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Abstract. An overview over some aspects of the Fučíık spectrum are given, in
particular in the situation when the problem is invariant under some compact
group action. Some recent results concerning the complexity of the Fučíık spec-

trum are discussed, and some open problems are stated. In the final section,
based on the mentioned structure of the Fučíık spectrum, a new multiplicity
result for a related equation with asymptotic interference with the spectrum is
given.

1. Introduction

In this article we first review some recent results on the structure of the so-called
Fučik spectrum - a nonlinear spectrum associated with the Laplacian. Consider the
following simple nonlinear elliptic equation:

(1.1)

{ −Δu = λu+ − μu− , in Ω

Bu = 0 , on ∂Ω

where Ω ⊂ R
N is a bounded domain, u+ := max{u, 0}, u− := max{−u, 0}, with

λ, μ ∈ R, and Bu = 0 denoting suitable homogeneous boundary conditions.

The Fuč́ık spectrum is defined as the set

Σ = {(λ, μ) ∈ R
2 : (1.1) has a nontrivial solution}

The study of such type of equations goes back to S. Fuč́ık [17] and E.N. Dancer
[11], who introduced this spectrum, first in the study of the corresponding ODE

(1.2)

{
−u′′ = λu+ − μu− , (0, π)

Bu = 0

For equation (1.2) the Fuč́ık-spectrum can be completely determined. For in-
stance, for periodic boundary conditions

Bu = 0 ⇐⇒ u(0) = u(π) , u′(0) = u′(π)
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one finds global branches Σk departing from each linear eigenvalue λk, k = 0, 1, ...;

first, there is the so-called ”trivial part” of the Fuč́ık spectrum:

Σ0 = {(λ, λ0), λ ∈ R} ∪ {(λ0, μ), μ ∈ R} ,

where λ0 = 0 is the lowest eigenvalue of − d2

dx2 with periodic boundary conditions;
these values in the Fuč́ık spectrum correspond to solutions of constant sign;

then there are the curves

Σk :=
{
(λ, μ) ∈ R

2 :
1√
λ
+

1
√
μ

=
1

kπ
=

2√
λk

}
, k = 1, 2, 3, ... ;

they are easily obtained, since u+ and u− satisfy linear equations, whose solutions
are explicit. The above formulas are then obtained by matching the derivatives of
u+ and u−.

These branches constitute together the complete Fuč́ık-spectrum:

Σ =
⋃
k≥0

Σk

Σ1

Σ2

Σk

λ

μ

�

�

�

(λ1, λ1)

(λ2, λ2)

(λk, λk)

Figure 1: The Fuč́ık spectrum

The Fuč́ık spectrum has some important applications. First recall that the
linear eigenvalues

−u′′ = λu , u(0) = u(1) , u′(0) = u′(1) ,

correspond to the (stationary) solutions of an oscillating system (say a string).
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Figure 2: Linear oscillations

Similarly, the Fuč́ık-spectrum corresponds to oscillations of an asymmetric sys-
tem, where different reaction forces act in the positive and the negative direction.

−u′′ = λu+ − μu− , u(0) = u(1) , u′(0) = u′(1) ,

Very interesting applications of this equation to the oscillations of suspension
bridges have been given by Laser-McKenna in several influential papers, see e.g.
[20].

Figure 3: Nonlinear oscillations: the suspension bridge model

2. The Fuč́ık-spectrum for PDE’s

The Fuč́ık-spectrum for corresponding partial differential equations is much
more delicate, and much less is known. Consider the equation

(2.1)

{
−Δu = λu+ − μu− in Ω ⊂ R

N

u = 0 on ∂Ω

where Ω ⊂ R
N is a bounded domain. Let λ1 < λ2 < λ3 < ... denote the eigen-

values of −Δ with Dirichlet boundary condiitons. Much research has been done



4 BERNHARD RUF

on this subject, see e.g. Gallouet-Kavian [18], Ruf [30], Lazer-McKenna [19], de
Figueiredo-Gossez [15], Dancer, [13], and many more ... . However, despite many
efforts, the results remain much less complete than in the ODE case. The following
is known:

• Σ is a closed set

• the (trivial) lines {(λ, λ0), λ ∈ R} and {λ0, μ), μ ∈ R} belong to Σ

• Σ does not contain points with: λ < λ0 or μ < λ0

• in each square (λk−1, λk+1)
2 around (λk, λk) (λk may have multiplicity

m), a continuum C ⊂ Σ emanates from the point (λk, λk) ∈ Σ. C is
composed of a lower curve Clo and an upper curve Cup; both curves are
decreasing, and may be coincident (see Ruf [30], Gallouet-Kavian [18] for
the situation of a simple eigenvalue λk, and Magalhães [22] and Schechter
[32] for the case that λk is a multiple eigenvalue.

• other points in Σ∩ (λk−1, λk+1)
2 can only lie between the curves Clo and

Cup; in particular, in the squares (λk−1, λk)
2 and (λk, λk+1)

2 there are no
points of Σ).

• lowest part of the continuum Σ1 departing from (λ1, λ1), i.e. the ”first
nontrivial curve” in Σ. A global variational characterization of this set
has been given by de Figueiredo-Gossez [15].

Σk

Cup

Clo

λ

μ

�

�

�

�

(λ1, λ1)

(λk−1, λk−1)

(λk, λk)

(λk+1, λk+1)

Figure 4: The Fuč́ık spectrum near a higher eigenvalue
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3. Generalizations of the Fuč́ık spectrum to other type of equations

The above results have been generalized in various directions, which we indicate
below together with some bibliographic references.

3.1. Second order equations with variable coefficients:{
−Δu = m(x) u+ − n(x) u− , in Ω

u(x) = 0 , ∂Ω

For the case N = 1, we refer to Drábek [14], Arias-Campos [2], Rynne [31], Reichel-
Walter [29]; Alif-Gossez [1] considered the N -dimensional case, and with indefinite
coefficients m and n.

3.2. Quasilinear equations with p-Laplacian:
The analogue of the Fuč́ık spectrum for the p−Laplacian takes the following form:{

−Δpu = a(u+)p−1 − b(u−)p−1 , in Ω

u(x) = 0 , ∂Ω

The case N = 1 was treated by Drábek [14]; in the N -dimensional case, Cuesta-de
Figueiredo-Gossez [10] characterized the first curve in the Fuč́ık spectrum, Perera
[28] considered the general case (higher order branches), Arias-Campos-Cuesta-
Gossez treated the case with a and b variable [3] and indefinite [4].

3.3. Equations with higher order differential operators:{
−Δ2u = a u+ − b u− , in Ω

u(x) = Δu(x) = 0 , ∂Ω

Campos-Dancer [7] studied the fourth-order ODE, Massa-Ruf [26] obtained re-
sults for the problem in N dimensions, as a special case of a system of 2nd order
equations.

3.4. Fuč́ık-spectrum for elliptic systems:⎧⎪⎪⎨
⎪⎪⎩

−Δu = a v+ − b v− , in Ω

−Δv = c u+ − d u−

u(x) = v(x) = 0 , ∂Ω

This system of equation was studied by Massa-Ruf in [26]. A complete description
of the Fuč́ık spectrum for the corresponding system of ODE’s was given, and in
[27] the system of PDE’s was studied.
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4. Variational characterization of Σ

In many applications it is very useful to have a variational characterization of
the Fuč́ık-spectrum. In general, this is not easy to obtain due to the asymmet-
ric structure of the equation. We note however that de Figueiredo-Gossez [15]
gave a global variational characterization of the first non-trivial curve of the Fuč́ık
spectrum. For other variational results see also Perera [28], and Massa [24].

It has been observed in [16] that if the equation has an additional symmetry,
then a variational structure may be naturally available.

