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Abstract

In today’s technology-assisted society, social interactions may be expressed through a variety of techno-communication
channels, including online social networks, email and mobile phones (calls, text messages). Consequently, a clear grasp of
human behavior through the diverse communication media is considered a key factor in understanding the formation of
the today’s information society. So far, all previous research on user communication behavior has focused on a sole
communication activity. In this paper we move forward another step on this research path by performing a
multidimensional study of human sociality as an expression of the use of mobile phones. The paper focuses on user
temporal communication behavior in the interplay between the two complementary communication media, text messages
and phone calls, that represent the bi-dimensional scenario of analysis. Our study provides a theoretical framework for
analyzing multidimensional bursts as the most general burst category, that includes one-dimensional bursts as the simplest
case, and offers empirical evidence of their nature by following the combined phone call/text message communication
patterns of approximately one million people over three-month period. This quantitative approach enables the design of a
generative model rooted in the three most significant features of the multidimensional burst - the number of dimensions,
prevalence and interleaving degree - able to reproduce the main media usage attitude. The other findings of the paper
include a novel multidimensional burst detection algorithm and an insight analysis of the human media selection process.
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Introduction

With the emergence of today’s technology-assisted society,

human communications and social interactions are often built on

top of different techno-communication channels, including online

social networks, email and mobile phones (calls, text messages).

Human behavior and social interactions through the diverse

communication media have become a subject of intensive research

because a clear grasp of the same is considered a key factor in

understanding the formation of the today’s information society.

Consequently, a vast and well-established literature regarding the

properties of social networks built on each communication media

is now available [1–5]. More recently, interesting studies about the

dynamics of user interactions have also emerged, mostly enabled

by the availability of large scale datasets enriched with physical

timestamps of events. All these studies [6–14] have shown that a

pronounced temporal inhomogeneity characterizes this type of

communication activity, i.e. users perform sequences of rapidly

occurring events, interleaved by long inactive periods. As a

consequence, starting from the seminal work of Barabasi [15] who

stressed the inappropriateness of the Poisson process in their

modeling, human dynamics has become to be considered as

bursty.

Previous research on user communication temporal behavior

has mainly focused on a sole communication activity. Nonetheless,

human sociality is expressed through different communication

channels - each channel describes a specific dimension of human

sociality as a whole - and therefore the understanding of its

dynamics and complexity may be improved by reckoning on all

different dimensions together. Thus, the study of multidimension-

ality has become an inescapable fact when designing both practical

and theoretical frameworks that describe human activities. A few

seminal works [16–19] have adopted a multidimensional approach

to study the structural properties of social networks when multiple

communication channels are considered, while [20,21] model a

collective bursty temporal process as composed of subprocesses

and study spatiotemporal correlations inside utilization patterns of

mobile service users.

In this paper we move forward another step on this research

path by performing a multidimensional study of human sociality as

an expression of the use of mobile phones, where the user has

different communication media. While in [22] we explored the

structural properties of the mobile multidimensional social

network, this work focuses on user temporal communication

behavior in the interplay between the two complementary

communication media, text messages and phone calls, that

represent the bi-dimensional scenario of analysis. Our study

provides a theoretical framework for detecting and analyzing

multidimensional bursts by introducing a new burst detection

algorithm and metrics suitable to describe multidimensionality

features. In fact multidimensional bursts exhibit a complex inner

structure that accounts for how individuals organize their activities

once a burst is initiated. The interplay among the different

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e103183

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0103183&domain=pdf


dimensions can be fully described by defining the triplet of metrics

vd,~pp,iw which captures the number of dimensions d , the

dimensions prevalence ~pp and the tendency to switch among

dimensions i. Finally, we propose a multidimensional burst

generative model by means of Generalized Stochastic Petri Nets

which proves able to reproduce all the above-mentioned features.

The use of this general framework enabled us to offer empirical

evidence of multidimensional bursty nature by analyzing the

combined phone call/text message communication patterns of

approximately one million people over a three-month period.

Multidimensional analysis sheds light on human social interactions

by phone and give answers to new emerging research questions:

How do individuals schedule different phone activities? Is the

mental selection process driven by technology or by social

relationships? We find that the structure of the phone activity

sequences is mostly influenced by the communication media. This

behavior has to do with the uncomfortable and time consuming

task of media switching which is able to condition the mental

scheduling process.

