Fertility Preservation in Cancer Patients: The Global Framework

Abstract

Cancer treatment is the most frequent cause of reduced fertility in cancer patients, with up to 80% of survivors affected. None of the established or experimental fertility preservation methods can assure parenthood; instead it may provide a future opportunity to overcome treatment induced sterility. Previous research demonstrated that fertility counselling has clinical and psychological benefit. Therefore, such patient services are recommended by internationally recognized guidelines. Around 70-75% of young cancer survivors in retrospective studies are reported to desire parenthood but the numbers of patients who use fertility preservation services prior treatment are significantly lower. Moreover, despite existing guidelines healthcare professionals worldwide lack practical knowledge and have personal biases which prevent addressing fertility preservation issues adequately. Surveys of healthcare professionals report the following barriers: lack of time and knowledge about existing options, poor prognosis, and delay in treatment, patient’s age, partnership status, existing children, sexual orientation and socioeconomic situation. Moreover, fertility preservation consultation is not limited to medical aspects. Patient’s fears, expectations and priorities shaped by personal values have to be addressed in a light of medical necessities, realistic survival prognosis, socio-cultural environment and availability of resources. We call for a need of framework for patient centred fertility counselling with a proposal that such framework should include support in decision making which would help patients to understand medical aspects of their cancer, realistic fertility preservation options, identify their preferences based on personal values and goals. Optional support services could also include legal guidance, psychological and spiritual support and financial counselling.

Keywords
Fertility preservation, cancer patients, cryopreservation, counselling, decision support

Introduction

Cancer is predominantly associated with older age, but it also affects children, adolescents and young adults. Survival rates are known to be the highest for patients aged between 15 and 44 [1], with 5-years survival ranging from 60 to 82% according to age, tumour site and country of treatment [1,2,3,4,5,6]. Cancer therapies, nevertheless effective, often come with undesirable side effects, some of which are for a lifetime. Among these, infertility may affect up to 80% of cancer survivors as a result of treatments [7].

Cancer itself is rarely a direct cause of infertility [8,9]. Chemotherapy, radiotherapy or surgical removal of reproductive organs is the most frequent determinants of infertility in cancer survivors [10].

Cancer treatment effects on fertility

Male germ cells are sensitive to injury caused by cytotoxic drugs [11]. Leydig cells are resistant to chemotherapy [8], thus infertility rather than impaired sexual function altered by endocrine milieu is more frequently reported after oncological treatments. In females, ability to conceive can be affected by previous exposure to chemotherapy, radiotherapy or surgery. Adequate follicular reserve, a functioning hypothalamic-pituitary-ovarian axis and a normal uterus are all necessary for a normal pregnancy [8]. Many chemotherapeutic agents are gonadotoxic, but alkylating agents pose the highest risk of permanent infertility [12]. Moreover, oocytes are extremely sensitive to ionizing radiation, with direct correlation with dose and increasing patient’s age [12]. Cranial radiation, affecting the hypothalamic-pituitary axis, may also impair fertility [12,13].

Established and experimental methods can be used to preserve fertility. None of them assure parenthood after cancer, thus unrealistic expectations or false hopes should be given to the patients [14]. The most established and clinically approved methods for fertility preservation are sperm cryopreservation for men; embryo and oocytes cryopreservation and ovarian transposition for women [15].

Fertility preservation options for male patients

Sperm cryopreservation is the only established method for male fertility preservation [15]. Usually 3 semen samples are frozen, with at least 48-hours abstinence periods between each
collection. However, if there is an urgent need to start cancer therapy, fewer samples can be cryopreserved [16]. As single intracytoplasmic sperm injection (ICSI) is now commonly used in assisted reproduction, thus allowing the successful use of samples with few spermatozoa [16,17]. It has been reported that 21% of Hodgkin lymphoma survivors who cryopreserved sperm prior their treatment used it [18] and a live birth using sperm frozen 21 years ago has been described [19]. In prepubertal boys, testicular tissue cryopreservation is the only possibility for fertility preservation. Spermatogonial diploid stem cells could possibly develop into mature cells after transplantation [16], but this method still remains experimental at the present time [20]. There is also a concern that with testicular tissue auto-transplant the malignancy can be reseeded [21].

