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Abstract
The genetic regulation of the human epigenome is not fully appreciated. Here we describe the
effects of genetic variants on the DNA methylome in human lung based on methylation-
quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-
epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are
replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly
localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs
are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI
hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk
loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung
cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may
affect lung carcinogenesis by regulating the human methylome.

Introduction
DNA methylation plays a central role in epigenetic regulation. Twin studies have suggested
that DNA methylation at specific CpG sites can be heritable1,2; however, the genetic effects
on DNA methylation have been investigated only in brain tissues3,4, adipose tissues5,6 and
lymphoblastoid cell lines (LCL)7. Most studies were based on the Illumina
HumanMethylation27 array, which has a low density and mainly focuses on CpG-sites
mapping to gene promoter regions. While the functional role of DNA methylation in non-
promoter or non-CpG Island (CGI) regions remains largely unknown, evidence shows roles
in regulating gene splicing8 and alternative promoters9, silencing of intragenic repetitive
DNA sequences10, and predisposing to germline and somatic mutations that could contribute
to cancer development11,12. Notably, a recent study13 suggests that most DNA methylation
alterations in colon cancer occur outside of promoters or CGIs, in so called CpG island
shores and shelves, and the Cancer Genome Project has reported high mutation rates in CpG
regions outside CGI in multiple cancers14. Although expression QTLs (eQTLs) have been
extensively studied in different cell lines and tissues15, the minimal overlap observed
between cis-acting meQTLs and eQTLs (≈5–10%)3,4,7 emphasizes the necessity of
mapping meQTLs that may function independently of nearby gene expression. This might
reveal novel mechanisms for genetic effects on cancer risk, particularly since many of the
established cancer susceptibility SNPs map to non-genic regions.

Lung diseases constitute a significant public health burden. About 10 million Americans had
chronic obstructive pulmonary disease in 201216 and lung cancer continues to be the leading
cancer-related cause of mortality worldwide17. To provide functional annotation of SNPs,
particularly those relevant to lung diseases and traits, we systematically mapped meQTLs in
210 histologically normal human lung tissues using Illumina Infinium
HumanMethylation450 BeadChip arrays, which provide a comprehensive platform to
interrogate the DNA methylation status of 485,512 cytosine targets with excellent coverage
in both promoter and non-promoter regions (Fig. 1a), CGI and non-CGI regions (Fig. 1b)
and gene and non-gene regions. Thus, our study enables the characterization of genetic
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effects across the methylome in unprecedented detail. Moreover, since DNA methylation
exhibits tissue specific features18, we investigated whether similar meQTLs could be
identified in other tissues.

Results
Identification of cis-acting meQTLs

We profiled DNA methylation for 244 fresh-frozen histologically normal lung samples from
non-small cell lung cancer (NSCLC) patients from the Environment and Genetics in Lung
cancer Etiology (EAGLE) study19. A subset of 210 tissue samples that passed quality
control and had germline genotype data from blood samples20 was used for meQTL
analysis. The analysis was restricted to 338,456 autosomal CpG probes after excluding those
annotated in repetitive genomic regions or that harbored genetic variants. The distribution of
methylation levels differed strongly across distinct types of genomic regions
(Supplementary Fig. 1a,b). Consistent with previous studies21, CpG sites in promoter or CGI
regions were largely unmethylated while those in other regions were largely methylated
(Supplementary Fig. 1a,b).

We performed cis-meQTL analysis for each methylation trait by searching for SNPs within
500kb of the target CpG-site in each direction (1Mb overall). The genetic association was
tested under an additive model between each SNP and each normalized methylation probe,
adjusting for sex, age, plate, population stratification and methylation-based principal
component analysis (PCA) scores. Controlling FDR at 5% (P=4.0×10−5), we detected cis-
meQTLs for 34,304 (10.1% of 338,456) CpG probes (Supplementary Table 1), mapping to
9,330 genes. A more stringent threshold (P=6.0×10−6) at FDR=1% detected cis-meQTLs for
27,043 CpG probes, mapping to 8,479 genes. Moreover, with a 200kb window (100kb from
both sides) instead than 1Mb we detected 40,650 cis-meQTLs (P=2.0×10−4), controlling for
FDR=5%. The methylation distribution in CpG sites detected with meQTLs differed
substantially from those without meQTLs (Supplementary Fig. 1a,b). The peak SNPs were
equally distributed on either side of the target CpG-sites with a median distance (Δ) of 11.8
kb. The proportion of explained phenotypic variance (h2) ranged from 7.7% to 79.8%
(Supplementary Fig. 1c) and inversely depended on Δ (Supplementary Fig. 1d). We detected
strong cis-meQTLs for DNMT1, a gene known for establishment and regulation of tissue-
specific patterns of methylated cytosine residues, and for DNMT3A/B, two genes involved in
de novo methylation in mammals, but not for MTHFR, which affects global methylation
(Supplementary Fig. 1e).

The likelihood of detecting cis-meQTLs varied across CpG regions and strongly depended
on the variability of the methylation levels (Fig. 1d, e). CpG probes in non-CGI regions
were twice as likely to harbor cis-meQTLs than CpG probes in CGI regions (11.5% v.s.
4.8%, t-test P<10−100); similarly, CpG probes located in CGI of non-gene regions were
twice as likely to harbor cis meQTL than those in gene regions (14.6% v.s. 6.6%, t-test
P<10−100).

