0

i is the velocity
which the i−th agent tends to, while the sum takes account of the interactions be-
tween agents by means of the generalized Morse potential U .
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In chapter 1 we show how the set of preferential directions
{

e0
i

}
can be determined

a priori by using the strategy proposed in [11]; more precisely, by a suitable Poisson
problem (with Dirichlet and Neumann boundary conditions) one can take account of
the geometric restrictions of the domain: walls and exits as well as the presence of
obstacles in the walking area. This problem is solved by a standard finite element
technique in finite spaces of B-spline functions.
In addition, a modification of the production terms is proposed to model the emer-
gence of panic and some distinctive features, like delay in evacuation dynamics, are
discussed.
In chapter 2, we concentrate on scenarios involving a larger number of agents. The
first step is the presentation of a mesoscopic model deduced as suitable (mean field
or grazing collision) limit of the previous microscopic one [1]. The evolution of the
distribution function f in the phase space is described by a Boltzmann-like integro-
differential equation

∂ f
∂ t

+v ·∇x f = Q( f , f ) (2)

where Q is the collision integral operator. Numerical results can be obtained by using
Monte Carlo methods [12] which are really useful to reduce the required computa-
tional resources. As usual in kinetic theory problems, this approach is based on a
suitable splitting of the problem in transport and collision steps.
Finally, a tentative macroscopic extension, in which crowd can be seen as a con-
tinuum, is proposed. The most natural way is to obtain it by considering the weak
formulation of the kinetic equation introduced before and using suitable approxima-
tions to get a closed set of balance laws. Some numerical results are proposed in a
one-dimensional space.

• PART II - MULTI-TEMPERATURE GAS MIXTURES

Some multi-temperature models have been presented in recent literature in differ-
ent frameworks such as rational thermodynamics. In several papers by Ruggeri et
al. [13, 14] the starting point to deduce this kind of descriptions is the assumption
according to which, in homogeneous mixtures, each constituent obeys the same bal-
ance laws as a single fluid. By means of standard tools of kinetic theory we are able
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to justify this assumption recovering multi-temperature descriptions as hydrodynamic
limits of Boltzmann equations.
In this regard, we propose [15] to model a mixture of Q monoatomic gases in pres-
ence of a two scale collision process; the set of Boltzmann-type kinetic equations
describing the evolution of the distribution functions fi in phase space is scaled as

∂ fi

∂ t
+v ·∇x fi =

1
ε

Iii [ fi, fi]+ Ii j [ fi, f j] , i = 1, . . . ,Q (3)

where ε is a small parameter (Knudsen number) and Ii j is the integral collision oper-
ator for collisions between particles of species i and j. The factor 1/ε amplifies the
effect of this part of the collision operator and hence interactions within each compo-
nent are made dominant.
In chapter 3, starting from this model we aim to include some essential ingredients
like chemical reactions (in particular we concentrate on bimolecular reversible ones:
(1,2)
 (3,4)) and internal structure for molecules to take non-translational degrees
of freedom into account. We show a possible extension of the previous model to these
inelastic phenomena and their limitations [16].
A set of macroscopic equations at Euler level is deduced by a consistent hydrody-
namic limit and suitable approximations. The resulting (multi-velocity and) multi-
temperature models are commented on and some robustness tests, like entropy dissi-
pation and relaxation to equilibrium, are discussed.
In chapter 4 the proposed hyperbolic systems of balance laws for reactive and in-
ert mixtures [17, 18] are used for the analysis of the classical problem of the shock
wave structure. Occurrence of smooth solutions and the presence of discontinuities
(so-called subshocks) is discussed for varying parameters. In spite of the different ap-
proach, our results are in agreement with those presented in extended thermodynam-
ics [19]. The most attractive aspect of this work concerns the possibility to obtain, in
particular regimes, weak shock profiles undergoing more than one jump discontinuity
and to build up them via suitable numerical techniques.



Chapter 1

Microscopic discrete description
for crowd dynamics

1.1 Introduction

The study of mathematical models for multi-agent systems is of great theoretical and
practical interest and many papers in this framework have been published to describe
the emergence of significant collective behaviors like swarming, flocking and syn-
chronization. Many applications have been proposed in several fields like biology
[2, 20], economy [3], opinion formation [21, 22, 23], traffic problems [24, 25] and
social sciences [26, 27]. We refer to [1] and to [28] for a review of some of the math-
ematical approaches and applications presented in last years.
One of the most interesting aspects in collective human dynamics is the practical util-
ity of these models to prevent some disastrous phenomena like stampede induced by
panic which can lead to the death of people who are crushed or trampled down by
others. In particular, an efficient way to deal with obstacles has a crucial role in evac-
uation dynamics. In fact, empirical data, although rare, show that in these situations
the presence of obstacles can generate a spontaneous self-organization of people and
hence a faster and more organized escape.
In addition to panic situations, other behaviors have been addressed mathematically;
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for example, pedestrians moving in opposite directions form lanes, as it happens in
shopping centers, or flow is slower when a bottleneck occurs.
All these phenomena can be studied at different levels and several approaches can be
introduced.
In presence of a small number of agents a microscopic description has to be preferred
and agents dynamics can be studied one by one at each time. This is not possibile as
the number of agents increases both from a theoretical point of view - the crowd is
more comparable to gases and fluids than to a discrete collection of agents - and from
a practical one - limited computational resources.
For these reasons mesoscopic and macroscopic models have been proposed; in the
first case evolution is described by a suitable distribution function in phase space
while in the second one crowd is modeled as a continuum.
In this work, we shall propose a simple microscopic model which takes account of the
geometric configuration of the environment (walls, obstacles, exits) and of the inter-
actions between agents. Starting from it, a mesoscopic description can be deduced as
a suitable (mean field) limit of the previous microscopic equations. The evolution can
be governed by a Boltzmann-type equation whose integral collision operator takes an
appropriate interaction rule into account. Finally, using the weak formulations of the
last kinetic model, a set of macroscopic balance laws can be obtained for the evolu-
tion of density and mean velocity of the crowd.
At each level some test cases and relevant results will be presented.
We shall consider classical Runge-Kutta methods to simulate the evolution of the
dynamical system for the microscopic description while at mesoscopic and macro-
scopic level splitting techniques will be needed. In these last cases we have to split
the problem and to solve two different sub-problems: transport and collision steps.
Monte Carlo methods will be useful for the mesoscopic description while numerical
tools for hyperbolic systems, like Lax-Friedrichs method, will be adopted for the sys-
tem of macroscopic equations.
Before starting the analysis of the model we shall propose in next sections, it is im-
portant to justify the assumptions we shall do later. The basic idea is to combine the
positive aspects of the microscopic models proposed in [9] and in [10]. Let us show
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pros and cons of these descriptions.
In [9] the motion of N agents is described by the following set of ordinary differential
equations 

ẋi = vi

miv̇i = (α−β ‖vi‖)vi−∇U (xi)

(1.1)

for i = 1, . . . ,N, with the generalized Morse potential

U (xi) = ∑
j 6=i

{
Cr exp

[
−
∥∥xi−x j

∥∥
`r

]
−Ca exp

[
−
∥∥xi−x j

∥∥
`a

]}
(1.2)

where `a and `r represent the attractive and repulsive potential ranges and Ca and Cr

the respective amplitudes.
From the physical point of view, when two agents are too close they aim to repulse
each other; on the other hand, when agents are quite spread in the whole space they
tend to bring themselves closer to others and to go on together (see for instance bird
swarms). Hence we would like to reproduce short range repulsion and long range
attraction, and to this aim in the Morse potential it is necessary to consider

C :=
Cr

Ca
> 1 and ` :=

`r

`a
< 1. (1.3)

Different scenarios correspond to different choices of these ratios and a detailed anal-
ysis has been presented in [9].
According to us, this mean of repulsive and attractive effects seems a good way to ap-
proximate interactions between humans: especially in panic situations, people tends
to move together avoiding to crush or trample down the others.
The term (α−β |vi|)vi represents the tendency of agents to move along a desired
direction with a desired velocity. In [9] the quantities α and β have been consid-
ered constant but this choice is unrealistic in situations involving walls or obstacles.
Therefore, if one is interested in practical applications, a modification is required.
In this respect, one can follow the approach proposed in [10] where equations for
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velocities are replaced as follows

miv̇i = mi
v0

i (t)e0
i (t)−vi

τi
+∑

j 6=i
fi j +∑

w
fiw (1.4)

In addition to interaction forces fi j between agents, the authors introduce a set of
functions fiw which treat the interactions with the walls . Moreover, the desired veloc-
ities can be considered as suitable functions of time, both in magnitude and direction.
This approach can reproduce correctly a wide range of behaviors but it requires also
many computational resources; in fact, at each time, one has to evaluate the position
of every single agent with respect to the others and with respect to walls and he has
to compute both tangential and normal components in the interaction forces.
In order to reduce the computational cost and to simplify the model, we propose the
following dynamical system

ẋi = vi

v̇i =
v0

i e0
i (xi)−vi

τi
−∇U (xi)

(1.5)

where the set of directions
{

e0
i

}N
i=1 can be determined a priori and it takes account of

the geometrical domain, while term U is the previous Morse potential.

1.2 Construction of the desired directions

As proposed in [11], the desired velocity field
{

e0
i

}
ican be obtained as gradient of a

suitable scalar potential u which identifies attractive and repulsive zones. This poten-
tial, denoted by u, has to satisfy the Poisson problem

∆u = 0 + Boundary conditions (1.6)

In the applications we shall see later, the more appropriate conditions seem to be

• constant positive Dirichlet boundary conditions in correspondence of exits (at-
tractive zones)
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• homogenous Neumann boundary conditions along the walls (repulsive zones)

In particular, the last one is useful to control the normal component of the desired
velocity when agents are close to the walls.
Here, for sake of simplicity, we confine ourselves to analyze the case of a geometric
domain without obstacles. The occurrence of them will be discussed later.
Therefore, the problem we have to solve is

∆u = 0 in Ω

u = g = 1 on ΓD and
∂u
∂n

= 0 on ΓN

(1.7)

where Ω is a bounded domain, ΓD and ΓN denote, respectively, Dirichlet and Neu-
mann boundaries, with Γ̄D∪ Γ̄N = Γ = ∂Ω and g is the assigned Dirichlet datum (in
this case the unit function).
Supposing the existence of a function Rg, called extension of g over Γ, such that

Rg|ΓD = g (and for convenience we suppose also
∂Rg
∂n

= 0) and introducing the new
variable ũ = u−Rg, one can write the problem in the easier way

∆ũ = −∆Rg in Ω

ũ = 0 on ΓD and
∂ ũ
∂n

= 0 on ΓN

(1.8)

At this point, we can solve numerically the Poisson problem by a Faedo-Galerkin
technique [29] based on the weak formulation of the previous equation and on the
approximation of it in suitable finite dimension spaces.
We have to introduce a test function space V = H1

ΓD
and hence, using integration by

parts and boundary conditions, the weak problem reads as
ˆ

Ω

∇ũ ·∇vdΩ =−
ˆ

Ω

∇Rg ·∇vdΩ v ∈V. (1.9)

From now on, an accurate choice of the finite space which approximates V will have
a crucial role.
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It is important to choose the test functions in such a way that the corresponding
discrete problem has a simpler form and the approximate solution can be managed
easily. In our cases, it is necessary to compute a C 1 solution u because the velocity
field is obtained as gradient of it; moreover, choosing functions with compact sup-
port, the matrix in the discrete problem will present many zero entries.
For these reasons, we concentrate on the basis of B-splines whose restrictions are
polynomial of degree 2. In 1-D case B-spline functions can be introduced by a recur-
sion formula; starting from the piecewise constant functions

B j,1 (x) =


1 if x j ≤ x < x j+1

0 otherwise

(1.10)

one can define

B j,k (x) =
x− x j

x j+k−1− x j
B j,k−1 (x)+

x j+k− x
x j+k− x j+1

B j+1,k−1 (x) (1.11)

where
{

x j
}

denotes a suitable decomposition of the domain. We are interested in 2-
D problems and a basis in the bidimensional space can be computed by products of
elements of 1-D case.
Let us denote with {ϕk (x,y)} the basis of B-spline functions whose restriction on ΓD

is zero and hence the approximate solution we are looking for reads as

ũh (x,y) = ∑
k

ckϕk (x,y) where ϕk (x,y) = ϕik (x)ϕ jk (y) (1.12)

The approximate solution must satisfy the discrete problem
ˆ

Ω

∇ũh ·∇vhdΩ = −
ˆ

Ω

∇Rg ·∇vhdΩ ∀vh ∈Vh (1.13)

where Vh ⊂ V is the space determined by {ϕk} and {Vh}h constitute a cover of V .
Testing the previous equation with the elements of the basis of Vh, one can deduce
the following linear system

A · c = b (1.14)
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where
Akh =

ˆ
Ω

∇ϕk (x,y) ·∇ϕh (x,y)dΩ (1.15)

and
bk = −

ˆ
Ω

∇Rg ·∇ϕk (x,y)dΩ (1.16)

The solution of the linear system gives a unique approximation in Vh because the
matrix A is non-singular (its entries are obtained as products of the elements of the
basis). One can also notice that the matrix A will present many zero entries because
of the compact support of the functions ϕk.

1.2.1 Example

As example, let us consider a simple domain Ω = [0,1]× [0,1] with just one exit
only in {1}× [1/3,2/3] (Figure 1.1). For convenience, we suppose an uniform de-

Figure 1.1: A square domain with a single exit.

composition of the domain with step h in both directions and we use the function
Rg = 2x3−3x2 +2 to take boundary data into account.
With reference to Fig. 1.2, an element of the basis can be written as

ϕk (x,y) = ϕik (x)ϕ jk (y) (1.17)
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Figure 1.2: Uniform decomposition of the (extended) square domain; the generic
element ϕk of the basis has support [xik−1,xik+2]× [y jk−1,y jk+2].

where k = (ik−2)(N +2)+ jk and 1 ≤ ik, jk ≤ N + 2. The support of ϕik and ϕ jk

are respectively the intervals [xik−1,xik+2] and [y jk−1,y jk+2]; hence ϕk is non-zero in
(xik−1,xik+2)× (y jk−1,y jk+2) and entries Ak` in the matrix A are non-zero if |ik− i`|<
2 or | jk− j`|< 2. For this reason, just few integrals have to be solved; more precisely
one has to compute

ˆ 1

0
ϕi (x)dx =

ˆ xi

xi−1

ϕi (x)dx+
ˆ xi+1

xi

ϕi (x)dx+
ˆ xi+2

xi+1

ϕi (x)dx

=
h
6
+

2h
3
+

h
6
= h

(1.18)
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and the products of element of the basis

ˆ 1

0
ϕ

2
i (x)dx =

ˆ xi

xi−1

ϕ
2
i (x)dx+

ˆ xi+1

xi

ϕ
2
i (x)dx+

ˆ xi+2

xi+1

ϕ
2
i (x)dx

=
h
20

+
9h
20

+
h
20

=
11h
20

ˆ 1

0
ϕi (x)ϕi+1 (x)dx =

ˆ xi+1

xi

ϕi (x)ϕi+1 (x)dx+
ˆ xi+2

xi+1

ϕi (x)ϕi+1 (x)dx

=
13h
120

+
13h
120

=
13h
60

ˆ 1

0
ϕi (x)ϕi+2 (x)dx =

ˆ xi+2

xi+1

ϕi (x)ϕi+2 (x)dx =
h

120

(1.19)

and of their derivatives

ˆ 1

0
ϕ̇

2
i (x)dx =

ˆ xi

xi−1

ϕ̇
2
i (x)dx+

ˆ xi+1

xi

ϕ̇
2
i (x)dx+

ˆ xi+2

xi+1

ϕ̇
2
i (x)dx

=
1
3h

+
1
3h

+
1
3h

=
1
h

ˆ 1

0
ϕ̇i (x) ϕ̇i+1 (x)dx =

ˆ xi+1

xi

ϕ̇i (x) ϕ̇i+1 (x)dx+
ˆ xi+2

xi+1

ϕ̇i (x) ϕ̇i+1 (x)dx

= − 1
6h
− 1

6h
= − 1

3h

ˆ 1

0
ϕ̇i (x) ϕ̇i+2 (x)dx =

ˆ xi+2

xi+1

ϕ̇i (x) ϕ̇i+2 (x)dx =− 1
6h

(1.20)
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As concerns the term b, one has to evaluate

ˆ 1

0
x(1− x) ϕ̇i (x)dx =

ˆ xi

xi−1

x(1− x) ϕ̇i (x)dx+
ˆ xi+1

xi

x(1− x) ϕ̇i (x)dx

+

ˆ xi+2

xi+1

x(1− x) ϕ̇i (x)dx =
1
12
[
−6x2

i +6xi +h(4xi−2−h)
]

+
h
6
(2xi+1−1−h)+

1
12
[
6x2

i+2−6xi+2−h(8xi+2−4−3h)
]

(1.21)

The relevant discrete problem has a block band matrix

A =
1

360



D1 E F 0 0 0 · · · 0 0 0 0 0 0

E D2 2E F 0 0 · · · 0 0 0 0 0 0

F 2E D1 +D2 2E F 0 · · · 0 0 0 0 0 0

...
...