Fertility preservation options for female patients

Embryos cryopreservation is the most established and successful method for female fertility preservation. It requires delaying cancer treatment by 2-3 weeks and the availability of a partner. If a partner is not available or where embryo cryopreservation is not permitted by law, oocytes cryopreservation is a valid alternative [16]. Oocyte cryopreservation is not considered experimental since 2013, by the American Society of Clinical Oncology (ASCO) and the European Society of Medical Oncology (ESMO) [22,23]. More than 1000 births have been reported worldwide from cryopreserved oocytes [22,24]. Summary of different guidelines and their implications on fertility preservation practices are given in Table 1.

Both embryo and oocyte cryopreservation need an ovarian stimulation with gonadotropins and oocyte harvesting. In oestrogen dependent tumours, there is concern that ovarian stimulation may increase disease recurrence [16]. The concomitant administration of Letrozole reduces oestrogen peak and disease free survival was similar in women who had ovarian stimulation, compared with women who did not have it [25] but available data is based on a few trials and short follow up periods. Ovarian transposition (also called oophoropexy or ovarian suspension) is the surgical translocation of ovaries from the irradiation field in pelvic area. This method does not protect against chemotherapy or whole-body irradiation [16].

Ovarian suppression using gonadotropin-releasing hormone agonists for fertility preservation remain controversial. There is no sufficient evidence that it protects gonadal function from gonadotoxic agents [22].
Ovarian tissue cryopreservation is laparoscopic removal of ovarian cortical tissue which is cryopreserved and transplanted back at the time when conception is desired [16]. Ovarian grafts can be transplanted back to the pelvis or subcutaneous areas for oocyte maturation [26]. There has not been pregnancies achieved using frozen-thawed ovarian tissue taken from prepubertal girls [27], possibly for the high numbers of abnormal non-growing oocytes [28]. Same as in testicular tissue auto-transplantation, ovarian tissue auto-transplantation can bring back malignancy.

Twenty eight live pregnancies have been achieved with orthotopic ovarian tissue transplant from patients with haematological malignancies and breast cancer [29]. Currently about 100 centres worldwide perform ovarian tissue cryopreservation [13]. Whole ovary cryopreservation is experimental method and no live births have been achieved using this technique. It has been reported that 2 babies were born from whole ovary transplantation in monozygotic twin donor [30]. Therefore, some authors suggest that cryopreservation and retransplantation of whole ovary is promising and further research should be encouraged [31].

Moreover, there is a group of oncology patients known as ‘previvors’ and they deserve a special attention in cancer treatment and fertility preservation debate. These patients have cancer history running in their families and are at increased risk to develop cancer early in their lives. They have to think about prophylactic therapies even before being diagnosed with cancer. Such prevention strategies are suggested for women who are BRCA1 and BRCA2 mutation carriers and have high risk of developing breast or ovarian cancer [32]. Women of African ancestry under age of 45 have an elevated risk of breast cancer at young age compared to Caucasian women and their cancers are more aggressive that present as oestrogen receptor negative tumours [33]. It is suggested that these different groups of patients might have special needs that are unmet during fertility preservation counselling [34].

Table 1

Guidelines for fertility preservation in cancer patients

<table>
<thead>
<tr>
<th>Releasing body; year</th>
<th>Scope</th>
<th>Main statements regarding toxicity of cancer therapy, fertility preservation (FP) and future procreation</th>
<th>Reference</th>
</tr>
</thead>
</table>

American Society for Reproductive Medicine – ASRM; 2013

All cancer patients

Clinicians should inform patients about FP options and future reproduction before gonadotoxic treatment begins.

Concerns about welfare of resulting offspring are not sufficient reasons to deny assistance in reproduction.

Parents may act to preserve fertility for minors (assent and likeliness to provide future benefit).