To verify the cis-meQTLs, we analyzed data from The Cancer Genome Atlas (TCGA)22

NSCLC patients (n=65) for whom both DNA methylation data from llumina
HumanMethylation450 BeadChip of histologically normal lung tissue and germline
genotypes from Affymetrix Genome-Wide Human SNP Array 6.0 were available. Genetic
associations were tested using the imputed genotypic dosages. EAGLE findings were
strongly replicated in TCGA lung data: for the 34,304 associations detected in EAGLE,
32,128 (93.8%) had the same direction and 22,441 (65.4%) had FDR<0.05 based on single-
sided P-values (Table 1).
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For 34,304 CpG probes detected with cis-meQTLs, we searched for secondary
independently associated SNPs in cis regions by conditioning on the primary cis-meQTL
SNPs. We detected secondary cis-meQTL SNPs for 3,546 CpG probes (FDR=5%,
P=4×10−5), 61.5% of which were replicated in TCGA lung data.

Identification of trans-acting meQTLs
Identification of trans-meQTLs was performed by searching for SNPs that were on different
chromosomes from the target CpG-sites or on the same chromosome but more than 500kb
away. We detected 615 CpG-probes with trans-meQTLs (FDR=5%, P=2.5×10−10),
including 438 interchromosomal and 177 intrachromosomal trans-meQTLs. Among 177
intrachromosomal trans-associations, 30 lost significance after conditioning on the
corresponding cis-regulating SNPs, suggesting that these trans-associations were caused by
cis-acting regulations through long range linkage disequilibrium (LD). Thus, we detected
585 traits with “true” trans-meQTLs (Fig. 2a), mapping to 373 genes. The number of trans-
meQTLs was reduced to 500 if controlling for FDR=1% (P=4.0×10−11). We replicated
79.8% of the 585 trans-associations in TCGA lung data. Interestingly, trans-meQTLs were
strongly enriched in CGI sites, in contrast to the observation that cis-meQTLs were strongly
enriched in non-CGI sites (Fig. 2b). CpG dinucleotides in 3’UTR regions, where microRNA
target sites are typically located, showed an opposite trend in both cis- and trans-meQTLs
(Fig. 2b).

In 62.8% of the trans-associations, the SNPs involved were also detected to have cis-acting
effects. We investigated whether trans-associations were mediated by these cis-regulated
proximal CpG sites (Fig. 2c,d). We found that 30 and 166 trans-associations had full and
partial mediation, respectively, while 389 had no significant mediation. The trans-
associations involving SNPs in gene desert regions are less likely to be mediated by
proximal CpG probes (15.7% v.s. 34.3%; P=0.0067, Fisher’s exact test). To obtain
mechanistic insight into the trans-associations showing mediation effects (n=196), we used
the DAVID tool23 to characterize the function of genes harboring the mediating cis-CpG
probes. The analysis was performed for 115 genes after excluding the major
histocompatibility complex (MHC) region because of long range complex LD patterns. The
GO analysis revealed three top gene categories with nominal significance involved in DNA
methylation regulation, including GTPase-activity related genes (P=0.004, Fisher’s exact
test), genes regulating transcription (P=0.02), and genetic imprinting (P=0.04, Fisher’s exact
test, Supplementary Table 2).

Notably, 106 trans SNPs with P<2.5×10−10 were associated with multiple distal CpG
probes, suggesting that they are multi-CpG regulators. In particular, we detected one master
regulatory SNP, rs12933229 located at 16p11.2, in a very large intron of the NPIPL1 gene,
which was associated with the methylation of CpG sites annotated to five genes on different
chromosomes (Fig. 2a, Supplementary Fig. 2 and Supplementary Table 3). These
associations were partially mediated by a proximal CpG probe cg06871736. All five trans-
associations were replicated in TCGA. The trans-associations show a consistent direction,
with the ‘C’ allele associated with higher methylation levels. All five regulated target sites
are in CGIs, and three are in gene promoter regions. We evaluated the association with gene
expression for these three CpG probes, using 28 TCGA histologically normal lung tissue
samples with RNA sequencing data. Based on this limited sample size, two of the target
genes, PABPC4 and STARD3, showed decreased expression with increased methylation
(FDR=10%).
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Enrichment of meQTLs in DNA regulatory regions
SNPs associated with complex diseases in GWAS or with eQTLs have been reported to be
enriched in ENCODE-annotated regulatory regions24,25. These include DNaseI
hypersensitivity sites, CCTC-binding factor (CTCF) binding sites and regions enriched in-
active and repressive histone modification marks. The large number of meQTLs detected in
our study, both cis and trans, enabled us to systematically investigate their enrichment in
regulatory regions. We performed enrichment analysis using Chip-Seq data in small airway
epithelial cells (SAEC) from the ENCODE project for histone marks26, CTCF occupancy27,
and DNaseI hypersensitivity sites28; and histone marks in primary human alveolar epithelial
cells (hAEC) from our own laboratory29. Compared to the “control” SNP set not associated
with the methylation of CpG sites (with minor allele frequency and CpG probe density
matched with meQTL SNPs), the meQTL SNPs were strongly enriched for sites of CTCF,
DNaseI hypersensitivity, and histone marks (H3K4me3, H3K9-14Ac and H3K36me3)
associated with active promoters, enhancers, and active transcription, and to a lesser extent
for the repressive mark H3K27me3 (Table 2). Enrichment of all regulatory regions became
stronger with increasing significance of association, with the exception of the H3K27me3
repressive mark (Fig. 3). Using SAEC CTCF ChIP data, we found that meQTL SNPs or
associated SNPs in high LD located within CTCF consensus sequences can affect allele-
specific binding of CTCF (see two examples in Supplementary Fig. 3 and 4).

Lung cancer risk SNPs affect methylation in human lung tissue
To determine whether the identified meQTLs might provide functional annotation to the
established genetic associations with lung cancer risks, we examined SNPs in five genomic
regions reported to be associated with lung cancer risk in genome-wide association studies
(GWAS) of populations of European ancestry: 15q25.130–32 (CHRNA5-CHRNA3-
CHRNB4), 5p15.3320,33,34, 6p21.3333 (BAT3, most strongly associated with squamous cell
carcinoma or SQ), 12p13.335 (RAD52 for SQ) and 9p21.336 (CDKN2A/CDKN2B,
particularly for SQ). The GWAS SNPs at 15q25.1 were reported to be associated with total
expression levels and multiple isoforms of CHRNA5 in normal lung tissue samples37,38. The
GWAS SNPs at the other four loci have not been reported to be associated with the total
expression of nearby genes. Consistently, we did not observe an association in RNA-seq
data from TCGA lung normal tissue samples (n=59), although a detailed investigation of
alternative promoters, splice sites and allele-specific gene expression in larger studies is
warranted. Here, we investigated whether these SNPs contributed to lung cancer risk with
epigenetic regulation by examining their associations with DNA methylation levels.