Materials and Methods

Dataset
We use a large anonymized dataset of mobile-phone Call Data

Records (CDR) - containing call and text message activities of

mobile subscribers - gathered in a large European metropolitan

area from March 26 to May 31, 2012, for a total of 67 days. The

dataset contains in all more than 69 million phone call records and

20 million text message ones. Each record contains the following

information: date, hour, source user-ID, destination user-ID and,

re phone conversations, duration of the call in seconds.

The dataset was preprocessed to obtain significant time series of

outgoing phone activities to highlight the active role in the

initialization of the communication. The preprocessing phase

focused on the dynamics of per-day activities of users. In fact, in

line with the arguments proposed in [23], we are less interested in

observing the role of human circadian and weekly activity patterns

which act on both weekly and 24-hour time scales. In practice, we

put more emphasis on human behavior in performing phone

activities during a day than in natural life cycles.

The following analysis considers the outgoing phone activities of

individuals as a sequence of discrete temporal events. For each

pair (user, day), we build the time series of the outgoing phone

activities performed by that particular user on that particular day.

Finally, we obtain the set of time series representing our sample.

Thus, an event time series s of a given pair (user, day) is defined as:

suser,day~e(t1,d1),e(t2,d2), . . . ,e(tm,dm), where e(ti,di) is the i{th

event, an outgoing call or text message activity performed by user

at day, ti represents the event’s starting time and di is its duration,

which we assume to be 0 in case of text message. From now on, we

will use the terms time series and sequences as synonymous with s,

disregarding indexes.

For this paper’s purposes, we only considered the time series

having a relevant number of both texts and calls, i.e. lying above a

given threshold. This led us to obtain two sets of time series,

namely D 1 and D 2, by selecting two values of the threshold for

outgoing calls and texts: for D 1 the threshold is 25, while for D 2

the threshold is 10. Moreover, in order to exclude anomalous users

like robot-based event generators, telecom frauds, telephone sales,

and such, we required that the daily activities should not exceed

the threshold of 100 calls and 200 texts. After this preprocessing,

we found D 1 to contain 5,716 time series and D 2 to contain

134,736. This way D 1 accounts for time series expressing a very

intense activity, while D 2 weakens the activity level allowing us to

check and generalize the behaviors observed in D 1 [24].

Burstiness
It is commonly accepted that inhomogeneous time-dependen-

cies within a sequence of discrete events show a heavy-tailed inter-

event time distribution, where the inter-event time is the elapsed

time between two consecutive events in a time series s. More

precisely, in our case inter-event times are defined as

tiz1{(tizdi) - while for text messages it is simply tiz1{ti.

To confirm the bursty nature of phone activities, when

considering both texts and calls, we apply to D 1 and D 2 the

method proposed in Vasquez et. al. [25] and extended by

McGlohon et. al. [26]. We fit the inter-event time data by using

MLE (Maximum Likelihood Estimator) for exponential and Zeta

distribution, and select as best model the one that minimizes the

AIC (Akaike Information Criterion).

Burst detection algorithm
Given a time series it is important to correctly identify which

events are performed in a burst train and which are not. To this

end different algorithms are developed to automatically find out

bursts and they differ in the features they consider to identify the

bursts: variation of event arrival rate [27], number of events

occurred in a specific time window [28,29] and inter-event time

threshold [23,30,31]. In mobile phone dataset analysis the most

used approach is the inter-event time threshold. This approach

defines a burst as a group of consecutive events having inter-event

time below a certain threshold. Nevertheless all these approaches

are limited to one-dimensional case and do not consider temporal

overlapping.

If we move from one dimension to a multidimensional burst

time series the burst detection algorithm based on inter-event time

of consecutive events is unable to correctly identify bursts, as they

might be affected by a temporal overlapping between different

dimensions. In fact, circumstances may exist where people

communicate and socialize by different media simultaneously, as

typing text messages while talking with friends nearby. Albeit rare,

we observe this behavior in a few sequences of our datasets, where

texts were interspersed with calls. Here we propose a different

approach that is viable for any multidimensional case.

Let us start by providing a formal definition of burst. In a burst

each event, except for the first and last ones, has at least k
neighbor events within Dt. Let us consider the event time series

s~e(t1,d1),:::,e(tm,dm) and the function d representing the time

elapsed between two events e(ti,di) and e(tj ,dj) defined as follows:

d(e(ti,di),e(tj ,dj))~

tj{(tizdi) if tj§tizd i

tj{ti if tiƒtjƒtizd i

8><
>: ð1Þ

For each event e(ti,di) of the sequence, we consider the set

Ei(Dt)~fe(tj ,dj)Dd(e(ti,di),e(tj ,dj))ƒDt,i=jg, which represents

the set of all events e(tj ,dj) having a time gap from e(ti,di) below

or equals to Dt.