PGD to avoid offspring inheriting high risk of cancer is acceptable.

Patients should have access to mental health, genetic and financial counsellors.

American Society of Clinical Oncology – ASCO; 2013

All cancer patients

Discuss FP with all patients of reproductive age (with parents or guardians of children and adolescents).

Refer interested (and ambivalent) patients to fertility specialist.

Address FP before treatment starts.

Document FP discussion in medical records.

Answer basic questions about FP and its impact on cancer treatment.

Refer patients to psychosocial providers if patients experience distress.

Encourage patients to participate in registries and clinical studies.

National Comprehensive Cancer Network – NCCN, USA; 2013

Adolescents and Young Adult (15-39)

Fertility preservation should be an integral part of cancer management.

The use of contraception should be discussed
2014

| European Society of Medical Oncology – ESMO (endorsed by Japanese Society of Medical Oncology – JSMO); 2013 | Focuses on pregnant women with cancer but has a section for post-pubertal patients | Male: sperm banking should be planned before treatment initiation. | [23] |
| European Society of Breast Cancer Specialists – EUSOMA; 2014 | Young women (under 40) | Fertility issues should always be discussed before the start of any breast cancer therapy. | [37] |

Women diagnosed with cancer during pregnancy require individualised treatment by multidisciplinary team.

All patients should have access to age-appropriate supportive care and medical subspecialty services.
What do patients think about fertility preservation and what happens in the real world?

Retrospective surveys of cancer patients’ views suggest that the majority have a strong desire to be informed about fertility preservation and available options [31,38,39,40]. Moreover, concerns about infertility are not limited to patients who are young and childless or/and have a partner [41]. It has been reported that up to 70-75% of young cancer survivors would like to have a child [39,42] with up to 29% of women refusing life saving treatment because of fear to become infertile [42], including a case reports where refused therapy lead to foetal and maternal death [43]. However, significantly lower numbers actually proceed with fertility preservation procedures (Table 2). Despite proven clinical and psychological benefit [41,44] and recommendations that cancer patients should be routinely asked about their interest to preserve fertility before starting cancer treatment (Table 1), nearly half of patients are not given information about the impact of cancer treatment on their future fertility (Table 2).

Studies on patients’ attitudes and fertility preservation choices are being conducted worldwide. In Table 2 we summarized studies from the USA, Canada, Sweden and Germany which report patient attitudes and the choices they subsequently made in order to preserve fertility. It is important to note that patient surveys vary in a sample size, methods how surveys were conducted and reported response rate is often less than half of eligible participants which could mean that only patients who were concerned about fertility chose to answer the questions. Moreover, the reported sample sizes are often too small for making valid generalizations relevant to all cancer patients. However, these studies revealed some important aspects in fertility preservation practices. First, majority of cancer patients regardless of final decision find fertility consultations important part of their treatment planning. Second, there are still high numbers of patients reported who have not received any kind of fertility preservation consultation. This tendency seems to be apparent among female patients [39,45] and especially among racial minorities in the USA [34]. UK study of women with breast cancer who were childless concluded that although guidelines are available, many women were not given adequate information or offered treatments or interventions to preserve fertility [38]. This leads to the third point that women preserve fertility less often than men.

For instance, study from Germany reports that only 40% of cancer patients who wanted children in the future underwent fertility preservation [39]. Results from Swedish cancer survivors’ survey reveal large gender disparities in received information about treatment
impact on fertility, with 80% of male and 48% of women informed and while 54% of male patients banked frozen sperm, only 2% of women underwent fertility preservation [45]. There are only scarce data available from countries other than those in North America and Europe. But it is likely that fertility preservation for cancer patient issues might share a lot of similarities with countries already researched. For instance, in Saudi Arabia less than 20% male patients are referred to fertility specialist [46], which suggests that even male patients do not always take the full advantage of fertility preservation options.