The top GWAS SNPs located at 15q25.1, 5p15.33, 6p21.33 and 12p13.3 were all strongly
associated with the methylation of the nearby CpG probes and the associations were
replicated in TCGA lung data (Fig. 4). Importantly, five of the six GWAS SNPs at these
loci, excluding the RAD52 locus, were also the SNPs with the strongest association with the
corresponding CpG probes. For the cg22937753 probe located in the RAD52 locus, another
SNP, rs724709, with weak correlation with the GWAS SNP (r2=0.1) had the strongest
association with meQTL. All involved CpG sites are located within gene bodies (which may
affect gene splicing39) or the 3’UTR regions. No meQTL was detected for 9p21.3
(Supplementary Fig. 5), possibly because of fewer CpG dinucleotide probes available in this
gene region on the Illumina platform. The location of these lung cancer GWAS-associated
CpG sites might identify which genes within the relevant regions are more likely associated
with the risk SNPs, something that is particularly important for regions with complex LD
structure, as the MHC region on 6p21. In MHC, two GWAS SNPs in complete LD (r2=1),
rs3117582 (BAT3) and rs3131379 (MSH5), were most strongly associated with the
methylation of CpG sites located nearby of MSH5 (involved in DNA mismatch repair and
meiotic recombination process), suggesting that MSH5 (P=5.4×10−13, t-test) is more likely
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to be involved in lung carcinogenesis than BAT3 (P=8.8×10−5, t-test) or that the SNP closer
to MSH5 (rs3131379) is more likely to be the SNP most responsible of the GWAS
association with lung cancer risk (Fig. 4b). Our meQTL data also show that rs3131379
trans-regulated the methylation level of CpG probe cg12093005, located in the body of
FBRSL1 at 12q24 (PEAGLE=4.0×10−9, PTCGA=7.2×10−4 and Pcombined=5. 4×10−11, t-test).
Thus, this known GWAS locus might affect lung cancer risk through a gene located on a
different chromosome.

Of note, on the 15q25.1 locus, two independent lung cancer risk SNPs, rs2036534 and
rs1051730, were associated with CpG probes not linked with CHRNA5 expression. In
Supplementary Fig. 6, we show that the two SNPs jointly regulated another methylation
probe cg22563815 within the CHRNA5 promoter, which is associated with CHRNA5
expression. This extends and further confirms the complex regulatory pattern with multiple
SNPs previously observed for this locus35.

Most subjects in the analyses were smokers (n=206). Adjustment for smoking status (former
and current) or intensity (pack/years) did not change the results.

cis-meQTLs are enriched in lung squamous cell carcinoma risk
We investigated whether the identified cis-meQTL SNPs were enriched in the National
Cancer Institute (NCI) lung cancer GWAS including 5,739 cases and 5,848 controls of
European ancestry19. To focus on potentially new genetic risk associations, we excluded the
top lung cancer GWAS SNPs mentioned above and their surrounding regions. We tested the
enrichment by examining whether the GWAS P-values for the LD-pruned cis-meQTL SNPs
deviated from the uniform distribution, i.e. no enrichment. When all cis-meQTL SNPs were
analyzed together, we detected a strong enrichment for overall lung cancer risk (P<10−4,
based on 10,000 permutations), which was primarily driven by the enrichment in SQ
(P<10−4, based on 10,000 permutations) (Fig. 5a). The genomic control λ-values based on
genome-wide SNPs showed that the type-I error rates of our enrichment test were not
inflated (λ=1.01 and 1.00, for overall lung cancer and SQ, respectively). Stratified analyses
further refined the enrichment to the cis-meQTL SNPs regulating CpG-sites mapping to
north shore (Fig. 5b) and gene body (Fig. 5c) regions (see Supplementary Fig. 7 for the
quantile-quantile plot). These gene bodies and north shores were enriched for genes
involved in cancer pathways (P=2.5×10−4, Fisher’s exact test), and particularly those in
NSCLC pathway (e.g., AKT1, MAPK1, RASSF5, etc., Supplementary Table 4). In contrast,
cis-meQTLs related with CGI regions or promoters were not enriched with the risk of
overall lung cancer or any lung cancer subtype, further emphasizing the need to
comprehensively study the methylome to identify functional mechanisms for GWAS
findings and identify new genetic loci.