Consider again the ODE with periodic boundary conditions:{
−u′′ = λu+ − μu− , in [0, 1)

u(0) = u(1) , u′(0) = u′(1)

The corresponding functional is invariant under the S1-action given by the time-
shifts:

Tθu(t) = u(t+ θ) , θ ∈ [0, 1)

Using the geometric S1-index by V. Benci [6] one obtains for every k ∈ N a
minimax-characterization of critical values ck , k ∈ N, which corresponds to the
k-th Fuč́ık eigenvalue, see de Figueiredo-Ruf [16]. In particular, this allows to give
a variational characterization of the complete Fuč́ık spectrum.

5. The Fuč́ık-spectrum Σ ⊂ R
2 of −Δ on the torus

Consider now equation (2.1) on the flat two-dimensional torus

T 2 = (0, 1)× (0, r)

that is⎧⎨
⎩

−Δu = λu+ − μu− in R
2

u(x, y) = u(x+ 1, y) = u(x, y + r) ,
for all (x, y) ∈ R

2 .

An important feature of this problem is its invariance under the compact group
action

g = (s, t) ∈ G = [0, 1)× [0, r) :

g ·[u(x, y)] := u(x+ s, y + t)

Denoting by

F (u) := −Δu− (λu+ − μu−) ,

then F is equivariant under the action of G, i.e.

F (g ·u) = g ·F (u) , for all g ∈ G .

Note that the linear eigenvalues of −Δ on T 2 are explicit:

λk := λi,j = i24π2 + j24π2/r2 , i, j = 0, 1, 2, . . .
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5.1. Explicit branches in Σ. Using the structure of the torus, we can prove:

Theorem 5.1. From every eigenvalue (λk, λk) emanates an explicit global
curve

Σexpl
k ⊂ Σ ,

given by:

(i) if k = 0, then the lines (λ, λ0) and (λ0, μ) are in Σ;
(ii) if k ≥ 1, then the curve

Σexpl
k :

1√
λ

+
1
√
μ
=

2√
λk

belongs to Σ

Thus, the explicit Fuč́ık branches on the torus T 2 look just like in Figure 1.

Proof. On [0, 1]× [0, r], use the change of variables{
z = jx+ ky

r

w = jx− ky
r ,

with k, j ∈ N mutually prime

�

5.2. Variational branches in Σ. As we already mentioned, it is desirable
to have a variational characterization of the Fuč́ık spectrum. For this we need
an index for the torus-group T 2. Such an index is available due to the work of W.
Marzantowicz [23] and T. Bartsch [5], who introduced an index for general compact
Lie-groups.

A general G-index. Let G be a compact Lie group and A a separable metric
G-space; the action of a group element g ∈ G on an element a ∈ A is denoted by
g · a. The fixed point set of G on A is AG := {a ∈ A | g · a = a , ∀ g ∈ G}.

First, one defines an index relative to AG

γe(A
G) =

{
inf{k ≥ 0 | [AG, Sn] = ∗ for any n ≥ k}
0 , if AG = ∅

,

where [AG, Sn] denotes the set of all homotopy classes of maps from AG to Sn and
* denotes the class of those homotopic to a constant.

Now, consider all representations V of the group G such that

(5.1)

there exists a G−map f : A → V \ {0} where

• dimR V G = γe(A
G) , f(AG) ⊆ V G \ {0}

• f |AG is not homotopic to a constant as a map into V G \ {0} ,

and define

γG(A) = inf{dimC VG | V as in (5.1)} ,

where VG is the complement of V G in V .

Main properties of the G−index (see Marzantowicz [23], and Massa-Ruf [25]):
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Proposition 5.2. Let A, B be G−metric spaces.

1) If there exists a G−equivariant map Φ : A → B such that Φ|AG is a homotopy
equivalence between AG and BG, then γG(A) ≤ γG(B).

2) In particular, if Φ : A → B is a G−equivariant homeomorphism, then
γG(A) = γG(B).

3) If V is an orthogonal representation of G and S(V ) the unit sphere in V , then
γG(S(V )) = dimC VG and γe(S(V

G)) = dimR V G.