Another study has been published recently comparing attitudes towards fertility loss among young breast cancer patients. This study collected data from Western and Eastern Europe, South Africa, Middle East and South America concluding that 59% of patients wanted to have children in the future but cure was the first priority and only less than 10% would accept lower chances of survival to preserve fertility [47]. These numbers suggest that the importance of fertility could have been overestimated but some other studies show that having a child could have a positive effect on cancer survivors helping them to stay well, feel complete and look forward to the future [47]. However, even women with positive attitudes about having children after cancer have fears that possible pregnancy would increase chances for cancer recurrence or transmitting the cancer risk to the future child [47,48]. On the other hand patients who already have children might focus more on survival than fertility preservation [40,42] and as a result might be less likely to be offered fertility preservation consultation [46,49]. Therefore, discussing cancer treatment implications on fertility and possible fertility preservation options as well as providing patients with decisional support would significantly help to improve cancer care and benefit the patients in any country.

Table 2

Cancer patients’ attitudes towards fertility preservation (FP)

<table>
<thead>
<tr>
<th>Country; Publication year</th>
<th>Participants; Type of study</th>
<th>Attitudes, expectations, experiences regarding FP (%)</th>
<th>Number of patients who used FP and methods (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas, USA; 2012</td>
<td>33 African American breast</td>
<td>45% reported retrospectively</td>
<td>1 patient froze</td>
<td>[34]</td>
</tr>
</tbody>
</table>
cancer survivors under age of 45; semi-structured phone interviews that they had wanted a child at the time of diagnosis

48% did not remember having discussed FP with a doctor

14% of those who had chemotherapy have been offered FP

embryos and oocytes

1 patient froze oocytes

4 patients became pregnant after cancer treatment

1 sought IVF treatment

2 adopted children after their cancer

<table>
<thead>
<tr>
<th>Country</th>
<th>Sample Size</th>
<th>Description</th>
<th>FP Consultations</th>
<th>FP Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA; 2014</td>
<td>620 women aged 17-40 newly diagnosed with early breast cancer; multicenter cohort study, survey by mail</td>
<td>68% discussed fertility issues before starting the therapy</td>
<td>10% pursued FP</td>
<td>7% embryo cryopreservation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51% were concerned about becoming infertile</td>
<td>7% embryo cryopreservation</td>
<td>1% oocyte cryopreservation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26% concerns about fertility affected their treatment decisions</td>
<td>3% received gonadotropin-releasing hormone agonist (GnRH-a)</td>
<td></td>
</tr>
<tr>
<td>Canada; 2012</td>
<td>27 breast cancer patients aged 24-41; anonymous mail questionnaire</td>
<td>56% of FP consultations were made after surgery before chemotherapy</td>
<td>56% (15 patients) underwent FP</td>
<td>9 patients froze embryos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33% of FP consultations were made</td>
<td>6 froze eggs alone</td>
<td>2 ovarian suppression</td>
</tr>
</tbody>
</table>
before surgery

85% consultations were made within a week of referral

Canada; 2012 41 female cancer patients aged 24-42, majority breast cancer, others ovarian cancer, lymphoma, brain cancer, Hodgkin’s, carcinoma, leukaemia; mail questionnaire

97.6% regardless of final decision said that it was important to be seen by reproductive specialist

31.7% proceeded with IVF for cryopreservation (13 patients)

6 were planning to initiate pregnancy soon

Sweden; 2012 484 survivors aged 18-45 at diagnosis who had lymphoma, acute leukaemia, testicular cancer, ovarian cancer or female breast cancer treated with chemotherapy; postal questionnaire

80% male patients received information about treatment impact on fertility

68% male patients received information about FP

48% female patients received information about treatment impact on fertility

14% female patients received

54% male patients banked sperm

2% female patients underwent FP including embryo and oocyte cryopreservation, ovarian suppression, radiation shielding of gonads
Healthcare professionals’ attitudes towards fertility consultation in oncology patients

It is suggested that individual plans for fertility preservation must take into account both patient’s priorities and medical necessities [15], especially when healthcare systems are run on limited resources. There is also a need to create a functional infrastructure for oncofertility services. However, even countries with established services for patients face problems. For instance, in the United States fertility preservation services are currently available to most patients who are under the age of 45 [32] but some still have restricted access to care due to their socioeconomic situation, insurance plan or geographical location [33]. Fertility centres in Canada are enthusiastic about working together with other healthcare providers to offer fertility preservation services for cancer patients [48]. However, despite all required components are present in the Canadian system, their coordinated functioning remains challenging [52].