Because the meQTL SNPs affecting CpG sites in gene body/non-CGI regions were mostly
enriched for SQ risk (Fig. 5d), we performed further analysis in this category by integrating
the ENCODE SAEC data. We chose SAEC data because this cell type may be involved in
SQ development. We restricted enrichment analysis to the “regulatory” meQTL SNPs,
which localized in the CTCF binding regions, DNaseI hypersensitive sites or histone marks
(H3K27me3, H3K4me3 and H3K36me3) or had at least one LD SNP (r2≥ 0.95) residing in
these regions. The strong enrichment in SQ was driven by SNPs overlapping with CTCF
binding sites (P<10−4, based on 10,000 permutations) or the repressive mark H3K27me3
(P<10−4, based on 10,000 permutations) (Fig. 5e). The enrichment test was not significant
after excluding the SNPs overlapping with these regulatory regions (P=0.14, based on
10,000 permutations).
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Replication of meQTLs in TCGA breast and kidney tissues
To explore the tissue-specificity of the genetic effects on DNA methylation, we examined
whether the meQTLs detected in EAGLE lung tissue data could be replicated in TCGA
breast (n=87) or kidney (n=142) histologically normal tissue samples, the only two organs to
date with data available for a large number of normal tissues of European ancestry. Results
are in Table 1 and Supplementary Fig. 8. For both cis- and trans- meQTLs, a large
proportion of associations had the same direction of EAGLE meQTLs in both breast and
kidney samples. For cis-associations, 54.7% and 70.0% were replicated with FDR=5%
based on single-sided P-values in two data sets, respectively. For the strong cis associations
with P<10−10 in EAGLE, the replication rates increased to 82.7% and 89.2% in the two data
sets. For trans- associations, 83.4% and 86.4% were replicated in breast and kidney samples,
respectively. The detected master regulator (Fig 2a) was strongly replicated in both data sets
(Supplementary Table 3). Interestingly, some cis-meQTLs, but not trans-meQTLs, had an
opposite but very strong association (P<10−6) in breast (n=7) or kidney (n=58) compared
with the EAGLE lung data, a phenomenon previously reported in a cell-type specific eQTL
study40.

Discussion
We found that inherited genetic variation profoundly and extensively impacts DNA
methylation in target organs. Based on high-density methylation arrays in a large sample
size, we identified 34,304 cis-meQTLs and 585 trans-meQTLs, one to two orders of
magnitude larger compared to previous studies3–5,7. meQTLs involved nearly half of the
autosomal genes, of which 9,330 in cis and 373 in trans, with 9,525 unique genes in total.
We show that approximately 10% of the cis-meQTLs were affected by at least two SNPs
independently. Moreover, we detected a master regulator SNP associated with the
methylation levels of five CpG probes on different chromosomes, demonstrating the
existence of regulatory hotspots for DNA methylation, as previously shown for eQTL41,42.
Most meQTLs were replicated in independent histologically normal lung tissue samples
from TCGA. We also showed a high similarity of genetic control on DNA methylation
across different tissues. Our findings show that genetic effects on DNA methylation are
extensive in scale and complex in structure across the whole genome and suggest a series of
important biological implications.

First, our results show that the genomic architecture surrounding cis- and trans-meQTLs is
distinct. cis-meQTLs are very large in number, impact predominantly the CpG sites
mapping to non-gene regions, and when they occur in genes, are mostly in non-promoter
and non-CpG island regions. In contrast, trans-meQTLs are rarer, mainly affect promoter
CGI regions, and may be associated with distal CpG sites through the mediation effect of
proximal CpG sites.

We found preliminary evidence that the cis-CpG sites mediating the trans-meQTL
associations were enriched for genes involved in methylation regulation, such as genes
encoding for GTPase or proteins involved in genetic imprinting. GTPase-related gene
pathways appear to modulate expression of DNA methyltransferases43. Methylation-induced
expression changes of these genes may result in further methylation changes of other genes
(i.e., in trans). Moreover, a noncoding RNA within the intron of KCNQ1, a key gene
regulating genetic imprinting, can influence chromatin 3-D structure via a protein complex
including DNA methyltransferase proteins44,45. These findings suggest intricate
mechanisms for trans-regulating effects through proximal methylation.

cis-meQTLs may affect cancer risk. To understand the functional consequences of GWAS
loci is challenging and multiple principles for post-GWAS’ functional characterization of
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genetic loci have been proposed, including the exploration of epigenetic mechanisms46. In
our study, the top GWAS lung cancer loci were strongly associated with methylation levels
of CpG sites in nearby gene bodies through cis-regulation, and adjusting for smoking status
or intensity did not change the results. Furthermore, SNPs affecting the DNA methylation of
gene bodies (which are typically methylated) were also collectively associated with risk for
squamous cell carcinoma after excluding the established GWAS loci, and were enriched for
genes in cancer pathways. In contrast, no enrichment was observed for SNPs affecting the
methylation of gene promoters or CGI regions, which are typically not methylated in normal
tissues. This suggests a potential novel mechanism for genetic effects on cancer risk. In fact,
gene body-enriched cis-meQTLs outside CGI regions may increase the risk for germline and
somatic mutations due to their increased propensity to become mutated11,12. Upon
spontaneous hydrolytic deamination, methylated cytosine residues turn into thymine, which
are less likely to be efficiently repaired than the uracils that result from deamination of
unmethylated cytosine residues. For example, about 25% of mutations in TP53 in cancers
are thought to be due to epigenetic effects47. Indeed, analyses of comprehensive human
catalogues of lung tumors have identified frequent G>T mutations enriched for CpG
dinucleotides outside CGI regions, suggesting a role for methylated cytosine since CGI, as
we confirmed, are usually unmethylated48. A similar signature was recently observed in
other tumors14. Thus, inherited genetic variation may have a profound impact on
carcinogenesis by regulating the human methylome.

We observed a high similarity of genetic control on DNA methylation across tissues. Since
tissue of origin determines cancer-associated CpG island promoter hypermethylation
patterns49, a natural question is whether the genetic regulation of methylation is tissue
specific. While the tissue-specificity of eQTLs has been investigated for a few tissues50, for
cis-meQTL, only a recent investigation was conducted6, showing that 35.7% of 88,751 cis
meQTLs detected in 662 adipose samples were replicated in ~200 whole blood samples. We
found that a large proportion of meQTLs in EAGLE lung samples, particularly those with
large effect sizes, were robustly replicated in breast and kidney tissue samples from TCGA,
suggesting a high similarity of genetic regulation of methylation across these tissues and
related impact on somatic mutation rates14,48. The lower replication rate of adipose meQTLs
in whole-blood samples6 might be explained by the heterogeneity of different cell types in
whole blood and by their more liberal P-value threshold (8.6×10−4), which led to the
identification of a large number of weak cis-meQTLs.