...
...

...
...

. . .
...

...
...

...
...

...

0 0 0 0 0 0 · · · 0 F 2E D1 +D2 2Ē F̄

0 0 0 0 0 0 · · · 0 0 F̄ 2Ē D̄2 Ē

0 0 0 0 0 0 · · · 0 0 0 F̄ Ē D̄1


(1.22)
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whose blocks have the same band structure

D1 =



12 10 −2 0 0 0 · · · 0 0 0 0 0 0

10 72 20 −2 0 0 · · · 0 0 0 0 0 0

−2 20 84 20 −2 0 · · · 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0 0 0 · · · 0 −2 20 84 20 −2

0 0 0 0 0 0 · · · 0 0 −2 20 72 10

0 0 0 0 0 0 · · · 0 0 0 −2 10 12



D2 =



72 −4 −28 0 0 0 · · · 0 0 0 0 0 0

−4 240 −8 −28 0 0 · · · 0 0 0 0 0 0

−28 −8 312 −8 −28 0 · · · 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0 0 0 · · · 0 −28 −8 312 −8 −28

0 0 0 0 0 0 · · · 0 0 −28 −8 240 −4

0 0 0 0 0 0 · · · 0 0 0 −28 −4 72



E =



10 −13 −7 0 0 0 · · · 0 0 0 0 0 0

−13 −4 −26 −7 0 0 · · · 0 0 0 0 0 0

−7 −26 6 −26 −7 0 · · · 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0 0 0 · · · 0 −7 −26 6 −26 −7

0 0 0 0 0 0 · · · 0 0 −7 −26 −4 −13

0 0 0 0 0 0 · · · 0 0 0 −7 −13 10



F =



−2 −7 −1 0 0 0 · · · 0 0 0 0 0 0

−7 −28 −14 −1 0 0 · · · 0 0 0 0 0 0

−1 −14 −30 −14 −1 0 · · · 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0 0 0 · · · 0 −1 −14 −30 −14 −1

0 0 0 0 0 0 · · · 0 0 −1 −14 −28 −7

0 0 0 0 0 0 · · · 0 0 0 −1 −7 −2



(1.23)
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Blocks D̄1, D̄2, Ē and F̄ are extracted by the corresponding blocks D1, D2, E and F
removing some rows and columns because of the presence of a Dirichlet condition
on ΓD.
As concerns term b, it takes the form

b =


b1ξ

b2ξ

...
bNξ

 where ξ =



1
5
6
...
6
5
1


(1.24)

and

b1 =
h2 (h−2)

12
= −bN , b2 =

h2 (13h−10)
12

= −bN−1

bi = h2 [(2i−3)h−1] for i = 3,4, . . . ,N−2.
(1.25)

In figure 1.3 the approximate solution and the related desired velocity field show that
the exit is an attractive zone and agents can’t go through the walls.

(a) Potential (b) Velocity field

Figure 1.3: Potential and velocity field related to a square domain with a single exit.
A potential well in correspondence of the exit reproduces the desired attractive effect.

The same technique can be used for different configurations. In figure 1.4 a square
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domain with two symmetric exits and the related potential are plotted. Also in this
case, the technique catches correctly the presence of attractive and repulsive zones.

(a) Domain (b) Potential

Figure 1.4: Potential and velocity field related to a square domain with two symmetric
exits. Also in this case the attractive zones present a potential well.

To confirm that this procedure is a good way to treat geometric restrictions, one can
solve a simple model in which the interactions are neglected. The system of ordinary
differential equations seen before reduces to

ẋi = vi

v̇i =
v0

i e0
i −vi

τi

(1.26)

We consider the first geometric domain and, for convenience, we suppose that all par-
ticles share the same value of the desired velocity magnitude and the same relaxation
parameter: v0

i = v0 = constant and τi = τ = constant for all i = 1, . . . ,N. From now
on, out of the domain, the desired velocity for each agent is the actual velocity and
hence the self-propelling term vanishes. We fix N = 40 and we simulate two different
situations corresponding to different relaxation times. We solve numerically by using
a classical explicit Runge-Kutta method of order 4 [30]: the approximate solution of

ẏ = f (t,y) (1.27)
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at time step k+1 can be deduced as follows

yk+1 = yk +
1
6
(k1 +2k2 +2k3 + k4) k = 0,1, . . . ,n−1 (1.28)

where

k1 = h f
(

tk,yk
)
, k2 = h f

(
tk +

h
2
,yk +

k1

2

)
k3 = h f

(
tk +

h
2
,yk +

k2

2

)
, k4 = h f

(
tk +h,yk + k3

) (1.29)

Figures 1.5 and 1.6 show that this approach is efficient provided that a small parame-

Figure 1.5: Agents dynamics without interactions: case τ = 0.1. A small value of τ

guarantees that agents do not cross the walls reproducing correctly the evacuation
dynamics.

ter τ has been chosen. This means that each agent has to adapt its own velocity to the
desired one as fast as possible and this was predictable if one would consider an ini-
tial configuration in which some agents are near the walls. In fact, in these situations
an agent who moves towards the walls can cross the walls if he does not adapt his
own velocity as fast as possible to desired one which is tangential to the boundary.
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Figure 1.6: Agents dynamics without interactions: case τ = 1. In presence of a larger
value of τ agents can not adapt quickly their own velocities to desired ones and some
of them can cross the walls.

1.3 Basic microscopic model

From now on let us consider the complete dynamics in which all phenomena are
taken into account.
The first step is to determine a good choice of parameters in Morse potential. We
confine ourselves to the case Ca = 1 and Cr = 2 (and hence C = 2 in (1.3)) and we
vary parameters `a and `r for different fixed values of `.
The interactions forces act along the direction connecting the two involved agents.

As concerns the strength of these forces, some trends of the strength versus distance
are shown in figure 1.7 where positive values correspond to repulsion while the neg-
ative ones are related to attractive effects .
In both cases we can notice that, for a fixed `, the range in which distance admits
positive values is wider as the parameters `a and `r increase; at the same time, the
maximum attraction strength decreases. The optimal value for the threshold which
separates repulsive and attractive effects has to be determined in each single case
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Figure 1.7: Potential strength for different values of the parameters: `= 1/10 on the
left, `= 3/4 on the right. Trends show that parameters can not be chosen a priori and
the choice depends on the features of each domain.

because of the different geometric characteristics of the domain. For example in the
previous square domains with unit side the choice `r = 0.3 and `a = 0.4 seems un-
suitable; in fact attractive effects come into play just for distance values greater than
1 and just repulsion has a significant role in the dynamics within the domain.
As concerns the mentioned domain with a single exit, we fix `r = 0.01 and `a = 0.02
(and hence `= 0.5).
As shown in Fig.1.8, crowd evacuation is described correctly and, in spite of strong

repulsive effects, (almost) no agents cross the walls and sliding effects along the
boundary are reproduced. Moreover, at the exit agents move together and cluster
avoiding in this way an immediate dispersion outside the domain. One can notice
that cluster effects were predictable; in fact, dynamics out of the domain is governed
only by the Morse potential and hence, as noticed in [9], the choice of parameters
(C, `) implies cluster formation.
In this case we have assumed that each agent interacts with every single component
of the crowd but this choice seems to be unrealistic. For this reason it is suitable to
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Figure 1.8: Dynamics of a crowd of 60 agents. Evacuation is correctly reproduced
and no agent moves across the walls.

introduce a restriction on the number of interactions. It is reasonable to suppose that
an agent interacts with the ones that it can see.
For this purpose, we introduce the concept of perception cone as illustrated in Fig.1.9.
For the i-th agent, its position determines the cone vertex while its velocity vector in-
dividuates the limiting directions by rotations of angle −θ/2 and θ/2. Formally, the
i−th agent will interact only with agents in

Ci =

{
y ∈ R2 :

(xi−y) ·vi

|(xi−y)| |vi|
> cos(θ/2)

}
(1.30)

As clearly shown in Fig.1.9, by using this approach, interactions are not symmetric; in
fact it may happen that xB ∈ CA but xA /∈ CB or vice versa. The dynamics in presence
of a perception angle θ = π/6 is proposed in Fig.1.10 and, unlike the previous case,
the same initial configuration does not lead to cluster phenomena at the exit because
a lower number of interactions is admitted. Moreover, the presence of a perception
region introduces a delay in evacuation dynamics (about 3.25%); probably, a smaller
perturbation to the tendency to adapt velocity to the preferential one implies that
agents look soon for the exit and hence an obstruction occurs close to the exit causing
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Figure 1.9: Perception region as infinite cone of angle θ and vertex individuated by
the agent position.

Figure 1.10: Crowd dynamics in presence of a perception angle (θ = π/6). A lower
number of interactions is admitted and evacuation dynamics is slower than the basic
case.
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a delay in the evacuation.
Obviously, the perception region can be described in other ways; in the next section
we shall use also an easier form in which the perception zone is just a disk whose
center is determined by the agent position and radius is fixed.

1.4 Panic in evacuation situations

As mentioned above, one of the most interesting aspects in the simulation of col-
lective dynamics is the prevention of disastrous phenomena induced by panic and,
therefore, it is important to mathematically reproduce this aspect.
For this purpose, we consider the approach proposed in [10] in which the panic im-
plies a perturbation of the desired velocity by means of the average direction of agents
in a neighborhood. To justify this assumption, one has to consider a situation in which
pedestrians have to leave a smoke-filled room. In this case walls and exits are not vis-
ible at long range and hence they lose their utility as reference point. Therefore each
agent tends to put his trust in people around him. For this reason every pedestrian
moves along the following direction

Norm
[
(1− pi)e0

i + pi < e j >i
]

(1.31)

which is a linear combination of the desired velocity e0
i and of the average direction

< e j >i of the neighbors in his perception region. The weight pi is the panic pa-
rameter and it expresses the level of confidence in people around. Small values of pi

correspond to individualistic behavior: one tries to maintain his preferential direction
but modifies slightly his velocity just to avoid crowding; greater values privilege col-
lective motion neglecting the natural tendency to move towards the targets that one
wants to reach.
In our simulations agents share the same constant panic value, pi = p = constant.
Figure 1.11 still shows that evacuation is possible but panic introduces a delay (about
3.79% with respect to the case in absence of perception region and panic).
The presence of panic is strictly related also to other phenomena like symmetry
breaking.
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Figure 1.11: Crowd dynamics in presence of a perception angle and panic (θ = π/6
and p = 0.8). In presence of panic a delay arises in a natural way in the evacuation
dynamics.

Let us consider a room with two symmetric identical doors and usually, in normal
conditions, one can notice that people use them in the same way. Some empirical ob-
servations show that the presence of panic induces agents to move together towards
one of the two exits neglecting the other one. As before, the dominance of collective
motion with respect to the individualism introduces a delay due to the obstruction of
the selected door.
The same behavior has been observed also in different frameworks like biology.
As shown in [2], a collection of ants in a circular cell with two symmetric exits aban-
don using both exits in approximately equal proportions; if one introduces a repellent
fluid, panic is created and one of the two exits is more used than the other one in the
escape dynamics.
We test our approach on this particular biological problem; in this case we use a cir-
cular perception region instead of the previous infinite cone and, for convenience, we
consider a square domain.
Figure 1.12 shows that, for small values of the panic parameter p, individualistic be-
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Figure 1.12: Positions and velocities for escaping ants in presence of panic : p= 0.25.
Dynamics is very similar to the basic case in absence of panic.

havior is dominant; the introduced perturbation does not have a significant role in the
evolution and agents tend to move as in absence of panic. Possible clustering effects
are due to the interaction Morse potential.
In figures 1.13, 1.14 increasing values of p implies that dynamics is characterized

essentially by the collective motion and agents tend to share a common value of ve-
locity neglecting the main objective, i.e. evacuation, introducing in this way a delay.
Moreover for greater values of p the symmetry breaking is correctly reproduced and
just one exit is used during the escape.

1.5 Domains with obstacles

One of the most interesting and practical aspects in modeling crowd dynamics is how
to describe mathematically the presence of obstacles in the domain and the way the
agents interact with them.
In fact experimental data show that each obstacle can have different characterizations;
it can play a ‘negative’ role, in the sense that it can be obstructive and it can delay the
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Figure 1.13: Positions and velocities for escaping ants in presence of panic : p = 0.7.
Agents still separates in two similar groups but it is interesting to notice that, in each
group, agents tend to share a common value of velocity.

escape, or, sometimes, it can be seen as a ‘positive’ obstacle, causing an unexpected
faster evacuation of the crowd.
In this respect one can recall a classical example of positive role; in panic situa-
tions, splitting an exit in two parts by means of an obstacle can induce a spontaneous
self-organization in the crowd and hence the evacuation occurs in a faster and more
organized way.
The most natural way to deal with obstacles is to interpret them as holes in the do-
main and hence their edges constitute part of the boundary. This ‘inner’ boundary
can be treated in the same way of the ‘outer’ one considering suitable Dirichlet or
Neumann conditions.
The main problem of the approach we have seen before is to find a suitable extension
Rg whose restriction is equal to the boundary datum g and it results very complicated
in the case of a inner-outer boundary. Moreover, once an appropriate extension can
be found, then this function could present some oscillations hardly manageable from
a numerical point of view.
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Figure 1.14: Positions and velocities for escaping ants in presence of panic : p = 0.8.
Dynamics is dominated by the collective motion; agents move together towards one
exit only sharing a common value of velocity.

For these reasons we try to bypass the problem as follows.
The main feature we want to reproduce is the impossibility for the agents to get
through the obstacles and to do that it is sufficient to have some peaks for the poten-
tial function in correspondence to them. In fact, the corresponding gradient will push
away agents towards lower potential zones.
A very simple way to realize that is to find an extension just related to outer bound-
ary (this results easier because few conditions have to be satisfied) and to modify it
adding some simpler functions which simulate the potential peaks. Therefore, starting
from the Poisson problem in absence of obstacles

∆u = −∆Rg (1.32)

one can obtain a similar problem in presence of them

∆u = −∆

(
Rg+∑

i
ψi

)
(1.33)
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where {ψi} characterize the presence of obstacles. We choose to model peaks by
using B-spline functions whose supports are located around the positions of the ob-
stacles and this modification corresponds to impose a (not-well specified) Dirichlet
condition on the inner boundary.

Figure 1.15: A corridor with two obstacles.

We test our approach in the case of a corridor with two obstacles inside (Figure 1.15).
Simulations in figure 1.16 show that the repulsive effects are correctly reproduced,
no agent gets through the obstacles and slide along the walls can be noticed. One can
observe also that the presence of an obstacle has some effects only when an agent
is very close to it; to have a longer range effect it is sufficient to consider a B-spline
function around the obstacle whose support is wider than it. Finally, one can notice
that the crowd does not gather once it overtakes the obstacles and, maybe this is re-
lated to a too wide exit. Numerical simulations in presence of smaller exits are in
progress.
Managing obstacles and walls by means of a potential function can seem complicated
and easier ways to proceed are desirable. For this reason, our first idea was to simulate
interactions with the domain by means of a suitable Morse potential in which repul-
sive effects were reproduced by choosing Ca = 0 while the attractive ones by posing
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Figure 1.16: Dynamics of a crowd in a corridor in presence of obstacles. No agent
moves across the obstacles and sliding effect are correctly reproduced.

Cr = 0. Unfortunately this approach can’t reproduce the desired sliding effects.