In what follows, we will consider the natural action of the group G = T 2 on
the space H = H1(T 2): for g = (s, t) ∈ T 2 and u = u(x, y) ∈ H

g · u = u(x+ s, y + t)

Observe that the fixed point set HG consists of the constant functions in H, and
hence it corresponds to the one-dimensional eigenspace of the eigenvalue λ0.

Using this G-index, more precisely the T 2-index, we can prove

Theorem 5.3. From each eigenvalue (λk, λk), k = 1, 2, . . . , emanates a global
branch of values

Σvar
k ⊂ Σ

which can be characterized variationally.

Proof. With the help of the above index, one proceeds in the usual manner
to obtain critical values: for μ ≥ 0 one sets

Jμ : H1(T 2) → R

u �→ Jμ(u) =

∫
T 2

|∇u|2 − μ

∫
T 2

|u+|2 ,

and one defines the classes of sets

Γk =
{
A ⊆ ∂B : A closed, A G-invariant; ±φ0 ∈ A; γG(A) ≥ k

}
(here B denotes the L2 unit ball in H1(T 2)).

Then one sets

(5.2) λk(μ) = inf
A∈Γk

sup
u∈A

Jμ(u)

By the following proposition the values λk are critical values. �

Proposition 5.4. For k ≥ 1 , μ ≥ 0, the values λk(μ) are well defined positive
critical values for Jμ.

Proof. The proof proceeds by the following steps:

1) J |∂B is G-invariant, and satisfies the PS-condition

2) for each k ≥ 1: Γk �= ∅, and λk(μ) is well-defined

3) λk(μ) is critical: let Aε ∈ Γk with

sup
u∈Aε

Jμ(u) < λk(μ) + ε ,
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and suppose that λk(μ) is not critical: then by the G-equivariant deformation
lemma in ∂B

sup
u∈η(Aε)

Jμ(u) < λk(μ)− ε ,

where η is an equivariant homeomorphism satifying η(±φ0) = ±φ0; thus, η(Aε) ∈
Γk, and hence we have a contradiction.

To complete the proof of Theorem 5.3, note that critical points of Jμ at level
λk(μ) correspond to nontrivial solutions in H1(T 2) of the equation

(5.3) −Δu = (λk(μ) + μ)u+ − λk(μ)u
− ,

and hence

(λk(μ) + μ, λk(μ)) ∈ Σvar
k

Finally, note that μ = 0 ⇒ λk(0) = λk, and hence Σvar
k emanates from (λk, λk).

�

5.3. The global picture. By subsections 5.1 and 5.2 we have the existence
of an

- explicit global branch Σexpl
k , k = 1, 2, . . .

- global variational branch Σvar
k , k = 1, 2, . . .

emanating from the same eigenvalue (λk, λk). Thus it is natural to ask the

Question: do these two branches coincide?

Answer: for certain eigenvalues they do coincide initially.

Indeed, adapting the result of Magalhães [22] and using the group invariance, one
has

Proposition 5.5. Let λk be an eigenvalue associated to a two dimensional

eigenspace. Then all points in Σ ∩ (λk−1, λk+1)
2 lie on the curve Σexpl

k , given in
Theorem 5.1.

From this we conclude that if λk is an eigenvalue with two-dimensional eigenspace,
then in the rectangle

(λk−1, λk+1)
2

the two curves Σexpl
k and Σvar

k coincide.



10 BERNHARD RUF

Σexpl
1

Σexpl
2

Σexpl
3

Σexpl
4

Σexpl
5

Σvar
1

Σvar
4

λ

μ

�

�

�

�

�

(λ1, λ1)

(λ2, λ2)

(λ3, λ3)

(λ4, λ4)

(λ5, λ5)

Figure 5: Σexpl and Σvar coincide near eigenvalues

Note that the explicit branches Σexpl
k have asymptotes at

(
λk

4
,+∞) and (+∞,

λk

4
) ;

this follows immediately from the formula 1√
λ

+ 1√
μ = 2√

λk
.

On the other hand, we have:

Theorem 5.6. All variational branches Σvar
k tend asymptotically to (0,+∞)

and (+∞, 0), respectively.