Compared with cis-regulation, trans-eQTL regulation is typically considered to be more
complex, has smaller effect sizes and is more difficult to be replicated even in the same
tissue. However, in our study the lung trans-meQTLs are highly reproducible in TCGA
lung, breast and kidney tissues. Notably, this similarity allows mapping meQTLs with
substantially improved power by borrowing strength across tissues51.

meQTL SNPs are strongly associated with multiple epigenetic marks. Chromatin regulators
play a role in maintaining genomic integrity and organization52. We found that meQTL
SNPs were strongly enriched for DNase hypersensitive sites, and sequences bound by CTCF
or modified histones. SNPs could affect these epigenetic marks by several mechanisms, such
as by affecting the core recognition sequences (exemplified for rs2816057 on chromosome 1
for CTCF), causing loss or gain of a CpG within a binding region, which, when methylated,
could affect binding27, or altering the binding sequence for interacting factors53.

CTCF could cause changes in epigenetic marks through its multiple key roles, including
genome organization through mediating intra- and inter-chromosomal contacts54,55, the
regulation of transcription by binding between enhancers and promoters54,56, and the
regulation of splicing, which may impact tissue specificity during tissue development39.
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These changes can impact regulation of distant genes, and not the genes proximal to the
SNPs that would be typically investigated in eQTL studies. This may be one reason for the
previously observed lack of correlation between eQTLs and meQTLs3,4,7. Future large
studies integrating SNP profiles, the DNA methylome and transcriptome data through tissue
developmental stages will hopefully shed light on this possibility.

There may be a myriad of other DNA-binding factors whose binding is directly or indirectly
affected by SNPs. For example, among the histone marks, the strongest enrichment of
meQTLs in our study was for H3K4me3 in both SAEC and hAEC cell types. As H3K4me3
is the chromatin mark primarily associated with regulatory elements at promoters and
enhancers, this suggests a strong influence of meQTLs on regulating gene activity.
Unfortunately, transcription factor binding data in SAEC or hAEC are not available, so we
could not test whether SNPs in their core sequence could affect the deposition of epigenetic
marks, e.g. by recruiting DNA methyltransferases57. It will be important to obtain ChIP data
from relevant primary cells for numerous DNA-binding regulatory factors to further
elucidate the mechanisms whereby meQTLs and other SNP-affected epigenetic marks arise.

In conclusion, we show here that genetic variation has a profound impact on the DNA
methylome with implications for cancer risk, tissue specificity and chromatin structure and
organization. The meQTL data (Supplementary Data) attached to this manuscript provides
an important resource for studying genetic-DNA methylation interactions in lung tissue.

Methods
Sample collection

We assayed 244 fresh frozen paired tumor and non-involved lung tissue samples from Stage
I to IIIA non-small cell lung cancer (NSCLC) cases from the Environment And Genetics in
Lung cancer Etiology (EAGLE) study18. EAGLE includes 2,100 incident lung cancer cases
and 2,120 population controls enrolled in 2002–2005 within 216 municipalities of the
Lombardy region of Italy. Cases were newly diagnosed primary cancers of lung, trachea and
bronchus, verified by tissue pathology (67.0%), cytology (28.0%) or review of clinical
records (5.0%). They were 35−79 years of age at diagnosis and were recruited from 13
hospitals which cover over 80% of the lung cancer cases from the study area. The study was
approved by local and NCI Institutional Review Boards, and all participants signed an
informed consent form. Lung tissue samples were snap-frozen in liquid nitrogen within 20
minutes of surgical resection. Surgeons and pathologists were together in the surgery room
at the time of resection and sample collection to ensure correct sampling of tissue from the
tumor, the area adjacent to the tumor and an additional area distant from the tumor (1–5 cm).
The precise site of tissue sampling was indicated on a lung drawing and the pathologists
classified the samples as tumor, adjacent lung tissue and distant non-involved lung tissue.
For the current study, we used lung tissue sampled from an area distant from the tumor to
reduce the potential effects of field cancerization.

DNA methylation profiling and data quality control
Fresh frozen lung tissue samples remained frozen while approximately 30 mg was
subsampled for DNA extraction into pre-chilled 2.0 ml microcentrifuge tubes. Lysates for
DNA extraction were generated by incubating 30 mg of tissue in 1 ml of 0.2 mg/ml
Proteinase K (Ambion) in DNA Lysis Buffer (10 mM Tris-Cl (pH 8.0), 0.1 M EDTA (pH
8.0), and 0.5% (w/v) SDS) for 24 hrs at 56°C with shaking at 850 rpm in Thermomixer R
(Eppendorf). DNA was extracted from the generated lysate using the QIAamp DNA Blood
Maxi Kit (Qiagen) according to the manufacturer’s protocol. Bisulfite treatment and
Illumina Infinium HumanMethylation450 BeadChip assays were performed by the Southern
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California Genotyping Consortium at the University of California Los Angeles (UCLA)
following Illumina’s protocols.

This assay generates DNA methylation data for 485,512 cytosine targets (482,421 CpG and
3091 CpH) and 65 SNP probes for the purpose of data quality control. Raw methylated and
unmethylated intensities were background corrected, and dye-bias equalized, to correct for
technical variation in signal between arrays. For background correction, we applied a
normal-exponential convolution, using the intensity of the Infinium I probes in the channel
opposite their design to measure non-specific signal58. Dye-bias equalization used a global
scaling factor computed from the ratio of the average red and green fluorescing
normalization control probes. Both methods were conducted using the methylumi package
in Bioconductor version 2.11.