Chapter 2

Mesoscopic and macroscopic
models for crowd dynamics

2.1 Kinetic description

In the previous chapter we have proposed a simple model for collective motion and
we have discussed some features like the geometric restrictions and the presence of
panic in evacuation phenomena. This approach seems the most natural way to treat
the dynamics when the crowd is composed by a small number of agents and it gives
a more realistic representation of pedestrian movement.
As this number increases (for example in a collection of fishes or bacteria) continuum
models are necessary, both from a theoretical and a computational point of view; in
fact simulations for a large population is really difficult and it requires many com-
putational resources because of the increasing number of differential equations. For
this reason different approaches are required and they are based on the analysis of the
evolution of other quantities: distribution functions at kinetic level and density and
mean velocity at macroscopic one.
The first step is to propose a mesoscopic description of the problem by considering
a distribution function for agents in the phase space: f = f (x,v, t) where x , v ∈ Rd

denote respectively position and microscopic velocity. Its evolution is governed by
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a Boltzmann-type equation which will be deduced by means of standard tools of
kinetic theory (grazing collision limit or mean field limit). Later, we shall propose
a macroscopic model obtained by the previous kinetic one by using hydrodynamic
limit procedure and suitable closure assumptions.
Before presenting the kinetic and macroscopic model, let us remind the microscopic
description from which we shall deduce the other ones. We consider a set of N agents
who move according to the following system of ordinary differential equations

ẋi = vi

v̇i = S (vi)−∑
j 6=i

∇U
(∥∥xi−x j

∥∥) (2.1)

The quantities

S (vi) =
v0

i e0
i −vi

τ
(2.2)

and

U
(∥∥xi−x j

∥∥) = Cr exp

(
−
∥∥xi−x j

∥∥
`r

)
−Ca exp

(
−
∥∥xi−x j

∥∥
`a

)
(2.3)

denote respectively the self-propelling term and the Morse repulsion/attraction po-
tential and describe respectively the tendency of agents to move along preferential
directions and the interactions between agents.

2.1.1 Derivation of Boltzmann-like equations

The key point to deduce kinetic models from the corresponding discrete ones is the
description of the binary collisions involving two generic agents.
In our problem, let assume that two agents in position, respectively, x and y who
move with velocity v and w modify their own velocities according to the interaction
rule

v∗ = C (x,v;y,w) and w∗ = C (y,w;x,v) (2.4)

where v∗ and w∗ denote post-interaction velocities and

C (x,v;y,w) = v+η [S (v)−∇U (‖x−y‖)] (2.5)
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is obtained by approximating derivative by its different quotient and η indicate the
strength of the interaction.
The evolution is described by a Boltzmann-like equation

[
∂ f
∂ t

+v ·∇x f
]
(x,v, t) = Q( f , f )(x,v, t) (2.6)

whose collision operator Q takes the interactions into account and it has the following
form

Q( f , f ) =
1
ε

ˆ
Rd

ˆ
Rd

[
1

J (x,v;y,w)
f (x,v∗, t) f (y,w∗, t)

− f (x,v, t) f (y,w, t)

]
dwdy

(2.7)

where v∗ and w∗ are the pre-interaction velocities which generate v and w as post-
interaction ones and ε is a small parameter (typically a Knudsen number); moreover
J is the jacobian matrix of the transformation which links pre- and post-interaction
quantities. The factor 1/ε implies that motion is strongly influenced by interactions
between agents.
The presence of the jacobian matrix can be avoided by using the weak formulation;
this means that a distribution function f is a weak solution of the problem with initial
datum f0 if it satisfies

∂

∂ t

ˆ
R2d

ϕ (x,v) f (x,v, t)dxdv+
ˆ
R2d

[v ·∇xϕ (x,v)] f (x,v, t)dxdv =

=
1
ε

ˆ
R4d

[ϕ (x,v∗)−ϕ (x,v)] f (x,v, t) f (y,w, t)dxdvdydw
(2.8)

for every t > 0 and for every smooth function ϕ with compact support, and such that

lim
t→0+

ˆ
R2d

ϕ (x,v) f (x,v, t)dxdv =

ˆ
R2d

ϕ (x,v) f0 (x,v)dxdv (2.9)
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Now, let us consider the Taylor expansion of ϕ (x,v∗)−ϕ (x,v) at the right-hand side
of (2.8); stopping at the second order one has

ˆ
R4d

[ϕ (x,v∗)−ϕ (x,v)] f (x,v, t) f (y,w, t)dxdvdydw =

=

ˆ
R4d

[∇vϕ (x,v) · (v∗−v)] f (x,v, t) f (y,w, t)dxdvdydw+

+
1
2

ˆ
R4d

 2

∑
h1,...,hd=0

h1+...+hd=2

∂ 2ϕ (x, ṽ)
∂vh1

1 . . .∂vhd
d

(v∗1− v1)
h1 . . .(v∗d− vd)

hd

×
× f (x,v, t) f (y,w, t)dxdvdydw

(2.10)

where ṽ = θv+(1−θ)v∗, 0 ≤ θ ≤ 1 and the sum denotes all possible choices of
exponents hi such that 0≤ hi ≤ 2 ∀i and h1 + . . .+hd = 2. After noticing that

v∗−v = η [S (v)−∇U (‖x−y‖)] =: ηF 1 (2.11)

one can rewrite the interaction term as follows

1
ε

ˆ
R4d

[ϕ (x,v∗)−ϕ (x,v)] f (x,v, t) f (y,w, t)dxdvdydw =

=
η

ε

ˆ
R4d

[
∇vϕ (x,v) ·F 1] f (x,v, t) f (y,w, t)dxdvdydw+

+
η2

2ε

ˆ
R4d

 2

∑
h1,...,hd=0

h1+...+hd=2

∂ 2ϕ (x, ṽ)
∂vh1

1 . . .∂vhd
d

(
F 1

1
)h1

. . .
(
F 1

d
)hd

×
× f (x,v, t) f (y,w, t)dxdvdydw

(2.12)

Let us consider a small interaction strength

η � 1 such that
η

ε
= λ and

η2

ε
� 1 (2.13)

and, hence, the interaction operator can be approximated only by the first order term.
The resulting equation is associated to the strong form one

∂ f
∂ t

+v ·∇x f = λ {(∇xU ∗ρ) ·∇v f −∇v · [S (v) f ]} (2.14)
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where ∗ denotes the x−convolution and

ρ (x, t) =
ˆ
Rd

f (x,v, t)dv (2.15)

is the density function in the configuration space.
The same equation can be deduced in a different way by using the mean field limit
technique.
Let us introduce the atomic distribution function given by

f N (x,v, t) =
1
N

N

∑
i=1

δ (x−xi (t))δ (v−vi (t)) (2.16)

where δ denotes the Dirac delta distribution. Now, let us consider a test function
ϕ ∈ C 1

0
(
R2d
)

and we compute the derivative of the L2
(
R2d
)
−product

d
dt

〈
f N (t) ,ϕ

〉
=

1
N

N

∑
i=1

d
dt

ϕ (xi (t) ,vi (t))

=
1
N

N

∑
i=1

∇xϕ (xi (t) ,vi (t)) ·vi (t)+
1
N

N

∑
i=1

∇vϕ (xi (t) ,vi (t)) · v̇i (t)

=
1
N

N

∑
i=1

∇xϕ (xi (t) ,vi (t)) ·vi (t)+
1
N

N

∑
i=1

∇vϕ (xi (t) ,vi (t)) ·S (vi)

− 1
N2

N

∑
i=1

N

∑
j=1
j 6=i

∇vϕ (xi (t) ,vi (t)) ·∇U
(∥∥xi−x j

∥∥)
=
〈

f N (t) ,∇xϕ (x,v) ·v
〉
+
〈

f N (t) ,∇vϕ (x,v) ·S (v)
〉

−

 1
N

N

∑
i=1

 1
N

N

∑
j=1
j 6=i

∇U
(∥∥xi−x j

∥∥)
∇vϕ (xi (t) ,vi (t))


=
〈

f N (t) ,∇xϕ (x,v) ·v
〉
+
〈

f N (t) ,∇vϕ (x,v) ·S (v)
〉

−

〈
f N (t) ,

 1
N

N

∑
j=1

x j 6=x

∇U
(∥∥x−x j

∥∥)
 ·∇vϕ (x,v)

〉

(2.17)
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Noticing that

1
N

N

∑
j=1

x j 6=x

∇U
(∥∥x−x j

∥∥)= 1
N

N

∑
j=1

x j 6=x

〈
∇U (‖x−y‖)δ (y−x j)

〉
x = ∇U ∗ρ

N (x, t) (2.18)

one can conclude that the atomic distribution function satisfies

d
dt

〈
f N (t) ,ϕ

〉
=
〈

f N (t) ,∇xϕ ·v+∇vϕ ·S (v)−∇U ∗ρ
N ·∇vϕ

〉
(2.19)

which, in strong form, can be read as

∂ f N

∂ t
+v ·∇x f N =

{
(∇xU ∗ρ) ·∇v f N−∇v ·

[
S (v) f N]} (2.20)

Passing to the limit, under suitable hypothesis of convergence, one can obtain again
equation (2.14).

2.1.2 Numerical methods

Computing numerical solutions of Boltzmann-like equations has a very expensive
cost because of the large number of variables and of the presence of a nonlinear mul-
tidimensional collision integral. Therefore, a numerical scheme in which a suitable
decomposition of the multidimensional domain is required, seems impracticable.
For this reason, since 1970’s [31, 32], the main approaches to solve numerically gas
dynamics equations are based on probabilistic Monte Carlo methods. This kind of ap-
proaches presents many advantages: first the computational cost is strongly reduced
with respect to the order of number of involved agents; second these methods do not
require artificial boundary conditions (in principle every position and velocity are ad-
missible).
In presence of bounded domains one has to impose suitable boundary conditions and
the most natural choice is a sort of impermeability condition which prevents the mass
flux through the walls. In our numerical simulations, under suitable choices of the
initial configuration, this condition is guaranteed by the self-propelling term which
takes account of the geometrical restrictions of the domain.
We refer to [12] for an overview of direct simulation and time relaxed Monte Carlo
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techniques.
As in many of these methods, the starting point of our procedure is a splitting of the
problem in two different steps

• transport part
∂ f
∂ t

+v ·∇x f = 0 (2.21)

which will be solved by the exact free flow of the sample particles xi (t +∆t) =
xi (t)+vi (t)∆t

• collision part
∂ f
∂ t

= Q( f , f ) (2.22)

for which we use a Monte Carlo scheme.

The first step in Monte Carlo methods for kinetic equations is to select some values of
the variables which are compatible with the initial datum. For this reason, before dis-
cussing the chosen algorithm, let us present the acceptance-rejection method which
will be useful later to sample. The idea is really simple and we present that in 1-D
case.
Let f be defined in (a,b) and let fmax be a constant such that fmax > f (x) for ev-
ery x ∈ (a,b). Let us consider two sequences of random numbers {ηi} and {η̄i},
uniformly distributed in (0,1), and let us proceed as follows

• from {ηi} we generate the sequence {xi} in (a,b) by using

xi = (b−a)ηi +a (2.23)

• from {η̄i} we generate the sequence {yi} in (0, fmax) by using

yi = fmaxη̄i (2.24)

• if yi < f (xi) then xi is accepted; otherwise it is rejected.
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The sequence of the accepted xi is a sample compatible with the initial datum.
Now, we are ready to discuss the Monte Carlo algorithm. We consider a Nanbu-like
asymptotic method in a symmetric version as proposed in [33] whose main utility is
the low computational cost, reducing complexity from O

(
N2
)

(expected cost for a
system of N interacting particles) to O(N).
In order to justify the algorithm that we shall present in the sequel, one can notice
that, splitting the collision operator in gain and loss term, the collision step can be
rewritten as follows

∂ f
∂ t

=
1
ε

[
Q+ ( f , f )−µ f

]
(2.25)

where Q+ denotes the gain part and

µ =

ˆ
R2d

f (x,v, t)dxdv (2.26)

is assumed constant without loss of generality (µ = 1).
At this point, if one consider a forward Euler scheme, the discrete equation reads as

f n+1 =

(
1− ∆t

ε

)
f n +

∆t
ε

Q+ ( f n, f n) (2.27)

This means that an agent does not interact with the other ones with probability 1−
∆t/ε while interactions occur with probability ∆t/ε .
We are interested in small values of ε and hence a natural choice is ∆t = ε . A solution
of (2.27) in [0,T ], ntot = T/∆t and ∆t = ε , is given by

• sampling from the initial distribution f0 :
(
x0

k ,v
0
k

)
with k = 1, . . . ,N

• for n = 0 to ntot−1

– set Nc = Iround(N/2)

– select Nc random pairs (i, j) of agents uniformly without repetition at
time level n

– compute the post-interaction velocities v∗i and v∗j for each pair (i, j) with
strength η = ε by using the interaction rules
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– set
(
xn+1

i ,vn+1
i

)
= (xn

i ,v∗i ) and
(

xn+1
j ,vn+1

j

)
=
(

xn
j ,v∗j

)
for all agents

who changed their velocities; otherwise
(
xn+1

h ,vn+1
h

)
=
(
xn

h,v
n
h

)
• end of cycle

where Iround denotes the integer stochastic rounding.

2.1.3 Numerical simulation

We consider now a mesoscopic model for two different situations presented in the
previous chapter.
In the Monte Carlo method described above we sample N = 5000 agents and we
choose a time step ∆t = 0.001.
Figure 2.1 shows that evacuation is correctly reproduced. In fact, starting from an

Figure 2.1: Mesoscopic description of the evacuation of a crowd in a domain with two
exits. As in the microscopic case, the crowd separates in two different comparable
groups and exits are used approximately in the same way.

initial configuration in which the population is concentrated in the middle of the
walking area, dynamics divides agents in two different groups moving in opposite
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directions. No panic phenomena have been introduced and hence the two identical
exits are used in the same way and groups are comparable.
Also in figure 2.2 evacuation dynamics is correctly reproduced as expected. Unlike

Figure 2.2: Mesoscopic description of the evacuation of a crowd in a domain in pres-
ence of obstacles. Obstacles are avoided by the entire crowd and sliding effects are
correctly reproduced.

the previous case, now the walking area presents some obstacles in the middle which
are avoided by the entire population moving towards the exit. Sliding effects occur
also at mesoscopic level.