We define a burst as a sequence b~e(ts,ds), . . . ,e(tf ,df ) such

that each set Ei(Dt), with svivf , has cardinality greater or

equals to k. According to this definition the burst length n, defined

as card(b), is f {sz1.

From an algorithmic point of view, the given definition, and in

general the idea of burst, can be reported in a way that fits with the

model adopted by the density-based clustering algorithm frame-
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work [32]. A burst can be seen as a time period where the

probability density function r(t) exceeds a prefixed threshold.

Density-based clustering is exactly a non parametric framework

whose aim is the extraction of high density regions of r(t).
Therefore we assume that the points we group correspond to the

time of the event ei which comes from an unknown probability

density distribution r(t), while bursts are the clusters. Among the

various density-based methods proposed in the literature, we select

DBSCAN [33] because it scales to a large dataset and is robust

against noise. Given a distance threshold Dt, and a threshold k on

the number of the events within the interval ½ti{Dt,tizdizDt�
(the choice of the interval ½ti{Dt,tizdizDt� in the construction

of the neighborhood set accounts for the asymmetry of the

function d), the algorithm finds the maximally connected

component (in terms of density reachability) of events at a distance

smaller than Dt from some core points. By the term core point, we

mean a point ti such that the number of events in

½ti{Dt,tizdizDt� is greater than k. In Figure 1 we illustrate

how the algorithm operates on a toy sequence. In the figure we

also observe an advantage that the density-based approach offers

w.r.t. simple aggregation on the inter-event time [23]. Density-

based methods overcome the so-called ‘chaining-effect’ which

affects the single linkage methods as the inter-event aggregation. In

fact the sole aggregation can result in different clusters merged by

a ‘chain’ of single points between the clusters. In the figure the

chaining-effect induces the two detected bursts to merge into one

due to the single event in between.

Multidimensionality features
In this section we focus on the characterization of multidimen-

sional bursts as the very general burst category that includes one-

dimensional bursts as the simplest case. In the following we omit

the features that have been already defined in one-dimensional

burst analysis and that are still valid in the general case (such as

inter-times or burst length). Therefore we focus on a set of features,

and corresponding quantifying metrics, able to fully characterize

multidimensionality. Indeed, multidimensionality features each

single burst, not the overall time series, and so models and metrics

relative to burst sequence still hold. Here we zoom in the single

burst structure to describe its inner multidimensionality.

To this end, first we introduce the variable d that indicates how

many different types of activity exist within a burst, i.e. the number

of its dimensions, and denote as d-burst a d-dimensional burst. We

can now represent a d-burst as a sequence of symbols belonging to

the alphabet S~f0,1,2, . . . ,d{1g, where card(S)~d. In our bi-

dimensional datasets, we code text message~1 and

call~0 and represent bursts as binary sequences.

Secondly, we characterize the burst multidimensionality by

considering the relative importance of the activities inside the

burst. Given a d-burst, we define as prevalence the vector

~pp~(p1,p2, . . . ,pd ) where pi is the probability to draw the i{th

dimension symbol when considering a multinomial process on the

burst: pi~
number of i {th symbol occurrences

n
, where n is the

burst length.

In our case, ptext~1{pcall holds and measures the prevalence
of one of the two activities w.r.t. the other, accounting for the

media selection preferences performed by a given user in a given

burst of phone activity.

Nevertheless, these two features fail to describe how often a user

switches from one medium to the other. Let us consider, for

example text/call bursts. In addition to the one-dimensional burst,

where the user decides to perform all activities on a single medium,

multidimensional burst is a multiple symbol sequence. Symbols

can be more or less interleaved inside a sequence, accounting for

how often the user switches between media inside a burst. This

way switches divide a burst into sub-sequences, each being a

sequence of a sole symbol. An extreme case, very similar to the

one-dimensional one, occurs when the burst can be divided in

exactly two sub-sequences, one containing text messaging, the

other call only. We name this burst a disjoint burst, as the user is

definitely separating the two media. Single and disjoint bursts

clearly account for a monotone behavior w.r.t selecting a

particular type of activity; for example, a user may decide to use

only one communication medium or to send all texts prior to

performing other activities.

By contrast, bursts where symbols of different media are

interleaved with one another are clearly an observable effect of the

multidimensionality and can provide valuable insight into the

selection process underlying the user’s activities. For purposes of

clarity, we use the term interleaved to identify bursts that are

neither disjoint nor one-dimensional. Of course, interleaved bursts

exhibit different degrees of interleaving, which account for how

often the user changes media or, equivalently, how many sub-

sequences exist in the symbol sequence.