Proof. We construct sets Aμ with G-index

(5.4) γG(Aμ) ≥ k

such that for μ large

sup
u∈Aμ

Jμ(u) < ε .

For this we start with a continuous function

f(x) =

{
−δ if x /∈ Bε(x0)
m if x = x0

and such that ∫
T 2

|∇f |2dx → 0 as ε → 0 ;

note that such a construction is impossible in dimension 1, but it is possible in
dimensions N ≥ 2.
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Next, we use the topological construction of ”join” (more precisely, a k-fold
join), and apply a topological result of Monica Clapp [8] to show that the resulting
set Aμ satisfies indeed

γG(Aμ) ≥ k

Finally, one shows that:

sup
Aμ

Jμ → 0 , as μ → ∞ ,

by suitable estimates. �

Hence, we conclude that many branch crossings must occur! Indeed: every

explicit curve Σexpl
k gets crossed by all variational curves Σvar

k which start above it,
i.e. by infinitely many curves.

λ

μ

�

�

�

�

(λ1, λ1)

(λ2, λ2)

(λ3, λ3)

(λ4, λ4)

Figure 6: Branch crossings in the Fuč́ık spectrum

5.4. Secondary bifurcations. In this section we study how the variational
curves separate from the explicit branches.

Theorem 5.7. On the first explicit branch Σexpl
1 there exist infinitely many

points of secondary bifurcation.

Proof. The classical tool for bifurcation is degree-theory. To treat the general
case, we would need a T 2-equivariant degree theory.
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However, on the first branch Σexpl
1 we can take advantage of the fact that the

solutions depend just on one variable. Exploiting this symmetry, one can reduce
the problem to a Neumann problem on the domain

R := (0, 1/2)× (0, r/2)

We can write this as the following equivalent problem: look for solutions of

F (μ, λ, u) = 0

where

F : R2 ×H → R×H :

F (μ, λ, u) = (‖u‖2L2 − 1 , u−K[u+ λu+ μu+]) ;

here H = H1(R) ; K = (−Δ+ Id)−1 : H → H

We are interested in bifurcations from known solution, i.e. solutions with (λ+μ, λ) ∈
Σexpl

1,0 . We define a continuous function

(0,+∞) � μ �→ (λμ, uμ)

such that

(λμ + μ, λμ) ∈ Σexpl
1,0

and uμ are the related explicit solutions with ‖uμ‖L2 = 1. We have the following
sufficient condition for bifurcation:

0 is a simple eigenvalue of the derivative F(λ,u)(μ, λμ, uμ)

This is equivalent to the following condition: σ = 0 is an eigenvalue with multiplicity
2 of {

−Δv − μχuμ
v − λμv = σv in R

v = 0 on ∂R
,

where χuμ
denotes the characteristic function of the set {uμ > 0}, λμ is such that

(λμ + μ, λμ) ∈ Σexpl
1,0 , and uμ is the corresponding solution with ‖uμ‖L2 = 1.

The spectrum of this equation can be characterized:

Lemma 5.8. For μ → ∞ there is a discrete sequence of values λj(μ) for which
λ = 0 is double eigenvalue, otherwise, σ = 0 is simple eigenvalue.

�

We now can give the following

Interpretation: The variational branch Σvar
1 initially follows the explicit branch

Σexpl
1 (as seen above), and then, at the first branching point, it will follow the

branch of secondary bifurcation (going asymptotically to zero).
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Figure 7: Secondary bifurcation of Fuč́ık branches

Furthermore, we can also state the following:

Theorem 5.9. The secondary bifurcations on the first branch Σ1 are symmetry
breaking.

Proof. The solutions on the first explicit curve depend on a single variable,
and hence have a S1-symmetry. On the other hand, the solutions on the secondary

bifurcation branch break this symmetry (otherwise they would lie on Σexpl
1 ), and

hence their orbit is homeomorphic to the full group T 2. �

5.5. Open Problems.

• give a global description of the complete Fuč́ık spectrum

• are all Fuč́ık-eigenvalues variational ?