2.2 Macroscopic description

2.2.1 Derivation of the model

Now we are interested to deduce a set of partial differential equations to describe the
crowd dynamics at the macroscopic level. The starting point is the previous kinetic
model

∂ f
∂ t

+v ·∇x f = λ {(∇xU ∗ρ) ·∇v f −∇v · [S (v) f ]} (2.28)
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It is well-known that kinetic descriptions are very expensive from a computational
point of view when the distribution functions are defined in “ high” dimension spaces
as seen in the previous applications where positions and velocities are vectors in R2.
In this regard, by taking the hydrodynamic limit, one can reduce the complexity of
the problem by reducing its dimensionality.
As usually done in kinetic theory, we are interested in the evolution of the macro-
scopic quantities defined as moments of the distribution function f

ρu =

ˆ
Rd

v f (x,v, t)dv and dρT =

ˆ
Rd

(v−u)2 f (x,v, t)dv (2.29)

where ρ , u and T indicate, respectively, density, mean velocity of the crowd and T
gives a measure of the deviation of v with respect to u.
In order to obtain macroscopic equations, we have to consider the weak formulation
of the Boltzmann-like one (2.28).
By using the unit constant as test function in the weak form, one can notice that the
right-hand side in (2.28) vanishes. As regards the left-hand side, one can observe that

ˆ
∂ f
∂ t

(x,v, t)dv+
ˆ

v ·∇x f (x,v, t)dv

=
∂

∂ t

ˆ
f (x,v, t)dv+∇x ·

ˆ
v f (x,v, t)dv =

∂ρ

∂ t
+∇x · (ρu)

(2.30)

under suitable assumptions. Therefore, density satisfies the usual continuity equation

∂ρ

∂ t
+∇x · (ρu) = 0 (2.31)

Now we use the identity ϕ (v) = v as test function to deduce a macroscopic momen-
tum equation; at the left-hand side, we obtain

∂

∂ t
(ρu)+∇x · (ρu⊗u+P) (2.32)

where ⊗ denotes the tensor product and P is a tensor which takes account of the
moments of order 2.
In order to have a closed set of partial differential equations, we assume that



42 Capitolo 2. Mesoscopic and macroscopic models for crowd dynamics

• fluctuations are negligible i.e. T (x, t) = 0
⇒ diagonal part of P vanishes

• the velocity distribution is monokinetic i.e. f (x,v, t) = ρ (x, t)δ (v−u(x, t))
⇒ non-diagonal part of P vanishes

As concerns the right-hand side, by using integration by parts, one hasˆ
(∇xU ∗ρ) ·∇v f vidv =

= ∑
j

ˆ (
∂U
∂x j
∗ρ

)
∂ f
∂v j

vidv = ∑
j

ˆ
∂

∂v j

(
∂U
∂x j
∗ρ f

)
vidv

= −∑
j

(
∂U
∂x j
∗ρ

)ˆ
f δi jdv = −ρ

(
∂U
∂xi
∗ρ

) (2.33)

and analogously

−
ˆ

∇v · [S (v) f (v)]vidv = ρSi (u) (2.34)

where

S (u) =
v0e0 (x)−u

τ
(2.35)

and e0 (x) is the field of the desired directions.
Summing up, mass and momentum equations fulfill

∂ρ

∂ t
+∇x · (ρu) = 0

∂

∂ t
(ρu)+∇x · (ρu⊗u) = ρS (u)−ρ (∇xU ∗ρ)

(2.36)

2.2.2 Numerical methods

For sake of simplicity, from now on, let us consider the 1-D formulation of the previ-
ous macroscopic model

∂ρ

∂ t
+

∂

∂x
(ρu) = 0

∂

∂ t
(ρu)+

∂

∂x

(
ρu2
)
= ρS (u)−ρ

(
∂

∂x
U ∗ρ

) (2.37)
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or, equivalently, 
∂ρ

∂ t
+

∂

∂x
(ρu) = 0

∂u
∂ t

+u
∂u
∂x

= S (u)−
(

∂

∂x
U ∗ρ

) (2.38)

It is easy to prove that this set of partial differential equations constitutes a hyperbolic
system and it is well-known that finding analytical and numerical solutions is really
hard, especially when some discontinuities appear.
Before presenting the numerical technique we will use in the sequel, the first step is
to consider a suitable splitting of the problem.
From the previous system we deduce two different sub-problems

A :


∂ρ

∂ t
+

∂

∂x
(ρu) = 0

∂u
∂ t

+u
∂u
∂x

= 0

B :


∂ρ

∂ t
= 0

∂u
∂ t

= S (u)−
(

∂

∂x
U ∗ρ

) (2.39)

Step A (transport step) takes the hyperbolic structure into account but it neglects
source terms. The system of balance equations reduces to a system of conservation
laws. On the other side, step B (collision step) includes interactions between different
agents or between agents and domain but it just takes account of time-dependence.
In this case partial differential equations become ordinary differential equations.
As concerns step B, a simple forward Euler scheme has been implemented.
As regards the hyperbolic system A, besides difficulties due to non-linearity, the main
purpose is a good treatment of possible discontinuous solutions. For these reasons we
choose to work with Lax-Friedrichs method [34]. Let us introduce it in a generic case.
Let us suppose we want to solve the non-linear problem

∂u
∂ t

+
∂

∂x
f (u) = 0 (2.40)

where u = u(x, t) is the unknown field. Let us indicate by U an approximation of the
exact solution u: one has Un

j = u(x j, tn) where
{

x j
}

j and {tn}n denote, respectively,
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suitable decompositions in space and time. The discrete solution at time step n+ 1
can be computed as follows

Un+1
j =

1
2
(
Un

j−1 +Un
j+1
)
− k

2h

[
f
(
Un

j+1
)
− f

(
Un

j−1
)]

(2.41)

where k and h are time and space discretization steps.
It is easy to notice that computations in the first and last knots require to assume some
boundary conditions; for this reason we shall extend the solution in a constant way
by taking the values in boundary knots.
Let us show now the reason for which Lax-Friedrichs scheme seems a good choice.
We shall say that a method is in conservation form if it can be written in the form

Un+1
j = Un

j −
k
h

[
F
(
Un

j−p,U
n
j−p+1, . . . ,U

n
j+q
)
−F

(
Un

j−p−1,U
n
j−p, . . . ,U

n
j+q−1

)]
(2.42)

where F is a function of p+q+1 arguments and it is called numerical flux function.
This requirement guarantees that the algorithm does not converge to non-solutions.
Noting that Lax-Friedrichs can be rewritten by using the following numerical flux

F (U j,U j+1) =
h
2k

(U j−U j+1)+
1
2
[ f (U j)+ f (U j+1)] (2.43)

one can conclude that it will build up a physical solution.

2.2.3 Numerical simulations

In this section we analyze the evolution of the problem (2.37) for different initial
configurations in 1-D space.
As concerns the initial velocity let us fix the same datum in every situation and we
consider the constant function u0 (x) = −1 ∀x. This means that agents move in the
opposite direction with respect to the positive desired one v0 = 1.
As regards density datum we consider some functions ρ0 with unit total density (the
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integral of ρ0 over the domain is equal to 1)

(A) ρ0 (x) =

1 if −1/2 < x < 1/2

0 otherwise

(B) ρ0 (x) =

1 if −3/4 < x <−1/4 and 1/4 < x < 3/4

0 otherwise

(C) ρ0 (x) =

2 if 1/4 < x < 3/4

0 otherwise

(2.44)

All the simulations show that a sufficiently small spatial step is required; in fact,

Figure 2.3: Evolution of a crowd with initial configuration A.

a small number of points in the space discretization introduces oscillations in corre-
spondence of discontinuities. Moreover a suitable small time step has to be coupled.
In each figure one can notice that, at the beginning, dynamics tend to regularize the
initial piecewise constant data until they assume a Gaussian-like profile or, in other
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Figure 2.4: Evolution of a crowd with initial configuration B.

Figure 2.5: Evolution of a crowd with initial configuration C.

words, agents tend to concentrate in a small neighborhood around a position.
Then this profile moves as a wave adapting its direction to desired one and, in this
way, the initial tendency to move in the opposite direction is totally absorbed by the
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self-propelling term.
At last, one can notice some oscillations around a position which gets us suppos-
ing the existence of an equilibrium configuration of Gaussian type. Hence, in other
words, the tendency of agents to adapt its own velocity to the desired one is balanced
by the particle interactions.





Chapter 3

Multi-temperature models for
inert and reactive gas mixtures

3.1 Introduction

It is well known that in thermally non-equilibrium conditions a single temperature
model for a gas mixture is not valid and more accurate models of kinetics, gas dy-
namics and transport properties are required [35]. For example, a multi-temperature
description arises spontaneously when atomic masses of components are disparate, in
physics of plasmas at high temperature as well as in several problems of aerothermo-
dynamics [7, 8]. Clearly a multi-temperature approach presents many practical dif-
ficulties such as measuring the temperature of each component or handling a larger
number of variables; nevertheless a macroscopic theory of homogenous mixtures is
developed in the framework of rational thermodynamics [36] and it is based on the as-
sumption that each constituent obeys the same balance laws as a single fluid [13, 14].
At this point a consistent formal derivation of multi-temperature fluid-dynamics is de-
sirable and it can be obtained as an asymptotic limit starting from suitable kinetic de-
scriptions [4, 37]. In this regard, some hydrodynamic models, even for reactive gases,
were already considered [38] but they were all leading to some single-temperature de-
scriptions. In order to avoid this restriction, it is clear that one should deal with a gas
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in which equilibration within each species is faster than equalization of species pa-
rameters in the gas as a whole. Of course, the task becomes quite heavy if one wants
to include also other processes like the occurrence of chemical reactions or take ac-
count of the internal molecular structure [39, 40].
In this chapter, first we recall a very simple model for a mixture of monoatomic gases
which takes into account just elastic mechanical interactions. We consider a two-scale
process where the fast dominant phenomenon is constituted by resonant collisions
between particles of the same species; interactions involving different components
belong to the slow process [15]. At the kinetic level, rescaled equations for a mixture
of Q components read as

∂ fi

∂ t
+v ·∇x fi =

1
ε

Iii [ fi, fi]+∑
j 6=i

Ii j [ fi, f j] for i = 1, . . . ,Q (3.1)

where fi denotes the distribution function of the i−th species and Ii j is the collision
operator related to interactions between species i and j. It takes the form

Ii j [ fi, f j] =

¨
Bi j
(
g, n̂ · n̂′

)
[ fi (v∗) f j (w∗)− fi (v) f j (w)]dwdn̂′ (3.2)

and it involves the collision kernel Bi j depending on the relative speed g = |v−w|
and on the deflection angle n̂ · n̂′. Finally, Knudsen number ε is a small parameter and
its role is to amplify the effect of resonant collisions.
Starting from the previous set of integro-differential Boltzmann-like equations we
deduce a macroscopic description by a hydrodynamic limit (ε→ 0) and by a suitable
closure at Euler level. The evolution of the macroscopic quantities turns out to be
governed by a multi-velocity and multi-temperature set of partial differential equa-
tions and one has to handle Q mass densities, velocities and temperatures.
Later we shall extend the model to the reactive case when components undergo the
following bimolecular reversible chemical reaction

(1,2) 
 (3,4) (3.3)

which involves four different species (Q ≥ 4). We suppose that each component is
endowed with an internal energy due to the chemical links Ei; the quantity ∆E =
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E3 +E4−E1−E2 is fixed positive and it represents the activation energy of the en-
dothermic reaction. Under the assumption ∆E = 0, some interesting results, like hy-
drodynamic equations at Euler level and existence, uniqueness and stability of equi-
libria, have been deduced [15]. Also a single-velocity and multi-temperature model
can be obtained by the previous general one assuming the equalization of species
velocities and it can be tested on classical problems, like the steady shock waves
problem [17].
At the end we shall propose a possible extension to polyatomic gases [16] by consid-
ering a discrete set of energy levels to mimic the internal structure. The finite spec-
trum can be replaced by a continuous one and some results, like the determination
and analysis of production terms, have been presented recently [41].

3.2 Monoatomic inert gases

In this section we recall the main features of a multi-temperature description for a
non-reactive mixture of monoatomics gases and we refer to [15] for more details.
The starting point is the set of Boltzmann-type equations governing the distribution
functions of the involved species

∂ fi

∂ t
+v ·∇x fi =

1
ε

Iii [ fi, fi]+∑
j 6=i

Ii j [ fi, f j] for i = 1, . . . ,Q (3.4)

where Ii j is the elastic scattering operator for (i, j) encounters. The quantity ε is a
small parameter and it represents the ratio of the mean free path of the collisions
within each single species to any of the other characteristic lengths which are sup-
posed to be longer than the previous one.
One can prove [4] that collision equilibria for the whole equations (3.4) are provided
by the seven parameter family of Maxwellians

f M
i (v) = ni

( mi

2πT

)3/2
exp
[
−mi

2T
(v−u)2

]
(3.5)

sharing common values u and T , respectively, for mass velocity and temperature.
Moreover, entropy dissipation and stability of equilibria are given by the Lyapunov
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function for mixtures

H [f] =
Q

∑
i=1

ˆ
fi log fidv (3.6)

As usual, macroscopic fields for each species are defined as moments of the relevant
distribution function and we want to propose a description of their evolution.
We are interested in the hydrodynamic closure in the asymptotic limit ε → 0 of (3.4)
and in particular we concentrate on the zero-th order approximation (at Euler level).
The first step in this regard is determining the collision invariants and equilibria for
the dominant part of the collision operator. It is not difficult to prove that the local
equilibria solving Iii = 0 ∀i constitute a 5Q−parameter family of local Maxwellians

Mi (v) = ni

(
mi

2πTi

)3/2

exp
[
− mi

2Ti
(v−ui)

2
]

(3.7)

with free parameters ni, ui and Ti and that such dominant operators admit 5Q indepen-
dent collision invariants corresponding to preservation of number density, momentum
and kinetic energy within each single species.
In order to obtain a macroscopic description for the mixture, one can use collision
invariants as test functions in the weak form of (3.4) whose production term at the
right-hand side becomes

ˆ
ϕi (v) Ii j [ fi, f j] (v)dv =

˚
Bi j
(
g, n̂ · n̂′

)
[ϕi (vi j)−ϕi (v)] fi (v) f j (w)dvdwdn̂′

(3.8)
where ϕi indicates the generic collision invariant and v, vi j are, respectively, pre- and
post-collision velocities.
The set of partial differential equations for densities ni, mass velocities ui and tem-
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peratures Ti results

∂ni

∂ t
+∇x · (niui) = 0

∂

∂ t
(ρiui)+∇x · (ρiui⊗ui)+∇x ·Pi = ∑

j 6=i
Ri j

∂

∂ t

(
1
2

ρiu2
i +

3
2

niTi

)
+∇x ·

[(
1
2

ρiu2
i +

3
2

niTi

)
ui +Pi ·ui +qi

]
= ∑

j 6=i
Si j

(3.9)
where Pi and qi denote respectively pressure tensor and heat flux for the i−th com-
ponent; Ri j and Si j are integrals of the collision kernels Bi j (i 6= j) representing mo-
mentum and energy exchanges between particles of different species.
The previous system is not a closed set of equations and a closure is required. It can
be done in a natural way at different levels of accuracy by a suitable expansion of the
distribution function fi around the corresponding local equilibrium Mi. The easiest
approximation is the zero-th order one, obtained just by replacing fi by Mi in the
non-hydrodynamic fields Pi and qi and in the collision contributions. This implies
that the stress tensors get a diagonal form, Pi = niTiI, and the heat fluxes qi vanish.
Hence this lead us to the following system of Euler-type equations

∂ni

∂ t
+∇x · (niui) = 0

∂

∂ t
(ρiui)+∇x · (ρiui⊗ui)+∇x (niTi) = ∑

j 6=i
Ri j

∂

∂ t

(
1
2

ρiu2
i +

3
2

niTi

)
+∇x ·

[(
1
2

ρiu2
i +

5
2

niTi

)
ui

]
= ∑

j 6=i
Si j

(3.10)

where now Ri j and Si j are suitable integrals of the collision operators Ii j with Gaus-
sian Mi, M j in place of actual distributions fi, f j. Source terms at the right-hand side
depend on the collision kernel or, in other words, on the way we describe the inter-
actions between particles. From now on we suppose to model particles as Maxwell
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molecules for which moments of the collision kernels become constant.
In order to compute integrals at the right hand side one can notice that the product of
Maxwellians can be cast as

Mi(v)M j(w) = nin j

(
mi

2πTi

) 3
2
(

m j

2πTj

) 3
2

×

× exp
[
−ηi j (Gi j + γi jg−δ i j)

2
]

exp
{
−βi j [g− (ui−u j)]

2
} (3.11)

where

ηi j =
mi

2Ti
+

m j

2Tj
, βi j =

(
2Ti

mi
+

2Tj

m j

)−1

γi j =
µi j

ηi j

(
1

2Ti
− 1

2Tj

)
, δ i j =

1
ηi j

(
mi

2Ti
ui +

m j

2Tj
u j

) (3.12)

and Gi j is the center of mass velocity αi jv+α jiw, µi j = mim j/(mi +m j) is the re-
duced mass and αi j = mi/(mi +m j) is the mass ratio. Since dvdw = dGi jdg, the
integration over Gi j ∈ R3 may be performed explicitly and, under the assumption of
Maxwell molecules, also integrations over g can be computed and hence slow colli-
sion terms read as

Ri j = −µi jnin jB̄i j (ui−u j) (3.13)

and

Si j = −µi jnin jB̄i j

[
(αi jui +α jiu j) · (ui−u j)+3

Ti−Tj

mi +m j

]
(3.14)

where B̄i j is the constant collision frequency for (i, j) interactions

B̄i j = B0
i j−B1

i j B`
i j =

ˆ (
n̂ · n̂′

)` Bi j
(
g, n̂ · n̂′

)
dn̂′ (3.15)

An important robustness test concerns the study of equilibria and their stability. It
may be easily proved that equilibria are characterized by

• equalization of species velocities u1 = u2 = . . . = uN

• equalization of species temperatures T1 = T2 = . . . = TN
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Existence and uniqueness of the configuration of equilibrium are guaranteed once the
initial configuration has been fixed. Moreover a Lyapunov function correctly repro-
duces entropy dissipation and relaxation to the equilibrium. This function is obtained
by the restriction of the mixture Boltzmann H-functional to the subspace of the dis-
tribution functions defined by the local Maxwellians Mi and it reads as

H = ∑
i

ni

[
logni +

3
2

log
(

mi

2πTi

)
− 3

2

]
(3.16)

In order to show that H is a Lyapunov function for this problem, one has to prove that

Ḣ ≤ 0 (Ḣ = 0 if H = Heq) and H−Heq > 0 (3.17)

where Heq is the value of the function H in the equilibrium state.
As concerns the first inequality one can notice that

Ḣ = −
Q

∑
i=1

1
Ti

Q

∑
j=1
j 6=i

(Si j−Ri j ·ui) =
Q

∑
i=1

Q

∑
j=1
j 6=i

µi jnin jνi j

Ti
×

×
[
(ui−u j) · (αi jui +α jiu j)+3

Ti−Tj

mi +m j
−ui · (ui−u j)

]
=:

Q

∑
i=1

Q

∑
j=1
j 6=i

ξ
i j

(3.18)

and

ξ
i j +ξ

ji = 3
µi jnin jνi j

mi +m j

[
Ti−Tj

Ti
+

Tj−Ti

Tj

]
+

µi jnin jνi j

Ti
[(ui−u j) · (αi jui +α jiu j)−ui · (ui−u j)]

−
µi jnin jνi j

Tj
[(ui−u j) · (αi jui +α jiu j)−u j · (ui−u j)]

= 3
µi jnin jνi j

(mi +m j)TiTj

[
TiTj−T 2

j +TjTi−T 2
i
]

+ µi jnin jνi j

[
−

α ji

Ti
(ui−u j)

2−
αi j

Tj
(ui−u j)

2
]

= −3
µi jnin jνi j

(mi +m j)TiTj
(Ti−Tj)

2

−
µi jnin jνi j

mi +m j

(
m j

Ti
+

mi

Tj

)
(ui−u j)

2 ≤ 0

(3.19)
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As regards the second inequality, it is sufficient to recall that Boltzmann functional
admits minimum when the distribution functions are Maxwellian-type functions shar-
ing the same value for mass velocities and temperatures and to notice that the function
H is nothing else but the Boltzmann functional restricted to a subspace in which the
minimum is included.