Figure 1. Example of event time series. This example explains how the burst detection algorithm works. The algorithm correctly identifies the
densest regions (black dashed boxes) avoiding to include the event in between (red solid line).
doi:10.1371/journal.pone.0103183.g001

Multidimensional Dynamics in Phone Communications

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e103183



Intuitively, the higher the degree of interleaving, the farther the

sequence moves away from the binary sequence representing the

one-dimensional or disjoint burst. In the general case of a

d{burst the interleaving degree of a burst is formally expressed as

follows:

i~
sz1{d

n{d

where s is the number of switches from one symbol to another

inside the sequence. The numerator represents the difference

between the number of sub-sequences inside the current burst,

sz1, and inside a generic disjoint type burst, d. The denominator

is a normalization factor accounting for the difference between the

number of events in the burst, n, and the minimum number of

events of a d-dimensional burst, d . This coefficient assumes values

in the interval ½0,1�: 0 means that the burst is a disjoint or one-

dimensional burst, while 1 means that the type of activity changes

from event to event. For example, let us consider the bursts having

the following events sequence:

Finally, the triplet vd,p,iw fully describes the multidimensional

nature of a burst.

As a final step of the multidimensional analysis, the comparison

between the dataset’s time series and a randomized dataset (null

model) is the mechanism we adopt to see if the footprint of human

behavior can be recognized in a user’s sequence of events or if it is

simply the consequence of a random selection of communication

media. To produce the randomized dataset, we shuffle the user

activities of the original dataset as follows: we start with the time

series of activities and randomly permute the order of text

messages and phone calls a user executes. This shuffling method

allows us to leave untouched the inter-event times, ergo the

detected bursts as well, while removing the activity type selection

process, which in our case corresponds to the selection of

communication media.

Results and Discussion

Multidimensional burst features
The empirical analysis of the mobile phone activities of the

described datasets shows a clear power-law behavior of inter-times

distribution as confirmed by Table 1 where around 80% of time

series in both datasets are better modeled by a heavy-tail

distribution.

Bursts
In Figure 2 we show the results of the burst detection algorithm

applied by varying the threshold Dt from 1 to 60 minutes and

k~2. The latter value enables the comparison of our results with

those obtained by implementing the single linkage methods. In

both datasets we found that phone activities are very bursty and,

even when we execute the detection algorithm with the tight

threshold value of 10 minutes, more than 80% of activities occur

inside burst. In the same figure we also report the results we

obtained by considering texts and calls separately. In both one-

dimensional cases these percentages are much lower due to the

fragmentation of bursts when the two media are alternated. For

the same reason, as shown in Table 2, the burst length too

definitively increases when the scenario is enriched by more

dimensions.

In Table 3 we report the comparative analysis between original

and shuffled time series, along with the percentage of variation

rate (defined as the difference between the shuffled value and

original value divided by the original value). We can observe that

the shuffled process causes a reduction of one-dimensional and

disjoint burst types; in particular, we see a significant decrease in

one-dimensional bursts. In fact, about 50% of bursts are one-

dimensional or disjoint, unlike what we would observe if the choice

were obtained randomly. Moreover, the overall degree of

interleaving is very low. In Figure 3 we report the histogram of

the values of the interleaving degree computed on the interleaved

burst type only. The results show a low coefficient value, more

than 80% are below or equal to 0.5, accounting for a very low

level of interleaving attitude.

The aforementioned arguments enforce the hypothesis that the

execution order of phone activities is mainly affected by the need

to minimize the switching overhead between different communi-

cation media (and the relevant apps). People experience a certain

inertia which makes them to lean in single dimension and to persist

in there up to completion of the planned burst activities.

These results magnify the burst nature of human communica-

tion and highlight the extent to which the multidimensional

approach enriches the big picture of mobile phone communica-

tion.

Social or media driven?
In the previous section we have shown that the processing

sequences of human mobile phone activities are likely to be heavily

influenced by media selection. This argument is slightly counter-

intuitive - we would expect human interactions to reflect the

personal value (ranking) that individuals ascribe to their social

relationships - and thus deserves further analysis. Provided that

individuals have the attitude to organize their sequences of phone

activities in multidimensional bursts with a very low interleaving

degree, the question to answer is: does the order in which activities

inside a multidimensional burst reflect the ranking that the user

ascribes to his/her social relationships?