In the following Figure 8 we give a possible global structure of the Fuč́ık-
spectrum which would permit that the whole Fuč́ık spectrum is variational: as we
know, the first variational branch Σvar

1 initially coincides with the explicit curve

Σexpl
1 , until it encounters a bifurcation point, say b1,1; here, the variational branch

separates from the explicit curve, and tends asymptotically to zero. Also the second

variational branch Σvar
2 initially follows the explicit branch Σexpl

2 , bifurcates in b2,1,
and then meets the first branch in the point b1,1 and follows from here the explicit

branch Σexpl
1 , until it encounters the next bifurcation point b1,2 where it separates

again from the explicit branch and converges asymptotically to zero, and so on. We
emphasize that this is just a possible structure, and in view of our results probably
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the simplest possible structure - however, the Fuč́ık spectrum might also be much
more complicated...

λ

μ

�

�

�

�

�

�

�

�
� �

�

�

�

� �

�

b1,1

b1,2

b2,1

(λ1, λ1)

(λ2, λ2)

(λ3, λ3)

(λ4, λ4)

Figure 8: A possible global structure of the Fuč́ık spectrum

6. A multiplicity result for an equation with asymptotic
interference with the spectrum

In this section we prove a new multiplicity result for a forced equation of Fuč́ık
type. Consider the following equation

(6.1)

{
−Δu = αu+ − βu− − t , in T 2

u T 2 − periodic
,

where t > 0 is a given constant forcing term.

Note that equation (6.1) has the ”trivial” solution u = t
α =: st. We write

u = v + st, and equation (6.1) as

−Δv = α(v + st) + (α− β)(v + st)
− − t

which is equivalent to

(6.2)
−Δv = αv + (α− β)(v + st)

−

=: αv + γ(v + st)
− ;
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here v = 0 corresponds to the trivial solution u = st. We look for nontrivial
solutions of (6.2) and hence of (6.1). In this section we write the eigenvalues λk

repeated according to half of their multiplicity.

Theorem 6.1. Let α ∈ (λk, λk+1) be given. Then, for β ∈ (0, λ1) sufficiently
small, equation ( 6.1) has at least k non-trivial (orbits of) solutions.

Remark 6.2.
1) The statement of this theorem is connected with the so-called Lazer-McKenna

conjecture [21] which says that if a nonlinearity crosses asymptotically the first k
eigenfunctions, then the corresponding equation has at least 2k nontrivial solutions.
Indeed, the nonlinearity

g(r) := αr + γ(r + st)
−

satisfies

lim
r→−∞

g(r)

r
= α− γ = β ∈ (0, λ1) , and lim

t→0

g(r)

t
= α > λk ,

and so it crosses indeed the first k non-trivial eigenvalues, see also Remark 6.5
below.

2) It is interesting that a constant forcing term has the effect of generating mul-
tiple solutions. It is this effect which plays a fundamental role in Lazer-McKenna’s
treatment of the suspension bridge model [20], where the constant force given is a
constant wind blowing against the bridge.

Proof. Consider the functional

(6.3) J(v) =
1

2

∫
T 2

|∇v|2dx− α

2

∫
T 2

|v|2dx+
γ

2

∫
T 2

|(v + st)
−|2dx

Clearly, the functional J : H := H1(T 2) → R is a C1−functional, and it is in-
variant under the torus group T 2. We apply the following theorems which are a
generalizations of Theorems 8 and 9 in the article [9] by D.C. Clark, generalized to
the context of the torus group T 2:

Theorem 6.3. Suppose that I : H → R is a C1−functional which is invariant
under the torus group G = T 2, and satisfying the Palais-Smale condition. Let γG
denote the G−index defined in section 5.2, and let

(6.4) cm(I) = inf
γG(A)≥m

sup
u∈A

I(u)

Then, if −∞ < cm < 0 the critical set Kcm is non-empty and compact. Moreover,
if −∞ < cm(I) = cn(I) = c < 0, then γ(Kc) ≥ n−m− 1.