Despite existing fertility preservation methods for both men and women, patient wishes to be informed about fertility preservation options and a number of guidelines how fertility consultations should be addressed, physicians are still misled by their personal biases when it comes to discussing fertility preservation during consultations. We identified the studies from

<table>
<thead>
<tr>
<th>Country</th>
<th>Total</th>
<th>Age Range</th>
<th>Method</th>
<th>Desire to Have Children</th>
<th>Fertility Consultation</th>
<th>Cryopreservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany; 2014</td>
<td>149</td>
<td>18-45</td>
<td>Questionnaire</td>
<td>74%</td>
<td>60%</td>
<td>56%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sperm cryopreservation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31% female preserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fertility:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 oocyte cryopreservation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 ovarian tissue cryopreservation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 took medication</td>
</tr>
</tbody>
</table>
the UK, Japan, Saudi Arabia, Turkey, Iran and the USA reporting fertility preservation practices and factors influencing physician’s decision to discuss fertility preservation with their patients (Table 3).

Only British and American physicians are reported to discuss fertility issues with their patients on most occasions [53,54]. However, American physicians tend to have more biases based on social, gender and racial factor than medical prognosis compared to the UK physicians [53]. In other countries fertility preservation consultations do not occur on regular basis and referrals to fertility specialists are even lower [46,55,56]. General tendency noted in most studies is that physicians are concerned with patient’s prognosis [49,53], type of cancer [46,53] and reluctance to delay the start of treatment [49,57]. Lack of knowledge about fertility preservation and time constraints were also among the reasons why fertility preservation was not addressed by British, Japanese, Turkish and Iranian physicians (Table 3).

The same as with patient surveys, it has to be noted that physicians’ surveys also vary in sample sizes and response rates; especially studies from Iran and Turkey have very low participant numbers. However, the methodology is more coherent and studies could be legitimately compared: postal or online questionnaires are used; attitudes, consultation and further referral practises are studied, reasons why fertility preservation issues are not discussed are also addressed by most studies. It allows concluding that successful fertility preservation programmes are still to be developed worldwide. It will require oncology specialists to become aware of the latest achievements in fertility preservation medicine, sensitiveness to individual patients’ values and goals and multidisciplinary approach. Kim and colleagues suggest to have a highly skilled team consisting of oncologists, fertility specialists, embryologists, and mental health professionals [58].

One more important aspect to be mentioned is the biases physicians possess based on patients’ socioeconomic background, age, partnership status, existing children, sexual orientation, and in some cases religion. It will have to be addressed in ongoing specialist training providing physicians the skills and tools to manage their biases. For instance, oncologists in Saudi Arabia have a favourable attitude towards sperm banking for male patients but referral numbers are still low [46]. In Iran nearly half oncologists think that fertility preservation topic should be brought up by patients themselves [56]. It is interesting to note that oncologist’s enthusiasm about fertility preservation options does not generally
lead to be better physician-patient relationship [59] which brings us back to the point that survival might still be primarily concern for the majority of cancer patients.