3.3 Reactive case

An important extension of the previous model concerns the occurrence of chemical
processes in the evolution of the mixture. For sake of simplicity, we introduce a single
reversible bimolecular reaction

(1,2) 
 (3,4) (3.20)

and only four participating species are considered. We suppose also that each com-
ponent has an internal energy Ei due to the chemical links.
We follow the previous scheme to analyze this reactive case starting from the Boltzmann-
type equations which are scaled as follows

∂ fi

∂ t
+v ·∇x fi =

1
ε

Iii [ fi, fi]+∑
j 6=i

Ii j [ fi, f j]+ Ji [f] for i = 1, . . . ,4 (3.21)

The production term takes account of the chemical interactions and takes the form

Ji [f] =
¨

U
(

g2−δ
hk
i j

)
gBhk

i j
(
g, n̂ · n̂′

)
×

×

[(
µi j

µhk

)3

fh

(
vhk

i j

)
fk

(
whk

i j

)
− fi (v) f j (w)

]
dvdn̂′

(3.22)

where U is the unit step function, δ hk
i j = 2∆E/µi j and (i, j,h,k) is one of the following

sequences

(1,2,3,4) , (2,1,4,3) , (3,4,1,2) , (4,3,2,1) (3.23)

The occurrence of the endothermic reaction is strictly related to the internal energy.
In fact, the quantity ∆E = E3 +E4−E1−E2 represents an activation energy and it
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introduces a threshold for the endothermic reaction: it may occur if the impinging
kinetic energy overcomes a potential barrier proportional to ∆E.
As in the previous inert case, also for the reactive one it is possible determining
equilibria

f M
i (v) = ni

( mi

2πT

)3/2
exp
[
−mi

2T
(v−u)2

]
(3.24)

where number densities are related by the classical Mass Action Law

n1n2

n3n4
=

(
µ12

µ34

)3/2

e∆E/T (3.25)

One can reproduce also the stability of equilibria and the entropy dissipation by a
Boltzmann H-functional in chemical version

H [f] =
4

∑
i=1

ˆ
fi log

(
fi

m3
i

)
dv (3.26)

We can pass to the hydrodynamic limit of (3.21) when ε→ 0; the evolution of the 20
macroscopic fields is governed by a set of partial differential differential equations

∂ni

∂ t
+∇x · (niui) = Qi

∂

∂ t
(ρiui)+∇x · (ρiui⊗ui)+∇x ·Pi = ∑

j 6=i
Ri j +Ri

∂

∂ t

(
1
2

ρiu2
i +

3
2

niTi

)
+∇x ·

[(
1
2

ρiu2
i +

3
2

niTi

)
ui +Pi ·ui +qi

]
= ∑

j 6=i
Si j +Si

(3.27)
where Qi, Ri and Si denote the exchange of mass, momentum and energy due to
the chemical reaction. A first difference with respect to the inert case is that in the
reactive frame number densities are not preserved across the reaction and a source
term Qi appears.
As in the previous section a closure procedure is required and at Euler level, under
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the assumption of Maxwell molecules, the macroscopic equations become

∂ni

∂ t
+∇x · (niui) = Qi

∂

∂ t
(ρiui)+∇x · (ρiui⊗ui)+∇x (niTi) = ∑

j 6=i
Ri j +Ri

∂

∂ t

(
1
2

ρiu2
i +

3
2

niTi

)
+∇x ·

[(
1
2

ρiu2
i +

5
2

niTi

)
ui

]
= ∑

j 6=i
Si j +Si

(3.28)

where the source terms are integrals of the Boltzmann (inert and reactive) operators
with fi replaced by Mi.
The integrations at the right-hand side are not possible in the most general case but
for the density equations. It is easy to see that

Q1 = Q2 = −Q3 = −Q4 (3.29)

and then conservation of pairs of densities (for instance n1−n2, n1 +n3, n1 +n4) are
reproduced as the conservation of total density.
A closed analytical form can be deduced only in some special cases discussed in the
following subsections.

3.3.1 Vanishing activation energy

When the activation energy ∆E = 0, one can compute explicitly all the source terms
in Euler-type equations. More precisely, one has

Qi = B0

[(
µ12

µ34

) 3
4 (1+λi)

nhnk−
(

µ12

µ34

) 3
4 (1−λi)

nin j

]
(3.30)

where B0 is the moment of the reactive collision kernel of order 0 and λ1 = λ2 = 1 =

−λ3 =−λ4 are the stoichiometric coefficients. Moreover

Ri = B0

(
µ12

µ34

) 3
4 (1+λi)

nhnkαi j (mhuh +mkuk)

−B0

(
µ12

µ34

) 3
4 (1−λi)

nin jmiui +B1

(
µ12

µ34

) 3+5λi
4

nhnkµhk (uh−uk)

(3.31)
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and

Si = B0

(
µ12

µ34

) 3
4 (1+λi)

nhnk

[
1
2

mi (αhkuh +αkhuk)
2 +

1
2

α jiµhk (uh−uk)
2

+
3
2

αi j (αhkTh +αkhTk)+
3
2

α ji (αkhTh +αhkTk)

]

−B0

(
µ12

µ34

) 3
4 (1−λi)

nin j

(
1
2

miu2
i +

3
2

Ti

)
+B1

(
µ12

µ34

) 3+5λi
4

nhnkµhk

×
[
(αhkuh +αkhuk) · (uh−uk)+

3
mh +mk

(Th−Tk)

]
(3.32)

where (i, j,h,k)∈{(1,2,3,4),(2,1,4,3),(3,4,1,2),(4,3,2,1)}, λ1 = λ2 = 1=−λ3 =

−λ4 and B1 is the moment of the reactive collision kernel of order 1

B` =

ˆ (
n̂ · n̂′

)` B34
12
(
g, n̂ · n̂′

)
dn̂′ (3.33)

which is constant under the assumption of Maxwell molecule.
It is not difficult to prove that

∑
i

Ri = 0 and ∑
i

Si =−∆EQ1 = 0 (3.34)

and hence total momentum and total energy are preserved also in this reactive case.
Existence and uniqueness of the configuration of equilibrium is guaranteed once the
initial configuration is fixed and it is characterized not only by the previous conditions
of equalization of mass velocities and temperatures but also by the so-called Mass
Action Law in a simpler form (corresponding to ∆E = 0)

n1n2

n3n4
=

(
µ12

µ34

)3/2

(3.35)

This equation is easily deduced by the continuity equations. The equalization of
species velocities and temperature can be proved by rewriting conditions

∑
j 6=i

Ri j +Ri = 0 and ∑
j 6=i

Si j +Si = 0 (3.36)
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as suitable homogenous linear systems whose matrices are negative definite.
As in the previous section, one can reproduce entropy dissipation and relaxation to
equilibrium by using the Lyapunov function

H = ∑
i

ni

[
log
(

ni

m3
i

)
+

3
2

log
(

mi

2πTi

)
− 3

2

]
(3.37)

obtained as the restriction of reactive Boltzmann H-functional to the subspace of local
Maxwellians (the sketch of the proof is the same as that in the inert case).

3.3.2 Single-velocity and multi-temperature case

Some recent results in rational thermodynamics show that there are significant phys-
ical scenarios in which the mechanical relaxation time is shorter than the thermal one
i.e. the equalization of species velocities is faster than the equalization of tempera-
tures so that a single-velocity and multi-temperature Euler description is useful to
describe the last stage of the evolution [42].
Under the assumption of equalization of mass velocities, one can rewrite the Euler
system as follows

∂ni

∂ t
+∇x · (niu) = Qi

∂

∂ t
(ρu)+∇x · (ρu⊗u)+∇x (nT ) = 0

∂

∂ t

(
1
2

ρiu2 +
3
2

niTi

)
+∇x ·

[(
1
2

ρiu2 +
5
2

niTi

)
u
]
= ∑

j 6=i
Si j +Si

(3.38)

where the balance equations for momenta are replaced by the conservation of global
momentum and n = ∑i ni, ρ = ∑i mini and nT = ∑i niTi.
Also in this case, source terms have a closed form. In energy equations one has that
mechanical terms reduce as follows

Si j = −3αi jα jinin jB̄i j (Ti−Tj) (3.39)
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As concerns chemical source terms

Q1 =
2√
π

B0

[
n3n4

(
µ12

µ34

)3/2

exp
(

∆E
α43T3 +α34T4

)

×Γ

(
3
2
,

∆E
α43T3 +α34T4

)
−n1n2Γ

(
3
2
,

∆E
α21T1 +α12T2

)] (3.40)

and

Q1 = Q2 = −Q3 = −Q4 (3.41)

For i = 1 (and similarly for i = 2) the reactive energy exchange rate becomes

S1 =

(
µ12

µ34

)3/2

n3n4

(
m3

2πT3

)3/2( m4

2πT4

)3/2 1
2

m1×

×
¨ {

B0

[
G2

34 +α
2
21

µ34

µ12

(
g2 +

2∆E
µ34

)](
1+

2∆E
µ34g2

)1/2

+

+ 2B1α21

(
µ34

µ12

)1/2

G34 ·g
(

1+
2∆E

µ34g2

)}
×

× exp
[
−η34

(
G34 + γ34g−u

)2
]

exp(−β34g2)dG34dg

−n1n2

(
m1

2πT1

)3/2( m2

2πT2

)3/2 1
2

m1B0×
¨ (

G12 +α21g
)2 U

(
g2− 2∆E

µ12

)
× exp

[
−η12

(
G12 + γ12g−u

)2
]

exp(−β12g2)dG12dg

(3.42)

and again patient and careful calculations allow an explicit result in terms of incom-
plete gamma functions. Analogous steps are in order for S3 (and similarly for S4)
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S3 = n1n2

(
m1

2πT1

)3/2( m2

2πT2

)3/2 1
2

m3×

×
¨ {

B0

[
G2

12 +α
2
43

µ12

µ34

(
g2− 2∆E

µ12

)]
+

+2B1α43

(
µ12

µ34

)1/2

G12 ·g
(

1− 2∆E
µ12g2

)1/2
}

×U
(

g2− 2∆E
µ12

)
exp
[
−η12

(
G12 + γ12g−u

)2
]

exp(−β12g2)dG12dg

−
(

µ12

µ34

)3/2

n3n4

(
m3

2πT3

)3/2( m4

2πT4

)3/2 1
2

m3B0×

¨ (
G34 +α43g

)2
(

1+
2∆E

µ34g2

)1/2

× exp
[
−η34

(
G34 + γ34g−u

)2
]

exp(−β34g2)dG34dg .

(3.43)

It is possible to summarize all the exchange rates in the energy equations in a single
expression involving stoichiometric coefficients

Si =
1√
π

miB0

{(
µi j

µhk

) 3(1+Λi)
4

nhnk exp
(

(λi +1)∆E
2(αkhTh +αhkTk)

)[(
3ThTk

mkTh +mhTk

− (1−λi)
µi j

m2
i

∆E− (1+λi)µhk

(
Tk−Th

mkTh +mhTk

)2

∆E +u2

)
Γ

(
3
2
,

∆E
αkhTh +αhkTk

)

+2(αkhTh +αhkTk)

[
µhk

(
Tk−Th

mkTh +mhTk

)2

+
µi j

m2
i

]
Γ

(
5
2
,

∆E
αkhTh +αhkTk

)]

−
(

µhk

µi j

)3(1−λi)
4

nin j exp
(

(1−λi)∆E
2(α jiTi +αi jTj)

)
×

×

[(
3TiTj

m jTi +miTj
− (1−λi)µi j

[
(mi +m j)Ti

m jTi +miTj

]2

∆E +u2

)
Γ

(
3
2
,

∆E
α jiTi +αi jTj

)

+2µi j (α jiTi +αi jTj)

[
(mi +m j)Ti

m jTi +miTj

]2

Γ

(
5
2
,

∆E
α jiTi +αi jTj

)]}

−2
(

µi j

µhk

) 1+3λi
4

αi jα jinhnkB1 exp
(

(λi−1)∆E
2(αkhTh +αhkTk)

)
×

×
(

3
2
+

∆E
αkhTh +αhkTk

)
(Tk−Th) .

(3.44)
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Because of the total energy conservation in each reactive encounter, we get

S1 + S2 + S3 + S4 = −Q1∆E (3.45)

3.4 Polyatomic gases

In this section we try to extend the previous model for inert monoatomic gases to
polyatomic ones as proposed in [16].
Let us start from the kinetic model for internal state transitions [39] in which each
species s, s= 1, . . . ,Q, is endowed with a discrete internal structure of N energy levels
to mimic non-translational degrees of freedom. The Q×N components are labeled
according to a single index and ordered in such a way that the s−th species can be
regarded as the equivalence class of the indices i which are congruent to s modulo
Q. We denote with Ei the energy of the state i and they are monotonically increasing
with their index in the frame of each species. Let us denote by ∆Ehk

i j the net increase
of internal energy

∆Ehk
i j = Eh +Ek−Ei−E j (3.46)

related to the general binary interaction

(i, j) 
 (h,k) (3.47)

where i, j,h,k = 1, . . . ,QN.
The evolution of the distribution functions is governed by a set of Boltzmann-like
equations

∂ fi

∂ t
+v ·∇x fi = Ji[f] = ∑

( j,h,k)∈Di

¨
Ki jhk

i [f](v,w, n̂′)dwdn̂′, 1≤ i≤QN (3.48)

with the collision operator

Ki jhk
i [f]

(
v,w, n̂′

)
= Θ

(
g2−δ

hk
i j

)
Bhk

i j
(
g, n̂ · n̂′

)
×

[(
µi j

µhk

)3

fh

(
vhk

i j

)
fk

(
whk

i j

)
− fi(v) f j(w)

]
(3.49)
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where (v,w) indicate pre-collision velocities, g = |v−w| is the relative velocity with
n̂ = (v−w)/g, and the post-collision velocities (vhk

i j ,whk
i j ) are related to the pre- ones

by 
vhk

i j = αi jv+α jiw+αkh ghk
i j n̂′

whk
i j = αi jv+α jiw−αhk ghk

i j n̂′

(3.50)

where ghk
i j =

[
µi j

µhk
(g2−δ hk

i j )

]1/2

. The unit step function Θ introduces a threshold

for the collision strictly related to the activation energy ∆Ehk
i j by means of δ hk

i j =

2∆Ehk
i j /µi j.