To provide a quantitative answer to this question, we perform a

correlation analysis between burst activities and sociality rankings.

The burst activities ranking has been performed as follows. We

consider the sequence (r1,r2, . . . ,rn) where ri represents the

receiver of the i-th phone activity performed by user in a burst and

we consider the vector given by the first occurrence of all the

receivers. The burst rank of each receiver v is defined as the index

of v in the vector of the first occurrences. For example consider the

following sequence (b, a, a, b, a, c, c, b). The vector of the first

occurrences is (b,a,c) which gives the following ranking b~1,

a~2 and c~3. We can stretch the scope of this ranking notion

from a single burst to a full day by joining all the sequences

corresponding to the bursts happened on a specific day.

We can describe the sociality ranking by organizing, in

decreasing order, the neighbors of each user on the basis of the

number of interactions the user has performed with his/her

neighbor. Here we adopt the term ‘interaction’ to indicate a voice

call or text message issued by a user. The sociality ranking has

been shortened by removing neighbors not included in the burst/

day ranking. This way the two rankings have the same cardinality.

Burst i

0000011111 0

0011110001 0.25

0011001100 0.375

0101010000 0.625

0101010101 1
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The evaluation of the Spearman correlation coefficient enables the

comparative analysis of the two rankings.

We analyze the distribution of the Spearman coefficient r at

both day and burst level and we report the relevant distributions in

Figure 4. To avoid artifacts induced by small number of points, we

consider sequences with more than three different receivers. At a

burst level we have nearly 28% of bursts showing high degree of

correlation or anti-correlation (DrDw0:6), while at day level we

observe this percentage decreasing to 15%. These results highlight

that the choice of the next activity is not driven by social

importance. This still holds even in case of more regular behavior

in terms of media selection, as it happens in one-dimentional or

disjoint bursts. As we can see in Figure 5, where the CDF of the

Spearman coefficient grouped by burst type is reported, there is no

significant difference between burst types. In fact, we observe that

around 30% of one-dimensional and disjoint bursts show high

degree of correlation or anti-correlation w.r.t. 25% of interleaved

bursts.

We can conclude that the communication medium is the main

ingredient to determine the organization of our sequence of

activities inside a burst.

A generative model of two-dimension bursts
Next we present a generative model for two-dimensional bursts,

along with results from a comparison between selected indexes and

statistics regarding an excerpt of sample data and a combinatorial

analysis of binary sequences.

The model aims at representing single bursts only, yet it is

parametric in burst length (nw2), thus it might be easily interfaced

with upper layers which provide values for n (e.g., by drawing from

a given distribution) and model inter-burst times.

The generative model of bursts of given length builds on a

discrete time Markov Chain (MC), which is instantiated in

Figure 6 for the simplest case, n~3. Its regular structure makes it

possible to infer the MC appearance for any n. Each MC state

represents a (set of) (sub)sequence(s), and may be described by

bindings of some integer variables, L (length), P (prevalence), S

(switches) and l (last), that take values in ½0,n�, ½0,n�, ½0,n{1� and

½0,1�, respectively. In Figure 6 states are annotated with charac-

terizing bindings. The value of P indicates the number of ‘1’ in

(sub)sequences. As for l, it denotes the last event that occurred and

allows one to track switches. The one step transition probability

matrix of the MC builds on two parameters, pr0, pr1, which define

the probabilities that the next event in a (sub)sequence coincides

with the last one. The values 1{pr0, 1{pr1, thus stand for switch

probabilities. We assume that at the beginning of a burst the two

possible events occur with same probability.

Some MC states, drawn in bold, correspond to aggregates of

(sub)sequences: the higher n, the bigger the impact of aggregation.

This way the complexity of the generative model’s solution, in

terms of number of states, drops from exponential (O(2nz1)) to

polynomial (O(nk), 2vkv3), so enabling the analysis of bursts of

realistic size.

However, a direct use of the MC is unfeasible because its size

become relevant even for small values of n. The need of identifying

a more expressive formalization of the generative model of bi-

dimensional bursts as binary sequences led us to consider a timed

extension of Petri Nets (PN), known as Generalized Stochastic

Petri nets (GSPN) [34,35]. The GSPN formalism, briefly

introduced in the Appendix, eases the task of modelers by

providing compact, parametric and stochastically-reconfigurable

representations of even huge Markov processes.