Table 3
Physician practices and factors influencing decisions

<table>
<thead>
<tr>
<th>Country; Publication year</th>
<th>Participants; Type of survey</th>
<th>FP consultation practise (%</th>
<th>Factors influencing decision to/not to discuss FP (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK; 2013</td>
<td>100 oncologists; online</td>
<td>97% usually or always discuss treatment effect on fertility</td>
<td>93% patient too ill to delay treatment</td>
<td>[53]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67% have referred patients to fertility specialist</td>
<td>88% poor prognosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38% provide written information about fertility</td>
<td>72% patient has hormonally sensitive tumour</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44% patient already has children</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32% patient is single</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27% patient could not afford FP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21% patient is homosexual</td>
<td></td>
</tr>
<tr>
<td>UK; 2012</td>
<td>306 surgeons, oncologists, clinical nurse specialists working with breast cancer patients; online</td>
<td>Average number of referrals to fertility unit was 3 patients (range 0-25) per respondent in the last 12 months</td>
<td>78% patients age</td>
<td>[49]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37,9% final tumour/node/metastasis status</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37,3% concern that it delay chemotherapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33,5% whether patient already has children</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Study Design</td>
<td>Positive in Discussing FP</td>
<td>Refer Patients to Reproductive Specialist When Patients Express Concerns</td>
<td>High Risk of Cancer Recurrence</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Japan; 2013</td>
<td>434 breast oncologists; paper surveys sent by mail</td>
<td>83%</td>
<td>42%</td>
<td>51%</td>
</tr>
<tr>
<td>Saudi Arabia; 2010</td>
<td>103 medical, radiation and surgical oncologists working with male patients; self administered questionnaire</td>
<td>94%</td>
<td>42%</td>
<td>92%</td>
</tr>
</tbody>
</table>

- 24.7% whether patient has partner
- 22.6% estrogen receptor expression
- 20.9% lack of knowledge
- 19.9% concern that FP would compromise the treatment success
- 83% positive in discussing FP
- 42% refer patients to reproductive specialist when patients express concerns
- 51% high risk of cancer reoccurrence
- 45% lack of reproductive specialists
- 45% time constraints
- 94% felt that FP help patients psychologically
- 42% routinely discuss FP with patients
- 63% positive about discussing FP with parents of prepubertal boys
- 92% type of cancer
- 87% patient’s age
- 82% marital status
- 84% number of existing children
- 69% cost of sperm cryopreservation
- 2.9% religion
- 39% never refer patients to FP specialist
- 19.5% refer patients to
<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Size</th>
<th>Methodology</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey; 2012</td>
<td>25 haematologists; questionnaire</td>
<td>60% did not inform their patients about FP 76% did not feel they have enough knowledge about FP 80% expressed approval of postponing treatment for a short period to accommodate FP</td>
<td>Not provided [55]</td>
</tr>
<tr>
<td>Iran; 2011</td>
<td>30 oncologists; questionnaire</td>
<td>46% knew about FP techniques 40% insisted that patients have to bring FP topic themselves</td>
<td>67% believed FP should be offered to all patients at risk [56]</td>
</tr>
<tr>
<td>USA; 2013</td>
<td>185 hematopoietic cell transplant physicians; online</td>
<td>55% refer to fertility specialist</td>
<td>92% patients were already infertile 63% patients were too ill to delay transplant 35% insurance does not cover FP 33% patients cannot afford to pay FP [60]</td>
</tr>
<tr>
<td>USA; 2010</td>
<td>249 oncologists working with female patients; online</td>
<td>95% discuss FP</td>
<td>30% poor prognosis</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,8% always refer to fertility specialist</td>
<td>22% need to initiate therapy in 1-2 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33,2% usually refer to fertility specialist</td>
<td>10% patient has a child already</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43,3% rarely refer to fertility specialist</td>
<td>8% poor success of FP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17,8% never refer to fertility specialist</td>
<td>7% patient too young to have children</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6% limited knowledge of risks</td>
<td>5% lack of availability of FP services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4% cost is prohibitive</td>
<td>2% patient is a lesbian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1% patient is not married</td>
<td></td>
</tr>
</tbody>
</table>

| USA; 2009 | 613 oncologists working with female patients; online | 46,7% always or often referred | Not provided | [61] |
Practicalities to consider in oncofertility consultation