Theorem 6.4. Suppose in addition to the hypotheses of Theorem 6.3 that
I(0) = 0. Let Ia := {u ∈ E | I(u) ≤ a} denote the sublevel set of I at level
a. Then, for any integer m with

(6.5) lim
a→0−

γ(Ia) ≥ m > lim
a→−∞

γ(Ia)

there exists at least one critical point xm (and hence a critical orbit Gxm) such that

cm(I) = inf
γG(A)≥m

sup
x∈A

I(u) = I(xm)



16 BERNHARD RUF

The functional J defined in (6.3) is invariant under the torus group G = T 2.
Furthermore, it satisfies the (PS)-condition. Indeed, suppose that (vn) ⊂ E is a
(PS)-sequence, i.e. such that

(6.6) |J(vn)| =
∣∣∣1
2

∫
T 2

|∇vn|2 −
α

2

∫
T 2

|vn|2 +
γ

2

∫
T 2

|(vn + st)
−|2

∣∣∣ ≤ c

and

(6.7) J ′(vn)[ϕ] =

∫
T 2

∇vn∇ϕ− α

∫
T 2

vnϕ− γ

∫
T 2

(vn + st)
−ϕ = εn(ϕ) → 0

We first show that vn is bounded in H. Assume to the contrary that ‖vn‖ → ∞.
Dividing (6.6) by ‖vn‖ and setting ṽn := vn

‖vn‖ we have (for a subsequence) ṽn ⇀ ṽ

in H and ṽn → ṽ strongly in Lp, p ≥ 1. Choosing ϕ = vn in (6.7) and subtracting
it from 2J(vn) we get ∣∣∣γ ∫

T 2

(vn + st)
−
∣∣∣ ≤ c+ εn‖vn‖ .

Dividing by ‖vn‖ we get in the limit

(6.8)

∫
T 2

ṽ− = 0 .

Next, we choose ϕ = 1 in (6.7) and divide by ‖vn‖
1

‖vn‖
J ′(vn)[1] = −α

∫
T 2

ṽn − γ

∫
T 2

(ṽn +
st

‖vn‖
)− =

1

‖vn‖
εn(1) → 0 ;

thus we see that
∫
T 2 ṽn → 0 and by (6.8) that

∫
T 2 |ṽn| → 0, and hence ṽ = 0.

Finally, by (6.7)

1

‖vn‖
J ′(vn)[ṽn] =

∫
T 2

∇ṽn∇ṽn = α

∫
T 2

|ṽn|2 + γ

∫
T 2

(ṽn +
st

‖vn‖
)−ṽn → 0

we get a contradiction, since 1 = ‖ṽn‖2 =
∫
T 2 |∇ṽn|2+|ṽn|2. Thus, {vn} is bounded.

From this follows in a standard way that there is a convergent subsequence in E.

Next, we verify condition (6.5).

Claim: If α > λk, then lima→0− γG(Ja) ≥ k.

Let Hk be the 2k−dimensional space spanned by the eigenfunctions corre-
sponding to the eigenvalues λ1, . . . , λk. We show that the sublevel set Ja contains
a T 2−invariant set homeomorphic to a 2k−dimensional sphere, for some a > 0. In-
deed, since on the 2k−dimensional space Hk all norms are equivalent, there exists
a constant ck depending only on k such that ‖v‖∞ ≤ c(k)‖v‖L2 for all v ∈ Hk, and
hence

∫
T 2 |(v + st)

−|2 = 0 for v ∈ Bδ ∩Hk with δ > 0 sufficiently small, where Bδ

is the L2−ball of radius δ. For this δ we have

(6.9)

J(vn) =
1

2

∫
T 2

|∇v|2 − α

2

∫
T 2

|v|2 + γ

2

∫
T 2

|(v + st)
−|2

≤ 1

2
(λk − α)

∫
T 2

|v|2 ≤ a , for all v ∈ Bδ ∩Hk

for some a < 0. This implies that Ja contains a set of index ≥ k, and hence
γG(Ja) ≥ k.