The set Di is made up by all triplets ( j,h,k) with h ≡ i and k ≡ j and it can be split
in two subsets

D f ast
i = {( j,h,k) ∈ Di, i≡ j ≡ h≡ k}

Dslow
i = {( j,h,k) ∈ Di, i 6≡ j,h≡ i,k ≡ j} = Di \D f ast

i

(3.51)

characterizing fast phenomenon within each species and slow process which takes
account of interactions between different components. Moreover, it is possible to
subdivide the set D f ast

i in two subsets: the first for the elastic collisions (when h = i
and k = j) and the second (when h 6= i and k 6= j) for the inelastic ones which provide
for a change of internal energy level. For this problem equilibrium configurations are
Maxwellian-type functions sharing a common value for velocities and temperatures

f M
i (v) = ni

( ms

2πT

)3/2
exp
[
−ms

2T
(v−u)2

]
∀i≡ s, s = 1, . . . ,Q

ni =
Ns

Zs(T )
exp
(
−Ei−Es

T

)
, Zs(T ) = ∑

i≡s
exp
(
−Ei−Es

T

) (3.52)

where Zs is the partition function. A strict entropy inequality for relaxation to equi-
librium can also be established in terms of the classical H–functional

H =
Q

∑
s=1

∑
i≡s

ˆ
fi log fi dv (3.53)
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As done in the basic model, we are interested in a two-scale collision process. For
this reason we modify the previous system of kinetic equations as follows

∂ fi

∂ t
+v ·∇x fi =

1
ε

J f ast
i [f]+ Jslow

i [f] (3.54)

where

J f ast
i [f] = ∑

( j,h,k)∈D f ast
i

¨
Ki jhk

i [f](v,w, n̂′)dwdn̂′, 1≤ i≤QN

Jslow
i [f] = ∑

( j,h,k)∈Dslow
i

¨
Ki jhk

i [f](v,w, n̂′)dwdn̂′, 1≤ i≤QN
(3.55)

As seen before, we can deduce a macroscopic description by the hydrodynamic limit
when ε → 0 and by a suitable closure.
The first step is determining the collision invariants for the dominant part of the colli-
sion operator which turns out to be suitable linear combinations of mass, momentum
and total energy of each species s

ϕi (v) = as +bs ·msv+ cs

(
1
2

msv2 +Ei

)
∀i≡ s, ∀s = 1, . . . ,Q (3.56)

where as, bs and cs are free parameters and hence collision invariants constitute a
space of dimension 5Q.
Also local collision equilibria for the dominant operator have a crucial role; they
are Maxwellian-type functions depending on species macroscopic fields and they are
given by

Mi(v) =
Ns

Zs(Ts)

(
ms

2πTs

)3/2

exp
[
− ms

2Ts
(v−us)

2− Ei−Es

Ts

]
(3.57)

∀i≡ s and ∀s = 1, . . . ,Q.
Now we are ready to formulate the weak form of the Boltzmann-type equations by
using as test functions the usual basis for the space of collision invariants; for each
fixed s = 1, . . . ,Q we consider the three following options

bs = 0 , cs = 0 ; as = cs = 0 ; as = 0 , bs = 0 (3.58)
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Therefore one has

∂Ns

∂ t
+∇x · (Nsus) = 0

∂

∂ t
(ρsus)+∇x ·∑

i≡s
(ρiui⊗ui +Pi) = Rs

∂

∂ t

[
∑
i≡s

(
1
2

ρiu2
i +

3
2

niTi +Eini

)]

+∇x ·

{
∑
i≡s

[(
1
2

ρiu2
i +

3
2

niTi +Eini

)
ui +Pi ·ui +qi

]}
= Ss

(3.59)

where momentum and energy exchange rates are given by

Rs = ∑
r 6=s

∑
i,h≡s

∑
j,k≡r

˚
ms

(
vhk

i j −v
)

× Bhk
i j
(
g, n̂ · n̂′

)
Θ

(
g2−δ

hk
i j

)
fi(v) f j(w)dvdwdn̂′

(3.60)

and

Ss = ∑
r 6=s

∑
i,h≡s

∑
j,k≡r

˚ {
1
2

ms

[
(vhk

i j )
2− v2

]
+Eh−Ei

}
× Bhk

i j
(
g, n̂ · n̂′

)
Θ

(
g2−δ

hk
i j

)
fi(v) f j(w)dvdwdn̂′

(3.61)

The lowest order hydrodynamic closure is obtained by replacing the distribution func-
tions with the fast collision equilibria in all moments and integrals. As concerns mo-
ments, one has

∑
i≡s

ρiui⊗ui = ρsus⊗us , ∑
i≡s

Pi = NsTsI , ∑
i≡s

Pi ·ui = NsTsus , qi = 0

∑
i≡s

Eini = NsĒs (Ts) , ∑
i≡s

Einiui = NsĒs (Ts)us

(3.62)

where
Ēs (Ts) =

1
Zs (Ts)

∑
i≡s

Ei exp
(
−Ei−Es

κTs

)
(3.63)

represents an equilibrium average of the energy states within the species s and ac-
counts for the correction to the energy law for the s-th molecules due to the non-
translational degrees of freedom.
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Euler equations for the present model of a polyatomic gas mixture read then as

∂Ns

∂ t
+∇x · (Nsus) = 0

∂

∂ t
(ρsus)+∇x · (ρsus⊗us)+∇(NsTs) = Rs

∂

∂ t

(
1
2

ρsu2
s +

3
2

NsTs +NsĒs (Ts)

)
+

+∇x ·
[(

1
2

ρsu2
s +

5
2

NsTs +NsĒs (Ts)

)
us

]
= Ss

(3.64)

and now source terms are known functions of the macroscopic fields

Rsr = −µsr ∑
i,h≡s

∑
j,k≡r

˚ (
g−
√

g2−δ hk
i j n̂′

)
×Θ

(
g2−δ

hk
i j

)
Bhk

i j
(
g, n̂ · n̂′

)
f M
i (v) f M

j (w)dvdwdn̂′

Ssr = −µsr ∑
i,h≡s

∑
j,k≡r

˚ [
Gsr ·

(
g−
√

g2−δ hk
i j n̂′

)
+

1
2

αrsδ
hk
i j −

Eh−Ei

µsr

]
×Θ

(
g2−δ

hk
i j

)
Bhk

i j
(
g, n̂ · n̂′

)
f M
i (v) f M

j (w)dvdwdn̂′

(3.65)

where Gsr = αsrv+αrsw is the center of mass velocity.
Integrations with respect to the unit vector n̂′ ∈ S2 may be computed separately lead-
ing to the angular moments of the collision kernel

Bhk(`)
i j (g) =

ˆ
S2

(
n̂ · n̂′

)` Bhk
i j
(
g, n̂ · n̂′

)
dn̂′ `= 0,1 (3.66)

Other integrations can be performed in an easier way by a suitable change of variables
which involves the center of mass velocity Gsr and the relative velocity gn̂ and by
noticing that the product of Maxwellians can be cast as

Mi(v)M j(w) =

=
Ns

Zs (Ts)

Nr

Zr (Tr)

(
ms

2πTs

) 3
2
(

mr

2πTr

) 3
2

exp
(
−Ei−Es

Ts
−

E j−Er

Tr

)
×

× exp
[
−ηsr (Gsr + γsrg−δ sr)

2
]

exp
{
−βsr [g− (us−ur)]

2
} (3.67)
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where

βsr =

(
2Ts

ms
+

2Tr

mr

)−1

, γsr =
µsr

ηsr

(
1

2Ts
− 1

2Tr

)
δ sr =

1
ηsr

(
ms

2Ts
us +

mr

2Tr
ur

)
, ηsr =

ms

2Ts
+

mr

2Tr

(3.68)

This allows to push further analytical manipulations leaving only a final one-dimensional
integral with respect to g which depends on the form of the collision kernel; more
precisely, one has

Rs = ∑
r≡s

Rsr = ∑
r≡s

Rsr
us−ur

‖us−ur‖
(3.69)

where

Rsr =
µsr

2
√

π

1

β
1/2
sr |us−ur|2

Ns

Zs (Ts)

Nr

Zr (Tr)
×

× ∑
i,h≡s

∑
j,k≡r

exp
(
−Ei−Es

Ts
−

E j−Er

Tr

)ˆ
∞

0
Θ

(
g2−δ

hk
i j

)
B̄hk

i j (g)×

×

{
(2βsr|us−ur|g−1)exp

[
−βsr (g−|us−ur|)2

]
+

+(2βsr|us−ur|g+1)exp
[
−βsr (g+ |us−ur|)2

]}
gdg

(3.70)

We can rewrite the source term as follows

Rsr =
µsr

2
√

π

1

β
3/2
sr |us−ur|2

Ns

Zs (Ts)

Nr

Zr (Tr)
×

× ∑
i,h≡s

∑
j,k≡r

exp
(
−Ei−Es

Ts
−

E j−Er

Tr

)
Xhk

i j (|us−ur| ,βsr)

(3.71)

where we have set ∆sr = β
1/2
sr |us−ur|

βsr =

(
2Ts

ms
+

2Tr

mr

)−1

(3.72)
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and

Xhk
i j =

ˆ
∞

0
Θ

(
x2−βsrδ

hk
i j

)
B̄hk

i j (β
−1/2
sr x)×

×
{
(2∆srx−1)exp

[
−(x−∆sr)

2
]
+(2∆srx+1)exp

[
−(x+∆sr)

2
]}

xdx
(3.73)

Analogously the energy exchange rate can be written as

Ss = ∑
r≡s

Ssr (3.74)

where

Ssr = δ sr · R̂sr +
1√
π

1
∆sr

Ns

Zs (Ts)

Nr

Zr (Tr)
×

× ∑
i,h≡s

∑
j,k≡r

exp
(
−Ei−Es

Ts
−

E j−Er

Tr

)
Y hk

i j (|us−ur|,βsr,γsr)
(3.75)

where
Y hk

i j =

ˆ
∞

0
Θ

(
x2−βsrδ

hk
i j

){
µsrγsrβ

−1
sr x3B̄hk

i j

(
β
−1/2
sr x

)
+

+[αsr (Eh−Ei)−αrs (Ek−E j)]xBhk(0)
i j

(
β
−1/2
sr x

)}
×

×
{

exp
[
−(x−∆sr)

2
]
− exp

[
−(x+∆sr)

2
]}

dx

(3.76)

and

ηsr =
ms

2Ts
+

mr

2Tr
, γsr =

µsr

ηsr

(
1

2Ts
− 1

2Tr

)
, δ sr =

1
ηsr

(
ms

2Ts
us +

mr

2Tr
ur

)
(3.77)

We hope to find a closed analytical form of the source terms for a simple model of
the collision kernel.
If we consider a Maxwell molecule type of interaction for a given collision, hence we
have

B̄hk
i j (g) = κ

hk
i j = constant (3.78)

and after some cumbersome manipulations one gets

Xhk
i j = 2

√
πκ

hk
i j

{
∆

3
srF1 (βsr,∆sr)−

(
∆

2
sr−

1
2

)
F2 (βsr,∆sr)+

+∆sr

√
βsrδ

hk
i j F3 (βsr,∆sr)

} (3.79)
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for δ hk
i j > 0, where

F1 (βsr,∆sr) = 1−
erf
(√

βsrδ
hk
i j +∆sr

)
+ erf

(√
βsrδ

hk
i j −∆sr

)
2

F2 (βsr,∆sr) =
e−
(√

βsrδ hk
i j +∆sr

)2

− e−
(√

βsrδ hk
i j −∆sr

)2

2
√

π

F3 (βsr,∆sr) =
e−
(√

βsrδ hk
i j +∆sr

)2

− e−
(√

βsrδ hk
i j −∆sr

)2

2
√

π

(3.80)

Unfortunately, under the assumption of Maxwell molecules, not all the integrations
in Rs can be done explicitly; in fact not only Xhk

i j is involved but also its reciprocal X i j
hk

whose collision kernel is related to the first one by the microreversibility condition(
1+

δ hk
i j

g2

)1/2

Bhk
i j (g

i j
hk, n̂ · n̂

′) = Bi j
hk(g, n̂ · n̂

′) (3.81)

and then also the integral

X i j
hk = κ

hk
i j

ˆ
∞

0

(
x2 +βsrδ

hk
i j

)1/2{
(2∆srx−1)exp

[
−(x−∆sr)

2
]
+

+(2∆srx+1)exp
[
−(x+∆sr)

2
]}

dx
(3.82)

with δ hk
i j > 0 has to be solved; but this seems not amenable to any of the most common

elementary or special functions.
Also for the energy exchange rates one can compute explicitly

Y hk
i j = κ

hk
i j µsrγsrβ

−1
sr
√

π

[
∆sr

(
∆

2
sr +

3
2

)
F1 (βsr,∆sr)

+
(

1+βsrδ
hk
i j +∆

2
sr

)
F2 (βsr,∆sr)+

√
βsrδ

hk
i j ∆srF3 (βsr,∆sr)

]
+κ

hk
i j [αsr (Eh−E− i)−αrs (Ek−E j)]

√
π×

× [∆srF1 (βsr,∆sr)+F2 (βsr,∆sr)]

(3.83)

but the microreversibility does not make the reciprocal collision term manageable.



Chapter 4

The steady shock problem for
multi-temperature gases

In this chapter we want to test some of the fluid-dynamic models presented in the
previous one on a very classical problem like the steady shock waves on a one-
dimensional space, in which mass velocities become scalar. The shock problem has
been investigated extensively in different frameworks like the extended thermody-
namics and many results on the occurrence of smooth solution and discontinuities
(the so-called sub-shocks) have been presented [19, 43].
The interesting point is that, actually, the formation of sub-shocks is usually not ob-
served at the kinetic level (see for instance [44, 45] for reactive BGK approaches).
This discrepancy with respect to macroscopic models is due to the fact that hydro-
dynamic descriptions are obtained through proper closure procedures which neglect
many dissipative effects.
The steady shock problem is studied identifying the limiting equilibria related by the
Rankine-Hugoniot conditions, and investigating the basic features of the evolution
equations (that become in this frame a dynamical system of ODEs), with particular
emphasis on possible singularities and on eigenvalues of limiting equilibria. We are
mainly concentrated in discussing the presence of smooth and discontinuous solu-
tions for varying parameters and on the occurrence of possible relevant bifurcations
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versus the Mach number.