The fact that a GSPN maps to a Markov process, i.e., a

Continuous Time MC (CTMC), does not represent a problem. If

we consider only the instants at which the state of the system

changes, and we number these instances 0, 1, 2,.., then we get a

discrete time Markov chain that is called Embedded Markov

Chain (EMC), or ‘‘jump process’’, of the CTMC. Letting qi,j be

the exponential transition rate from state i to state j of a CTMC,

the one-step transition probability matrix of the EMC is defined by

Table 1. Fitting results.

D 1 D 2

Power law Exp. Power law Exp.

87.16% 12.84% 76.67% 23.33%

Percentage of time series, in D 1 and D 2, which are best fitted by the Zeta (power-law) and exponential distributions. The best model selection has been performed
according to Akaike Information Criterion.
doi:10.1371/journal.pone.0103183.t001

Figure 2. Burst detection results. Mean of the percentage of events inside the bursts by varying the threshold Dt from 1 to 60 seconds: (a) D 1, (b)
D 2.
doi:10.1371/journal.pone.0103183.g002
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setting pi,i~0, pi,j~
qi,j

vi

if i=j, where vi~
P

k=i qi,k. The

stationary probability distribution y of the EMC (which exists

and is unique if the EMC is irreducible/positive recurrent) can be

computed from that of the CTMC (p ), and vice-versa: yi~Cpivi,

where C is a normalizing constant.

A GSPN generative model parametric in bursts’ length was built

ensuring that its embedded MC exactly matches the blueprint

instantiated in Figure 6 for the case n~3.

GSPN model
The bi-dimensional bursts’ generator is depicted in Figure 7,

together with an accompanying map legend. The model was

edited and analysed using the the GreatSPN package [36], which

natively supports GSPN. The model is available at [24] in

GreatSPN legacy format. Let us just overview its blueprint.

The model implements two event generators that operate in

mutual exclusion. Passing from one generator to the other is

Table 2. Burst length statistics.

D 1 D 2

Mean Med. Std. Mean Med. Std.

Call 8.2 6.0 7.4 6.2 5.0 5.1

Text 8.9 6.0 9.3 6.2 4.0 6.1

Phone 13.8 9.0 14.7 8.2 6.0 7.9

Comparison of burst length (mean, median, and standard deviation) among the one-dimensional cases and the multidimensional one.
doi:10.1371/journal.pone.0103183.t002

Figure 3. Histogram of interleaved degree. Interleaving degree computed on interleaved burst. (a) D1: mean 0.32, median 0.29, and standard
deviation 0.20. (b) D2: mean 0.36, median 0.31, and standard deviation 0.23.
doi:10.1371/journal.pone.0103183.g003
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triggered by a (symmetric) transition which emulates in some sense

the switch attitude of humans.

Transition start starts the model up by putting n tokens in

place length, then (once all of them have been consumed, i.e., n

events have occurred) brings the model back to its initial state by

triggering a sequence of immediate transitions (recognizable from

prefixes clean, flush) clearing the contents of prevalence and

other significant places. This way the underlying CTMC is

ergodic.

Bursts are randomly built by a pair of mutually exclusive timed

transitions (event_0, event_1), one for either type of event (sms/

call). The rates of the associated exponential distributions, l1,l0,

may be interpreted as mean frequencies of events of a given type.

The ratio p~
l1

l1zl0
expresses the ‘‘average prevalence’’, and is

one of the model’s two stochastic parameters. The switching

process is explicitly represented, so as to closely adhere to human

dynamics: timed transition switch indirectly conflicts with both

transitions event i, its firing enables one of two (conflicting)

immediate transitions (switchTo i) that concretely cause the

alternation of the 0 and 1 generators. Places switches and

subsequence hold the number of switches occurred since the

beginning of the burst, and the length of the last subsequence,

respectively. The contents of place subsequence are cleared just

after a switch occurrence. Switching is driven by switch’s rate, ls,

the ratio r~
l1

ls

represents the other stochastic parameter of the

model.

The parameters pri, i[f0,1g, of the EMC associated with the

GSPN model are pri~
li

lizls

. The metrics of interest are derived

from the probability distribution on the subset of states fSig in

which vi~1 (corresponding to GSPN markings enabling uniquely

transition restart, that map to the EMC states in which L~n).

Hence, they can be directly obtained from the GSPN stationary

distribution. Referring to the Figure 6, these probabilities may be

seen as the probabilities of reaching the final states starting from

S0.

Table 3. Comparative analysis between original and shuffled time series.