Fertility preservation consultation is an additional concern on top of cancer treatment but it is becoming generally agreed that addressing fertility issues in cancer care should become a standard practice (Table 1). Discussing treatment consequences on sexuality and fertility might involve more parties than just patients and physicians. Children have parents who are there to represent the best interests of the children, patients in committed relationships might want to have their partners involved in decision making, some cultures and faiths might see fit to have other family members, friends and/or religious or community leaders involved. Up to date there is not much research done on the involvement of other parties in fertility preservation decision making. Research focusing on the partners of cancer survivors and their concerns regarding fertility is suggested [40] but not accomplished to date. However partner’s involvement in fertility consultation is suggested by EUSOMA guidelines [37]. Considering the above mentioned concerns, some scholars urge the need to focus on oncofertility implications on both societal and individual levels [62]. Important points to consider when creating functional oncofertility system are proposed to include the following: privacy and confidentiality; consent/assent; safety and efficacy of experimental techniques; conflict of interest regarding patient needs and personal/institutional financial incentives; age restrictions (minimum and maximum); future use of stored tissue, gametes, and embryos; creation of centralized registry of those who preserve their fertility [63]. Decision support interventions, like decision counselling or decision coaching, are tools designed to help patients to participate in specific and deliberated decision making among health-related options. They help patients to recognize the values-sensitive nature of the decision and to clarify, either implicitly or explicitly, the value they place on the benefits, harms, and scientific uncertainties [64,65].

Moreover, it is important to keep in mind that the field of fertility preservation in cancer patients, as well as that of infertility treatments, was shaped by medical and non-medical
factors such as societal attitudes regarding infertile people, having children as means of survival and work-force or, what is more common in modern society, seeking fulfilment in life [66]. Ethical issues are important aspect of decision-making process. Therefore, we would like to suggest that ethical aspects should be included in decision support interventions. As well as financial aspects of fertility preservation procedures should not be overlooked. Insurance coverage for fertility preservation treatment is one of the most debated questions in the USA [7]. Some argue that there is little ethical justification to withhold insurance coverage for fertility preservation technologies [16] while reservations can still be expressed especially when it comes at tax payers’ expense. Various experts have debated on what factors should be targeted to eliminate disparities including socioeconomic status, race, biology, access to care, lack of insurance, stage of the disease at the diagnosis [33]. United States had a 14% decrease in mortality from cancer in a period between 1991 and 2004 but it has not benefited to all segments of the population, as a response ASCO issued a policy statement pointing out that low income, lack of insurance and restricted access to care are playing a major role in health disparities [67]. In a later report ASCO concluded that providing quality care to all patients with cancer, regardless of their racial, socioeconomic, or geographical group, is a priority [68].

Preserving fertility impose significant costs and in case of cancer patients it is not clear if cryopreserved material will ever be used for the benefit of the patient. Initial oocyte retrieval cost is advertised $6000-12000 plus $2000-5000 for medication (2014-01-31 at Extended Fertility Website http://www.extendfertility.com/about/faq.php), annual storage fee with Extended Fertility in Massachusetts is reported to be $440 [69]. In Germany patients have to cover the costs of fertility preservation themselves: cryopreservation of fertile eggs costs about 3000 Euros, sperm cryopreservation about 350 Euros, storage of either about 250 Euros a year [39]. The cost of fertility treatment lead to proposal of guidelines where two the most important inclusion criteria for experimental gonadal tissue cryopreservation are urged to be a high risk of future infertility and a high likelihood of long-term survival because commercialisation of medical interventions can lead to irrational investments [70]. The annual storage fee for cryopreserved materials could easily become a source of psychological pressure and financial burden rather than future opportunity [71].