4.1 One-velocity and multi-temperature description

In this section we consider a reactive mixture of four monoatomic gases undergoing
a bimolecular reversible chemical reaction

(1,2) 
 (3,4) (4.1)

in which each single component is endowed with an internal energy Ei where ∆E =

E3 +E4−E1−E2 > 0.
We have seen before that, starting from a kinetic description in presence of a two-
scale collision process, it is possible to deduce a macroscopic model at Euler level for
the unknown fields ni (number densities), ui (mass velocities) and Ti (temperatures)
[17]. As anticipated, there are physical scenarios in which the thermal problem can
be separated from the mechanical one or, in other words, the equalization of species
velocities is faster than the equalization of temperature; in this regard, Landau showed
that this faster mechanical relaxation is true for plasmas [42]. This is the physical
regime that will be addressed here, and in this frame the deduced set of Euler-type
equations read as

∂ni

∂ t
+∇x · (niu) = Qi

∂

∂ t
(ρu)+∇x · (ρu⊗u)+∇x (nT ) = 0

∂

∂ t

(
1
2

ρiu2 +
3
2

niTi

)
+∇x ·

[(
1
2

ρiu2 +
5
2

niTi

)
u
]
= ∑

j 6=i
Si j +Si

(4.2)

where

Q1 = Q2 = −Q3 = −Q4 ,
4

∑
i=1

∑
j 6=i

Si j = 0 ,
4

∑
i=1

Si = −Q1∆E (4.3)
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and, under the assumption of Maxwell molecules, source terms have a closed analyt-
ical form described in (3.39), (3.40) and (3.44).
Starting from the system of equations above and by using relations on source terms,
one can obtain some conservation laws which express the preservation of suitable
combinations of densities (for example (1,3), (1,4) and (2,4)), global momentum
and total energy. It is convenient to reformulate the problem by coupling these con-
servations with balance laws for one of the number densities (for example n1) and
three of the species energies (for example second, third and fourth species). In this
way, in the one-dimensional steady shock problem the unknown fields are governed
by the following set of ordinary differential equations

d
dx

(n1u) = Q1

d
dx

[(ni +n j)u] = 0 (i, j) = (1,3), (1,4), (2,4)

d
dx

(
ρu2 +nT

)
= 0

d
dx

(
1
2

ρu3 +
5
2

nTu+
4

∑
i=1

Einiu

)
= 0

d
dx

(
1
2

ρiu3 +
5
2

niTiu
)

= ∑
j 6=i

Si j +Si i = 2,3,4,

(4.4)

with limiting conditions x→±∞ given by equilibrium points, in which of course all
species share a common value for temperature T± and Mass Action Law is fulfilled

T±i = T± i = 1, . . . ,4,
χ
±
1 χ
±
2

χ
±
3 χ
±
4

=

(
µ12

µ34

)3/2

exp
(

∆E
T±

)
(4.5)

where χi = ni/n indicates the concentration of the i−th species. Each state can be
expressed in term of density n±, temperature T±, two out of the four concentration
fractions χ

±
i , and velocity u±, which also define the relevant sound speeds and the

corresponding Mach numbers via [46]

c± = α
±
(

5n±T±

3ρ±

)1/2

, (α±)2 =
∑

4
i=1

1
χ
±
i
+ 2

5

(
∆E
T±
)2

∑
4
i=1

1
χ
±
i
+ 2

3

(
∆E
T±
)2 < 1 , Ma± =

u±

c±
(4.6)
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In order to obtain physical shock solutions, the entropy flux condition imposed by
the H-theorem must be fulfilled and this gives some restrictions on the admissible
values of upstream Mach number, Ma− > 1, which is equivalent to impose entropy
Lax conditions [47].
Conservation laws in the set of ODEs gives a relation between downstream (+) and
upstream (−) parameters (called Rankine-Hugoniot conditions) which can determine
the downstream state in terms of the upstream one. A detailed analysis has been
presented in [46] and we just recall few features.
In particular one has

χ
+
i = χ

−
i +λi∆χ i = 1, . . . ,4,

n+

n−
=

ρ+

ρ−
=

u−

u+
(4.7)

where λ1 = λ2 = 1 =−λ3 =−λ4 and the parameter ∆χ is proved to be in a one–to–
one relationship with u− and then with the upstream Mach number, and determines
uniquely T+ via (4.5). Finally

n+

n−
= 2

(
1− T−

T+

)
− ∆E

T+
∆χ +

{[
2
(

1− T−

T+

)
− ∆E

T+
∆χ

]2

+
T−

T+

}1/2

u− =

(
n−T−

ρ−

)1/2[n+

n−
1− (n+/n−)(T+/T−)

1− (n+/n−)

]1/2
(4.8)

Moreover, by using the 5 conservation equations, one can eliminate 5 variables,
namely all ni and T , in terms of u

ni =
n−i u−

u
−λiN T =

ρ−(u−)2 +n−T−

n−u−
u− ρ−

n−
u2 (4.9)

where

N =
1

∆E

[
2ρ
−u−u− 5

2
(
ρ
−(u−)2 +n−T−

)
+

(
1
2

ρ
−(u−)3 +

5
2

n−T−u−
)

1
u

]
(4.10)

In this way, the system of ordinary differential equations reduces to the sub-system
of four balance laws which have to be rewritten in terms of the remaining unknowns
u, T2, T3, T4.The crucial problem is the first equation which reduces to the form

d
dx

F(u) = G(u,T2,T3,T4) lim
x→±∞

u(x) = u± (4.11)
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where G is nothing but Q1 and F(u) = n1u can be rewritten as a polynomial of degree
2 in u

F(u)= n−1 u−− 1
∆E

[
2ρ
−u−u2− 5

2
(
ρ
−(u−)2 +n−T−

)
u+

1
2

ρ
−(u−)3 +

5
2

n−T−u−
]

(4.12)
Hence its derivative is linear and it vanishes in

u∗ =
5
8

ρ−(u−)2 +n−T−

ρ−u−
(4.13)

Hence the vector field of the dynamical system is singular on the hyperplane u = u∗,
which might or might not interfere with the admissible phase space.
It is easy to check that 0 < u+ < u−; in fact, by using relations (4.7) one can prove
that

∆E
T+

= log
(

m
χ
+
1 χ

+
2

χ
+
3 χ

+
4

)
< log

(
m

χ
−
1 χ
−
2

χ
−
3 χ
−
4

)
=

∆E
T−

=⇒ T+ > T− (4.14)

where m = (µ34/µ12)
3/2. By using (4.8) one has

u− <

(
n−T−

ρ−
n+

n−

)1/2

(4.15)

and hence

u−

u+
=

n+

n−
>

ρ− (u−)2

n−T−
=

5
3
(
α
−)2 (Ma−

)2
>

5
3
(
α
−)2

> 1 (4.16)

One can discuss also the collocation of u∗ with respect to u−

u∗ ≷ u− ⇐⇒ (u−)2 ≶
5n−T−

3ρ−
⇐⇒ Ma− ≶

1
α−

(4.17)

One can notice that for slightly supersonic flows when upstream Mach number is in
the interval (1,1/α−) the singularity does not interfere with the phase space, thus
the vector field is regular and a smooth solution for the steady shock is allowed. But,
as soon as u− increases and the Mach number exceeds the threshold 1/α− > 1, a
smooth solution is ruled out, and one has to search for weak solutions, presenting
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jump discontinuity.
In order to study weak solutions, one has to look for a piecewise smooth profile in
the separate intervals (−∞,0) and (0,+∞) (discontinuity at some point x can always
be shifted to the origin), satisfying limiting conditions at ±∞, and whose limits for
x→ 0− and x→ 0+, labelled by m and p superscripts, respectively, fulfil the con-
straints following from the differential equations themselves. Since the source terms
at the right hand side of the energy equations (4.4) are bounded functions, those equa-
tions imply continuity of the quantities under the derivative operator across the jump,
namely

1
2

ρ
m
i (u

m)3 +
5
2

nm
i T m

i um =
1
2

ρ
p
i (u

p)3 +
5
2

np
i T p

i up i = 2,3,4. (4.18)

This is not true for the velocity field since F ′ (u) vanishes at u = u∗; however, the
same technique as before yields the constraint F (um) = F (up) from which

up +um

2
=

5
8

ρ−(u−)2 +n−T−

ρ−u−
= u∗ (4.19)

This last equation means that the singular value u = u∗ exactly represents the mid-
point of any admissible jump.
The jump in the velocity profile implies corresponding discontinuities in the gas num-
ber density n = n−u−/u and in the temperature T ; there is instead no jump for the
concentrations χi, since the single continuity equation (the first of (4.4))may be writ-
ten as

dχi

dx
=

λi

n−u−
Q1 (4.20)

where now the right hand side is a bounded function of x and it leads to χ
p
i = χm

i .
In order to construct smooth and weak solutions, an useful tool is the analysis of the
stability of the limiting equilibria which, in this case, can be performed easily with
the help of symbolic manipulation.
In all cases that have been investigated (a reference case is illustrated in Fig.4.1), all
eigenvalues of the downstream state have negative real part. The same happens for
the upstream state as long as Ma− > 1/α− (weak solution regime) but, as soon as
Ma− descends below this bifurcation value (possible smooth solution), the upstream
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Figure 4.1: Real part of the eigenvalues of the upstream equilibrium versus Mach
number on a physical (a) and stretched (b) scale.

Jacobian matrix exhibits one positive eigenvalue, while the other three keep negative
real part. In addition, the transition is singular in the sense that an eigenvalue diverges
to −∞ when Ma− approaches the threshold from above, and re–appears from +∞

after the crossing. This suggests the following scenario which will be confirmed by
numerical experiments.

• Case Ma− < 1/α−

In these configurations the upstream equilibrium is a saddle with a one–dimensional
unstable manifold and a three–dimensional stable manifold, and the only way to
reach it running backwards towards−∞ is to follow the unstable manifold, tangent to
the one–dimensional unstable eigenspace. That manifold represents the unique non–
constant solution of our shock problem fulfilling the upstream condition, and enters
the phase space, where it is attracted by the asymptotically stable downstream equi-
librium, providing the sought heteroclinic orbit, and the smooth shock profile.

• Case Ma− > 1/α−

Now the upstream equilibrium is itself asymptotically stable, and the only admissible
solution satisfying the upstream condition is the constant solution, which of course
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can not reach the downstream equilibrium for x→ +∞. The only way to do that is
through a jump discontinuity, governed by (4.18) and (4.19), where necessarily ρm

i ,
um, nm

i , T m
i must coincide with ρ

−
i , u−, n−i , T−i . A simple calculation yields then the

corresponding values reached across the jump

up = 2u∗−u− =
ρ−(u−)2 +5n−T−

4ρ−u−

T p
i =

n−i u−

np
i up T−+

1
5

mi

(
n−i u−

np
i up (u

−)2− (up)2
)

i = 2,3,4
(4.21)

where np
i (as well as all other quantities of interest) are determined by up. At this

point, the state after the jump is a point in the phase space attracted by the asymptoti-
cally stable downstream equilibrium, and a smooth trajectory joins it to that state for
x→+∞. This builds up the sought weak shock wave solution, with a jump disconti-
nuity from upstream equilibrium to an intermediate non–equilibrium state, followed
by a smooth tail leading that state to the downstream equilibrium.
This scenario does not seem predictable at kinetic level and it seems strictly related
to the simple hydrodynamic closure at Euler level.

4.1.1 Numerical simulations

We present some shock profiles resulting from the numerical integrations of the
macroscopic differential equations which can be made non-dimensional by rescaling
the involved quantities in terms of typical values (indicated by˜). Choosing T̃ = ∆E,
and accordingly ũ = (∆E/m̃)1/2, the parameter ∆E disappears at all and the dimen-
sionless equations differ from the dimensional ones by the presence of a factor ũ/B̃ñL
in front of space derivatives. In order to obtain a universal set of equations we choose
L = ũ/B̃ñ. In conclusion, we consider equations (4.4) as dimensionless and with ∆E
understood to be unity. In addition, we normalize in such way that

• u(0) = (u++u−)/2 for smooth solutions

• discontinuity is located in x = 0 for sub-shocks
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Figure 4.2: Mass velocity (a) and species temperature (b) versus x when Ma− = 1.01.
We are in presence of a slightly supersonic regime and the predicted smooth profiles
for the involved quantities are reproduced.

All the simulations have been made up by forward integrations by means of classical
Runge-Kutta methods. We consider as reference case the bimolecular reaction

H2O+H
 OH +H2 (4.22)

for which the (dimensionless) masses result

m1 = 1.8 m2 = 0.1 m3 = 1.7 m4 = 0.2 (4.23)

and hence m1 +m2 = m3 +m4. We consider the upstream configuration by fixing
n− = 1.85 and the concentration fractions

χ
−
1 = 0.4324 χ

−
2 = 0.4865 χ

−
3 = 0.0270 χ

−
1 = 0.0541 (4.24)

The Mass Action Law gives T− = 0.1688 and then α− = 0.9421; therefore, the bi-
furcation value for Mach number is 1/α− = 1.0614.
The first choice for Mach number is Ma− = 1.01, it corresponds to ∆χ = −0.0008
and it implies u− = 0.5369, u+ = 0.5283 and T+ = 0.1701.
Fig. 4.2 shows the very smooth shock profiles for u and Ti in this slightly supersonic
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Figure 4.3: Mass velocity (a), global temperature (b), number densities (c) and
species temperature (d) versus x when Ma− = 1.06. The chosen value for Mach num-
ber is close to the bifurcation one but still in the ‘smooth’ region.

scenario. The solution has been found numerically starting from a close neighbor-
hood in phase space of the upstream equilibrium, choosing an initial point in the
direction of its one–dimensional unstable eigenspace (we recall that upstream state is
a saddle); in this way, the phase trajectory leaves the neighborhood along the unstable
manifold, and moves, for x→ +∞, to the downstream equilibrium, which is always
asymptotically stable.
We increase Mach number choosing a value very close to the bifurcation one but
still in the smooth region: Ma− = 1.06. In this case ∆χ = −0.0046, u− = 0.5635,
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Figure 4.4: Mass velocity (a), global temperature (b), number densities (c) and
species temperature (d) versus x when Ma− = 1.065. The chosen Mach number is
still close to the bifurcation value but it is greater than it. A jump discontinuity ap-
pears and it involves mass velocity and temperatures.

u+ = 0.5128 and T+ = 0.1766. The profiles in Fig.4.3 are of the same type as in
the previous case; they are still smooth but they present a much sharper edge cor-
responding to higher values of derivatives. This is explained by the presence of a
much higher positive eigenvalue which makes detachment from the upstream equi-
librium much faster. Moreover, one notice possible occurrence of overshooting in
some species temperatures.
Now we increase further the Mach number passing through the threshold. We con-
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Figure 4.5: Mass velocity (a) and species temperature (b) versus x when Ma− = 1.15.
A higher value of Mach number corresponds to a wider and more evident disconti-
nuity.

Figure 4.6: Species temperature versus x for a different upstream configuration (a)
and for a different chemical reaction (b) for fixed Mach number Ma− = 1.1.

sider a value for Mach number close to the bifurcation one but greater than it: Ma− =

1.065, from which ∆χ = −0.0050, u− = 0.5662, u+ = 0.5114 and T+ = 0.1772. In
this case, singularity enters the phase space and a jump appears; this discontinuity
can be seen as a development of the previous sharp edge (see Fig4.4).
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The last case concerns the choice of Mach number Ma− = 1.15 for which the jump
discontinuity enlarges, overshooting effects are more evident and a much larger spread
among species appears across the shock front (see Fig.4.5).
Similar trends can be reproduced also for different upstream configurations or for dif-
ferent chemical reactions. In figure 4.6(a) trends of species temperatures are shown
for a different upstream equilibrium

χ
−
1 = 0.25 , χ

−
2 = 0.35 , χ

−
3 = 0.25 , χ

−
4 = 0.15 (4.25)

which implies a different critical value for upstream Mach number (1/α− = 1.0227).
In fig. 4.6(b) also the chemical reaction is changed and we consider the following one

NO+CO2
 NO2 +CO (4.26)

whose relevant masses are m1 = 3, m2 = 4.4, m3 = 4.6 and m4 = 2.8. In this last
case critical upstream Mach number decreases further (1/α− = 1.0049) and hence
Ma− = 1.1 becomes comparatively higher which explains the larger jump disconti-
nuity. Moreover, now masses are more balanced; this implies larger exchange rates
and then a faster relaxation to downstream equilibrium.