D1 D2

Burst type Original Shuffled Variation rate Original Shuffled Variation rate

One-dimensional 24.57% 6.42% 273.86% 32.79% 10.72% 267.29%

Disjoint 18.37% 14.49% 221.12% 25.11% 21.51% 214.33%

Interleaved 57.06% 79.08% +38.60% 42.10% 67.77% +60.95%

Comparative analysis between original and shuffled time series for each dataset. The shuffled time series was obtained from the original ones by performing a random
permutation of the order of text messages and phone calls.
doi:10.1371/journal.pone.0103183.t003

Figure 4. Distribution of Spearman correlation coefficient. CDF of the Spearman correlation coefficient computed on D 2 considering
sequences with more than three distinct receivers. We report the distribution for both day (mean 0.21, median 0.24 and std 0.36) and burst (mean
0.12, median 0.17 and std 0.50) level.
doi:10.1371/journal.pone.0103183.g004
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Figure 5. Distribution of Spearman correlation coefficient per burst type. CDF of the Spearman correlation coefficient computed on D 2 by
grouping burst by type and considering sequences with more than three distinct receivers.
doi:10.1371/journal.pone.0103183.g005

Figure 6. Discrete time Markov chain. Graphical representation of the discrete time Markov Chain (MC) in case of burst length n~3. MC states
are described by four integer variables, L (length), P (prevalence), S (switches) and l (last). L denotes the length of (sub)sequences represented by a
state (in the picture values of L correspond to the depth level in the DAG – Direct Acyclic Graph). P and S indicate the number of ‘1’s and the number
of switches, respectively. l denotes the last occurred event and allows tracking switches. Each state, but S0 , is annotated with some variables’
bindings (top) and the (sub)sequences it represents (bottom). States drawn in bold correspond to aggregates of sequences. The parameters pr0 and
pr1 represent the probabilities that the next event coincides with the last one. In order to make the MC irreducible, we assume that each final state
(L~3) brings the system back to state S0 with probability 1 (these connections are omitted in the picture).
doi:10.1371/journal.pone.0103183.g006
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Results
In order to validate the model we carried steady state analysis

out for a number of configurations. The metrics of interest are the

distributions of prevalence and switches (expressed as interleaving

degree), which correspond to the distribution of tokens in the

homonym places of the GSPN model. Steady-state analysis

outcomes are then faced to real data. Besides, we deepen how

the model performs against a fully random approach relying on

sequence combinatorial analysis.

Note that in case of balanced sequences of length n, the

formulas for the distribution of prevalence (P(k,n), i.e., the

probability to draw k symbols ‘1’) and switches (P(s,n), i.e., the

probability to draw s switches) are:

P(k,n)~
1

2n

n

k

 !
k : 0 . . . n

P(s,n)~
1

2n{1

n{1

s

 !
s : 0 . . . n{1

The formula for switches is derived from the following

consideration. For a sequence of length n, there are at most

n{1 switches. Then the binomial
n{1

s

� �
is the number of times

Figure 7. Bi-dimensional burst generative GSPN-model.
doi:10.1371/journal.pone.0103183.g007
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in which it is possible to put s switching points among the n{1
places.

The search parameter space is given by p ranging over

0:4 . . . 0:6, r ranging over 3 . . . 6, which are symmetric intervals

around the mean value observed in dataset, and n ranging over

3 . . . 50. In order to reproduce real prevalence and the interleaving

degree distributions, first we selected the best parameters’ model

using the Kolmogorov distance; then we weighted the obtained

per length distributions according to the burst length distribution

observed in the datasets.

In Figure 8 and 9 we report the prevalence and interleaving

degree distributions of the best fitting model versus the observed

and combinatorial ones, both on specific size sequences and

aggregated case. There is some evidence that the model fits in

sample data much better than combinatorial analysis, which

exhibits an unrealistic symmetrical trend with center (approxi-

mately)
n

2
. Note that the model is also able to reproduce the peaks

due to the one-dimensional and disjoint bursts, which represent

the behavior farther from randomness.

The key factor which makes the model closer to the real process

than the combinatorial approach is its being driven by an explicit

switching process able to reproduce the real behavior. Conversely,

the random approach has the prevalence as unique parameter

driving the process, switching being just an indirect, not tunable,

consequence.