Claim: If β ∈ (0, λ1) sufficiently small, then lima→−∞ γG(Ja) = 0.
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First note that by the characterization (5.2)

(6.10) sup
u∈A

[1
2

∫
T 2

|∇u|2 − μ

2

∫
T 2

|u+|2 − λ1(μ)

2

∫
T 2

|u|2
]
≥ 0 ,

for all A with γ(A) ≥ 1. To match this statement with the notation in the current
section, we write α = μ+ λ1(μ), and get after collecting differently the terms

(6.11) sup
u∈A

[1
2

∫
T 2

|∇u|2 − α

2

∫
T 2

|u|2 + μ

2

∫
T 2

|u−|2
]
≥ 0 ;

hence, setting β(μ) := α(μ)− μ = λ1(μ), we have that (α(μ), β(μ)) lies on the first
non-trivial Fuč́ık curve.

Choose now

(6.12) β = β(μ)− δ = α(μ)− μ− δ = (α(μ)− δ)− μ ,

for some small δ > 0 (such that β > 0). Set α = α(μ)− δ and γ = μ in (6.3), and
consider the sublevel set

J−n =
{
u ∈ H | J(u) ≤ −n

}
=

{
u | 1

n
J(u) ≤ −1

}
=

{
u | v :=

u√
n

satisfies

J (n)(v) :=
1

2

∫
T 2

|∇v|2 − α

2

∫
T 2

|v|2 + γ

2

∫
T 2

|(v + st√
n
)−|2 ≤ −1

}

We now show that for any set A with γ(A) ≥ 1 there exists n0 with

sup
v∈A

J (n)(v) ≥ − c

n
, for all n ≥ n0

Indeed,

sup
v∈A

J (n)(v) = sup
v∈A

[1
2

∫
T 2

|∇v|2 − α

2

∫
T 2

|v|2 + γ

2

∫
T 2

|(v + st√
n
)−|2

]

= sup
A

[1
2

∫
T 2

|∇v|2 − α(μ)

2

∫
T 2

|v|2 + δ

2

∫
T 2

|v|2 + μ

2

∫
T 2

|(v + st√
n
)−|2

]

We estimate∫
T 2

|(v + st√
n
)−|2 =

∫
[v≤− st√

n
]

|v + st√
n
|2

≥
∫
[v≤− st√

n
]

|v|2 + 2

∫
[v≤− st√

n
]

v
st√
n

≥
∫
T 2 |v−|2 −

∫
[− st√

n
≤v≤0]

|v|2 − 2
∫
T 2 |v−| st√

n

≥
∫
T 2

|v−|2 − s2t
n

|T 2| − 2
st√
n

∫
T 2

|v|+ δ

2

∫
T 2

|v|2

≥
∫
T 2

|v−|2 − c

n
.
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Thus, we obtain by (6.11)

sup
v∈A

J (n)(v) ≥ sup
u∈A

[1
2

∫
T 2

|∇u|2 − α

2

∫
T 2

|u|2 + μ

2

∫
T 2

|u−|2
]
− c

n

≥ − c

n
, for any A with γG(A) ≥ 1 .

This implies that there does not exist any set A with γG(A) ≥ 1 such that A ⊆
lim
n→∞

J
(n)
−1 . Thus, lim

a→−∞
γG(Ja) = 0

From these claims the statements of Theorem 6.1 follow immediately by The-
orem 6.4. �

Remark 6.5. Note that the assumption β < β(μ) in (6.12) says that the
nonlinearity in fact must cross the k variational Fuč́ık eigenvalue branches Σvar

j , j =
1, ..., k.

α

β α

λ

μ

�

�

�

�

(λ1, λ1)

(λ2, λ2)

(λ3, λ3)

(λ4, λ4)

Figure 9: Asymptotic crossing of variational Fuč́ık branches
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[31] Rynne, B., The Fuč́ık spectrum of general Sturm-Liouville problems, J. Diff. Equ. 161 (2000),
87–109.
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