4.2 Multi-velocity and multi-temperature binary inert mix-
ture

In this section we want to investigate the steady shock problem for a non-reactive gas
mixture in which hydrodynamic variables are densities, velocities and temperatures
of each species. This application can seem simpler than the previous one because of
the absence of non-conservative processes (the chemical reaction) but the presence of
different velocities provides several interesting phenomena even in a mixture of only
two components. Results are in agreement with those presented in the framework
of extended thermodynamics [48] and smooth solutions as well as sub-shocks of
different kind can be discussed. The generalization of this (multi-velocity and multi-
temperature) analysis to an higher number of (inert and reactive) gases seems very
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cumbersome, and it will be matter of future research.
The basic multi-velocity and multi-temperature model proposed in the previous chap-
ter is the starting point; in the steady version macroscopic fields are governed by the
following set of ordinary differential equation

d
dx

(n1u1) = 0

d
dx

(n2u2) = 0

d
dx

[
ρ1 (u1)

2 +n1T1

]
= R12

d
dx

[
ρ2 (u2)

2 +n2T2

]
=−R12

d
dx

[
1
2

ρ1 (u1)
3 +

5
2

n1T1u1

]
= S12

d
dx

[
1
2

ρ2 (u2)
3 +

5
2

n2T2u2

]
=−S12

(4.27)

where terms R12 and S12 are provided by (3.13) and (3.14).
As before, the shock solution must join two limiting equilibrium states at ±∞ char-
acterized by a common value for mass velocities and temperatures

u±1 = u±2 = u± T±1 = T±2 = T± (4.28)

Therefore, each equilibrium configuration is totally determined by fixing number
densities n±1 , n±2 , common velocity u± and temperature T±. These quantities define
the relevant sound speeds c± and the corresponding Mach number Ma±

(
Ma±

)2
=

(u±)2

(c±)2 =
3ρ± (u±)2

5n±T±
(4.29)

From the set of ODEs (4.27) one can deduce easily four independent conservation
laws: the first two equations, the sum of third and fourth equations (reproducing mo-
mentum conservation) and the sum of fifth and sixth one (energy conservation). As
seen in the previous section, these conservations establish some relations between
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upstream (-) and downstream (+) parameters (Rankine-Hugoniot conditions)

n+s u+ = n−s u−, s = 1,2

ρ
+
(
u+
)2

+n+T+ = ρ
− (u−)2

+n−T− =: κ
A

ρ
+
(
u+
)3

+5n+T+u+ = ρ
− (u−)3

+5n−T−u− =: κ
B

(4.30)

whose solution in terms of upstream Mach number is given by

n+s =
4(Ma−)2

(Ma−)2
+3

n−s , s = 1,2, u+ =
(Ma−)2

+3

4(Ma−)2 u−

T+ =
((Ma−)2

+3)(5(Ma−)2−1)

16(Ma−)2 T−
(4.31)

Moreover, conservation laws are valid for all points of the shock profile; hence, fixing
the upstream configuration, the solution must fulfill the constraints

n1u1 = n−1 u−

n2u2 = n−2 u−

ρ1 (u1)
2 +n1T1 +ρ2 (u2)

2 +n2T2 = ρ
− (u−)2

+n−T−

ρ1 (u1)
3 +5n1T1u1 +ρ2 (u2)

3 +5n2T2u2 = ρ
− (u−)3

+5n−T−u−

(4.32)

These relations allow to express four of the sixth unknown fields in terms of the
remaining two. The first two give

ni =
n−i u−

ui
i = 1,2 (4.33)

Third and fourth conservations can be seen as a linear system for temperatures T1 and
T2. Unfortunately the determinant of this system is proportional to u1−u2 and it can
vanish if velocities share the same value. It is not possible to impose u1 6= u2 because
we want to determine an orbit joining two limiting equilibria which are characterized
by the equalization of species velocities.
Hence, a different approach is required. Our strategy consists in studying a system of
three ordinary differential equations; this means that just three of the four conserva-
tions are used to reduce the problem. In addition, we introduce also the new variables
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T̂ =
n1

n
T1 and θ = T1−T2 (4.34)

in place of T1 and T2

T1 = T̂ +
n2

n
θ and T2 = T̂ − n1

n
(4.35)

At this point, we can write n1, n2 and T̂ in terms of u1, u2 and θ by using the first
three conservations; in particular one has

T̂ =
u1u2κA(

n−1 u2 +n−2 u1
)

u−
−
(
ρ
−
1 u1 +ρ

−
2 u2

)
u1u2

n−1 u2 +n−2 u1
(4.36)

where κA is a constant defined in (4.30). Skipping some details, one can rewrite the
problem in terms of u1, u2 and θ as

A · dy
dx

= b (4.37)

where y = (u1,u2,θ)
T , b = (R12,S12,−S12)

T , and the matrix A is

n2

nu1

[
ρ1 (u1)

2−n1T1

]
− n1

nu2

[
ρ2 (u2)

2−n2T2

] n1n2

n

ρ1(u1)
2− 5

2
n1

n

[
ρ1(u1)

2−n1T1

]
−5

2
n1u1

nu2

[
ρ2 (u2)

2−n2T2

] 5
2

n1n2u1

n

−5
2

n2u2

nu1

[
ρ1 (u1)

2−n1T1

]
ρ2(u2)

2− 5
2

n2

n

[
ρ2(u2)

2−n2T2

]
−5

2
n1n2u2

n


(4.38)

Its determinant

det(A) =
1
4

n1n2

n

[
3ρ1 (u1)

2−5n1T1

][
3ρ2 (u2)

2−5n2T2

]
(4.39)

vanishes in correspondence of (M1)
2 = 1 or (M2)

2 = 1, where

(Ms)
2 = 3ρs (us)

2 /(5nsTs) (4.40)

denotes the Mach number we would have if we considered the evolution of s-th
species only. In all points in which matrix A is regular and one can compute its
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inverse, it is possible to set, in this way, the system of ODEs in normal form

dus

dx
=

5R12us−2S12

3ρs (us)
2−5nsTs

, s = 1,2

dθ

dx
=−2

2

∑
s=1

R12ρs (us)
3−S12

[
ρs (us)

2−nsTs

]
nsus

[
3ρs (us)

2−5nsTs

] (4.41)

One can notice that, by a long computation, a suitable combination of these equations
can reproduce correctly the last conservation law i.e that conservation in (4.31) not
used in the reduction technique.
It is clear that possible smooth solutions can exist only if denominators

Ds = 3ρs (us)
2−5nsTs = 5nsTs

[
(Ms)

2−1
]
, s = 1,2 (4.42)

do not vanish during the evolution. An analysis of these quantities in the equilibrium
configurations can give some indications on the existence or not of smooth profiles;
in the limiting states parameters are known and hence a detailed investigation can be
presented.
Let us introduce concentration c = n−1 /n− and mass ratio α = m1/m2. We suppose
α < 1 but analogous considerations are possible also for α > 1. One can write

(M−1 )
2 =

α

γ

(
Ma−

)2
, (M−2 )

2 =
1
γ

(
Ma−

)2
, γ = αc+1− c (4.43)

and, under the assumption α < 1, one has that M−1 < M−2 and α < γ < 1.
As concerns the downstream equilibrium, it is not difficult to show that Mach num-
bers are given by

(M+
1 )

2 =
α

γ

(Ma−)2
+3

5 (Ma−)2−1
(M+

2 )
2 =

1
γ

(Ma−)2
+3

5 (Ma−)2−1
(4.44)

Once the configuration in the upstream equilibrium is fixed, for Ma− = 1 we have
(M−1 )

2 = (M+
1 )

2 = α/γ and (M−2 )
2 = (M+

2 )
2 = 1/γ; for fixed values of the concen-

tration c, (M−1 )
2 and (M−2 )

2 will linearly increase up to +∞, while (M+
1 )

2 and (M+
2 )

2

will decrease, respectively, up to the limiting values α/(5γ), 1/(5γ) for varying Mach
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Figure 4.7: Bifurcation values Ma−∗ and Ma−] versus concentration c, for mass ratio
α = 0.1 (c̄ = 0.8̄ and c∗ = 0.6905)

number (Ma−)2 from 1 to +∞.
It is easy to see that D+

1 < 0 and D−2 > 0 for any Ma− ≥ 1. Existence of a smooth
shock wave is then possible only for Mach numbers such that D−1 < 0 and D+

2 > 0.
It is clear that

• D−1 < 0 only for (Ma−)2
< (Ma−∗ )

2
= γ/α

• as concerns D+
2

– if γ < 1/5 then it is positive for any Ma−

– if γ > 1/5 it is positive only for (Ma−)2
< (Ma−] )

2 = (γ +3)/(5γ−1)

Bifurcation values Ma−∗ and Ma−] are plotted in Fig. 4.7 in a reference case.
It can be checked that

Ma−∗ < Ma−] ⇔ c > c∗ =
1

10(1−α)

[
9−α−

√
α2 +62α +1

]
(4.45)

Summing up, we have the following scenarios which will be confirmed by numerical
simulations
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• if α > 1/5, setting m=min
{

Ma−∗ ,Ma−]
}

and m̄=max
{

Ma−∗ ,Ma−]
}

, a smooth
solution is allowed for 1 < Ma− < m, a solution with one jump is possible for
m < Ma− < m̄, while for Ma− > m̄ two jumps are required in order to over-
come singularities of both denominators D1 and D2;

• if α < 1/5, this scenario does not change as long as c < c̄ = 4/[5(1−α)],
whereas for c̄ < c < 1 a smooth solution is allowed for 1 < Ma− < Ma−∗ , oth-
erwise we may look only for a weak solution with a jump discontinuity.

As seen in the previous section, discussing stability of equilibria has a crucial role. A
numerical investigation of several cases has shown that

• in the upstream configuration (-) one eigenvalue is positive and the other is
negative for Ma− < Ma−∗ , while they become both negative for Ma− > Ma−∗

• in the downstream state (+) eigenvalues are both negative for Ma− < Ma−] ,
when Ma−] exists, while one of them becomes positive for Ma− > Ma−]

Therefore, the different regions in Fig. 4.7 present the following scenarios

• Region I: the downstream equilibrium is asymptotically stable while the up-
stream one is a saddle with a one-dimensional unstable manifold. The only
way to reach the equilibrium at +∞ is following the unstable manifold of the
upstream state, getting then attracted by the stable downstream one. This guar-
antees the presence of smooth shock solutions.

• Region II: both equilibria are asymptotically stable, hence no smooth solution
can join the two limiting configurations. The only admissible profile satisfying
the upstream condition is the constant one and it can reach the downstream
state just through a suitable jump discontinuity consistent with conservations.

• Region III: the upstream equilibrium is stable while the downstream one is a
saddle. The solution starting from the upstream state is again constant, then a
jump discontinuity is necessary, but the downstream state can not be reached by
a smooth tail; once more it might be possible that the tail undergoes a further
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discontinuity leading eventually the solution to the limiting equilibrium by a
second tail on its stable manifold.

• Region IV: both equilibria are saddle points; no smooth solutions can exist be-
cause of the singularities analyzed above. It is possible to find a jump disconti-
nuity in which the solution moves from the unstable manifold of the upstream
equilibrium to the stable manifold of the downstream one.

As in the previous case, jump discontinuities seem unpredictable at kinetic level and
strictly related to the hydrodynamic closure. Moreover, as far as we know, the occur-
rence of profiles with two discontinuities is investigated for the first time.
Now we are interested in investigating how the configurations on different sides of a
jump are related. If we know the fields on one side of the jump (labelled by super-
script ∗), the corresponding ones on the other side, denoted with superscript •, are
given by

ρ
•
1 (u

•
1)

2 +n•1T •1 = kA
1

ρ
•
1 (u

•
1)

3 +5n•1T •1 u•1 = kB
1

ρ
•
2 (u

•
2)

3 +5n•2T •2 u•2 = kB
2

(4.46)

where kA
s := ρ∗s (u

∗
s )

2+n∗s T ∗s and kB
s := ρ∗s (u

∗
s )

3+5n∗s T ∗s u∗s . By simple manipulations,
one has that u•1 must fulfill the algebraic equation

4ρ
∗
1 u∗1 (u

•
1)

2−5kA
1 u•1 + kB

1 = 0 (4.47)

with solutions

u•1 = u∗1 , or u•1 =
ρ∗1 (u

∗
1)

2 +5n∗1T ∗1
4ρ∗1 u∗1

=: ũ1 . (4.48)

Then, the expressions for temperatures are

T •1 =
kB

1 − kA
1 u•1

4n∗1u∗1
, T •2 =

kB
2 −ρ∗2 u∗2 (u

•
2)

2

5n∗2u∗2
, (4.49)

and finally we get a quadratic equation for u•2 analogous to (4.47) that has the follow-
ing roots

u•2 = u∗2 , or u•2 =
ρ∗2 (u

∗
2)

2 +5n∗2T ∗2
4ρ∗2 u∗2

=: ũ2 . (4.50)
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Four outputs for velocities after the jump are possible

(u∗1,u
∗
2) , (u∗1, ũ2) , (ũ1,u∗2) , (ũ1, ũ2) (4.51)

where the first corresponds to continuity and hence it has to be discarded. A discon-
tinuity is necessary to avoid vanishing denominators but occurrence of other, even
several, jumps may not be excluded at this point.
Finally, for species undergoing discontinuity it can be noticed that

D•s = 3ρ
∗
s u∗s u•s −5

n∗s u∗s T •s
u•s

=− 1
u•s

[
3ρ
∗
s (u

∗
s )

2−5n∗s T ∗s
]

ρ∗s (u
∗
s )

2 +5n∗s T ∗s
4ρ∗s u∗s

=−
[
3ρ
∗
s (u

∗
s )

2−5n∗s T ∗s
]
=−D∗s ,

(4.52)

namely the relevant denominator changes sign keeping the same magnitude.

4.2.1 Numerical simulations

Figure 4.8: Mass velocity (a) and species temperature (b) versus x. In region I smooth
profiles for velocities and temperatures can be built up.

In this subsection we shall present some shock profiles resulting from the numer-
ical integration of (4.27) via Runge-Kutta methods. Solutions are normalized in such
way that u1(0) = (u++u−)/2 for smooth profiles, while for solutions with only one



92 Capitolo 4. The steady shock problem for multi-temperature gases

Figure 4.9: Mass velocity (a) and species temperature (b) versus x. In region II a jump
occurs and the discontinuity just involves species 1.

Figure 4.10: Mass velocity (a) and species temperature (b) versus x. In region III two
different jump discontinuities occur and they involve separately just one of the two
components.

jump, this is located in x = 0.
We consider a mixture of Helium and Argon whose dimensionless masses are re-
spectively m1 = 4 and m2 = 40 (α = 0.1). We fix the upstream configuration n−1 =
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Figure 4.11: Mass velocity (a) and species temperature (b) versus x. In region IV a
jump occurs and the discontinuity just involves species 2.

0.753, n−2 = 0.247, u− = 1.63 (thus n− = 1 and c = 0.753) while T− changes for
varying upstream Mach number Ma−. As first case, we consider Ma− = 1.75 close
to the lower bifurcation value (m = 1.7593) but still in the smooth region; we have
T− = 6.7107, n+1 = 1.5215, n+2 = 0.4991, u+ = 0.8067, T+ = 11.8834 and profiles
for mass velocities and temperatures are shown in Fig. 4.8. Trends show a fast detach-
ment from an almost constant profile. One of the two species temperatures overshoots
the equilibrium value and this is related to the disparate masses chosen before; more-
over there is a point during the evolution in which T1 = T2 but u1 6= u2 and then
temperatures split again, reaching then the common value T+.
Now we increase Ma− by taking a value in region II (Ma− = 2, T− = 5.1379,
n+1 = 1.7211, n+2 = 0.5646, u+ = 0.7131 and T+ = 10.6772). Now both equilibria
are asymptotically stable, so the unique solution consistent with the upstream config-
uration is the constant one with u1 = u2 = u− and T1 = T2 = T−.
We recall that D−1 D+

1 < 0 and D−2 D+
2 > 0 and hence the unique possible choice of

velocities after the jump is (u•1,u
•
2) = (ũ1,u∗2) which changes the sign of D1 and not

of D2 (and in which u2 remains continuous) (see Fig. 4.9).
We increase further the upstream Mach number crossing also the second bifurcation
value (m̄= 2.3309, Ma−= 5, T−= 0.8221, n+1 = 2.6893, n+2 = 0.8821, u+ = 0.4564,
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T+ = 7.1355). In this case D−1 D+
1 < 0 and D−2 D+

2 < 0; again the constant profile
is compatible with the upstream configuration. Numerical simulations show that a
jump with a discontinuity of both velocities does not enter the stable manifold of the
downstream equilibrium and hence a profile with just one jump is not an admissible
weak solution for our problem.
We are able to build up a shock solution with two discontinuities (Fig. 4.10). The first
one has the same features of the case of the region II, a constant upstream profile,
followed by a jump in which (u•1,u

•
2) = (ũ1,u∗2); then we consider a tail originating

from it; on the other hand, we move backward from +∞ starting tangent to its stable
manifold. We can notice that there exists one pair of points, one belonging to the
solution after the first jump while the other one to the stable manifold of +∞, that
fulfill conservations (4.46). In this way, we build up a second jump consistent with
the conservation laws. Finally, one can observe that the first jump changes the sign of
D1 only while the second discontinuity changes the sign of D2 only.
To investigate shock profiles in region IV, we change upstream configuration and tak-
ing a different concentration (n−1 = 0.4, n−2 = 0.6 and c = 0.4). We consider Ma− = 2
which gives T− = 10.2025, n+1 = 0.9143, n+2 = 1.3714, u+ = 0.7131, T+ = 21.2021.
A weak solution with one jump involving species 2 (D−2 D+

2 < 0) can be computed
using on one side the stable downstream manifold (in the backward direction), and on
the other side the solution tangent to the upstream unstable manifold (in the forward
direction) (Fig. 4.11).
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