Conclusions

This paper takes a a step forward in the study of multidimen-

sional human dynamics on networks. Although until now several

one-dimensional studies have shed light on important aspects of

human dynamics, their extension to a multidimensional approach

brings to light key issues that have remained hidden for a long

time. This work describes a theoretical framework to address

multidimensional human dynamics by providing a multidimen-

sional burst detection algorithm, a set of metrics to characterize

multidimensional behaviors and a multidimensional generative

model of events. The empirical evidence and validation of the

effectiveness of this framework is obtained by following the

combined phone call/text message communication patterns of

approximately one million people over three months period. While

confirming and magnifying the bursty nature of human dynamics,

multidimensionality enables to understand the mechanisms

underlying the human mental scheduling process whenever people

have many different channels available for communication. The

findings of this research offer a first contribution to address

multidimensional dynamics and open the way to further extensive

research. Indeed, the theoretical framework should be embedded

in timing burst generative model and extended to networks with

more than two dimensions. The multidimensional approach is

finally expected to bring about many implications from an

application viewpoint. In fact, it may lead to a better understand-

ing of the overall human social dynamics in online social networks

and enable the design of novel information spreading algorithms

and of autonomic hubs of service on mobile devices.

GSPN formalism overview
Introduced in the sixties, PN are particular directed bipartite

graphs suitable for specifying distributed discrete-event systems. A

GSPN is formally a 7-tuple (P; T ; I ; O; H; p; M0), where P|T

are the nodes of the graph. The elements of P, called places and

drawn as circles, represent the system’s state in a modular fashion.

T is the set of transitions (drawn as bars), representing actions,

events, operations. Connections between places and transitions are

defined in matrix form by input, output and inhibitor arc-

functions I , O, H: P|T?N, drawn as arrows and rounded head

edges, respectively. PN incorporate a distributed state notion,

called marking, a map M : P?N. A marking is represented by

inscribing place p with M(p) black tokens. M0 denotes the initial

marking of the net. Function p : T?N assigns priorities to

transitions. Let t[T : t is said to be enabled in M if Vp[P

I(p,t)ƒM(p) ^H(p,t)wM(p), and there are no higher priority

transitions meeting this condition. If t is enabled in M it may fire

leading to M ’, Vp, M ’(p)~M(p){I(p,t)zO(p,t). The notation

M½twM ’ is used. The set of transitions enabled in M is denoted

with E(M). Two enabled transitions are said to be in conflict in M

if the firing of one disables the other. Starting from M0 it is

possible to build the Reachability Graph (RG) of a GSPN model,

whose nodes Mi are the markings which are reachable through

any firing sequence M0½t0wM1½t1w . . . Mi, and whose arcs are

labelled with the transitions that lead from one marking to

another. GSPN include time specifications, so that performance

analysis is possible besides classical PN analysis, like structural

techniques or state-space exploration. This extension amounts to

adding a function W : T?Rz to GSPN’s definition. Transitions

ti such that p(ti)~0 are associated with a random firing delay

whose density function is a negative exponential with rate

W (ti)~li. These transitions are called timed, their semantics is

described by a race model: when a marking enables several

(conflicting and/or concurrent) timed transitions, the activities

they represent are assumed to run in parallel, so that the state

Figure 8. Comparative analysis in case of burst length 13. (a) Prevalence distributions. (b) Interleaving degree distribution. We use the
following parameter values: p~0:5 and r~3.
doi:10.1371/journal.pone.0103183.g008
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change is due to the transition whose sampled firing delay is

minimum. The probability that ti[E(M) fires is
liX

tj[E(M)
lj

.

Transitions ti such that p(ti)w0 instead represent logical or

time negligible actions. They are called immediate, because fire in

zero time and with priority over timed ones. Graphically they are

represented as black tiny bars to be distinguished from timed ones.

The value W (ti) for an immediate transition specifies a weight: if

there are several conflicting immediate transitions in E(M) the

selection of the one that fires is done using weights W (ti),
normalized in such a way as to obtain a discrete distribution

function. Marking-dependent transition rates/weights may be set,

in that case the notation W (ti,M) will be used. The RG of a

GSPN model contains two different types of nodes: tangible
markings, in which no immediate transitions are enabled (and

therefore the system spends time), and vanishing markings, in

which at least one immediate transition is enabled (and therefore

the time spent by the system is equal to zero). Due to the

memoryless property of the exponential distribution, a GSPN

whose RG doesn’t contain any vanishing loops is isomorphic to a

continuous-time Markov chain (CTMC) whose states correspond

to the tangible markings of the RG [35]. The component qi,j of the

infinitesimal generator is the sum of rates of transitions that lead

from marking Mi to Mj either directly, or via some (suitably

weighted) vanishing paths.

Performance indices such as, for example, transition through-

puts and the distribution of tokens in a place can be computed on

a GSPN model. They are derived from either the transient or the

steady state probability vector of the associated CTMC.
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