For each probe, DNA methylation level is summarized as a β-value, estimated as the fraction
of signal intensity obtained from the methylated beads over the total signal intensity. Probes
with detection P-values of >0.05 were considered not significantly different from
background noise and were labeled as missing. Methylation probes were excluded from
meQTL analysis if any of the following criteria was met: on X/Y chromosome, annotated in
repetitive genomic regions, annotated to harbor SNPs, missing rate>5%. Because the β-
values for the 65 SNP probes are expected to be similar in matched pair of normal and tumor
tissues, we performed principal component analysis (PCA) using these 65 SNP probes to
confirm the labeled pairs. We then performed PCA using the 5000 most variable
methylation probes with var>0.02 and found that the normal tissues were clustered together
and well separated from the tumor tissues. We further excluded 5 normal tissues that were
relatively close to the tumor cluster. From the remaining 239 normal tissue samples, we
analyzed 210 with genotype data from a previous GWAS of lung cancer20.

Genotype data and genetic association analysis
The blood samples were genotyped using the Illumina HumanHap550K SNP arrays in
EAGLE GWAS20. The SNPs with call rate >99%, minor allele frequency (MAF) >3% and
Hardy-Weinberg Equilibrium (HWE) P-value >10−5 were included for analysis. Prior to
meQTL analysis, each methylation trait was regressed against sex, age, batches and PCA
scores based on methylation profiles. The regression residues were then quantile-normalized
to the standard normal distribution N(0,1) as traits. The genetic association testing was
performed using PLINK and R, adjusted for the top three PCA scores based on GWAS
SNPs to control for potential population stratification.

Identification of cis-meQTLs
For each CpG methylation probe, the cis region was defined as being less than 500kb
upstream and downstream from the target CpG-site (1Mb total). A methylation trait was
detected to harbor a cis-meQTL if any SNP in the cis region had a SNP-CpG nominal
association P-value less than P0, where P0 was chosen to control FDR at 5% by
permutations. Here, we describe a permutation procedure to choose P0 to control FDR at
5%. For a given P0, let N(P0) be the total number of CpG probes with detected cis-meQTLs
and N0(P0) the expected number of CpG probes falsely determined to have cis-meQTLs.
FDR is defined as N0(P0)/N(P0). The key is to estimate N0(P0) under the global null
hypothesis that no CpG probe has cis-meQTLs. We randomly permuted the genotypes
across subjects for 100 times, keeping the correlation structure of the 338,456 methylation
traits in each permutation. Then, N0(P0) was estimated as the average number of
methylation traits that were detected to harbor cis-meQTL SNPs with nominal P<P0.
Control FDR at 5% requires P0=4.0×10−5. The same procedure was applied to detect
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secondary independently associated cis-meQTL SNPs. With our sample size, h2>0.12 is
required to detect cis-meQTLs with power greater than 0.8.

We note that, although we excluded all CpG probes annotated with SNPs, there is still the
possibility that rare, not annotated variants could be associated with the cis-meQTL SNPs.
However, since common variants and rare variants are known to be poorly correlated, and
rare variants are uncommon by definition, we do not expect this event to be frequent.

Identification of trans-meQTLs
For each CpG probe, the trans region was defined as being more than 500kb from the target
CpG-site in the same chromosome or on different chromosomes. For the kth methylation
trait with m SNPs in the trans region, let (qk1,⋯,qkm) be the P-values for testing the
marginal association between the trait and the m SNPs. Let pk=min(qk1,⋯,qkm) be the
minimum P-value for m SNPs and converted pk into genome-wide P-value Pk by performing
one million permutations for SNPs in the trans region. Because a cis region is very short
(~1M) compared to the whole genome (~3000M), Pk computed based on SNPs in trans
regions is very close to that based on permutations using genome-wide SNPs. Thus, we use
the genome-wide p-value computed based on all SNPs to approximate Pk. Furthermore, all
quantile-normalized traits follow the same standard normal distribution N(0,1); thus the
permutation-based null distributions are the same for all traits. We then applied the
Benjamini-Hochberg procedure to (P1,⋯,PN) to identify trans-meQTLs by controlling FDR
at 5%. With our sample size, h2 >0.24 is required to detect trans-meQTLs with power
greater than 0.8.

Replication of meQTLs in TCGA samples
The replication was performed in TCGA histologically normal tissue samples that had
genome-wide genotype (Affymetrix Genome-Wide Human SNP Array 6.0) and methylation
profiling (Illumina Infinium HumanMethylation450 BeadChip). We downloaded genotype
(level 2) and methylation data (level 3) from the TCGA website22. We also downloaded
methylation data for tumor tissue samples and performed PCA analysis to confirm that
normal tissue samples were separated from tumor tissue samples. Autosomal SNPs with
MAF >3%, calling rate >0.99 and HWE P-value > 10−5 were included for imputation using
IMPUTE259 and reference haplotypes in the 1000 Genome Project60 (version 2012/03). We
only included samples of European ancestry based on EIGENSTRAT analysis. The
replication set had 65 lung, 87 breast and 142 kidney histologically normal tissue samples
after QC. Again, each methylation trait was regressed against sex, age, batches and PCA
scores based on methylation profiles. The regression residues were then quantile-normalized
to the standard normal distribution N(0,1) as traits for meQTL analysis. The associations
were tested between the quantile-normalized methylation traits and imputed genotypic
dosages, adjusting for sex, age, and PCA scores based on SNPs. A genetic association
detected in EAGLE lung data was considered replicated if the association had the same
direction and FDR<0.05 based on single-sided P-values.