Therefore we would like to suggest that more attention has to be paid to designing decisional support services for cancer patients. Informing patients (their parents or guardians) how cancer treatment could affect future fertility in age, disease and gender specific way is
already a standard imposed by many professional guidelines (Table 1). Providing information about fertility preservation options while referring patient to the specialist when patient is interested in fertility preservation is also practice supported by many physicians (Table 3). However, high quality patient care does not end with referral to another specialist. Other types of support have high potential to benefit cancer patients too. We provide more details in Table 4 and suggest that a high quality cancer care should include multiple steps in sometimes very short period of time which will require close and efficient collaboration among a wide range of specialists. Assisting patients to understand the implications of their condition to their future life and choosing fertility preservation options accordingly we consider the core part of decisional counselling services. Furthermore, we suggest focusing on patient’s values based on their personal philosophy and view of life, spirituality and sometimes emotions ignited by cancer diagnosis which would shape their goals and consequentially decisions leading to practicalities such as national legislation of fertility preservation procedures and financial implications.

Table 4
Decisional support types when counselling cancer patients about fertility preservation

<table>
<thead>
<tr>
<th>Support type</th>
<th>Key features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understanding medical and clinical reality</td>
<td>Disease impact on future life:</td>
</tr>
<tr>
<td></td>
<td>- what functions will be impaired</td>
</tr>
<tr>
<td></td>
<td>- what are treatment side effects</td>
</tr>
<tr>
<td></td>
<td>- what are survival rates</td>
</tr>
<tr>
<td></td>
<td>- what care will be needed during treatment and after it is finished</td>
</tr>
<tr>
<td>2. Informing about fertility preservation options</td>
<td>Established and experimental options:</td>
</tr>
<tr>
<td></td>
<td>- local availability</td>
</tr>
<tr>
<td></td>
<td>- success rates</td>
</tr>
<tr>
<td></td>
<td>- risks and benefits</td>
</tr>
</tbody>
</table>
- costs

- who will cover the costs: public health system, private insurance, charities, private funds

3. Identifying patient’s expectations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Identifying patient’s expectations</td>
<td>Personal values and goals in the light of the prognosis:</td>
</tr>
<tr>
<td></td>
<td>- what treatment is acceptable</td>
</tr>
<tr>
<td></td>
<td>- what are the tenets of patient’s personal philosophy</td>
</tr>
<tr>
<td></td>
<td>- how much risk (survival versus fertility) patient is ready to accept</td>
</tr>
<tr>
<td></td>
<td>- how important is fertility, survival, quality of life</td>
</tr>
</tbody>
</table>

4. Legal guidance* | Local, regional, national, federal legislation on fertility preservation methods |

5. Psychological and emotional support* | Fear, anxiety, present and anticipated guilt |

6. Spiritual and/or religious guidance* | Are there religious preferences? |
| | - what FP methods are acceptable |
| | - what FP would mean |

7. Financial counselling* | Planning finances during cancer treatment: |
| | - reduced capacity to work |
| | - lower income during the course of treatment |
| | - personal care expenses |
| | - cancer treatment expenses not covered by insurance |
| | - childcare (if any) expenses |
Conclusions

In most cases the main cause of infertility in cancer patients is treatment, not the disease. Therefore, consultation for fertility preservation should take place before cancer treatment. The established and experimental methods to preserve fertility are now available in many centres and cancer patients demonstrate interest in fertility preservation. Nonetheless, a significant number of patients worldwide are not given information about the detrimental effects on fertility of cancer treatments and the possibilities to preserve fertility. Physicians are still misled by their personal judgmental biases on whom to offer fertility preservation consultation. Lack of time and knowledge about existing options, poor prognosis, and delay in treatment, patient’s age, partnership status, existing children and socioeconomic situation are identified as the main barriers to initiate the consultation. Moreover, fertility preservation consultation is not limited to medical aspects. Patient’s needs, values and priorities have to be addressed within the context of medical necessities, realistic survival forecast, socio-cultural environment and availability of resources. We suggest a framework for improving decisional support services for cancer patients who would like to consider fertility preservation options. Our proposal is based on helping patients to clarify the implications of their condition for the future life, identify the values on which their base their personal philosophy of life and address practical aspects of the preferred decision on fertility preservation procedures.

Bibliography

[28] Anderson RA, McLaughlin M, Wallace WHB, Albertini DF, Telfer EE. The immature human ovary shows loss of abnormal follicles and increasing follicle developmental