Testing genetic associations with methylation and gene expression traits
We downloaded gene expression data (level 3) from RNA-seq analysis of 59 histologically
normal tissue samples from NSCL patients from TCGA. All samples also had genome-wide
genotype data, and 28 samples had additional methylation data from Illumina Infinium
HumanMethylation450 BeadChips. Regression analysis was performed to test the
association of gene expression with methylation levels in the CHRNA5 gene and with
methylation levels in PABPC4, STARD3, and SLC35A3 genes. We tested the association
between lung cancer GWAS risk SNPs and gene expression using regression analysis under
an additive model, adjusting for age, sex, and PCA scores based on genome-wide SNPs.
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Testing for enrichment of cis-meQTLs in lung cancer GWAS
We tested for enrichment in NCI lung cancer GWAS of European ancestry, which included
three main histologic subtypes of lung cancer (adenocarcinoma (AD), squamous cell
carcinoma (SQ), small cell carcinoma (SC)) and a small number of other lung cancer
subtypes. We investigated whether the identified cis-meQTL SNPs were collectively
associated with lung cancer risk, which was tested by examining whether the GWAS P-
values for these SNPs deviated from the uniform distribution (i.e. no enrichment). Because
the high linkage disequilibrium (LD) in SNPs increased variability of the enrichment
statistic and caused a loss of power, we first performed LD-pruning using PLINK so that no
pair of remaining SNPs had a r2 ≥0.8. The enrichment significance was evaluated by 10,000
random permutations. The genomic control λ-values61 based on genome-wide SNPs were
1.01, 0.995, 0.977 and 1.00 for overall lung cancer, AD, SC and SQ, respectively. Thus, the
type-I error rates of our enrichment tests were not inflated. The detailed procedure for
testing a set of cis-meQTL SNPs is described as follows:

Firstly, we performed LD-pruning using PLINK so that no pair of remaining SNPs had an r2

≥0.8.

Secondly, we tested the association for the LD-pruned SNPs (assuming K SNPs left) in a
GWAS and computed the P-values (p1,⋯,pK). We then tested whether (p1,⋯,pK) followed a
uniform distribution, i.e. no enrichment.

Thirdly, we transformed P-values into  quantitles qk = F−1(1 − pk) with F(·) being the

cumulative distribution function (CDF) of . We defined a statistic for testing enrichment

as 35,62, where f is a pre-specified constant reflecting the
expected proportion of SNPs associated with the disease. Because only a small proportion of
SNPs may be associated with the disease, we set f=0.05 for this paper. The statistical power
was insensitive to the choice of f in the range of [0.01, 0.1]62.

Finally, the significance of the test Q was evaluated by 10,000 random permutations.

meQTL mediation analysis
We investigated whether trans associations were mediated by the methylation levels of CpG
probes nearby the trans-acting SNPs. Note that this analysis was only for trans associations
with cis effects, i.e. the SNP was associated with at least one proximal CpG probes with
p<4×10−5. See Fig. 2c.

Suppose a SNP G cis-regulates K proximal (<500kb) CpG sites A1,⋯,AK with P<4×10−5

and trans-regulates a distal CpG site B. We performed a linear regression: B~α+θG +λkAk.
We also computed marginal correlation coefficient cor(G,B) and partial correlation
coefficient cor(G,B|Ak) using an R package “ppcor”63. A full mediation was detected if G
and B were not significantly correlated after conditioning on Ak, or equivalently G was not
significant (p>0.01) in regression analysis B~α+θG +λkAk for any k. A partial mediation was
detected if any Ak had a P<0.05/K (Bonferroni correction) in the regression analysis and |
cor(G,B)|−| cor(G,B|A) |>0.1. An independent effect model (i.e. no mediation) was detected
otherwise.

Testing enrichment of meQTL SNPs in regulatory regions
We obtained peak data for CTCF, DNaseI, H3K27me3, H3K4me3 and H3K36me of small
airway epithelial cells (SAEC) from the ENCODE project and for H3K27me3, H3K4me3
and H3K9-14Ac from human alveolar epithelial cells (hAEC) from our own laboratory. A
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SNP is determined to be functionally related to a given mark or CTCF binding site if the
SNP or any of its LD SNPs (r2 ≥0.8 with LD computed using the genotype data of European
population in The 1000 Genome Project) resided in any of the mark regions or CTCF
binding sites. We explain our enrichment testing using CTCF as an example.

We classified genome-wide SNPs into four categories: SNPs not associated with CpG
probes in trans or cis (defined as control SNP set), SNPs only associated with proximal CpG
probes via cis-regulation (cis-only, 21,119 SNPs), SNPs only associated with distal CpG
probes via trans-regulation (trans-only, 192 SNPs), and SNPs detected with both trans and
cis effects (cis+trans, 277 SNPs). For SNPs in the category of cis-only, trans-only and cis
+trans, we computed the proportion of SNPs functionally related to CTCF.

To compute the enrichment of cis-meQTLs in CTCF binding sites, we defined a control set
of SNPs that are not associated with CpG probes via cis- or trans regulation. The selection
of the control set was further complicated by the following two observations. (1) cis-meQTL
SNPs tended to be more common (data now shown). (2) The probability of a SNP detected
as a cis-meQTL SNP positively depended on the density of the CpG probes in the nearby
region. Choosing a control set while ignoring these two factors could underestimate the
proportion of functionally related SNPs in the control set and thus overestimate the
enrichment for cis-meQTLs. Therefore, we created 1000 sets of control SNPs with CpG
probe density (measured as the number of CpG probes in the cis region of each SNP) and
MAF matched with the meQTL SNP set, and then averaged the proportions on the 1000
sets. The enrichment was calculated as the fold change with the proportion in the control
SNP set as baseline.

Next, we investigated whether the enrichment was stronger for SNPs more significantly
associated with CpG sites. Because we detected only a few hundred trans-meQTLs, we
focused this analysis on the set of cis-meQTLs. We classified cis-meQTL SNPs into five
categories according to the cis-association P-values: P >10−7 (the weakest), 10−10< P ≤10−7,
10−15 < P ≤ 10−10, 10−20 < P ≤ 10−15 and P ≤ 10−20 (the strongest). For each category, we
computed the proportion of SNPs functionally related to CTCF binding sites.

meQTL SNPs affect CTCF binding
We found that meQTL SNPs are strongly enriched in CTCF consensus sequences. We used
SAEC data from ENCODE to test whether meQTL heterozygous SNPs directly affect CTCF
binding by disrupting the CTCF recognition sites. P-values were calculated based on a
binomial distribution Binom(N, 0.5). Here, N is the total number reads covering the SNPs.
Raw sequencing data (.fasstq format) from SAEC cells were generated at the University of
Washington as part of the ENCODE project and downloaded from the UCSC genome
browser. Raw data was aligned to the hg19 genome using CLC genomics workbench (v
5.5.1), parsing out data with less than 80% contiguous alignment to the genome and
duplicate reads in excess of 10 copies. We used the CTCFBSDB 2.0 program64 to predict
whether the meQTL SNPs or their LD SNPs (r2 ≥ 0.8) were within CTCF peaks and then
examined in SAEC whether CTCF exhibited allele-specific binding. Because common SNPs
are more likely to be heterozygous, we only looked for SNPs with MAF ≥0.4. Here, we
present two such examples. Systematic investigation of all meQTL SNPs that are
heterozygous in SAEC is warranted once more samples with genotypic data are available.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. cis-meQTL structural characteristics
(a) Distribution of CpG probes and corresponding cis-meQTL numbers and proportions in
gene and non-gene regions. meQTLs were detected based on EAGLE lung normal tissue
samples (n=210). (b) Distribution of CpG probes and corresponding cis-meQTL numbers
and proportions in CpG islands (CGIs), shores (< 2kb from the boundary of CGI), shelves
(2–4kb from the boundary of CGI) and the remaining region or “open sea”. The box plots
show the distribution of the methylation levels in each genotype category with error bars
representing the 25% and 75% quantiles. (c) The strongest cis-association is between SNP
rs10090179 and CpG probe cg19504605. P=1.5×10−73, t-test. The SNP explains 79.8% of
the phenotypic variance. (d, e): The x-coordinate is the average standard deviation (SD) of
methylation levels for CpG probes in each category. The y-coordinate is the proportion of
CpG probes detected with cis-meQTLs. The proportion of methylation probes detected with
cis-meQTLs varied across categories, ranging from 4.0% for CGIs in 1st Exons to 15.7% for
south shores in non-gene regions.
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Figure 2. trans-meQTL structural characteristics
(a) Circos plot for trans-meQTLs. The outer rim shows the log10 P-values Manhattan plots
of trans-meQTL associations. The innermost network depicts spokes between all trans-
meQTL SNPs and their target CpG sites. The red spikes show a master regulatory SNP
rs1293229 located at 16p11.2 associated with methylation of CpG sites located in CGIs
annotated to five genes. (b) Proportion of CpG probes detected with cis-meQTLs and trans-
meQTLs across gene regions. The asterisks “*,**,***” indicate t-test P<0.05, 0.01, and
0.0001 for the comparison between CGI and non-CGI regions. CGI regions are strongly
enriched with trans-meQTLs, while non-CGI regions are enriched with cis-meQTLs. CpG-
sites in 3’UTR regions show an opposite trend. (c) The association between a SNP denoted
as G and a distal CpG-site B may be mediated through a proximal CpG-site A. (d) For each
trans-association (G, B) pair, the dots show their marginal v.s. partial correlation
coefficients upon conditioning on the proximal A CpG probes. Analysis was based on 210
samples. Reduction of correlation coefficients by conditioning on A suggests the magnitude
of the mediation effect.
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Figure 3. Chromatin marks are increasingly enriched on meQTL SNPs with larger effect sizes
(a) We split cis-meQTL SNPs into five categories according to the meQTL association
strength (P>10−7, 10−7>P>10−10, 10−10>P>10−15, 10−15>P>10−20, P<10−20). A SNP is
determined to be related with a regulatory region if the SNP or any LD-related SNP (r2 ≥
0.8) resides in the ChIP-Seq peaks of the regulatory regions. Regulatory elements include
CTCF binding sites, DNaseI hypersensitive sites and histone marks from small airway
epithelial cells (SAEC) from ENCODE and human alveolar epithelial cells (hAEC) from our
laboratory. For each p-value category, we calculated the proportions of cis-meQTL SNPs
related with regulatory regions. The figures show that the proportions of cis-meQTL SNPs
related with regulatory regions increase with the significance of meQTL associations except
for the repressive mark H3K27me3.
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Figure 4. DNA methylation regional associations for lung cancer GWAS SNPs in subjects of
European ancestry
(a, b, f and g) Symbols represent the association between established lung cancer GWAS
genetic loci in four regions and methylation levels in nearby CpG probes. Y-coordinate, P-
value for association; x-coordinate, genomic location. For each SNP, the red solid circle or
square represents the methylation probe with the strongest association, whereas other
methylation probes are colored on the basis of their correlation (measured as r2) to the most-
associated probe. For the most-associated probes, the P-values in EAGLE discovery set
(n=210) and TCGA lung replication data (n=65) are shown. SNP locations are marked by a
blue triangle. (c–e and h–j) show the associations between genotypes and methylation levels
of the most associated CpG probes. The box plots show the distribution of the methylation
levels in each genotype category with error bars representing the 25% and 75% quantiles.
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Figure 5. Enrichment of cis-meQTL SNPs for lung cancer risk
Analysis based on NCI lung cancer GWAS data (5,739 cases and 5,848 controls). P-values
were produced based on 10,000 permutations. AD, SQ, and SC represent adenocarcinoma,
squamous cell carcinoma and small cell carcinoma. (a) Enrichment was tested using all cis-
meQTL SNPs after LD pruning. (b and c) Strong enrichments were observed for cis-meQTL
SNP associated with CpG probes annotated to north shores (b) and gene body (c) regions for
SQ. (d) The enrichment in (c) was driven by the cis-meQTLs SNPs impacting CpG probes
in non-CpG islands. (e) The enrichment in (d) is driven by the SNPs (or their LD SNPs with
r2 > 0.95) overlapping with CTCF binding sites or H3K27me3 mark regions.
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